
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

The NeRF Utilization in Dense
Reconstruction

Jakub Sakař

Supervisor: Ing. Michal Polic
Field of study: Open Informatics
Subfield: Artificial Intelligence and Computer Science
May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499233 Personal ID number: Sakař Jakub Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

The NeRF Utilization in Dense Reconstruction

Bachelor’s thesis title in Czech:

Využití NeRF v rámci husté rekonstrukce

Guidelines:

1) Review the state-of-the-art NeRF-based methods (i.e., Mip-NeRF, DS-NeRF, and Efficient-NeRF) for rendering new
views from a set of RGB images.
2) Unify the notation and describe the fundamental ideas of listed methods.
3) Discuss in detail the DS-NeRF loss function and its utilization for optimization of the depth maps.
4) Integrate the DS-NeRF loss function into the Mip-NeRF and verify its functionality on a set of synthetic RGB-D images.
5) Modify the input data from an AR device to a suitable format and verify the functionality of step 4) this dataset.
6) [Optional] Add the efficient sampling and hashing of the 3D space voxels utilizing Efficient-NeRF.

Bibliography / sources:

[1] Barron, Jonathan T., et al. "Mip-nerf: A multiscale representation for anti-aliasing neural radiance fields." Proceedings
of the IEEE/CVF International Conference on Computer Vision. 2021.
[2] Deng, Kangle, et al. "Depth-supervised nerf: Fewer views and faster training for free." Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022.
[3] Hu, Tao, et al. "EfficientNeRF Efficient Neural Radiance Fields." Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022.

Name and workplace of bachelor’s thesis supervisor:

Ing. Michal Polic Applied Algebra and Geometry CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 02.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Michal Polic
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would mainly like to thank my supervi-
sor, Michal Polic, for valuable guidance
and motivation which helped me a lot to
work on the thesis consistently. Further-
more, I would like to thank my family
and friends who have mentally supported
me throughout the work on this thesis.
Lastly, I would like to thank the Czech
Institute of Informatics, Robotics and Cy-
bernetics for equipment that was used for
experiments.

Declaration
I declare that the presented work was
developed independently and that I
have listed all sources of information
used within it in accordance with the
methodical instructions for observing the
ethical principles in the preparation of
university theses.

Prague, May 25, 2023
Signature

v

Abstract
This thesis provides an overview of meth-
ods for Novel view synthesis based on
Neural Radiance Fields. It focuses on im-
proving mip-NeRF by incorporating dense
depth information. That is achieved by
implementing depth supervision loss func-
tions from the DS-NeRF method into the
MultiNeRF implementation of mip-NeRF.
One of the loss functions is then modified
and implemented into our code repository.
The loss functions were used for exper-
iments that compare the results of the
modified mip-NeRF method to the results
of the unmodified mip-NeRF implementa-
tion. Finally, all methods have been evalu-
ated on synthetic and real-world datasets.

Keywords: Artificial intelligence,
Computer graphics, Novel view synthesis,
NeRF, 3D reconstruction

Supervisor: Ing. Michal Polic
Czech Institute of Informatics, Robotics
and Cybernetics (CIIRC CTU),
Jugoslávských partyzánů 1580/3,
160 00 Praha 6

Abstrakt
Tato práce poskytuje přehled metod vy-
užívaných k syntéze nových snímků 3D
scény, které jsou založené na metodě Neu-
ral Radiance Fields. Klade si za cíl zlepšit
metodu mip-NeRF s využitím husté in-
formace o hloubce. Toho je dosaženo vlo-
žením ztrátových funkcí, založených na
hloubkové supervizi, z metody DS-NeRF
do metody mip-NeRF implementované v
repozitáři MultiNeRF. Jedna ze ztráto-
vých funkcí byla navíc modifikována. Tyto
ztrátové funkce byly použity k experimen-
tům, které porovnávají výsledky modifi-
kované metody mip-NeRF s výsledky její
původní varianty na syntetických datech
i datech z reálného světa.

Klíčová slova: Umělá inteligence,
Počítačová grafika, Novel view synthesis,
NeRF, 3D rekonstrukce

Překlad názvu: Využití NeRF v rámci
husté rekonstrukce

vi

Contents
1 Introduction 1
2 Preliminaries 3
2.1 Multilayer Perceptron 3
2.2 Coordinate Systems 5
2.3 Transformations 6

2.3.1 Homogeneous Coordinates . . . 6
2.3.2 Transformations in OpenGL . . 8
2.3.3 Transformations in Computer

Vision . 10
2.4 Alpha Compositing and Color

Representation 12
3 NeRF-based Methods 13
3.1 Neural Radiance Fields 13

3.1.1 NeRF Coordinate Systems . . 15
3.2 mip-NeRF 16
3.3 Mip-NeRF 360 19
3.4 DS-NeRF . 21

3.4.1 Depth Supervision Loss
Function . 22

3.5 EfficientNeRF 23
3.6 Ref-NeRF 25
4 Experiments 27
4.1 Dataset Details 27

4.1.1 Synthetic Dataset 27
4.1.2 LLFF Datasets 29

4.2 Implementation details 30
4.3 Testing existing methods 30

4.3.1 Mip-NeRF 31
4.3.2 Mip-NeRF 360 38

4.4 Depth supervision 42
4.4.1 Implementation details 43
4.4.2 Synthetic Dataset 44
4.4.3 LLFF Dataset 51

5 Conclusion 57
Bibliography 59
A Additional Results 63
B List of Attachments 89

vii

Figures
2.1 Perceptron with an activation

function f , from [27] 4
2.2 Left handed vs. right handed

coordinate systems, from [9] 5
2.3 Comparison of different coordinate

systems of the camera, from [10] . . . 6
2.4 OpenGL rendering pipeline,

from [12] . 9
2.5 Visualization of transformations in

OpenGL, from [13] 10
2.6 Pinhole camera model, from [18] 11

3.1 Architecture of the NeRF MLP,
from [1] . 16

3.2 Rays in NeRF and mip-NeRF,
from [2] . 19

3.3 Scene normalization in mip-NeRF
360, from [6] 20

3.4 EfficientNeRF overview, from [5] 24
3.5 The comparison of mip-NeRF and

Ref-NeRF architectures (Ref-NeRF
paper used τ for the volumetric
density), from [3] 26

4.1 Blender project used to generate
synthetic images 28

Tables
4.1 Overview of used datasets 27
4.2 Summary of experiments regarding

existing methods. The table provides
an overview of whether each
experiment has been conducted. . . 31

4.3 Mip-NeRF renderings of the large
LLFF dataset with the NDC scene
normalization, 100000 iterations . . 33

4.4 Mip-NeRF renderings of the large
LLFF dataset without the NDC scene
normalization, 100000 iterations . . 34

4.5 Mip-NeRF renderings of the small
LLFF dataset with the NDC scene
normalization, 100000 iterations . . 35

4.6 Mip-NeRF renderings of the small
LLFF dataset without the NDC scene
normalization, 100000 iterations . . 36

4.7 Mip-NeRF renderings of the
synthetic dataset without any depth
supervision, 100000 iterations 37

4.8 Mip-NeRF 360 renderings of the
large LLFF dataset, 200000
iterations . 40

4.9 Mip-NeRF 360 renderings of the
small LLFF dataset, 200000
iterations . 41

4.10 Summary of depth-supervised
experiments. The table provides an
overview of whether each experiment
has been conducted. 43

4.11 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the original DS-NeRF loss
function, λd = 0.1, 5000 iterations . 45

4.12 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 0.01, 5000 iterations 46

4.13 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 0.1, 5000 iterations . 47

4.14 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 1.0, 5000 iterations . 48

viii

4.15 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 1.0 with decay rate
ξd = 0.999, 5000 iterations 49

4.16 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the mean square loss function,
λd = 0.1, 5000 iterations 50

4.17 Depth-supervised mip-NeRF
renderings of the large LLFF dataset
with the NDC scene normalization;
with the derived KL divergence loss
function and conversion to NDC,
λd = 1.0 with decay rate ξd = 0.999,
5000 iterations. The rendered depth
images are not missing from the
table. They are all white in color
because the depth for all viewpoints
is equal to one. 52

4.18 Depth-supervised mip-NeRF
renderings of the large LLFF dataset
without the NDC scene
normalization; with the derived KL
divergence loss function and
conversion to NDC, λd = 1.0 with
decay rate ξd = 0.999, 5000
iterations . 53

4.19 Depth-supervised mip-NeRF
renderings of the small LLFF dataset
with the NDC scene normalization;
with the derived KL divergence loss
function and conversion to NDC,
λd = 1.0 with decay rate ξd = 0.999,
5000 iterations. They are all white in
color because the depth for all
viewpoints is equal to one.Jk 54

4.20 Depth-supervised mip-NeRF
renderings of the small LLFF dataset
without the NDC scene
normalization; with the derived KL
divergence loss function and
conversion to NDC, λd = 1.0 with
decay rate ξd = 0.999, 5000
iterations . 55

A.1 Mip-NeRF renderings of the large
LLFF dataset with the NDC scene
normalization, 5000 iterations 63

A.2 Mip-NeRF renderings of the large
LLFF dataset with the NDC scene
normalization, 25000 iterations . . . 64

A.3 Mip-NeRF renderings of the large
LLFF dataset without the NDC
scene normalization, 5000 iterations 65

A.4 Mip-NeRF renderings of the large
LLFF dataset without the NDC scene
normalization, 25000 iterations . . . 66

A.5 Mip-NeRF renderings of the small
LLFF dataset with the NDC scene
normalization, 5000 iterations 67

A.6 Mip-NeRF renderings of the small
LLFF dataset with the NDC scene
normalization, 25000 iterations . . . 68

A.7 Mip-NeRF renderings of the small
LLFF dataset without the NDC
scene normalization, 5000 iterations 69

A.8 Mip-NeRF renderings of the small
LLFF dataset without the NDC scene
normalization, 25000 iterations . . . 70

A.9 Mip-NeRF 360 renderings of the
large LLFF dataset, 10000 iterations 71

A.10 Mip-NeRF 360 renderings of the
large LLFF dataset, 50000 iterations 72

A.11 Mip-NeRF 360 renderings of the
small LLFF dataset, 10000
iterations . 73

A.12 Mip-NeRF 360 renderings of the
small LLFF dataset, 50000
iterations . 74

A.13 Mip-NeRF renderings of the
synthetic dataset without any depth
supervision, 5000 iterations 75

A.14 Mip-NeRF renderings of the
synthetic dataset without any depth
supervision, 25000 iterations 76

A.15 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the original DS-NeRF loss
function, λd = 0.1, 25000 iterations 77

ix

A.16 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the original DS-NeRF loss
function, λd = 0.1, 100000 iterations 78

A.17 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 0.01, 25000 iterations 79

A.18 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 0.01, 100000
iterations . 80

A.19 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 0.1, 25000 iterations 81

A.20 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 0.1, 100000 iterations 82

A.21 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 1.0, 25000 iterations 83

A.22 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 1.0, 100000 iterations 84

A.23 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 1.0 with decay rate
ξd = 0.999, 25000 iterations 85

A.24 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the derived KL divergence loss
function, λd = 1.0 with decay rate
ξd = 0.999, 100000 iterations 86

A.25 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the mean square loss function,
λd = 0.1, 25000 iterations 87

A.26 Depth-supervised mip-NeRF
renderings of the synthetic dataset
with the mean square loss function,
λd = 0.1, 100000 iterations 88

x

Chapter 1
Introduction

The task of synthesizing a target image with an arbitrary target camera
pose from given source images and their camera poses is known as novel
view synthesis [7]. In recent years, the popularity of novel view synthesis
has grown steadily due to its increasing capacity to generate highly realistic
images. This performance improvement can be attributed to the release of
Neural Radiance Fields, a method that introduced an innovative approach to
synthesizing novel views using neural networks.

