
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Materials Library in Unity

Timushev Fedor

Supervisor: Ing. Jiří Bittner, Ph.D.
May 2023

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

496153 Osobní číslo:​Fedor Jméno:​Timushev Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačové grafiky a interakce

Otevřená informatika Studijní program:​

Počítačové hry a grafika Specializace:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Knihovna materiálů v Unity

Název bakalářské práce anglicky:​

Materials Library in Unity

Pokyny pro vypracování:​
Zmapujte problematiku simulace vzhledu materiálů se zaměřením na fyzikálně založené modely. Popište podporu vytváření​
materialů pomocí shader grafů. Zmapujte možnosti vytvoření specializovaných dynamicky se měnících materiálů.​
Pomocí shader grafu vytvořte vzorkovník nejméně deseti často používaných materiálů (barevné plasty, různé typy dřeva,​
měď, zlato, stříbro, hliník, sklo, diamant, apod.) a nejméně deseti dynamicky se měnících komplexních materiálů jako je​
vodní plocha, tráva ve větru, zářící tekutina, apod. Zaměřte se na kvalitní simulaci detailů s využitím textur detailů, šumových​
funkcí, normálových map a výškových map. Na několika příkladech popište proces vytváření procedurálních materiálů​
pomocí shader grafu a pokuste se shrnout důležitá obecná doporučení.​
Vymodelujte testovací scénu, kde bude možné materiály z vytvořeného vzorkovníku jednoduše přepínat.​

Seznam doporučené literatury:​
[1] Ebert, David S., et al. Texturing & modeling: a procedural approach. Morgan Kaufmann, 2003.​
[2] Burley, Brent, and Walt Disney Animation Studios. 'Physically-based shading at Disney.' ACM SIGGRAPH. Vol. 2012.​
vol. 2012, 2012.​
[3] Schmidt, T. W., Pellacini, F., Nowrouzezahrai, D., Jarosz, W., & Dachsbacher, C. (2016, February). State of the art in​
artistic editing of appearance, lighting and material. In Computer Graphics Forum (Vol. 35, No. 1, pp. 216-233).​
[4] Materials in Unity. Online: https://docs.unity3d.com/Manual/Materials.html​
[5] Tomáš Cicvárek. Materials in Computer Graphics. Bakalářská práce, ČVUT FEL, 2021.​
[6] Jakub Kyselka. Vzhled materiálů v Unity. Bakalářská práce, ČVUT FEL, 2022.​
[7] Boulanger, K., Pattanaik, S. N., & Bouatouch, K. (2008). Rendering grass in real time with dynamic lighting. IEEE​
Computer Graphics and Applications, 29(1), 32-41.​
[8] Fan, Z., Li, H., Hillesland, K., & Sheng, B. (2015). Simulation and rendering for millions of grass blades. In Symposium​
on Interactive 3D Graphics and Games (pp. 55-60).​

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

doc. Ing. Jiří Bittner, Ph.D. Katedra počítačové grafiky a interakce

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

Termín odevzdání bakalářské práce: _____________​Datum zadání bakalářské práce: 16.02.2023

Platnost zadání bakalářské práce: 22.09.2024

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​doc. Ing. Jiří Bittner, Ph.D.​

podpis vedoucí(ho) práce​

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to extend my gratitude to my
supervisor, Ing. Jiří Bittner, for his un-
wavering guidance and advice throughout
the creation of this bachelor’s thesis. I
am also deeply grateful to my family and
friends: Veronika Shirochenkova, Vasily
Levitskiy, Daniil Lebedev, Ing. Daria
Antonova, Daniil Nikolaev, Irina Kobzhit-
skaya, Alexandra Sannikova, and Štěpán
Meister for their unwavering support dur-
ing my academic journey. Their encour-
agement and belief in me have been in-
strumental in my result.

Declaration
I hereby declare that I have independently
conducted and completed all the work
presented in this bachelor thesis. I have
diligently followed the established rules
and guidelines for formatting and citation,
ensuring that all sources and references
are accurately cited and acknowledged.

Prague, May , 2023

iii

Abstract
This project has covered and described
the problems of modeling the appearance
of materials, with an emphasis on phys-
ically based models. The topics of ma-
terial creation with shader graphs were
also touched, with which specialized dy-
namically changing materials were created
using the capabilities of the shader graph
in a broad aspect.

The shader graph tool was used to cre-
ate a sampling of frequently used mate-
rials as well as unique styles, inspired by
different games. The work focused on
high-quality detail modeling using detail
textures, noise features, normal maps, el-
evations, etc.

The final demo is a test scene where
materials from the sample album can eas-
ily be swapped, and each material has its
own parameters that affect the display
of the material in real time and can be
accessed by the user at any moment.

Keywords: Rendering, Unity, Shader
Graph, Visual Programming, Texturing,
Shading

Supervisor: Ing. Jiří Bittner, Ph.D.
Praha 2, Karlovo náměstí 13, E-420

Abstrakt
Tento projekt se zabýval a popsal pro-
blematiku modelování vzhledu materiálů
s důrazem na fyzikálně založené modely.
Dotýká se také témat tvorby materiálů po-
mocí shader grafů, pomocí nichž byly vy-
tvořeny specializované dynamicky se mě-
nící materiály využívající široké možností
shader grafu.

Pomocí nástroje shader graph byla vy-
tvořena ukázka často používaných materi-
álů i unikátních stylů, inspirovaných růz-
nými videohrami. Práce se zaměřila na
kvalitní modelování detailů pomocí detail-
ních textur, šumových prvků, normálo-
vých map, výšek atd.

Závěrečnou ukázkou je testovací scéna,
kde lze materiály z ukázkového alba
snadno vyměňovat a každý materiál má
své vlastní parametry, které ovlivňují zob-
razení materiálu v reálném čase a uživatel
k nim má kdykoli přístup.

Klíčová slova: Vykreslování, Unity,
Shader Graph, Vizuální programování,
Textury, Stínování

Překlad názvu: Knihovna materiálů v
Unity

iv

Contents
1 Introduction 1
2 Materials in games 3
2.1 Similarity of approaches 3
2.2 Basic terms 5
2.3 The BRDF model 6

2.3.1 Applicability 6
2.3.2 BRDF in Unity 7

3 Material model and pipeline 9
3.1 PBR material model in Unity . . . 9
3.2 Choosing pipeline 10
4 Material creation 11
4.1 Approaches in creating materials 11
4.2 Nodes library in Unity 12

4.2.1 Artistic 12
4.2.2 Channel 13
4.2.3 Input . 14
4.2.4 Math . 15
4.2.5 Procedural 16
4.2.6 Utility . 16
4.2.7 UV. 18
4.2.8 How to create Shader Graph

and material based on it 18
5 Materials library 19
5.1 Acid . 22
5.2 Candy . 24
5.3 Clay . 26
5.4 Core . 28
5.5 Dissolve . 32
5.6 Filler . 34
5.7 Flame . 36
5.8 Triplanar projection 40
5.9 Frost . 43
5.10 Glitter . 46
5.11 Grid . 48
5.12 Halftone . 51
5.13 Hologram 56
5.14 Liquid . 58
5.15 Minecraft 60
5.16 Mirage . 63
5.17 PewDiePie 65
5.18 Soap . 67
5.19 Toon . 69
5.20 Water . 71
5.21 Wood . 75
5.22 Metal . 78

5.23 Pearl . 82
5.24 Glass . 84
6 Conclusion 87
Bibliography 89

v

Figures
2.1 Metallic material simulating the

structure of carbon fiber reinforced
plastic in the Unity Engine [1]. 3

2.2 An example of using nodes in the
Blender3D graph to apply textures to
the different channels of the model
(in this case albedo and normal). . . . 4

2.3 Example of using Shader Graph
nodes to deform the model mesh
(Vertex shader). 5

2.4 Phong Equation (visual
illustration) by Brad Smith [12]. . . . 7

2.5 A Standard Shader material with
default parameters. 8

3.1 As the smoothness of a material’s
surface increases, the fresnel effect
becomes more noticeable at grazing
angles in relation to the viewer. . . . 10

4.1 This material is a combination of
the following 4 maps (from left to
right): color, normal, roughness,
height [6]. 11

4.2 Example of procedural texture
generation [7]. 12

4.3 Creating texture with Voronoi and
Blend nodes. 13

4.4 An example of using the Normal
From Height node. 13

4.5 Examples of using the Split node. 14
4.6 An example of using the Branch

node. 16
4.7 The principle of creating a sub

graph. 17
4.8 Offset Over Time Sub Graph with

its input parameters. 17

5.1 All materials produced as part of
this project in Unity application. . 19

5.2 “Acid“ Material on a variety of
objects. 22

5.3 Hazardous waste tanks inside the
plant. 22

5.4 “Acid“ Shader Graph. 23
5.5 “Candy“ Material on a variety of

objects. 24

5.6 Candy Cane decorations in
Stardew Valley. 24

5.7 “Candy“ Shader Graph. 25
5.8 “Clay“ Material on a variety of

objects. 26
5.9 Claymation animation in Blender

2.81 by J Middleton [19]. 26
5.10 “Clay“ Shader Graph. 27
5.11 “Core“ Material on a variety of

objects. 28
5.12 Avatar Korra opens the northern

portal to the Spirit World, S02E10. 28
5.13 “Core“ Shader Graph. 29
5.14 Section 1 of the “Core“ Shader

Graph. 30
5.15 Section 2 of the “Core“ Shader

Graph. 30
5.16 Section 3 & 4 of the “Core“

Shader Graph. 31
5.17 “Dissolve“ Material on a variety

of objects. 32
5.18 “Dissolve“ effect on corpses in

BioShock Infinite. 32
5.19 “Dissolve“ Shader Graph. 33
5.20 “Filler“ Material on a variety of

objects. 34
5.21 UE4 Transition Effect Shader by

TGA Digital [20]. 34
5.22 “Filler“ Shader Graph. 35
5.23 “Flame“ Material on a variety of

objects. 36
5.24 Example of using the “Flame“

material with a model of a fireplace.
Models by Rocco Giandomenico
(logs) [21], Michalina "Miszla"
Gąsienica-Laskowy (fireplace) [22]. 36

5.25 “Flame“ Shader Graph. 37
5.26 Section 1 of the “Flame“ Shader

Graph. 38
5.27 Section 2 of the “Flame“ Shader

Graph. 38
5.28 Section 3 of the “Flame“ Shader

Graph. 39
5.29 Triplanar Projection feature in

Adobe Substance Painter. [23] 40

vi

5.30 Triplanar maps over the surface
from three different axes (X, Y, Z) by
Martin Palko. 40

5.31 Triplanar mapped on a surface
(left) and maps blending view (right)
by Martin Palko. 41

5.32 Example code represents the
possible outcome of Triplanar
Texture node (Default mode). 41

5.33 Triplanar Simple Noise sub
graph. 42

5.34 “Frost“ Material on a variety of
objects. 43

5.35 Frostpunk artwork by 11-bit
Studios [26]. 43

5.36 “Frost“ Shader Graph. 44
5.37 Section 1 of the “Frost“ Shader

Graph. 44
5.38 Section 2 of the “Frost“ Shader

Graph. 45
5.39 Section 3 of the “Frost“ Shader

Graph. 45
5.40 “Glitter“ Material on a variety of

objects. 46
5.41 Galaxy by rawpixel.com [27]. . . 46
5.42 “Glitter“ Shader Graph. 47
5.43 “Grid“ Material on a variety of

objects. 48
5.44 Retrowave Neon 80’s Background

by Rafael-De-Jongh [28]. 48
5.45 “Grid“ Shader Graph. 49
5.46 Sections 1 & 2 of the “Grid“

