
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Decision Trees Behavior Visualization and
Analysis

Jan Krátký

Supervisor: Ing. Petr Vondrášek
Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science
May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

493779 Personal ID number: Krátký Jan Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Decision Trees Behavior Visualization and Analysis

Bachelor’s thesis title in Czech:

Vizualizace a analýza chování rozhodovacích stromů

Guidelines:

1) Study how Seznam.cz currently uses decision trees for evaluation of the search results relevance.
2) Explore and compare decision tree visualization libraries for Python.
3) Propose methods to extract useful information about the model from the available data.
4) Implement the proposed methods and asses its contributions.
5) Evaluate the benefits of the implemented solution and compare the results with the current solution used in Seznam.cz.

Bibliography / sources:

[1] A Visual Introduction to Machine Learning. www.r2d3.us/visual-intro-to-machine-learning-part-1.
[2] CatBoost - State-of-the-art Open-source Gradient Boosting Library With Categorical Features Support. https://catboost.ai/.
[3] Płoński, Piotr. Visualize a Decision Tree in 4 Ways With Scikit-Learn and Python. MLJAR, 22 June 2020,
mljar.com/blog/visualize-decision-tree.
[4] How to visualize decision tree. How to visualize decision trees. (n.d.), https://explained.ai/decision-tree-viz/
[5] Tamara Munzner. Visualization Analysis and Design. A K Peters Visualization Series, CRC Press, 2014

Name and workplace of bachelor’s thesis supervisor:

Ing. Petr Vondrášek Seznam.cz, a.s. Praha

Name and workplace of second bachelor’s thesis supervisor or consultant:

Ing. Petr Pošík, Ph.D. Department of Cybernetics FEE

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 01.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

prof. Ing. Tomáš Svoboda, Ph.D.
Head of department’s signature

Ing. Petr Vondrášek
Supervisor’s signature

III. Assignment receipt

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to express my gratitude to
my supervisor, Mr. Petr Vondrášek, Ing.,
for his valuable advice and insights, and
to Seznam.cz for providing the model and
data used in this work.

I would also like to thank Mr. Ondřej
Žára, RNDr., for his promptness and will-
ingness to facilitate my collaboration with
Seznam.cz as part of the project.

Last but not least, I want to thank my
family for their continuous support and
belief in me.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, May 26, 2023

v

Abstract
Companies utilize machine learning mod-
els for practical business decisions, and as
the use of these models increases, so does
the need for effective visualization tech-
niques. These techniques can help make
machine learning models more accessible
and intuitive, and they can also be utilized
for future model improvements.

This thesis emphasizes the importance
of visualizing decision trees, which serve as
fundamental building blocks for more com-
plex models. The thesis explores various
approaches to decision tree visualization
and proposes an interactive method suit-
able for a model used for evaluating the
relevance of search results in Seznam.cz.
This method captures the model’s struc-
ture along with the data flows passing
through it.

Keywords: Machine learning
visualization, Decision trees, Gradient
boosting, Search engine

Supervisor: Ing. Petr Vondrášek
Seznam.cz, a. s.,
Radlická 3294/10,
15000 Praha 5

Abstrakt
Společnosti využívají modely strojového
učení pro praktická obchodní rozhodnutí
a s rostoucím využitím těchto modelů
roste i potřeba účinných technik jejich
vizualizace. Tyto techniky mohou pomoci
zpřístupnit a intuitivním způsobem pre-
zentovat modely strojového učení, mohou
být také použity k jejich budoucímu vy-
lepšení.

Tato práce zdůrazňuje význam vizua-
lizace rozhodovacích stromů, které slouží
jako základní stavební kameny pro složi-
tější modely. Práce zkoumá různé přístupy
k vizualizaci rozhodovacích stromů a na-
vrhuje interaktivní metodu vhodnou pro
model, který se používá k vyhodnocování
relevance výsledků vyhledávání ve společ-
nosti Seznam.cz. Tato metoda zachycuje
strukturu modelu spolu s datovými toky,
které jím procházejí.

Klíčová slova: Vizualizace strojového
učení, Rozhodovací stromy, Gradient
boosting, Vyhledávač

Překlad názvu: Vizualizace a analýza
chování rozhodovacích stromů

vi

Contents
1 Introduction 1
2 Overview of the Decision Tree
Algorithm 3
2.1 Terminology 4

2.1.1 Oblivious Decision Trees 4
2.2 Learning . 5
3 Improving Decision Trees with
Ensembles 7
3.1 Random Decision Forest 7
3.2 Gradient Boosting on Decision

Trees . 8
4 Search Engine Context 9
5 Exploring Contemporary Decision
Tree Visualization Techniques 13
5.1 Capturing Tree Structure and

