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ii

Acknowledgments

I would like to express my gratitude to my supervisor for his advice and guidance the
whole time of my work.



BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

486485 Personal ID number:  Ernée  Jan Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Open Informatics Study program: 

Artificial Intelligence and Computer Science Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Automated Detection and Closing of Holes in Point Clouds Using Unmanned Aerial Vehicles  

Bachelor’s thesis title in Czech: 

Automatická detekce a doplňování děr v mračnech bodů pomocí autonomních bezpilotních helikoptér  

Guidelines: 

The aim of the thesis is to implement an approach for identifying and completing occluded areas in unstructured 3D point 
clouds using Unmanned Aerial Vehicle (UAV). The thesis focuses on the implementation of an algorithm for finding 
boundaries of holes in unstructured 3D point clouds, the determination of areas suitable for mapping 
of detected holes, and the application of multi-goal path planning to find paths efficiently connecting the areas. 
The following tasks will be solved: 
• Implement an algorithm for finding boundaries of holes in unstructured point clouds and verify it on data obtained by 
terrestrial laser scanners in historical buildings. 
• Propose and implement an approach for UAV path planning for mapping of the detected holes using onboard sensors 
with a limited field of view. 
• Familiarize yourself with the system of the Multi-Robot Systems group for stabilization and control of UAVs [3]. 
• Verify the proposed approach in the Gazebo simulator under ROS using the MRS system and models of historical 
buildings. 
• Prepare a real-world experiment which will be conducted based on the availability of a real multi-rotor helicopter and 
permission to access a building suitable for the realization of the experiment. 

Bibliography / sources: 

[1] G. Bendels, R. Schnabel and R. Klein, „Detecting Holes in Point Set Surfaces,“ Journal of WSCG, 14(1-3):89-96, 2006. 
[2] A. Kazi, A. Sausthanmath, S. M. Meena, S. V. Gurlahosur, and U. Kulkarni, „Detection of holes in 3D architectural 
models using shape classification based Bubblegum algorithm,“ Procedia Computer Science, 167:1684-1695, 2020. 
[3] T. Báča, M. Petrlík, M. Vrba, V. Spurný, R. Pěnička, D. Heřt and M. Saska, “The MRS UAV System: Pushing the 
Frontiers of Reproducible Research, Real-world Deployment, and Education with Autonomous Unmanned Aerial Vehicles,” 
Journal of Intelligent & Robotic Systems, 102(26):1–28, 2021. 

Name and workplace of bachelor’s thesis supervisor: 

Ing. Vít Krátký    Multi-robot Systems  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   26.05.2023 Date of bachelor’s thesis assignment:   31.01.2023 

Assignment valid until:   22.09.2024 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Tomáš Svoboda, Ph.D. 

Head of department’s signature 
Ing. Vít Krátký 

Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



v

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in th epreparation of university theses.

Prague, May 26, 2023 Jan Ernée



vi



vii

Abstract

Using a terrestrial laser scanner is one of the approaches to get a model of an inner
space of historical monuments giving a model in the form of scanned points (point
cloud) as a result. However, terrestrial laser scanners are usually not able to cover all
areas of the scanned building. Thus areas, called holes, where no data was taken can
appear in the model. The goal of this work is to find these holes in the unstructured
point cloud and fill them using data captured by onboard sensors of unmanned aerial
vehicles (UAV).

The first part of this work focuses on hole finding in unstructured point clouds.
Holes are found by a combination of several criteria and methods, which are further
discussed in more detail. To filling holes, areas from where the data can be obtained
has to be found. This is a problem discussed in the second part of this work. The
developed and implemented approach was verified in the realistic simulation using
models of existing buildings.

Keywords Pointcloud Hole Detection, Angle Criterion, Shape Criterion, Halfdisc
Criterion, RANSAC, GTSP, Unmanned Aerial Vehicles
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Abstrakt

Jedńım ze zp̊usob̊u, jak źıskat model vnitřńıch prostor historických budov, je
použit́ı pozemńıho skeneru. Výsledkem může být model tvořený naskenovanými
body (mračnem bod̊u). Pozemńı skener často nezvládne zmapovat všechna mı́sta
skenované budovy. V modelu pak vzniknou tzv. d́ıry, tedy oblasti, ve kterých nebyla
data nasńımána. Ćılem této práce je nalezeńı děr v nestrukturovaném mračnu bod̊u
a jejich následné doplněńı pomoćı senzor̊u z autonomńıch bezpilotńıch prostředk̊u
(UAV).

Prvńı část práce se zabývá hledáńım děr v nestrukturovaném mračnu bod̊u. Dı́ry
jsou nalezeny pomoćı kombinace několika kritéríı a metod, které jsou dále detailněji
rozebrány. Pro doplněńı děr daty je potřeba vybrat oblasti, ze kterých bude sńımáńı
pomoćı bezpilotńıho prostředku provedeno. Této problematice se věnuje druhá
část. Implementovaný př́ıstup byl ověřen realistickou simulaćı za použit́ı model̊u
skutečných budov.

Kĺıčová slova Detekce děr v mračnech bod̊u, úhlové kritérium, křivkové kritérium,
polodiskové kritérium, RANSAC, GTSP, Bezpilotńı prostředky
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Chapter 1

Introduction

Visiting historical monuments is an activity many people like. Institutions and private
owners often let people in, at least to some parts of its monuments. But there could be some
rooms, cellars, halls, corridors, turrets, or whole buildings where visitors are not allowed for
some reason even if there is a lot to see; private owner’s areas, bad conditions for daily visits,
or hardly accessible places. One way to resolve this situation could be a virtual tour of these
places. But how to create a proper virtual model?

One solution could be done by using a terrestrial laser scanner to scan the whole place
and create a virtual model based on obtained data. However, not even a laser scanner is
perfect. Laser rays can reach only directly accessible places, therefore no data from behind
obstacles can be obtained. Although the laser scanner is mobile and most of the surfaces are
suitable for placing a scanner there, some areas could be inaccessible by the light ray from any
angle from the ground. This leads to missing pieces of information about some parts of the
scanned object and some uncertainty in the whole model result. In this work, we are focusing
on finding these unscanned areas, called holes, and finding areas from which the missing data
can be obtained by unmanned aerial vehicle (UAV) using onboard sensors.

In the first part of this work, we are resolving the problem of hole finding. Hole finding
consists of several steps, together giving the required boundary points of the holes [1]. A
combination of three criteria is used to find the probability of some point lying on the boundary
or not. After that, extraction of the hole boundary is done. The second part focuses on finding
suitable areas for obtaining required data by the UAV. Based on UAV’s scanner properties like
the minimum or maximum distance to take a scan or an angle where the obtained data are still
accurate enough, this area is gained and sampled. Every area has to be visited by the UAV to
collect required data. The suggested approach is validated in simulations using unstructured
point clouds of some Czech historical monuments, containing hundreds of thousands or lesser
millions of points.

