
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Simulation and Visualization of Motion Plans for a Desktop

Robotic Arm with the ROS and Unity Platforms

Bc. Ján Chudý

prof. RNDr. Pavel Surynek, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2023/2024

Instructions

This thesis aims to propose and test the possibilities of visualization and simulation of

motion plans for a desktop 3D-printed robotic arm, such as the faculty-developed RR1.

We expect that the proposed solution will be realized in the context of the standard

environment for robot control ROS, so the tested motion plans are easily transferable to

real robots in the future. With the potential utilization of the simulation in research of

multi-robot motion planning, where we need to simulate many robots in real-time, we

would like to experiment with the use of the scalable graphical and physical platform

Unity. The tasks for the student are as follows:

1. Familiarize yourself with the problem of motion planning for robotic arms and the

simulation of motion plans.

2. Based on the findings, propose an approach of simulation and visualization of motion

plans for a specific desktop robotic arm, such as RR1.

3. Implement the proposed simulation as a prototype using the Unity platform and

integrate it in the context of the ROS environment.

4. Perform relevant performance experiments that compare the proposed simulation

and visualization with existing systems, such as Gazebo and RViz.

[1] Steven M. LaValle: Planning Algorithms. Cambridge University Press 2006.

[2] Yoonseok Pyo, Hancheol Cho, Leon Jung, Darby Lim: ROS Robot Programming, ROBOTIS,

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 2 February 2023 in Prague.

2017.

[3] Paris Buttfield-Addison, Jon Manning, Tim Nugent: Unity Game Development

Cookbook: Essentials for Every Game, O'Reilly Media 2019.

[4] Pavel Surynek: RR1 – Real Robot One, github repository, https://github.com/surynek/

RR1, 2022 [accessed: January 2023].

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 2 February 2023 in Prague.

Master’s thesis

SIMULATION AND
VISUALIZATION OF
MOTION PLANS FOR A
DESKTOP ROBOTIC
ARM WITH THE ROS
AND UNITY PLATFORMS

Bc. Ján Chudý

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: prof. RNDr. Pavel Surynek, Ph.D.
May 4, 2023

Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Ján Chudý. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Chudý Ján. Simulation and Visualization of Motion Plans for a Desktop Robotic
Arm with the ROS and Unity Platforms. Master’s thesis. Czech Technical University in Prague, Faculty
of Information Technology, 2023.

Contents

Acknowledgments ix

Declaration x

Abstract xi

Acronyms xii

Introduction 1
Aim of the thesis . 1
Expected outcome . 2
Structure of the thesis . 2

1 Theoretical background 3
1.1 Robotic arms . 3

1.1.1 Joints . 4
1.1.2 End-effectors . 4
1.1.3 2R planar manipulator . 5

1.2 Simulation in 3D . 5
1.2.1 Scene representation . 5
1.2.2 Physics simulation . 7

1.3 Motion planning . 8
1.3.1 Workspace . 8
1.3.2 Configuration space . 8
1.3.3 Forward kinematics . 11
1.3.4 Inverse kinematics . 11
1.3.5 Motion planning problem . 12

1.4 Digital twin . 12
1.4.1 Motivation for digital twins . 12
1.4.2 Core characteristics . 13
1.4.3 Twinning . 13
1.4.4 Life cycle . 14

1.5 Physics engines . 15
1.5.1 Coordinate representation . 15
1.5.2 Precision-speed trade-off . 16

2 Technological background 17
2.1 Robot operating system . 17

2.1.1 Motivation for robotic frameworks . 18
2.1.2 ROS 2 overview . 18
2.1.3 Concepts . 19
2.1.4 Unified robotics description format . 23
2.1.5 ros2 control . 25
2.1.6 Visualization tools . 27

iii

iv Contents

2.1.7 MoveIt . 28
2.2 Gazebo . 29

2.2.1 Components . 30
2.2.2 SDF . 32
2.2.3 Alternatives . 32

2.3 Unity game engine . 34
2.3.1 Main modules . 35
2.3.2 Game loop . 37
2.3.3 Plans and licensing . 38
2.3.4 Unity for robotics . 39
2.3.5 Alternatives . 43

3 Robotic arm RR1 47
3.1 Motivation . 47
3.2 RR1 in detail . 48

3.2.1 Overview . 48
3.2.2 Joints and actuators . 49
3.2.3 End-effector . 50
3.2.4 Control computer RB1 . 50

3.3 Second prototype . 51

4 Prototype rationale 53
4.1 Prototype motivation . 53
4.2 Choice of technologies . 53
4.3 Expectations . 54
4.4 Related work . 54

4.4.1 Simulator comparison for agricultural robotics 54
4.4.2 Gazebo, V-REP, and Unity quantitative study 55
4.4.3 Gazebo and Unity physics comparison . 56

5 Prototype realization 57
5.1 Overview . 57

5.1.1 Development steps . 57
5.1.2 Gripper simulation . 58

5.2 ROS package organization . 58
5.2.1 rr1 bringup . 58
5.2.2 rr1 rviz . 59
5.2.3 rr1 gazebo . 59
5.2.4 rr1 control . 59
5.2.5 rr1 interfaces . 60
5.2.6 rr1 moveit config . 60
5.2.7 rr1 experiments . 60

5.3 Robot description . 60
5.3.1 Model preparation . 60
5.3.2 RR1 description . 62

5.4 Robot control . 66
5.4.1 Overview . 67
5.4.2 Extending the URDF . 68
5.4.3 Controller configuration . 69
5.4.4 Sending control trajectories . 70

5.5 Gazebo simulation . 71
5.5.1 Starting Gazebo . 71
5.5.2 Spawning RR1 . 72

Contents v

5.5.3 Multi-robot simulation . 73
5.6 Unity simulation . 74

5.6.1 Unity-ROS integration . 74
5.6.2 Importing robot into Unity . 76
5.6.3 Unity robot controllers . 77
5.6.4 Other components . 80
5.6.5 Multi-robot simulation . 80
5.6.6 VR simulation . 81

6 Experiments 83
6.1 Overview . 83

6.1.1 Performance metrics . 83
6.1.2 Workstation specifications . 84
6.1.3 Experiment and measurement methods 84

6.2 Scenarios . 86
6.2.1 TCP endpoint latency . 86
6.2.2 Static scene . 87
6.2.3 Dynamic scene . 88
6.2.4 Multi-robot simulation . 89

6.3 Simulator comparison . 90
6.3.1 Scene manipulation . 93
6.3.2 Adding custom models . 93
6.3.3 VR capabilities . 94
6.3.4 Application issues . 94
6.3.5 Community support . 94

6.4 Performance evaluation . 94
6.4.1 TCP endpoint latency . 94
6.4.2 General performance . 95
6.4.3 Multi-robot simulation . 100