Node Details 14
5.1.1 CatBoost 14
5.1.2 scikit-learn 15

5.2 Additional Information about Data
Flow . 15
5.2.1 dtreeviz 16
5.2.2 Pybaobabdt 18

6 Proposed Solution 21
6.1 Preceding Efforts 21
6.2 Interactive Application 22

6.2.1 Architecture 25
7 Conclusion 27
Bibliography 29

vii

Figures
2.1 Basic structure of the decision tree 3
2.2 Example of an oblivious tree

structure [2] . 5

3.1 Methods of creating decision tree
ensembles [15] 7

4.1 Search engine results page (SERP)
with query string "libre office" in the
search bar and relevant URL
addresses cs.libreoffice.org and
libreoffice.org 10

4.2 Structure of the CatBoost model
JSON file provided by Seznam.cz . 11

5.1 Graph of feature importance . . . 13
5.2 Part of the decision tree structure

visualization made by the Catboost
library . 14

5.3 Visualization of the regressor
decision tree structure by the
scikit-learn library 15

5.4 Visualization of the classifier
decision tree structure by the
scikit-learn library 16

5.5 Visualization of the decision tree
classifier structure by the dtreeviz
library . 17

5.6 Visualization of the decision tree
regressor structure by the dtreeviz
library . 17

5.7 Visualization of the classification
decision tree with the path of a
specific instance 18

5.8 Visualization of the decision tree
structure by the pybaobabdt library 19

6.1 Sankey diagram used for
visualization of immigrant flow [8] 22

6.2 General visualization from
proposed solution 23

6.3 Examples of labels displayed when
hovering the mouse over a
branch/leaf node (in the filtered-data
mode) . 23

6.4 Queried-data-point visualization
from proposed solution 24

6.5 Queried-data visualization from
proposed solution 24

6.6 Form with visualization parameters
in the application 25

viii

Tables
4.1 Simplified example of navigation

query validation data 10

ix

Chapter 1
Introduction

Visualization plays crucial role in computer science, as it allows for complex
data to be displayed in a way that is easily understandable to humans. Data
visualization is used to represent information in the form of graphs, maps,
diagrams or other visual formats, making it possible to gain insights and
discover patterns that might be missed through numerical analysis alone. It
has gained a special place in the field of machine learning. Companies utilize
machine learning models to make practical business decisions, and as the
use for them continues to grow, so does the need for effective visualization
techniques. These techniques can help to make machine learning models
more accessible and intuitive, and may even be used to improve models in
the future.

This work highlights the significance of visualizing machine learning models,
with focus on decision trees which are fundamental building blocks of gradient
boosting machines particularly inspected in this work. It explores different
approaches of the decision tree visualization and proposes a an interactive
method that captures model behavior together with the structure of data
flows that pass through the model.

First, we will examine the basic terminology of standard decision trees
and one specific type of tree construction in Chapter 2. This knowledge will
then be used in the assembly of more complex models that utilize decision
trees as fundamental building blocks (Chapter 3). The theoretical part is
then contextualized within the domain of search engines in Chapter 4. After
exploring currently used techniques for visualizing decision trees in Chapter
5, the proposed solution is described (Chapter 6).

Most of the content of the work revolves around a specific machine learning
model provided by the Seznam.cz company, which in practice uses it to
evaluate the relevance of search results. This model uses the output of
several standard deicison trees as part of the gradient boosting technique
(detailed in 3.2). The survey and practical examples in this work relate to
individual decision trees in this model and the validation data both provided
by Seznam.cz.

1

2

Chapter 2
Overview of the Decision Tree Algorithm

Deicison trees are popular type of supervised machine learning algorithm
which handles non-linear data sets effectively and is used for both classification
and regression tasks1. They are easy to understand and interpret, making
them popular choice among practitioners and researchers alike. Decision
trees have been widely used in a variety of fields such as healthcare, finance,
marketing, and image recognition, among others.

x2

x1

1 0

x3

x1

1 0 0

N

N Y

Y

N

N Y

Y

Figure 2.1: Basic structure of the decision tree

Altough modern advanced machine learning models, such as deep neural
networks, typically perform better in many metrics due to the tendency of
decision trees to overfit2, they are not nearly as interpretable. Therefore,
decision trees are also used as so-called surrogate models [1] for these black-
box classifiers. The idea is to get simpler model in the form of decision tree
to replicate the black-box model predictions as best as possible, and at the
same time, provide interpretability.

In the following sections we will explore the basic principles of standard de-
cision tree algorithm in the context of later visualization techniques. Without
going into unnecessary details, some machine learning methods for learning
decision trees will be briefly presented.

1Classification tasks involve categorizing data into predefined classes, while regression
tasks involve predicting numerical values based on observed features.

2The model predicts unseen data with over-specialization on the training data.

