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Abstract

The thesis proposes a genetic algorithm with a novel chromosome representation and novel
crossover implementation for solving the NP-hard problem of placing rectangular paintings on a
two-dimensional grid. A chromosome is represented as multiple stochastic vectors (vector that
contains non-negative elements that add up to one). Crossover is implemented as vector addition
followed by normalization back to the stochastic vector. The proposed solution is tested on a
generated dataset.

Keywords genetic algorithms, random keys, chromosome structure, slicing trees, facility lay-
out, FLP, shelf-space planning, optimization

Abstrakt

Tato práce navrhuje genetický algoritmus s novou reprezentací chromozomu a novou implemen-
tací křížení pro řešení NP těžkého problému umístění obdélníkových obrazů na dvoudimenzionální
mřížku. Chromozom je reprezentován jako několik stochastických vektorů (vektor obsahující
nezáporné prvky, které se sčítají na jedničku). Křížení je implementováno jako sčítání vektorů
následované normalizací zpět na stochastický vektor. Navržené řešení je testováno na vygen-
erovaném datasetu.

Klíčová slova genetické algoritmy, náhodné klíče, struktura chromozomu, řezové stromy, us-
pořádání pracovišť, FLP, plán polic, optimalizace
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Chapter 1

Introduction

Placement of the images or paintings on the wall may seem trivial at first. However, it is not true.
There are different arrangements and constraints to each particular placement. For example, an
art gallery might want to place paintings on the wall, grouping them by their author or style.
One example of such placement can be seen in figure 1.1. In addition, the room’s lighting and
the dimensions of the wall and paintings need to be considered. Together, these requirements
pose a complex problem to solve.

Furthermore, a solution that places paintings on the wall can be used in many other fields.
For example, the facility layout problem places a set of facilities on a grid while having the
same constraints as the painting placement – grouping related facilities and considering their
dimensions [2]. Another field is retail shelf-space planning, which tries to partition a shelf in
a store into rectangles [3]. Subsequently, the partitioned shelf is filled with goods that the
customers can buy. Similarly to the lighting conditions for paintings, the placement of goods
depends on the particular placement on the shelf – goods close to the customer’s eye level have
increased visibility, leading to more sales [4].

The goals of the thesis are:

1. Define the painting placement problem, its inputs, constraints, and what a solution to the
painting placement problem is.

2. Create a dataset for the painting placement problem.

3. Propose and implement a genetic approach for solving the painting placement problem.

4. Evaluate the performance of the proposed genetic approach.

5. Discuss the results and suggest further improvements, extensions, and future work.

The thesis is structured as follows. Chapter 2 describes similar problems to the painting
placement problem and their solution methods. They are facility layout problem, shelf-space
planning, and sheet metal cutting. Chapter 3 defines the painting placement problem, its inputs,
constraints, and what a solution to the painting placement problem is. The central part of the
thesis is in chapter 4. It describes the proposed genetic approach and the construction of the
solution to the painting placement problem. Chapter 5 evaluates the performance of the proposed
genetic approach and presents the created dataset. Also, it describes the implementation of the
computation server for the painting placement problem. Chapter 6 summarizes and further
discusses the computational results and suggests further improvements, extensions, and future
work. Lastly, chapter 7 concludes the whole thesis. There is also an appendix A, which contains
figures and listings outside the thesis’s main part.

1
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Figure 1.1 Painting placement at the London National Gallery. Source: [1]



Chapter 2

Literature review

This chapter describes methods used in different fields to solve a similar problem to the painting
placement problem. It follows the methods mentioned in the previous chapter 1 with a more
precise and in-depth explanation – facility layout problem (FLP) in section 2.1, shelf-space
planning problem in section 2.2 and sheet metal cutting problem in section 2.3.

The similarity in all methods is that each place objects and evaluates the particular place-
ment. The main difference is their domain, which determines the objective function, i.e., the
measure by which different solutions can be compared. Also, there are differences between the
given constraints, as some of them are more loose or strict, depending on the intended use of the
result. A concise comparison, further explained in the following sections, follows.

Facility layout problem defines the flow between every facility pair and metric for measuring
the distance between facilities. The goal is to minimize the flow sum between all facilities. Good
results are mainly compactly placed facilities, where the ones with the highest flow between them
are placed closer together.

Shelf-space planning problem has two main parts – dividing a shelf into rectangles and as-
signing a product to them. This product placement on a shelf is evaluated using a profit function.
Similar to the sheet metal cutting problem, it differs from FLP in not having any mutual re-
lationship between placed products, i.e., there is no flow. Another difference is that there are
more products than available shelf space. It implies that product choice must also be part of
the shelf-space planning problem. It is unique in using all shelf space in the first step. However,
empty space can still exist if the product has smaller dimensions than the shelf it is placed on.
Good results are mainly shelves that contain the largest amount of the most desired products at
customer eye level.

Sheet metal cutting problem evaluates two aspects – compactness of the layout and distance
taken by the path-cutting tool to cut all placed parts. Similar to the shelf-space planning prob-
lem, placed parts have no mutual relationship. However, unlike FLP and shelf-space planning,
placed parts can have arbitrary shapes. Good results depend on the balance between the two
evaluated aspects. If compactness is preferred, results will be more compactly packed, but the
distance of the path-cutting tool might increase. If, on the other hand, the lower cutting distance
is preferred, it results in more common edges between the placed parts or clustering.

3



Facility layout problem 4

2.1 Facility layout problem
The goal of the FLP (Facility Layout Problem) is to place facilities, which are often represented
as a rectangle, in a given two-dimensional grid that is also rectangular. In addition, a flow exists
between each pair of facilities, i.e., the number that defines whether it is advantageous to place
facilities close together.

Authors in [2] define facility layout problem using a cost function c as

argmin
x∈K

c(x) =

i=N∑
i=1

j=N∑
j=1

ci,j fi,j di,j , (2.1)

where K is the set of all possible facility placements, N is the number of facilities, fi,j ∈ R+

is the flow between facility i and j, ci,j ∈ R+ is price for a unit of distance between i, j and di,j is
their distance. Flow f is defined to be symmetric, i.e., fi,j = fj,i. The constraint to the facility
placement problem is that no facilities can overlap. The FLP defined as such is NP-hard [5, 2, 6].

An important part of the input to the FLP is the facility dimensions. They are not defined
as wi, hi pairs, where wi is the width and hi height of a facility i. Each facility is defined using
its area ai and maximum aspect ratio ri ∈ R+ which must satisfy equations 2.2 and 2.3.

ai = wihi (2.2)

argmax(wi, hi)

argmin(wi, hi)
< ri (2.3)

Thus, determining the width wi and height hi of the facility i is part of the facility layout
problem. Furthermore, no FLP dataset defines facilities in terms of their width and height.
Facility records in the datasets are always in the form of a (ai, ri) pair [7, 8, 9].

Metric d in equation 2.1 used for measuring the distance between facilities is important in
practical applications of the facility layout problem. Authors in [6] argue that using Euclidean
L2 norm to measure facility distance produces suboptimal results as, for example, transportation
of material between facilities hardly ever follows a direct route. Thus, they recommend using a
contour-based metric instead. In addition, they also try to assign I/O points to the facilities,
which are points from which the distance d is measured. Some authors also consider facility
orientation [5, 7] to be part of the facility layout problem.

Solution methods differ in the exact definition of the FLP problem. Authors in [5] solve
the UA-FLP (Unequal Area FLP), the variant of FLP where the placed facilities have unequal
areas. They propose a solution using particle swarm optimization. Authors in [10] proposed
a solution to UA-FLP combining harmony search and slicing tree. They represent harmony
vector as coding of a slicing tree, which has two parts – the first part being a binary string
determining the slicing tree node type, i.e., inner or leaf, and the second part codes the content
of the slicing tree leaves. Authors in [11] use a similar genetic approach with a chromosome
defined as a post-order traversal of a slicing tree. A genetic solution for the UA-FLP proposed
in [2] uses a BRKGA (Biased Random Key Genetic Algorithm), where the chromosome contains
facility sequence random keys, aspect ratios and position of the first facility. Next, an iterative
greedy heuristic with the above chromosome as an input is used. Authors in [6] propose a unique
solution to the FLP called parallel tempting based on simulated annealing.



Shelf-space planning problem 5

2.2 Shelf-space planning problem
Shelf-space planning problem solves the assignment of different products to shelves to achieve
maximum profit. It contains two parts – partitioning the shelf and assigning product or product
variants to each partition. There can be multiple shelves that need to be considered simultane-
ously. [12]

Authors in [3] define the capacity and facing constraints for the shelf-space planning problem.
Capacity constraints determine the maximum number of products that can be placed on each
shelf. Facing constraints determine the minimum and maximum number of facings of each
product, i.e., how much total area of the shelf can be taken up by the product. Also, there
are availability constraints for each product, i.e., the supply limit of each product. Lastly,
considering an unlimited supply of each product and multiple shelves with fixed dimensions,
the authors define the shelf-space planning problem as an integer programming problem using a
profit function P as

maxP =

N∑
i=1

M∑
k=1

pikxik , (2.4)

where N is the number of products, M is the number of shelves, pik is the profit of product
i placed inside the shelf k, xik is number of products i placed inside the shelf k. According to
the authors, the shelf-space planning problem mentioned above is NP-hard.

Authors in [4] add to the shelf-space problem a function that assigns different importance to
parts of the shelf. They argue that the reason for using such a function is that products placed
at eye level are more noticed by the customers. Thus, the proposed function has higher values
for products placed at eye level and lower at the bottom of the shelf, where customer attention
is the lowest. Also, authors in [13] consider the dimensions of the products, i.e., their width and
height. They argue that products with a larger area are noticed more often by the customers,
and thus their demand is increased.

Solution method in [13] is a genetic algorithm where each individual is represented as a
container, which contains one or multiple products. Each individual is thus a power set of
products that can be placed. This solution inherently decides which products to place, e.g.,
an individual does not contain a product, and thus the product is not placed. Decoding of
an individual then takes place, which serves as an input to the BL-F (Bottom Left Fill) pack
heuristic to fill up the shelves and calculate fitness.

Another solution in [4] uses a genetic algorithm and a slicing tree. They define a chromosome
as a traversal of a slicing tree, which contains horizontal and vertical cuts as the internal nodes
and products as leaves. Upon that traversal, they apply genetic operators – crossover as copying
parts of the chromosome from parents and mutation as random swapping and inverting. When
using each genetic operator, an invalid individual might be created. Thus, they fix the resultant
invalid individual with a left-to-right scan.

Lastly, according to the comprehensive review [12], there exists no unified dataset for the
shelf-space planning problem that can be used as a benchmark.
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2.3 Sheet metal cutting
The sheet metal cutting problem evaluates two aspects – compactness of the layout, also called
pattern efficiency, and distance taken by the path-cutting tool to cut all placed parts. Also, placed
parts that determine the pattern efficiency can be irregular, for example, forming a polygon [14].

Authors in [15] use both of these aspects to formulate an objective function F that defines a
sheet metal cutting problem as

minF = w1 f1 + w2 f2 , (2.5)

where f1 is pattern efficiency, which is calculated as

N∑
i=1

ai

WH
, with N being number of placed

parts, ai the area of the i-th placed part, W width and H height of the the smallest rectangle
that can contain all placed parts, and f2 the distance needed by the path-cutting tool to cut
all the placed parts. Weights w1 ∈ R+, w2 ∈ R+ balance the bias towards pattern efficiency or
path-cutting tool distance.