Although multiple novel view synthesis methods based on neural radiance
fields achieved realistic results, none of them utilized information about depth.
One of the methods, DS-NeRF, used depths in the sense that it computed
distances of several keypoints from each camera in the scene. However, none of
the methods researched in this thesis use dense depth data like LiDAR depth
images. Using the depth supervision that DS-NeRF provides while leveraging
the dense depth data could lead to faster convergence and robustness to a
low number of input images.

This thesis aims to research recent novel view synthesis methods based on
Neural Radiance Fields. Two of these methods will be tested on a prepared
set of datasets, where one is synthetic while the other is created from real-
world photographs. The results of these two methods will be compared and
discussed. The depth supervision used in the DS-NeRF method will then
be added to the existing mip-NeRF implementation. It will be first tested
on the synthetic dataset to see if the depth supervision can improve the
mip-NeRF method’s results. The same code will be run for the real-world
dataset to check if dense depth data readily available in AR devices like iPad
can improve the training process by increasing its convergence.

1

2

Chapter 2
Preliminaries

2.1 Multilayer Perceptron

The construct NeRF-based methods use to represent a 3D scene is called the
multilayer perceptron (MLP). Its name originates from the idea of Perceptron,
initially created in 1957 by Frank Rosenblatt [8]. Perceptron is an algorithm
that was initially created as an image recognition machine. It defines a neuron
as a unit combining several inputs in a weighted sum and producing a single
scalar output. Perceptron was initially used for binary classification based on
the sign of the weighted sum.

Formally, the perceptron is trained on a set of data, which has the following
form

T = {(x1, k1)...(xL, kL)} (2.1)

where xi is an i-th feature vector and ki is its corresponding class. Because
perceptron is a binary classifier, there are only two possible classes for each
feature vector, 1 and -1. The goal of the perceptron algorithm is to find
weights w and a bias w0 (often denoted b) such that the following condition
is satisfied

w · xj + w0 > 0 if kj = 1, (∀j ∈ {1, 2, ..., L})
w · xj + w0 < 0 if kj = −1 (2.2)

This condition can be further simplified by concatenating the weights with
the bias and concatenating each feature vector with one and multiplying both
inequalities with the class kj , which results in a single inequality [27]

w′ · xjkj > 0 (∀j ∈ {1, 2, ..., L}) (2.3)

x′ =
[

1
x

]
w′ =

[
w0
w

]
(2.4)

Perceptron was later enhanced by transforming the dot product w′ · x′
j

using a non-linear function, which is also called an activation function. One
of the earliest activation functions is the sigmoid function, which is defined as

3

2. Preliminaries

σ(x) = 1
1 + e−x

(2.5)

Another function that is also used very frequently is the rectified linear
unit (ReLU) function, which is defined as

R(x) = max(0, x) (2.6)

Because both functions map all values to the range [0, 1], the inequality
formerly defined for the perceptron algorithm can no longer be used for binary
classification. However, these functions became much more useful with the
advent of multilayer perceptron [26].

Figure 2.1: Perceptron with an activation function f , from [27]

Multilayer perceptron was created by interconnecting multiple neurons and
creating a network that consists of several layers. The first layer is called the
input layer, and its inputs are used as the inputs to the MLP, while the last
layer is called the output layer, and its outputs are used as the outputs of the
MLP. The remaining layers are called hidden layers; their inputs and outputs
usually don’t give any information about the model.

A multilayer perceptron can be considered a deep artificial neural network,
which utilizes the backpropagation algorithm as a technique that is used to
repeatedly adjust the weights to achieve desired results. These results are
typically achieved using the stochastic gradient descent optimization method.
The MLP computation is performed in two passes. The first pass, the forward
pass, is used to compute the neural network output. This pass computes each
layer’s output based on the previous layer’s output because each layer requires
the previous layer to be computed as it uses the results of the previous layer
to compute its results. The second pass is the backward pass, which is used to
compute the gradient of the MLP using the chain rule. Because computing
each layer’s gradient requires the next layer’s gradient, the computation is
done in the opposite order [25].

4

..................................2.2. Coordinate Systems

2.2 Coordinate Systems

Neural Radiance Fields and similar related methods work with the concept
of 3D coordinates and their transformations. In order to describe these
transformations, we first need to define coordinate systems. Coordinate
systems are a concept used in computer graphics, mathematics, and physics
to determine an object’s position in space. Coordinate systems are defined by
a reference point called the origin, a set of axes with a specified range, and a
unit vector for each axis [28].

This thesis will primarily use 3D Cartesian coordinate systems, which use
three axes, x, y, and z. We further distinguish between right handed and
left handed coordinate systems when talking about 3D Cartesian coordinate
systems. A right handed coordinate system is defined such that if the thumb
of the right hand points in the positive x direction and the index finger points
in the positive y direction, the middle finger points in the positive z direction.
We can analogously define left handed coordinate systems as can be seen in
Figure 2.2 [9].

Figure 2.2: Left handed vs. right handed coordinate systems, from [9]

Left handed coordinate systems are often used in game engines like Unity
or Unreal Engine. In this thesis, we will use right handed coordinate systems,
which are used in OpenGL and COLMAP. See Figure 2.3 for examples.
Although OpenGL and COLMAP coordinate systems are right handed, they
do not have the same orientation. In order to use convert the scene from the
OpenGL coordinate system to the one used by COLMAP., the system needs
to be rotated by 180 degrees along the x-axis, which means that signs of both
the y-axis and z-axis get flipped [29].

5

2. Preliminaries

Figure 2.3: Comparison of different coordinate systems of the camera, from [10]

2.3 Transformations

The major part of computer graphics is about the issue of rendering an
image from a 3D scene representation, while computer vision often deals with
the opposite problem. Both fields of study thus require a way to represent
transformations between different coordinate systems.

2.3.1 Homogeneous Coordinates

Unlike linear transformations, affine transformations in 3D cannot be generally
described using 3x3 matrices. This limitation can be solved by adding a
fourth coordinate, which is set to one for each 3D vector, so the coordinates
of every vector can be described as

xh =


x
y
z
1

 (2.7)

where [x, y, z] are the coordinates of the original 3D vector.
Affine transformation of a vector x to a vector x′ can also be represented

as a linear transformation followed by a translation, which can be described
using a 3x3 matrix and an offset vector:

x′ =

a1 a3 a3
b1 b2 b3
c1 c2 c3

x +

t1
t2
r3

 (2.8)

This representation can be easily converted to homogeneous coordinates

6

................................... 2.3. Transformations

x′ =


a1 a2 a3 t1
b1 b2 b3 t2
c1 c2 c3 t3
0 0 0 1

xh (2.9)

where xh is the vector x in homogeneous coordinates. After performing an
arbitrary transformation in homogeneous coordinates, the fourth coordinate
may no longer be equal to one. In this case, the first three coordinates have
to be normalized by dividing by the fourth coordinate, so for each vector
in homogeneous coordinates [x, y, z, w], their corresponding vector in 3D is
equal to

1
w

x
y
z

 (2.10)

Every affine transformation can be described as a combination of translation,
rotation, scale and shear, but most transformations in computer vision and
graphics do not use shear, which is why it will not be mentioned in this thesis.

Translation is an operation that translates all points of an object by the
same vector t. Such transformation can be described using the following
matrix

T =


1 0 0 t1
0 1 0 t2
0 0 1 t3
0 0 0 1

 (2.11)

Rotation is a transformation that rotates all points of an object around
an arbitrary axis. This definition is difficult to represent using matrices, so
rotation in the 3D space is defined as a set of three rotations where each is
done around a different coordinate system axis. To represent rotation along
the x-axis by an amount θ, we can use the following matrix

Rx =


cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

 (2.12)

Analogously, rotation along the y- and z-axes can be represented as

Ry =


cos(θ) 0 −sin(θ) 0

0 1 0 0
sin(θ) 0 cos(θ) 0

0 0 0 1

 (2.13)

Rz =


1 0 0 0
0 cos(θ) −sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

 (2.14)

7

2. Preliminaries
respectively. Finally, scale can be simply represented by changing values

on the diagonal using a 3D vector s because the scale along each axis does
not affect any other axis [30]

S =


sx 0 0 0
0 sy 0 0
0 0 sz 0
0 0 0 1

 (2.15)

2.3.2 Transformations in OpenGL

OpenGL is an application programming interface that was designed for graph-
ics programming. It allows for the rendering of 3D objects using custom
shaders. While the transformations used in OpenGL may differ based on the
application, most transformations can be represented using a model matrix,
view matrix, projection matrix, and a hidden viewport transform matrix [11].
These transformations are depicted on figures 2.4 and 2.5.

The model matrix transforms vertices of individual objects from local space
to world space, which is shared among all geometry in the rendered scene. The
view matrix transforms vertices in world space into the view space (also called
eye space). Both model and view matrices represent an affine transformation.
The model matrix is different for each model in the scene and depends on the
position, rotation, and scale of the corresponding object. The view matrix is
uniform for each vertex in the scene, and its values depend on the camera
position and rotation [13].

The projection matrix transforms the scene from view space to clip space.
The primary purpose of clip space is discarding everything that is not in view
frustum of the camera. This frustum is defined by six values, near plane n,
far plane f , left bound l, right bound r, top bound t, and bottom bound b.
The projection matrix maps the frustum to a cube, which makes it easy to
tell what lies outside of this camera frustum. After performing this step, the
clip coordinates are normalized into a cube that lies in the range of [−1, 1]3.
The space that is computed by normalizing the clip space is called normalized
device coordinates (or NDC for short).

Two types of projection can be performed: orthographic projection and
perspective projection. The orthographic projection is more straightforward
as its x and y coordinates do not depend on the z coordinate. Generally, an
orthographic projection matrix can be written as

Portho =


2

r−l 0 0 − r+l
r−l

0 2
t−b 0 − t+b

t−b

0 0 −2
f−n −f+n

f−n

0 0 0 1

 (2.16)

The matrix can be further simplified under the assumption of symmetrical
volume, which means that r = −l and t = −b.

8

................................... 2.3. Transformations

Portho =


1
r 0 0 0
0 1

t 0 0
0 0 −2

f−n −f+n
f−n

0 0 0 1

 (2.17)

The perspective projection assumes that objects further away from the
camera appear smaller and simulates real-life camera behavior. Its matrix
form looks like this

Ppers =


2n
r−l 0 r+l

r−l 0
0 2n

t−b
t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

 (2.18)

Similarly, this matrix can be simplified if we assume a symmetrical viewing
frustum.

Ppers =


n
r 0 0 0
0 n

t 0 0
0 0 −(f+n)

f−n
−2fn
f−n

0 0 −1 0

 (2.19)

It is also important to note that, unlike all preceding transformations,
the perspective projection transformation is no longer affine as it does not
preserve parallel lines [14].

Viewport transform matrix defines a transformation from normalized device
coordinates to window space, which is a 2D space. The matrix is parametrized
by window size and position [15].

Figure 2.4: OpenGL rendering pipeline, from [12]

9

2. Preliminaries

Figure 2.5: Visualization of transformations in OpenGL, from [13]

2.3.3 Transformations in Computer Vision

The idea of transformations in computer vision is similar to those in OpenGL.
One of the key differences is the orientation of the y- and z-axes, as discussed
in section 2.2. Another difference is the representation of the camera’s intrinsic
and extrinsic parameters.

Intrinsic parameters of a camera allow a mapping between camera coordi-
nates and image coordinates, while extrinsic parameters define the position
and rotation of the camera with respect to the world coordinate system [16].
These terms are not typically used in computer graphics, which is why they
are described in this section.

