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Primasová, Ester. Imaging-Based Diagnostic Classification of ADHD. Mas-
ter’s thesis. Czech Technical University in Prague, Faculty of Information
Technology, 2022.



Abstrakt

Diplomová práce s názvem Diagnostická klasifikace ADHD na základě zobra-
zovaćıch metod se zabývá výzkumem existuj́ıćıch technik diagnostiky ADHD
se speciálńım zřetelem na sńımky funkčńı magnetické rezonance (fMRI). Au-
torka diplomové práce nab́ıźı vlastńı model pro klasifikaci ADHD diagnostiky,
a to skrze využit́ı zobrazovaćı metody fMRI a hlubokých neuronových śıt́ı. V
diplomové práci jsou následně porovnány výsledky autorčina modelu s exis-
tuj́ıćımi klasifikačńımi modely použ́ıvaj́ıćı data z Celosvětové soutěže ADHD-
200. Autorka diplomové práce potvrzuje funkčnost vlastńıho modelu, který
nab́ıźı výsledky diagnostiky ADHD srovnatelné s existuj́ıćımi metodami zob-
razeńı. Diplomová práce nab́ıźı prostor pro daľśı a hlubš́ı výzkum, který by
autorčin model mohl etablovat v prostřed́ı medićınské diagnostiky.

Kĺıčová slova Diagnostická klasifikace ADHD, rs-fMRI, Lékařské zobra-
zováńı, Hluboké učeńı, CNN, RNN, LSTM, GRU

Abstract

The thesis entitled Imaging-Based Diagnostic Classification of ADHD deals
with the research of existing techniques for ADHD diagnosis with special ref-
erence to functional magnetic resonance imaging (fMRI). The author of the
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thesis proposes her own model for ADHD diagnostic classification through the
use of fMRI imaging and deep neural networks. The thesis then compares the
results of the author’s model with existing classification models using data
from the ADHD-200 Worldwide Competition. The author’s thesis confirms
the performance of her own model, which offers ADHD diagnostic results com-
parable to existing imaging methods. The thesis offers scope for further and
deeper research to establish the author’s model in a medical diagnostic setting.

Keywords ADHD Diagnostic Classification, rs-fMRI, Medical Imaging, Deep
Learning, CNN, RNN, LSTM, GRU
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Introduction

Motivation and objectives

Attention deficit hyperactivity disorder (ADHD) is one of the most com-
mon neurodevelopmental disorder among children and adolescent that has
a detrimental impact on the brain neurodevelopment as compared to con-
trols. ADHD individuals exhibit inattention, impulsiveness, hyperactivity or
its combination. This condition, especially with the hyperactivity, is more
common in males compared with females.[4]

It has early onset on life and usually persists into adulthood, although
young adults often show reduced hyperactivity and impulsivity while retain-
ing symptoms of inattention. Persisting to adulthood in the majority of pa-
tients ADHD is associated with serious psychosocial impairment and a high
comorbidity rate including anxiety disorder, depressive disorder and learning
problem, yet it is currently underdiagnosed and treated in many European
countries. This leads to great levels of personal suffering, ineffective treatment
when ADHD is misdiagnosed and higher societal costs, if left unidentified and
untreated.[5]

Patients with ADHD often experience neuropsychological difficulties such as
deficient inhibition, memory, executive functioning, decision making, and emo-
tional dysregulation which may have negative consequences for adult’s self-
esteem and the quality of relationships.[6]

A meta-analysis of 19 studies with over 55,000 participants found that in
children and adolescents (5.9-7.1 %) meet diagnostic criteria for ADHD and
by self-report measures (5.0 %) in young adults.[7] The diagnosis of ADHD
mainly depends on a clinical evaluation of behavioral symptoms with responses
from patients, parents and informants.[8]

”Most diagnostic guidelines require that ADHD be assessed and diagnosed
by relying on information provided via a variety of methods (e.g., clinical in-
terviews, observations and ratings) and collected from multiple sources (e.g.,
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Introduction

parents and teachers). However, using subjective measures always incorpo-
rates the risk ofinformant biases and clinicians are often confronted with great
inconsistencies between ratings obtained from different sources.”[9] In response
to all these concerns, usage of objective measures might income valuable in-
formation for diagnosing ADHD and researchers .

Problem statements

For the reason that convention-based diagnostic systems not undoubtly reflect-
ing neurobiological pathomechanisms, the appeal to identify clinically useful
biomarkers for objective diagnosis is growing. Criteria for these biological
biomarkers were defined by the workers of the World Federation of ADHD. The
biomarker should be reliable, non-invasive, reproducible, inexpensive, easy to
use, and confirmed by at least two independent studies counceled by qualified
investigators and also have at least 80% sensitivity and at least 80% speci-
ficity. Unfortunatelly no reliable biomarker met these criteria yet.[10]

In 2011, the ADHD-200 Consortium announced “ADHD-200 Global Com-
petition” with the aim of identifying biomarkers and developing diagnostic
classification tools of ADHD disorder and its subtypes from resting-state func-
tional magnetic resonance imaging (rs-fMRI), structural MRI (sMRI) of the
brain and personal characteristics (phenotypic information).