Some variants of the sheet metal cutting problem neglect the pattern efficiency and try only
to find the shortest path of a given placed parts [16]. Then, the sheet metal cutting problem can
be reformulated as the GTSP (Generalized Traveling Salesman Problem) [14]. The sheet metal
cutting problem is thus considered an NP-hard problem [15].

Authors in [15] solve sheet metal cutting problem using a genetic algorithm where an individ-
ual is represented as a 3D chromosome. It contains the cluster size written as a binary number,
the sequence of placed parts, and their orientation. This 3D chromosome is then input to the
placing heuristic, which places the parts.

The solution proposed in [16] considers only path-cutting tool distance. However, they par-
tition each placed part into multiple segments using micro joints, i.e., points at the edges of
the part. The path-cutting tool then cuts these segments instead of the whole part at once.
They propose a genetic algorithm with the 2D chromosome – containing angles that determine
the placement of the micro joints and cutting sequence of these segments. The chromosome is
then directly used by the path-cutting tool that starts cutting segments according to the cutting
sequence defined in the second part of the chromosome.



Chapter 3

Problem statement and
formulation

This chapter defines the painting placement problem, its inputs, constraints, and what a solution
to the painting placement problem is. First, let us define what a painting placement instance is.

Painting placement isntance is an ordered quadruple

I = (P, F, L, π) , (3.1)

where P ⊆ (N,N)N are painting dimensions (width, height pairs), N is the number of paint-
ings, F ⊆ RN,N is matrix defining flow between paintings, L ∈ (N,N) is layout dimension (width,
height pair) and π : R×R→ R is evaluation function.

Flow expresses the affinity of paintings to each other. Paintings that should be placed close
together have flow higher compared to paintings that should not. Additionally, layout and
painting dimensions are abstract, e.g., they have dimensionless units. However, they can be
interpreted as any suitable measurement unit, e.g., meters.

An example of a painting placement instance is

I1 = (

paintings︷ ︸︸ ︷
⟨(5, 4), (8, 5)⟩,

flow︷ ︸︸ ︷(
0 5.8
5.8 0

)
,

layout︷ ︸︸ ︷
(15, 7),

evaluationfunction︷ ︸︸ ︷
f(x, y) = x+ y) .

Instance I1 contains two paintings, the first with dimensions 5 × 4, the second with 8 × 5.
The flow between them is 5.8. The layout to which paintings are placed has a width 15 and a
height 7. The evaluation function is x+ y.

Next, each painting placement instance can have multiple solutions.

Painting placement solution is a sequence of placement points

S ⊆ (N,N)N . (3.2)

For example, one solution S1 for the instance I1 is

S1 = ⟨(0, 0), (6, 1)⟩ .

It means that the first painting’s lower left corner has coordinates (0, 0) and similarly (6, 1)
for the second painting. Illustration of both I1 and S1 can be seen in figure 3.1.

7
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painting1

painting2

layout

(0,0)

(6,1)

Figure 3.1 Example of a painting placement solution S1 = ⟨(0, 0), (6, 1)⟩ for instance I1.

Lastly, we need to evaluate the performance of the painting placement solution. Let us assume
a painting placement instance I and a set of all possible painting placement solutions S to that
instance. Then, the painting placement problem is to find a minimum of a cost function
c : S → R+, which can also be called an objective function, as

argmin
x∈S

c(x) =

N∑
i=1

N∑
j=i+1

fi,jd(i, j) +

N∑
i=1

π(i) + λm(x) + γn(x) , (3.3)

where fi,j is flow between painting i and j, d(i, j) is their distance, π(i) is the evaluation
function applied to the bottom left corner of the painting’s i placement point, m calculates
number of overlapping paintings with penalization constant λ ∈ R+ and n calculates the number
of paintings placed outside their allocated area (see 4.3.3) with penalization constant γ ∈ R+.

The problem defined as such is NP-hard. The reason is that by setting penalization constants
λ, γ to zero and π to f(x, y) = 0, the objective function of a painting placement problem becomes
similar to the FLP objective as defined in equation 2.1. The only difference is the price for a unit
of distance in the FLP objective, but it can be added to the flow making the objective functions
identical. Also, at FLP, placed facilities are defined in terms of their area and maximum aspect
ratio as opposed to width and height pair in the painting placement problem. However, the
facilities at the FLP problem must be assigned a dimension as the objective function application
includes calculating the distance from placement points. Thus, by FLP being NP-hard [5, 2, 6],
painting placement is also NP-hard.



Chapter 4

Coding and solution construction

This chapter is the central part of the thesis. It presents the novel genetic approach demon-
strated on solving the painting placement problem. In section 4.1, definitions regarding genetics
are laid out together with the Schema Theorem description. Section 4.2 describing individual
representation and section 4.4 describing genetic operators together present the novel genetic
approach. Section 4.3 describes how to decode an individual and construct a painting placement
solution. Lastly, section 4.5 describes the genetic algorithm.

4.1 Genetics
This section describes important genetic terms that are used throughout the thesis. They are
allele, gene, chromosome, individual, population, crossover, mutation, and reproductive plan.
Also, in subsection 4.1.1, the integral part of genetics called the Schema Theorem is described.

First, it is essential to describe what the genetic approach means. The genetic approach was
first introduced by Holland in 1975 to solve optimization problems where it is computationally
infeasible to find an optimal solution by enumerating all possible solutions [17].

This genetic approach is inspired by nature and Darwin’s Theory of Evolution – a population
of individuals evolving over time. Individuals more adapted to the environment are more likely
to survive and thus pass their genes to the next generation. Thus, over time, the population
should converge to the state where the adaptation to the environment is the highest [18].

Holland in [17] defines several structures that reassemble this natural process. The most
important ones are described in the rest of this section.

Allele represents a concrete value that a gene can have. It can be thus described as a set of
alternatives to choose from.

Gene is a structure composed of alleles. It often describes one trait or characteristic.

Chromosome is a structure composed of genes. Thus it is an amalgam of characteristics de-
scribed by genes.

Individual is defined by its chromosome and represents a solution to the problem or a structure
from which a solution can be constructed. A numeric value called fitness can be assigned to
each individual, representing how well the individual performs in an environment.

9
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Population

Individual A

5 3 1 4 2

H V V H

gene 1

gene 2

allele

30.5

fitness

Individual B

2 3 1 5 4

V V H H

gene 1

gene 2

allele

9.8

fitnesschromosomechromosome

Figure 4.1 Example of a population composed of two individuals.

Population is a set of individuals. It can be interpreted as a subset of possible solutions.

One concrete example of the above-mentioned definitions is in figure 4.1. There are two
individuals in the population, with their chromosomes having two genes. The first gene is a
vector containing permutation with alleles of 1 to 5. The second gene is a string vector with
alleles having values H or V (cut types from subsec. 4.3.1). Lastly, each individual has a fitness
value. Thus, because A’s fitness 30.5 is greater than B’s fitness 9.8, we can say that individual
A performs better than B.

For the structures defined above, multiple operations called genetic operators or simply
operators are defined by Holland and used by other researchers following his work. Genetic oper-
ators aim to create new individual/s using individuals already present in a population as input.
Two of them that are used in this thesis are described below.

Crossover genetic operator takes two individuals as input and, by recombination of their alleles
in their genes, produces a new individual/s called offspring or child.

Mutation genetic operator takes one individual as input and produces a new one which may
have some of its alleles replaced by different ones at random.

Additionally, there needs to be a process that transforms a population to a new one. This
process is called the reproductive plan. Also, there is a special term for the population to which
the reproductive plan is applied.

Reproductive plan is a process that takes a population on input and produces a modified pop-
ulation on the output by using mainly genetic operators.

Initial population is the population before the first application of the reproductive plan.

Generation k is the population after applying the reproductive plan k-times to it.
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Finally, a genetic algorithm uses all the processes mentioned above to find a solution to some
problem.

Genetic algorithm or genetic approach applies a reproductive plan on an initial population
until the stopping condition is met with the goal of finding a (sub)-optimal solution to the prob-
lem.

One example of a genetic approach is in figure 4.2. At the start, an initial population of
individuals is generated. Then, the reproductive plan is applied until the stopping condition is
met. Application of the reproductive plan creates the next generation by using crossover and
mutation genetic operators.

Initial Population

Calculate Fitness

no yesIs stopping
condition met ?

Crossover Mutation

Figure 4.2 Example of a genetic approach. It uses a reproductive plan that creates the next generation
by applying crossover and mutation.

4.1.1 Schema Theorem
Holland in [17] proposed the Schema Theorem arguing why the genetic approach described above
works. This subsection describes the main idea behind the argument. First, an important term
to describe is schema.

Schema is an extended representation of chromosome, where each gene can contain a “don’t
care” symbol marked as underscore _. This symbol can take up any value that an allele can in
the given context. We can then say that a chromosome belongs to a schema and that a schema
contains a chromosome.

Schema can be illustrated on a chromosome with one gene represented as a vector that
contains a permutation of numbers 1 to 7. Then, example of a schema is H1 = ⟨5,_,_, 2,_, 3,_⟩.
It contains 24 chromosomes, with one example being ⟨5, 4, 1, 2, 6, 3, 7⟩. On the other hand, schema
H2 = ⟨1, 2, 3, 4, 5, 6,_⟩ contains only one chromosome.
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There are two other properties that a schema has. They are length and order and are defined
as follows.

Length of a schema is the distance from the first “non-don’t care” symbol to the last.

Order of a schema is the number of “non-don’t care” symbols contained in the schema.

For example, H1 has length 6 and order 3. It is graphically illustrated in figure 4.3. On the
other hand, schema H2 has the same length, 6, but higher order, which is also 6.

With schema being defined, we can interpret any population of individuals as a pool of
schemata. It can then be reformulated that a genetic approach, which has a reproductive plan
and genetic operators, (a) creates new schemata by recombination of the one already present in
the population, (b) creates schemata that are absent in the population, and (c) keeps a history
of the best schemata found. The Schema Theorem can then be written as

E[M(H, t+ 1)] ≥M(H, t)
µ(H)

µ

[
1− pc

δ(H)

l − 1
− σ(H)pm

]
, (4.1)

where M(H, t) is expected number of individuals whose chromosome belongs to schema H in
population t, µ(H) is average fitness of individuals whose chromosome belongs to H, µ is average
population fitness, δ(H) is length of schema H with it’s maximum length l, σ(H) is order of H,
pc is crossover probability, and pm ≪ 1 is mutation probability.

Inequality 4.1 says, that the success of a schema H, considering only crossover and low
probability mutation are purely determined by its better-than-average performance, length, and
order. It can be thus said that the genetic approach favors short schemata with low order that
have better-than-average performance.

The reasoning behind the argument is that schemata with high order are more likely to be
damaged by mutation, i.e., an allele of a schema is replaced by a different one. Also, longer
schemata are more likely to be split using a crossover, whereas Holland considers a one-point-
crossover that produces an offspring’s chromosome by copying of the first parent’s chromosome
up to the crossover point, followed by the second parent chromosome after the crossover point.

5 _ _ 2 _ 3 _

length=6

order=3

Figure 4.3 Example of a schema, where “don’t care” symbol marked as underscore _.
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4.2 Coding
The central part of the novel genetic approach proposed in this thesis is how an individual is
represented. It is crucial for constructing the genetic operators, e.g., crossover and mutation,
and decoding an individual from its representation to the solution.