3

2. Overview of the Decision Tree Algorithm.........................
2.1 Terminology

At high level, decision tree algorithm works by recursively partitioning the
input space into smaller and smaller regions that should cluster parametrically
similar data. The goal is to create tree-like structure where the leaf nodes
of the tree represent the decision or the output of the classifier, while the
branches represent the decision-making process. Each internal node of the
tree corresponds to a split point. In it, based on the output of the given split
function, the model decides which node to go to within the tree path.

The decision tree terminology further related to visualizations used in this
work includes:. Split node: An internal node in the tree that splits the data into two or

more subsets based on certain split function.. Split function: A rule that determines how the data should be
divided at each split node based on the value of selected split
feature.. Split feature: A feature or an attribute of the input data that

is used in the split function. It may be classified as categorical
or continuous. Categorical feature is a variable that can take
one of a limited, and usually fixed number of possible values.
Continuous features, on the other hand, can take on one of an
infinite number of numeric or float values.. Threshold: Boundary value for specific continuous feature that
is used to split the data in the split function.. Branch: An edge connecting two nodes that represents the
output of the split function.. Root node: The top-most node of the tree that in the context of a

data stream represents the entire input dataset.. Leaf node: A node that does not split the data anymore and represents
the final outcome or decision. In the classifier type of decision tree the
outcome is a class label, in regressor it is a numerical value..Depth: The length of the longest path from the root node to any leaf
node, indicating the complexity or size of the tree.. Level: A horizontal layer of nodes in the tree structure. The root
node is considered to be at level 0, and subsequent levels are numbered
sequentially.

2.1.1 Oblivious Decision Trees

In later sections, we will be interested in decision binary trees that only have
continuous split features in their nodes. Moreover, the model that is the
subject of visualization in this work uses so-called oblivious trees which are

4

...................................... 2.2. Learning

grown symmetrically. In addition to being perfectly binary, they also use the
same split functions in nodes at the same level of the tree. So each oblivious
decision tree outputs one of 2d decisions, where d is the depth of the tree.
And that is done by using d split feature-threshold combinations, which are
essentially parameters of that tree [4].

Figure 2.2: Example of an oblivious tree structure [2]

The choice of oblivious trees has several advantages compared to the general
ones. Among them is a simple fitting scheme, efficiency of implementation
on CPU and the ability to make very fast model appliers. It also works as a
regularization, so it can provide quality benefits for many tasks [2].

2.2 Learning

There are several machine learning strategies to build an appropriate decision
tree structure before applying the model to unseen test data. As is common
practice in machine learning, they use data pre-labeled with target values
in an optimization process called training. During the training, the model
is structured in a such way that these training data passing through it are
labeled as precisely as possible by the model itself. In the case of decision
trees, leaf nodes should contain predominantly data with the same or similar
target values.

The essence of the strategy itself is reduced to the choice of the optimal
split function based on the incoming subset of training data. The optimal
one is the one that splits the data most efficiently. Due to the structure of
the decision tree, this method can be applied recursively to each node at
each level until the required data purity, the specified depth or some other
criterion is reached. After this growth phase, which is often called a greedy
algorithm [9], practices like pruning [3] can be applied to improve the tree
performance in the sense of obtaining better generalization on unseen data.

One of the most commonly used metrics to asses the optimality or gain
from each possible splitting option in classification tasks is the Gini impurity.

5

2. Overview of the Decision Tree Algorithm.........................
Based on the Gini-value in 2.1 we are first able to express the probability

that two samples randomly chosen from dataset D have different class labels.

Gini(D) = 1 −
n∑

i=1
p2

i [10] (2.1)

n is the number of class labels in dataset D and pi is denoted as the
probability that class i occurs in dataset D.

Using the Gini-value the definition of the Gini-impurity index in 2.2 to
asses the purity of the subsets made by the concerned split function can be
set.

Gini_index(D, k) =
V∑

v=1

|Dv|
|D|

Gini(Dv)[10] (2.2)

Dv represents one subset of dataset D classified based on split function k
and V is the total number of subsets. The task of choosing the optimal split
function is then expressed by minimization problem in 2.3 where the optimal
k produces the least Gini-impurity index.

k∗ = arg min
k∈K

Gini_index(D, k)[10] (2.3)

Since in regression a continuous variable is predicted, the same process
cannot be applied in these tasks. Instead, the mean square error metric (in
2.4) is often used in the regression. This measurement, according to which
the split function with the greatest gain can be chosen, tells us how much
the predictions deviate from the original target in individual subsets.

MSE = 1
n

n∑
i=1

(yi − ŷi)2[11] (2.4)

n is the number of data samples in the given dataset, y is the actual target
value of sample in training dataset and ŷ is the prediction.