The ADHD-200 dataset was collected on 776 children, adolescents and young
adults from eight independent imaging sites and included 491 datasets col-
lected from typically developing individuals and 285 from children and ado-
lescents diagnosed with ADHD.[11] It was the first publicly available dataset
with fMRI scans with huge amount of participants, including both psychiatric
patients and healthy controls, compared to all previous studies that included
from 20 to 104 participants.[12]

Fifty teams from around the world, with diverse backgrounds, including math-
ematics, statistics, computer science and neuroscience, joined the competition
and 21 of them finally submitted diagnostic labels with predomination of ma-
chine learning models.[13] Considering the fact that many competitors lacked
the specialized knowledge of neuroimaging methods to implement the neces-
sary steps of data preparation for rs-fMRI or access to computing resources
with high performance, the Neuro Bureau collaborated with all competitors by
preprocessing the data and sharing the “ADHD-200 Preprocessed” version at
the Neuroimaging Informatics Tools and Resources Clearinghouse NITRC.[13]

The winner was a team from Johns Hopkins University with an ensemble
model which achieved a 61% accuracy, 94% specificity and 21% sensitivity.
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Problem statements

That shows us that diagnosic classification based on fMRI images can be de-
veloped with a very low risk of false positives.[11] In spite of the quite humble
accuracy, the ADHD-200 dataset has become the main source of data for
machine learning based development for ADHD diagnostic classification and
many more researchers did their best to overcome it. Especially deep learning
methods had promising outcome in achieving improved classification perfor-
mance, though there is still room for improvement.[13]

The aim of this thesis is to research the medical imaging based on MRI,
describe the state-of-the-art methods for ADHD classification and also imple-
ment my own prototype for ADHD diagnostic classification using the publi-
cally available ADHD-200 dataset.

Chapter ?? and 3 introduce the reader to medical imaging domain focused
on magnetic resonance imaging, ADHD disorder, related work on its classifi-
cation focused on ADHD-200 dataset and state-of-the-art techniques. There
is also provided necessary machine learning background though some knowl-
edge in this area is expected from the reader. In Chapter 4, the main freely
available dataset for ADHD diagnostic classification, ADHD-200, is described
in detail. That include data analysis, the spread of the data and preprocessing
methodologies. Chapter ?? describe proposed network architecture inspired
by the selected paper from Chapter 3, process of its implementation, exper-
iments, hyperparameter optimization and evaluation. Finally, the results of
the experiments are summarized and discussed alongside with reflection on
future work are in Chapter 6.
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Chapter 1
Machine Learning background

This chapter deals with information from the field of machine learning / deep
learning with emphasis on explaining the basic principles of recurrent neural
networks.

Pocita se s tim, ze je ctenar obeznamen se zaklady machine learningu. V
teto kapitole budu zbezne venovat vysvetleni RNN, LSTM, GRU, Attention.
V pripade potreby doporucuji prostudovat [14] pripadne literaturu doporuce-
nou v jednotlivych sekcich.

1.1 Recurrent neural networks

In this section will be introduced recurrent neural networks (RNNs), that are
primarily used to detect patterns in a sequence of data.[14]

Standard feed-forward ANNs have inability to remember historical data and
has no knowledge of order in time. If each part of input is generated inde-
pendently, it can works well, but if they are related in time or space or are
anyhow dependent, the memory inside the model is needed.

RNNs contain an internal memory and may create recurrent connections be-
tween hidden units. Current value of a variable can influence its own value at
a future. Another feature of most RNNs is possibility to process sequences of
variable length and parameter sharing across model.[14]

That suits for problems such as natural language translation, speech recog-
nition, video analysis, image captioning, time series predictions, handwriting
recognition and many others, where the data sequences are processed.[15, 1,
16]
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1. Machine Learning background

1.1.1 Backpropagation Through Time

Backpropagation Through Time (BPTT) is algorithm widely used in RNNs.
By knowledge, that for every RNN with a finite number of operations, there
exists an corresponding traditional feedforward network with the same pa-
rameters repeated through, usual backpropagation training algorithm can be
applied to the unfolded RNNs.[17]

If the backpropagation algorithm is applied to the whole unrolled compu-
tational graph with respect to each parameter’s occurence, the gradient is
obtained and may be further used by any gradient based techniques to train
an RNN.[14]

Figure 1.1: An standard RNN and the same network unfolded over time t.
Picture adapted from [1].

Figure 1.1.1 shows the standard structure of RNN and the corresponding
unfolded neural network in time t.
The input at time t is xt and the real oputput at time t is yt.
Wh is the weight matrix that connects two consecutive hidden states ht−1 and
ht at time t.
Wx is the weight matrix that connects the input layer with the hidden layer
and Wy is the weight matrix that connects the hidden layer with the output
layer. An activation function is represented by σ and bh is bias vector of
hidden layer.
As the picture shows, the hidden layer is affected both by its input xt and by
the hidden state ht−1.
The hidden state ht value of RNN can be obtained by the following equation

ht = σ(Wxxt ∔ Whht−1 ∔ bh)[1] (1.1)
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1.1. Recurrent neural networks

When training RNNs with long-term dependencies, problems may occure.
The reason is, that propagating the gradient over too many layers tends to
vanishingly small values, that is called vanishing gradient problem and hap-
pens most of the time, or tends to explode to extremely large values, that is
called exploding gradient problem. If the gradient is too small, inital layer’s
weights are not be updated effectively and it can lead to the overall inaccuracy.
When the huge error gradients accumulate exponentially from layer to layer,
weights updates during training can not be done effectively and the whole
network may become highly unstable.[14, 18]

To learn more about RNNs, the backpropagation through time and its
computation, the following literature is recommended[14, 1, 15].

1.1.2 LSTM

The most effective sequence modelling networks, that can solve the exploding
and vanishing gradient problems, are gated RNNs. First one to be introduces
is the long short-term memory (LSTM).

LSTM RNNs have LSTM memory blocks, which has the same inputs and
outputs as an basic RNN, memory cell, gating system that controls the whole
flow of informations and some other parameters.
The memory block has its output recurrently connected back to its input and
all of the gates.
LSTM cell contains weight internal reccurence (self-loop) which allows the
gradient flow over a long duration. The memory cell is protected by the input
gate, output gate and forget gate. These gates regulate the input and out-
put flows and thus control the changes in the memory cell - specifically they
transforms a cell state.
Data that is irrelevant may not be allowed to get through the input and out-
put gates. Only relevant information can pass in and affect the cell or pass
out and affect whole network.[2, 14, 1]
The original LSTM block did not have forget gates.[19]
Figure 1.1.2 shows the standard LSTM memory block structure.