Computer vision cameras are usually represented using a pinhole camera
model, which does not model optical defects such as radial distortion. We
will start by describing several terms that will be necessary to define the
pinhole camera model. The camera is represented by its optical center C
and the image plane. The distance between the optical center and the image
plane is called focal length, denoted as f . The line perpendicular to the image
plane and passing through the optical center is called the optical axis. The
intersection of the optical axis with the image plane is called the principal
point, denoted as [ox, oy]. The resulting image size can be further specified
by the size of the pixel footprint on the camera photosensor [sx, sy]. All
of the described parameters are the so-called intrinsic parameters of the
camera. The only two extrinsic parameters of the camera are its position and
orientation. Position can be described using a translation vector t ∈ R3, and
rotation can be described using a rotation matrix R ∈ R3×3 [17].

Computer vision uses three coordinate systems, world coordinate system,
camera coordinate system, and image coordinate system [?]. The world and
camera coordinate systems are usually three-dimensional, while the image
coordinate system is only two-dimensional. The transformation of a point
in world coordinates Xw ∈ R3 to a point in camera coordinates Xc ∈ R3

is performed using a matrix [R|t]. Because this resulting matrix is a 3x4
matrix, the point in world coordinates has to be expanded to homogeneous
coordinates. The following equation describes how the point is transformed

Xc = [R t]
[
Xw

1

]
(2.20)

10

................................... 2.3. Transformations

Figure 2.6: Pinhole camera model, from [18]

The transformation from camera coordinates to image coordinates is done
using the calibration matrix K ∈ R3×3, which can be constructed using the
camera’s intrinsic parameters. The general form of the calibration matrix is

K =


f
sx

f
sx

cot(θ) ox

0 f
sy

oy

0 0 1

 (2.21)

where θ is the angle between the x- and y-axes [17]. This matrix can be
rewritten into a more readable form. First, f

sx
and f

sy
can be rewritten to fx

and fy respectively. These two parameters are the focal lengths of the camera
in terms of pixel dimensions in the x and y direction, respectively. The term
f
sx

cot(θ), which is referred to as the skew parameter can be denoted as s [31].
In this thesis, we will assume that this parameter is equal to zero, which
means that the calibration matrix will be simplified to the following form

K =

fx 0 ox

0 fy oy

0 0 1

 (2.22)

Using these two matrices, we can compute image coordinates of a point
u ∈ R2 from a point Xw ∈ R3 in world coordinates

λ

[
u
1

]
= K[R t]

[
Xw

1

]
(2.23)

where λ ∈ R+ is the distance of X from the image plane of the camera [?].
Transformations in the pinhole camera model are depicted on Figure 2.6.

11

2. Preliminaries
2.4 Alpha Compositing and Color Representation

¨ In order to render images from an arbitrary viewpoint, NeRF-based methods
need to sample multiple points along a ray and compose colors in these points
to get the resulting color. To understand how NeRF does this, we need to
understand alpha compositing and how colors are represented in computer
graphics. Alpha compositing, also called alpha blending, is a technique used
in computer graphics, which is used to compose multiple layers of transparent
images. Many different formats can represent color in computer graphics, but
the most popular one is RGBA.

RGB is an additive color model inspired by the human eye’s biology in
the sense that the human eye contains three types of cones, each of which is
sensitive to a different light wavelength. Combining these three components,
red, green, and blue, we can produce any color perceivable by the human
brain [32].

RGBA is an extension of the RGB color model, incorporating an additional
alpha component. This component is used to represent the opacity of the
given color. The most common variant of RGBA colors is a 32-bit RGBA
color, where each component is represented as an 8-bit integer. This means
that its values range between 0 and 255, where 0 represents a minimal intensity
(black color), and 255 represents a full intensity. In the case of the alpha
component, 0 represents a fully transparent color, whereas 255 represents a
fully opaque color.

When performing alpha compositing, we consider a color c1 with an alpha
component α and a background color c0, which is fully opaque. After blending
the color c1 with the background the resulting color c can be calculated as [33]

c = αc1 + (1− α)c0 (2.24)

12

Chapter 3
NeRF-based Methods

3.1 Neural Radiance Fields

Neural Radiance Fields (NeRF) is a novel view synthesis method that uses
an MLP to store information about a 3D scene. The perceptron is trained to
predict color in RGB format and volumetric density σ for a given 3D point x
and a given view angle d, realized using a 3D vector, i.e.,

(x, d)→ (r, g, b, σ) (3.1)
.

In order to render novel images of the scene, NeRF uses alpha compositing
techniques commonly used in computer graphics. Each pixel in an image is
rendered by casting a ray r through the scene and sampling several points on
this ray. Each ray can be described using an origin o and a direction d as a
parametric equation

x = r(t) = o + td (3.2)
where t ∈ R is a parameter used to determine ray position.

After evaluating color ci ∈ R3 and volumetric density σi ∈ R for each of
the sampled points, the final color Ĉ(r) is rendered according to following
equations

Ĉ(r) =
N∑

i=1
Ti(1− exp(−σiδi))ci (3.3)

Ti = exp

− i−1∑
j=1

σjδj

 (3.4)

δj = tj+1 − tj (3.5)
Because the alpha compositing weights that are being computed in equa-

tion 3.3 will often appear in the implementation, we will denote these weights
as wi

wi = Tiαi (3.6)

13

3. NeRF-based Methods
αi = (1− exp(−σiδi)) (3.7)

NeRF uses two MLPs with two different sampling strategies to achieve
more precise results. The first MLP is called the coarse MLP, which is trained
on data sampled uniformly along each ray. The second MLP is called the
fine MLP, and its operation depends on the coarse MLP results. Using
equation 3.6, we can compute alpha compositing weights for the coarse MLP
and normalize them to get a probability distribution

ŵi = wi∑Nc
j=1 wj

(3.8)

where Nc ∈ N is a number of points sampled on each ray for the coarse MLP.
This new probability distribution is then used to sample points for the fine
MLP.

Since neural networks often omit low-frequency information, NeRF uses a
positional encoding that encodes the MLP input using harmonic functions.
Generally, this is done using a function γ, which uses a hyperparameter L.
This hyperparameter defines how many pairs of harmonic functions will be
used for the positional encoding. The encoding is defined as a function with
a single scalar parameter applied to each input parameter separately. So, if
a vector is used as an input, the function is computed for each component
separately.

γ(p) =
(
sin(20πp), cos(20πp), ..., cos(2L−1πp), cos(2L−1πp)

)
(3.9)

With the addition of positional encoding, both MLPs perform the following
mapping

(γx(x), γd(d))→ (r, g, b, σ). (3.10)

Encoding functions in this equation used subscripts because the L parameter
has a different value for the encoding of the position and direction.

Another technique NeRF uses is hierarchical sampling, which means that
NeRF trains two MLPs, where the results of one MLP are used to get more
precise samples for the other. NeRF starts with sampling points uniformly for
the coarse MLP. The output of this MLP is used to generate a non-uniform
sampling, which is then used as an input for the fine MLP.

Both MLPs in NeRF are the same size and use the same parameters as
input. Each MLP has eight layers with ReLU activation and 256 channels,
where the first layer uses an encoded position as input. The encoded position
is also concatenated to the fifth layer activation. The output of these layers
consists of predicted volumetric density for the given point and a feature
vector with a size of 256. This feature vector is then concatenated to the
encoded view direction and passed through a single layer with 128 channels
and a ReLU activation. The output layer, which uses a sigmoid activation,
is a 3D vector representing the output color. For a diagram of the MLP
architecture, see Figure 3.1.

14

................................ 3.1. Neural Radiance Fields

3.1.1 NeRF Coordinate Systems

NeRF uses two different coordinate systems to sample the continuous 3D
scene. The more straightforward approach is just using the world coordinates
of the camera. However, this approach only works well for relatively small
scenes and is only used for synthetic data created in Blender. The second
approach assumes that the scene is "forward-facing," which means that all
cameras are close to each other regarding view direction. This approach
transforms the entire scene into the Normalized Device Coordinates space
used in the OpenGL rendering pipeline.

Transformation to normalized device coordinates space can be derived from
the perspective projection matrix

M =


n
r 0 0 0
0 n

t 0 0
0 0 −(f+n)

f−n
−2fn
f−n

0 0 −1 0

 (3.11)

where n is the near plane, f is the far plane, r is the right bound of the scene
at the near plane, and t is the top bound at the near plane. If we consider
the pinhole camera model, with a far bound of positive infinity, the matrix
further simplifies to the following form

M =


−2fcam

W 0 0 0
0 −2fcam

H 0 0
0 0 −1 −2n
0 0 −1 0

 (3.12)

where fcam is the camera’s focal length, and W and H are the width and
height of the image in pixels. Using this matrix we can transform an arbitrary
point X ∈ R in world coordinates to a point X ′ ∈ R in normalized device
coordinates

X ′ = 1
z

M

[
X
1

]
=


2fcam

W
x
z

2fcam

H
y
z

−1− 2n
z

1

 (3.13)

In order to achieve consistency between all cameras, the origins o ∈ R3

of each ray are shifted to the near plane at z = −n. The following set of
equations defines a new origin

on = o + tnd (3.14)

tn = −n + oz

dz
(3.15)

The fact that the origin was moved means that after performing this
transformation, all ray origins will have the same z coordinate. The negative

15

3. NeRF-based Methods
near plane is used because NDC space is derived from the OpenGL coordinate
system, where the camera faces the negative z axis [1].

Figure 3.1: Architecture of the NeRF MLP, from [1]

3.2 mip-NeRF

Mip-NeRF extends upon the original NeRF method while removing aliasing
from rays passing through the 3D scene. In order to remove aliasing, mip-
NeRF replaces infinitesimally narrow rays with cones and predicts color for
the entire space of conical frustums instead of just points. This approach
is inspired by pre-filtering, which is one of the ways to avoid aliasing in the
space domain. However, it is challenging to compute an integral over these
frustums, so we use a multivariate Gaussian approximation, as shown in
Figure 3.2.

The conical frustums are parameterized by their mid-point tµ and half-
width tδ. The multivariate Gaussians are parameterized using mean distance
along the ray µt, variance along the ray σ2

t , and variance perpendicular to
the ray σ2

p. The following equations describe the relations between these two
parametrizations

µt = tµ + 2tµt2
δ

3t2
µ + t2

δ

(3.16)

σ2
t = t2

δ

3 −
4t4

δ(12t2
µ − t2

δ)
15(3t2

µ + t2
δ)2 (3.17)

σ2
r = ṙ2

(
t2
µ

4 + 5t2
δ

12 −
4t4

δ

15(3t2
µ + t2

δ)

)
(3.18)

where ṙ ∈ R is radius of the cone at the image plane.
Using these parameters, we can further compute the diagonal of the co-

variance matrix of the Gaussian and the mean of the Gaussian using the
following equations

16

......................................3.2. mip-NeRF

diag(Σ) = σ2
t (d ◦ d) + σ2

r

(
1− d ◦ d
∥d∥22

)
(3.19)

µ = o + µtd. (3.20)

Now, we can perform positional encoding on the mean and covariance
matrix diagonal

µγ = [µ, 2µ, ..., 2L−1µ]T (3.21)

diag(Σγ) = [diag(Σ), 4diag(Σ), ..., 4L−1diag(Σ)]T (3.22)

γ(µ, Σ) =
[

sin(µγ) ◦ exp(−(1/2)diag(Σγ))
cos(µγ) ◦ exp(−(1/2)diag(Σγ))

]
. (3.23)

The ◦ symbol denotes the element-wise multiplication of vectors.
Mip-NeRF uses a 2-tap max filter on alpha compositing weights with a

hyperparameter α.

w′
i = 1

2(max(wi−1, wi) + max(wi, wi+1)) + α (3.24)

Its primary purpose is to generate a smooth upper envelope on weights w.
To optimize the MLP, Mip-NeRF uses a loss function that is similar to the
one in the original NeRF

∑
r∈R

(
λ∥C∗(r)−C∗(r; Θc, tc)∥22 + ∥C∗(r)−C∗(r; Θf , sort(tc ∪ tf))∥22

)
(3.25)

where tc are sampling parameters of the coarse sampling and tf are sampling
parameters of the fine sampling and the sort function sorts values of these
vectors from the smallest to the greatest. The only difference is that here,
we optimize only a single MLP, although we still perform coarse and fine
sampling separately, while NeRF uses a dedicated MLP for coarse sampling.
In this case, C∗ denotes the ground truth color rendered by the ray r.