1.1 Related works

Detection of holes in point cloud surfaces is not an easy task in general, mostly since
point clouds could appear in an unstructured form. Points in the unstructured point cloud do
not have any information about relationships with other points [2], thus some neighborhood of
points has to be found. Some of the holes finding methods follow simple ideas and intuitiveness
of how the point cloud surface behaves or looks on the hole boundary. There are methods of
finding boundaries based on the size of the angle constricted by points on the boundary [1] or
comparing the local neighborhood with the half-discs [1]. Other methods, on the other hand,
compare the shape of boundary points neighborhood with the referenced shapes of correlation
elipsoid [1], [3]. In [4], the method of finding boundaries is disengaged of any threshold values

CTU in Prague Department of Cybernetics
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and focuses on finding as many boundaries as possible, passing unique circles through three
points in 3D space, and extracting the boundary. There are also methods assuming the point
cloud is structured; for example [5] builds on the fact that the point cloud is organized and
reduces the dimension of data by a projection of 3D data to the 2D grid. Another approach
is to use convex hulls and clustering the points neighborhoods [6], applied in bioinformatics
to detect skin cancer. In [7], the method uses clustering points in the point cloud to specific
structures and finding holes in specific structure shapes. Various methods for various purposes
either remove or provide more information. In this work, we follow the approach from [1],
mainly because of a number of criteria and their combination, which allow us to modify the
search methods based on the input data.

The missing point cloud data can be obtained in various ways, e.g by movement of the
terrestrial scanner to different places (if the hole is reachable from the ground). The approach
we are focusing on in this work is the usage of UAV. The interesting approach is presented in
[8], where the UAS changes the flight direction depending on the founded point cloud holes.
The impropriety of this approach for our proposes is its limitation to ground scanning, which
makes it unusable for finding holes in the wall or ceiling. The inspiration to use the UAV for
scanning is taken from [9] or [10]. In our work, we assume the usage of only one UAV during
the scanning.

CTU in Prague Department of Cybernetics
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Chapter 2

System architecture

The model implemented in this task has several different parts. The goal is to obtain
missing data of a point cloud of a historic building by a UAV. To reach this goal, the missing
areas in the point cloud have to be found, the places to take appropriate scan shots have to
be defined, the path through the defined areas and the trajectory have to be found and the
data has to be obtained by the UAV following this trajectory.

The method we use to find the missing places, called holes, in the unstructured point
cloud is based on the computation of the boundary probability of each point cloud’s point
and applying some constraints on them to receive the final points belonging to the point
cloud’s boundaries. The boundary probability is computed by a combination of three criteria,
each focusing on a different description of what the boundary looks like. These three criteria
compute a probability of how likely a point is a boundary point or not. Their combination is
weighted, thus if one of the criteria is much better on the specific data set than the others, it
could have a bigger weight. The number of detected boundary points, based on the boundary
probability, is reduced depending on their coherence. Finally, the cycle of boundary points is
extracted.

The founded hole is approximated by the plane and divided into smaller rectangle
holes of specific proportions to satisfy the constraints of a scan. The areas to take scan shots
are mainly limited by the distances from the hole and the angle constricted with the hole’s
approximation plane. The problem of visiting areas could be described as TSP, but typically
the found areas are bigger than the UAV and thus the areas are sampled to allow UAV to
pass through some point in the area. This sampling leads to a generalization of TSP to GTSP.
Finally, the path is founded through GTSP solution points and a trajectory is generated. The
whole approach is tested in realistic simulation and models of Czech historical buildings.

The realistic simulation with the models of real historical buildings is a good preparation
for real experiments in real historical buildings inspired by [11]. The generated trajectories
and the MRS systems [12], [13] allow usage of this approach to obtain missing data from real
buildings by real UAV.

CTU in Prague Department of Cybernetics
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Figure 2.1: Scheme of the whole approach. The input data is an unstructured point cloud
of a building (or another object where the scanning by UAV makes sense). The hole finding
task (the first rectangle) has several parts, together providing the point cloud holes’ boundary
points. The second part focuses on finding areas suitable for taking scan shots. This process
shows the second rectangle (following the direction of the arrows) and provides the points in
space which have to be visited by the UAV as a result. The final step is the path planning
and the realistic simulation (done by using the [12] system) to verify if the desired data will
be obtained during the real drone flight. The output data from the system are the missing
data scanned by the UAV.

CTU in Prague Department of Cybernetics
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Chapter 3

Pointcloud hole detection

This chapter covers the whole process of detecting holes in the unstructured point
cloud. Unstructured point cloud, unlike its structured version, misses any information about
the connectivity between neighboring points [2]. In our case, the only information we have
about each point individual is its position and color. The approach described in this chapter
is based on method [1] with minor modifications required by intended application.

3.1 Local neighborhood

Basic source of information about the relation between points is their mutual position.
Being a boundary point depends more on the distribution of the nearest points instead of the
boundary point itself [1], i.e. it is a property dependent on the points in certain neighborhood.

For some point, the neighborhood could be simply defined as a sphere of specific di-
ameter ε around that point. This neighborhood definition has one significant deficiency. For
small diameter and small sampling density, there could be no point in the neighborhood, i.e.
there is no information about the relationship with other points, and the problem about miss-
ing relations remains, as shown in Figure 3.1a. Taking K -nearest points, determined by the
Euclidean distance, could be a better approach than a sphere of predefined size. K -nearest
neighbours ensures the neighbourhood will contains min(K, total data points) points.

(a) ε-neighborhood (b) K -nearest neighbors on
uniform sampled data

(c) K -nearest neighbors on
nonuniformly sampled data

Figure 3.1: ε-neighborhood of the green point, missing any other point in it (a), whereas
K -nearest neighbors for K = 4 contains the required number of points (b). The difference
between K -nearest neighbors applied on a uniform and nonuniform sampling density is shown
in (b) and (c)

K -nearest neighbors works well for cases where the sampling density is uniform for most
of the points, see Figure 3.1b. Neighboring points occur in all directions, the point seems to
lay in the middle of its neighbors. Unfortunately, uniform sampling density is not guaranteed
data property. K -nearest neighbors used on unevenly sampled data gives information biased

CTU in Prague Department of Cybernetics



6/36 3.1. LOCAL NEIGHBORHOOD

to the high-density direction [1] and the information locally differs from the global point of
view. The information about the point based on its neighborhood leads to the conclusion that
it lays on the margin of the data, but this does not have to be true, as shown in Figure 3.1c.

Disadvantages of both approaches could be eliminated by the combination of both ap-
proaches. For the point p, let us set the neighborhood as Nkε

p , where N is a neighborhood
of p containing k-nearest neighbors likewise all points in the sphere of a small radius ε. For
well-chosen ε, the problem with uneven sampling density is partially removed. While areas
with lower sampling density will work without any affection (for appropriate ε), highly sam-
pled places will contain much more points; a high amount of points slows down the process
of finding boundaries [1], moreover if many points have no bonus information, just lays in the
high sampled region. This behavior is shown in Figure 3.2.