LSTM networks has been found successful in speech recognition, image cap-
tioning, handwriting generation, handwriting recognition and many others.[2]
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1. Machine Learning background

Figure 1.2: LSTM memory block. Picture adapted from [2].
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Chapter 2
Medical imaging background

Neuroimaging is a term used for multiple imaging techniques serving to exam-
ine structure and function of brain. Further, in cognitive neuroscience they
serve to examine the neurobiological correlates of human decision-making.
These techniques are typically noninvasive, but some involve exposure to ra-
diation or injection of radiolabeled substances.[20]

2.1 Positron Emission Tomography (PET)

Positron emission tomography (PET) involves injection of radioactive tracers
into blood stream which can be then observed as emitted positrons are de-
tected. Since the tracers are more processed in active parts of brain, these
parts can be identified on PET and used to study brain function.

PET can also provide information on metabolic changes in brain. As an
example, higher demands on glucose are typical for tumors where the usual
metabolism is changed. And since injected radiolabeled glucose emits positrons,
these tumors can be examined with PET. In addition to tumor evaluation,
PET is also used for movement disorder diagnosis.[21, 22]

2.2 Electroencephalogram (EEG)

Electroencephalography (EEG) utilizes electrodes placed on head to measure
electrical activity of neurons in brain. Variations in neuron activity are linked
to brain wave changes. The product of the measurement is called electroen-
cephalogram and shows changes in shape, magnitude and frequency of these
waves.

Temporal resolution of detectable changes on EEG is in range of millisec-
onds, but spatial resolution is rather low compared to, MRI and PET.
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2. Medical imaging background

The method is typically used for diagnostics of epilepsy, evaluation of seizures
caused by other diseases and coma (Noggle and Davis 2021), but it is also
used in research of neuropsychiatric disorders.[21, 20, 22]

2.3 Computed tomography (CT)

Computed tomography is an imaging method used to obtain structural infor-
mation on brain. It is based on differences in x-rays absorption across different
tissue types. Patient is irradiated with x-rays from multiple directions and the
remaining x-rays travelling through the head are detected. This information
is then used to reconstruct an image. Denser tissues such as bones absorb
more x-rays, while water or air absorb the least.

CT is relatively cheap compared to other imaging methods and it is a common
method of choice for acute brain trauma. CT is also considered as an non-
invasive technique, but it needs to be considered that x-rays are applied.[21, 22]

2.4 Magnetic Resonance Imaging (MRI)

Magnetic resonance imaging is a non-invasive diagnostic technique using radio
frequency radiation and magnetic field to obtain information on structure and
function in patients body providing a possibility to detect various pathologies,
injuries and illnesses. In order to be able to see a signal on MRI, a nucleus
possessing a magnetic moment (such as proton 1H) is needed. In medicine,
proton of water is the most commonly detected nucleus.[20, 23]

In presence of external magnetic field, spins of the active nuclei get aligned
along the magnetic field. Once aligned, a radio-frequency pulse is applied
causing the spins to flip. The resonant frequency depends on the nucleus and
the strength of the magnetic field. Following the pulse, spins relax back to
the equilibrium state while reemitting the radiation giving rise to signal.[23].

There are two types of relaxation - longitudinal (T1) relaxation and trans-
verse (T2) relaxation. Longitudinal (spin-lattice) relaxation is a process in
which spins populations returns back to thermal equilibrium state (which has
been previously disturbed by radiofrequency pulse) by transferring energy to
its surroundings. In process of transverse (spin-spin) relaxation the magneti-
zation in xy plane decays.[24]

Differences in T1 and T2 relaxation times are employed in MRI to obtain
contrast as different relaxation times leads to differences in signal intensities
obtained at certain time point. For example, brain has a shorter T2 value
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2.4. Magnetic Resonance Imaging (MRI)

compared to cerebrospinal fluid allowing the contrast to appear between the
two.[23]

In a constant magnetic field B0 of the MRI scanner, use of field gradients
allows to spatially localize the signal as the field varies across the body. A
gradient magnetic field provided by gradient coils is applied causing the nu-
clei to experience different fields at different locations. As the field differs, the
resonant frequency of the nuclei differs. This allows us to select slices (slice
select gradient) as well as location along the other two axis (frequency encod-
ing and phase encoding gradients). In this way, 3 dimensions are obtained
and localization is made possible.[23]

In addition to MRI, MR spectroscopy imaging (MRSI) can provide informa-
tion on changes in biochemistry in different parts of brain that can be linked
to disease, injury or other changes. In MRSI experiment, spectra for individ-
ual voxels are obtained and metabolic changes in various parts of brain can be
visualized as an image (so-called metabolite map) to provide an information
on local biochemical changes in brain.[25]

2.4.1 fMRI

In functional magnetic resonance imaging (fMRI) brain activity (functional
changes) is measured employing changes in blood oxygenation, tissue perfu-
sion and blood volume changes. These changes occur in response to neural
activity and can therefore provide some information on brain functioning.
Parts of the brain that get active can be identified in the process and repre-
sented in form of an activation map.
In fMRI additionally to 3 dimensions that were already introduced, the fourth
dimension – time – plays a role, we talk about temporal resolution. [26]