6.5 Summary of results . 102

Conclusion 103
Review of the thesis aims . 103
Future work . 104
Transfer into practice . 104

A Large figures 105

B Experiment plots 107

Contents of enclosed SD card 127

List of Figures

1.1 Standford Arm designed by Victor Scheinman in 1969 3
1.2 Illustration of three mechanical joints . 4
1.3 Simple two-joint plannar robotic arm with gripper end effector 5
1.4 Transformation of a rigid body in a scene and a scene graph example 6
1.5 Illustration of the workspace and configuration space of the example robotic arm 10
1.6 Visualization of robots workspace and configuration space with obstacles and tra-

jectories . 10
1.7 KUKA industrial robotic manipulator with its digital twin 12
1.8 The twinning process between physical and virtual entities 14
1.9 Example of a digital twin life cycle relative to the life cycle of a robotic arm . . . 15

2.1 Client library API stack in ROS 2 . 19
2.2 ROS 2 nodes and communication patterns with their interfaces 20
2.3 Visualization of nodes and topics running in ROS 21
2.4 Simple robot example described in URDF visualized in RViz and Gazebo 23
2.5 An illustrated example of controllers and hardware interfaces managed by the

controller manager . 26
2.6 Multiple RQt plugins docked in RQt layout . 28
2.7 RViz visualization of a robotic arm with MoveIt plugins 29
2.8 Screenshot from Gazebo . 29
2.9 Illustration of Gazebo using plugins to interact with ROS 31
2.10 Screenshot from CoppeliaSim simulator . 33
2.11 The default layout of the Unity Editor . 34
2.12 Script lifecycle flowchart in the Unity game engine 37
2.13 MonoBehavior and coroutine example in Unity 39
2.14 Unity-ROS integration using ROS Sharp and RosBridgeSuite 41
2.15 Unity-ROS integration using the ROS TCP Endpoint provided by Unity Robotics

Hub . 42
2.16 Screenshot of the Unreal Engine user interface 44
2.17 Screenshot of the Godot Engine user interface . 45

3.1 First functional prototype of RR1 robotic arm . 48
3.2 Model of split-ring planetary gearset used in RR1 49
3.3 Control computer Real Box One (RB1) . 50
3.4 Render of the RR1 “rev. 2” in orange color . 51
3.5 Upper arm link with two main joints for the second prototype 52

5.1 The RR1 ROS package structure . 59
5.2 RR1 meshes used for the robot description . 61
5.3 Links and joints of RR1 and their transform origins visualized in RViz 62
5.4 File structure of the robot description . 63
5.5 RR1 base link visualized in RViz with visual mesh, collision mesh, and inertial . 65
5.6 Overview of the RR1 control setup with ros2 control 67

vi

5.7 RR1 Gazebo simulation landscape . 72
5.8 Multi-robot simulation scenario in Gazebo . 74
5.9 RR1 Unity simulation landscape . 75
5.10 RR1 simulation prototype in Unity . 75
5.11 Unity-ROS integration on Windows . 76
5.12 Shader issue encountered when using Unity’s Universal Render Pipeline instead

of the Built-in Render Pipeline . 77
5.13 Screenshots from multi-robot simulation in virtual reality 82

6.1 Illustration of the TCP endpoint latency experiment 86
6.2 Model of 3DBenchy boat used in experiments . 87
6.3 Static scene experiment in Gazebo and Unity . 88
6.4 Dynamic scene experiment in Gazebo and Unity 89
6.5 Multi-robot simulation experiment with twelve robots 90
6.6 Results of the TCP endpoint latency experiments 95
6.7 Effects of static and dynamic scene complexity on the real-time factor in Gazebo 96
6.8 Static and dynamic scenes - FPS . 97
6.9 Static and dynamic scenes - CPU cores . 98
6.10 Static and dynamic scenes - RAM, VRAM . 99
6.11 Multi-robot simulation experiment with eighty robots 100
6.12 Multi-robot simulation - FPS . 101
6.13 Multi-robot simulation - RAM . 102

B.1 Results of the TCP endpoint latency experiments 107
B.2 Effects of static and dynamic scene complexity on the real-time factor in Gazebo 107
B.3 Static and dynamic scenes - CPU cores . 108
B.4 Static and dynamic scenes - CPU, GPU . 109
B.5 Static and dynamic scenes - RAM, VRAM, GPU temperature 110
B.6 Static and dynamic scenes - FPS . 111
B.7 Dynamic scene with scaled time - CPU, GPU . 112
B.8 Dynamic scene with scaled time - RAM, VRAM, GPU temperature 113
B.9 Dynamic scene with scaled time - FPS . 113
B.10 Dynamic scenes Unity comparison - CPU, GPU 114
B.11 Dynamic scenes Unity comparison - RAM, VRAM, GPU temperature 115
B.12 Dynamic scenes Unity comparison - FPS . 115
B.13 Multi-robot simulation - CPU, GPU . 116
B.14 Multi-robot simulation - RAM, VRAM, GPU temperature 117
B.15 Multi-robot simulation - FPS . 118

List of Tables

2.1 List of most recent ROS distributions . 18
2.2 Supported graphics APIs based on the target platform 35

3.1 Technical specification of the RR1 robotic system 48

6.1 Hardware specifications of the test workstation 84

vii

6.2 Comparison between Gazebo and Unity. The table follows a structure from [43]
where the comparison has been made between V-REP, Gazebo, and ARGoS. The
table is extended, and the Gazebo characteristics are updated based on findings
from this thesis. 91

6.3 Summary of the most important results from the general performance experiments
(number of objects is in the brackets) . 95

6.5 Gazebo’s real-time factor relative to number of simulated objects in a falling tower 96
6.6 Summary of the most important results from the multi-robot simulation experi-

ments (number of simulated robots is in the brackets) 101

A.1 Definitions of digital twin characteristics . 106

List of code listings

2.1 Example message definition . 21
2.2 Example service interface definition . 22
2.3 Example action interface definition . 22
2.4 Example of a URDF file describing a simple robot with two revolute joints and a

base with two cylindrical links . 24
2.5 Fixing the base link to the world with a virtual fixed joint 32
2.6 Example of a Unity script . 38
5.1 Inertial macro that returns a inertial block for specified box size 63
5.2 Custom macro for RR1 links that constructs the whole link block for a given part

of RR1 . 64
5.3 Definition of the RR1’s base link using custom Xacro macros 65
5.4 Definition of the RR1’s base link in the generated URDF 65
5.5 Definition of RR1 shoulder joint inside the rr1.urdf.xacro file 66
5.6 Macro used for joint control description . 68
5.7 Added URDF description for ros2 control . 69
5.8 Gazebo plugin that tells Gazebo to use ros2 control 70
5.9 Parameters for the controller manager node . 70
5.10 Configuration of the joint trajectory controller 71
5.11 Example of the event handler for starting the joint state broadcaster controller . 73
5.12 Coroutine from the JointTrajectoryController component following a received tra-

jectory . 79
5.13 Coroutine from the JointTrajectoryController component following a received tra-

jectory . 81
5.14 Instantiating multiple robots into Unity scene and setting correct ROS namespace

for the ROS topics . 81
6.1 Message interface with a payload size 32 Bytes 86

viii

I would like to thank my supervisor for his guidance and insight into
the robotic motion planning and development of the robotic manip-
ulator RR1. This thesis would not be possible without his robot and
passion for robotics. My biggest thanks goes to my girlfriend, who
supported me throughout the work on this thesis and brought me
snacks. Last but not least, thanks to my very supportive parents.