Mip-NeRF uses three hyperparameters to fine-tune the training phase. The
first parameter, L, defines the complexity of integrated positional encoding.
L was set to 10 in the original Mip-NeRF implementation. The λ parameter
defines how significant of an influence the coarse sampling loss function should
be. It is set to 0.1 in the original Mip-NeRF implementation. Finally, the α
parameter, set to 0.01 in the original Mip-NeRF implementation, is used to
fine-tune the 2-tap max filter to ensure that samples appear even in empty
regions of space.

Mip-NeRF extends upon the original NeRF method while removing aliasing
from rays passing through the 3D scene. In order to remove aliasing, mip-
NeRF replaces infinitesimally narrow rays with cones and predicts color for
the entire space of conical frustums instead of just points. This approach
is inspired by pre-filtering, which is one of the ways to avoid aliasing in the
space domain. However, it is challenging to compute an integral over these

17

3. NeRF-based Methods
frustums, which is why we use an approximation in the form of a multivariate
Gaussian.

The conical frustums are parameterized by their mid-point tµ and half-
width tδ. The multivariate Gaussians are parameterized using mean distance
along the ray µt, variance along the ray σ2

t , and variance perpendicular to
the ray σ2

p. The following equations describe the relations between these two
parametrizations.

µt = tµ + 2tµt2
δ

3t2
µ + t2

δ

(3.26)

σ2
t = t2

δ

3 −
4t4

δ(12t2
µ − t2

δ)
15(3t2

µ + t2
δ)2 (3.27)

σ2
r = ṙ2

(
t2
µ

4 + 5t2
δ

12 −
4t4

δ

15(3t2
µ + t2

δ)

)
(3.28)

Using these parameters, we can further compute the diagonal of the covariance
matrix of the Gaussian and the mean of the Gaussian using the following
equations.

diag(Σ) = σ2
t (d ◦ d) + σ2

r

(
1− d ◦ d
∥d∥22

)
(3.29)

µ = o + µtd (3.30)

Now, we can perform positional encoding on the mean and covariance matrix
diagonal.

µγ = [µ, 2µ, ..., 2L−1µ]T (3.31)

diag(Σγ) = [diag(Σ), 4diag(Σ), ..., 4L−1diag(Σ)]T (3.32)

γ(µ, Σ) =
[

sin(µγ) ◦ exp(−(1/2)diag(Σγ))
cos(µγ) ◦ exp(−(1/2)diag(Σγ))

]
(3.33)

The ◦ symbol denotes the element-wise multiplication of vectors. Mip-
NeRF additionally uses a 2-tap max filter on alpha compositing weights with
a hyperparameter α.

w′
ij = 1

2(max(wij−1, wij) + max(wij , wij+1)) + α (3.34)

Its main purpose is to generate a smooth upper envelope on weights w. To
optimize the MLP, Mip-NeRF uses a loss function that is similar to the one
in the original NeRF

∑
r∈R

(
λ∥C∗(r)−C∗(r; Θc, tc)∥22 + ∥C∗(r)−C∗(r; Θf , sort(tc ∪ tf))∥22

)
(3.35)

The only difference is that here, we optimize only a single MLP, although
we still perform coarse and fine sampling separately, while NeRF uses a

18

....................................3.3. Mip-NeRF 360

dedicated MLP for coarse sampling. In this case, C∗ denotes the ground
truth color rendered by the ray **r.

Mip-NeRF uses three hyperparameters to fine-tune the training phase. The
first parameter, L, defines the complexity of integrated positional encoding. L
was set to 10 in the original Mip-NeRF implementation. The λ parameter is
used to define how significant of an influence the coarse sampling loss function
should be. It is set to 0.1 in the original Mip-NeRF implementation. Finally,
the α parameter, set to 0.01 in the original Mip-NeRF implementation, is
used to fine-tune the 2-tap max filter to ensure that samples will appear even
in empty regions of space [2].

Figure 3.2: Rays in NeRF and mip-NeRF, from [2]

3.3 Mip-NeRF 360

Mip-NeRF 360 is a direct extension of mip-NeRF, which improves its ability
to render the scene from all possible viewpoints while also improving the
quality of objects that are very far or very close to the camera.

While mip-NeRF could render the scene from all sides, this only worked
well for synthetic images that typically had no background. Scenes created
from real-world images are typically "forward-facing," meaning they are only
rendered from a fraction of the view space. Mip-NeRF 360 combines these
two approaches by normalizing the scene uniformly in every direction. The
way that mip-NeRF 360 does this is by converting the scene into a sphere
with a radius of 2, which has two layers. The inner layer, which is less than
one meter away from the center of the sphere, is scaled normally, while the
outer layer is scaled proportionally to the inverse of the distance. Formally
this conversion can be written using a contract function

contract(x) =

x ∥x∥ ≤ 1(
2− 1

∥x∥

) (
x

∥x∥

)
∥x∥ > 1

(3.36)

This contraction is described in Figure 3.3.
Mip-NeRF 360 presents two new loss functions and a different ray parametriza-

tion, allowing for better 360-degree scene rendering. Instead of coarse and
fine sampling, used in the mip-NeRF method, mip-NeRF 360 uses two MLPs.
The first MLP is called the proposal MLP and only predicts the volumetric

19

3. NeRF-based Methods

Figure 3.3: Scene normalization in mip-NeRF 360, from [6]

density, which we will denote τ̂ . These predicted weights are then used to
sample intervals for the NeRF MLP, which is much larger than the proposal
MLP but is run much less often. Thanks to this approach, predicting correct
colors does not take many iterations once correct densities are estimated.
The NeRF MLP in Mip-NeRF 360 has a capacity that is over 20 times larger
than the MLP used in mip-NeRF. However, higher MLP capacity comes with
the disadvantage of higher memory requirements.

In order to train to make the weights of both MLPs consistent with each
other, we need to compare their histograms of ray distances (in the sense of
the weighted sum of samples for each bin). To do that, the following loss
function is used

Lprop(t, w, t̂, ŵ) =
∑

i

1
wi

max(0, wi − bound(̂t, ŵ, Ti)) (3.37)

bound(t̂, ŵ, T) =
∑

j:T ∩T̂j ̸=∅

ŵj (3.38)

where T is an arbitrary interval, Ti is an i-th interval on a ray, t are the
sampled distances used for the proposal MLP, w are the alpha compositing
weights generated by the proposal MLP, t̂ are the sampled distances used for
the NeRF MLP, and ŵ are the alpha compositing weights generated by the
NeRF MLP.

Most NeRF methods suffer from two types of artifacts, floaters and back-
ground collapse. Floaters are high-density geometry that is not present in
the original scene and is instead a result of trying to recover the scene from
a given viewpoint, which becomes visible after attempting to render unseen
viewpoints. Background collapse is a phenomenon that occurs when surfaces
that are far away from the camera are instead rendered as semi-transparent
clouds. To solve this issue, Mip-NeRF 360 proposes a loss called distortion
loss, which is generally defined as the integral of interval size multiplied by

20

...................................... 3.4. DS-NeRF

weights at endpoints of this interval over all possible intervals. This loss func-
tion uses normalized distances s instead of t. Because we integrate interval
lengths, this loss function prefers scenes with geometry in very thin dense
intervals. The following formula defines how the distortion loss is used

Ldist(s, w) =
∑
i,j

wiwj

∣∣∣∣si + si+1
2 − sj + sj+1

2

∣∣∣∣+ 1
3
∑

i

w2
i (si+1 − si) (3.39)

where w are alpha compositing weights assigned to each point by the NeRF
MLP and s are the normalized distances along a ray.

The only hyperparameter used in Mip-NeRF 360 is λ which determines
the weight of the distortion loss function. It is initially set to 0.01.

3.4 DS-NeRF

NeRF-based methods require camera poses in order to create a correct 3D
scene representation. These camera poses are usually derived using methods
that generate sparse point clouds like COLMAP, meaning we usually have
information about the original depth. Similarly, we can use information about
the depth we would acquire differently (like depth cameras). The topic of
depth supervision using dense depth data will be discussed later in the paper,
where we discuss utilizing parts of this method while using depth images for
supervision.

The crucial part of the DS-NeRF method is depth supervision which forces
the probability distribution of ray termination predicted by the MLP to equal
the depth distribution received as input. In order to do this, we will use
several keypoints indexed by the letter i. using a distance of the point from
a given viewpoint and a reprojection error of the keypoint, we can define
a normal distribution that models the distribution of the keypoint depth.
Because we now have two probability distributions, we can define a loss
function that minimizes the Kullback-Leibler divergence between these two
distributions. For best results, we will also need to have a different input
depth variance value for each camera (which is omitted in the original NeRF
paper). We will therefore denote this variance as σ2

ij . The depth loss function
looks like this

Ldepth ≈ Exi∈Xj −
∑

k

log(hk) exp
(
−(tk −Dij)2

2σ̂2
ij

)
∆tk (3.40)

where i is an index of the selected keypoint, j is an index of a camera, k
is an index of a point sampled on a ray, tk is a distance of this point from
the camera, hk is a value of ray termination probability distribution for this
point, ∆tk is a distance of this point from the next sample along a ray, Dij is
a distance of a keypoint xi from a camera i, and σ̂ij is a reprojection error of
a keypoint xi with respect to a camera with an index j.

21

3. NeRF-based Methods
Since the loss function is computed for each cone independently, the first two

indices are omitted. It is essential to mention that measured depth variance
σ2

ij was not view-dependent in the original paper since it was represented
using COLMAP reprojection loss, which is the main reason why it is denoted
as σ2

i , as it does not depend on the camera index.
One key difference from the NeRF paper is the way that DS-NeRF computes

weights used for rendering (according to the paper). These same weights are
used to compute the depth supervision loss function

h(t) = exp
(
−
∫ t

0
σ(t′)dt′

)
σ(t). (3.41)

This weight is also proven to be a probability distribution, specifically the
probability of a ray stopping at a distance t. However, this is different from
weights proposed by the NeRF paper, which have been since used in the
majority of NeRF-based methods

w(t) = exp
(
−
∫ t

0
σ(s)ds′

)
(1− exp(−σ(t)))

where σ(t) is a volumetric density for a point sampled at distance t. The
expected color of camera ray r is

Ĉ(r) =
∫ ∞

0
h(t)c(t)dt. (3.42)

However, integrals cannot be used to compute the final color, as there is
only a discrete set of samples that can be used. The rendering equation is
therefore approximated using a sum

Ĉ(r) =
N∑

i=1
hici =

N∑
i=1

exp

i−1∑
j=1

σjδj

σici (3.43)

where N is the number of samples at the ray r, δj = tj+1 − tj is the distance
between adjacent samples, σi is the predicted volumetric density of an i-th
sample, and ci ∈ R is the predicted color of an i-th sample.

The only new hyperparameter that DS-NeRF uses is λd, which is used to
decrease the weight of the depth supervision function. The original paper
does not contain any information about its initial value, but in the DS-NeRF
code, it is set to 0.1 [4].