Echo planar imaging (EPI) is a fast MRI acquisition method using multi-
ple echoes in different phase steps. Different types of contrast can be obtained
with EPI: T2* weighting in GE-EPI (gradient echo EPI), T2 weighting in
SE-EPI (spin echo EPI) or T1 weighting in IR-EPI (inversion recovery EPI).
Additionally, diffusion weighted EPI (DW EPI) can be used.[27]

When activated, neurons are supplied with increased blood flow to obtain more
oxygen and glucose. This is called hemodynamic response. Oxyhemoglobin
and deoxyhemoglobin have different magnetic susceptibilities. As hemody-
namic response results in changes in levels of the two types of hemoglobin, it
can be detected with MRI. This is a basis for blood oxygen level dependent
(BOLD) contrast imaging.
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2. Medical imaging background

2.4.2 task-based fMRI

The aim of task-based fMRI experiment is to determine parts of the brain
involved in a certain task. For this purpose, patients are required to perform
this task which leads to neural activation. This can be followed as changes
in blood flow by MRI and brain structures linked to this specific task can be
localized.

2.4.3 rs-fMRI

Resting state MRI (rs-fMRI) is a method based on spontaneous low frequency
fluctuations in BOLD during resting state. In contrast to task-based fMRI,
patients do not perform any tasks and remain resting during rsfMRI exper-
iments as spontaneous neural activity is examined. The goal is to obtain
more information on functional connectivity in brain in form of resting state
networks (RSN).[28, 29, 30]

2.4.4 sMRI

Structural MRI (sMRI) is a tool for studying brain anatomy, structures of
different tissue types and their alterations due to injuries, disease or patholo-
gies such as tumor growth. sMRI is not directly linking the brain structures
to neural activity but provides information on the parts of brain (and, for
example, their volume) that are known to be associated with certain disease.
The knowledge obtained from sMRI and fMRI can then be combined.[31]

Neuroimaging data are usually obtained in Nifti format. It consists of an
image data and header part which contains information about measurement
parameters. Prior to analysis, images are processed. . .

12



Chapter 3
Review of existing approaches

In this chapter, the current literature on statistical, machine learning and deep
learning studies on ADHD diagnostic classification with identification of the
various diagnostic techniques used, is researched. Focused on brain magnetic
resonance imaging along with ADHD-200 dataset.

Due to the large number of existing studies and the need for their mutual
comparability, only related works with the two-class classification were se-
lected to differentiate between subjects with ADHD diagnosis and controls.
The accuracy metric was selected for their comparacy though some of them
also provide specificity and sensitivity measures. The list of existing studies
is not exhaustive and includes state-of-the-art techniques in the area.

For ADHD diagnostic classification, Zou et al.[32] proposed joint multi-modality
3D-CNN model with two-branches to combine s-MRI and fMRI data and
learn from each one unique modality. The model was inspired by the way
that radiologists examine brain images, learned latent 3D local patterns from
individual 3D features (including ReHo, fALFF and VMHC, as well as the
density of GM, WM and CSF in MNI space) and by hold-out validation ob-
tained the state-of-the-art performance 69.2%.

In addition, Riaz et al.[33] proposed firstly FCNet, an CNN based network
for calculating functional connectivity from fMRI signals obtaining overall
60.4% accuracy. Only Peking, NeuroImage and NYU sites data were used in
this model and obtained corresponding accuracies 62.7%, 60% and 58.5%

Complementing this, Riaz et al.[34] proposed DeepfMRI, a novel end-to-
end deep network for ADHD classification using feature extraction layer for
functional connectivity features, similarity network and classification network
with SVM. The network segmented brain into 90 ROIs using AAL atlas and
computed similarity between regions features. Again, only Peking, NeuroIm-
age and NYU sites data were used in this model and obtained corresponding
accuracies 62.7%, 67.9% and 73.1%.

13



3. Review of existing approaches

Moreover, Mao et al.[35] created 4D-CNN network based on granular
computing at a coarse level trained on derivative changes in entropy. Their
work started with spatial information extraction of each fMRI image frame
by 3D-CNN model and temporal information extraction by feature pooling
and LSTM. Then final 4D-CNN model extracted both spatial and temporal
information at the same time and obtained the accuracy 71.3%.

Finally, Zhang et al.[36] created SC-CNN-Attention network in order to
overcome disadvantages of the conventional methods that depend on the single
channel model and static computations and may cause the deficit of fMRI
intrinsic information. This network fuse a separated channel convolutional
neural network (SC-CNN) with an attention-based network to classify subjects
with ADHD. Separated channels learn the temporal feature from all of the
time series signals from one brain region (ROI) and then capture the temporal
features among all the ROIs. There were used Peking, KKI, NYU, OHSU and
NI sites data and obtained overall accuracy 68.6% evaluated with the ”leave-
one-site-out” CV (LOSOCV) for clinical relevance evaluation.

3.1 Training and testing data

Most of the studies retrieved MRI data from the Neuro Bureau ADHD-
200 Preprocessed repository (ADHD-200) preprocessed by one of three avail-
able preprocessing data strategy. Pipelines mostly differ in the preprocessing
toolset, algorithms, chosen parameters and computed statistical derivatives,
but many of the studies did not mention which one had been chosen.[13] For
this reason table no. XY does not include this information although may be
mentioned, that the Athena pipeline was mentioned most often, followed by
the NIAK pipeline, and lastly Burner pipeline.
The reviewed studies varied in used MRI data, some of them used along with
MRI data an phenotypic information including patient’s sex, age, IQ etc.
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3.1. Training and testing data

Figure 3.1: Data features of referenced literature

Figure 3.2: Dataset subset’s of referenced literature
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3. Review of existing approaches

3.2 Validation test type

Various model evaluation approaches were found across the articles under re-
view. The methods can be divided by hold-out and cross-validation approach.
Hold-out validation divide the dataset into training, validation and testing
data. Training data are used for training the model, validation data are used
for tuning the model and test data for model’s performance evaluation. K-fold
cross validation differ in the number of folds that determine how many times
algorithm iterates to confirm that all of the folds were used to train and test
the model.