ix

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the Act
No. 121/2000 Coll., the Copyright Act, as amended. In accordance with Article 46 (6) of
the Act, I hereby grant a nonexclusive authorization (license) to utilize this thesis, including
any and all computer programs incorporated therein or attached thereto and all corresponding
documentation (hereinafter collectively referred to as the “Work”), to any and all persons that
wish to utilize the Work. Such persons are entitled to use the Work for non-profit purposes only,
in any way that does not detract from its value. This authorization is not limited in terms of
time, location and quantity.

In Praze on May 4, 2023 .

x

Abstract

The Robot Operating System (ROS) is the most widely used framework for developing robotic
applications. Also, several simulation tools exist that are used with ROS. Robot simulation
is an essential part of robotics, making the development of hardware and robotic applications
quicker, cheaper, and safer. Such simulation can also be used for academic demonstrations
and research before fully developing the physical robot. Recently, powerful 3D development
platforms like Unity have started to appeal to researchers in robotics. This work develops a ROS
backend for a faculty-developed robotic manipulator Real Robot One (RR1), which allows the
simulation of its digital twin prototype in Unity and Gazebo, a commonly used simulator in the
ROS ecosystem. As one of the primary motivations behind the RR1 robotic arm is the research
of multi-robot motion planning, the two simulation tools are compared with an emphasis on
multi-robot simulation and user experience.

Keywords visualization, simulation, multi-robot motion planning, robotic manipulator, Unity,
ROS

Abstrakt

Robot Operating System (ROS) je nejpouž́ıvaněǰśı framework pro vývoj robotických aplikaćı.
Jako nadstavby ROSu existuje také několik nástroj̊u pro robotické simulace. Simulace robot̊u
je nezbytnou součást́ı robotiky, d́ıky čemuž je vývoj hardwaru a robotických aplikaćı rychleš́ı,
levněǰśı a bezpečněǰśı. Simulace mohou být také použity pro akademické demonstrace a výzkum
před samotným vyvinut́ım fyzického robota. V posledńı době začaly výzkumńıky v oblasti
robotiky oslovovat výkonné 3D vývojové platformy, jako je Unity. Tato práce vyv́ıj́ı backend
pro ROS pro fakultně vyvinutou robotickou paži Real Robot One (RR1). Navržený backend
umožnuje simulaci prototypu jeho digitalńıho dvojčete RR1 v Unity a Gazebo, běžně použ́ıvaném
simulátoru v ekosystému ROS. Protože jednou z primárńıch motivaćı pro robotickou paži RR1 je
výzkum plánováńı pohybu v́ıce robot̊u, jsou oba simulačńı nástroje porovnávány s d̊urazem na
simulaci v́ıce robot̊u jak z hlediska grafického výkonu, tak vzhledem k uživatelskému komfortu.

Kĺıčová slova vizualizace, simulace, multirobotické plánováńı pohybu, robotická paže, Unity,
ROS

xi

Acronyms

AI Artificial intelligence
API Application programming interface

BSON Binary JSON
CAD Computer-aided design
DAE Digital asset exchange
DDS Data distribution service
DoF Degrees of freedom

JSON JavaScript object notation
LTS Long-term support

NPC Non-player character
QoS Quality of service

RGB Red, green, blue (color model)
ROS Robot operating system
RPG Role-playing game
RTF Real-time factor
SDK Software development kit

SLAM Simultaneous localization and mapping
STL Standard triangle language
TCP Transmission control protocol
UDP User datagram protocol

URDF Unified rbotics description format
VR Virtual reality

XML Extensible markup language
Xacro XML macros

xii

Introduction

Digital twins and their simulation in virtual environments are essential to robotics as it shortens
the development time of robotic hardware and applications and makes the process cheaper and
safer. Robotic simulation also plays a significant role in academia and research, as robotic
hardware is sometimes unavailable. Additionally, the field of robotics adapted robotic frameworks
to develop robotic applications, making the software faster to develop, maintainable, and easy
to share. One such robotic framework is the Robot Operating System, which has become a
standard in robotic applications over the last few years. When it comes to simulation, the
options for simulation software are much broader as there are many general or task-specific
robotic simulators, many of which integrate with ROS. The most commonly used with ROS is
Gazebo. However, in recent years, powerful 3D development platforms like Unity started to
appeal to more researchers in the field of robotics.

This thesis aims to develop a digital twin prototype for a faculty-developed robotic manipu-
lator with 6 degrees of freedom called RR1. The robotic arm is currently in development, so the
digital twin could be used for design verification and development of control algorithms before the
robot is finished. The prototype should have a ROS backend allowing its simulation and control.
The thesis should also create a simulation prototype using Unity to explore the possibilities of
Unity-ROS integration and its usability as a simulation tool for robotics. As one of the primary
purposes of the robotic arm is the research of multi-robot motion planning, the performance and
usability of Unity for multi-robot simulation should be assessed and compared with Gazebo.

Aim of the thesis

The thesis aims to create a prototype verifying the usability of Unity as a robotic simulation
tool and compare its performance with Gazebo in a multi-robot simulation. This objective can
be broken down into several subtasks:

Develop a ROS backend for RR1 robotic arm and create a digital twin prototype.

Create a simulation prototype of the digital twin in Gazebo and Unity with ROS integration.

Compare the two tools and perform experiments assessing their performance in multi-robot
simulation.

It has to be noted that the thesis does not aim to design and implement a complete robotic
simulation for a specific use case but rather explore the capabilities of Unity, propose a solution for
ROS integration and how the simulated robot is controlled from ROS, and assess its performance
compared to Gazebo.

1

2 Introduction

Expected outcome
Two hypotheses are explored and experimentally evaluated in this thesis. The first hypothesis
is that the Unity platform is more performant with increasing scene complexity and the number
of robotic arms simulated compared to the Gazebo. Another hypothesis is that Unity is more
versatile and easier to use.