An individual is represented as a 3D chromosome—which means having three genes—that is
composed of painting sequence random key, slicing order random key, and orientation probabil-
ities. An example of a chromosome is in figure 4.4.

Let us use the notation for painting sequence random key as PSrk, slicing order random key
as SOrk, orientation probabilities as ORprob, and number of paintings as N , which is also called
an instance size. Lower index rk means random key, and lower index prob means probabilities.
First two are vectors, where PSrk ∈ RN and SOrk ∈ RN−1. Orientation probabilities is a matrix
where ORprob ∈ RN−1,3. Constraints 4.2 apply to each of these parts with a stochastic vector
defined as a vector that contains non-negative elements that add up to one.

1. PSrk is a stochastic vector.
2. SOrk is a stochastic vector.
3. Each row in ORprob is a stochastic vector.

(4.2)

The representation mentioned above is based on a genetic solution to the FLP from [6, 19],
where the authors represent an individual as a 3D chromosome with concrete identifiers for
facilities, slicing order, and orientations. The novel approach to coding proposed in this thesis
is (1) the use of stochastic vectors instead of concrete identifiers, (2) interpreting the stochastic
vectors as random keys [20], (3) novel mutation and crossover operator, and (4) decoding an
individual from the stochastic vector representation. Thus, the search in the proposed genetic
approach takes place in a different space, which is a space of stochastic vectors.

0.3 0.2 0.4 0.1 0.6 0.1 0.3 0.3 0.2 0.5

0.2 0.6 0.2

0.7 0.2 0.1

painting sequence 
random key 

slicing order 
random key 

orientation 
probabilities 

Figure 4.4 Example of an individual representation – two vectors and one matrix. Each vector and
matrix row form a stochastic vector (vector that contains non-negative elements that add up to one).

There are multiple ideas behind representing an individual as a set of stochastic vectors
that stem from extending RKGA [20], in which chromosome is represented as a vector with
elements from interval ⟨0, 1⟩. First of them is the ability to perform mutation at an arbitrary
element of these vectors using a simple replacement, i.e., substituting an element for a random
one from interval ⟨0, 1⟩, followed by normalization back to the stochastic vector. For example,
using representation described in [6, 19], there must be a different mutation method for each
gene of a chromosome. By using the representation proposed in this thesis, there has to be only
one mutation operator that can be used universally for all genes of the chromosome.

Additionally, when using representations similar to [6, 19], after applying the genetic op-
erators, usually crossover and mutation, an invalid individual might be created. That is an
individual that does not represent any solution. The presence of invalid individuals might lead
to performance loss in FLP [21]. Moreover, unique solutions for dealing with invalid individuals
must be introduced. For example, left-to-right scan used by [4, 16] or leaving invalid individuals
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inside the population but penalizing them [4]. The coding proposed in this thesis produces only
valid individuals.

Finally, the reasoning behind using a stochastic vector instead of a vector, where each element
is from interval ⟨0, 1⟩ as in RKGA [20], is the novel implementation of crossover used in this thesis.
It is described in subsection 4.4.1.
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4.3 Solution construction
This section describes the process of how to transform or decode an individual. This trans-
formation aims to create a solution to the painting placement problem, which is a sequence of
placement points for the paintings. There are multiple steps to this process.

1. Individual decoding (4.3.1).

2. Slicing tree construction (4.3.2).

3. Slicing layout construction (4.3.2).

4. Using placement heuristic to create a painting placement solution (4.3.3).

Steps in the transformation of an individual to the painting placement solution are in fig-
ure 4.5. All of these steps are explained in the following text.

Individual

Decoded
Individual

Unresolved 
Slicing 
Tree

Resolved
Slicing 
Tree

Resolved
Slicing 
Tree

⋯
at most 

 
trees

Slicing 
Layout

Slicing 
Layout

Painting 
Placement 

Solution

Painting 
Placement 

Solution

⋯

⋯

Painting 
Placement 

Solution

select 
best

Figure 4.5 Steps in the transformation of an individual to the painting placement solution.
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4.3.1 Individual decoding
First, we must decode an individual to the representation from which a slicing layout can be con-
structed. A decoded individual is composed of painting sequence, slicing order, and orientations.
An example of individual decoding is in figure 4.6.

Let us use the notation for painting sequence as PS, slicing order as SO, and orientations as
OR. PS contains painting identifiers, SO contains information used to construct slicing layout,
and OR contains type of the cuts.

Cut type in OR can take up three values.
H for horizontal.

V for vertical.

∗ for wildcard, that can take up any value H or V .
The introduction of the wildcard cut type ∗ is a novel idea proposed in this thesis. In

literature, only H and V cut types are used [6, 10, 21, 4].

Decoding random keys
Decoding PSrk to PS and SOrk to SO is the same as the RKGA in [20]. The graphical
illustration is in figure 4.6 marked as random key decoder. Decoding random keys in PSrk and
SOrk can be explained in the following steps on a sequence of four numbers S = ⟨0.3, 0.2, 0.4, 0.1⟩ .

1. Create S′ by adding a lower index to each element from S, which marks its ordinal position
starting from one. S′ = ⟨0.31, 0.22, 0.43, 0.14⟩ .

2. Sort S′ in descending order. S′ = ⟨0.14, 0.22, 0.31, 0.43⟩ .

3. Take lower indexes of S′. It is the result – ⟨4, 2, 1, 3⟩.

Orientation probabilities decoding
Last part of the individual, matrix ORprob ∈ RN−1,3, decodes to OR, which is a sequence of cut
types. The graphical illustration is in figure 4.6 marked as orientation decoder.

Decoding ORprob to OR translates each row to one cut type. Thus, decoding orientation
probabilities can be explained for one row, say R = ⟨0.7, 0.2, 0.1⟩ in the following steps.

1. Create R′ by adding lower index H to the first, V to the second, and ∗ to the last R’s
elements. R′ = ⟨0.7H , 0.2V , 0.1∗⟩

2. Select element from R′ with the maximum value. maxR′ = 0.7H .

3. Take lower index of maxR′. It is the result – H.

There is one exception to the steps described above. It is the limit on the maximum number
of ∗ cut types produced by ORprob decoding. Let us call this limit k. If the limit is not applicable,
i.e., k ≥ N − 1, there is no change to decoding steps 1–3 described above. However, only the
first k wildcard cut types ∗ with the highest value are considered if applicable. It is achieved by
setting the value to 0 (only for the duration of the decoding) to the bottom N − 1− k wildcard
cut types ∗ with the lowest values. Then the same 1–3 decoding steps are applied as described
above.

One example where the limit on wildcard cut types ∗ applies is for the k = 1 and ORprob

that has two rows, R1 = ⟨0.2, 0.3, 0.5⟩ and R2 = ⟨0.1, 0.2, 0.7⟩. Without exception, the result is
∗, ∗. However, considering the exception on the maximum limit k = 1, the result is V, ∗. Reason
is that in R2, wildcard ∗ has value 0.7, which is higher than value of ∗ in R1, which is 0.5.
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0.3 0.2 0.4 0.1 0.6 0.1 0.3 0.3 0.2 0.5

0.2 0.6 0.2

0.7 0.2 0.1

painting sequence 
random key 

slicing order 
random key 
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random key 
decoder

1) add lower
index

0.31    0.22    0.43    0.14 0.61    0.12    0.33

2) sort 0.14    0.22     0.31    0.43  0.12    0.33    0.61

3) get lower
index

4    2    1    3 2    3    1
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painting sequence slicing order 

0.3H    0.2V    0.5* 
0.2H    0.6V    0.2* 
0.7H    0.2V    0.1*
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index

0.3H    0.2V    0.5* 
0.2H    0.6V    0.2* 
0.7H    0.2V    0.1* 

2) select row
max

*    V    H
3) get lower
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max

* V H

orientations 

orientation 
decoder

Figure 4.6 Individual decoding example. Both the painting sequence random key and slicing order
random key are decoded using the same procedure. The decoded individual is used to construct an
unresolved slicing tree.

4.3.2 Slicing layout construction
In the previous subsection, decoding an individual is described. The decoded individual consists
of three parts – painting sequence, slicing order, and orientations. From this representation, a
slicing layout can be constructed.

Slicing layout is the recursive partitioning of space to rectangles using horizontal and vertical
cuts.

Construction of the slicing layout from painting sequence, slicing order, and orientations has
three steps, which are as follows.

1. Construct an unresolved slicing tree from a decoded individual.

2. Resolve an unresolved slicing tree.

3. Create a slicing layout using a resolved slicing tree.
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Slicing tree construction
First, let us describe what a slicing tree is. The slicing tree was first introduced in 1982 by
Otten [22] to solve automatic floorplan design. In the most general sense, it is a tree that codes
the recursive division of space into rectangles using horizontal and vertical cuts. A slicing tree
can thus be used to construct a slicing layout. According to [23], a slicing tree is a complete
representation of a slicing layout. That means every possible slicing layout has at least one
slicing tree representing it. This thesis defines and uses the slicing tree in two variants.

Resolved slicing tree is a binary tree with internal nodes having values from {H,V } and leafs
having values from the painting sequence.

Unresolved slicing tree is an extension of a resolved slicing tree where internal nodes have
values from {H,V, ∗}.

Cut types H for horizontal and V for vertical are common for both types of the slicing tree.
An unresolved slicing tree can also contain the wildcard cut type ∗.

Next, we can use a decoded individual to construct an unresolved slicing tree. This construc-
tion is graphically illustrated in the left part of a figure 4.7. During this process, the painting
sequence results in leaf nodes, slicing order determines the shape of a tree, and orientations are
the values assigned to internal nodes. Thus, each decoded individual represents one unresolved
slicing tree.

Finally, an unresolved slicing tree is resolved. Resolving is graphically illustrated in the right
part of a figure 4.7, where the unresolved tree contains one wildcard symbol ∗ as a root. By
resolving this tree, ∗ is first replaced by H and then by V . In this case, resolving the unresolved
slicing tree produces two resolved slicing trees, which differ in root node value. In the general
case, an unresolved slicing tree can at most resolve to 2p resolved slicing trees, where p is the
number of internal nodes, i.e., the nodes that can contain wildcard ∗. Reformulation for a
decoded individual is that decoded individual can, at most, represent 2|OR| resolved slicing trees,
where OR are orientations from section 4.3.1.

Slicing layout
Next, we can construct a slicing layout using a resolved slicing tree. Input to the construction
has three parts that are as follows.

1. Layout to partition.

2. Areas of paintings to place.

3. Resolved slicing tree

The layout is the wall on which the paintings are placed. Areas of the paintings are retrieved
using the resolved slicing tree, which contains painting identifiers as leaf nodes.

Construction can be described using figure 4.8. On the left is an input to the construction –
three paintings 1, 2, 3 with areas a1, a2, a3 and resolved slicing tree. Then, we recursively traverse
the resolved slicing tree. Depending on the node value, there are three possible actions.

H – cut layout horizontally.

V – cut layout vertically.