(a) (b)

Figure 3.2: Nkε
p , p is the green point and red points correspond to neighbors in the ε radius.

For K = 4, the number of points in the high sampled region is doubled (b) compared to the
lower one (a).

For points on the boundary between densely and sparse sampled regions, moreover if
the crossing is sharp, points in the sparse area will contain members from the densely sampled
region in their neighborhood [1]. On the other hand, points on the dense boundary will most
probably contain only points from the densely sampled region in their neighborhood. To
avoid this difference, points are considered to lie in some point’s neighborhood also if their
neighborhood contains that point, i.e.

Np = {q ∈ P |q ∈ Nkε
p ∨ p ∈ Nkε

q }, (3.1)

where P = {p1, p2, ..., pn} ⊂ R3 is a set of points. The final definition of neighborhood
encapsulates Figure 3.3.

(a) (b) (c)

Figure 3.3: (a) and (b) shows the neighborhood of two near points without our new defi-
nition. Because a green point is in the blue’s neighborhood, it should also contain it in its
neighborhood, as shown (c).

CTU in Prague Department of Cybernetics
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Searching for the neighborhood is done using library PCL [14]. This library provides the
implementation of the kd-tree structure, which makes it easy and efficient to use for finding
KNN, as well as ε-neighbourhood. Kd-tree is a multidimensional binary tree, where K stands
for the data dimension, as described in detail in [15]. Finally, the graph G(P, E) is created,
where P stands for nodes and set of

E = {(i, j) |pj ∈ Npi} (3.2)

for edges. In connection with our definition of Np, for every edge (i, j) there is another
edge (j, i), i.e. the graph is symmetric.

3.2 Boundary probability

As was mentioned before, the property of being a boundary point mostly depends on
the point’s neighborhood. Therefore, the boundary probability Π(p) is computed for every
point p ∈ P. This probability reflects if the point lies exactly on the hole boundary, or near
the boundary [1]. A point is classified as suspicious of being a boundary point if its boundary
probability is above some threshold, typically different for various data. This section covers
finding this probability for each point p ∈ P using three different criteria; angle criterion,
half-disc criterion and shape criterion.

3.2.1 Angle criterion

Angle criterion points to the fact, that there is a much larger gap between points laying
on the boundary (Figure 3.4a) than the interiors ones [1] (Figure 3.4b), i.e. angle around
origin p of two boundary points from Np is larger than the angle of the interior points in the
same meaning.

α

(a) Angle on boundary

β

(b) Angle inside surface

Figure 3.4: For green point, p and red points q1,q2 ∈ Np, angle α between boundary points
is much bigger (a) than angle β constricted by two interior points (b).

There is a problem how to choose points which constrict the biggest angle. It is hard
to sort angles in 3D based on the same comparisson rule, while in 2D problem it is easy to
compare consecutive angles between points sorted in some way, e.g points around some origin.
To avoid this problem with angle comparison, one dimension of the data has to be reduced
so all data points from Np will be situated on the same plane. There are various methods
for dimension reduction and in the case of finding the biggest gap between two vectors the
projection to the tangent plane is used. For every q ∈ Np, projection to the tangent plane
of p is made. The reduced problem now consists of finding the largest angle between vectors

CTU in Prague Department of Cybernetics



8/36 3.2. BOUNDARY PROBABILITY

connecting the origin point p with consecutive neighbors from Np. Boundary probability is
then given as

Π∠(p) = min

 g − 2π

|Np|

π − 2π

|Np|

, 1

 , (3.3)

where Π∠(p) stands for boundary probability of p using angle criterion, g stands for the
largest angle/gap (in radians), and |Np| stands for the number of points belonging to Np. The
whole process and the difference between interior and boundary points is shown in Figure 3.5.

Figure 3.5: The process of finding the maximum gap. The top row shows the interior point
whereas the boundary point is located in the bottom row. Vectors on the tangent plane
(left), sorting by angles (middle) and found largest angle between two consecutive points
(right)(image taken from [1]).

3.2.2 Halfdisc criterion

A simple idea to identify a hole in a surface is based on the fact that the boundary has
some points on one side and no points on the other side compared to the interior point where
points appear in all directions (related to the 2D surface). This idea is exploited by the half-
disc criterion. For an interior point, its neighborhood is similar to a disk (Figure 3.6a), thus
average of all neighboring points µp does not differ from the interior point much. Opposite
to this, neighboring points of a boundary point lies only in some directions, i.e there is an
area without any point and the neighborhood resembles a half-disc (Figure 3.6b). In this case,
the average µp differs much more from the boundary point because it is biased towards the
neighborhood majority [1]. Therefore, the difference between point p and the average of its
neighborhood µp projected to the tangent plane is used to compute the boundary probability
by comparing µp with the center of ideal half-disc. Boundary probability of p using a half-disc
criterion is thus

Πµ(p) = min

‖p− µ̄p‖4

3π
rp

, 1

 , (3.4)

CTU in Prague Department of Cybernetics
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where µ̄p stands for tangent projection of µp to avoid surface properties influencing
half-disc criterion and include only the sample ones [1], rp is the average distance between p
and points from Np. µp itself is computed as weighted average

µp =

∑
q∈Np

gσ(‖p− q‖)q∑
q∈Np

gσ(‖p− q‖)
(3.5)

to better deal with the undesirable effect of various sampling densities or some point’s
deviation, where a Gauss kernel is used as a weight in the form of

gσ(d) = exp

(
−d2

σ2

)
. (3.6)

Here, σ factor depends on the average distance as σ =
rp
3

and neglect points outside of

the neighbourhood Np.

(a) Interior neigh-
borhood

(b) Boundary neigh-
borhood

(c) The approximate
shape of an interior
neighborhood

(d) The approx-
imate shape of
the boundary
neighborhood

Figure 3.6: Let p ∈ P and q ∈ Np. An average µp of the neighborhood of an interior point p
differs not so much from p (a), whereas the difference between µp and p is more significant for
p lying on boundary (b). Appropriate disk of neighboring points shows (c), while the halfdisc
shape of a neighborhood is on (d).

3.2.3 Shape criterion

Shape criterion is based on the shape of correlation ellipsoid of Np approximating the
shape of the point’s neighborhood in general [3]. For shape criterion, covariance matrix Cp ∈
R3×3 is essential. The covariance matrix has a form

Cp =
∑
q∈Np

(µp − q)(µp − q)T , (3.7)

where µp has the same meaning as for the Halfdisc criterion [1]. As mentioned in [3],
eigenvectors {e0, e1, e2} and eigenvalues {λ0, λ1, λ2} contain the information about the shape
of correlation ellipsoid, i.e the shape of the surface around some point. For different surface
areas, the correlation ellipsoid approximates the appropriate shape and the eigenvalues have
specific relation for some kind of shapes, e.g λ0 ≈ λ1 and λ2 ≈ 0. For decision vector Λp =

CTU in Prague Department of Cybernetics
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(
λ0

α
,
λ1

α
,
λ2

α

)
, α = λ0 + λ1 + λ2, λ0 ≥ λ1 ≥ λ2 [1], the relations between eigen values are

normalized and shown in Table 3.1.