Structure of the thesis
First, the reader is provided with a theoretical background in the first chapter, like an intro-
duction to robotics arms and digital twins, but also several concepts from motion planning.
The second chapter provides an overview of the technologies utilized in the thesis, including the
Robot Operating System, Gazebo, and Unity. In the third chapter, the faculty-developed robotic
manipulator RR1 and the motivation behind its development are described. The fourth chapter
bridges the theoretical and practical parts of the thesis by providing a rationale behind the de-
veloped prototype and the choices of technologies and reviews related work from the literature.
The fifth chapter is dedicated to prototype realization, explaining various steps in the develop-
ment process, from the robot description to its simulation in Unity. The sixth chapter explains
the proposed performance experiments and the evaluation methods, compares the features and
characteristics of the Gazebo and Unity, and evaluates the results of the experiments. Lastly,
the conclusion provides an overview of the findings and work done in this thesis, evaluates the
completion of goals, and proposes future steps for the developed prototype and research.

Chapter 1

Theoretical background

This chapter provides the reader with the necessary theoretical background and explains various
terms referenced throughout the rest of the thesis. The first section defines several terms from
robotics, specifically related to robotic arms (manipulators), as well as an example robotic arm
that will be used to explain various topics from motion planning. The second section reviews
simulation in 3D, including the basics of scene representation, real-time rendering, and physics
simulation. Next, the third section is an overview of the core concepts of motion planning, which
are often further specified for manipulators as RR1 is one. Then the concept of digital twins
for the robotics domain is explored. The last section of this chapter briefly overviews physics
engines, mainly comparing two coordinate representations used in them and how they affect their
performance.

1.1 Robotic arms
Robotic arms are open-chain multi-body systems, also known as serial mechanisms [2]. Mechan-
ically, these systems are constructed by connecting a set of rigid bodies, in robotics referred to
as links, by joints. Such a system of interconnected links is called kinematic chain and permits
relative motion between individual links. The kinematic chain connects a driven link to a fixed
coordinate frame, which is usually at the base of the robotic arm. Robotic arms are also referred
to as manipulators, as they are often used to manipulate objects in the environment. Figure 1.1
shows the Standford Arm, one of the first robotic manipulators designed and constructed.

Figure 1.1 Standford Arm designed by Victor Scheinman in 1969 (image from [1])

3

4 Theoretical background

Figure 1.2 Illustration of three mechanical joints: revolute joint (left), prismatic joint (middle), and
spherical joint (right)

1.1.1 Joints
Joints are usually actuated by motors, in which case they are referred to as active joints. Passive
joints, on the other hand, are not actuated directly but are articulated implicitly by an actuated
source of motion. Based on the complexity and type of motion, we can specify several common
mechanical joints used in robotic arms. The two simplest joints with a single degree of freedom1

are revolute joints, which rotate around a single axis, and prismatic joints, which allow translation
along a single axis. An example of a more complex joint is a spherical joint with three degrees
of freedom, allowing rotation around all three axes. All three mentioned joints are illustrated in
Figure 1.2.

In the physical world, the motion of mechanical joins is usually constrained by certain limits.
As a result, these limits affect the range of motion of the whole robotic system and have to be
considered during the planning of movement, as the physical robot cannot move outside its range
of motion.

1.1.2 End-effectors
Robotic manipulators are usually equipped with a device designated to manipulate or interact
with the environment. This device is installed at the end of the robotic arm and is referred to
as an end-effector, and it is the driven link at the end of the kinematic chain. Depending on the
robot’s application, the end-effector can be a tool or a gripper.

Tool end-effectors are usually designated for one specific task. They can be used in conditions
that might be dangerous for a human or because high precision is needed for the task. The most
recognizable industry applications for tool end-effectors are spot welding [3, 4], CNC machining
[5, 6], or spray painting [7, 8], each utilizing a specific end-effector.

Gripper end-effectors [9] are usually used in pick-and-place applications or for other environ-
ment manipulation. There are various types of grippers for specific tasks or objects and materials
they are designed to handle. One of the most common types of grippers is impactive grippers,
which are used to grasp an object directly. These include jaws or claws with several fingers rang-
ing from the most fundamental two fingers to five, like on a human hand, and beyond. These
can further be categorized based on multiple factors. For example, based on the actuation type,
impactive grippers are electric, pneumatic, hydraulic, and even manual. Based on the type of
motion of the fingers, there are parallel, angular, or radial grippers. External impactive grippers
grip an object around the exterior, but some use cases require internal grippers that grip an
object by the interior. Apart from impactive grippers, other types of grippers might use suction,
magnetism, or electroadheison to adhere to manipulated surfaces or pins and needles to penetrate
the surface of manipulated objects physically.

1Degrees of freedom refer to the number of independent directions that a joint can move in. The term is
further explained in Section 1.3.2.1 in regards to the whole robotic system.

Simulation in 3D 5

Figure 1.3 Simple two-joint plannar robotic arm with a gripper end effector (image from [10])

1.1.3 2R planar manipulator
Let us consider a two-joint planar robotic arm2 shown in Figure 1.3. It is a simple manipulator
that will be used as an example for the practical presentation of various motion planning concepts.
The manipulator’s base is fixed, so the only possible motion of the robotic arm is in its two
revolute joints (2R), which also prevent relative motion between the links. For simplicity, let us
assume that the two links can move over each other without any collision and that the range of
motion of the joints is not restricted, allowing angles from the interval [0, 2π) ⊂ R.

1.2 Simulation in 3D
Robotic simulation software is usually built as a real-time 3D application, where the physical
simulation of the environment and the robot inside is also rendered to the user in real time. The
physics simulation is the essential part of the simulation. Simulators usually allow execution in
a headless mode, where only the simulation is performed without rendering the scene in a GUI
of the application. However, the object and scene representation is also crucial for the physics,
but also for the rendering.

Rendering in real-time 3D applications is an exceptionally complex task on its own. It requires
generating images in real-time, usually at a rate of 30 to 60 frames per second, which requires
efficient algorithms and high computational capacity. The rendering process must usually be
optimized for specific platforms to meet the user’s output quality and efficiency standards.

1.2.1 Scene representation
The scene in a simulation is a mathematical model of the world where individual objects are
represented and manipulated. The representation of the scene must allow various processes
necessary for simulation, like object manipulation, applying physical forces, collision detection,
or animation of objects.

In a robotic simulation, robots and the scenes usually consist of rigid bodies, defined in
Definition 1.1. These rigid body objects have properties like positions of the mesh vertices,
normals, color for rendering, or physical properties like mass, a center of gravity, or inertial
properties so they can participate in the physics simulation. The objects are positioned in
the scene, and the position and orientation can be represented as a translation and rotation

2This example is borrowed from [10].

6 Theoretical background

(a) Transformation of an object (adapted from [10]) (b) Scene graph example with robotic arm in it

Figure 1.4 Transformation of a rigid body in a scene and a scene graph example

transformation of the object’s frame of reference relative to the origin of the scene, also called
the world frame.