Many of the reviewed studies used leave-one-out CV (LOOCV), where the
k number from K-fold CV is the number of all samples from original dataset.
There is also another approach of cross validation that leave-one-site-out
(LOSOCV) for testing while training on the rest of the data. This repeats for
all of the dataset sites.

To get credible evaluation, training and testing datasets need to be inde-
pendent. In diagnosis scenario this last LOSOCV approach, sometimes called
as subject-wise, is recommended to be used for clinical relevance evaluation.
In our case, universality from one clinical site to another is wanted, thus CV
needs to be across these sites.[37]
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3.2. Validation test type

Figure 3.3: Validation type of reviewed literature
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Chapter 4
Dataset description

For this thesis, ADHD-200 Sample dataset1 was selected that was originally re-
leased for the ADHD-200 Global competition in 2011 and that is dedicated to
accelerate researchers’s understanding of the neurobiological basis of ADHD.

In order to make the competition accessible to wider range of scientists, per-
ceiving that many of them lack the specialized knowledge of neuroimaging
methods to implement the necessary steps of data preparation for rs-fMRI
data and does not have access to computing resources with high performance,
The Preprocessed Connectomes Project (PCP)2 began openly sharing the re-
sults of the work on preprocessing the data at the Neuroimaging Informatics
Tools and Resources Clearinghouse (NITRC)3 .[13]

Many competitors used this preprocessed data, including the winning team
and by reason of the aforementioned complications with the basic neuroimag-
ing preprocessing the same data were used for this thesis.

4.1 ADHD-200 dataset

Dataset is publicly accessible and contains resting-state functional magnetic
resonance imaging (rs-fMRI) and structural magnetic resonance imaging (sMRI)
of the brain data along with phenotypic information for ADHD classification
and biomarkers recognition.

Data was collected on 776 children, adolescents and young adults from eight
independent imaging sites including 491 samples collected from typically de-
veloping individuals and 285 from children and adolescents diagnosed with

1http://fcon_1000.projects.nitrc.org/indi/adhd200/
2http://preprocessed-connectomes-project.org/
3https://www.nitrc.org/
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4. Dataset description

ADHD, all anonymously. The phenotypic information includes the diagnosis,
ADHD symptom measures, sex, age, intelligence quotient and their medica-
tion status. Not all samples includes all the phenotypic information. The
preprocessed data were preprocessed by three different analytical pipelines.
Pipelines mostly differ in the preprocessing toolset, algorithms, chosen pa-
rameters and computed statistical derivatives.[13]

The Athena4 pipeline is using the combination of FSL5 and AFNI6 neuroimag-
ing toolkits, NIAK7 pipeline is based on the NeuroImaging Analysis Kit8 on
CBRAIN9 software and the last pipeline called Burner10 is based on the voxel-
based-morphometry style analysis with SPM811 tool and uses only s-MRI data
while both Athena and NIAK pipelines use rs-fMRI and s-MRI.

4.2 Data preprocessing and Feature Extraction

For this work, ADHD-200 dataset was used preprocessed with the Athena
pipeline that uses custom BASH script to combine two neuroimaging toolkits
- AFNI and FSL.

The Athena pipeline steps of the preprocessing for functional data are as
follows:

• Removing first four volumes

• Slice timing correction where the separate slices of voxel time series are
aligned to the middle one. This was done separately for each dataset
site

• Replacing the transformation matrix in header with cardinal matrix

• Reorienting the dataset into RPI coordination

• Warping volumes for the motion correction

• Mask the data to get brain-only dataset
4https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:

AthenaPipeline
5https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
6https://afni.nimh.nih.gov/
7https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:

NIAKPipeline
8https://www.nitrc.org/projects/niak/
9http://www.cbrain.ca/

10https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:
BurnerPipeline

11https://www.fil.ion.ucl.ac.uk/spm/

20

https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:AthenaPipeline
https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:AthenaPipeline
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
https://afni.nimh.nih.gov/
https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:NIAKPipeline
https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:NIAKPipeline
https://www.nitrc.org/projects/niak/
http://www.cbrain.ca/
https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:BurnerPipeline
https://www.nitrc.org/plugins/mwiki/index.php?title=neurobureau:BurnerPipeline
https://www.fil.ion.ucl.ac.uk/spm/


4.2. Data preprocessing and Feature Extraction

• Compute the mean of each voxel time series and coregister mean image
to corresponding s-MRI

• Write data into template space

• Use calculated masks from anatomical processing on white matter (WM)
and cerebrospinal fluid (CSF) and extract its time-courses

• Use regression models on WM, CSF, motion corrected time series along
with third-order polynomial

• Band-pass filter the time series so they include only frequencies impli-
cated in resting state functional connectivity

• Use 6mm FWHM Gaussian filter to get blurred data

Output of this resting state functional data preprocessing includes prepro-
cessed data as compressed 4D NIfTI files, mean image and mask for the data
also as compressed NIfTI file and motion parameters as AFNI 1D file.

From aforementioned preprocessed data, subjects with the cleanest data were
chosen for functionally defined CC200 and CC400 brain parcellation created by
two-stage spatially-constrained clustering procedure and time courses were ex-
tracted by averaging the voxel time series within each labeled region. Another
derivatives from preprocessed rs-fMRI data are brain parcellations and aver-
aged regional time courses using the automated anatomical labeling (AAL),
Eickhoff-Zilles (EZ), Harvard-Oxford (HO) and Talairach and Tournoux (TT)
atlases. Also the regional homogenity (ReHo), functional connectivity (FC)
and fractional amplitude of low-frequency fluctuations (fALFF) were derivated
from preprocessed rs-fMRI for further processing.