Shader Graph. 50
5.47 Sections 3 & 4 of the “Grid“

Shader Graph. 50
5.48 “Halftone“ Material on a variety

of objects. 51
5.49 Halftone effect example (source

image on the left, final transition on
the right) [29]. 51

5.50 Outline effect in Left4Dead game
is used to distinct player’s allies. . . 52

5.51 “Outline“ Shader Graph. 52
5.52 GetMainLight custom function

node source. 53

5.53 “ColorValueReduce“ Shader
Graph. 53

5.54 “Halftone“ Shader Graph. 54
5.55 Section 1 of the “Halftone“

Shader Graph. 55
5.56 Section 2 of the “Halftone“

Shader Graph. 55
5.57 “Hologram“ Material on a variety

of objects. 56
5.58 Cortana as a hologram in Halo 5. 56
5.59 “Hologram“ Shader Graph. . . . 57
5.60 “Liquid“ Material on a variety of

objects. 58
5.61 Liquid in the bottle in Half-Life:

Alyx (waves and the movement of the
liquid depends on the movement of
the bottle). 58

5.62 “Liquid“ Shader Graph. 59
5.63 “Minecraft“ Material on a variety

of objects. 60
5.64 Grass block in Minecraft. 60
5.65 “Minecraft“ Shader Graph. . . . 61
5.66 Sections 1 & 2 of the “Minecraft“

Shader Graph. 61
5.67 Section 3 of the “Minecraft“

Shader Graph. 62
5.68 Section 4 of the “Minecraft“

Shader Graph. 62
5.69 “Mirage“ Material applied on a

plane near the camera, so the whole
view is distorted. 63

5.70 Heat Haze near plane engines by
Scott Barbour [31]. 63

5.71 “Mirage“ Shader Graph. 64
5.72 “PewDiePie“ Material on a

variety of objects. 65
5.73 PewDiePie’s YouTube channel

pattern. Used as a YouTube banner
image, as a screen saver while waiting
for the start of the stream, and as a
recognizable texture for branded
merchandise [33]. 65

5.74 “PewDiePie“ Shader Graph. . . . 66
5.75 “Soap“ Material on a variety of

objects. 67

vii

5.76 Group of soap bubbles with good
visible film [35]. 67

5.77 “Soap“ Shader Graph. 68
5.78 “Toon“ Material on a variety of

objects. 69
5.79 Cel shading in The Legend of

Zelda: Breath of the Wild. 69
5.80 “Toon“ Shader Graph. 70
5.81 “Water“ Material on a variety of

objects. 71
5.82 Water surface in Zelda: Wind
Waker. 71

5.83 “Water“ Shader Graph. 72
5.84 Section 1 of the “Water“ Shader

Graph. 73
5.85 Section 2 of the “Water“ Shader

Graph. 73
5.86 Section 3 of the “Water“ Shader

Graph. 74
5.87 “Wood“ Material on a variety of

objects. 75
5.88 Photo of the wooden surface from

close up by FWStudio [36]. 75
5.89 “Wood“ Shader Graph. 76
5.90 Section 1 of the “Wood“ Shader

Graph. 76
5.91 Section 2 of the “Wood“ Shader

Graph. 77
5.92 “Metal“ Material on a variety of

objects (steel, copper, titanium). . . 78
5.93 Examples of heat coloring on

metals: steel by Jeffrey H Dean [39],
copper by Mari [40], titanium by
Robert Lopez [41]. 78

5.94 “Metal“ Shader Graph. 79
5.95 Section 1 of the “Metal“ Shader

Graph. 80
5.96 Section 2 of the “Metal“ Shader

Graph. 80
5.97 Section 3 of the “Metal“ Shader

Graph. 81
5.98 “Pearl“ Material on a variety of

objects. 82
5.99 Different types of pearls by GIA. 82
5.100 “Pearl“ Shader Graph. 83

5.101 “Glass“ Material on a variety of
objects. 84

5.102 Photo of the distorted glass by
Image*After [44]. 84

5.103 “Glass“ Shader Graph. 85

viii

Tables
5.1 Table of materials divided into

categories. 21
5.2 “Acid“ Shader Graph input

parameters. 23
5.3 “Candy“ Shader Graph input

parameters. 25
5.4 “Clay“ Shader Graph input

parameters. 27
5.5 “Core“ Shader Graph input

parameters. 29
5.6 “Dissolve“ Shader Graph input

parameters. 33
5.7 “Filler“ Shader Graph input

parameters. 35
5.8 “Flame“ Shader Graph input

parameters. 37
5.9 Triplanar sub graph input

parameters. 42
5.10 “Frost“ Shader Graph input

parameters. 44
5.11 “Glitter“ Shader Graph input

parameters. 47
5.12 “Grid“ Shader Graph input

parameters. 49
5.13 “Outline“ Shader Graph input

parameters. 52
5.14 “ColorValueReduce“ Shader

Graph input parameters. 54
5.15 “Halftone“ Shader Graph input

parameters. 54
5.16 “Hologram“ Shader Graph input

parameters. 57
5.17 “Liquid“ Shader Graph input

parameters. 59
5.18 “Minecraft“ Shader Graph input

parameters. 61
5.19 “Mirage“ Shader Graph input

parameters. 64
5.20 “PewDiePie“ Shader Graph input

parameters. 66
5.21 “Soap“ Shader Graph input

parameters. 68
5.22 “Toon“ Shader Graph input

parameters. 70
5.23 “Water“ Shader Graph input

parameters. 72

5.24 “Wood“ Shader Graph input
parameters. 76

5.25 “Metal“ Shader Graph input
parameters. 79

5.26 “Pearl“ Shader Graph input
parameters. 83

5.27 “Glass“ Shader Graph input
parameters. 85

ix

Chapter 1
Introduction

Throughout the history of the game industry, visual appearance has been
an integral part of game creation. Human perception is based not only on
gameplay but also on memorable images. Behind the creation of each game
object, there is an idea, a design, and its final appearance within the created
world. This work will address the problem of passing visual information about
the object by giving it certain graphical parameters, or in other words - the
use of materials.

Creating materials and textures for games can be a challenging task. The
demands on the quality and performance of materials are high, as they play
a crucial role in the overall visual appearance of a game. Materials need
to not only look realistic and visually appealing but also be optimized for
performance to ensure a smooth gaming experience. In addition, materials
often need to be easily adjustable and flexible, allowing game developers to
quickly make changes and iterate on the design.

Another problem that game developers face when creating materials is
the need to adhere to strict memory and file size limits. Materials and
textures can quickly eat up a significant portion of a game’s memory and
storage, making it important to find a balance between high-quality visuals
and efficient use of resources.

This work explores various techniques for creating materials in Unity,
including both traditional techniques and the use of procedural methods. It
will cover the tools and features available in the Unity engine for material
creation, and discuss practices for designing materials for use in games.

1

2

Chapter 2
Materials in games

What is the material itself? Material is a set of properties responsible for the
appearance of a geometric object: it’s color spectrum, illumination, surface
grain, shading, reflection, refractive power, and other visualization properties.

For example, in the real world, every object reacts differently to light.
Steel objects often shine better than, for example, rough objects (as an
example, compare the reflection from metal and wood). Therefore, the
material properties must be determined specific to each surface. A quality
and correctly created material (such as the one in the Figure 2.1) can greatly
improve the visual aspect and convey the parameters of the surface.

Figure 2.1: Metallic material simulating the structure of carbon fiber reinforced
plastic in the Unity Engine [1].

2.1 Similarity of approaches

On the programming side, materials in graphics and game engines are collec-
tions of numerical characteristics, textures, and program code (often referred
to as a “shader“) that processes this data. In OpenGL, one of the oldest

3

2. Materials in games
graphics languages, materials are specified as data structures that store sur-
face properties such as color, reflectivity, and texture. This method of storing
materials has been practiced in OpenGL for a long time. While OpenGL has
the ability to store data as uniform values, storing it as a structure makes it
more organized and easier to work with.

#version 330 core
struct Material {

vec3 ambient;
vec3 diffuse;
vec3 specular;
float shininess;

};

uniform Material material;

Creating a compact storage of materials as a set of data that is always
available to the user is a very practical feature of graphics and game engines.
This is why many engines use a “binding“ system for working with materials,
which includes an external material editor and an internal manager that
implements a subsystem for managing properties and their direct processing,
with the resulting material applied to a graphics object.

For example (Figure 2.2), Blender 3D uses a shader editor with compo-
nents called “nodes“ that allow users to specify the properties and behavior
of a material. Similarly, Unity’s material editor is called Shader Graph, which
also uses nodes to represent the different aspects of a material (Figure 2.3).

By using a node-based system, users can easily see the relationships between
different material properties and adjust them as needed. You can see the
similarity in the input parameters of these systems, so if you are familiar
with one, it should be easy to understand the other.

Figure 2.2: An example of using nodes in the Blender3D graph to apply textures
to the different channels of the model (in this case albedo and normal).

4

..................................... 2.2. Basic terms

Figure 2.3: Example of using Shader Graph nodes to deform the model mesh
(Vertex shader).

2.2 Basic terms

Before delving into the Unity material creation system (the main goal of
this project), it’s worth getting familiar with some basic terms and concepts
related to materials in 3D graphics..UV mapping is the process of projecting a 3D model’s surface onto

a 2D plane, with the U and V coordinate corresponding to the axes
of the 2D texture. This flat representation of the 3D model is used
for texture mapping, and the process of creating a UV map is called
UV unwrapping. UV unwrapping is typically done using 3D modeling
software. The letters U and V denote the coordinates in the 2D texture
axes, as X, Y, and Z are used in the 3D model space..A texture, or texture map, is an image that is applied to the surface of
a 3D model to add detail and realism. Textures can be used to simulate
the appearance of various surface characteristics, such as shape, density,
and other visual details..The albedo of material represents its pure color information. It is used
to define the base color of the material and can be adjusted to achieve a
desired visual effect..The normal map of material is used to simulate more detailed surface
features, such as bumps and dents, by spoofing the height and depth
information. This allows the surface to appear more detailed and realistic,
even when using a low-polygon 3D model..The metallic value of a material represents how it reacts to light, with
higher values producing more metallic-looking materials and lower values

5

2. Materials in games
producing more diffuse materials. This property is often used to create
metallic or reflective surfaces, such as metal or glass..The specular value of a material represents the strength, color, and
reflections of light sources that should appear on the material. Higher
specular values will produce shinier materials, while lower values will
produce duller materials..The roughness (or smoothness) of a material determines how light is
distributed over its surface, with rougher materials scattering light in
more directions and smoother materials reflecting light in fewer direc-
tions. This property is often used to control the appearance of specular
reflections on a material..Glossiness is a similar concept to roughness, and it can be used to
control the appearance of specular reflections on a material. Higher
glossiness values will produce shinier materials with more concentrated
specular reflections, while lower values will produce duller materials with
more diffuse reflections..The height map of a material is used to simulate depth information
based on the camera’s position, and materials with a height map assigned
will appear to have occluding surface details. This property is often used
to create more realistic and detailed surfaces, such as rough terrain or
bumpy surfaces..Ambient occlusion is a value that represents surfaces on the material
that are naturally self-shading or appear darker than the rest of the
surface. This property is often used to create more realistic and realistic-
looking materials, as it simulates the way that light is occluded in the
real world.. Emission determines the areas of the material that should glow and
what color the glow should be. This property is often used to create
materials that emit light

2.3 The BRDF model

The Bidirectional Reflectance Distribution Function (BRDF) is a fundamental
concept in computer graphics and game development that governs the behavior
of light reflected from surfaces.

2.3.1 Applicability

The BRDF model is crucial in creating realistic lighting effects and producing
accurate visual simulations of real-world materials. For instance, in the book
“Real-Time Rendering“ [9], the authors explain the importance of the BRDF

6

.................................. 2.3. The BRDF model

model in producing realistic material rendering in real-time applications such
as games.