φ = Boundary Λφ =

(
2

3
,
1

3
, 0

)
φ = Interior Λφ =

(
1

2
,
1

2
, 0

)
φ = Ridge Λφ =

(
1

2
,
1

4
,
1

4

)
φ = Corner Λφ =

(
1

3
,
1

3
,
1

3

)
Table 3.1

The table shows situations φ ∈ Φ, Φ = (Boundary, Interior,Corner,Ridge) and its
corresponding normalized decision vector values. Decision vector Λp for each point p lies in
the triangle [1] 3.7a with appropriate meaning shown on 3.7b.

(1, 0, 0)
(

1

2
,
1

2
, 0

)

(
1

3
,
1

3
,
1

3

)

(a) Triangle defining points

Line Interior

Corner

Boundary

Ridge

C

(b) Points on triangle

Figure 3.7: Points defining the triangle (a) and points representing some shape lying on the
triangle (b).

Points shown on 3.7b are used as reference points for finding the boundary probability
of point p using the shape criterion. For each state the tentative probability Π̃φ is computed
as

Π̃φ(p) = gσφ (‖Λp − Λφ‖) (3.8)

for each φ ∈ Φ, where Λp is a decision vector of point p, Λφ is a reference vector of

specific shape and gσφ is a Gauss kernel with σφ =
1

3
‖Λφ−C‖, where C is a centroid of triangle

(Figure 3.7b). To keep final probability in interval [0, 1], the normalisation is necessary

Πφ(p) =
Π̃φ(p)∑
ψ∈Φ Π̃ψ(p)

. (3.9)
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3.2.4 Criteria combination

We have discussed three different approaches to hole finding so far. To make hole finding
much more robust and get better results, a combination of all three criteria is used [1]. There
is one important requirement. Given data has to be meaningful and clear for humans, at
least in the case of finding holes in point-cloud by visual inspection. Point-cloud data with
a property of clear hole recognition by humans allows users to choose proper values of used
parameters, e.g. value of K for K nearest neighbors, ε neighborhood, or weights of each
criterion. For different data, criteria can behave differently; different sampling densities or
different distances between points, as well as the required size of detected holes, will require
different values of K or ε. The final boundary probability is computed as a weighted sum of
boundary probabilities given by all three criteria; angle criterion, half-disc criterion and shape
criterion. The final formula has form

Π(p) = w∠Π∠(p) + wµΠµ(p) + wφΠBoundary(p), (3.10)

where w∠, wµ and wφ are weights and w∠ + wµ + wφ = 1 to keep the properties of
probability.

3.3 Boundary points extraction

Methods for finding a point’s boundary probability have been discussed so far. Depend-
ing on criteria weights and the minimum acceptable value of boundary probability (threshold
set by user), the point is marked as boundary point or an interior point. This approach marks
a point based only on the probability of this point, without any affection by the probability of
other nearest points. In other words, there is no binding between points marked as boundary
points. To improve the method of finding holes, points will be marked as boundary points
only if these points will belong to boundary loops [1] with some boundary points in their
neighborhood. This improvement will be discussed in this section.

3.3.1 Points selection

Not every point marked as a boundary point by the criteria mentioned above really
belongs to the boundary. There could be some noise points or wrongly marked points for
example. One property of being a boundary point is that the point can not lay on the boundary
alone. To avoid some noise points being evaluated as boundary points after the whole process
of hole finding, points that do have not at least two boundary points in their neighborhood
(allow them to be a part of the boundary loop) will be marked as interior points. This approach
is done by an iterative algorithm taken from [1].

The angle criterion described above is used again to get the biggest angle between points
in the neighborhood of the point marked as boundary point. The point remains boundary
point if and only if points from its neighborhood taking the biggest angle are also marked
as boundary points. While there is a change of state at any point, this approach is repeated.
Because of the sensitiveness of hole finding in this part, it works well for us to let the point’s
neighborhood of flexible size, i.e neighborhood size of point during angle criterion algorithm
computing a boundary probability and this selecting algorithm can differ. The main reason is
that computing boundary probability depends on the majority of the neighborhood and some
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deviations can be neglected with smaller affection, but for the boundary loop preparation
during this algorithm, any deviation can lead to marking all boundary points as interiors
(Figure 3.8).

(a) Boundary points
from the front view

(b) Top view in the
middle of the hole
with some noise

α

(c) Front view with
the projected noise

(d) Front view after
iteration end

Figure 3.8: Black points stand for interior points, while the red points stand for boundary
points. Front view on the hole with marked boundary points before iterative algorithm (a).
Top view (from the middle of the hole) with some noise at the side of the hole (b). Front view
during the iterations, where the maximum angle is made by another boundary point and the
projected noise (c). Points marked as boundary points after the iteration (none of the points
remains) (d).

3.3.2 Minimum spanning graph

In our case, the minimum spanning graph (MSG) is a graph obtained by modified
Kruskal’s algorithm [1] for finding a minimum spanning tree. In Kruskal’s algorithm, every
edge has a price (or length, weight). The search begins by lining their edges up in ascending
order by their weights. Starting with the cheapest edge, the tree is constructed by adding
every edge (taken in the sorted order) which does not create a loop in the tree [16].

As mentioned at [1], the edge weight w(i, j) is computed as combination of two parts

wtotal(i, j) = wprobability(i, j) + wdensity(i, j). (3.11)

The first component of the final edge weight focuses on boundary probability. Boundary
probability is a value that belongs to points, so the weight wprobability(i, j) of edge eij = (i, j)
depends on boundary probability of both graph nodes (both points) as

wprobability(i, j) = 2−Π(pi)−Π(pj). (3.12)

Second member of the edge total weight wtotal(i, j) is wdensity(i, j). This weight part has
form

wdensity(i, j) =
2‖pi − pj‖
rpi + rpj

(3.13)

and focuses on points distance and sampling density. The numerator contains the dis-
tance between both points, i.e. the further these points are, the bigger value of wdensity(i, j),
and the later in the modified Kruskal’s algorithm corresponding edge will be processed. This
property is good to have more points in the boundary loop so that the shape of the boundary
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will be more precise. Opposite to this, the denominator contains information about sampling
density around the point, more specifically in its neighborhood. rp stands for average distance
from point p to each point in its neighborhood. The smaller rp is, the small the denominator is
and the bigger the wdensity(i, j) so the algorithm will not stack in the highly sampled regions.