Figure 4.1: Automated anatomical labeling (AAL) brain atlas ROIs

The Athena pipeline steps of the preprocessing for structural data are as
follows:
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4. Dataset description

• Dataset reorentation into RPI coordination and brain extraction from
surrounding tissue

• Segmentation into grey matter (GM), white matter (WM), and cere-
brospinal fluid (CSF) probability maps

• WM and CSF masks creation

• Linear transformation applied on anatomical and template data followed
by non-linear transformation to refine the result

• Write anatomical and GM probability data into template space

• Use 6mm FWHM Gaussian filter to get blurred GM data

Some subjects were excluded due to not containing the diagnostic label,
anatomical data or having corrupted files.
In this work the emphasis is placed on anatomical parcellation of atlas assigned
with AAL Toolbox. As the input serves rs-fMRI time series of all voxels accross
each region warped into template space, each parcellation coregistrated and
then resampled into the functional space using nearest-neighbor interpolation.
Finally, the time courses were averaged within each region of interest (ROI)
accross voxels signals. Each region is expressed by one local signal channel
and is served as an input to the deep learning model.

- asi zminit, ze jsou napric sites velke rozdily, nektere files jinak rozlozene,
merene na jinych pristrojich, nekdy otevrene a jindy zavrene oci apod - zminit
nazvy sites a specificky ty, ktere byly vstupem pro muj model - rict, ze i mereni
probihalo po rozdilnou dobu a ze jsem po uvazeni zvolila zarovnani na stejnou
delku pro vsechny sites
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Chapter 5
Implementation

In this chapter, the used technologies for the analysis, data processing and
implementation are summarized. There is also a description of the designed
network including a description of the individual parts. The model tuning
process and hyperparameter optimization are also captured.

5.1 Technologies

For this work, Python and Keras12 framework offering deep learning high-level
API in Python were used. Keras is the most used deep learning framework
built on top of Tensorflow 2.013. I used the TensorFlow as a backend. Tensor-
Flow is an open-source platform for developing and training machine learning
models working with tensors.

For hyperparameter optimization was used KerasTuner14. KerasTuner is hy-
perparameter tuning library that helps to choose the optimal set of hyper-
parameters. It has bilt-in deep search algorithms like Hyperband, Bayesian
optimization and Random search. I have choosen the Hyperband tuning algo-
rithm, that uses adaptive resource allocation and has implemented early stop-
ping to terminate a training optimization if a monitored metric has stopped
improving for choosen number of epochs.
For visualization of the tuning process was used TensorBoard15. TensorBoard
can visualize model graph and layers along with tracking and visualizing the
training losses and metrics.

12https://keras.io/
13https://www.tensorflow.org/
14https://keras.io/keras_tuner/
15https://www.tensorflow.org/tensorboard
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5. Implementation

Google Colab16 was chosen as a free Jupyter notebook17, that runs in the
cloud and provides access to CPU, TPU and GPU units. Since it has limita-
tions on maximum RAM and running time without interruption, more model
optimization were needed.

For image processing, loading and working with data in NIfTI (most com-
mon MRI format) data format, the NiBabel18 library was used.
In addition, for brain volume data analysis and statistics was used neuroimag-
ing Python library Nilearn19, than helps manipulating with NiFti files and
offers itself already ADHD-200 dataset subsample with 40 subjects. Some of
the reviewed papers used this library and build deep learning model based on
this small subset of data.

Data ballancing, data scaling and other computations like accuracy and pre-
cision were calculated using sklearn20, open source machine learning library
for the Python. Numerical calculations were done by NumPy21 library and
for plotting and visualization, Matplotlib22 library was chosen.

5.2 Network input and architecture

The design of my own network for the diagnostic classification of ADHD was
inspired mainly by the paper[36], where I was interested in separate ROI
processing and abstract feature learning using separate channels to capture
particularity of distinct fMRI ROI’s signals.

The proposed network consists of four main parts. The first part contains
a separate CNN for each ROI. The second part of the network consists of
stacked GRU layers. This is followed by the self-attention block. The last
part consists of the classifier.

5.2.1 Separated CNN for each ROI

Region’s signals were extracted from the whole brain rs-fMRI BOLD time
courses accross all of its voxels within the same region of interest using au-
tomated anatomical labeling (AAL) atlas. After computing averaging within
ROI voxel time courses for each region separately were obtained 116 distinct
time series signals. Finally, each of this 116 time series for each subject pro-

16https://colab.research.google.com/
17https://jupyter.org/
18https://nipy.org/nibabel/
19https://nilearn.github.io
20https://scikit-learn.org/
21https://numpy.org/
22https://matplotlib.org/
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5.2. Network input and architecture

vided the input for single channel of this proposed network.

The length of the extracted rs-fMRI time series varied among all input dataset
sites. In order to deal with this differencies the extracted ROIs were aligned
to the same length just before entering the convolution.

For the reason that the data comes from the different sites and are mea-
sured at different scales by different devices, they do not contribute equally
to the fit and the learning function of the model. To avoid the possible bias,
the standardization was applied.

To standardize a dataset with multiple features and time-series data, before
applying machine learning model, the data was firstly reshaped in a format
so that each feature could be normalized separately. Given the distribution of
the data, each feature (ROI) in the dataset had the mean value subtracted,
and then divided by the standard deviation of the individual feature part of
the dataset. Subsequently, the data was returned in the same shape as before.

Each CNN can be viewed as a separate channel to capture an discrimina-
tive abstract representation of a given ROI signal. Each channel is processed
with stacked convolution and pooling layers followed by Drop and Batch nor-
malization layer. Neurons of the hidden layers learn the representations over
the input time series. It is assumed, that all learned representations are inde-
pendent of one another.