The BRDF model describes the relationship between the incoming light
direction, the surface normal, the observer’s position, and the reflected light
direction. The model takes into account the surface’s material properties,
including its diffuse and specular reflection properties, as well as any other
surface features such as roughness or texture. So In game development, the
BRDF model allows game designers to create realistic lighting effects that
mimic the way light behaves in the real world. For example metallic or wet
surfaces.

The BRDF model calculates the ratio of outgoing light to incoming light at
a given point on a surface, taking into account the direction of the incoming
light, the surface normal, and the angle of reflection. Also, it is used to
calculate the color and brightness of each pixel in an image based on the
properties of the surface and the direction of the light sources.

The BRDF model is typically divided into two components: the diffuse
component and the specular component...1. The diffuse component is modeled using Lambert’s law, which assumes

that light is reflected uniformly in all directions from a rough surface...2. The specular component is typically modeled using either the Phong
(or Blinn-Phong) model [11], which assumes that light is reflected only
in the direction of the mirror reflection (visual illustration can be seen
below).

Figure 2.4: Phong Equation (visual illustration) by Brad Smith [12].

2.3.2 BRDF in Unity

The BRDF model is an essential component in creating material in the Unity
engine. Unity provides several built-in shader systems that use BRDF models
to simulate the behavior of light reflected from surfaces, including Standard
Shader, HDRP (High Definition Render Pipeline), and URP (Universal
Render Pipeline), which will be further explained later in 3.2.

According to the Unity documentation [13], the Standard Shader in Unity
uses a BRDF model to simulate metallic and non-metallic surfaces. The
HDRP, which is designed for high-end graphics and visual quality, uses a
physically-based BRDF model to create photorealistic materials. The URP,

7

2. Materials in games
on the other hand, is a lightweight rendering pipeline that uses a simplified
version of the BRDF model to render materials efficiently.

The Unity engine also provides various tools for adjusting the material
properties of objects. These properties affect the behavior of the BRDF
model and enable developers to create a wide range of materials with different
properties and textures (the properties for the standard Standard Shader can
be seen below in Figure 2.5). That’s what this project is focused on.

Figure 2.5: A Standard Shader material with default parameters.

8

Chapter 3
Material model and pipeline

3.1 PBR material model in Unity

Physically-based rendering (PBR) is a technique used to create more realistic
3D models by simulating how light interacts with surfaces. There are two
main approaches to PBR, which differ mainly in the way they describe the
reflective properties of materials: PBR Metalness and PBR Specular. The
choice of approach typically depends on the specific needs and preferences
of the artist or designer. However, both techniques aim to achieve the same
goal of producing more physically accurate and visually appealing rendering.

.PBR Metalness: albedo, normal, metallic (scalar), roughness

.PBR Specular: albedo, normal, specular (vector), glossiness

In PBR Metalness and PBR Specular, there are differences in the way that
material’s reflective properties are defined. For instance, in PBR Metalness, a
metallic map is used to describe how much of the material’s color comes from
metallic reflection, while a roughness map is used to control the material’s
smoothness.

In contrast, PBR Specular uses a specular map to define the material’s
reflectivity, which affects both the color and the intensity of the reflection.
Additionally, the way that light interacts with the surface of a material is
also different between the two approaches.

Regarding Unity’s use of PBR, the engine does indeed offer two different
material setups: Standard and Standard (Specular setup). These provide
different options for how a material’s reflective properties are defined and
can be chosen. Both of the setups can be seen below in Figure 3.1. Note
the Metallic parameter on the left (which is controlled either by the metallic
map or by a float number from 0 to 1) and Specular on the right (which is
controlled again by the map or by the color selected, which is a vector).

9

3. Material model and pipeline

Figure 3.1: As the smoothness of a material’s surface increases, the fresnel effect
becomes more noticeable at grazing angles in relation to the viewer.

3.2 Choosing pipeline

After choosing a suitable technique (PBR Metallic), it was necessary to choose
a suitable rendering pipeline. The choice was made in favor of the Universal
Render Pipeline (URP) due to not only experience but also because the URP
is designed to optimize the rendering of graphics on all platforms. In contrast,
the High Definition Render Pipeline (HDRP) is designed to take advantage of
the hardware capabilities for rendering high-definition graphics on powerful
platforms.

The URP is an off-the-shelf scripted rendering pipeline created by Unity
that provides artist-friendly workflows to quickly and easily create optimized
graphics on a variety of platforms (from mobile to PC). The following advan-
tages were considered when choosing the URP for this project:. It replaces the built-in renderer.. It supports accelerated rendering.. It has a visual interface.. It has a native shader graph.

10

Chapter 4
Material creation

It is important for game developers to familiarize themselves with the different
methods and techniques for creating materials before diving into the process.
This can help ensure that materials are not only visually appealing and
realistic but also optimized for performance and flexible enough to allow for
easy iteration and adjustment. Let’s take a look at a few of them.

4.1 Approaches in creating materials

There are two main methods for creating materials in Unity: assigning maps
(textures) to input material parameters and using procedural generation.

The first method involves assigning appropriate maps (textures) to the
input material parameters, which are then processed by the shader. This
allows developers to create materials that are visually appealing and realistic,
while also taking advantage of the various tools and features available in
Unity for material creation.

Figure 4.1: This material is a combination of the following 4 maps (from left to
right): color, normal, roughness, height [6].

11

4. Material creation
The second method, procedural generation, involves using computer algo-

rithms to generate textures based on a fixed set of parameters. This allows
for the creation of unique variations of textures without the need for manual
input, making it a useful technique for creating materials that need to be
flexible and adjustable. However, it is important to note that procedural
textures may not always be as high quality as those created using traditional
techniques, so it is important to weigh the benefits and drawbacks of each
method when deciding which to use in a given project.

Figure 4.2: Example of procedural texture generation [7].

This project will cover both ways of creating materials.

4.2 Nodes library in Unity

As was mentioned before, the Unity game engine uses the Shader Graph tool
to create materials. To create a graph, the nodes are used. So, before going
directly to the creation of materials, it is necessary to get familiar with the
most commonly used Shader Graph nodes in this project.

In Unity Shader Graph, there are various categories of nodes that can be
used to create custom shaders. These nodes are responsible for different tasks
and can be combined to achieve the desired effect. Here are the categories of
nodes and examples of the most commonly used nodes in this project in each
category.

4.2.1 Artistic

Artistic nodes are responsible for adding visual effects that improve the
aesthetics of the shader. For example, in this project are used:.Blend - Blends two input values together based on a specified blend

factor.
The Blend is quite a lot of functionality. It is useful not only for working
with colors and masks but also for creating complex textures. For example

12

.................................4.2. Nodes library in Unity

(Figure 4.3), as parameters of the blend were chosen the outermost
colors of gray-scale, and Voronoi - as a mask. By changing the mask, it
is possible to get fanciful results, such as the one on the right.

Figure 4.3: Creating texture with Voronoi and Blend nodes..Normal From Height - Converts a height map texture into a normal
map texture.
Since the height maps are in gray-scale, any such texture is valid as input
for this node. For example, a simple black and white quadrat, as below
in Figure 4.4.

Figure 4.4: An example of using the Normal From Height node.

4.2.2 Channel

Channel nodes work with the RGBA channels of textures or other inputs.
For example, in this project is used:. Split - Splits the input vector into RGBA channels (outputs).

For example in the picture below (Figure 4.5) the upper part shows an
example of the use of different texture channels. It’s common practice

13

4. Material creation
to pack different maps/masks (such as height or roughness/metallic)
into the texture on different channels for convenience. The bottom part
demonstrates creating a simple horizontal/vertical gradient by calling
the Split node.

Figure 4.5: Examples of using the Split node.

4.2.3 Input

Input nodes are responsible for getting data into the shader. For example, in
this project are used:.UV - Outputs the UV coordinates of the pixel.. Sample Texture 2D - Samples a 2D texture at a specific UV coordi-

nate.. Position - Outputs the world space position of a pixel..Normal Vector - Calculates the surface normal at a given point on a
mesh or texture.
An example of the use both of vertex vectors Position and Normal to
dynamically deform the model mesh using procedural noise can be seen
again in Figure 2.3..Time - Outputs the current time in seconds..Constant - Outputs a constant value (PI, TAU, PHI, E, SQRT2)..Gradient - Creates a gradient between two or more colors.. Sample Gradient - Samples a gradient at a specific point..Vector2 - Outputs a 2D vector.

14

.................................4.2. Nodes library in Unity

4.2.4 Math

Math nodes perform mathematical operations on values. For example, in this
project are used:.Absolute - Outputs the absolute value of an input..Add - Adds two values together..Dot Product - Calculates the dot product of two vectors..Multiply - Multiplies two values together..One Minus - Subtracts an input value from one.. Power - Raises a value to a specified power.. Subtract - Subtracts one value from another.. Posterize - Reduces the number of colors in the image to create a

poster-like effect.. Fresnel Effect - Creates a reflection effect, based on the viewing
angle and surface normal of an object.. Lerp - Performs a linear interpolation between two values..Remap - Remaps the range of an input value to a new range.. Step - Outputs 1 if an input value is greater than a threshold, and 0
otherwise.. Smoothstep - Performs a smooth interpolation between two values..Truncate - Truncates the decimal part of an input value.. Sine - Returns the sine of the giving value.. Sine Wave - Returns the sine of the giving value with pseudo-random
noise added to the amplitude.. Saturate - Clamps the giving value between 0 and 1..Round - Rounds a given input value to the nearest integer.. Fraction - Returns the fractional part of the input value (e.g. the
fraction of 1.3 is 0.3)..Negate - Inverts the sign of the input value..Distance - Calculates the Euclidean distance between two points in 3D
space..Normalize - Scales a vector so that it has a length of 1.

15

4. Material creation
4.2.5 Procedural

Procedural nodes generate textures and patterns procedurally (mostly -
noises). For example, in this project are used:.Gradient Noise - Generates a procedural noise pattern.. Simple Noise - Generates Perlin noise..Voronoi - Generates Voronoi noise..Rounded Polygon - Creates a polygon with rounded corners..Rectangle - Generates a rectangular shape with a width and height

defined.

4.2.6 Utility

Utility nodes perform various utility functions in the shader. For example, in
this project are used:. Branch - Allows for branching logic (path) in the shader graph.

A Branch node can be described as a switch between two options. Below
in Figure 4.7 it works that way to shift the UV coordinates in a certain
direction over time.

Figure 4.6: An example of using the Branch node.. Sub Graph - encapsulates a group of interconnected nodes and can be
reused multiple times within the same shader or in other shaders.
The Sub Graph creation process is quite simple and can be described
(and seen in Figure 4.8) in a few steps:

16

.................................4.2. Nodes library in Unity..1. “Initial nodes“ - the created pattern of nodes that should be
combined into one...2. “sub graph“ - the view after combining (select the nodes that
needed to be inside, right-click, and then - Create Sub Graph) as a
separated graph...3. “In another graph“ - the sub graph looks like a separate node
now in any other graph in the same project.

Figure 4.7: The principle of creating a sub graph.

Further on, some materials will use the following sub graph - “Offset
Over Time“ (Figure 4.8). It is created to speed up the work but will
be applied to materials where its use is evident and will reduce the total
size of the graph. Its job is to shift the UV coordinates depending on the
given speed and direction in the input parameters. Thus, it is possible
to quickly interact with the shift which is the main advantage of sub
graphs.

Figure 4.8: Offset Over Time Sub Graph with its input parameters.

17

4. Material creation
4.2.7 UV

UV nodes manipulate the UV coordinates of textures. For example, in this
project are used:.Tiling and Offset - Tiles and offsets a texture based on its UV

coordinates..Twirl - Twists the pixels of a texture around a central point, creating
a spiral effect..Rotate - Rotates UV coordinates around a center point.