The procedure of finding the minimum spanning graph starts by sorting all edges eij ∈ E
of graph G, where pi and pj are boundary points, by weight wtotal(i, j) where wtotal(i, j) is
below some threshold (the threshold can be different for different data sets). After that, every
edge is put into MSG as a single component. Starting with the lowest cost edge if the edge
connects two distinct components in MSG, these components are joined and the edge is put
in this component. In another case, if an edge connects points in one component, i.e. after
insertion there will be a loop, the edge is inserted only if the newly arising loop is longer (in
the meaning of a number of edges) than the predefined minimum loop length [1] and also
if the new loop will be longer than any existing loop in this component. If there is a loop
yet, the longer one remains and the shorter one is removed. The minimum loop length e is
interconnected with the ε defining size of the neighborhood by the formula

e =
2πε

d
, (3.14)

where d stands for average edge weight. The minimum length of the cycle also defines
the minimum size of the hole.

3.3.3 Boundary loop extraction

The minimum spanning graph is a graph containing one cycle whose nodes define the
desired boundary, i.e points in the cycle are the searched boundary points. The last step is
to extract this cycle and its points from the graph to make the boundary points accessible
directly without searching for them every time they are needed. To find the cycle in the MSG
the breadth first search (BFS) [16] algorithm is used.

(a) BFS start (b) 1st iteration
of BFS

(c) 2nd iteration
of BFS

(d) Queued point
adjoins the pro-
cessing one

(e) The final
loop is found and
marked

Figure 3.9: BFS algorithm used for loop finding. Black points are untouched, greens are queued
and reds are processed. The beginning of BFS is shown on (a), next iterations are shown on
(b) and (c). Cycle location is shown on (d); one of the adjacent points is queued yet. The final
loop is shown (e).

As mentioned in [1], a point can be in one of the three states; untouched, queued,
processed. In the beginning, every point is marked as untouched, except the starting point
which is marked as queued and is put into the queue. In every algorithm step, a front point in
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the queue is removed and marked as processed. All processed neighboring points are ignored
(since typically in every step the parent point has already been processed) and all of its
untouched neighboring points are marked as queued and put at the end of the queue. If
there is a queued adjacent point, the cycle is found because this queued point connects a
path from its processed neighboring points to a cycle [1]. These cycle points are extracted
by backtracing the BFS steps and are stored for later use as points of specific boundary, i.e
the searched boundary points. The whole process of boundary loop extraction is shown in
Figure 3.9.
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Chapter 4

UAV path planning

The second part of this work covers the process of finding the UAV path between
previously detected holes. Primarily, we are focusing on finding suitable areas from where the
missing data can be obtained by UAV. For finding the path between these areas the planner
[17] is used.

4.1 Hole’s approximation plane

The point cloud hole is defined by its boundary points and the process of finding these
holes boundaries is described above. In some cases, typically when the hole is lying on the
planar surface, the boundary points resemble some planar shape. Unfortunately, not every
hole approximates a planar shape, thus there can appear holes in which the boundary points
create complicated shapes in 3D space. To make it easier to work with sets of boundary
points that resemble these complicated shapes, we have decided to approximate each hole
with a plane. With the knowledge of boundary points, their positions and their coherence, the
algorithm called random sample consensus [18] (RANSAC) has been used for finding the best
plane that approximates the boundary points and containing at least three points of them.
This approach is used for boundary points of every discovered hole in the point cloud.

(a) Boundary points
from the front view

(b) Side view: 1st iter-
ation

(c) Side view: 2nd iter-
ation

(d) Side view: 3rd iter-
ation

Figure 4.1: The process of finding the best approximating plane of the hole (a). The RANSAC
algorithm makes three iterations in this situation (b), (c), (d). The second iteration (c) shows
the plane which approximates the hole (a) the best.

RANSAC algorithm iterates k-times over some data set B = {b1,b1, ...,bj} and at
every iteration i, it randomly chooses appropriate number n of data points b ∈ B that defines
the desired shape, e.g two points for the line, three points for the plane.

Since the plane is defined by three points, which do not lie on the same line, in every
iteration different three points b ∈ B are randomly chosen from the set of boundary points
B = {b1,b1, ...,bj} corresponding to the currently approximated hole. How well some plane
fits the set of boundary points is measured by the number of boundary points b (corresponding
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to the same hole) which have distance d from the plane below some threshold t. The plane
which fits the best all boundary points after all iterations, i.e. has the most boundary points
in the distance below the threshold, is chosen as the plane approximating the corresponding
point cloud hole. Because of different data models, as well as different model scales or different
sizes of holes (even within one point cloud), parameters like the number of iterations k or the
threshold distance t are set individually for every model. Figure 4.1 shows the process of
finding the best plane approximating some hole.

Discovered planes approximating the point cloud holes are really good to work with.
However, the approximation of a hole could differ from the original hole shape significantly.
Figure 4.2 shows the difference between the plane approximating some planar hole (e.g glass
table in the door) and the plane which approximates the more complex shape of boundary
points (missing corner of some room). There is also affection by the density of boundary points
in some areas of the boundary, as shown in Figure 4.2 as well.

(a) Top view on the
boundary points of a
hole in a planar surface

(b) Top view on the
boundary points of a
corner hole

(c) Top view on the
boundary points of a
corner hole with higher
point density on one
side

(d) Top view on the
boundary points of a
corner hole with higher
point density far from
the corner in one direc-
tion

Figure 4.2: Different types and accuracy of approximation plane found by RANSAC algorithm
for different types of holes. The hole in a planar surface (a) and the hole in a corner (b), both
from the top view. (c) and (d) show how approximation planes of the same hole with different
boundary point density can differ.

4.2 Finding areas for taking scan shots

Point cloud hole’s approximation plane allows us to measure the distance from the hole
and make the work with the hole easier. Because of the rectangular shape of the field of view
of the used UAV sensor, the hole can be also approximated by a rectangle. Since there are
other limitations, e.g. required scanning distance or the hole could be too large to be scanned
by one scan shot. Thus the large holes have to be divided into smaller ones. Finally, areas from
where the approximating holes rectangles could be scanned have to be found. The following
sections describe the finding of the areas from where the required scan shots can be obtained.

4.2.1 Rectangle surrounding boundary points

One limitation of onboard sensors on UAV is their limited field of view. The shape of
this view is typically a rectangle and to take a scan of the hole there has to be a rectangle
surrounding this hole. For small holes, a rectangle of appropriate size is enough for the hole
to be scanned, but for large holes, it has to be divided into multiple smaller rectangles.
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The hole’s boundary points can form a complex shape in 3D space and it could be hard
to identify the rectangle surrounding this boundary. The approximate plane now represents
the place where we assume that the boundary is. For better work with the boundary points,
the projection of all hole’s boundary points to the approximation plane is made and the
boundary still has the same shape from the point of view in the direction perpendicular to
the approximate plane. Perpendicular direction to the approximate plane is a direction we
assume the scan shots will be taken from.