Dropout layer serves as a regularization to prevent overfitting in deep learn-
ing models by randomly changing the network architecture. We want to avoid
that the learned values of the weights are too fitted to the baseline training
data and thus not generalized well enough for the test data and dropout is
one of the highly used techniques.[38]

As an activation function for convolution layers was chosen the Leaky Recti-
fied Linear Unit (Leaky ReLU), which is based on ReLU with small slope for
negative values that helps in dying units problem prevention. Leaky ReLU
can be computed by the following equation[39]

LeakyReLU(x) = max(β ∗ x, x) (5.1)

where β is a small constant.

First convolution layer has number of filters equal to the number of input
ROIs timesteps and kernel size of 5. Then is applied max pooling layer for
down-sampling 1D temporal data and batch normalization to reduce general-
ization error and accelerate the training.
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5. Implementation

Second and last convolution layer has the number of filters two times higher
then the previous one and has kernel size of 3.
Thereafter, the representation is downsampled by taking the maximum value
over the time dimension with global max pooling layer.

All these CNN sub-networks work as feature extractor are followed by con-
catenation layer that takes as input a list of tensors of the same shape, except
for the concatenation axis, and returns a single tensor that is the concatena-
tion of all extracted features. This tensor serves as an input for the following
LSTM Layer.

5.2.2 LSTM

Here, the multiple ROIs local features, that carry information of different
brain regions, are integrated and the information about the interconnection
of these regions can be extracted.

LSTM Layer set dropout fraction of the units for the linear transformation
of the inputs and recurrent dropout fraction of the units for the linear trans-
formation of the recurrent state, which serves as a regularization method for
RNNs.

As an activation function is used hyperbolic tangent. Number of features
is chosen as a number of units. Number of units is equal to the number of
features (ROIs). After layer normalization follows second LSTM layer with
less number of units.

5.2.3 Self-Attention Layer

Attention mechanism was chosen for its ability to learn which part of the data
is more crucial than the other. In 2017 was introduced as a new form of at-
tention mechanism called self-attention.[40]

Self-attention, sometimes called intra-attention, is an attention mechanism
with ability to recognize the context of each data sequence time step.
This mechanism takes into account different positions in the sequence to com-
pute its representation and give larger weights to the more important features,
which is greatly handful for this task.[39]

Self-attention was computed by the following equations

h(t,t) = tanh(xT
t Wt ∔ xT

t , Wx ∔ bt) (5.2)
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5.2. Network input and architecture

e(t,t′) = σ(Wah(t,t′) ∔ ba) (5.3)

at = softmax(et) (5.4)

lt =
∑

t′
α(t,t′)xt′ (5.5)

Figure 5.1: Example of self-attention block structure. Picture adapted from
[3]

5.2.4 Classifier

New extracted features serve as an input for the last layer. For the output
layer, sigmoid activation was used as it is suitable for binary classification
problems. As loss function is used weighted binary cross-entropy to predict
the binary class.
Weighted binary cross-entropy considers that samples are imbalanced.
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5. Implementation

5.3 Model tunning and hyperparameter
optimization

During the training and validation phases, Keras Tuner[41] was used to opti-
mize some hyperparameters. The hyperparameter search was done using the
Hyperband algorithm[42] implemented in Keras Tuner. Hyperband tuner was
designed as an optimized version of random search tuner which uses early-
stopping to accelerate the hyperparameter tuning process.

Searched hyperparameters include dropout percentages for each layer sepa-
rately, number of hidden layers, number of layer neurones (specifically in GRU
corresponds to the amount of information remembered between time steps),
learning rate Both LSTM and GRU were tried.

In final dense layer was used sigmoid activation function that calculates loss
for the binary cross-entropy which gives out binary output.

The learning rate (lrate) is a floating-point value between 1e-4 and 1e-1, cho-
sen logarithmically (not linearly). The L2 regularization value is chosen from
a set of five predefined values (0.0, 1e-1, 1e-2, 1e-3, and 1e-4).
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5.3. Model tunning and hyperparameter optimization

The number of hidden nodes (num hidden) is an integer chosen from the range
32 to 256 in increments of 32. These values are then used in the model-building
code as normal.

5.3.1 Training Optimization Algorithm

As the optimization algorithm was chosen one of the stochastic gradient de-
scent methods, adaptive moment estimation (Adam). The Adam optimization
algorithm was first introduced in the paper Adam: A Method for Stochastic
Optimization[43] by Diederik P. Kingma and Jimmy Ba. Algorithm is based
on adaptive estimation of first-order moment, is computationally efficient and
convenient for cases when we have a lot of data or parameters, that is my
case. Additionaly, it requires less memory and is well suited for noisy and
spare gradients for non-stationary objectives and problems.[43]

To optimize the model the original dataset was splitted into small batches
as it may offer a regularizing effect due to the noise that minibatches add to
the learning process. This technique is called minibatch stochastic method
and for the model training were used four sizes of batches 8, 16, 32, 64. As
size 8 was too small and the runtime was very high and size 64 was too high,
with less than linear returns, I finally decided to use size 32 that leaded to the
best performance.[14]

5.3.2 Class Balancing

In the ADHD-200 dataset are disproportionately more healthy controls (HC)
than patients diagnosed with ADHD. This disproportion also varies across
data of different sites. This may bias the model in favour of one category over
the other.
Many articles used imbalanced datasets or imbalanced dataset’s subsets and
only a few of them took balancing of classes into account.