4.2.8 How to create Shader Graph and material based on it..1. Creating a new Shader Graph by going to the Assets menu and selecting
Create → Shader → PBR Graph...2. Next, select, place, and connect the necessary nodes to create the desired
material. This may include nodes for color, texture, and other material
properties...3. Specifying the input parameters for the material, such as its color, texture,
and other properties...4. Once the Shader Graph has been set up, a new material can be created
based on the graph using the Assets menu and selecting Create →
Material...5. Finally, the newly created material can be added to test objects in the
scene to see how it looks and functions in the game. This allows us
to iterate on the design and make any necessary adjustments before
implementing the material in the final game.

18

Chapter 5
Materials library

The outcome of this project is a library containing over 20 materials (5
stylized static, 12 stylized dynamic, and 6 realistic) with various orientations
and designs. Additionally, an application was developed [15] to simulate
a test scene, enabling users to easily modify the materials and methods of
presentation. Within the application, it is possible to access the complete
library observation that can be discerned by referring to Figure 5.1.

Figure 5.1: All materials produced as part of this project in Unity application.

This section contains the following parts specific to each material created
in the project:. description and demonstration. inspiration. general view of the Shader Graph with the table of input parameters

For a better idea and a brief overview of the contents of the library, it is
worth referring to the Table 5.1 of materials presented below. Materials
marked with an "*" will be discussed in detail in their own sections.

19

5. Materials library

Demo Graph settings Demo Graph settings

Candy

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Frost*

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Halftone*

Material: Unlit
Surface: Opaque
Render Face: Front
Cast Shadows: True

Outline*

Material: Unlit
Surface: Opaque
Render Face: Back
Cast Shadows: False

Minecraft*

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Toon

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Acid

Material: Lit
Workflow: Metallic
Surface: Transparent
Cast Shadows: False
Receive Shadows: True

Clay

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Core*

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: False
Receive Shadows: False

Dissolve

Material: Lit
Workflow: Metallic
Surface: Opaque
Alpha Clipping: True
Cast Shadows: True
Receive Shadows: True

Filler

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Flame*

Material: Lit
Workflow: Metallic
Surface: Transparent
Cast Shadows: False
Receive Shadows: False

20

.................................... 5. Materials library

Demo Graph settings Demo Graph settings

Glitter

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: False

Grid*

Material: Lit
Workflow: Metallic
Surface: Transparent
Cast Shadows: True
Receive Shadows: False

Holo

Material: Lit
Workflow: Metallic
Surface: Transparent
Cast Shadows: False
Receive Shadows: False

Liquid

Material: Unlit
Surface: Transparent
Blending: Additive
Cast Shadows: True

PewDiePie

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: False

Water*

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Mirage

Material: Unlit
Surface: Transparent
Cast Shadows: False

Soap

Material: Lit
Workflow: Specular
Surface: Transparent
Cast Shadows: False
Receive Shadows: False

Glass

Material: Lit
Workflow: Specular
Surface: Transparent
Cast Shadows: True
Receive Shadows: False

Wood*

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Metal*

Material: Lit
Workflow: Metallic
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Pearl

Material: Lit
Workflow: Specular
Surface: Opaque
Cast Shadows: True
Receive Shadows: True

Table 5.1: Table of materials divided into categories.

21

5. Materials library
5.1 Acid

An “Acid“ material can be used to create the appearance of a corrosive, toxic
substance. It can be used to enhance the realism of certain environments,
such as a chemical laboratory or an alien planet. By using it, a sense of
danger and intrigue can be added to a game.

Figure 5.2: “Acid“ Material on a variety of objects.

Inspiration was taken from the classic - Half-Life, namely the dangerous
materials that can be found as obstacles throughout the entire game, for
example, they can be met in the location of the Biological Waste Processing
Plant (Figure 5.2) [16].

Figure 5.3: Hazardous waste tanks inside the plant.

22

.. 5.1. Acid

Figure 5.4: “Acid“ Shader Graph.

In Unity Name Type Description

Speed Float [-1, 1] How quickly the noise texture
will change over time.

ColorTex Texture2D The texture that will be used as
the main color.

NoiseScale Float The size of the acid splits of the
material on the surface.

EmisColor Color HDR The glow color.

EmisPower Float [-10, 10] Glow intensity.

Table 5.2: “Acid“ Shader Graph input parameters.

23

5. Materials library
5.2 Candy

The Christmas “Candy“ material is a vibrant and festive material that is
perfect for adding some holiday cheer to a game. It can be used on a variety
of objects, such as gift boxes, ornaments, and other holiday decorations.

Figure 5.5: “Candy“ Material on a variety of objects.

The inspiration came from a traditional Christmas candy - Candy Cane.
This part of the holiday can be found everywhere in games (often in pre-
Christmas events). For example in high places in Fortnite, in the Super Mario
Odyssey’s Secret Candy Kingdom, or even as a simple decoration in Stardew
Valley (Figure 5.15) [17].

Figure 5.6: Candy Cane decorations in Stardew Valley.

24

....................................... 5.2. Candy

Figure 5.7: “Candy“ Shader Graph.

In Unity Name Type Description

BaseColor Color Main color of the sur-
face.

StripesColor Color Color of stripes.

StripesThickness Float [0, 0.5] How wide the stripes
are.

Falloff Float [1, 10] The smoothness of the
transition from the
stripe color to the main
color.

Stripes Float Stripes count control.

Roughness Float [0, 1] Surface roughness.

Table 5.3: “Candy“ Shader Graph input parameters.

25

5. Materials library
5.3 Clay

The stop-motion “Clay“ material is designed to create the appearance of
a stop-motion animation that uses clay or plasticine. It features a tactile,
textured surface that is reminiscent of handmade animation.

Figure 5.8: “Clay“ Material on a variety of objects.

This material represents the style of Claymation - a form of animation
where characters and backgrounds are made from plasticine or other malleable
materials. Examples of popular movies in this style include Chicken Run,
Shaun the Sheep, and Wallace & Gromit, while games such as Skullmonkeys
and The Neverhood have also used this style.

Unlike traditional Claymation (e.g. in Figure 5.9) where objects typically
retain their basic shape, this material features clay objects that change shape
over time, creating a unique and sloppy transition effect between frames [18].

Figure 5.9: Claymation animation in Blender 2.81 by J Middleton [19].

26

.. 5.3. Clay

Figure 5.10: “Clay“ Shader Graph.

In Unity Name Type Description

Color Color Main color of the surface.

Color2 Color Additional Color of the sur-
face for blending.

ClayScale Float [5, 10] Noise texture scale.

DeformScale Float [0, 0.2] How strongly the clay
changes shape.

Speed Float [0, 5] Speed of stop-motion.

Table 5.4: “Clay“ Shader Graph input parameters.

27

5. Materials library
5.4 Core

The “Core“ material can be used to add a mesmerizing and otherworldly
touch to an object. It is particularly effective when applied to small, round
objects such as gemstones or magical artifacts. The material’s combination
of bright, swirling colors and refractive surface properties creates a sense of
depth and movement.

Figure 5.11: “Core“ Material on a variety of objects.

If you are familiar with the Avatar universe, you may know that in the
animated series “Avatar Korra“ in the second season of episode ten, the
protagonist opens a portal, which is shielded by a wavy-overflowing sphere
(Figure 5.12). This effect served as the inspiration for the material.

Figure 5.12: Avatar Korra opens the northern portal to the Spirit World, S02E10.

28

.. 5.4. Core

Figure 5.13: “Core“ Shader Graph.

In Unity Name Type Description

TopColor Color HDR Main color of the surface.

BottomColor Color HDR Additional color of the sur-
face for blending.

EmitColor Color HDR Swirling color.

Speed Float [0, 1] Speed of the twirling effect.

Table 5.5: “Core“ Shader Graph input parameters.

29

5. Materials library
The first section (Figure 5.14) is responsible for the color. The combi-

nation of the UV and Split (Green channel) nodes creates a gradient, which
is used as a mask for the Lerp node. The node is now responsible for the
smooth transition between the two colors that the user can specify. The result
of this group is sent to BaseColor.

Figure 5.14: Section 1 of the “Core“ Shader Graph.

The second section (Figure 5.15) can be described in two steps: first, a
dynamic Twirl is created using the Time node to change its shape constantly
(users can control the speed of change); then, the modified UV of Twirl goes
into Gradient noise to create a gray-scale wave texture. An identical noise is
created below, reversed, and merged with the upper one for more variability
in the waves.

Figure 5.15: Section 2 of the “Core“ Shader Graph.

30

.. 5.4. Core

In the third section, the previously created wave texture is utilized to
generate a mask for Emission through the Step node, which is then colorized
and fed into the Emission parameter. Moving onto the fourth section, the
mask is used to generate a normal map using the Height to Normal node (as
height maps are in gray-scale), intensifying the wave effect on the surface.
The operation of these sections can be seen in Figure 5.16 below.

Figure 5.16: Section 3 & 4 of the “Core“ Shader Graph.

31

5. Materials library
5.5 Dissolve

The Dissolve material can add dynamic and immersive elements. It can be
used to create the appearance of objects dissolving or disintegrating over time.
This material can be applied to a variety of objects, such as walls, floors, or
even characters.

Figure 5.17: “Dissolve“ Material on a variety of objects.

In most cases, it is indeed responsible for the “evaporation“ of an object.
For example, after killing an enemy (directly or post factum, as a “smooth“
removal of the object from the rendering field), the famous title Bioshock Infi-
nite (picture below Figure 5.18) can be remembered. A quality example can
also be seen in Genshin Impact, where characters’ weapons appear/disappear
with this effect.

Figure 5.18: “Dissolve“ effect on corpses in BioShock Infinite.

32

.......................................5.5. Dissolve

Figure 5.19: “Dissolve“ Shader Graph.

In Unity Name Type Description

BaseColor Color Main color of the surface.

DissolveColor Color HDR Color appearing on the edge
of a disappearing area.

Scale Float Scale of dissolve generating
noise.

Manual Boolean Effect control switch, from
automatic to manual.

Level Float [0, 1] Effect amount at manual
control.

Table 5.6: “Dissolve“ Shader Graph input parameters.

33

5. Materials library
5.6 Filler

The “Filler“ material is a versatile effect, that can be used to transform the
look and feel of the surface. With its horizontal line animation, it creates an
illusion of a “hoop“ that moves from bottom to top (and vice versa), gradually
changing the color of the surface it is applied.

Figure 5.20: “Filler“ Material on a variety of objects.

Inspired by the work of TGA Digital (Figure 5.21 below) - their shader
for the transition between 2 materials, the task to create a similar effect was
supplied. This material can be used to create the effect of transformation
or appearance/revealing. The “hoop“ can be controlled either over time or
manually.

Figure 5.21: UE4 Transition Effect Shader by TGA Digital [20].

34

.. 5.6. Filler

Figure 5.22: “Filler“ Shader Graph.

In Unity Name Type Description

MainColor Color HDR Main color of the surface.

FillColor Color HDR Color of the surface after
transition.

EmitColor Color HDR “Hoop“ transition color.

FillWidth Float [0.01, 0.05] Thickness of the “hoop“
transition.

Manual Boolean Effect control switch, from
automatic to manual.

Level Float [-1, 1] Transition level at manual
control.

Table 5.7: “Filler“ Shader Graph input parameters.

35

5. Materials library
5.7 Flame

The “Flame“ material is a unique effect that can be used to bring fire to a
game. It creates a cartoon-like look that can be applied to objects, such as
torches, fire pits, or even character abilities. The shader simulates a fire’s
movement and color changes with its dynamic animation.

Figure 5.23: “Flame“ Material on a variety of objects.