Otherwise, assign node value to the layout.
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After performing the cut, the process mentioned above is recursively repeated for the left and
right child. If the cut is horizontal, the left child is given the upper part of the cut as its layout,
and the right child is given the lower part. If the cut is vertical, the left child is given the left
part of the cut as its layout, and the right child is given the right part. It can be seen in the
middle part of the figure, where the cut is vertical. The left child is an orphan, i.e., it has no
children. Thus, the left part of the cut is assigned value 1. The right child is not an orphan,
meaning the process is applied recursively to the right part of the cut and the right child. It is
depicted on the right part of the figure.

The last part of creating a slicing layout is the position of the cut. As mentioned above, the
resolved slicing tree has horizontal and vertical cut types. Each cut type’s position is determined
proportionally to the area of rectangles assigned to the cut result. Again, it can be described
using an example in figure 4.8. The first cut is vertical, where the left part of the cut is assigned
rectangles 1 and the right part is assigned rectangles 2, 3. The vertical cut thus splits the layout
into two parts – the left part having 1/3 of the total layout area and the right part having the
rest.



Solution
construction

20

painting sequence 

slicing order 

orientations 

4 2 3 1

2 3 1

* V H

left right

1 2 3

*
left right

4 2

left

1

right

1

H

H

4

left

2

right

3 1
3

left right

3

V

V

3

left

1

right

1) resolved slicing tree, 
case * is H

*

H

4 2

V

3 1

V

H

4 2

V

3 1

H

H

4 2

V

3 1

2) resolved slicing tree, 
case * is  V

unresolved slicing tree

Figure 4.7 On the left is an example of unresolved slicing tree construction from a decoded individual. On the right is an example of resolving an
unresolved slicing tree.
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Figure 4.8 Example of a slicing layout construction from a resolved slicing tree, painting areas, and layout. There are three paintings, 1, 2, 3 together
with their areas a1, a2, a3. The position of a cut is determined proportionally to the area of the paintings.
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4.3.3 Placement heuristic
The placement heuristic is the last part of transforming an individual into a painting placement
solution. Input to the heuristic is the slicing layout together with paintings, and output is the
painting placement solution. The pseudocode of the proposed placing heuristic is in algorithm 1.

Algorithm 1: Placement heuristic
Data: slicing layout, paintings
Result: painting placement solution

1 placedPaintings ← EMPTY LIST
2 for painting in paintings do
3 best ← NIL
4 for point in possiblePlacementPoints(painting, placedPaintings, slicing layout) do
5 candidate ← place(painting, point)
6 if best == NIL
7 or objective(placedPaintings + candidate, slicing layout)
8 < objective(placedPaintings + best, slicing layout) then
9 best ← candidate

10 end
11 end
12 placedPaintings += best
13 end
14 return placedPaintings

The proposed heuristic is greedy and iterative. Iterative means that it creates the painting
placement solution gradually, as it tries to place one painting after another using the slicing
layout. It is greedy because, at each iterative step, it places a painting in a way that minimizes
the objective value.

As mentioned earlier, the slicing layout recursively divides space into rectangles. Addition-
ally, each rectangle in the slicing layout has been assigned a painting identifier. The function in
algorithm 1 possiblePlacementPoints uses this assigned space as an allocated area.

Allocated area for a painting is a rectangle from a slicing layout to which its identifier is as-
signed.

It means that every slicing layout has one allocated area for each painting. Also, the allocated
area does not necessarily need larger dimensions than the painting. E.g., the width of a painting
might be greater than the width of its allocated area. An example of a painting and its allocated
area is in figure 4.9.

An important part of the algorithm 1 is function possiblePlacementPoints on line 4. This
function returns points that the heuristic tries for placing a painting. Implementation in this
thesis is called the corner-placing heuristic.

Corner-placing heuristic is a placing heuristic that considers four painting placement points
for each painting – the allocated area’s bottom-left, bottom-right, top-left, and top-right corners.

Examples of the painting placement points created by the corner-placing heuristic are in
figure 4.9. On the left, we can see that the allocated area’s dimensions are sufficient to try all
four points. In the middle, there are only two points where the placing of a painting does not
result in it being outside the allocated area. On the right, all points result in being outside the
allocated area. Additionally, figure 4.10 shows iteration of the corner-placing heuristic considering
one placement point.
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Figure 4.9 Examples of the painting placement points created by the corner-placing heuristic for
three different allocated areas that are plotted using a dashed line.

1

23

4

bottom-left

Figure 4.10 Example of a painting 4 placed inside its allocated area using the corner-placing heuristic.
The allocated area is plotted using a dashed line. Also, the distances between the placed painting and
all other paintings are displayed using a dotted line.
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4.4 Operators
As described in section 4.1, genetic operators are used to create new individuals. This section
presents the novel crossover and mutation genetic operators that are used for the individual
representation from section 4.2.

4.4.1 Crossover
Novel crossover approach proposed in this thesis creates a new individual by weighted vector
addition of the parent’s stochastic vectors followed by a normalization back to the stochastic
vector. Using notation from section 4.2, that is PSrk for painting sequence random key vector,
SOrk for slicing order random key vector and ORprob for orientation probabilities matrix, we
can define crossover for two parents A, B and offspring C as

∥wAAPSrk
+ wBBPSrk

∥ = CPSrk
, (4.3)

∥wAASOrk
+ wBBSOrk

∥ = CSOrk
, (4.4)

∥PT (wAAORprobi: + wBBORprobi:)∥ = CORprobi: , (4.5)

where ∥ · ∥ is normalization to the stochastic vector1, + is vector addition, wA, wB ∈ R are
weights, P ∈ RN−1 is orientation penalization vector with N being instance size, notation Xi:

means i-th row of a matrix X and multiplying a vector by a scalar multiplies each element of
the vector by that scalar.

Example of crossover for painting sequence random key and slicing order random key (eq. 4.3
and 4.4), is in figure 4.11. An example of crossover for orientation probabilities (eq. 4.5) is in
figure 4.12.

The crossover implementation described above has multiple parts – vector addition, weights,
orientation penalization, and normalization. Following are arguments for incorporating each of
those parts into a crossover.

Vector addition and normalization
Adding and then normalizing vectors to stochastic vectors differs from other crossover implemen-
tations. For example, in one-point-crossover [17] and uniform crossover [24], parts of the parent
chromosomes are copied directly without any modification to form an offspring.

By using a stochastic vector for painting sequence random keys, slicing order random keys
and rows of an orientation probability matrix, we can interpret each of them as a probability mass
function. Next, by implementing the crossover as vector addition followed by normalization, we
can say the crossover approximates a probability mass function of some distribution from two
samples, i.e., two parents. Throughout the multiple generations, more samples are added to this
approximation. Thus, each part of the chromosome tries to approximate the probability mass
function that produces (sub)-optimal painting placement solution.

Going back to the schema theorem described subsection 4.1.1, we can say that the crossover
proposed in this thesis does not prefer schemata with any particular order and that length of a
schema does not matter.

Preference for schemata with a short length in one-point-crossover [17] stems from the
fact that a chromosome is split at a particular position. This idea of splitting a chromo-
some is absent in the proposed approach. For example, consider slicing order random key

1Normalization ∥⟨x1, x2, . . . , xn⟩∥ = ⟨y1, y2, . . . , yn⟩, where yi =
xi

n∑
k=1

xk

.
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vector Ark = ⟨0, 0.2, 0.7, 0.1⟩. Using the decoding procedure described in 4.3.1, Ark decodes
to A = ⟨1, 4, 2, 3⟩. Then, A belongs to the schema S1 = ⟨1,_,_,_⟩ and also to schema
S2 = ⟨1,_,_, 3⟩. S1 has order 1 and S2 has order 4. Let us apply crossover to Ark and
Brk = ⟨b1, b2, b3, b4⟩. Result is ∥⟨b1, 0.2 + b2, 0.7 + b3, 0.1 + b4⟩∥. We cannot make any assump-
tions about whether the result belongs to S1 or S2, as it purely depends on Brk. Additionally,
we cannot predict the probability of whether S1 or S2 survives, i.e., they will still be present in
the crossover result. However, when using a one-point-crossover, it would depend on the position
of the split.

Lastly, the proposed crossover does not prefer any particular order of schemata for the same
reasons mentioned above. It is a common feature with one-point crossover, which only prefers
shorter schemata.

Weights
Adding weights wA and wB determines the preference for transferring information from one
parent to another. The weights are calculated using a cost function c from eq. 3.3 as

wA =
c(B)

c(A) + c(B)
, wB = 1− wA . (4.6)

Thus, the parent with better performance in the population, i.e., having lower cost function,
has more influence on what genes are being transferred to the offspring.

Adding wA and wB lowers the chance of creating offspring that do not share the advan-
tageous schemata. For example, considering only one stochastic vector of length three as a
chromosome, it might be advantageous to have a high value for the first value in the chro-
mosome, e.g., A = ⟨0.7, 0.1, 0.2⟩. On the other hand, a poorly performing individual might be
B = ⟨0.1, 0.3, 0.6⟩. Without weights, ∥A+B∥ = ⟨0.4, 0.2, 0.4⟩. Adding weights according to the
eq. 4.6 penalizes the transfer of poorly performing schemata.

Orientation penalization
Another part of the crossover used in the orientation probabilities matrix is the penalization
vector P . As mentioned in section 4.3, each individual decodes to one unresolved slicing tree
whose internal nodes contain a type of the cut – H for horizontal, V for vertical, and ∗ for a
wildcard, that can take up any value H or V . Vector P controls the preference for each type of
cut. For example, setting P = ⟨1, 1, 0.5⟩ penalizes only the wildcard cut ∗. On the other hand,
setting P = ⟨1, 1, 1⟩ removes any penalization.

The main reason for introducing P is to limit the spread of wildcard cut ∗ in population,
making its appearance only at the most advantageous parts of the genes.
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Figure 4.11 Crossover example for painting sequence and slicing order random keys. The procedure
is the same for both – sum weighted parent vectors and then normalize to stochastic vector.
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Figure 4.12 Crossover example for orientation probabilities. The procedure is first to sum weighted
parent matrices, then multiply the matrix with orientation penalization vector and normalize each row
to a stochastic vector.
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4.4.2 Mutation
Mutation can happen on all three genes of a chromosome – painting sequence random key PSrk,
slicing order random key SOrk and orientation probabilities ORprob. Due to the coding described
in section 4.2, PSrk, SOrk and rows of ORprob are stochastic vectors. We use this common trait
and define the mutation operator for a stochastic vector as follows.

1. Replace one randomly chosen element with a uniformly generated value from ⟨0, 1⟩.

2. Normalize to stochastic vector.

With the definition of the mutation operator for a stochastic vector above, the mutation
operator for an individual is defined as follows.

1. Choose one of PSrk, SOrk, ORprob at random.

2. If PSrk or SOrk is chosen, apply the mutation operator for a stochastic vector.
If ORprob is chosen, select one row at random and apply a mutation operator for a stochastic
vector.

It is important to mention how to interpret a mutation operator. As mentioned in section 4.3,
an individual decodes to one unresolved slicing tree. Mutation modifies this tree. First, if applied
to ORprob, the value of an inner node of the tree might change. That means a change in a type
of cut – H, V , or ∗. Second, if applied to PSrk, the value of leaves in the tree might change.
Lastly, if applied to SOrk, the whole structure of a tree might change.