The rectangle is defined by points lying the most up, down, left and right on the plane.
To extract them, all projected points are rotated to be parallel with the xy plane (there is
no problem because rotation is a linear function [19]) and the points with the smallest x,
the smallest y, the biggest x and the biggest y coordinate are marked as projected points on
the edges of the projected rectangle. Original points corresponding to the marked projected
ones are marked as points defining the corresponding rectangle of the boundary points plane
projections, e.g these points lie on the edge of the rectangle surrounding boundary points
projected to the approximate plane (see Figure 4.3).

(a) Front view on the hole (b) Front view on the hole after
projection

y

x

(c) Points on the rectangle
edges (green) after rotation to
be perpendicular with xy plane

(d) Top view on the hole (e) Top view on the hole after
projection

(f) Marked points and corre-
sponding rectangle after the
whole process on the original
boundary points

Figure 4.3: (a) and (d) shows the initial hole from two points of view. (b) and (e) shows the
hole after projection to the approximate plane. Points lying on the rectangle edges in the xy
plane are on (c). The final rectangle with its boundary points is on (f).

4.2.2 Hole splitting

UAV sensors which are used to scan missing point cloud data have some limitations.
Especially for our work, besides the limited field of view, we are limited by the distance from
where the scan shot can be taken (both, minimum and maximum distance) or by an angle,
which defines if the obtained data are still accurate enough, i.e there is no new hole between
scanned data points because of big distance between scanned points caused by too small
scanning angle. For small holes, we are done with the boundary points of the surrounding
rectangle. But some holes can be really big, at least big enough for one scan shot from the
UAV and thus the hole has to be divided into some smaller segments.
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The smaller scannable areas are gained utilizing the surrounding rectangle of a boundary.
The rectangle can represent the boundary according to the shape of the scanner’s field of
view. Thus, if the surrounding rectangle is larger than the field of view, it is divided into
several smaller rectangles of suitable proportions of the field of view (Figure 4.4). These
smaller rectangles are counted as separate holes of rectangle shape and each of them has to
be scanned.

(a) (b)

Figure 4.4: Boundary points with surrounding rectangle too big for accurate scanning (a) and
the same rectangle after division to appropriate smaller areas (b).

4.2.3 Identification of scanning areas

Rectangles, surrounding parts of the hole, defines areas which should be scanned. With
these rectangles in hand, areas from where the scans can be taken by the UAV have to be
found. There are three limitations on the suitable scanning area in our case; the minimum
distance to the hole dmin, the maximum distance to the hole dmax and the minimum angle
constricted with the hole φ. We assume that the condition dmax > dmin is satisfied. All these
three limitations are measured according to the rectangle on the approximate plane of the
hole for simplifying the task.

The size of the rectangle which can be captured by an onboard sensor with limited field
of view depends on the distance to the hole. Thus one more simplification for our case is
made. The rectangles into which the hole is split corresponds to the size of projection of field
of view into the plane in distance dmin. This is our reference rectangle size, e.g the size of the
area that can be captured by a single scan. The appropriate area to take scans from is then
found to satisfy the limitations according to the size of this scannable area rectangle.

The first limitation is the minimum distance dmin, which means that the UAV has to be
at least as far from the hole as the minimum distance is. This leads to constraint given by a
plane which is parallel with the hole’s plane and the curved shape around the hole’s rectangle
boundary with the distance between equals to the minimum distance dmin (Figure 4.5a).

The second limitation is the maximum distance dmax. The shape of the outer boundary
of the area for the UAV is more complicated than the plane. Not every point distant from the
hole’s plane at the distance dmax has the same or lesser distance from the different place on
the same hole’s plane. The maximum distance dmax defines for each point on the hole’s plane
a sphere of diameter dmax where the condition is satisfied. Intersection of all these spheres
gives the searched area (Figure 4.5b).

Not only the distance from the hole’s plane is the limitation. If the UAV scans the area
under too acute angle, the obtained data is not accurate enough. Even if the obtained data
looks good from the point of view of the UAV, there could be a low points density and big gaps
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between the points from the point of view perpendicular to the obtained data. To avoid this,
one of the limitations is the minimum angle φ constricted with the hole’s plane. The plane
which constricts this angle φ with the hole’s plane stands for another ”minimum distance”
boundary (Figure 4.5c).

dmin

(a) Minimum distance to the
boundary plane

dmax

(b) Maximum distance to the
boundary plane

φ

(c) Minimum constricted angle
with the boundary plane

Figure 4.5: The boundary defined by the minimum distance dmin to the boundary plane. UAV
has to be at least as far as the dmin from the boundary plane (a). The shape of area boundary
defined by the maximum distance dmax. The crucial is the distance from the boundary of
the scaned rectangle (b). The plane defined by the minimum angle φ defines the minimum
distance boundary in another way (c). All images are from the top view, but the side views
are the same. The dashed line shows area boundaries.

The final area has to satisfy all the three limitations, thus the area is made by the
intersection of all the shapes. The final shape of the area depends on the values of the distances
dmin and dmax and also on the size of the angle φ. The minimum distance to the hole is given
by the maximum of the distance dmin and the distance to the plane defined by the angle φ
(Figure 4.6b). In some extreme cases, where the angle φ is too big or too small, the dmin is
the only minimal boundary or do not contribute on the minimal boundary. Different shapes
of the area shows Figure 4.6.

(a) Top view (b) Top view (c) Front view

Figure 4.6: The area from where the missing data can be scanned with the constriction of
φ = 30° (a). The area of the same hole but with the constriction φ = 15° (b). The intersection
gives different shapes for different constrictions. The same hole is shown from the front view
on (c). The dashed line shows the limitation shapes and the final areas are highlighted by the
red line.

The data can be scanned from every point that belongs to the area gained by the
intersection of the limitation shapes. The important assumption in this approach is that
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there has to be no obstacle in the area. Figure 4.7 shows the area affection by the obstacle
interfering it. The complication consists of the requirement that every point on the hole’s
rectangle boundary has to be reachable by the laser ray from the scanning point. This work
does not deal with the obstacle complication and assume that there are not obstacles in the
founded area.

(a) Top view (b) Top view (c) Top view

Figure 4.7: The original area (a), the area with the obstacle (b), where the new dash lines
defines the boundary for the laser ray to reach the whole hole. The final area without the
visualization of the obstacle is on (c).

4.3 Path planning for visiting scanning locations

The process of finding suitable area for the hole scanning is applied on every founded
hole in the data set; each of hole’s rectangles are considered as a hole. To collect a required
scans all of the identified scanning areas have to be visited. The areas could have various sizes
and they will be typically larger than the UAV. To choose where in the area the UAV has to
move, the areas has to be sampled. The final task has to solve the problem of finding the best
places in the areas to be visited to visit all the areas and fly the shortest way.

4.3.1 Identifying optimal sequence of areas

The problem of visiting founded areas to take some scan shots could be described as
a traveling salesman problem (TSP) [20]. The main idea of the TSP lay in the visitation of
all towns in the set exactly once. There is a set of towns, with the defined distances between
them and the salesman’s task is to visit every town exactly once, travel the shortest distance
and return to the initial point [20]–[22]. TSP can be described as a graph problem, where the
set of towns T = {t1, t2, ...} stands for the nodes of a graph G = (T ,R) and the set of routes
R stands for edges with positive cost values. We assume that the distance from node n1 to
node n2 has same value in both directions.