When implementing a stylized version, fire can be defined as a pattern, with
a clear transition from the base to the flames, sometimes with an additional
passage. This kind of material would be good for stylized environments, like
the fireplace in the Figure 5.24.

Figure 5.24: Example of using the “Flame“ material with a model of a fireplace.
Models by Rocco Giandomenico (logs) [21], Michalina "Miszla" Gąsienica-Laskowy
(fireplace) [22].

36

..5.7. Flame

Figure 5.25: “Flame“ Shader Graph.

In Unity Name Type Description

MainColor Color HDR Main color of the fire.

EdgeColor Color HDR Color of flame tongues.

LerpColor Color HDR Color of transition flame
part.

Speed Float [0, 2] Speed of change of flame
tongues.

Level Float [0, 1] Level of flame tongues in
relation to whole fire.

Table 5.8: “Flame“ Shader Graph input parameters.

37

5. Materials library
The initial step (see Figure 5.26) aims to create a noise texture to serve

as the basis for the flame tongues’ masks. To achieve this, the custom sub
graph Offset Over Time (detailed in Section 4.2.1, Figure 4.7) is used to
move the UV of a Gradient Noise. The Gradient Noise is then subtracted
from Simple Noise, resulting in a dynamic texture.

Figure 5.26: Section 1 of the “Flame“ Shader Graph.

In the following section two (Figure 5.27), masks for the color transitions
of the flame tongues are created based on the noise texture obtained in the
previous section. To achieve this, the Smoothstep node is used to generate 3
masks with different levels, where each new mask’s upper bound differs from
the next one by 0.4. These masks are then converted into a full black-and-
white fire pattern using the Step node. The gradient from the Step 1 is used
to determine the hardness (flame height). Finally, the 2 layers for coloring
are created by subtracting the masks from each other.

Figure 5.27: Section 2 of the “Flame“ Shader Graph.

38

..5.7. Flame

The last section uses layers from the previous one (Figure 5.28). Both
layers are used in the order in the Lerp nodes, the first to color the edges of
the flame tongues and the base color, and the second to color the transition
layer.

Figure 5.28: Section 3 of the “Flame“ Shader Graph.

39

5. Materials library
5.8 Triplanar projection

Before proceeding to the next material, it is worth mentioning a small detail.
Most of the markup nodes in the shader graph use Position or UV, which
means that the only one independent of the unwrapping process is Triplanar
Projection. This method is widely used in modern texturing programs, for
example, Substance Painter (Figure 5.29).

Figure 5.29: Triplanar Projection feature in Adobe Substance Painter. [23]

Triplanar projection is a method of mapping a 3D texture onto a 3D object
without the need for UV coordinates. It works by projecting the texture
onto the object from three different axes (X, Y, Z) and blending the results
together. This allows the texture to be applied seamlessly to the object,
regardless of its shape or orientation [24]. An example is well illustrated in
Figure 5.30 below.

Figure 5.30: Triplanar maps over the surface from three different axes (X, Y, Z)
by Martin Palko.

40

..................................5.8. Triplanar projection

Triplanar projection can be useful in situations where UV mapping is
difficult or impossible, such as with highly detailed or irregularly-shaped
objects. The projected texture will look similarly good (an example of the
projected texture in Figure 5.31 can be seen below).

Figure 5.31: Triplanar mapped on a surface (left) and maps blending view
(right) by Martin Palko.

The Unity Shader Graph features a Triplanar Texture node that could
suffice, but it does not support process-generated noise, only pre-made tex-
tures. Fortunately, the Unity documentation [25] explains how projections
are computed (Figure 5.32) within this node.

float3 Node_UV = Position * Tile;
float3 Node_Blend = pow(abs(Normal), Blend);
Node_Blend /= dot(Node_Blend, 1.0);
float4 NodeX = SAMPLE_TEXTURE2D(Texture, Sampler, Node_UV.zy);
float4 NodeY = SAMPLE_TEXTURE2D(Texture, Sampler, Node_UV.xz);
float4 NodeZ = SAMPLE_TEXTURE2D(Texture, Sampler, Node_UV.xy);
float4 Out = NodeX * Node_Blend.x +

NodeY * Node_Blend.y +
NodeZ * Node_Blend.z;

Figure 5.32: Example code represents the possible outcome of Triplanar Texture
node (Default mode).

This approach simplifies the process of creating a Triplanar method for
a required procedural texture, such as Simple Noise (shown in Figure 5.62).
This can be achieved by using a sub graph. A second sub graph was also
created, differing only in the use of Gradient Noise.

41

5. Materials library

Figure 5.33: Triplanar Simple Noise sub graph.

In Unity Name Type Description

UV Vector3 UV coordinates for mapping.

NoiseScale Float Scale of the whole noise.

Blend Float The blending factor of all layers
of noise.

Table 5.9: Triplanar sub graph input parameters.

42

.. 5.9. Frost

5.9 Frost

The cold ice with “Frost“ material adds a winter touch to the environment.
It can be used on trees, rocks, and ice itself to give them a frosty appearance.
Additionally, the material can be used to create a cohesive visual theme for a
winter-themed level or event.

Figure 5.34: “Frost“ Material on a variety of objects.

The inspiration came from my love of snow and several games with a winter
(extremely harsh) theme, such as Long Dark and Frostpunk. There, icing
up a storm is a severe challenge for the player. This material also interprets
icing with crust, only in a more stylized format.

Figure 5.35: Frostpunk artwork by 11-bit Studios [26].

43

5. Materials library

Figure 5.36: “Frost“ Shader Graph.

In Unity Name Type Description

BaseColor Color HDR Main color of the surface.

FrostTint Color HDR Color of the frost part.

FrostLevel Float [-1.5, 1.5] Adjust the frost level mask
vertically.

SnowScale Float Scale of the frost noise
mask.

Table 5.10: “Frost“ Shader Graph input parameters.

The first section generates the icing level, which is oriented vertically
through the gradient via the Green channel of the Split node (Figure 5.37).
The level can be adjusted by the user. To avoid interference with future mask
usage, all negative values are removed using the Saturate node.

Figure 5.37: Section 1 of the “Frost“ Shader Graph.

44

.. 5.9. Frost

The second section focuses on generating the icing texture, using a simple
yet effective trick (Figure 5.38). Triplanar Simple Noise is utilized to create
a gray-scale texture, so it can be transformed into a normal map with the
Height To Normal node. By employing the principles of Fresnel’s work, using
the normal map as the basis for the Fresnel effect adds more dimension to
the material by taking into account the viewing angle.

Figure 5.38: Section 2 of the “Frost“ Shader Graph.

In the final step (Figure 5.39), coloring is accomplished using a Lerp node
that blends by using the combination of both masks: the level generated in
the first section and the icing from the second one, with the user determining
the primary surface color and the ice shade. The output is then sent to the
Base Color channel.

Figure 5.39: Section 3 of the “Frost“ Shader Graph.

45

5. Materials library
5.10 Glitter

The spacey “Glitter“ can be used to add a touch of otherworldly charm to
objects in a game. With its shimmering, glittering appearance, it can be
used to add a touch of magic and wonder to objects such as weapons, armor,
or other decorative elements. The material can also be applied to create a
representation of the night sky or a space cube map.

Figure 5.40: “Glitter“ Material on a variety of objects.

As inspiration were taken photos (or generated pictures) of the cosmos/-
galaxies (like on a picture below). From them were borrowed the scatter of
stars, the brightness of the “surface“ and the color transition.

Figure 5.41: Galaxy by rawpixel.com [27].

46

....................................... 5.10. Glitter

Figure 5.42: “Glitter“ Shader Graph.

In Unity Name Type Description

Color Color Main color of the sur-
face.

Scale Float Particles noise scale.

Density Float Particle density.

Speed Float [0.01, 0.1] Speed of glare of par-
tials on the surface.

FresnelPower Float [0, 2] Fresnel effect strength.

Table 5.11: “Glitter“ Shader Graph input parameters.

47

5. Materials library
5.11 Grid

The “Grid“ material is a vibrant and eye-catching material that can be used
to create a retro-futuristic or cyberpunk aesthetic in a game. By adjusting the
color and intensity of the grid lines, it can give the impression of a computer
interface or data visualization. Additionally, it can be used as a background
element to add visual interest and depth to a scene. The grid lines can be
made to pulsate or animate to create a sense of movement and energy.

Figure 5.43: “Grid“ Material on a variety of objects.

The material features a purple grid pattern that is reminiscent of the
popular retro wave style, which is characterized by a blend of 1980s nostalgia
and futuristic elements (like on picture below).

Figure 5.44: Retrowave Neon 80’s Background by Rafael-De-Jongh [28].

48

.. 5.11. Grid

Figure 5.45: “Grid“ Shader Graph.

In Unity Name Type Description

Color Color HDR Main color of a grid.

GridSize Float [0.7, 0.9] Size of a quad.

GridFrequency Float Grid quad frequency.

Speed Float [1, 5] Speed of an offset.

Horizontal Boolean Direction of an offset
switcher (horizontal/ver-
tical).

Table 5.12: “Grid“ Shader Graph input parameters.

49

5. Materials library
In the first section, the grid is controlled with a time offset and a switch for

horizontal/vertical rotation. By creating a corresponding vector in UV with
a forced X or Y excision, the grid can be rotated. In the second section, the
offset from the first section is used, and the grid size is controlled using an
input parameter. When a value greater than 1 is present, the node Fraction
is utilized to repeat the UV instead of stretching it. The above-described
process can be seen on Figure 5.46

Figure 5.46: Sections 1 & 2 of the “Grid“ Shader Graph.

In the third section, a transparency mask is created while the fourth section
handles coloring. The UV generated in the second section is utilized to call
the Rectangle node, producing a grid mask of the user-defined size that is
always square, because a single parameter determines both height and width.
The resulting mask is applied to the Alpha channel and is also recolored to
the desired color before being sent to Emission (Figure 5.47).

Figure 5.47: Sections 3 & 4 of the “Grid“ Shader Graph.

50

...................................... 5.12. Halftone

5.12 Halftone

The “Halftone“ is a special kind of material that is used to simulate a halftone
printing effect on a 3D object. The Halftone can be adjusted using various
parameters such as dot size, spacing, and angle, to fine-tune the final look.
As an example, check out the Kirby games (e.g. Kirby Battle Royale[?])

Figure 5.48: “Halftone“ Material on a variety of objects.

The Halftone effect is a technique used in graphic design and digital art
to simulate the appearance of a printed image or photograph. It works by
breaking the image down into a series of tiny dots, with the size and spacing
of the dots varying to create shading and depth (such as in the picture below).

Figure 5.49: Halftone effect example (source image on the left, final transition
on the right) [29].

51

5. Materials library
You may also have noticed the outline effect that often goes along with

halftone. The outline effect is used in games to create a visible line around
the edges of an object (as in Figure 5.50). It is typically used to create
a visual distinction between different objects in the game world or to draw
attention to certain objects.

Figure 5.50: Outline effect in Left4Dead game is used to distinct player’s allies.

The effect works by rendering a duplicate of the object, slightly scaled up,
and drawing a colored line around the edges of the duplicate. The result is
an outline that gives the appearance of a border around the original object.
The thickness and color of the outline can be adjusted. The graph of this
effect is quite small, it can be observed below in Figure 5.51.

Figure 5.51: “Outline“ Shader Graph.

In Unity Name Type Description

OutlineColor Color Main color of the outline.

OutlineThickness Float [0, 1] Regulates thickness of the
outline.

Table 5.13: “Outline“ Shader Graph input parameters.