▶ Definition 1.1 (3D rigid body). Rigid body is a closed set of points from R3 such that the
distance between any pair of its points remains constant in time, regardless of any motion and
forces applied to it.

1.2.1.1 Transformations

Transformations are used everywhere in the simulation, from rendering to physics and animation.
There are several types of transformations, including translation, rotation, and dilation, but also
more complicated ones like change of perspective and skewing. In a robotic simulation, where
the world is realistically simulated, rotation and translation are mainly used, with rotation being
a linear transformation. A transformation in 3D space can be mathematically represented as
Homogenous Transformation Matrix

T =
[
R d
0 1

]
=

R11 R12 R13 d1
R21 R22 R23 d2
R31 R32 R33 d3
0 0 0 1

 ,

where R is a rotation matrix and d is a displacement vector. This transformation can be applied
to a point in 3D space a as a′ = Ta, where a and a′ are the homogenous coordinates of the point.
Most importantly, multiple transformations can be composed by multiplying their homogenous
transformation matrices, resulting in a homogenous transformation matrix: a′ = T3T2T1a = Ta.
Figure 1.4a shows a transformation of a rigid body’s reference frame relative to a stationary
world frame x-y-z.

1.2.1.2 Meshes

The models of rigid bodies in the scene are usually modeled as triangle meshes [11] that represent
the surface of an object. Triangles are used because they are the simplest type of polygon that
is always planar and remain triangles after most transformations. The graphics-acceleration
hardware used for rendering is therefore designed around the triangle rasterization.

Simulation in 3D 7

1.2.1.3 Scene graph

Objects in the simulated scene are logically ordered in a graph structure. The structure of
choice is usually a tree graph that creates the scene hierarchy. It has several purposes, including
transformation composition and application or partial spatial ordering. The spatial ordering can
aid the rendering process as objects that are guaranteed to be outside the camera’s view can
be removed from the rendering process to increase efficiency. In the development process, the
hierarchy also helps improve the management of the scene inside a scene editor, naming and
grouping objects and activating or deactivating whole groups of objects.

Figure 1.4b shows an example of a simple scene with some objects and a small robotic arm.
The position of the end-effector frame in the scene is a composition of transformations T4, T5,
and T6 relative to the world origin frame, and if the table frame is moved by changing the
transformation T1, the pose of vase and lamp frames also change.

1.2.2 Physics simulation
Physics simulation plays a vital role in robotic simulation, with the two most common compo-
nents being collision detection and rigid body dynamics. However, in some simulation use cases,
advanced physics models like fluid or cloth dynamics or spring-mass systems might be required.

The physics simulation goes through several steps. First, all the physical forces are applied
to the objects, and then a simulation step is computed. In the simulation step, numerical
integration is performed to approximate positions, velocities, and acceleration of objects and
particles, collision detection occurs, and the detected collisions are resolved. After the simulation
step, the objects in the scene are updated.

1.2.2.1 Collision detection

A collision detection system in a physics simulator aims to determine if any objects in the scene
have come into contact and provide relevant information about the detected collisions. This
information contains what entities are in contact, where is the contact point or if some objects
are interpenetrated, in which case they are moved apart before the next frame is rendered to
prevent unrealistic visual anomalies.

The collisions are detected on collision meshes, sometimes called collision models or simply
colliders, which are 3D approximations of an object. Using the original mesh of an object as its
collider is possible, but this would result in very inefficient collision detection. In 3D space, a
collision between two spheres is the easiest to handle, and the computation is the most expensive
for irregular meshes that are not convex. Typically, the collision mesh of a complex object is
divided into several collision primitives like spheres and boxes, for which collision detection is
computationally less difficult.

1.2.2.2 Rigid body dynamics

The rigid body dynamics system is mainly concerned with the kinematics of objects and how
they move in the ambient space over time. The dynamics of their motion include the forces that
affect them. In classical rigid body dynamics, the objects obey Newton’s laws of motion and
cannot be deformed in any way. Various constraints can be applied to the objects, such as joints.

There is a tight connection between rigid body dynamics and collision detection, as one of
the most common constraints on the simulation is the non-penetration of the objects. Therefore,
collision detection is needed so the rigid body dynamics system can provide realistic collision
responses.

8 Theoretical background

1.3 Motion planning
Motion planning plays a significant role in robotics, as one of the most fundamental tasks in
robotic control is to plan a collision-free path or trajectory for a robot in an environment con-
taining obstacles. Because the geometry of the obstacles and the robot itself can be complex,
this simple task is computationally hard. This section should familiarize the reader with several
concepts of motion planning, especially in the context of robotic arms. Additional concepts of
motion planning can be found in [10, 12, 13], from where most of the following definitions are
outlined.

1.3.1 Workspace
In most cases, robots are assumed to operate in planar (R2) or three-dimensional (R3) Euclidean
ambient space, sometimes called the workspace (W). Robots can physically move in this space,
but the workspace will often contain obstacles preventing the robot from accessing certain parts
of the workspace. Definitions 1.2, 1.3, and 1.4 formally define the space occupied by the robot’s
geometry, workspace obstacles, and the free workspace.

▶ Definition 1.2 (Space occupied by the geometry of a robot in a 3D workspace). Let W = R3

be a workspace, and let a robot be defined as a collection of m links A1, A2, ...Am, where each
link Ai ⊂ W is a rigid body. The space ocupied by the robot’s geometry in the worskpace is then
defined as A =

⋃m
i=1 Ai ⊂ W.

▶ Definition 1.3 (Workspace obstacle region). Let W = RN , where N = 2 or N = 3, be a
workspace and A be the robot occupying and operating in it. Then, let the closed set of points
WOi ⊂ W be the i-th obstacle in the workspace. The union of all obstacles in the workspace
O =

⋃
i WOi ⊂ W is called the workspace obstacle region. When A ∩ O ≠ ∅, the robot is in

collision with an obstacle from the workspace obstacle region.

▶ Definition 1.4 (Free workspace). Given a workspace W and its obstacle region O, the set of
points Wfree = W \ O is the free workspace the robot can access.

With robotic arms, the workspace often specifically refers to a set of points of the ambient
space that are reachable by the end-effector, usually the tip of the attached tool or the position
inside a gripper.

The example R2 robotic arm is planar, operating in 2-dimensional (2D) space, so its workspace
can be illustrated in a 2D image. As shown in Figure 1.5a, the workspace is an annulus3 for this
particular manipulator because of the lack of constraints and Link 2 being shorter than Link 1.
Note in the illustration how every point in the interior of the defined workspace can be reached
in two ways: right-arm and left-arm configurations. This implies that the end-effector’s position
does not suffice as a configuration of the robot because it does not describe the location of all
points of the manipulator.