6

Chapter 3
Improving Decision Trees with Ensembles

The standard decision tree algorithm has been extended in various ways to
improve its performance and applicability to different types of problems. One
common extension is the use of ensemble methods, which combine multiple
decision trees to improve their accuracy and reduce an excessive specialization
to the training data. They differ in the approach of building the ensemble and
addressing the weaknesses of standard decision trees. The most common such
approaches are bagging and boosting [12] and their concrete model instances
in the form of Random Decision Forest and Gradient Boosting on Decision
Trees (GBDT), which we will look at in the following sections.

Figure 3.1: Methods of creating decision tree ensembles [15]

3.1 Random Decision Forest

One way to create and combine a set of decision trees to improve performance
is the bootstrap aggregation, or bagging for short. The idea is to create
several subsets of data from original training set chosen randomly with
replacement. Each such collection is then used to grow single decision tree,
together forming a tree set or forest. Predictions from this ensemble are then
aggregated, usually done by averaging.

7

3. Improving Decision Trees with Ensembles
Random Forest is an extension over bagging [14]. It takes one extra step

where in addition to taking the random subset of data, it also uses the random
selection of features to grow trees, which helps to reduce the correlation
between the trees in the forest and ultimately reduces the generalization
error.

Decision trees, where the selection of split functions is a random variable,
also have the advantage of greater independence from data in the training
process. Tree structures can first be built independently and then, using
the training data, the probability estimates of each class in individual leaves
P (class | leaf) are calculated. On the other hand, in a random decision tree,
the random split functions do not give us the same credible insight into the
data as with standard decision trees with thoughtfully designed splits.

3.2 Gradient Boosting on Decision Trees

Another way of combining individual decision trees is boosting. Boosting
leverages the idea of learning from your mistakes. It generally works by
iteratively training decision trees via an error-based data reweighting scheme.
We take a single training dataset, and use it to grow a single decision tree.
Then the training set is re-weighted so that records with incorrectly predicted
targets receive more weight and this weighted data trains another tree. The
procedure continues until the limit of the number of trees or the required
accuracy is reached. Predictions of the final ensemble model is the weighted
sum of the predictions made by individual trees.

Boosting itself, which is best exemplified by the Adaboost technique [13],
identifies the shortcomings by using high weight data points. In a similar
manner, gradient boosting achieves the same objective by employing the
gradient descent algorithm [14]. This algorithm optimizes the differentiable
loss function which is a measure indicating how good are model’s coefficients
at fitting the underlying data.

In the context of decision trees, we can consider the mentioned regression
mean square error metric from 2.4 for single data point mulitplied by coefficient
of one half1 as a loss function. If we differentiate this expression (in 3.1)
with respect to the prediction value, we simply get the difference between
the predicted value and the actual target value of that data point.

∂

∂ŷ

(1
2(y − ŷ)2

)
= ŷ − y (3.1)

Evaluated derivative is then used as a new target value of the data points
during training a new tree. The algorithm subsequently calculates the new
residual based on aggregating the predictions of the previous trees with the
prediction of the new one. This process is repeated for each subsequent tree.

1The coefficient is often used for convenience and simplicity in the subsequent mathe-
matical calculations, without fundamentally affecting the result.

8

Chapter 4
Search Engine Context

One industry where machine learning models derived from decision trees
are used is in search engines. Within its search engine, Seznam.cz company
uses the Gradient Boosting on Decision Trees model (inspected in 3.2) to
evaluate the relevance of search results. The reason is not only the speed of
the evaluation, but also the interpretability.

Seznam.cz divides search queries according to what user probably wanted
to achieve by formulating the query. Several types of user intents are distin-
guished, the main ones include:. Navigation: The user wanted to go to a specific page and expects this

result on the first place.. Company: The user is looking for a specific company, institution or web
service..Goods: The user wants to buy, order or get something.. Learn more/advice: A wide range of information queries ranged from
troubleshooting to using online tools like calculator..Queries about news or current information.

These groups of queries have their own relevance evaluation model trained
on different data.

Each sample in these training datasets contain a query string and a specific
URL1 address which could possibly appear on the search engine results page
after entering this query. The job of the annotator in Seznam.cz is to label
these pairs in the training data with the number 1 (positive label) when it is
a relevant pair or with the 0 (negative label) otherwise2.

Samples in datasets are then enriched with properties derived from the
query-URL pair. An example of a less sophisticated property would be
the number of letters that appear in both the query and the URL. These
continuous features are then used for training the model.

1Uniform Resource Locator, a reference to a web resource that specifies its location on a
computer network.

2As a target variable the "box" feature is used in validation set.