As described above, even changing one value can result in a completely different tree and
after further decoding the slicing layout and painting placement solution. It is the reason for
defining mutation as such – to damage the chromosome as little as possible. An example of a
mutation that happens on all tree parts at once is in figure 4.13.
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Figure 4.13 Example of a mutation on all three parts of a chromosome. Since all parts can be treated
as a stochastic vector, the same procedure is used for all of them – replace one value randomly and then
normalize it to a stochastic vector.



Genetic algorithm 30

4.5 Genetic algorithm
This section concludes the whole chapter by presenting the genetic algorithm which is used
to find an individual representing (sub)-optimal solution to the painting placement problem.
Pseudocode is presented in algorithm 2, initial population generation strategy is described in
subsection 4.5.1, and reproductive plan is described in subsection 4.5.2.

Genetic algorithm has two main properties that have to be well-balanced with respect to each
other – intensification and diversification [25].

Intensification is the ability to identify parts of the search space with a high-quality solutions.

Diversification is the ability to prevent premature convergence to the suboptimal solutions.

We can classify genetic operators in terms of their intensification and diversification effects.
The mutation operator is considered the most straightforward diversification strategy, as it cre-
ates a small change in an individual’s chromosome that can lead the search out of the suboptimal
solution [25]. On the other hand, crossover creates a new solution by recombination of already
present individuals, which can be considered a diversification strategy [25]. However, researchers
in [26] argue that crossover also has an intensification effect. They argue that if the population
were primarily composed of the same individuals, the crossover would not be able to improve
the solution.

Algorithm 2: Genetic algorithm
population ← generateInitialPopulation
for i← 1 to maxNumberOfIter do

population ← applyReproductivePlan(population)
end
return selectBest(population)

4.5.1 Initial population
The initial population is the population that is used as a starting point for the genetic algorithm.
It consists of two parts – RANDOM and GREEDY. Visualization can be seen on the left of the
figure 4.14.

RANDOM part consists of randomly generated individuals. The process of generating is (1) fill
vectors PSrk, SOrk and matrix ORprob with random values from ⟨0, 1⟩, and then (2) normalize
PSrk, SOrk and rows of ORprob to stochastic vectors to meet constraints in 4.2.

GREEDY part consists of individuals who are, at worst, as good as RANDOM. The process of
generating k GREEDY individuals is (1) to create 100k RANDOM individuals and (2) to select
k best ones in terms of their objective value.

Incorporating GREEDY individuals into the initial population may decreases the time the
genetic algorithm needs to find a space with high-quality solutions. The reason for adding
RANDOM individuals is that greedy solutions might increase the chance of an algorithm getting
caught in local optima.
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Figure 4.14 Initial population generation strategy and transition from generation k to k + 1 using a
reproductive plan.

4.5.2 Reproductive plan
This section describes a reproductive plan used in this thesis. It is visualized on the right of
the figure 4.14. The reproductive plan starts with partitioning the individuals in the current
population into three groups according to their performance.

ELITE individuals are the ones that decode to the solutions with the lowest objective value.

WORST are the ones that decode to the solutions the highest objective value.

AVERAGE individuals are in between the ELITE and WORST.

Then, the elitism strategy is used. It copies all ELITE individuals to the next genera-
tion. Elitism enforces intensification, keeping the best individuals inside the population with-
out any modification or recombination with others. It increases the representation of current
(sub)-optimal solutions in the population, and thus it is more likely that operators increasing
intensification will use ELITE as an input. In addition, without elitism, the best individuals
might be lost after crossing over or mutation.

The next step is to use crossover and mutation genetic operators, with the crossover being
the most significant in terms of the individuals it produces for the next generation.

CHILDREN are individuals that are created using a crossover, with the first parent being
selected at random from ELITE and the second parent selected at random from AVERAGE.

MUTANTS are individuals that are created using a mutation, with an input selected at ran-
dom from ELITE and AVERAGE.



Genetic algorithm 32

Another step is the tournament selection between the least performant and greedily generated
individuals. Reason for it is that the least performant individuals often receive high penalization
values in objective 3.3. It means that they produce solutions with mostly overlapping paintings
or paintings outside their allocated area.

WINNER individuals result from tournament selection between WORST and GREEDY. Selec-
tion picks the best individuals from WORST and GREEDY until all available spots for WINNER
are filled.

Finally, RANDOM, a small group of randomly generated individuals, is injected into the next
population. The reason is to decrease the chance of the genetic algorithm getting stuck in a local
optimum by randomly adding samples from the search space.



Chapter 5

Computational results

This chapter presents the computational results of the proposed solution, generated dataset
and testing scenarios, hyperparameters of the genetic algorithm, and implementation of the
computation server to which a user can submit a painting placement instance and receive a
solution to that instance.

Four testing scenarios used for evaluation are described in section 5.1. They are random,
clustering, packing, and London National Gallery. Next, in section 5.2, the dataset created for
each testing scenario is described. Then, section 5.3 describes and discusses the hyperparameters
of the proposed genetic algorithm 2. Also, reasonable hyperparameter values are determined.
Section 5.4 presents a painting placement solutions to the painting placement instances and their
visualizations. Lastly, section 5.5 describes the implementation of the computation server.

5.1 Scenarios
Four testing scenarios evaluate different aspects of the proposed solution. They are random,
clustering, and packing. Additionally, one scenario describes the painting placement at the Lon-
don National Gallery in figure 1.1.

Random scenario contains randomly generated painting placement instances. It is mainly
used for performance testing.

Clustering scenario tests the ability to form clusters. It is achieved by dividing the paintings
into groups. Paintings belonging to the same group have increased flow between them. Paintings
from the distinct group have flow between them set to 0.

Packing scenario is the same as the random scenario, with the only difference being that the
layout area is equal to the area of all paintings summed together. It tests the ability to create
compact solutions.

London National Gallery scenario contains one painting placement instance created from
the London National Gallery in figure 1.1. It tests the ability to work with actual painting
placement used at a gallery.

33
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5.2 Dataset
This section describes the parameters for creating datasets for random, clustering, and packing
testing scenarios. Generated painting placement instances are described in subsection 5.2.2.

Additionally, as mentioned in chapter 2, no datasets in the literature would satisfy the defini-
tion 3.1 of painting placement instance. Thus, all datasets are exclusively created by the author
and can be used by other researchers for benchmarking their solutions.

Generation of testing instances is performed using a Python programming language in com-
bination with Jupyter Notebook. Both the datasets and Notebooks are in the attached medium.

5.2.1 Generation parameters
Generation parameters used to create testing instances are presented in table 5.1. A description
of each of them follows in the rest of this subsection.

Table 5.1 Parameters used to generate testing scenarios

Layout
area ratio

Max paint.
width

Max paint.
height

Max paint.
ratio

Flow
min

Flow
max

Eval
func.

random 1.2 10 10 3 0 4 x+ y
clustering 1.2 10 10 3 - - 0
packing 1 10 10 3 0 4 0

Left-out values marked with - are discussed later in the text.

Layout area ratio is the ratio between the area of the layout and the painting area sum. It
is computed as

N∑
i=1

wihi

WH
,

where wi is width, hi is height of painting i, W is width, and H is height of the layout. If
the layout area ratio is set to 1, it means a preference for more compact layouts. On the other
hand, increasing this value implies the presence of more free space in the resulting layout.

Max painting ratio controls the maximum aspect ratio between width w and height h of
each painting. It is computed as

max(w, h)

min(w, h)
.

Increasing the max painting ratio implies the possibility of the generation of paintings that
are very thin, i.e., w ≪ h or h≪ w. On the other hand, setting the value to 1 implies that every
generated painting is square.

Evaluation function is function π from objective function 3.3. In the random scenario,
the evaluation function is set to x + y because of its simplicity, linearity, and interpretability.
Also, it implies that placing small paintings close to the bottom left corner is advantageous as
the function value is the lowest there and big paintings to the top right corner. On the other
hand, for clustering and packing scenarios, the evaluation function is set to a constant value 0.
The reason is that different capabilities are tested (clustering and packing). Furthermore, using
a non-constant evaluation function makes it harder to interpret the results.

Rest of the parameters, max painting width, max painting height, flow min, flow max
are self-explanatory and were set as low numeric values to increase computation speed and avoid
overflow.
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5.2.2 Instances
Six painting placement instances are generated using table 5.1 parameters, and one is created
from the London National Gallery in figure 1.1. They are described in table 5.2. For random
and packing scenarios, values for max painting width/height, flow min/max, and max painting
ratio are randomly generated from the parameter range described in table 5.1. The clustering
parameters are also generated randomly. The only exception is the flow, which is set in a way
to form clusters.

Visualization of the flow for two painting placement instances is in the appendix in figure A.1.
On the left is the randomly generated flow for random_10 instance, and on the right is the flow
for cluster_3_6 instance that forms clusters.

Table 5.2 Painting placement instances

Instance name Paint.
count

Layout
width, height Scenario Description

random_10 10 24 x 19 random
random_20 20 31 x 25 random
packing_10 10 19 x 15 packing
packing_20 20 33 x 26 packing

cluster_3_6 18 30 x 25 clustering 3 clusters,
6 paintings each

cluster_4_5 20 34 x 27 clustering 4 clusters,
5 paintings each

london_gallery_wall 7 180 x 90
London
National
Gallery

created from
figure 1.1
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5.3 Hyper-parameters
Proposed genetic algorithm 2 has eight hyperparameters. They are described in table 5.3 and
used in listing 4. The rest of the sections discuss these hyperparameters further and tries to find
their reasonable values.

Two instances are chosen for hyperparameter testing – random_10 and random_20. The
reason is that they are not biased towards any preferred solution, e.g., forming clusters. Thus,
insights into the proposed solution can be gained. However, fine-tuning the hyperparameters to
the specific instance or scenario is recommended but only sometimes computationally feasible.

Hyperparameter testing is performed by changing only the hyperparameter under test. Hy-
perparameters not under test are identical to the values in listing 4. The exceptions are pe-
nalization constants λ, γ (eq. 3.3), and populationSize. Penalization constants are set to the
length of the layout diagonal (see 5.3.7). Population size is set to 50N , where N is the size of the
instance. The reason for choosing such parameters as base parameters for testing is preliminary
results (not presented in this thesis), which proved correct in many cases.

Lastly, to achieve the statistical significance of the results presented in this section, each
computation1 is submitted five times with a different random seed. Presented values are thus an
average from five samples.

Table 5.3 Hyperparameters of the genetic algorithm 2

Hyperparameter Description
maxNumberOfIter maximum number of iterations
populationSize population size

maximumWildCardCount limit on the maximum number of ∗ cut types
produced by ORprob decoding

orientationWeights penalization vector P from eq. 4.5

populationDivisionCounts reproductive plan ratios
(right part of fig. 4.14)

initialPopulationDivisionCounts initial population ratios
(left part of fig. 4.14)

overlappingPenalizationConstant overlapping paintings penalization
constant λ from eq. 3.3

outsideOfAllocatedAreaPenalizationConstant outside of allocated area penalization
constant γ from eq. 3.3

1Copmutations were run on a notebook with Fedora 36, 16GB RAM, AMD Ryzen 7 PRO 4750U 8 x 1.7 - 4.1
GHz, Renoir PRO (Zen 2).
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5.3.1 Max number of iter
Hyperparameter maxNumberOfIter determines the number of iterations in the genetic algo-
rithm 2.

Results for two random instances are in figure 5.1. We can see the initial decrease of the av-
erage population objective for both random instances. Above iteration 300, the initial decreasing
trend stops for the random_10 instance, and for the random_20 instance, the decrease becomes
very slow.