1.3.2 Configuration space
For convenience, motion planning usually occurs in the space of all possible configurations of
the robot called the configuration space and denoted Q. A configuration q of a robotic system,
which is a complete specification of the position of that system, is a point in this abstract space
Q (q ∈ Q). For robotic arms, the configuration space is sometimes referred to as the joint space
as the configuration of a manipulator consists of parameters that correspond to the angles of
the joints of the manipulator. This representation is advantageous because the robotic system

3Annulus is a 2D disk with a smaller disk removed from the center.

Motion planning 9

is mapped into a single point in space, regardless of its geometrical complexity. In the case of
the example R2 robot, its configuration is defined by only two parameters, θ1, and θ2, as shown
in Figure 1.3. Because of the simplicity of this robot, both the workspace and the configuration
space can be visualized in 2D space, as illustrated in Figure 1.5. In Definitions 1.5, 1.6, and 1.7,
the configuration obstacle region, free space and free path are formally defined.

▶ Definition 1.5 (Configuration obstacle region). Let W = RN , where N = 2 or N = 3,
be a workspace and A(q) ⊂ W be a closed set of all the points in the workspace occupied by
the robot when in configuration q. The configuration obstacle region, denoted Qobs, is defined as
Qobs = {q ∈ Q|A(q)∩O ≠ ∅}. The individual obstacles QOi in the configuration space correspond
to robot configurations that intersect a corresponding obstacle in the workspace: QOi = {q|A(q)∩
WOi ̸= ∅}.

▶ Definition 1.6 (Free configuration space). Given a configuration space Q and its configura-
tion obstacle region Qobs, the free configuration space (sometimes only free space) is defined as
Qfree = Q \ Qobs

▶ Definition 1.7 (Free path). A free path in a free configuration space Qfree is a continuous
mapping τ : [0, 1] → Qfree and does not allow contact between the robot and any obstacle. A
semi-free path allows contact between the robot and an obstacle boundary and is defined as a
continuous mapping τ : [0, 1] → cl(Qfree), where cl(Qfree) denotes a closure of Qfree.

Even with a slightly more complex robotic system, the configuration space obstacles are much
more challenging to compute. Therefore, grid-based representations of the configuration space
are sometimes used. A test computation is performed for each grid cell to see if the robotic
system collides with any obstacle in the workspace. When the grid cells are represented as
pixels, color-coded per obstacle, we can visualize the configuration space, obstacles, and planned
paths. Figure 1.6 shows such a visualization for the R2 robotic arm. On the left side of the
figure, the robot’s workspace with obstacles and a path of the robot’s end-effector through the
workspace are visualized. The start, end, and several in-between configurations are also depicted.
The same workspace is illustrated in the middle of the figure with two different configurations.
On the left side, the generated visualization of the configuration space with the obstacles, the
robot’s trajectory, and the configurations are shown in corresponding colors. Note how no free
path exists between the two configurations from the middle of the figure, even though it is not
apparent from the image of the workspace.

1.3.2.1 Degrees of freedom
The degrees of freedom (DoF) of a robotic system is the minimum number of parameters needed
to specify its configuration. Thus it also corresponds to the dimension of the configuration
space. Analogically to the configuration of a robotic arm, the DoF of a robotic manipulator
usually equates to the sum of the degrees of freedom of individual joints in the kinematic chain.
The 2R robot has two DoF as it has two revolute joints with one DoF each. Another example
is the human arm, which has seven DoF. The shoulder joint is spherical with three DoF, the
elbow is a simple revolute joint with one DoF, and the wrist can be substituted with a three-DoF
spherical joint.

Every rigid body in the 3D ambient space has six DoF. Three degrees of freedom describe
its position and allow translation along all three axes, and the other three allow rotation around
these axes. Industrial robotic arms usually have six or seven DoF. A minimum of six DoF is
needed to achieve any position and orientation of the end effector inside the robot’s workspace.
Adding more DoF creates redundancy in the system as a given end-effector pose can then be
achieved with multiple configurations. The redundancy is useful when there are obstacles in the
workspace and some configurations cannot be reached, but increasing the DoF of the robotic
system makes motion planning increasingly challenging.

10 Theoretical background

(a) Workspace of the R2 planar manipulator
with several illustrated configurations

(b) Configuration space of the R2 planar manipulator
with the configuration from Figure 1.3 indicated with
a marker

Figure 1.5 Illustration of the workspace and configuration space of the example robotic arm (images
from [10])

Figure 1.6 Visualization of robots workspace with end effector trajectory (left), two configurations
with no existing free path between them (middle), and visualization of configuration space with obstacles
and the trajectories (right) (images adapted from [10])

Motion planning 11

1.3.3 Forward kinematics
Forward kinematics is one of the kinematics tasks that bridge the configuration space and
workspace of the robot. Specifically, it is a technique for determining the position and ori-
entation of the end effector’s frame in the workspace relative to the robot’s base link based on
its configuration. In other words, it converts a point in the configuration space to a point and
its orientation in the workspace. Formally, a forward kinematics map ϕ : Q → W is defined.

1.3.3.1 Solving forward kinematics

A direct way to compute the forward kinematics of a kinematic chain is by composition of
transformations by multiplying homogenous transformation matrices of adjacent links. First,
the coordinate frames of individual links are defined and transformation matrices are derived
related to these coordinate frames. Then the transformation metrices can be multiplied to
get the homogenous transformation matrix of the end-effector frame related to the base link
coordinate frame. The rotation matrix and displacement vector can then be extracted from the
result transformation matrix. Mathematically,

T 0
n = T 0

1 T 1
2 ...T n−1

n =
[
R0

n d0
n

0 1

]
,

where T n−1
n is the homogenous transformation matrix of the coordination frame of the n-th link

relative to the (n − 1)-th link, and the base kink being the 0th and the end-effector the n-th link
of the kinematic chain.

The individual transformations for each pair of the subsequent frames can be found di-
rectly by deriving the rotation matrix and displacement vector of the transformation, which are
parametrized by the angle of the joint. In practice, a more straightforward industry-standard
method is used for finding these individual homogenous transformation matrices, called the
Denavit-Hartenberg Method [12]. The method is faster and produces the same transformation
matrix but obscures the meaning of the rotation matrix and the displacement vector.

1.3.4 Inverse kinematics
Inverse kinematics is the opposite task to forward kinematics. With a known position or ori-
entation of the end-effector in the workspace, inverse kinematics is a problem of finding the
configuration of joints to get the end-effector into that pose. This is a more difficult problem
than forward kinematics because it is non-linear, and there is a possibility of multiple solutions or
singularities, as it might be possible to achieve various positions in the workspace with multiple
configurations. Formally, a inverse kinematics map ϕ−1 : W → Q is defined.