3.4.1 Depth Supervision Loss Function

Aside from the Kullback-Leibler divergence-based loss function that DS-NeRF
proposes, there is one more loss function that is briefly mentioned in the paper
and used in the DS-NeRF source code. That is a loss that is based on the
mean square error of depth for every ray that passes through a keypoint for a
given viewpoint. This error is computed from the depth of the keypoint and
the weighted mean of all samples on a given ray. According to the DS-NeRF
source code, this loss function can be computed as

22

.................................... 3.5. EfficientNeRF

LMSE = 1
M

M∑
(Di − D̂i)2 (3.44)

D̂i =
Ni∑

k=1
hiktik (3.45)

where Di is the target depth for a ray ri which passes through a keypoint
xi, M is the number of keypoints for a given viewpoint, Ni is the number of
samples on ray ri, tik is the distance of a k-th sample along a ray ri, and hik

is the weight of this sample. Index j is omitted from all of the variables [34].
Although the depth supervision loss function that DS-NeRF proposed is

shown to produce better results than the MSE loss function [4], its definition
is misleading. The proposed loss function is based on the Kullback-Leibler
divergence between the rendered ray distribution h(t) and the noisy depth
distribution N(D, σ̂). However, after rewriting the depth supervision loss by
the definition of Kullback-Leibler divergence, the resulting loss function has
a different definition

Ldepth =
∑

k

exp
(
−(tk −D)2

2σ̂2

)
log

exp
(
− (tk−D)2

2σ̂2

)
hk

∆tk (3.46)

Ldepth =
∑

k

[
−log(hk)− (tk −D)2

2σ̂2

]
exp

(
−(tk −D)2

2σ̂2

)
∆tk (3.47)

Although it seems like the loss function would be the same in case the
− (tk−D)2

2σ̂2 element was equal to zero, this detail is never mentioned in the
paper, so it remains unclear if there was a mistake in the loss function
derivation or if any mention of this omission was excluded from the paper
altogether.

3.5 EfficientNeRF

EfficientNeRF is a method that improves the original NeRF method in terms
of speed. This method reduces over 88% of training time and improves the
rendering speed up to 200 FPS making it a reasonable choice for real-time
applications. This is a significant improvement compared to other NeRF-based
methods, which typically only render up to ten images per minute.

This method accelerates training using Valid Sampling (improves coarse
sampling) and Pivotal Sampling (improves fine sampling). Compared to
NeRF, it reduces the coarse MLP in size and uses the Spherical harmonics
model from PlenOctrees to explicitly predict color parameters.

The main idea behind Valid Sampling is that once we find out that a sample
xi does not contribute to the final pixel color (its weight equals zero), we no

23

3. NeRF-based Methods

Figure 3.4: EfficientNeRF overview, from [5]

longer need to sample the area near this sample. To retain this information,
EfficientNeRF proposes momentum density voxels that memorize the latest
volume density values. These voxels are initially all assigned a small positive
value. The corresponding voxel values are updated using volume density
values received during coarse sampling

Vσ[i]← (1− β)Vσ[i] + βσc(x) (3.48)

i = x− xmin

xmax − xmin
D (3.49)

where D ∈ N is the resolution of the voxel grid, x ∈ R3 is an arbitrary point
in world coordinates, i ∈ R3 is an index of a voxel that will be assigned to the
point x and xmin, xmax ∈ R3 are the minimal and maximal world coordinate
borders of the scene.

The Valid Sampling strategy is similar to the original coarse sampling
strategy with the difference that all samples whose corresponding voxel has a
non-positive value are immediately skipped.

As the name suggests, Pivotal Sampling uses pivotal samples, which are
points with non-zero weight. After we pick a pivotal sample, we sample
uniformly around this sample.

To improve the image rendering time, EfficientNeRF introduces a NerfTree,
a data structure represented by a 2-depth tree, where the first depth caches
the coarse dense voxels and the second depth caches the fine sparse voxels.
While the coarse voxels only contain a density attribute, the fine voxels also
contain color parameters. The voxel values are directly inferred from both
coarse and fine MLPs (coarse voxels use the coarse MLP values, and fine
voxels use the fine MLP values) [5]. The structure of NeRFTree is depicted
in Figure 3.5.

24

...................................... 3.6. Ref-NeRF

3.6 Ref-NeRF

Ref-NeRF improves on Mip-NeRF and considers reflections across the surface
normals instead of just using the view direction as a parameter. To improve the
reflection accuracy, Ref-NeRF encodes the reflected direction using spherical
harmonics.

The first part of the method is a spatial MLP which only takes in the
position x as a parameter. The outputs of this MLP are volumetric density
σ, diffuse color cd, specular tint s, surface roughness ρ, surface normal n̂′,
and finally, a bottleneck vector b. We can also compute predicted volume
density to compute the surface normal directly using this equation

n̂(x) = − ∇σ(x)
∥∇σ(x)∥ (3.50)

Using the surface normal predicted by the spatial MLP and using the view
direction received as input, we can compute the reflection direction

ω̂r = d− 2(d · n̂′)n̂′ (3.51)

where d is the direction vector.
To encode the reflection vector, we also need to use roughness predicted by

the spatial MLP, more specifically its inverse, which we will call concentra-
tion κ. Following equations describe how is integrated directional encoding
calculated

IDE(ω̂r, κ) = {Aℓ(κ)Y m
ℓ (ω̂r) : (ℓ, m) ∈ML} (3.52)

ML = {(ℓ, m) : ℓ = 1, ..., 2L, m = 0, ..., ℓ} (3.53)

Aℓ(κ) ≈ exp
(
−ℓ(ℓ + 1)

2κ

)
(3.54)

where Aℓ is the ℓ-th attenuation function and Y m
ℓ is a Lapace’s spherical

harmonic.
Color in Ref-NeRF isn’t directly acquired from an MLP. Instead, it is

acquired by combining its diffuse and specular components. The diffuse
color is already one of the outputs of the spatial MLP. However, since the
specular color is view-dependent, we need to create one more MLP to predict
the specular color component and multiply it with a specular tint (already
predicted using the spatial MLP).

This new MLP, which we will call directional MLP, takes in the encoded
reflection direction but also the bottleneck vector b and also the dot product of
predicted normal and view direction to achieve better results. After receiving
the specular color, we can finally compute the final pixel color

c = γ(cd + s ◦ cs) (3.55)

where γ is a fixed tone mapping function that converts linear color to sRGB.

25

3. NeRF-based Methods

Figure 3.5: The comparison of mip-NeRF and Ref-NeRF architectures (Ref-
NeRF paper used τ for the volumetric density), from [3]

To further improve the quality of Ref-NeRF renderings, two new loss
functions are introduced. The first one improves the accuracy of surface
normal predictions for each ray (cone)

Lnormal(ri) =
∑

j

wij∥n̂j − n̂′
j∥2 (3.56)

The second loss function aims to minimize the volume density inside of
objects which leads to the foggy appearance of specular surfaces. The way it
is done is by penalizing normals that are oriented away from the camera

Lorientation(ri) =
∑

j

wij max(0, n̂′
j · d̂)2 (3.57)

Ref-NeRF does not define any additional hyperparameters [3].

26

Chapter 4
Experiments

The previous chapter discussed the theory behind several NeRF-based meth-
ods released in recent years. This chapter will describe how some of these
methods perform on two real-life datasets and one synthetic dataset. The
last part of this chapter describes how additional depth information can be
utilized to improve these methods and show the results when using depth
supervision.

4.1 Dataset Details

The experiments performed during this work are evaluated on three different
datasets. The first dataset is a synthetic dataset created using Blender,
and the other two were created from real-world images with depth maps
captured using iPad. All three datasets can be found at the following link:
https://drive.google.com/drive/folders/1CvObrtawHvlLIk1IRxcQia
QAqaa1BW9_?usp=share_link. An overview of these datasets is shown in
Table 4.1.

Dataset name Dataset
type

Training
viewpoints

Rendering
viewpoints Unbounded

construction_site_small2 LLFF 10 2 Yes
construction_site_normal LLFF 20 3 Yes

ship_ds Synthetic 20 200 No

Table 4.1: Overview of used datasets

4.1.1 Synthetic Dataset

The synthetic Blender dataset used for this thesis was created using a model
of a ship named "Suzanne’s Revenge," modeled by Chris Kuhn and textured
by Greg Zaal. The model was posted on the website blenderartists.org in
2013 [20]. It later appeared as one of the synthetic datasets used to test the
performance of the original NeRF method.

Because the dataset was not designed for depth supervision, it had to be
recreated using the source Blender project to render new viewpoints along

27

https://drive.google.com/drive/folders/1CvObrtawHvlLIk1IRxcQiaQAqaa1BW9_?usp=share_link
https://drive.google.com/drive/folders/1CvObrtawHvlLIk1IRxcQiaQAqaa1BW9_?usp=share_link

4. Experiments
with the corresponding depth data. This source project was available in the
data section of the Neural Radiance Fields website, and a screenshot of the
project is shown in Figure 4.1. However, since textures were unavailable
in this version, they had to be acquired from the original 2013 post. The
additional problem was that the environment map, a 360-degree image used
to compute realistic reflections, that was used for the synthetic dataset could
not be found in the original post from 2013, so it had to be replaced by a
different environment map that was used in the original project. This is why
the depth supervision experiments performed on the synthetic dataset have
different lighting conditions than those used for mip-NeRF and mip-NeRF
360.

The Blender project published by the NeRF authors differed from the
original one since it contained several Python scripts used to render images
for the dataset. Fortunately, rendering depth images was not a difficult task
as the script could enable depth rendering and set up the linear mapping for
the depth images. All values were mapped from range [0, 8] to range [0, 1].
This mapping was utilized because all values that would exceed one in the
rendered images were automatically clamped to one. In order to avoid aliasing
of the depth values, the bit depth of a single color channel was increased from
8 to 16. This option was enabled for both depth images and RGBA images.
After the depth images were rendered, they were rescaled by multiplying all
values by eight, reverting the normalization to range of [0, 1], and converted
to the NumPy array format.

Figure 4.1: Blender project used to generate synthetic images

One problem that appeared during rendering was that all RGB pictures
contained sharp light patches with a size of one pixel, likely due to aliasing.
This issue was solved by enabling denoising for the Cycles renderer. The
same correction was not done for the depth images to avoid using blurry data
for the supervision. The number of samples was set to 512 to achieve feasible
results.

The number of images that have been used for experiments has been altered

28

................................... 4.1. Dataset Details

as well. While the original dataset used 500 input images for training, the
dataset used for our experiments contained only 20 training images to make
results more comparable to results that have been evaluated for other datasets.
Similar to the original dataset, our dataset used 200 viewpoints for evaluation
and rendering.

4.1.2 LLFF Datasets

The two remaining datasets, which were created using real-world images,
capture a construction site, and originate from a larger dataset that was
initially created for the ARTWIN project, which focuses on augmented reality
applications [21]. The dataset also originally contained camera poses acquired
from real-time tracking of the iPad Pro 2022, but these poses were not
accurate. In order to improve the dataset, the camera poses have been refined
using COLMAP. While the dataset was initially composed of 194 images, it
was reduced to 20 images because the original scene was so large that none
of the present NeRF-based methods would be able to capture it. In order
to test how different methods perform on datasets with a smaller number
of input images, another dataset with 10 input images was created as well.
Since these two datasets are photos of the same scene and differ only in the
number of input images, they will be referred to as the large LLFF dataset
and the small LLFF dataset, respectively.

Unlike the Blender dataset, this one comes with readily available depth
images. The depth information was acquired by fusing iPad lidar scans with
a multi-view stereo approximation of the depth images. These depth images,
originally in the Matlab matrix format, were converted to NumPy array
format for convenience using a simple Python script.