The conclusion is that at least 300 iterations are needed before the average population ob-
jective stops decreasing rapidly.

5.3.2 Population size
Hyperparameter populationSize is calculated as κN , where κ is population scaling factor
and N is instance size. It determines the population size that is linear to the instance size.

Results for two random instances are in figure 5.2. We can see that scaling factor 10 does
not allow the population objective average to decrease to the levels comparable to scaling factors
50 and 100. It might imply that the scaling factor 10 cannot represent knowledge gathered over
time in the genetic algorithm or that more iterations are needed.

The conclusion is that using scaling factor between 50 and 100 is sufficient, with bias to-
wards 100 for obtaining better average objective performance. However, increasing the scaling
factor leads to slower computation speed as every population contains more individuals for which
reproductive plan must be computed.

5.3.3 Maximum wildcard count
Hyperparameter maximumWildCardCount limits the maximum number of ∗ cut types produced
by ORprob decoding (subsec. 4.3.1). Keeping this hyperparameter low or even setting it to zero
is recommended. The reason is that if it is high, computation time increases as ∗ spreads in
the population. For example, consider a decoded individual whose orientations OR are solely
composed of ∗ cut types. Then, the individual decodes to 2|OR| resolved slicing trees as seen in
figure 4.5.

Results for random_10 instance are in figure 5.3. The top sub-figure shows that the average
population objective does not differ significantly for any limit on the wildcard cut type. However,
there is a slight advantage for the maximum wildcard count equal to one. It might be caused by
using wildcard penalization 0.5 (listing 4) that does not allow the spread of the wildcard in the
population.

On the bottom sub-figure, we can see the computation speed as the limit on the wildcard cut
type increases. It grows linearly up to the maximum wildcard count of eight, and then the increase
stops. It might be because the wildcard penalization 0.5 does not allow the wildcard cut type
to spread over the maximum wildcard count of eight. Another reason might be computational
anomalies caused by high-memory consumption as the maximum wildcard count increases.

The conclusion tested on random_10 instance is that (a) the maximum wildcard count for
wildcard penalization 0.5 performs similarly for all values, with a slight performance gain if using
a maximum wildcard count equal to one, and (b) computation time is linear with increasing
maximum wildcard count and wildcard penalization 0.5.
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5.3.4 Orientation weights
Hyperparameter orientationWeights is the orientation penalization vector P from crossover
eq. 4.5. It determines the bias towards the type of cut (H, V , ∗, see 4.3.1).

Only penalization for the wildcard cut type ∗ is tested, as there is no need to penalize or have
a preference for H or V cut types. Also, recall that the hyperparameter maximumWildCardCount
is set to one during testing, as described at the beginning of the section and showed in listing 4.

Performance results for two random instances are in figure 5.4. We can see that for ran-
dom_10 instance, weight does not significantly influence the average population objective, and
after iteration 250, differences become negligible. However, for random_20 instance, weight one
(no penalization) has a faster-decreasing trend and produces a population with a better average
population objective.

The reason for better average performance at larger instance with weight one (no penalization)
might be that search space increases exponentially (there exists at least 2N−1 different unresolved
slicing trees, for instance of size N), and the introduction of wildcard cut type ∗ starts to manifest
itself at larger instances.

Results for the average number of wildcard cut types ∗ at the best individual before decoding
at each iteration are in figure 5.5. We can see that for the random_10 instance, weights below
one have less than one wildcard. However, there are between three and four wildcards for a
weight equal to one (no penalization). Similar can be seen for random_20 instance.

The reason why there are wildcards present in the figure 5.5 even for weight equal to zero
(maximal penalization) is that wildcard can be introduced to a chromosome by mutation or
injection of random individuals (see reproductive plan 4.5.2). Described penalization only applies
to the crossover.

The conclusion from figure 5.4 is that (a) smaller instances, such as random_10, do not
benefit from the introduction of wildcard cut type ∗, and (b) bigger instances, such as random_20,
benefit from no wildcard penalization by having a faster-decreasing trend and producing a better
average population.

The conclusion from figure 5.5 is that if we want to be certain that wildcard cut type ∗ is
contained in the best individual at each iteration, wildcard orientation weight must be set close
to one.

5.3.5 Population division counts
Hyperparameter populationDivisionCounts configures ratios in the reproductive plan (sub-
sec. 4.5.2). It influences how the next generation is created in the genetic algorithm 2 by setting
(a) how many elite individuals are copied, (b) how many children are created using a crossover op-
erator, (c) how many mutants are created using a mutation operator, (d) how many tournament
winners are included, and (e) how many random individuals are injected.

Performance results for two random instances are in figure 5.6. We can see that results do
not differ for the smaller or larger instance. The best reproductive plan strategy is achieved
without changing population division hyperparameters from listing 4. That means elitism and
randomly injected individuals are present. Additionally, the elitism strategy is the root cause of
good performance, as removing randomly generated individuals does not significantly improve
performance.

The reason why the use of elitism is important to obtain good results might be the imple-
mentation of the crossover operator (subsec. 4.4.1). Crossover adds weights wA and wB to each
parent based on their objective value (lower objective value achieves bigger weight). It means
that if wA ≫ wB , the offspring is a sample from the search space close to the parent A or nearly
identical to A. On the other hand, if the weights are similar and each parent represents a differ-
ent (sub)-optimal solution, the transfer of information does not happen, and the offspring is no
better than a randomly generated individual. Elitism avoids crossover by directly copying the
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best individuals without any modification. It leads to keeping track of multiple (sub)-optimal
solutions simultaneously. In addition, each time a crossover is applied, one parent is selected
from the elite pool, which supports intensification.

On the other hand, removing elitism produces the worst results. The reason might be the
inability to keep track of competing (sub)-optimal and the fast spread of the first macho in-
dividual, an individual that performs significantly better than everyone else. Without elitism,
the most significant way to keep track of found (sub)-optimal solutions is through crossover.
Crossover chooses parents randomly from the average pool, which does not give any constraint
on the weights wA and wB . Additionally, as mentioned in the previous paragraph, similar weights
for two different parents produce no better offspring than randomly generated individuals. It
means that most offspring do not perform well. On the other hand, as soon as the macho individ-
ual appears as the parent in the crossover, the offspring is effectively a copy of a macho individual.
Then, if the macho individual is randomly chosen more than once as a parent in a crossover,
it rapidly spreads and takes over the whole population. The chance of macho-individual taking
over the population with elitism is decreased as it deliberately keeps track of multiple competing
performant individuals, making it harder for the macho individual to spread.

The conclusion is that using elitism is essential for obtaining good painting placement solu-
tions as it can keep track of multiple (sub)-optimal solutions simultaneously.

5.3.6 Initial population division counts
Hyperparameter initialPopulationDivisionCounts configures generation ratios of the initial
population (left part of fig. 4.14). It consists of randomly generated and greedily generated
individuals.

Performance results for two random instances are in figure 5.7. The different ratios’ results
do not greatly differ.

The conclusion is that hyperparameter initialPopulationDivisionCounts does not signif-
icantly affect the obtained results.

5.3.7 Overlapping penalization constant
Hyperparameter overlappingPenalizationConstant is the penalization constant λ from eq. 3.3
used to penalize individuals representing solutions with overlapping paintings. It is calculated
as ρD, where ρ is a diagonal multiple and D is the length of a diagonal in a layout. Diagonal
length D for a layout with width W and height H is

√
W 2 +H2.

Results of the average overlapping paintings count for the best individual at each iteration
are in figure 5.8. We can see that the two lowest diagonal multiples with values 0.5 and 1.0
fail to remove most overlapping paintings from the best individuals. On the other hand, values
2 and higher can remove overlapping paintings at the smaller instance. However, in the larger
instance, there are still several overlappings present.

The conclusion is that hyperparameter overlappingPenalizationConstant should be set at
least to two times the diagonal length of the layout to start penalizing individuals that represent
solutions with overlapping paintings.

5.3.8 Outside of allocated area penalization constant
Hyperparameter outsideOfAllocatedAreaPenalizationConstant is the penalization constant
γ from eq. 3.3 used to penalize individuals representing solutions with paintings that are placed
outside of their allocated area (see fig. 4.9 and subsec. 4.3.3). It is calculated identically as the
overlapping penalization constant (subsec. 5.3.7). That is, as ρD, where ρ is a diagonal multiple,
and D is the length of a diagonal in a layout.
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Results of the percentage of paintings placed outside the allocated area for two random
instances are in table 5.4 (it is presented using a table because the values do not significantly
change throughout the iterations). We can see that the outside of allocated area penalization
constant cannot force the creation of the allocated space that would fit the vast majority of the
paintings. Interestingly, there are a few percentage points drops in favor of the larger instance.
The reason might be that it has more degrees of freedom, i.e., more possibilities to create a cut.
It can thus create more fitting slicing layouts.

However, the failure of the outside of allocated area penalization constant to force the creation
of sufficient allocated space in most cases is not that important. The reason is that the placing
heuristic (subsec. 4.3.3) tries to place the painting at several placement points in the allocated
area (see fig. 4.9). It can thus balance the few paintings that have been allocated sufficient area
to avoid and account for other parts of the objective function, e.g., overlapping paintings.

The conclusion is that the hyperparameter outsideOfAllocatedAreaPenalizationConstant
is the least important and might be left out by setting it to zero to save computation time.

Table 5.4 Percentage of paintings placed outside allocated area

Instance
Diagonal
multiple random_10 random_20

0 99.6 93.3
0.5 99.6 94.1
1 98 92.5
2 97.4 95.9
3 98.9 91.7
4 99.8 94.9
10 99.7 96.1
50 98.6 97.8

Percentage is averaged over all iterations for
the best individual at each iteration.
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Figure 5.1 Testing maximum number of iterations at two random instances.
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Figure 5.2 Testing population scaling factor at two random instances. The population size is κN for
population scaling factor κ and instance of size N .
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Figure 5.3 Testing increasing maximum wildcard count. Performance (top) and computation speed
(bottom) are showed.
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Figure 5.4 Testing performance of orientation weight for a wildcard cut type ∗ at two random in-
stances. Hyperparameter maximumWildCardCount is 1.
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orientation weights. Hyperparameter maximumWildCardCount is 1.
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Figure 5.6 Testing population division counts at two random instances. Four variants are displayed.
The first does not use elitism. The second does not inject random individuals. The third combines the
first and second, and the last does not change the population division counts as described in listing 4.
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Figure 5.7 Testing initial population division counts at two random instances. The initial population
consists of randomly and greedily generated individuals (left part of fig. 4.14).
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Figure 5.8 Testing overlapping penalization constant λ (eq. 3.3) at two random instances. It is
calculated as ρD, where ρ is a diagonal multiple, and D is the length of a diagonal in a layout. Graphs
show the average overlapping paintings count for the best individual at each iteration.
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5.4 Results
This section presents painting placement solutions to the painting placement instances. Obtained
solutions are discussed in the following subsections – random scenario instances in 5.4.1, packing
scenario instances in 5.4.2, clustering scenario instances in 5.4.3, and London National Gallery
instance in 5.4.4. Hyperparameter values used to obtain results in this section are in table 5.5.
Statistics for the last iteration of the obtained results are in table 5.6.