9

4. Search Engine Context.................................

Figure 4.1: Search engine results page (SERP) with query string "libre office" in
the search bar and relevant URL addresses cs.libreoffice.org and libreoffice.org

query url box feature_0
libre office https://cs.libreoffice.org/ 1.0 255.0

lidl.cz https://www.lidl.cz/ 1.0 250.0
perfect clinic https://www.firmy.cz/ 0.0 255.0

Table 4.1: Simplified example of navigation query validation data

Although the data are more of a classification nature (having only two types
of target variables in the training dataset), in practice, regression models are
employed. This model, upon being trained and provided with a set of features
derived from a new unseen test pair, generates a float value indicating its
perceived relevance. Generally, the higher this value is, the more relevant the
pair is and the more likely the URL address is to appear on the search engine
results page. The specific threshold for inclusion of an URL address on the
results pages is then set based on the previous analysis of machine learning
metrics as precision and recall3.

Seznam.cz uses GBMT models implemented by the CatBoost open-source
library, which is developed by Yandex, a Russian multinational technology
company. For practical reasons, CatBoost incorporates symmetric oblivious
trees (described in 2.1.1) in its models.

This work uses a simplified CatBoost model stored in JSON format (4.2)
and a validation data set containing navigation queries, both provided by
Seznam.cz for the purposes of research and visualization design. As part of
confidential company procedures, the original feature names in the validation
dataset are replaced by universal names according to the feature indexes. So,
instead of names that describe how the given feature was derived from the
string query-URL pair, the names as feature_0, feature_1 and so on are used.

3https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/

10

................................. 4. Search Engine Context

Figure 4.2: Structure of the CatBoost model JSON file provided by Seznam.cz

11

12

Chapter 5
Exploring Contemporary Decision Tree
Visualization Techniques

As machine learning models grow in complexity, gaining deeper insight into
their behavior and performance becomes more important. One way to get
such an understanding of model behavior is to track universal metrics common
to all machine learning models. To gain deeper knowledge about the internal
behavior of the model, the visualization of the model structure itself, which
is specific to each model type, can be explored.

Common general metrics that are often visualized in the analysis may
include, for example, feature importance. It quantifies the influence of each
feature value on model predictions. By analyzing feature importance, we
can identify the most significant factors driving the model’s decision-making
process.

Figure 5.1: Graph of feature importance

Although the calculation of feature importance can be performed for various
machine learning models, the specific method used may vary depending on
the model type. In CatBoost models it is calculated by a measuring how much
on average the prediction changes if the feature value changes [16]. Some

13

5. Exploring Contemporary Decision Tree Visualization Techniques...............
other gradient boosting machine implementations assign feature importance
based on the number of times a feature is selected for splitting across all the
trees in the ensemble.

In the following sections, model-specific visualizations methods related to
decision trees will be explored. Some of these techniques go beyond just
showing the tree structure but also provide additional information about how
data flows through the model. Only methods available through python-based
open-source libraries were considered.

Most of the following visualization libraries are not directly compatible with
models created by the CatBoost library due to different implementations. In
such cases, for the purpose of visualization demonstration, a model supported
by these libraries was trained using validation data provided by Seznam.cz
(in 5.1.2 and 5.2.1). In another case, for the visualization demonstration, a
model of the supported type was trained using data available in the library’s
documentation (in 5.2.2). Given the classification nature of the data (described
in 4), it was possible to train both regression and classification models from
it. The properties of these visualizations were then utilized in the proposed
solution.

5.1 Capturing Tree Structure and Node Details

One fundamental aspect of decision tree visualization is representing the
hierarchical structure of the tree itself. Traditional methods often focus solely
on displaying branching structure and target variable associated with each
leaf node. The most common ones provide at least some understanding of
the data distribution across the tree.

5.1.1 CatBoost

CatBoost offers its own built-method for plotting individual trees from the
ensemble. This visualization with split functions in internal nodes, branch
descriptions and outcome values in leaf nodes can serve as a base-level solution.

Figure 5.2: Part of the decision tree structure visualization made by the Catboost
library

14

.........................5.2. Additional Information about Data Flow

5.1.2 scikit-learn

Popular machine learning library scikit-learn offers several types of decision
tree models and models derived from decision trees such as regression and
classification type of standard decision tree, random decision forest or gradient
boosting machines. In addition to their training and testing, it also provides
their visualization. Apart from the primary structure, it also captures basic
information about the data flow.

Visualization of the regressor (shown in 5.3) includes the counts of samples
from the training dataset present in each node. Each node also contains the
average target value of the samples present in it. Within the leaf nodes, these
values serve as outcomes of the model.

Higher target values in the node are indicated by darker colors, intuitively
conveying information about the distribution of data and the effectiveness of
given split functions. Squared error as a measurement of impurity (described
in 2.2) that was used by the model during training can be also seen in the
node content.