Most NeRF-based methods use the term LLFF to describe datasets realized
as a COLMAP model. This name was used because an older novel view
synthesis method called Local Light Field Fusion (LLFF for short) used
the same format for its datasets. This dataset also contains a file called
poses_bounds.npy, which contains an array of size Nx17, where N is the
number of input images. Each line contains a flattened 3x5 pose matrix
followed by two values representing the nearest and furthest point of the
scene content from that point of view. The pose matrix can be defined as

Mpose =
[
Mcamtoworld i

]
(4.1)

i =

v
u
f

 (4.2)

where v is the image height, u is the image width, f is the focal length, and
Mcamtoworld ∈ R3×4 is a camera-to-world matrix.

is a camera-to-world matrix 3x4, concatenated with a 3x1 vector containing
image height, width, and focal length [24]. Because this array was not present
in the original dataset, it was created using a function used in the LLFF

29

4. Experiments
method. This array is only used to render forward-facing scenes with a spiral
path and serves no purpose in the training process.

One issue with the training data was that the original images had slight
barrel distortion, which had to be corrected. However, after this undistortion
was applied, several pixels in the images were black, which initially produced
results that contained sharp black strips. In order to get rid of this issue,
only pixels more than 10 pixels away from the border were used for training,
and other pixels were discarded.

Because the code that was used for experiments did not support using
synthetic blender datasets to realize the scenes in normalized device coor-
dinates, the synthetic ship dataset was also converted to the LLFF format
using COLMAP because it is later used for experiments that would involve
converting the 360-degree scene to normalized device coordinates.

4.2 Implementation details

We implemented the code used for the experiments shown in this thesis in
the repository called OptiNeRF. This is a modified version of the MultiNeRF
repository, which Google Research published as a code release for the mip-
NeRF 360, Ref-NeRF, and RawNeRF methods [22]. The main contribution of
the OptiNeRF code is incorporating several depth supervision loss functions
into the MultiNeRF implementation of the mip-NeRF method. The OptiNeRF
repository can be found on the following link: https://github.com/Jakub
Sakar9/optinerf.

Since the MultiNeRF implementation allows for saving the state of the
training process before it is finished, we are easily able to see the results
after an arbitrary number of training iterations. The file that stores the
information is called a checkpoint. The number of training iterations that
pass between each checkpoint can be configured. It was set to 5000 for the
mip-NeRF experiments and 10000 for the mip-NeRF 360 experiments.

4.3 Testing existing methods

The following section focuses on testing the MultiNeRF implementation of
two methods, mip-NeRF and mip-NeRF 360.

All methods used GPU to accelerate training and have been trained on a
computer with the Nvidia RTX 3090 graphics card. However, this hardware
still caused some limitations as the hardware that Google Research originally
used was more powerful. The main limitation was GPU memory, which was
shown to be insufficient for the training with default parameters. Due to
these limitations, the batch size for each experiment had to be decreased.
The synthetic Blender dataset was only used to test the mip-NeRF methods
because mip-NeRF 360 is mainly used for unbounded scenes. An overview of
conducted experiments is shown in Table 4.2.

30

https://github.com/JakubSakar9/optinerf
https://github.com/JakubSakar9/optinerf

............................... 4.3. Testing existing methods

Large LLFF Small LLFF Blender
NDC No NDC NDC No NDC

mip-NeRF Yes Yes Yes Yes Yes
mip-NeRF 360 Yes Yes Yes Yes No

Table 4.2: Summary of experiments regarding existing methods. The table
provides an overview of whether each experiment has been conducted.

4.3.1 Mip-NeRF

The mip-NeRF method was tested on all three datasets that were presented
in section 4.1. using the train_llff.sh script while altering the parameters in
the llff_256.gin configuration file. Experiments performed on the synthetic
dataset were run using the train_blender.sh file while using the parameters
in the blender_256.gin configuration file. Unlike the original mip-NeRF
implementation, the MultiNeRF implementation performs the conversion to
normalized device coordinates for forward-facing scenes and uses two MLPs
instead of a single one. In this thesis, the LLFF dataset was tested both with
and without the NDC conversion.

The two MLPs that are used for training are called proposal MLP and
NeRF MLP, as mentioned in the mip-NeRF 360 paper. Both MLPs have a
width of 256, and their number of layers is 4 for the proposal MLP and 8 for
the NeRF MLP. While the original NeRF method used no activation function
before outputting the prediction of volumetric density σ, the MultiNeRF
implementation uses the Softplus activation function. However, color and
density use a ReLU activation function for all the hidden layers, and the
output layer for color uses the sigmoid activation function. Similarly, the
implementation adds a skip connection at the fourth layer and uses an
additional layer with a depth of 128 for color prediction.

The number of training iterations was reduced from the original 250000 to
100000 as the improvement of render quality was very small for the higher
number of iterations. As mentioned in the previous section, the batch size also
had to be decreased due to the memory limitations of the used hardware. It
decreased from 16384 to 8192. In order to keep the training process consistent
with the one that would be used initially, both initial and final values of
the learning rate had to be halved as well. The initial value of the learning
rate was set to 0.01, and the final value was set to 0.00001. This adjustment
was made following the recommendation in the readme of the MultiNeRF
repository [22]. As a result, the training process duration for each experiment
averaged around 5 hours.

Results

The following tables show mip-NeRF renderings of both used LLFF datasets
in comparison to the ground truth. These results will be later used for
comparison to the modified version of mip-NeRF, which utilizes additional

31

4. Experiments
information about depth. Every even line in all of these tables shows a
cropped section of an image which is used to demonstrate the ability of
mip-NeRF to reconstruct fine details. All the renderings in this section have
been created after 100000 iterations of the training process. For additional
results on the performance of these methods with fewer training iterations,
please refer to the appendix.

32

............................... 4.3. Testing existing methods

In order to make the rendered depth images comparable to the measured
depth, all depth images, which contained metric depths, were normalized
between zero and one. The following equation can describe this transformation

D′ = 1− 1
1 + D

(4.3)

where D is a metric depth and D′ is a depth that was used for visualization.

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.3: Mip-NeRF renderings of the large LLFF dataset with the NDC scene
normalization, 100000 iterations

33

4. Experiments
GT color Recorded

depth
Rendered

color
Rendered

depth

Table 4.4: Mip-NeRF renderings of the large LLFF dataset without the NDC
scene normalization, 100000 iterations

34

............................... 4.3. Testing existing methods

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.5: Mip-NeRF renderings of the small LLFF dataset with the NDC scene
normalization, 100000 iterations

35

4. Experiments
GT color Recorded

depth
Rendered

color
Rendered

depth

Table 4.6: Mip-NeRF renderings of the small LLFF dataset without the NDC
scene normalization, 100000 iterations

36

............................... 4.3. Testing existing methods

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.7: Mip-NeRF renderings of the synthetic dataset without any depth
supervision, 100000 iterations

37

4. Experiments
As can be seen in Table 4.3, using mip-NeRF for the reconstruction of the

LLFF dataset with the NDC scene normalization leads to correct results,
which only fail to reconstruct fine details. Table 4.4 shows that rendering the
scene without any normalization already leads to several artifacts, which can
be seen for objects that are very close or very far from the camera.

Doing the same experiments for the small LLFF datasets leads to similar
problems. The pillars that are present in the scene also start causing artifacts
in the renders, as some areas of the scene are occluded in most input images.
These experiments are shown in Tables 4.5 and 4.6.

Testing mip-NeRF on the synthetic dataset, which can be seen in the
table 4.7, shows that the 3D scene is reconstructed incorrectly when given
a low number of input images. This might be caused by a high dilation of
input images.

4.3.2 Mip-NeRF 360

... The mip-NeRF 360 method was tested using the train_360.sh script
while altering the parameters in the 360.gin configuration file. Because the
MultiNeRF repository was the only official release of mip-NeRF 360 source
code, the code run in the experiments is nearly identical to the code that
produced the results presented in the mip-NeRF 360 paper. It was only tested
on LLFF datasets as it is out of the scope of this thesis.

As mentioned in the section focusing on the theoretical background of
mip-NeRF 360, two MLPs are used in the training process, proposal MLP
and NeRF MLP. The proposal MLP has a depth of 4, a width of 256, and no
skip layers. The NeRF MLP has a depth of 8, a width of 1024, and a skip
layer at the fourth layer. The activation functions used for mip-NeRF 360
are the same as those used for mip-NeRF.

The number of training iterations decreased from 250000 to 200000 for
the same reason as mip-NeRF. It was not decreased to 100000 again because
mip-NeRF 360 uses more memory than mip-NeRF, which meant that the
batch size had to be decreased by a more significant factor than the batch
size of mip-NeRF experiments. Because the batch size for mip-NeRF 360
was 4096, half of what was set for mip-NeRF, the number of iterations had
to be doubled to make up for slower learning. Both initial and final values
of the learning rate have been halved as well, which means it was the initial
value was set 0.005 while its final value was set to 0.000005. Given that the
capacity of the NeRF MLP is double that of the MLPs utilized in mip-NeRF,
and considering that the number of training iterations for mip-NeRF 360
experiments was also twice as high, it follows that the training time for
mip-NeRF 360 experiments was four times longer compared to that of the
mip-NeRF experiments.

Results

The following tables show mip-NeRF 360 renderings of both used LLFF
datasets in comparison to the ground truth. These renderings do not involve

38

............................... 4.3. Testing existing methods

depth maps because incorporating depth supervision into the mip-NeRF
360 is a considerably challenging task that will not be discussed in this
thesis. Similarly to the mip-NeRF experiments, the renderings presented in
this section are generated by the model after the training process has been
completed. Intermediate results can be found in the appendix. However,
because the number of iterations of the training process has been doubled
compared to the mip-NeRF experiments, the respective numbers of training
iterations for each of the used checkpoints have been doubled as well.

39

4. Experiments
GT color Rendered

color

Table 4.8: Mip-NeRF 360 renderings of the large LLFF dataset, 200000 iterations

40

............................... 4.3. Testing existing methods

GT color Rendered
color

Table 4.9: Mip-NeRF 360 renderings of the small LLFF dataset, 200000 itera-
tions

As well as mip-NeRF, mip-NeRF 360 managed to reconstruct the scene

41

4. Experiments
correctly for the large LLFF dataset (Table 4.8). Performing the same
experiment for the small LLFF dataset resulted in similar problems that
could be seen in Table 4.3, but managed to decrease the number of floaters
in the images. Using mip-NeRF 360 for this type of scene has thus proven to
be ineffective since the training time was four times longer than the training
time of mip-NeRF experiments.

4.4 Depth supervision

The following section discusses how additional information about depth could
be used to improve the performance of the mip-NeRF method and shows
experiments performed on both LLFF datasets along with the synthetic
dataset.

Although the DS-NeRF paper initially inspired the depth supervision
process, the way depth data was utilized in performed experiments differs.
DS-NeRF did not use any dense depth data and instead computed depths
from a point cloud that was available after generating COLMAP models.
DS-NeRF also used errors defined as reprojection errors of 3D points in
COLMAP. This realization of errors is not straightforward to use when using
depth images, but fortunately, the used dataset contains variance of depth
data as well. An overview of experiments performed in this section can be
seen in Table 4.10.