52

...................................... 5.12. Halftone

Before looking at the Halftone graph in more detail, it is worth mentioning
the custom nodes that will be used in it..GetMainLight

It is responsible for obtaining basic information about the main light
source of the “Directional“ type, for subsequent use in filling the surface
(Attenuation parameter) and direction, for obtaining the shadow (Di-
rection parameter) [30]. The code generating this code can be observed
below:

void GetMainLight_float(out half3 color,
out half3 direction,
out half attenuation)

{
#ifdef SHADERGRAPH_PREVIEW
direction = half3(0.5, 0.5, 0.5); // default light direction
color = half3(1, 1, 1); // white color
attenuation = 1.0;
#else

// URP
#if defined(UNIVERSAL_LIGHTING_INCLUDED)
Light mainLight = GetMainLight();
color = mainLight.color;
direction = mainLight.direction;
attenuation = mainLight.distanceAttenuation *

mainLight.shadowAttenuation;
#endif
#endif

}

Figure 5.52: GetMainLight custom function node source.

. ColorValueReduce
This node is a sub graph and does nothing supernatural. The principle
of its operation is as follows: convert RGB to HSV, reduce Value (green
channel in split), and convert HSV to RGB. The graph can be seen on
Figure 5.53.

Figure 5.53: “ColorValueReduce“ Shader Graph.

53

5. Materials library
In Unity Name Type Description

Color Color Main color of the surface.

DotsTint Float Adjusts how much the dots lose
color in relation to the main color.

Table 5.14: “ColorValueReduce“ Shader Graph input parameters.

Now we can take a more in-depth look at the main graph itself.

Figure 5.54: “Halftone“ Shader Graph.

In Unity Name Type Description

Color Color Main color of the surface.

DotsTint Float [0, 1] Adjusts how much the dots lose
color in relation to the main color.

Density Float Determines the density of the
dots.

Lit Float [0, 1] How much the dots condense into
the shadow.

Transition Float [1, 3] Determines the level of transition.

Table 5.15: “Halftone“ Shader Graph input parameters.

54

...................................... 5.12. Halftone

Section one generates a shadow mask using the custom node Get Main
Light (Figure 5.55). First, information about the main light in the scene is
obtained, and then the Dot Product aligns the surface and light coordinates
to calculate the shadow. The resulting value must be adjusted to fit within
the range of -1 to 1. However, the user can adjust the output stream to
modify the shadow transition and dot frequency.

Figure 5.55: Section 1 of the “Halftone“ Shader Graph.

The next section (Figure 5.56) is responsible for generating dots in the
shadows by using a dot pattern, such as Voronoi, with the offset angle
removed, and applying it as the Step parameter. The resulting mask is
then used for coloring through Lerp, with the main color being darkened
beforehand through custom node Color Value Reduce for the shadow effect.

Figure 5.56: Section 2 of the “Halftone“ Shader Graph.

55

5. Materials library
5.13 Hologram

The “Hologram“ material is an effect that can be used to bring a futuristic or
sci-fi element to a game. It can be applied to a wide range of objects, from
characters and vehicles to environmental elements and props. It can help to
create a sense of technology or advanced capabilities.

Figure 5.57: “Hologram“ Material on a variety of objects.

Holograms are an integral part of the sci-fi theme. They can be seen most
often in movies, such as in Star Wars. In games they are also very common,
for example in the game series Halo there is a character who is represented
by a hologram - the AI “Cortana“ (Figure 5.37).

Figure 5.58: Cortana as a hologram in Halo 5.

56

..................................... 5.13. Hologram

Figure 5.59: “Hologram“ Shader Graph.

In Unity Name Type Description

StripesScale Float Stripes thickness.

Speed Float [-0.1, 0.1] Hologram update
speed.

ColorTop Color HDR Main color of the sur-
face for the gradient
transition.

ColorBottom Color HDR Additional color of the
surface for the gradi-
ent transition.

FresnelColor Color HDR Fresnel effect color.

FresnelPower Float [5, 10] Fresnel effect intensity.

Distance Float [0, 1] Distance between
stripes.

DistortionScale Float [0, 20] Hologram distortion
amount.

Table 5.16: “Hologram“ Shader Graph input parameters.

57

5. Materials library
5.14 Liquid

The “Liquid“ material can be used to simulate the appearance of a liquid
substance within a game. The material’s wave effect can add an element
of movement and dynamic motion to the game environment, creating the
illusion of waves on the surface of the liquid.

Figure 5.60: “Liquid“ Material on a variety of objects.

The fluid was once a stumbling block in game graphics. It is a very complex
computational process. However, games prefer simulation, so this material
only simulates the motion of waves based on a Sine wave. However, such a
shader can be modified, for example by adding a tilt or velocity dependence.

Figure 5.61: Liquid in the bottle in Half-Life: Alyx (waves and the movement
of the liquid depends on the movement of the bottle).

58

....................................... 5.14. Liquid

Figure 5.62: “Liquid“ Shader Graph.

In Unity Name Type Description

Color Color Main color of the liquid.

BackFaceTint Float [0, 1] How much color fades
when viewed “through“
the liquid.

Direction Vector3 Direction of the waves in
world space.

Waves Float [0.01, 0.1] Waves strength.

Speed Float [1, 10] Controls speed of waves.

Table 5.17: “Liquid“ Shader Graph input parameters.

59

5. Materials library
5.15 Minecraft

This material is a posterized effect that can be used to create a pixelated
appearance similar to that of the popular video game, Minecraft. It can be
useful for creating games that have a voxel-style aesthetic.

Figure 5.63: “Minecraft“ Material on a variety of objects.

The inspiration is obvious - a block of grass in Minecraft (Figure 5.42).
However, this material can be customized to a different palette, thus covering
several more blocks of the famous game.

Figure 5.64: Grass block in Minecraft.

60

..................................... 5.15. Minecraft

Figure 5.65: “Minecraft“ Shader Graph.

In Unity Name Type Description

Pixels Float Pixel density.

Color Color Main color.

Color2 Color Additional color.

Level Float [0, 1] Transition between both colors.

Scale Float Noise tilling.

Table 5.18: “Minecraft“ Shader Graph input parameters.

This material will be broken down in detail in the following snapshots
describing the generation process step by step.

The first and second sections are shown in Figure 5.66 (below), where the
first section is focused on controlling the texture’s scale. The output is then
passed on to section two, where a level mask is created to determine the ratio
of grass to ground. This is achieved by adjusting the gradient’s density. To
remove the gray-scale effect, the Step node is utilized, resulting in a clearer
transition.

Figure 5.66: Sections 1 & 2 of the “Minecraft“ Shader Graph.

61

5. Materials library
In the third section (Figure 5.67), the focus is on pixelating the UV

texture. This is achieved using the Posterize node, which allows the user
to adjust the level of pixelation as needed. The pixelated UVs are then fed
into the Triplanar Simple Noise node to generate the well-known noise effect.
Finally, the Add node is used to slightly increase the overall brightness.

Figure 5.67: Section 3 of the “Minecraft“ Shader Graph.

In the final section (Figure 5.68), the texture is colored according to the
user’s preference. The level mask from the first step is used to divide the
texture into two parts - the top (grass) and the bottom (ground). Once these
parts are colored, they are merged and sent to Base Color.

Figure 5.68: Section 4 of the “Minecraft“ Shader Graph.

62

.......................................5.16. Mirage

5.16 Mirage

The “Mirage“ material is an effect that can be used to create a visual distortion
similar to a heat haze or mirage. It can be applied to environmental elements,
such as deserts or hot urban environments, to create a sense of heat and
distortion. The material features a controllable effect that can be adjusted to
fit the desired look and feel of the scene (e.g. plane engines or fire).

Figure 5.69: “Mirage“ Material applied on a plane near the camera, so the
whole view is distorted.

The inspiration came from the frequent flying - each plane has this obscu-
ration when the engines are on, about the same as in Figure 5.53. When the
engines accelerate, the heat is released faster, thus the distortion changes its
appearance, which can also be adjusted in the created material.

Figure 5.70: Heat Haze near plane engines by Scott Barbour [31].

63

5. Materials library

Figure 5.71: “Mirage“ Shader Graph.

In Unity Name Type Description

Speed Vector2 Main color of the surface.

Tiling Vector2 Tiling of the distortion tex-
ture.

Distortion Float Distortion amount on heat
haze.

FresnelPower Float Adjusts the mask transition
(to control transparency at
the edges of the mesh, when
using material on objects
placed in the world).

Table 5.19: “Mirage“ Shader Graph input parameters.

64

..................................... 5.17. PewDiePie

5.17 PewDiePie

The “PewDiePie“ material is inspired by the iconic red-black striped pattern
(figure 5.55 below) often associated with the popular YouTuber Felix’s Arvid
Ulf Kjellberg (known as PewDiePie [32]). The material’s repeating stripes can
add a touch of personality and pop culture reference to a game environment.

Figure 5.72: “PewDiePie“ Material on a variety of objects.

The material’s bold colors and high contrast make it easily recognizable
(Figure 5.73). It changes over time, being distorted by sinus waves, and
does not depend on the point of view, which makes it quite stand out from
its surroundings.

Figure 5.73: PewDiePie’s YouTube channel pattern. Used as a YouTube banner
image, as a screen saver while waiting for the start of the stream, and as a
recognizable texture for branded merchandise [33].

65

5. Materials library

Figure 5.74: “PewDiePie“ Shader Graph.

In Unity Name Type Description

StripeThickness Float Controls the thickness of individual
stripe.

StripesCount Float Regulates the count of stripes.

Table 5.20: “PewDiePie“ Shader Graph input parameters.

66

..5.18. Soap

5.18 Soap

The “Soap“ material is a transparent, reflective material that can be used
to add a touch of realism to objects such as bubbles or other translucent
objects. Reflective properties allow it to catch and reflect light in a way that
accurately simulates the way a real soap bubble would behave.

Figure 5.75: “Soap“ Material on a variety of objects.

The inspiration for a graph came from the ever-changing iridescence texture
of a common soap bubble (such as in Figure 5.76). The iridescence on
soap bubbles arises due to the interference of light waves. When light passes
through the thin layer of soap film, some of it is reflected from the top surface
of the film, while some are refracted and reflected from the bottom surface.
The reflected waves from both surfaces interfere with each other, producing a
pattern of colors that vary based on the thickness of the film [34].

Figure 5.76: Group of soap bubbles with good visible film [35].

67

5. Materials library

Figure 5.77: “Soap“ Shader Graph.

In Unity Name Type Description

Speed Float [0, 1] How quickly the noise tex-
ture will change over time.

FilmIntensity Float [5, 10] Primary color intensity.

FilmTexture Texture2D The texture that will be used
as the main color.

Fresnel Float [2, 6] Glow intensity.

Table 5.21: “Soap“ Shader Graph input parameters.

68

....................................... 5.19. Toon

5.19 Toon

A “Toon“ material gives objects in a game a cartoon-like appearance. It is
characterized by its simplified lighting and shading techniques, which typically
include bright, flat colors and sharp outlines (commonly named Cel shading).
The Toon shader is often used in games that want to evoke a particular visual
aesthetic or create a specific mood (e.g. in a lighthearted tone).

Figure 5.78: “Toon“ Material on a variety of objects.

The inspiration for this material can be gained from anywhere, thankfully
there are plenty of games with this kind of visuals. Personally, I’ve most
often seen the description of Toon shader based on his version in The Legend
of Zelda: Breath of the Wild (Figure 5.79).

Figure 5.79: Cel shading in The Legend of Zelda: Breath of the Wild.

69

5. Materials library

Figure 5.80: “Toon“ Shader Graph.

In Unity Name Type Description

Color Color Main color of the sur-
face.

Falloff Float [0, 1] Cel shading transition
level.

FalloffIntensity Float [0, 1] How wide the stripes
are.

Specular Float Specular part high-
light.

SpecularIntensity Float [0, 1] Specular part color in-
tensity (from slightly
main color tint to
white).

Table 5.22: “Toon“ Shader Graph input parameters.