To increase the clinical plausibility of the results I also opted for balancing of
classes by one of the techniques. Since this is a binary classification I opted for
weight balancing of classes to give equal importance for both classes on gra-
dient updates and directly specified the weights for each of the target classes.
Each sample contributes to the loss proportionally to its class weight, under-
represented class loss is multiplied with frequency of overrepresented class and
vice versa.
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Chapter 6
Results

The accuracy metric was used to measure the performance of the classifica-
tion model for ADHD diagnosis. For its evaluation was used leave-one-site-out
cross-validation, i.e. using each single data site as a test set while training on
all the others and then comparing the model performance individually. The
attached graph compares the results of my model S-CNN-LSTM-Attention
model with the results based on the ADHD-200 Worldwide Competition. It
is important to note that not every model used all data sites from the compe-
tition.

I used datasets from the NYU, Peking, CCI and NI sites. The results of my
model are comparable to those with which they were compared. Thus, the
model meets the claim of sufficient accuracy. Evaluation through leave-one-
site-out cross-validation confirms the performance of the implemented model.

NYU Peking KKI NI Average accuracy
Dey et al. (2014) None 58.82 54.5 48 60.93
FCNet 58.5 62.7 None 60.0 60.4
DeepFMRI (2020) 73.1 62.7 None 67.9 67.9
3D-CNN None 62.9 72.8 None 67.8
SC-CNN-Attention 60.4 65.2 77.7 75.3 68.6
S-CNN-LSTM-Attention 53.2 74.58 74.7 72.92 68.85
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6. Results

Figure 6.1: Comparison of the accuracies of selected models
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Conclusion

In her thesis entitled Imaging-Based Diagnostic Classification of ADHD, the
author aimed to investigate the existing techniques for the diagnosis of ADHD
with special reference to functional magnetic resonance imaging. The author’s
interest in the topic stemmed from the fact that ADHD is one of the most com-
mon neurodevelopment disorders in children and adolescents. Yet, in many
European countries, it is still a disorder whose diagnosis is inadequate. ADHD,
which persists into adulthood, has a number of psychological complications
and is often associated with anxiety and depressive disorders and learning dis-
abilities. Proper diagnosis of the disorder thus becomes crucial in preventing
and dealing with the complexities associated with ADHD.

The author of this thesis assumes that the current diagnostic practice of
ADHD depends mainly on the clinical evaluation of behavioral symptoms
with respect to the responses of patients and concerned persons. Meanwhile,
the technique of ADHD diagnosis varies based on the methods used (clinical
interviews, observations, etc.) and the different sources (teachers, parents and
other persons in contact with the person with the disorder). This variation in
diagnostic techniques can lead to misdiagnosis. For these reasons, the author
discussed in her thesis the existing classification models of ADHD that can be
considered objective.

In the thesis, the author explains the method of examining the issue of ADHD,
its diagnosis, the description of her own classification model and the results
of the comparison. In the first chapter, the author explains the basics of
recurrent neural network as she assumes the reader’s knowledge of machine
learning. In the following chapter, the author describes the basic methods
used for imaging the human brain. She then moves on to summarize the cur-
rent state of knowledge in classification techniques for ADHD diagnosis, in
which the dataset from the ADHD-200 Worldwide Competition was used.
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Conclusion

In the fourth chapter, devoted to data description, the author presents the
dataset from the aforementioned competition and explains the preprocessing
and data extraction methods used. Chapter five describes the design and im-
plementation of the author’s model for ADHD diagnostic classification. Chap-
ter six provides a clear and concise explanation of the results of the author’s
model and a comparison with the results of current existing ADHD diagnosis
techniques.

Based on the knowledge gained, the author of the thesis proposed her own
model for ADHD classification diagnosis through the use of functional mag-
netic resonance imaging and deep neural networks. She then compared the
results of her model with classification models using data from the ADHD-200
Worldwide Competition. The author concludes that her results in her thesis
are comparable to those of other classification models.
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www.sciencedirect.com/science/article/pii/S014976342100049X

[5] ABLE, S. L.; JOHNSTON, J. A.; ADLER, L. A.; aj.: Functional
and psychosocial impairment in adults with undiagnosed ADHD. Psy-
chological Medicine, ročńık 37, č. 1, 2007: str. 97–107, doi:10.1017/
S0033291706008713.

[6] Katzman, M.; Bilkey, T.; Chokka, P.; aj.: Adult ADHD and comorbid
disorders: Clinical implications of a dimensional approach. BMC Psychi-
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ročńık 144, č. 4, 10 2019, ISSN 0031-4005, doi:10.1542/peds.2019-2528,
e20192528, https://publications.aap.org/pediatrics/article-
pdf/144/4/e20192528/1078222/peds_20192528.pdf. Dostupné z:
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and Brain Functions, ročńık 14, 12 2018, doi:10.1186/s12993-018-0143-x.

[10] Thome, J.; Ehlis, A.-C.; Fallgatter, A.; aj.: Biomarkers for attention-
deficit/hyperactivity disorder (ADHD). A consensus report of the
WFSBP task force on biological markers and the World Federation of
ADHD. The world journal of biological psychiatry : the official journal
of the World Federation of Societies of Biological Psychiatry, ročńık 13,
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https://arxiv.org/abs/1912.05911

[18] Philipp, G.; Song, D.; Carbonell, J. G.: Gradients explode - Deep Net-
works are shallow - ResNet explained. CoRR, ročńık abs/1712.05577,
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ral Computation, ročńık 9, č. 8, 11 1997: s. 1735–1780, ISSN 0899-
7667, doi:10.1162/neco.1997.9.8.1735, https://direct.mit.edu/neco/
article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf. Dostupné z:
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Appendix A
Contents of CD

Readme.txt ....................... the file with CD contents description
Notebooks ...............................the directory of source codes
thesis ........................the LATEX source code files of the thesis

thesis.pdf ...................... the Diploma thesis in PDF format
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