Figure 5.3: Visualization of the regressor decision tree structure by the scikit-
learn library

Classification visualization (in 5.4) further divides the count of samples
according to their target classes. Nodes are colored based on the class of
the majority of samples present. The more is the color of the node satured
the more samples of one specific class have majority over others. Node Gini
impurity (described in 2.2) is also provided.

5.2 Additional Information about Data Flow

While capturing the tree structure and node details is valuable, better under-
standing how the model processes and routes data through the decision tree
is equally important. Contemporary decision tree visualization methods go
beyond static representations and incorporate dynamic visualizations that
showcase more detailed flow of validation data as it traverses the tree. Some
of these techniques offer insights into the path taken by individual samples,
ilustrating the decision-making process and highlighting the specific split
functions encountered along the way.

15

5. Exploring Contemporary Decision Tree Visualization Techniques...............

Figure 5.4: Visualization of the classifier decision tree structure by the scikit-
learn library

5.2.1 dtreeviz

The dtreeviz library designed specifically for decision tree visualization and
model interpretation captures in detail the split feature versus target value
distributions and the number of samples in individual nodes. As mentioned
by the creators of the library, whose visualizations are enriched with multiple
types of graphs, the goal is to determine how well the target values can be
separated based on the split functions [6].

In the classification decision tree visualization (in 5.5) we can see how
dtreeviz attempts to address the limitations of traditional scikit-learn visual-
izations from 5.1.2. Internal and leaf nodes are categorically distinguished
using suitable types of graphs. Stacked histograms, with the x-axis repre-
senting the feature space and an arrow indicating the threshold, are used in
internal nodes. Although the histograms clearly convey information about
how far the values of split feature instances deviate from the thresholds, the
information about sample counts in nodes is not as readable.

Leaf nodes are represented by pie charts that clearly show their purity.
In the regression variant (shown in 5.6), histograms and pie charts are

replaced by scatter plots where y-axis corresponds with scale of target value.
Horizontal dashed lines indicate the target mean for the left and right buckets
and a vertical dashed line indicates the thresholds in feature space. The
visualization of our model, or rather the data, is somewhat unfortunate in
this case due to its nature (described in 4). The distribution of points in a
scatter plot would be more useful in the case where the data has a target
variable that can take more than two values.

Among other things, the library also offers a look at how a specific data
sample is run down the tree to a leaf (shown in 5.7). Below the leaf node, to
which the highlighted path of the sample leads, we can see a list of sample’s
split feature values that were used. This helps explain why a particular
instance gets the prediction it does.

The dtreeviz library also allows visualizing the tree with different data
than the one used in training, unlike the scikit-learn library. This enables

16

.........................5.2. Additional Information about Data Flow

Figure 5.5: Visualization of the decision tree classifier structure by the dtreeviz
library

Figure 5.6: Visualization of the decision tree regressor structure by the dtreeviz
library

17

5. Exploring Contemporary Decision Tree Visualization Techniques...............

Figure 5.7: Visualization of the classification decision tree with the path of a
specific instance

testing the tree structure on new validation data.

5.2.2 Pybaobabdt

Based on the study [17], the Pybaobabdt library from 2021 introduces a
unique technique for visualizing classification decision trees. It replaces
the classical node-link construction with a data-flow-based technique that
seamlessly integrates tree visualization with data visualization. Each class is
represented by a color, and the thickness of the stream corresponds to the
number of instances present in a given branch or node.

This technique effectively and intuitively conveys certain information. It is
clear which classes are easy to separate, which classes are similar or where
does the main flow of items go. Additionally, this visualization is significantly
more scalable than the previous ones.

18

.........................5.2. Additional Information about Data Flow

Figure 5.8: Visualization of the decision tree structure by the pybaobabdt library

19

20

Chapter 6
Proposed Solution

As part of the task to create a tool for Seznam.cz company that visualizes
the behavior of a specific type of model used in practice, a web application
was implemented. When designing the included visualization techniques,
emphasis was placed on the effective utilization of the annotated dataset and
its relationship with the model. The goal was to extract useful information
beyond what the CatBoost library itself provides (base-level tree visualization,
feature importance graph, and other metrics). This information can then be
used to improve the model in the future.

As a result, a solution was created that draws inspiration from existing
visualization libraries while also meeting the requirements of the client.

6.1 Preceding Efforts

Originally, the intention was to create a reporting tool that utilizes a com-
bination of existing visualization libraries and techniques they offer. This
would provide practitioners with multiple ways to examine the model’s be-
havior. However, due to the incompatibility of the investigated libraries with
CatBoost models, this idea was abandoned. Therefore, it was necessary to
come up with a custom solution that would meet practical requirements.

The proposed solution, which provides scalable interactive visualizations
of the model, resembles the output of the Pybaobabdt library (explored in
5.2.2) due to its use of data flows. Although this visualization is specific to
decision tree models of the classification type, its concept can be applied to
our regression CatBoost model due to the nature of the provided validation
data (described in 4). The limited number of target variables allows us to
treat them as classification classes.