42

.................................. 4.4. Depth supervision

Large LLFF Small LLFF Blender

NDC No NDC NDC No NDC
DS NeRF loss

λd = 0.01, ξd = 1.000 No No No No No
λd = 0.10, ξd = 1.000 No No No No Yes
λd = 1.00, ξd = 1.000 No No No No No
λd = 1.00, ξd = 0.999 No No No No No

KL loss
λd = 0.01, ξd = 1.000 No No No No Yes
λd = 0.10, ξd = 1.000 No No No No Yes
λd = 1.00, ξd = 1.000 No No No No Yes
λd = 1.00, ξd = 0.999 Yes Yes Yes Yes Yes

MSE loss
λd = 0.01, ξd = 1.000 No No No No No
λd = 0.10, ξd = 1.000 No No No No Yes
λd = 1.00, ξd = 1.000 No No No No No
λd = 1.00, ξd = 0.999 No No No No No

Table 4.10: Summary of depth-supervised experiments. The table provides an
overview of whether each experiment has been conducted.

4.4.1 Implementation details

Implementing the depth supervision loss function into the MultiNeRF code
required creating a new loss function and adding it to the total loss function
if it was enabled in the configuration file. Because both depth images and
depth variances were converted to NumPy arrays, the loading was done using
the NumPy library.

Both depth images and depth variances also needed to be transformed for
forward-facing experiments because these experiments use normalized device
coordinates to sample the space. Because the conversion to normalized device
coordinates makes the sampling parameter t linear in disparity, the depth
images were also transformed to be linear in disparity using the following
equation

D′ = 1− 1
D

. (4.4)

where D is the original depth in world coordinates, and D′ is the transformed
depth in normalized device coordinates.

On the other hand, transforming the depth variances is not a straightforward
process since they rely on the values present in the depth images. Therefore,
they were adjusted in such a way that the square root of the transformed
variances decreased by the same factor as the depth images.

43

4. Experiments
As mentioned in section 3.4, DS-NeRF uses a parameter λd, which deter-

mines the weight of the depth supervision loss function. Because the main
purpose of depth supervision is to speed up the training process in its early
phase, the weight of the loss function could be decreased. In order to do that,
we can use a decay rate ξd to exponentially decrease the depth supervision
loss function weight. This decrease can be formulated using the following
equation

λd(t) = λd0ξt
d (4.5)

where λd(t) is the depth supervision loss function multiplier at training step t
and λd0 is the initial value of this multiplier.

4.4.2 Synthetic Dataset

Before we attempt to apply depth supervision to real-life data, we verify its
functionality on synthetic data. Therefore, the following section will start by
showing how mip-NeRF performs on a synthetic dataset with a low number
of input images and then demonstrate how different depth supervision loss
functions and their parameters perform in improving these results.

To make the depth maps more feasible for visualization, we can transform
them by normalizing the range between the near plane and the far plane and
clamping everything that falls out of it to its boundaries. This can be done
using the following equation

D′ = clamp
(

D − tn

tf − tn
, 0, 1

)
(4.6)

where tn is the distance of the near clipping plane, tf is the distance of
the far clipping plane, D is a metric distance from the camera, and D′ is a
distance from the camera that is suitable for visualization. In the case of our
experiments, tn = 2 and tf = 6.

Unlike the mip-NeRF and mip-NeRF 360 experiments sections, this section
will focus on the performance of depth-supervised mip-NeRF after a low
number of training iterations. In this case, the checkpoint with the lowest
number of training iterations has been generated after 5000 iterations, which
is the checkpoint that was used for these renderings. The experiments were
run using the train_blender_ds.sh script while altering the parameters in
the blender_ds.gin configuration file. Renderings that have been produced
after a larger number of training iterations can be found in the appendix.

44

.................................. 4.4. Depth supervision

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.11: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the original DS-NeRF loss function, λd = 0.1, 5000 iterations

45

4. Experiments
GT color Recorded

depth
Rendered

color
Rendered

depth

Table 4.12: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 0.01, 5000 iterations

46

.................................. 4.4. Depth supervision

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.13: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 0.1, 5000 iterations

47

4. Experiments
GT color Recorded

depth
Rendered

color
Rendered

depth

Table 4.14: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 1.0, 5000 iterations

48

.................................. 4.4. Depth supervision

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.15: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 1.0 with decay rate ξd = 0.999,
5000 iterations

49

4. Experiments
GT color Recorded

depth
Rendered

color
Rendered

depth

Table 4.16: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the mean square loss function, λd = 0.1, 5000 iterations

50

.................................. 4.4. Depth supervision

Discussion

In section 4.1, we have shown that mip-NeRF does not perform well on a
bounded synthetic dataset with a small number of viewpoints.

The first experiment, which uses the loss function proposed by the DS-
NeRF paper, produces incorrect results with depth maps that are completely
incorrect, as can be seen in table 4.11. On the contrary, using the depth
loss function that was derived from the Kullback-Leibler divergence of the
predicted depth distribution and the measured depth distribution produced
results that recovered more details than mip-NeRF without any depth su-
pervision. This experiment has been conducted for different weights of the
depth supervision loss function λd. Results of these experiments can be seen
in tables 4.12, 4.13, and 4.14.

The idea of decreasing the λd parameter over time using a specified decay
rate ξd was tested in one of the experiments as well. For a lower number of
iterations, it seems that such an experiment performs no better than those
without any decay, as can be seen in table 4.15. However, running such an
experiment for a higher number of iterations produces results that are better
than those of any other experiments, which can be seen in table A.26.

Finally, using a mean square distance-based loss function leads to results
that are sharper than the results produced by mip-NeRF without any depth
supervision, but this approach also fails to reconstruct fine detail such as thin
ropes. An example of such an experiment is shown in table 4.16.

4.4.3 LLFF Dataset

In the next section, we examine how our suggested depth supervision method
performs on a real-life dataset. Since the loss function derived from KL diver-
gence gave the best results for the synthetic dataset, we will only test that for
the real-world dataset. The experiments were run using the train_llff_ds.sh
script while altering the parameters in the llff_ds.gin configuration file.

51

4. Experiments
GT color Recorded

depth
Rendered

color
Rendered

depth

Table 4.17: Depth-supervised mip-NeRF renderings of the large LLFF dataset
with the NDC scene normalization; with the derived KL divergence loss function
and conversion to NDC, λd = 1.0 with decay rate ξd = 0.999, 5000 iterations.
The rendered depth images are not missing from the table. They are all white
in color because the depth for all viewpoints is equal to one.

52

.................................. 4.4. Depth supervision

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.18: Depth-supervised mip-NeRF renderings of the large LLFF dataset
without the NDC scene normalization; with the derived KL divergence loss
function and conversion to NDC, λd = 1.0 with decay rate ξd = 0.999, 5000
iterations

53

4. Experiments
GT color Recorded

depth
Rendered

color
Rendered

depth

Table 4.19: Depth-supervised mip-NeRF renderings of the small LLFF dataset
with the NDC scene normalization; with the derived KL divergence loss function
and conversion to NDC, λd = 1.0 with decay rate ξd = 0.999, 5000 iterations.
They are all white in color because the depth for all viewpoints is equal to
one.Jk

54

.................................. 4.4. Depth supervision

GT color Recorded
depth

Rendered
color

Rendered
depth

Table 4.20: Depth-supervised mip-NeRF renderings of the small LLFF dataset
without the NDC scene normalization; with the derived KL divergence loss
function and conversion to NDC, λd = 1.0 with decay rate ξd = 0.999, 5000
iterations

Discussion

Our experiments have shown that the proposed depth supervision loss function
led to results that completely failed to reconstruct the depth of the scene
when using normalized device coordinates, leaving all depth maps entirely
white (4.17, 4.19). Performing the same depth supervision for a scene that is
not normalized results produces inaccurate results (4.18, 4.20).

One possible cause of the first issue is that the proposed depth transforma-
tion of the depth map in equation 4.4 is incorrect, while the second issue is
probably caused by inaccurate input depth maps. This is evident as using
the same procedure on synthetic datasets resulted in improved outcomes
compared to mip-NeRF without any depth supervision.

55

56

Chapter 5
Conclusion

The conducted experiments have shown that dense information about depth
can be used to improve the results of the mip-NeRF method if the number of
input images is low. Furthermore, one of the experiments has shown that the
depth supervision loss function that was taken from the DS-NeRF method
does not improve the training process when used in the context of dense
reconstruction. However, a loss function was derived from the definition of
Kullback-Leibler divergence improved the results that were produced by the
mip-NeRF method.

Applying these findings to the task of reconstructing a real-life scene did
not yield satisfactory results, as the generated renderings were of lower quality
compared to those produced by the mip-NeRF method.

57

58

Bibliography

[1] Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T., Ramamoorthi,
R., & Ng, R. (2020). NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. arXiv. https://doi.org/https://arxiv.or
g/abs/2003.08934v2

[2] Barron, J. T., Mildenhall, B., Tancik, M., Hedman, P., & Srinivasan, P. P.
(2021). Mip-NeRF: A Multiscale Representation for Anti-Aliasing Neural
Radiance Fields. arXiv. https://doi.org/https://arxiv.org/abs/21
03.13415v3

[3] Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J. T., &
Srinivasan, P. P. (2021). Ref-NeRF: Structured View-Dependent Ap-
pearance for Neural Radiance Fields. arXiv. https://doi.org/https:
//arxiv.org/abs/2112.03907v1 2021.

[4] Verbin, D., Hedman, P., Mildenhall, B., Zickler, T., Barron, J. T., &
Srinivasan, P. P. (2021). Ref-NeRF: Structured View-Dependent Ap-
pearance for Neural Radiance Fields. arXiv. https://doi.org/https:
//arxiv.org/abs/2112.03907v1

[5] Hu, T., Liu, S., Chen, Y., Shen, T., & Jia, J. (2022). EfficientNeRF:
Efficient Neural Radiance Fields. arXiv. https://doi.org/https://ar
xiv.org/abs/2206.00878v1

[6] Barron, J. T., Mildenhall, B., Verbin, D., Srinivasan, P. P., & Hedman, P.
(2021). Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields.
arXiv. https://doi.org/https://arxiv.org/abs/2111.12077v3

[7] Meta AI Research (n.d.). Novel View Synthesis. Papers With Code. https:
//paperswithcode.com/task/novel-view-synthesis

[8] Bento, C. (2021, September 21). Multilayer Perceptron Explained with a
Real-Life Example and Python Code: Sentiment Analysis. Towards Data
Science. https://towardsdatascience.com/multilayer-perceptro
n-explained-with-a-real-life-example-and-python-code-senti
ment-analysis-cb408ee93141

59

https://doi.org/https://arxiv.org/abs/2003.08934v2
https://doi.org/https://arxiv.org/abs/2003.08934v2
https://doi.org/https://arxiv.org/abs/2103.13415v3
https://doi.org/https://arxiv.org/abs/2103.13415v3
https://doi.org/https://arxiv.org/abs/2112.03907v1
https://doi.org/https://arxiv.org/abs/2112.03907v1
https://doi.org/https://arxiv.org/abs/2112.03907v1
https://doi.org/https://arxiv.org/abs/2112.03907v1
https://doi.org/https://arxiv.org/abs/2206.00878v1
https://doi.org/https://arxiv.org/abs/2206.00878v1
https://doi.org/https://arxiv.org/abs/2111.12077v3
https://paperswithcode.com/task/novel-view-synthesis
https://paperswithcode.com/task/novel-view-synthesis
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141
https://towardsdatascience.com/multilayer-perceptron-explained-with-a-real-life-example-and-python-code-sentiment-analysis-cb408ee93141

5. Conclusion......................................
[9] House, D. H. (2014, January 21). Coordinate Systems [Lecture notes].

https://people.computing.clemson.edu/~dhouse/courses/405/no
tes/coord-systems.pdf

[10] Krautz, C. (2019, March 25). What are the coordinates? Medium.
https://medium.com/@christophkrautz/what-are-the-coordinat
es-225f1ec0dd78

[11] Shreiner, D., Sellers, G., Kessenisch, J., & Licea-Kane, B. (2013). OpenGL
Programming Guide: The Official Guide to Learning OpenGL, Version
4.3. (8th ed.) Addison-Wesley.