The solution of the TSP in our case will be the shortest path between the areas. But
the TSP works with the areas as it would be a single point in the space. However, the area
volume is typically bigger that only one point in the space and has some shape which defines
where the UAV can pass-through, so the better approach is to find no only the path between
the areas, but also the best place in the area, where the UAV should fly. This improvement
could be solved as a generalized traveling salesman problem (GTSP).

The GTSP formulation extends the TSP by nodesets or clusters. GTSP is defined as a
directed graph G with nodes N , edges E with some cost cij for edge eij ∈ E . Each node n ∈ N
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is part of some cluster/nodeset Si, i = 1, 2, ...,m. The solution of GTSP is then a cycle, which
enters each cluster exactly ones [23]. The TSP can be perceived as a GTSP where each cluster
Si contains exactly one graph node n ∈ N . The difference between the TSP and the GTSP
shows figure 4.8.

(a) (b)

Figure 4.8: The illustration of the solution of TSP task (a) and the GTSP task (b). The points
with the same color belongs to the same cluster.

The task of finding the optimal places in the previously identified areas which should
be visited is now considered as a GTSP problem. The areas are the GTSP clusters and the
graph nodes will be represented by the points sampling the areas. The process of finding the
areas sampling points is described in the next section.

4.3.2 Area sampling

The areas for collecting desired scans of a hole defines places where the UAV can collect
desired data. We assume that there are no obstacles in this areas. In the case of two neigh-
boring holes, moreover if planes of these holes constrict an acute angle, there could appear
an overlaping of these areas. It means that there is an intersection area, where the conditions
for scanning both holes are satisfied, i.e. the UAV can scan both holes from any point in that
area and there is no need to visit both areas separately. The areas overlap is shown in Figure
4.9.

(a) Top view

Figure 4.9: The red line shows the area where two areas from where the missing data can
be obtained overlap so the required data of both holes can be obtained from a single point
instead of visiting two points, one in each area.
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There are various methods of sampling some area in the 3D space, one of the simplest
are random sampling or uniform sampling. In this work, the boundary sampling is used to
avoid problems with the overlaping of the areas [24]. This approach is based on the fact that
any path visiting any point inside the area has to go through or touch the area boundary. If
there is no overlaping between some areas, the task remains the same; visit every area exactly
once. Even if the optimal place to visit lay in the middle of the area, there is no way without
crossing the area’s boundary. If there is an overlap between some areas, the way still goes
through the areas boundaries.

As shows Figure 4.6, the area’s boundary contains arc shapes. One more simplification is
used in this work, and it is the approximation of these arcs by another type of plane. Depending
on dmin, dmax and φ the arcs will be more acute or more blunt and thus the approximation
will be more precise or less. Figure 4.10 shows the approximated area and Figure 4.11 shows
the final area which is sampled. The sampling density is different for different data sets and
different sizes of the areas, based on the visual surveillance.

(a) Top view: original area (b) Top view: approximated
area

(c) Front view: approximated
area

Figure 4.10

(a) Top view: approximated and sampled area (b) Front view: approximated and sampled
area

Figure 4.11

The points sampling the area are the graph nodes used as an input to the GTSP
problem, where the areas correspoinding to the sampling points stands for the clusters. The
GTSP problem is solved by the GLKH solver [25], which results in exactly one of the sampling
points from each boundary to be visited.

4.4 Path planning

The solution of the GTSP with the input data in the form of suitable areas to take scan
shots is a set S of points which has to be visited by the UAV. One part of the system of Multi-
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Robot Systems (MRS) research group [17] is used to end our task by finding the appropriate
path, which passes through all points s ∈ S. The path is used to find the corresponding
trajectory and the system [12] is used for the realistic simulation of the whole scanning process.
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Chapter 5

Results

The three holes finding criteria were applied on various types of holes and data sets.
The quality of the given result of each criterion is done by the shape of the hole, the noise
participating on or near the boundary, the data set sampling density, and the size of the point’s
neighborhood Np. The values of the neighborhood’s parameters K and ε define the foundable
hole size [1]. The bigger values of these parameters, the larger holes could be founded. The
impact of the neighborhood size is shown for each criterion on the simple circle hole in the
plane with the nonuniform sampling density, i.e the points are sampled randomly in the plane.
Figure 5.1 shows the angle criterion affection by the neighborhood size. The affection of the
halfdisc criterion shows Figure 5.2 and Figure 5.3 shows the affection of the shape criterion.

(a) (b)

Figure 5.1: The plane with a hole of a circle shape. The neighborhood Np, where the K = 11,
ε = 0.05, and the threshold t = 0.4, giving after applying the angle criterion the boundary
points on (a). The boundary shown on (b) has the neighborhood parameters as follows; K =
51, ε = 0.05, and t = 0.4. The interior points have the blue color while the white points stand
for the boundary points, e.g. points, whose have the probability of being boundary points
greater than the threshold t (Π∠(p) ≥ t).

One interesting thing is that there is not only a difference between the number of points
in the neighborhood of the same criterion but also between the number of points of the criteria
themselves. To achieve similar results, the angle criterion needs a much smaller neighborhood
than the halfdisc criterion needs, thus a good balance of the neighborhood size is essential for
the criteria combination (as shown below). Figure 5.4 shows the usage of all three criteria and
their weighted combination on the hole in the wall. This hole results from an occlusion caused
by an obstacle during wall scanning. Compared to the randomly sampled plane in Figure 5.1,
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the density of the points is much more uniform, which makes each criterion more stable. The
threshold t ∈ [0, 1] is often set to lower values, especially for the criteria combination. The
combination needs the compromise between the neighborhood sizes and thus the quality and
accuracy of each criterion is smaller, so the threshold t is better to be set lower.

(a) (b)

Figure 5.2: The halfdisc criterion has different results based on the different neighborhood
Np. The parameters of the neighborhood Np are K = 51, ε = 0.05 and the threshold t = 0.2
(a). (b) shows the result for K = 201, ε = 0.05 and t = 0.2. The interior points are blue, the
boundary points are white (Πµ(p) ≥ t).

(a) (b)

Figure 5.3: The shape criterion using the neighborhood Np, where K = 21, ε = 0.05 and
t = 0.5 (a). The neighborhood’s parameters K = 201, ε = 0.05, and t = 0.5 of the shape
criterion result in (b). The interior points are blue, the boundary points are white (Πφ(p) ≥ t).
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(a) K = 21, ε = 0.05, t = 0.4 (b) K = 51, ε = 0.05, t = 0.2

(c) K = 101, ε = 0.05, t = 0.2 (d) K = 91, ε = 0.05, t = 0.2

Figure 5.4: Boundary points after angle criterion (a), halfdisc criterion (b), shape criterion
(c), and the combination of all three criteria (d), where the uniform weights w∠ = wµ = wφ =
0.333 are used. The resulting boundary points are only after the criteria usage, the other
improvements are not applied.