The possibility of drawing inspiration from the dtreeviz library (surveyed
in 5.2.1), which provides a detailed approach to the feature-target space using
graphs, was also considered. However, for the sake of solution intuitiveness
and the ability to visualize large trees, a more compact method was chosen.
At least the option to visualize the path of a specific data instance was
adopted, as enabled by this library.

For visualizing the flows as representations of data streams, the data

21

6. Proposed Solution
visualization library Plotly1 was used. Besides offering other interactive and
appealing visualizations, Plotly also allows the creation of so-called Sankey
diagrams. These diagrams are commonly used to represent the movement of
entities or elements from one state or category to another, emphasizing the
proportions or sizes of the flow.

Figure 6.1: Sankey diagram used for visualization of immigrant flow [8]

After customizing the parameters and utilizing information extracted from
the model file (shown in 4.2) and the validation data, the Sankey diagram can
be used to visualize the decision tree with an emphasis on the data flowing
through it. It mimics the structure of the tree, where the widths of individual
branches correspond to the number of present data instances.

6.2 Interactive Application

The application allows for visualizing individual trees in the CatBoost GBDT
model with validation data in such a way that the numbers of instances with
positive or negative label values in the nodes of the tree are clearly visible
(shown in 6.2, 6.4, 6.5). The widths of the tree branches correspond to the
number of present data, and they are further segmented into positive and
negative samples by color. This makes it easy to identify which features
effectively split the data based on their target variable. It is also possible to
identify the main flow of data.

Since the CatBoost model utilizes symmetric oblivious trees (described
in 2.1.1), it is possible to mark all nodes at the same level with a single
split function in the visualization. This is achieved through a legend, which
appears at the top of the diagram in the visualizations.

Additional information such as the outputs of the split function, the output
values of leaf nodes, or the percentage of specific instances out of the total

1https://plotly.com/python/

22

................................ 6.2. Interactive Application

Figure 6.2: General visualization from proposed solution

number of instances in the dataset can be obtained by hovering the mouse
over the corresponding node bar or branch segment.

Figure 6.3: Examples of labels displayed when hovering the mouse over a
branch/leaf node (in the filtered-data mode)

In addition to the basic visualization mode demonstrated in 6.2, which
provides a general view of the validation data flowing through the model, the
application also includes two modes specifically focused on a user-specified
data instance or group of instances.

The one-instance mode shown in 6.4 allows users to examine the path of
a specific data instance from the validation dataset, specified by its index
in the set. The branch segments in the instance path related to the target
variable of that instance are darkened compared to the general visualization.

The filtered-data mode shown in 6.5 offers a special view of a user-specified
subset of data. The data from the validation set can be filtered using
conditions related to the main string attributes (query and URL address) or
conditions on the numerical values of individual features.

In contrast to the general visualization, the flows corresponding to the
queried data are darkened. Within these filtered data flows, the division into
data parts with positive and negative target variables is preserved.

23

6. Proposed Solution

Figure 6.4: Queried-data-point visualization from proposed solution

Figure 6.5: Queried-data visualization from proposed solution

24

................................ 6.2. Interactive Application

The visualization of filtered data allows practitioners to examine subsets
with specific characteristics, such as data with queries that contain a certain
regular expression.

6.2.1 Architecture

Due to the more user-friendly interface, the option to incorporate the proposed
solution into a web application was chosen. Utilizing the server-side runtime
environment Node.js and the web application framework Express.js, the
backend part of the application executes Python scripts based on parameters
to generate HTML pages with visualizations. The frontend part operates
using traditional tools such as HTML, CSS, and JavaScript to create a form
that can be filled with desired visualization parameters. After submitting
the form to the backend by pressing a button, the corresponding script with
the received parameters is executed, and the visualizations are subsequently
displayed.

The content of the main page is enriched with a static user manual and
tutorial for the form and the visualizations themselves. To enhance the visual
appeal of the application, the Bootstrap frontend framework was utilized,
providing a collection of pre-designed components.

To display the visualizations, it is necessary to have a CatBoost model
with a validation dataset in specific formats uploaded in the "data" directory
before running the application. The Python scripts retrieve all the necessary
values for visualization from there.

Figure 6.6: Form with visualization parameters in the application

25

26

Chapter 7
Conclusion

We explored selected methods for visualizing decision trees, specifically Python
libraries that implement these methods, and evaluated their benefits. Based
on these benefits, along with the requirements of the stakeholder, we proposed
our own solution for visualizing decision trees for a specific model used in
Seznam.cz. The solution, incorporated into a web application, addresses
the need to easily understand how validation data interacts with the model.
Emphasis is also placed on the ability to thoroughly explore a specified group
of data that could be relevant to the analysis or problem at hand. The
resulting application provides a deeper insight into the model’s behavior than
the currently used methods in Seznam.cz (base-level tree visualization, feature
importance, and other standard metrics).