70

....................................... 5.20. Water

5.20 Water

The material “Water“ is a stylized material that simulates waves on the
surface of water. In contrast to the usual water surface, this one has a flow
whose speed can be controlled.

Figure 5.81: “Water“ Material on a variety of objects.

The inspiration came from several games, but the most interesting material
was the water from Zelda: Wind Waker (see the Figure 5.82 below). Often
foam and waves are made with a Voronoi noise. However, the goal was to
convey a simplified effect, keeping in mind that the potential user would use
the material at, say, a river or waterfall, where the flow is clearly visible.

Figure 5.82: Water surface in Zelda: Wind Waker.

71

5. Materials library

Figure 5.83: “Water“ Shader Graph.

In Unity Name Type Description

MainColor Color Main color of the water sur-
face.

FoamColor Color HDR Color of the foam stripes.

Waves Float [1, 10] Controls the count of the
waves.

WaveHeight Float [0.1, 0.5] Regulates the wave strength.

Table 5.23: “Water“ Shader Graph input parameters.

72

....................................... 5.20. Water

In the first section (Figure 5.84), the focus is on generating the UV.
The process utilizes a custom node named Offset Over Time, which creates
dynamic waves that are dependent on the world location. A Vector2 is
also created to control the number of waves along the Y-axis. Finally, the
information is transferred to Fraction. The UV can be distorted by multiplying
it with Triplanar Gradient Noise, as shown in step 2.

Figure 5.84: Section 1 of the “Water“ Shader Graph.

Section two creates the wave texture directly (Figure 5.85). The Rectangle
node is called, stretching it by width and leaving control over the wave
thickness to the user. Then, the created UV is applied, and the wave texture
is ready. The resulting mask is used for Emission, making the foam waves
brighter. Additionally, a mask for the main color is created using One Minus.

Figure 5.85: Section 2 of the “Water“ Shader Graph.

73

5. Materials library
In the last section (Figure 5.86), the mesh is deformed to resemble waves.

This effect is achieved by utilizing noise, similar to the method used with UV.
However, in this case, the noise is applied to the normal vector of the vertex.
By adding these changes to the vertex position in the object space, the shape
of the surface is altered, creating a wave-like appearance (with a magnitude
of 0.05 in step 2). The resulting output is then applied to the Position.

Figure 5.86: Section 3 of the “Water“ Shader Graph.

74

....................................... 5.21. Wood

5.21 Wood

The “Wood“ material is a wood texture that can be applied to objects in
a scene to add a touch of authenticity. This material is particularly well-
suited for use on objects that are meant to resemble wooden surfaces, such
as furniture, doors, or floor.

Figure 5.87: “Wood“ Material on a variety of objects.

There was no special inspiration here, the goal was to create a texture with
noise that would look the most believable when a gradient was applied to
it. Most wood (treated) has noticeably blurred rings on the surface with a
distinct color transition (as in the Figure 5.88 below).

Figure 5.88: Photo of the wooden surface from close up by FWStudio [36].

75

5. Materials library

Figure 5.89: “Wood“ Shader Graph.

In Unity Name Type Description

Gradient Gradient The basic color palette for covering
Musgrave texture ([144, 42, 10] has
been chosen).

Tiling Vector2 Noise texture tiling.

Scale Float Overall scale of a texture.

Variety Float [0, 1] Transition in curvatures parts.

Warps Float Noise distortion adjustment.

Table 5.24: “Wood“ Shader Graph input parameters.

The first section creates noise of the Musgrave type [37] by calling Gradient
Noise, subtracting some number of transitions from it, and finally using it as
the UV coordinates of Simple Noise (Figure 5.90). The result is a texture
with circular transitions, similar to wood. This texture will also be responsible
for Smoothness, which will give more impact.

Figure 5.90: Section 1 of the “Wood“ Shader Graph.

76

....................................... 5.21. Wood

Section two (Figure 5.91) only takes care of the color, here applies the
Gradient and Mask, the texture as a mask that was made in the first section.

Figure 5.91: Section 2 of the “Wood“ Shader Graph.

77

5. Materials library
5.22 Metal

The material with the uncomplicated name “Metal“ was created without a
focus on stylizing, but on creating a physical/chemical property inherent in
certain metals.

Figure 5.92: “Metal“ Material on a variety of objects (steel, copper, titanium).

The effect that can be seen in the metals shown above is “heat coloring“,
which is a phenomenon that occurs when a metal surface is heated (Figure
5.93) and the temperature causes the metal to oxidize, resulting in a color
change [38]. This effect is commonly seen in metals such as steel, copper, and
titanium.

Figure 5.93: Examples of heat coloring on metals: steel by Jeffrey H Dean [39],
copper by Mari [40], titanium by Robert Lopez [41].

78

....................................... 5.22. Metal

Figure 5.94: “Metal“ Shader Graph.

In Unity Name Type Description

Color Color Main color of the surface.

Heat Float [0, 1] The intensity of the heat
spectrum.

HeatVisibility Float [0, 1] Visibility of the heat.

HeatScale Float Controls the scale of the
noise.

Spectrum Float [0, 1] How much spectrum will be
used for heating.

Bumps Float [0, 1] The intensity of the normal
map.

Type Enum The keyword responsible for
the type of metal.

Table 5.25: “Metal“ Shader Graph input parameters.

79

5. Materials library
Section one generates presets of triplanar normal maps for three different

types of metals (top to bottom: steel, copper, and titanium) using the Enum
switch (Figure 5.95). The user can select the desired metal type and control
the intensity of the normal maps with an input parameter via the Normal
Strength node. The output is connected to the next section and directly to
the Normal channel.

Figure 5.95: Section 1 of the “Metal“ Shader Graph.

The next section (Figure 5.96) is dedicated to the creation of noise that
simulates the oxidation of metal when exposed to heat. Firstly, the normal
map is converted into Tangent space to ensure accurate and consistent shading
on the surface. This is because Tangent space aligns with the surface geometry,
ensuring the normal map represents surface details regardless of the viewing
angle. The output is then combined with the Position Object and used as UV
coordinates for the Triplanar Gradient Noise. This approach utilizes several
surface properties to generate the noise, improving the material’s perception.
In the final step, a heating spectrum is obtained by utilizing noise as UV.
This spectrum can be customized by the user through two input parameters.
Before that, any negative values are removed via Saturate node to prevent
any overlap in the resulting color palette.

Figure 5.96: Section 2 of the “Metal“ Shader Graph.

80

....................................... 5.22. Metal

The last section allows the user (again with the Enum) to select the
main color of the metal (Figure 5.97), which will be affected by the Metal
Reflectance node, which outputs the colored specular highlights on certain
metals. Now it only remains to use spectrum and ready color through Lerp,
the visibility parameter available to the user is used as a mask (by adjusting
the value from 0 to 1).

Figure 5.97: Section 3 of the “Metal“ Shader Graph.

81

5. Materials library
5.23 Pearl

The “Pearl“ material in Unity aims to replicate the basic properties of real
pearls, such as their iridescence effect, smooth (or bumpy) surface, and
unique color. Upon observing the surface of a pearl, it becomes evident that
it possesses iridescence properties that were taken into consideration during
the development of the Soap material (Section 5.9).

Figure 5.98: “Pearl“ Material on a variety of objects.

Another term relevant to pearls is Pearlescence. The key difference between
Iridescence and Pearlescende is in how light interacts with the surface of the
material. While iridescence is caused by the interference of light waves and
creates different colors depending on the viewing angle, Pearlescence is caused
by the reflection and refraction of light within the material, giving it a pearly
sheen (such as the one in the Figure 5.99 below) [42].

Figure 5.99: Different types of pearls by GIA.

82

....................................... 5.23. Pearl

Figure 5.100: “Pearl“ Shader Graph.

In Unity Name Type Description

Color Color Main color of the surface.

Specular Float [0, 1] Adjusts the mask level of the
specular shade.

Spectrum Float [-0.1, 0] How much spectrum will be
used for iridescence.

NoiseScale Float Controls the scale of the iri-
descence noise.

Bumps Float [0, 1] The intensity of the normal
map.

Table 5.26: “Pearl“ Shader Graph input parameters.

83

5. Materials library
5.24 Glass

The “Glass“ material is designed to mimic the look of real-life distorted glass.
This type of glass can be found in various places, such as old buildings, and
is characterized by its wavy or uneven surface.

Figure 5.101: “Glass“ Material on a variety of objects.

When observing distorted glass up close (such as in Figure 5.102 below),
its pattern appears as a series of cavities that can be replicated using a gray-
scale texture like Gradient Noise. The material is created using a combination
of procedural noise textures and refraction effects, which give the appearance
of light being bent as it passes through the glass.

Figure 5.102: Photo of the distorted glass by Image*After [44].

84

....................................... 5.24. Glass

Figure 5.103: “Glass“ Shader Graph.

In Unity Name Type Description

Distortion Float [0, 1] Regulates the distortion
intensity.

DistortionScale Float [10, 20] Noise scaling.

Table 5.27: “Glass“ Shader Graph input parameters.

85

86

Chapter 6
Conclusion

The various issues involved in simulating the appearance of materials, with
a focus on physically based models, have been explored. The support for
creating materials using Shader Graphs in Unity has been described, and
the possibilities of creating specialized, dynamically changing materials have
been highlighted.

A sampler of basic, frequently used materials has been created using a
Shader Graph. High-quality detail simulation has been achieved through the
use of detail textures, noise functions, normal maps, and height maps.

To demonstrate the flexibility and versatility of the materials created, a
test scene has been modeled where materials can be easily previewed and
modulated.

Through this work, a solid understanding of the tools and techniques
available in the Materials Library in Unity for creating high-quality materials
and textures for use in games has been gained.

In the future, there are plans to expand on the materials created using
Shader Graphs in Unity. Specifically, there is a desire to explore more
advanced techniques for creating materials, such as the use of subsurface
scattering. Additionally, there is a plan to incorporate more complex custom
functions, as well as explore the use of procedural generation to create truly
unique materials.

Furthermore, there is a goal to integrate the materials created into a larger
game project, where they can be tested and refined. This will involve exploring
how the materials behave in different environmental factors and conditions.

87

88

Bibliography

[1] We have you covered with the Measured Materials Library, Edward Martin,
Luc Vo Van, 08.02.2019. https://blog.unity.com/manufacturing/w
e-have-you-covered-with-the-measured-materials-library

[2] Materials, Joey de Vries, Learn OpenGL.
https://learnopengl.com/Lighting/Materials

[3] Blender shader nodes, Blender 3.5 Manual.
https://docs.blender.org/manual/en/latest/render/shader_node
s/shader/principled.html

[4] Types of textures, Matuchnov I., Black VR, 2021.
https://blackvr.org/tpost/a23mydd5bc-tipi-tekstur

[5] Render pipeline feature comparison, Unity Technologies, 2022.
https://docs.unity3d.com/2021.3/Documentation/Manual/rende
r-pipelines-feature-comparison.html

[6] Textures and Materials for Rainbow6, Alina Ivanchenko CG Artist.
https://foxfrombox.com/projects/A1qAz

[7] Blender 2.8 Procedural PBR Textures for beginners, Learn OpenGL,
@Jayanam, 2019.
https://www.youtube.com/watch?v=2Ea7JKvTYhg

[8] Sub Graph, Unity Technologies.
https://docs.unity3d.com/Packages/com.unity.shadergraph@7.1/
manual/subgraph.html

[9] Real-Time Rendering, Tomas Akenine-Möller, Eric Haines, Naty Hoffman,
Angelo Pesce, Michal Iwanicki, Sebastien Hillaire, 1999.