Hyperparameter values in table 5.5 are set to their recommended values from hyperpa-
rameter testing in section 5.3. The hyperparameter not set to the recommended value is
maxNumberOfIter. It is set to 500 instead of the recommended value of 300. The reason is
to possibly find a better painting placement solution in exchange for more computation time.

The recommendation to remove orientation penalization by setting orientationWeights to
⟨1, 1, 1⟩ is followed. As described in hyperparameter testing, it should produce a population
with a better on-average objective value and a faster-decreasing trend in objective value. Also,
the population size is set to 75 times the instance size. It is the midpoint of the recommended
interval 50–100. Lastly, population division is set to the same values as in listing 4. It means
keeping an elitism strategy and injecting random individuals.

Table 5.5 Hyperparameter values used to obtain results

Hyperparameter Value
maxNumberOfIter 500
populationSize 75 times the instance size
maximumWildCardCount 1
orientationWeights ⟨1, 1, 1⟩
populationDivisionCounts elitism, random
initialPopulationDivisionCounts 0.7 random, 0.3 greedy

overlappingPenalizationConstant 4 times the diagonal length
of the layout

outsideOfAllocatedAreaPenalizationConstant 0
Hyperparameter description is in table 5.3.

Table 5.6 Statistics of the last iteration

Instance name Best obj.
value

Worst obj.
value

Obj.
mean

Standard
deviation

random_10 1136.11 3438.01 1640.91 460.76
random_20 5417.8 11629.59 7209.22 1400.13
packing_10 669.48 2369.11 1142.96 383.22
packing_20 6219.13 12283.41 8140.29 1450.09
cluster_3_6 3921.68 11121.96 6317.36 1844.99
cluster_4_5 4887.04 12088.99 7177.9 1767.67
london_gallery_wall 2759.65 15764.31 5440.9 2633.81

Instance description is in table 5.2.
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5.4.1 Random scenario
Visualization of the painting placement solution to the random_10 instance is in figure 5.9 and
for random_20 instance in figure 5.10.

For the random_10 instance, we can see that there are no overlappings, and only painting 6
is partially outside the layout. Also, due to the evaluation function set to x+y, smaller paintings
are placed towards the bottom left corner. This painting placement solution can be considered
successful, because it adheres to all penalizations that are applied.

For the random_20 instance, we can see that there are four overlappings. Similarly to the
random_10 instance, the evaluation function forced the placement of the smaller paintings to
the bottom left corner, and one painting is placed partially outside the layout. Due to the four
overlappings, it is not a fully successful painting placement solution. On the other hand, the
solution adheres to all other penalizations. It might suggest further increasing the overlapping
penalization constant λ.

5.4.2 Packing scenario
Visualization of the painting placement solution to the packing_10 instance is in figure 5.11 and
for packing_20 instance in figure 5.12.

For the packing_10 instance, we can see no overlappings, and paintings 2,3,4 are partially
outside the layout. It is considered a success, as the packing scenario tests the ability to form
compact solutions by setting the instance generation parameter layout area ratio to one, which
means that the area of the layout equals the area of all paintings summed together. However,
an improvement in compactness can still be gained by moving paintings 1 and 2 downwards. It
could be implemented using a post-optimization, as suggested in subsection 6.2.5. The evaluation
function is absent in the packing scenario, so there is no preference for any part of the layout.

For the packing_20 instance, we can see seven overlapping pairs. It is not considered a success
as there is no evaluation function present and overlapping penalization constant λ should be the
main source of improvement in the objective function 3.3. However, the packing complexity for 20
paintings is high, and it might be impossible to fit all paintings to the layout without overlapping
or being outside the allocated area. Also, randomly generated flow between paintings might play
a role. Nevertheless, the suggestion is to increase the overlapping penalization constant λ.

5.4.3 Clustering scenario
Visualization of the painting placement solution to the cluster_3_6 instance is in figure 5.13 and
for cluster_4_5 instance in figure 5.14.

For cluster_3_6 instance, we can see the formation of clusters. It is a success as the proposed
solution can recognize the information encoded in the flow between paintings. However, we can
see that there are seven overlappings. An interesting fact is that these overlappings are only
inside the same clusters. It suggests that the flow between paintings is set too high, so it is
advantageous to create overlaps and thus decrease the flow.

For the cluster_4_5 instance, we can see a partially successful formation of clusters. It
still suffers from the problems of overlapping paintings in the same cluster. However, there are
also several overlappings between paintings from different clusters. It might suggest that the
overlapping penalization and flow are more balanced.
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5.4.4 London Gallery Wall
Visualization of the painting placement solution to the london_gallery_wall instance is in fig-
ure 5.15. The instance is created from the painting placement at the London National Gallery
from figure 1.1. Also, the flow between paintings is set to reassemble the relative positions from
that figure (concrete flow values are in the dataset in the attached medium).

We can see that the obtained solution contains no overlappings, and two paintings are partially
placed outside the layout. Also, most of the relative positions of the paintings are successfully
reconstructed using the flow. The difference is that the proposed solution placed the largest
middle painting to the right of the layout instead of in the middle, as seen in the original figure.
However, the flow can be changed to obtain different results.
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Figure 5.9 Painting placement solution for the random_10 instance. There are no overlappings.
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Figure 5.10 Painting placement solution for the random_20 instance. Four overlapping pairs exist
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Figure 5.11 Painting placement solution for the packing_10 instance. There are no overlappings.
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Figure 5.12 Painting placement solution for the packing_20 instance. There are seven overlapping
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Figure 5.13 Painting placement solution for the cluster_3_6 instance. Three groups of paintings, 1
to 6, 7 to 12, and 13 to 18, are marked using different colors. There are seven overlapping pairs.
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Figure 5.14 Painting placement solution for the cluster_4_5 instance. Four groups of paintings, 1 to
5, 6 to 10, 11 to 15, and 15 to 20, are marked using different colors. There are seven overlapping pairs.



Results 55

bo
tto

m
-le

ft1

bo
tto

m
-le

ft2

top-left

top-right

bo
tto

m
-ri

gh
t2

bo
tto

m
-ri

gh
t1

middle

london_gallery_wall instance

Figure 5.15 Painting placement solution for the london_gallery_wall instance (top) and the original
painting placement at the London National Gallery (bottom) from figure 1.1.
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5.5 Implementation
The proposed implementation of a genetic approach is written in Java 11 using a Play Framework
v2.81, a web framework for Java and Scala.

Implementation behaves like a computation server to which a user can submit a computation.
Then, the server asynchronously starts the submitted computation and returns an identifier of
the computation. It means that multiple computations can be submitted without blocking the
user. The user can then check the computation state using the returned identifier.

To start the computation server, locate the directory containing a file build.sbt in the
attached medium (see appendix A). Then, run the following command in that directory (Java 11,
SBT3, and Scala must be installed).

$ sbt run

Code listing 1 Starting a computation server.

Command in listing 1 uses sbt3 with run argument to start the computation server. By
default, the computation server accepts requests on localhost:9000. An example of submitting
a computation with a predefined instance name to the computation server is in listing 4. An
example of a successful computation submission response is in listing 2.

{
"id":"random_10_9B5F8",
"outputDirectory":"./out/088_random_10_9B5F8"

}

Code listing 2 Successful computation submission response.

The computation server also validates input before starting the computation. For example,
if misspelling the instance name, the response by the computation server can be seen in 3.

{
"message":"Entity [DatasetDto] with identifier [randomm_10] was not found."

}

Code listing 3 Unsuccessful computation submission response.

Lastly, there is also an option not to specify the instance name in the computation submission.
In that case, a user has to specify the instance manually in the request – layout width and
height, paintings together with their flow and evaluation function π (eq. 3.3), in the format that
is accepted by mXparser4. An example of submission without specifying the instance name is in
the appendix in listing 5.

1https://www.playframework.com/documentation/2.8.x/Home
2https://curl.se/
3https://www.scala-sbt.org/
4https://mathparser.org/

https://www.playframework.com/documentation/2.8.x/Home
https://curl.se/
https://www.scala-sbt.org/
https://mathparser.org/
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$ curl --location 'localhost:9000/compute/dataset' \
--header 'Content-Type: application/json' \
--data '{

"datasetName": "random_10",
"gaParameters": {

"maxNumberOfIter": 300,
"populationSize": 500,
"maximumWildCardCount": 1,
"orientationWeights": [

1,
1,
0.5

],
"geneticAlgorithm": "simpleGa",
"mate": "normalizedProbabilityVectorSum",
"mutate": "flipOnePartAtRandom",
"select": "tournament",
"objective": "simple",
"evaluator": "ga",
"placingHeuristics": "corner",
"populationDivisionCounts": {

"elite": 0.2,
"average": 0.6,
"worst": 0.2,
"children": 0.3,
"mutant": 0.2,
"winner": 0.2,
"random": 0.1

},
"initialPopulationDivisionCounts": {

"random": 0.7,
"greedy": 0.3

}
},
"objectiveParameters": {

"name": "simple",
"params": {

"overlappingPenalizationConstant": 30.61,
"outsideOfAllocatedAreaPenalizationConstant": 30.61

}
}

}'

Code listing 4 Example of computation submission of random_10 instance using curl2 to a compu-
tation server running on localhost:9000.



Chapter 6

Discussion

This chapter summarizes and further discusses the computational results of the proposed solu-
tion and comments on the hyperparameter testing in section 6.1. Also, further improvements,
extensions, and future work is discussed in section 6.2.

6.1 Computational result discussion
This section summarizes and discusses the computational results from chapter 5. As mentioned
in the previous chapters, the process of obtaining the results is first to define four testing sce-
narios. They are random, clustering, packing, and London National Gallery. Then, for each
scenario, painting placement instances are created. Using random scenario instances, reasonable
hyperparameter values for the genetic algorithm 2 are determined. Lastly, painting placement
solutions are computed for all generated instances using these hyperparameters.

The proposed solution produces good results for the smaller instances, i.e., random_10 in-
stance in figure 5.9 and packing_10 instance in figure 5.11. Good result is a painting placement
solution that respects the flow and evaluation function and has few overlapping paintings and
paintings partially or fully outside the allocated area. It is all achieved in the smaller instances.

Overall, the biggest issue for larger instances, e.g., random_20 instance in figure 5.10 and
packing_20 instance in figure 5.12, are overlapping paintings. It can be mitigated by setting
a higher value for the overlapping penalization constant λ. However, by increasing the value,
other parts of the objective function 3.3 become insignificant and thus ignored by the proposed
solution. For example, by overly increasing the overlapping penalization constant, the evaluation
function or the flow between paintings is ignored because the overlapping cost is too high.

Another issue is the extrapolation or generalization of hyperparameters from random sce-
narios to other scenarios. Indeed, fine-tuning hyperparameters for each instance would produce
painting placement solutions with better on-average population objective value. However, it is
computationally expensive to do so. Despite that, testing hyperparameters on random scenarios
provides valuable insight into the proposed solution. For example, one insight is that elitism is
integral to the reproductive plan (see 5.3.5).

Lastly, the outside of allocated area penalization constant γ is set to zero at all presented
painting placement solutions. It can be thus removed from the objective function 3.3 entirely.
The idea behind introducing it is to penalize partially or fully placed paintings outside the layout.
However, as described in 5.3.8, this hyperparameter fails to do so. One solution is to replace γ
with a different one, which penalizes solutions that place paintings partially or fully outside the
layout.