Further enhancements could include, for example, a greater focus on detail
in the visualization (such as displaying a list of all present data samples upon
clicking a node), overall robustness of the application, or generalization to
multiple types of models derived from decision trees.

27

28

Bibliography

[1] Surrogate model - Explainable-AI. (n.d.). Surrogate Model - Explainable-
AI. https://maheshwarappaa.gitbook.io/explainable-ai-1/model-agonistic-
methods/surrogate-model

[2] CatBoost enables fast gradient boosting on decision trees using gpus. Cat-
Boost. (2018, December 18). https://catboost.ai/news/catboost-enables-
fast-gradient-boosting-on-decision-trees-using-gpus

[3] Almuallim, H. (1996, June). An efficient algorithm for optimal
pruning of decision trees. Artificial Intelligence, 83 (2), 347–362.
https://doi.org/10.1016/0004-3702(95)00060-7

[4] posts by Manu Joseph, V. A. (2021, February 25). Neural Oblivious
Decision Ensembles(NODE) - A State-of-the-Art Deep Learning Algorithm
for Tabular Data. Deep & Shallow.

[5] Talebi, S. (2023, April 1). Decision Trees: Introduction & Intuition.
Medium. https://towardsdatascience.com/decision-trees-introduction-
intuition-dac9592f4b7f

[6] Parr, T., & Grover, P. (n.d.). How to visualize decision tree.
How to visualize decision trees. https://explained.ai/decision-tree-
viz/index.html#sec:1.3

[7] Pandey, P. (2023, May 23). Visualizing decision trees with Pybaobabdt.
Medium. https://towardsdatascience.com/visualizing-decision-trees-with-
pybaobabdt-f8eb5b3d0d17

[8] How To Create A Sankey Diagram - Visual Paradigm Blog. (2023, Febru-
ary 21). Visual Paradigm Blog. https://blog.visual-paradigm.com/how-
to-create-a-sankey-diagram/

[9] Krueger, E. (2021, April 27). Learn how decision trees are grown.
Medium. https://towardsdatascience.com/learn-how-decision-trees-are-
grown-22bc3d22fb51

29

7. Conclusion......................................
[10] Y. Yuan, L. Wu and X. Zhang, "Gini-Impurity Index Analysis," in

IEEE Transactions on Information Forensics and Security, vol. 16, pp.
3154-3169, 2021, doi: 10.1109/TIFS.2021.3076932.

[11] Prasad, A. (2021, August 8). Regression trees: Decision tree for
regression: Machine Learning. Medium. https://medium.com/analytics-
vidhya/regression-trees-decision-tree-for-regression-machine-learning-
e4d7525d8047

[12] Talebi, S. (2023, April 1). 10 Decision Trees are Better
Than 1 | by Shawhin Talebi | Towards Data Science. Medium.
https://towardsdatascience.com/10-decision-trees-are-better-than-1-
719406680564

[13] Schapire, R. E. (2013). Explaining adaboost. Empirical Inference, 37–52.
https://doi.org/10.1007/978-3-642-41136-6_5

[14] Nagpal, A. (2017, October 18). Decision tree ensembles- bagging
and boosting. Medium. https://towardsdatascience.com/decision-tree-
ensembles-bagging-and-boosting-266a8ba60fd9

[15] Gaurav. (2022, March 8). An introduction to gra-
dient boosting decision trees. Machine Learning Plus.
https://www.machinelearningplus.com/machine-learning/an-
introduction-to-gradient-boosting-decision-trees/

[16] Feature importance. CatBoost. (n.d.).
https://catboost.ai/en/docs/concepts/fstrregular-feature-importance

[17] van den Elzen, S., amp; van Wijk, J. J. (2011). BaobabView: In-
teractive construction and analysis of Decision Trees. 2011 IEEE
Conference on Visual Analytics Science and Technology (VAST).
https://doi.org/10.1109/vast.2011.6102453

30

	Introduction
	Overview of the Decision Tree Algorithm
	Terminology
	Oblivious Decision Trees

	Learning

	Improving Decision Trees with Ensembles
	Random Decision Forest
	Gradient Boosting on Decision Trees

	Search Engine Context
	Exploring Contemporary Decision Tree Visualization Techniques
	Capturing Tree Structure and Node Details
	CatBoost
	scikit-learn

	Additional Information about Data Flow
	dtreeviz
	Pybaobabdt

	Proposed Solution
	Preceding Efforts
	Interactive Application
	Architecture

	Conclusion
	Bibliography