1.3.4.1 Solving inverse kinematics

Various techniques and algorithms are available to solve the inverse kinematics, including ana-
lytical methods for simple kinematic chains, but primarily numerical methods and optimization
algorithms. Machine learning techniques can also be used to teach models how to map end-
effector pose to the configuration space. Generally, after the end-effector pose is defined, a set
of non-linear equations is derived that describes the relationship between the configuration of
the robotic arm and the end-effector position by solving the forward kinematics. Then the set
of equations is solved. The solutions must be checked if the configurations are feasible, do not
result in a collision, or violate any other constraints.

12 Theoretical background

Figure 1.7 KUKA industrial robotic manipulator with its digital twin simulated in Gazebo (image
from [17])

1.3.5 Motion planning problem
Depending on the ambient space, constraints, or application, there can be several variations of
the motion planning problem. The most basic is the geometric path planning problem defined in
Definition 1.8.

▶ Definition 1.8 (Motion planning problem [13]). Let W = RN , where N = 2 or N = 3, be
a workspace and O ⊂ W an obstacle region inside that workspace. Given a robot in W, defined
as a collection of m links A1, A2, ...Am, the configuration space Q with both Qobs and Qfree can
be defined. For an initial configuration qI ∈ Qfree and a goal configuration qG ∈ Qfree, find a
(continuous) free path, τ : [0, 1] → Qfree, such that τ(0) = qI and τ(1) = qG.

The pair (qI , qG) is often called a query, and the solution to this problem is the motion plan,
which is the collision-free path, τ , sometimes also referred to as the trajectory. By following the
motion plan, the robot will move in the workspace from its starting position A(qI) to its goal
position A(qG). Depending on the abstraction of the problem, the motion plan can be as simple
as a sequence of actions the robot needs to perform or positions in a gird the robot needs to
visit, to continuous curves in space.

1.4 Digital twin
Over recent years, the utilization and research of the concept of a digital twin [14] have been
increasing considerably [15, 16], especially in the manufacturing domain. To some extent, it is an
ambiguous and very general concept that is still evolving as products in various domains employ
this concept in different forms, use varying technologies and terminology, and utilize the digital
twin in various stages of the product’s life cycle. In [15], authors have proposed unification of
the terminology and definitions of some characteristics of the digital twin concept, which are
summarized in Table A.1 directly from that publication. This section provides an overview of
some relevant characteristics with an emphasis on robotics and robotic manipulators.

1.4.1 Motivation for digital twins
In the modern period of robotics, it is common to deploy digital replicas of the physical hardware
in various simulations. Although having such a model of the robotic system could be viewed
as a digital twin, it is missing several characteristics to be considered a digital twin, as will be
defined later. However, the modeling and simulation of robots is a significant part of digital
twins in robotics, and the motivation behind it remains unchanged. Here it is discussed from
two perspectives: historical and modern.

Digital twin 13

One of the historical problems with robotics was that the design and development of both the
robotic hardware and software were slow and expensive processes. This is because the procedure
usually requires multiple iterations of testing and modifications of the physical system. On the
one hand, building a robot is expensive, but testing it can also be expensive and time-consuming.
Even for a robot with a simple task, the experiments might require hiring specialized personnel
and building a custom testing site. Moreover, the tests could potentially be dangerous for the
robot and the personnel. With increasingly more complex robotic systems with complicated or
precise tasks and many sensors and algorithms running simultaneously, this process often requires
more iterations and more sophisticated tests than before. Modeling and simulation of the robotic
system solve most of these issues as it is a safer way to test the robot, the testing conditions
are consistent, and it is possible to iterate over modifications faster. Additionally, it is possible
to simulate various test environments and edge cases that might be very difficult to reproduce
in the real world. After the iterative development process in the simulated environment, the
robotic system can finally be tested and validated in the real world before its production phase.

Furthermore, due to the increasing complexity of the tasks the robots perform and a con-
siderable number of parameters describing the state of the system and the workspace, the use
of model-based predictive control based on machine learning or deep learning models is increas-
ingly demanding. Training such models often require a large quantity of training data, which
can be unattainable to obtain through physical execution only. Simulation can be used to ef-
fectively generate the training data, allowing deployment in various simulated environments or
miscellaneous randomization of input parameters which increases the robustness of these models.

1.4.2 Core characteristics
Digital twins have some specific features and characteristics. There has to be a physical en-
tity that operates in a physical environment and its virtual counterpart that exists in a virtual
environment. The environments also correspond to each other as, in most cases, the virtual
environment is a digital copy of the physical one. The entity and its corresponding environment,
whether physical or virtual, is described by a set of parameters that can be measured through
metrology in either of the worlds. The measured values define the state of that entity, and
through the process of realization, this state can be changed in either of the worlds.

In the context of robotic arms, the physical entity is naturally the constructed physical ma-
nipulator itself. The physical environment refers to the space where the robotic arm is situated,
including its workspace. Any relevant parameters of the environment affecting the physical entity
should be captured. These can include anything from the geometric shape and size of the robotic
arm, physical parameters of the joints, positions of objects in the workspace, the purpose and
control of the arm, to external factors like ambient temperature and wind forces. These parame-
ters can be continually fed into the virtual environment in the digital domain to get an accurate
mirror of the physical environment. Then it is possible to perform more accurate simulations
to optimize the manipulator’s operation or make decisions. The number of parameters chosen
to capture, their accuracy, and even the chosen level of abstraction for the virtual environment
corresponds to the fidelity of the virtual counterpart.

1.4.3 Twinning
To consider the physical and virtual entities as twins, a cycle between the physical and virtual
states must be achieved to synchronize the two. This cycle is called twinning or mirroring, and
the rate at which the states synchronize is called the twinning rate. As is shown in Figure 1.8,
this process requires two connections between the entities and environments.

The physical-to-virtual connection enables the state of the physical world to be transferred to
the virtual environment. It consists of metrology in the physical environment and a realization in
the virtual environment. First, the state of the physical entity is measured, whether by encoders

14 Theoretical background

Figure 1.8 The twinning process between physical and virtual entities (adapted from [15])

in the joints or other sensors and cameras, then the state is realized by the virtual entity. So if
the state changes in the physical world, it is mirrored in the virtual environment through this
connection. This continuous mirroring is one of the main differences between a digital twin and
the traditional modeling and simulation of robotic hardware.

Although sometimes omitted in the description of digital twins, the virtual-to-physical con-
nection is the data flow from the virtual environment to the physical one. The physical entity
must therefore contain functionality to realize state changes measured in the virtual entity. Such
realization with robotic manipulators can be, for example, direct control of the joint actuators.
This connection closes the loop with the physical-to-virtual connection, so the hypotheses that
might be generated in the virtual environment can be directly tested in the physical environ-
ment. This enables a continuous optimization cycle of predicting physical states in the virtual
environment and allows the digital twin to learn from its historical performance.