58
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6.2 Improvements, extensions, future work
This section suggests further improvements and extensions to the proposed solution and future
work. Improvements and extensions are minor or moderate changes that, according to the author,
can be implemented without much difficulty and the need for modifying much of the proposed
solution. However, each improvement or extension might become a new idea and thus produce
a topic for future work.

6.2.1 Free space
The extension of the proposed solution is to take a different approach to free space, which is
part of the painting placement solution where the paintings are not placed.

Free space is used to separate paintings on the wall. It is also used for other related problems.
For example, free space is important in the FLP problem (sec. 2.1) as there is a need for an aisle
between the facilities through which the material transportation takes place [27].

In the proposed solution, two main parts influence where the free space is created. It is (a) the
placing heuristic and (b) the evaluation function π (eq. 3.3). Placing heuristic works locally, i.e.,
only in the allocated area for the painting, and the evaluation function, although it might be
used to define arbitrary free space shape, is not a constraint but a penalization. Thus, it does
not guarantee that the painting placement solution creates a solution with the desired free space.

One possible approach to guarantee free space is the introduction of dummy paintings.
These dummy paintings can be injected during the slicing tree construction. The resulting paint-
ing placement solution will thus, among the paintings, contain free space occupied by dummy
paintings. They are then removed, which creates the free space.

An example of dummy painting injection can be seen in figure 6.1. The free space is created
between paintings 1,2 and 3 by adding a vertical cut V to the tree.
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Figure 6.1 Example of dummy painting injection to guarantee the free space between paintings 1,2
and 3.
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6.2.2 Non-rectangular layouts
Another extension to the proposed solution is adding the ability to work with layouts that are
not rectangular. It can be solved using the dummy paintings described in subsection 6.2.1.
These dummy paintings must be created as small as possible and placed over the parts of the
layout that are not rectangular. By placing such created dummy facilities, the layout becomes
rectangular. A similar approach is used in [27] to modify a slicing tree to solve FLP (sec. 2.1).

An example of using dummy paintings to work with a non-rectangular layout is in figure 6.2.
There are two irregularities in both corners of the layout. Two dummy paintings are injected
into the slicing tree to fill the irregularities.
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Figure 6.2 Example of working with non-rectangular layout. The allocated area is marked using a
dotted line. Dummy paintings that fill the irregularities in both corners are A and B.

6.2.3 Non-rectangular paintings
Another extension is to allow painting shapes that are not rectangular. This problem can be
easily solved by representing a non-rectangular painting as the smallest possible rectangle to
which the painting fits. By using this approach, the proposed implementation can work with
non-rectangular paintings. One possible drawback is that the painting placement solution might
become more sparse, i.e., containing too much free space. However, this can be solved using a
post-optimization heuristic that tries to reduce a free space of a painting placement solution.

6.2.4 Placing heuristic
Instead of using the placement heuristic described in subsection 4.3.3, a different one can be used.
One candidate is a heuristic that, instead of trying to place painting in the corners of the allocated
area, tries to place the painting at all possible placement points, e.g., to place the painting in the
middle of the allocated area. However, using this solution might be computationally expensive.
On the other hand, a heuristic that only tries the bottom-left of the allocated area as a placement
point can be much faster but might not produce good results.

Another approach is calculating suboptimal or optimal placement points inside the allocated
area. Then, move the painting as close as possible to that point. A similar approach is used in [2]
for solving FLP (sec. 2.1). They move the facility centroid as close as possible to the calculated
unconstrained optimum without leaving the boundaries where the facility can be placed.
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6.2.5 Post-optimization
One interesting idea is to introduce post-optimization. It is a process that takes the result,
in this case, the painting placement solution, and tries to improve it. For example, if there is
insufficient free space between paintings, they can be moved by the post-optimization process.
Another example will be if the goal is to create the most compact layout. Then, a solution can
be to use the compaction operation proposed in [23], which tries to reduce free space as much as
possible.

6.2.6 Extension to other problems
The solution proposed in this method can be applied to other problems. The central part of the
thesis is the coding of an individual and crossover. These can be used to solve problems that
optimize some permutation of elements.

One concrete example is 2D-KP problem with rectangular pieces [28], where the objective
is to place as many rectangles in a container as possible, minimizing unused space. The so-
lution proposed in this thesis can solve the 2D-KP problem with rectangular pieces by using
unchanged individual representation (sec. 4.2), unchanged decoding procedure (subsec. 4.3.1),
and unchanged slicing layout construction (subsec. 4.3.2). Then, the problem-specific place-
ment heuristic places the rectangles, followed by BL (Bottom Left) heuristic [29] that minimized
unused space.

6.2.7 Deciding which painting to place
Deciding which painting to place can happen when the wall area is insufficient to place all
paintings. Thus, some subset of paintings has to be selected and placed. A similar problem
is solved in the shelf-space planning problem (sec. 2.2), where the retailer has to decide which
goods to place on shelves to achieve maximum profits.

6.2.8 Multiple walls
The painting placement problem can be extended to contain multiple walls instead of one. Ad-
ditionally, the walls might have some interactions between them, e.g., placing a painting on the
first wall limits the subset of paintings that can be placed on the second wall. A similar problem
is solved in the shelf-space planning problem (sec. 2.2), where there are multiple shelves at the
same time.

6.2.9 Human operator assistance
Painting placement solution, which is some placement of paintings, can be easily visualized.
Thus, it can be presented to a human operator that will further modify it.

For example, FLP (sec. 2.1) creates a layout for multiple facilities. A human engineer that
creates the plan for placing these facilities might use the output of an algorithm as a starting
point. Then, the engineer can modify it by increasing the aisle size or changing the position of
some facilities.



Chapter 7

Conclusion

The central part of the thesis was to propose a genetic approach for solving the painting place-
ment problem. It was accomplished by creating a genetic algorithm with novel individual rep-
resentation as multiple stochastic vectors and novel crossover as vector addition, followed by
normalization back to the stochastic vector. Subsequent parts and goals of the thesis were de-
fined in the introduction chapter 1. All of them were accomplished and presented in this thesis.

1. The first goal was to define a painting placement problem and what a solution is. It was
defined in terms of a painting placement instance, which consists of paintings, flow between
paintings, layout, and evaluation function. The solution was defined as a sequence of place-
ment points for the paintings.

2. The second goal was to create a dataset for the painting placement problem. Four scenarios
were defined – random, clustering, packing, and London National Gallery. Multiple instances
of the painting placement problem were created for these scenarios.

3. The thesis’s third and central goal was to propose and implement a genetic approach for
solving the painting placement problem. As described above, the novel genetic approach
represents an individual as multiple stochastic vectors. Then, the crossover is implemented
as vector addition, followed by normalization back to the stochastic vector. These vectors
decode into one slicing tree, which recursively divides the space or wall where the paintings
are placed. The second novel approach was to add a wildcard symbol ∗ to the possible values
contained in the internal node of a slicing tree. Wildcard symbol ∗ can take up any value –
H for horizontal cut and V for vertical cut.

4. The fourth goal was to evaluate the performance of the proposed genetic approach. It was
achieved by creating a computational server to which a painting placement instance can be
submitted and its painting placement solution obtained. Each instance in the dataset was
submitted multiple times to the computation server to account for the statistical significance
of the obtained results. These results were then presented and discussed.

5. The fifth and last goal was to discuss the results and suggest further improvements, exten-
sions, and future work. Suggestions and result discussion were presented in chapter 6. One
suggestion was creating an empty space inside the resulting layout by injecting dummy paint-
ings into the slicing tree. This injection could be further used to work with non-rectangular
layouts. Additionally, human operator assistance was mentioned, where the painting place-
ment solution is presented to a human operator that further modifies it to his/her needs.
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$ curl --location 'localhost:9000/compute' \
--header 'Content-Type: application/json' \
--data '{

"instanceParameters": {
"layout": {

"width": 30,
"height": 20,
"evalFunc": "f(x,y) = x+y"

},
"paintings": [

{ "ident": "1", "width": 5, "height": 7 },
{ "ident": "2", "width": 5, "height": 7 },
{ "ident": "3", "width": 5, "height": 7 },
{ "ident": "4", "width": 5, "height": 7 },
{ "ident": "5", "width": 5, "height": 7 },
{ "ident": "6", "width": 5, "height": 7 }

],
"paintingsFlow": [

{ "from": 1, "to": 2, "flow": 3.3 },
{ "from": 1, "to": 3, "flow": 4.4 },
{ "from": 1, "to": 5, "flow": 0 }

]
},
"gaParameters": {

"maxNumberOfIter": 300,
"populationSize": 300,
"maximumWildCardCount": 1,
"orientationWeights": [ 1, 1, 0.5 ],
"geneticAlgorithm": "simpleGa",
"mate": "normalizedProbabilityVectorSum",
"mutate": "flipOnePartAtRandom",
"select": "tournament",
"objective": "simple",
"evaluator": "ga",
"placingHeuristics": "corner",
"populationDivisionCounts": {

"elite": 0.2, "average": 0.6, "worst": 0.2,
"children": 0.3, "mutant": 0.2, "winner": 0.2,
"random": 0.1

},
"initialPopulationDivisionCounts": {

"random": 0.7, "greedy": 0.3
}

},
"objectiveParameters": {

"name": "simple",
"params": {

"overlappingPenalizationConstant": 36.05,
"outsideOfAllocatedAreaPenalizationConstant": 36.05

}
}

}'

Code listing 5 Example of computation submission using curl1 without specifying the instance name.
Without it, everything has to be entered manually into the request – layout width and height, paintings
together with their flow, and evaluation function.
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Figure A.1 Visualization of the flow for two painting placement instances. Flow expresses the affinity of paintings to each other. Paintings that should
be placed close together have flow higher compared to paintings that should not. Flow matrices are symmetric,i.e., the flow between two paintings is the
same from each direction. Also, the flow to/from itself is zero.



Contents of the attached medium

README.md .............................. the file with attached medium contents description
notebooks......the directory of Jupyter notebooks for visualization and dataset generation
impl........................................the directory with implementation source code

build.sbt......................................the build file for the computation server
public/datasets..............................................the directory of datasets

thesis............................................................the directory with thesis
ctufit-thesis-en.tex................................the thesis source in TEX format
ctufit-thesis-en.pdf...................................the thesis text in PDF format

69


	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Literature review
	Facility layout problem
	Shelf-space planning problem
	Sheet metal cutting

	Problem statement and formulation
	Coding and solution construction
	Genetics
	Schema Theorem

	Coding
	Solution construction
	Individual decoding
	Slicing layout construction
	Placement heuristic

	Operators
	Crossover
	Mutation

	Genetic algorithm
	Initial population
	Reproductive plan


	Computational results
	Scenarios
	Dataset
	Generation parameters
	Instances

	Hyper-parameters
	Max number of iter
	Population size
	Maximum wildcard count
	Orientation weights
	Population division counts
	Initial population division counts
	Overlapping penalization constant
	Outside of allocated area penalization constant

	Results
	Random scenario
	Packing scenario
	Clustering scenario
	London Gallery Wall

	Implementation

	Discussion
	Computational result discussion
	Improvements, extensions, future work
	Free space
	Non-rectangular layouts
	Non-rectangular paintings
	Placing heuristic
	Post-optimization
	Extension to other problems
	Deciding which painting to place
	Multiple walls
	Human operator assistance


	Conclusion
	Bibliography
	Appendix
	Contents of the attached medium