Figure 5.5 shows again the comparison between all three criteria and their combination.
The hole is not in the planar point cloud now, but there is a missing corner in the point cloud
data set. For better visual recognition of the 3D shape of the data on the image, black lines
are added to the sharp edges. Because of many sharp edges and the need for the bigger values
of K for halfdisc and shape criteria, the resulting boundary points better approximate the
hole after the usage of angle criteria instead of the halfdisc or shape. These results of each
criterion for this type of hole lead to the conclusion, that for the criteria combination the
bigger value for w∠ compared to wµ and wφ works well.

The previous figures show the points marked as boundary points after the usage of the
three criteria but without the rest parts of the hole finding process. Figure 5.6 shows the
boundary points after the whole process of hole finding, i.e. the improvement of the points’
coherence and the loop extraction in the weighted graph is applied. The process is shown on
the clear holes where the three criteria work well and where is no noise to disrupt the hole
finding process.
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(a) K = 21, ε = 0.05, t = 0.4 (b) K = 91, ε = 0.05, t = 0.2

(c) K = 91, ε = 0.05, t = 0.2 (d) K = 71, ε = 0.05, t = 0.3

Figure 5.5: The usage of each criterion and their combination on the corner hole. The angle
criterion’s result (a), the halfdisc criterion’s result (b), the shape criterion’s result (c), and the
combination of all three criteria results to (d). The weights w∠ = 0.5, wµ = wφ = 0.25 were
used. The black line shows the wall’s sharp edges.

(a) K = 71, ε = 0.1, t = 0.2 (b) K = 31, ε = 0.1, t = 0.2

Figure 5.6: The weights w∠ = wµ = 0.5, wφ = 0 are used to find the hole on (a), while the
weights w∠ = 0.6, wµ = 0.4, wφ = 0 are used on hole (b).
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In Figure 5.7a is shown how the surrounding rectangle looks after the splitting to ap-
propriate proportions. If the hole’s approximation rectangle is not directly dividable by the
smaller rectangles of the suitable proportions, the small rectangles around the margin which
are smaller than the proportions are left smaller, thus the suitable proportions are the top
restriction on the size. The sampled area from where the data can be scanned is shown in
Figure 5.7b.

The holes finding approach used in this work works well for small amounts of similar
holes, i.e the holes have similar neighborhoods, sizes, or shapes. It is hard to set the weights
w∠, wµ, wφ to proper values to find all holes in a point cloud. One weight combination works
well for one hole but eliminates two other holes which are more susceptible to some criteria or
neighborhood changes. The application on the point cloud data sets of the buildings’ interiors
showed that it is not as good as we have expected. The buildings’ interiors often contain some
noise from objects which affects the finding criteria significantly.

(a) Front view on the hole (b) Top view, the same hole as on (a)

Figure 5.7: The rectangles splitting the hole’s surrounding rectangle are marked as black
points (a), while the sampled areas (right) for each small rectangle of the same hole (left) are
shown in (b).

The verification of the approach was finally done by the simulation. The path for the
UAV passing through the points found as a solution of the GTSP to take scan shots was
found by the path planner [17] from the Multi-Robot Systems (MRS) research group at CTU.
The simulation run in the MRS UAV system [12]. The simulation space was the model of the
church’s interior of Nový Maĺın municipality. The provided data was the unstructured point
cloud of the Nový Maĺın church interior, with two holes shown in Figure 5.8. There was also
a model of the same church, but not the point cloud, which was used during the simulation
as a real environment.

The two point cloud holes were successfully detected and marked by the hole finding
process described in the chapter 3. The size of the points neighborhood has been defined by the
parameters’ values as follows; K = 31, ε = 0.1m, and t = 0.2m. The three criteria combination
was used with the weights w∠ = 0.6, wµ = 0.4, wφ = 0. The planes approximating the holes’
boundary points were found by the RANSAC algorithm with the number of iterations k =
1000. According to the methods from chapter 4, the points in the inner space of the building
which have to be visited by the UAV were successfully found. The final path was found
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using the MRS planner [17] and the simulation has run with the help of the MRS system
[12]. The simulation is illustrated by the images in Figure 5.9. The red points represent the
previously founded points for taking scans, and the green line stands for the UAV trajectory.
The interesting thing is that even if the holes look very similar, each of them has a different
number of found scanning points. Because of the complexity and number of steps in the whole
process of finding these points, starting with the hole detection and ending with the GTSP
solving, there could be various reasons why the number of points differs. One reason could be
the different approximating planes of each hole, which stands for hole representation during
the final steps of finding these points. The constraints defining the areas from chapter 4 could
be satisfied with the lesser number of points with the different approximation plane. Another
reason may be caused by the small difference between the sizes of both holes.

The obtained missing data from the UAV sensor is shown in Figure 5.10. During the
simulation, the ouster OS0-64 was used as a sensor. Even if the ouster has a scanning range
bigger than the distance from the starting point to each waypoint, to scan all parts of the
hole the waypoints had to be visited, and for purposes of the simulation and the provided
approach testing, the maximum ouster range was reduced to 2m.

(a) (b)

(c) (d)

Figure 5.8: The two holes in the unstructured point cloud of a Nový Maĺın church (a). The
detected boundary points of the holes are shown in (c). The right column shows the same
point cloud images but with the 3D model used during the simulation. The missing parts are
visible in (b) and (d).
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: The snapshots of the simulation. The image (a) shows the whole trajectory (green
line) and the visiting points (red points). The two missing parts are the niches and the drone
starting point is the red point in the bottom right corner. The rest of the snapshots shows
the UAV flight following the green trajectory in order (b) to (f). When the UAV passes the
red points, the scans are taken.
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(a) Side view (b) Front view

Figure 5.10: The original point cloud with the holes is shown by the blue points. The white
points show the scanned missing data during the simulation with the ouster sensor.
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Chapter 6

Conclusion

The approach of finding holes in the unstructured point cloud and their filling afterward
was implemented and verified in the realistic simulation. The hole finding process follows the
approach from [1]. The approach was applied on provided point cloud data sets of Czech
historical monuments. The scans of buildings’ interiors are often complex and contain a lot of
objects, which make hole detection much harder. The approach works well on planar objects
with well recognizable holes, but the buildings’ scans often contain more complex objects and
holes.

The areas from where the missing data can be obtained were found by application of
the UAV’s onboard sensors limitations like the distance from the hole to the areas around the
holes. A discrete sampling of these areas was done and the best area places to visit was solved
as a GTSP. The approach was finally verified by a realistic simulation with the models of
the Czech historical monuments. Thanks to the realistic simulation which verified the applied
approach and the usage of the models of real buildings during the simulation, the generated
trajectories are prepared for usage in real-world experiments.
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