[12] Felkel, P. (2022, April 9). Transformations (in OpenGL) [PowerPoint
Slides]. https://cent.felk.cvut.cz/courses/PGR/lectures/04_Tr
ansform_1.pdf

[13] De Vries, J. (n.d.). Coordinate Systems. LearnOpenGL. https://lear
nopengl.com/Getting-started/Coordinate-Systems

[14] Songho, H. A. (n.d.). OpenGL Transformations. Songho.ca. http://ww
w.songho.ca/opengl/gl_transform.html

[15] OpenGL Wiki contributors (2021, February 11). Vertex Post-Processing.
OpenGL Wiki. https://www.khronos.org/opengl/wiki/Vertex_Pos
t-Processing#Viewport_transform

[16] Sala, P. L. (2006, July 20). Camera Models and Parameters [PowerPoint
Slides]. https://ftp.cs.toronto.edu/pub/psala/VM/camera-param
eters.pdf

[17] Fusiello, A. (n.d.). Elements of Geometric Computer Vision. https:
//homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4
/tutorial.html

[18] Ortiz, L., Gonçalves, L., & Cabrera, E. (2017). A Generic Approach for
Error Estimation of Depth Data from (Stereo and RGB-D) 3D Sensors.
https://doi.org/http://dx.doi.org/10.20944/preprints201705.
0170.v1

[19] Ms Aerin. (2021, September 21). Camera Calibration: Camera Geometry
and The Pinhole Model. Towards Data Science. https://towardsdatas
cience.com/camera-calibration-fda5beb373c3

[20] Zaal, G., & Kuhn, C. (2013, February). Suzanne’s Revenge - Pirate Ship
(+Blend). Blenderartists.org. https://blenderartists.org/t/suzan
nes-revenge-pirate-ship-blend/565664

[21] (2013, February 1). The Project. Artwin. https://artwin-project.eu/

[22] Mildenhall, B., Verbin, D., Srinivasan, P. P., Hedman, P., Martin-
Brualla, R., & Barron, J. T. (2022, October 13). MultiNeRF: A

60

https://people.computing.clemson.edu/~dhouse/courses/405/notes/coord-systems.pdf
https://people.computing.clemson.edu/~dhouse/courses/405/notes/coord-systems.pdf
https://medium.com/@christophkrautz/what-are-the-coordinates-225f1ec0dd78
https://medium.com/@christophkrautz/what-are-the-coordinates-225f1ec0dd78
https://cent.felk.cvut.cz/courses/PGR/lectures/04_Transform_1.pdf
https://cent.felk.cvut.cz/courses/PGR/lectures/04_Transform_1.pdf
https://learnopengl.com/Getting-started/Coordinate-Systems
https://learnopengl.com/Getting-started/Coordinate-Systems
http://www.songho.ca/opengl/gl_transform.html
http://www.songho.ca/opengl/gl_transform.html
https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Viewport_transform
https://www.khronos.org/opengl/wiki/Vertex_Post-Processing#Viewport_transform
https://ftp.cs.toronto.edu/pub/psala/VM/camera-parameters.pdf
https://ftp.cs.toronto.edu/pub/psala/VM/camera-parameters.pdf
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html
https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/FUSIELLO4/tutorial.html
https://doi.org/http://dx.doi.org/10.20944/preprints201705.0170.v1
https://doi.org/http://dx.doi.org/10.20944/preprints201705.0170.v1
https://towardsdatascience.com/camera-calibration-fda5beb373c3
https://towardsdatascience.com/camera-calibration-fda5beb373c3
https://blenderartists.org/t/suzannes-revenge-pirate-ship-blend/565664
https://blenderartists.org/t/suzannes-revenge-pirate-ship-blend/565664
https://artwin-project.eu/

...................................... 5. Conclusion

Code Release for Mip-NeRF 360, Ref-NeRF, and RawNeRF. GitHub.
https://github.com/google-research/multinerf

[23] Kusche, C., Reclik, T., Freund, M., Al-Samman, T., Kerzel, U., &
Korte-Kerzel, S. (2019). Large-area, high-resolution characterisation and
classification of damage mechanisms in dual-phase steel using deep learn-
ing. PLoS One, 14(5), e0216493.

[24] Mildenhall, B., Srinivasan, P. P., Ortiz-Canyon, R., Kalantari, N. K.,
Ramamoorthi, R., Ng, R., & Kar, A. (2021, January 21). Local Light
Field Fusion. GitHub. https://github.com/Fyusion/LLFF

[25] Leonel, J. (2018, October 29). Multilayer Perceptron. Medium. https://
medium.com/@jorgesleonel/multilayer-perceptron-6c5db6a8dfa3

[26] Baheti, P. (2021, May 27). Activation Functions in Neural Networks [12
Types & Use Cases]. V7Labs. https://www.v7labs.com/blog/neural
-networks-activation-functions

[27] Hlaváč, V., Matas, J., & Drbohlav, O. (2020, October 29). Perceptron
Classifier, Empirical vs Structural Risk Minimization [Lecture Slides].

[28] Dourmashkin, P. (2023). Classical Mechanics (p. 32). LibreTexts. https:
//batch.libretexts.org/print/Letter/Finished/phys-24413/Ful
l.pdf

[29] Schoenberger, J. L. (n.d.). Output Format. COLMAP. https://colmap
.github.io/format.html

[30] Shene, C. K. (2011, May 4). Geometric Transformations [Lecture Notes].
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/g
eo-tran.html

[31] Hartley, R., & Zisserman, A. (2000). Multiple View Geometry in Com-
puter Vision (2nd ed.). Cambridge University Press.

[32] Ladislav, Č. (2022, November 3). VGO - Color Perception and Repre-
sentation [Lecture Slides].

[33] Eck, D. J. (2021). Introduction to Computer Graphics (p. 19). Hobart
and William Smith Colleges. https://math.hws.edu/eck/cs424/downl
oads/graphicsbook-linked.pdf

[34] Deng, K., Liu, A., Zhu, J. Y., & Ramanan, D. (2023, January 19). Depth-
supervised NeRF: Fewer Views and Faster Training for Free. GitHub.
https://github.com/dunbar12138/DSNeRF#depth-supervised-ner
f-fewer-views-and-faster-training-for-free

61

https://github.com/Fyusion/LLFF
https://medium.com/@jorgesleonel/multilayer-perceptron-6c5db6a8dfa3
https://medium.com/@jorgesleonel/multilayer-perceptron-6c5db6a8dfa3
https://www.v7labs.com/blog/neural-networks-activation-functions
https://www.v7labs.com/blog/neural-networks-activation-functions
https://batch.libretexts.org/print/Letter/Finished/phys-24413/Full.pdf
https://batch.libretexts.org/print/Letter/Finished/phys-24413/Full.pdf
https://batch.libretexts.org/print/Letter/Finished/phys-24413/Full.pdf
https://colmap.github.io/format.html
https://colmap.github.io/format.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html
https://pages.mtu.edu/~shene/COURSES/cs3621/NOTES/geometry/geo-tran.html
https://math.hws.edu/eck/cs424/downloads/graphicsbook-linked.pdf
https://math.hws.edu/eck/cs424/downloads/graphicsbook-linked.pdf
https://github.com/dunbar12138/DSNeRF#depth-supervised-nerf-fewer-views-and-faster-training-for-free
https://github.com/dunbar12138/DSNeRF#depth-supervised-nerf-fewer-views-and-faster-training-for-free

62

Appendix A
Additional Results

The following chapter contains several tables with results that were not
relevant enough to show in the Experiments chapter but still present valuable
results.

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.1: Mip-NeRF renderings of the large LLFF dataset with the NDC scene
normalization, 5000 iterations

63

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.2: Mip-NeRF renderings of the large LLFF dataset with the NDC scene
normalization, 25000 iterations

64

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.3: Mip-NeRF renderings of the large LLFF dataset without the NDC
scene normalization, 5000 iterations

65

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.4: Mip-NeRF renderings of the large LLFF dataset without the NDC
scene normalization, 25000 iterations

66

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.5: Mip-NeRF renderings of the small LLFF dataset with the NDC
scene normalization, 5000 iterations

67

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.6: Mip-NeRF renderings of the small LLFF dataset with the NDC
scene normalization, 25000 iterations

68

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.7: Mip-NeRF renderings of the small LLFF dataset without the NDC
scene normalization, 5000 iterations

69

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.8: Mip-NeRF renderings of the small LLFF dataset without the NDC
scene normalization, 25000 iterations

70

................................... A. Additional Results

GT color Rendered
color

Table A.9: Mip-NeRF 360 renderings of the large LLFF dataset, 10000 iterations

71

A. Additional Results
GT color Rendered

color

Table A.10: Mip-NeRF 360 renderings of the large LLFF dataset, 50000 itera-
tions

72

................................... A. Additional Results

GT color Rendered
color

Table A.11: Mip-NeRF 360 renderings of the small LLFF dataset, 10000
iterations

73

A. Additional Results
GT color Rendered

color

Table A.12: Mip-NeRF 360 renderings of the small LLFF dataset, 50000
iterations

74

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.13: Mip-NeRF renderings of the synthetic dataset without any depth
supervision, 5000 iterations

75

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.14: Mip-NeRF renderings of the synthetic dataset without any depth
supervision, 25000 iterations

76

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.15: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the original DS-NeRF loss function, λd = 0.1, 25000 iterations

77

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.16: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the original DS-NeRF loss function, λd = 0.1, 100000 iterations

78

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.17: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 0.01, 25000 iterations

79

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.18: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 0.01, 100000 iterations

80

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.19: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 0.1, 25000 iterations

81

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.20: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 0.1, 100000 iterations

82

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.21: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 1.0, 25000 iterations

83

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.22: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 1.0, 100000 iterations

84

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.23: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 1.0 with decay rate ξd = 0.999,
25000 iterations

85

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.24: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the derived KL divergence loss function, λd = 1.0 with decay rate ξd = 0.999,
100000 iterations

86

................................... A. Additional Results

GT color Recorded
depth

Rendered
color

Rendered
depth

Table A.25: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the mean square loss function, λd = 0.1, 25000 iterations

87

A. Additional Results
GT color Recorded

depth
Rendered

color
Rendered

depth

Table A.26: Depth-supervised mip-NeRF renderings of the synthetic dataset
with the mean square loss function, λd = 0.1, 100000 iterations

88

Appendix B
List of Attachments

This chapter contains the list of all attachments that have been uploaded
along with the electronic version of this thesis.. results.txt

A text file that contains a link to high-resolution versions of images that
were presented in this thesis with depth maps preserved in their original
format.. datasets.txt
A text file that contains a link to used datasets, which are stored on
google drive.. checkpoints.txt
A text file that contains a link to checkpoints generated during the
experiments, which are stored on google drive.. code.txt
A text file that contains a link to the GitHub repository with source
code.

89

	Introduction
	Preliminaries
	Multilayer Perceptron
	Coordinate Systems
	Transformations
	Homogeneous Coordinates
	Transformations in OpenGL
	Transformations in Computer Vision

	Alpha Compositing and Color Representation

	NeRF-based Methods
	Neural Radiance Fields
	NeRF Coordinate Systems

	mip-NeRF
	Mip-NeRF 360
	DS-NeRF
	Depth Supervision Loss Function

	EfficientNeRF
	Ref-NeRF

	Experiments
	Dataset Details
	Synthetic Dataset
	LLFF Datasets

	Implementation details
	Testing existing methods
	Mip-NeRF
	Mip-NeRF 360

	Depth supervision
	Implementation details
	Synthetic Dataset
	LLFF Dataset

	Conclusion
	Bibliography
	Additional Results
	List of Attachments