[10] Unity ShaderGraph CookBook vol.1, Kamosoba, 2021.
https://zenn.dev/r_ngtm/books/shadergraph-cookbook/viewer/l
ookup-of-recipe

[11] Phong reflection model, Wikipedia.
https://en.wikipedia.org/wiki/Phong_reflection_model

89

https://blog.unity.com/manufacturing/we-have-you-covered-with-the-measured-materials-library
https://blog.unity.com/manufacturing/we-have-you-covered-with-the-measured-materials-library
https://learnopengl.com/Lighting/Materials
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/shader/principled.html
https://blackvr.org/tpost/a23mydd5bc-tipi-tekstur
https://docs.unity3d.com/2021.3/Documentation/Manual/render-pipelines-feature-comparison.html
https://docs.unity3d.com/2021.3/Documentation/Manual/render-pipelines-feature-comparison.html
https://foxfrombox.com/projects/A1qAz
https://www.youtube.com/watch?v=2Ea7JKvTYhg
https://docs.unity3d.com/Packages/com.unity.shadergraph@7.1/manual/sub graph.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@7.1/manual/sub graph.html
https://zenn.dev/r_ngtm/books/shadergraph-cookbook/viewer/lookup-of-recipe
https://zenn.dev/r_ngtm/books/shadergraph-cookbook/viewer/lookup-of-recipe
https://en.wikipedia.org/wiki/Phong_reflection_model

6. Conclusion......................................
[12] Illustration of the components of the Phong reflection model (Ambient,

Diffuse, and Specular reflection), Brad Smith, 2006.
https://commons.wikimedia.org/wiki/File:Phong_components_ver
sion_4.png

[13] About Shader, Unity Technologies.
https://docs.unity3d.com/Manual/Shaders.html

[14] Metallic Vs Specular, Unity Technologies.
https://docs.unity3d.com/Manual/StandardShaderMetallicVsSpec
ular.html

[15] URP_Materials_Library Unity Project, GitHub.
https://github.com/ScoTTishCyclopSS/URP_Materials_Library

[16] Biological Waste Processing Plant, The Half-Life & Portal Encyclopedia.
https://half-life.fandom.com/wiki/Biological_Waste_Processin
g_Plant

[17] Green Canes, Stardew Valley Wiki, 2021.
https://stardewvalleywiki.com/Green_Canes

[18] Claymation, Adobe.
https://www.adobe.com/creativecloud/animation/discover/claym
ation.html

[19] Claymation style animation in Blender 2.81, J Middleton on YouTube.
https://www.youtube.com/watch?v=omXGa9AJHPY

[20] UE4 Transition Effect Shader, TGA Digital on YouTube.
https://www.youtube.com/watch?v=_vGLVXHEQDQ

[21] Stylized Low-poly Wooden beam, Rocco Giandomenico on Sketchfab.com.
https://sketchfab.com/3d-models/stylized-low-poly-wooden-b
eam-01b16abea26646c8ba334c905374f83e

[22] Stylized Modular Fireplace, Michalina "Miszla" Gąsienica-Laskowy on
Sketchfab.com.
https://sketchfab.com/3d-models/stylized-modular-fireplace
-696bfa98c2b34bc3b962151ba3304928

[23] Triplanar Projection, Adobe (Substance Painter), 2022.
https://substance3d.adobe.com/documentation/spdoc/tri-plana
r-projection-180191954.html

[24] Triplanar Mapping, Martin Palko, 20/03/2014.
https://www.martinpalko.com/triplanar-mapping/

[25] Triplanar Node, Unity Technologies.
https://docs.unity3d.com/Packages/com.unity.shadergraph@8.1/
manual/Triplanar-Node.html

90

https://commons.wikimedia.org/wiki/File:Phong_components_version_4.png
https://commons.wikimedia.org/wiki/File:Phong_components_version_4.png
https://docs.unity3d.com/Manual/Shaders.html
https://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html
https://docs.unity3d.com/Manual/StandardShaderMetallicVsSpecular.html
https://github.com/ScoTTishCyclopSS/URP_Materials_Library
https://half-life.fandom.com/wiki/Biological_Waste_Processing_Plant
https://half-life.fandom.com/wiki/Biological_Waste_Processing_Plant
https://stardewvalleywiki.com/Green_Canes
https://www.adobe.com/creativecloud/animation/discover/claymation.html
https://www.adobe.com/creativecloud/animation/discover/claymation.html
https://www.youtube.com/watch?v=omXGa9AJHPY
https://www.youtube.com/watch?v=_vGLVXHEQDQ
https://sketchfab.com/3d-models/stylized-low-poly-wooden-beam-01b16abea26646c8ba334c905374f83e
https://sketchfab.com/3d-models/stylized-low-poly-wooden-beam-01b16abea26646c8ba334c905374f83e
https://sketchfab.com/3d-models/stylized-modular-fireplace-696bfa98c2b34bc3b962151ba3304928
https://sketchfab.com/3d-models/stylized-modular-fireplace-696bfa98c2b34bc3b962151ba3304928
https://substance3d.adobe.com/documentation/spdoc/tri-planar-projection-180191954.html
https://substance3d.adobe.com/documentation/spdoc/tri-planar-projection-180191954.html
https://www.martinpalko.com/triplanar-mapping/
https://docs.unity3d.com/Packages/com.unity.shadergraph@8.1/manual/Triplanar-Node.html
https://docs.unity3d.com/Packages/com.unity.shadergraph@8.1/manual/Triplanar-Node.html

...................................... 6. Conclusion

[26] Frostpunk Posters, 11-bit Studios.
https://displate.com/11bit/frostpunk

[27] Space galaxy background, by rawpixel.com.
https://www.freepik.com/free-vector/space-galaxy-backgroun
d_4413893.htm#query=spacebackground

[28] Retrowave Neon 80’s Background - 4K, Rafael-De-Jongh, 16/08/2017.
https://www.deviantart.com/rafael-de-jongh/art/Retrowave-N
eon-80-s-Background-4K-699082710

[29] How to Make Amazing Halftone Effects with Photoshop, David Blatner,
10/06/2015.
https://creativepro.com/how-to-make-amazing-halftone-effec
ts-with-photoshop/

[30] GetMainLight() source, Unity Technologies.
https://github.com/Unity-Technologies/Graphics/blob/master/P
ackages/com.unity.render-pipelines.universal/ShaderLibrary/L
ighting.hlsl

[31] Aircraft Engines, Scott Barbour, Getty Images.
https://www.gettyimages.in/detail/news-photo/exhaust-emits
-from-the-engines-of-a-passenger-jet-as-it-news-photo/57214
655

[32] @PewDiePie user’s profile, YouTube.com.
https://www.youtube.com/@PewDiePie

[33] Pewdiepie Stream Asset, dspall.
https://www.dspall.work/portfolio/pewdiepie

[34] A Practical Extension to Microfacet Theory for the Modeling of Varying
Iridescence., Laurent Belcour, Pascal Barla, ACM Transactions on Graph-
ics, 2017, 36 (4), pp.65. doi:ff10.1145/3072959.3073620ff.ffhal-01518344v2

[35] Soap bubbles, Rapeepong Puttakumwong, Getty Images.
https://www.gettyimages.nl/detail/foto/the-rainbow-soap-bub
bles-from-the-bubble-blower-royalty-free-beeld/1319471891

[36] Brown Wooden Surface, FWStudio on www.pexels.com.
https://www.pexels.com/photo/brown-wooden-surface-129733/

[37] Musgrave Texture Node, Blender 3D.
https://docs.blender.org/manual/en/latest/render/shader_node
s/textures/musgrave.html

[38] Heat Tint (Temper) Colours on Stainless Steel surface Heated in air,
British Stainless Steel Association.
https://bssa.org.uk/bssa_articles/heat-tint-temper-colours
-on-stainless-steel-surface-heated-in-air/

91

https://displate.com/11bit/frostpunk
https://www.freepik.com/free-vector/space-galaxy-background_4413893.htm#query=space background
https://www.freepik.com/free-vector/space-galaxy-background_4413893.htm#query=space background
https://www.deviantart.com/rafael-de-jongh/art/Retrowave-Neon-80-s-Background-4K-699082710
https://www.deviantart.com/rafael-de-jongh/art/Retrowave-Neon-80-s-Background-4K-699082710
https://creativepro.com/how-to-make-amazing-halftone-effects-with-photoshop/
https://creativepro.com/how-to-make-amazing-halftone-effects-with-photoshop/
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl
https://github.com/Unity-Technologies/Graphics/blob/master/Packages/com.unity.render-pipelines.universal/ShaderLibrary/Lighting.hlsl
https://www.gettyimages.in/detail/news-photo/exhaust-emits-from-the-engines-of-a-passenger-jet-as-it-news-photo/57214655
https://www.gettyimages.in/detail/news-photo/exhaust-emits-from-the-engines-of-a-passenger-jet-as-it-news-photo/57214655
https://www.gettyimages.in/detail/news-photo/exhaust-emits-from-the-engines-of-a-passenger-jet-as-it-news-photo/57214655
https://www.youtube.com/@PewDiePie
https://www.dspall.work/portfolio/pewdiepie
https://www.gettyimages.nl/detail/foto/the-rainbow-soap-bubbles-from-the-bubble-blower-royalty-free-beeld/1319471891
https://www.gettyimages.nl/detail/foto/the-rainbow-soap-bubbles-from-the-bubble-blower-royalty-free-beeld/1319471891
https://www.pexels.com/photo/brown-wooden-surface-129733/
https://docs.blender.org/manual/en/latest/render/shader_nodes/textures/musgrave.html
https://docs.blender.org/manual/en/latest/render/shader_nodes/textures/musgrave.html
https://bssa.org.uk/bssa_articles/heat-tint-temper-colours-on-stainless-steel-surface-heated-in-air/
https://bssa.org.uk/bssa_articles/heat-tint-temper-colours-on-stainless-steel-surface-heated-in-air/

6. Conclusion......................................
[39] Heat Coloring Steel: Heat Coloring Tips and Metal Art Course & Work-

shop, Jeffrey H Dean.
https://www.jeffreyhdean.com/heat-coloring-steel/

[40] How to Flame Paint Durable Colors on Copper, Mari on basketof-
blue.com.
https://www.basketofblue.com/how-to-flame-paint-durable-col
ors-on-copper/

[41] Heat Coloring A Titanium, Robert Lopez on YouTube.com.
https://www.youtube.com/watch?v=uk7oZycB6_4

[42] Color Science in the Examination of Museum Objects: Nondestructive
Procedures, Ruth Johnston-Feller, 2001.

[43] Pearl Description, Gemological Institute Of America.
https://www.gia.edu/pearl-description

[44] Distorted glass texture, Image*After.
http://www.imageafter.com/image.php?image=b19glass014.jpg

92

https://www.jeffreyhdean.com/heat-coloring-steel/
https://www.basketofblue.com/how-to-flame-paint-durable-colors-on-copper/
https://www.basketofblue.com/how-to-flame-paint-durable-colors-on-copper/
https://www.youtube.com/watch?v=uk7oZycB6_4
https://www.gia.edu/pearl-description
http://www.imageafter.com/image.php?image=b19glass014.jpg

	Introduction
	Materials in games
	Similarity of approaches
	Basic terms
	The BRDF model
	Applicability
	BRDF in Unity

	Material model and pipeline
	PBR material model in Unity
	Choosing pipeline

	Material creation
	Approaches in creating materials
	Nodes library in Unity
	Artistic
	Channel
	Input
	Math
	Procedural
	Utility
	UV
	How to create Shader Graph and material based on it

	Materials library
	Acid
	Candy
	Clay
	Core
	Dissolve
	Filler
	Flame
	Triplanar projection
	Frost
	Glitter
	Grid
	Halftone
	Hologram
	Liquid
	Minecraft
	Mirage
	PewDiePie
	Soap
	Toon
	Water
	Wood
	Metal
	Pearl
	Glass

	Conclusion
	Bibliography