1.4.4 Life cycle
The concept of the life cycle of the digital twin in relation to the physical product’s life cycle needs
to be more unified throughout the literature. In various cases, a digital twin exists only during a
specific phase of the product’s life cycle, or there can even be numerous digital twin instances for
various phases. In general, the digital twin starts its life cycle as a digital twin prototype in the
concept and design phases of the physical product. During the product’s life cycle, the digital
twin is evolving, eventually surpassing the physical entity, as it can have potential value even
after the product’s retirement.

Different processes can run in the physical and virtual environments during the life cycle
of the product and the digital twin object. The physical processes are activities performed in
the physical environment by the physical entity. Examples of physical processes for a robotic
manipulator include pick-and-place tasks, welding, or general control of the robotic arm. Because
of these processes, changes in the state of the physical twin occur. Virtual processes, on the
other hand, refer to activities performed in the virtual environment by the virtual twin. These
processes include modeling and simulation, control optimization, design verification, edge-case

Physics engines 15

Figure 1.9 Example of a digital twin life cycle relative to the life cycle of a welding robotic arm with
various processes and applications of the digital twin4

scenario analyses, and more. These processes can be used to analyze the changes in the state of
the virtual entity or even realize them in the physical one. In Figure 1.9, there is an artificially
constructed example of a life cycle of a welding robotic arm and its digital twin and various
processes that might be applicable.

1.5 Physics engines
Physical forces and their effects on the environment and objects often need to be simulated
in various domains and applications like robotic simulation, video games, film, and animation.
Specialized software, called the physics engine, is used to computationally approximate these
physical systems, including rigid body dynamics, soft body dynamics, fluid dynamics, collision
detection, and more. Physics engines are usually used as middleware in other applications, such
as game engines, 3D modeling applications, or scientific simulators, where their purpose can be
fundamentally different.

In the context of this thesis, real-time physics engines are relevant because of their use
in robotic simulations and game engines. There are numerous available physics engines, and
because of their role as middleware in the software they are used in, they can frequently be
interchangeable. However, as many of these engines were developed in different domains, they
adapt various algorithms with their strengths and weaknesses for specific tasks or only support
specific features. For example, some engines might specialize in fluid dynamics, and others in
rigid body dynamics. Because of these differences, and their complexity and configurability, it
is challenging to compare them or evaluate their general performance, even though it has been
attempted in several studies [18, 19, 20]. Nevertheless, certain characteristics of physics engines
are known to affect their performance in specific use cases substantially.

1.5.1 Coordinate representation
One such characteristic, particularly pertinent for the simulation of robotic arms, is coordinate
representation. When representing a position of a physical object in space, maximal coordinates
or generalized coordinates can be used.

1.5.1.1 Maximal coordinates
With maximal coordinates, sometimes called Cartesian coordinates, objects in 3D space are
represented with all six DoF (see Section 1.3.2.1). This is an efficient representation for objects

4Note that the proportion of depicted lengths of the robot life cycle stages in the figure does not correspond
to the proportion of actual durations of these stages. The figure mainly illustrates how various processes and the
life cycle of the digital twin can overlap these stages.

16 Theoretical background

that can freely move in the environment. However, when representing joints, their movement
has to be appropriately limited by constraints. So for a simple revolute joint frequently used in
robotic arms, additional constraints have to be added to restrict the original six DoF to one.
The physics engine must try to satisfy these constraints when solving the calculations. The more
constraints there are in the simulated system, the more constraints can be potentially violated,
leading to inaccuracies that are often very noticeable when the simulation is displayed. This is
especially problematic when simulating long kinematic chains. Physics engines like Nvidia PhysX
[21], ODE [22], and Bullet [23] primarily use maximal coordinates.

1.5.1.2 Generalized coordinates
On the other hand, generalized coordinates, also called joint coordinates, can represent joints
directly with the correct amount of DoF without additional constraints. So the same revolute
joint will be described by one DoF instead of six DoF with constraints limiting the movement of
the joint as was the case in the maximal coordinate representation. This representation is chal-
lenging to implement but significantly improves simulating kinematic chains. With considerably
fewer constraints, the computations are more efficient and accurate. The generalized coordi-
nate representation is used in engines like DART [24] and Simbody [25]. However, support for
generalized coordinates has also been added to Nvidia PhysX and Bullet physics engines.

1.5.2 Precision-speed trade-off
Scientific simulators might require very high precision of the approximation, but the computation
can potentially run for days. Game engines, conversely, need the simulation to be performed in
real-time but can afford lower accuracy. However, high physical accuracy and fast simulation
cannot be achieved simultaneously as this trade-off is inherent to the slow convergence of opti-
mization algorithms used for these computations. With this trade-off in mind, physics engines
can often be configured for an acceptable level of precision the specific application requires.
Nonetheless, the simulation will always be a simplified approximation of the real world.

Chapter 2

Technological background

This chapter provides the reader with the necessary background regarding the technologies used
in the thesis. Namely, the first section covers the Robot Operating System (ROS) and some of its
essential components and tools, including visualization tools like RQt and RViz. The following
section continues with a description of the Gazebo simulator and some background in robotics
simulation. The third section overviews the Unity game engine, its key modules, and its role in
robotics.

2.1 Robot operating system
Robot operating system (ROS), although in literature often labeled as middleware, is a free and
open-source framework for developing robotics applications1. It is maintained by Open Robotics,
formerly Open Source Robotics Foundation (OSRF), and its development started in 2007. Since
then, it evolved dramatically, its community grew, and it became a standard in robotics. It
is not an operating system in the traditional sense. It provides an abstract and structured
communication layer of a heterogenous compute cluster that runs above the host operating
system. This layer is used for explicit communication between components via message passing.
ROS also aggregates an extensive set of libraries made by community contributors that can
be used when building various types of robotic systems, with additional utilities for monitoring,
logging, debugging, communication introspection, and more. All of this enables even small teams
to build complex robotic systems.

However, ROS started to fall short when robotic applications started to turn into products
because its initial design had very few production-grade features in mind. Reliability, system up-
time, support for large-scale embedded systems, and security should have been prioritized. ROS
struggled to consistently deliver data over lossy links like wifi or satellite because the communi-
cation architecture was built on TCP/IP, and the used peer-to-peer topology needed a lookup
mechanism that became a single point of failure. There were many attempts to patch various
issues with ROS, but none solved the core limitations of the overall architecture. Therefore, over
the last few years, ROS was redesigned from the ground up to solve most of these shortcomings.
The old architecture of ROS is now referred to as ROS 1 [26, 27], and the new one is ROS 2 [28,
29]. This redesign of ROS has started a massive community effort to migrate most of the libraries
to ROS 2, which is still ongoing today. However, ROS 1 will be discontinued in 2025 with its
last LTS distribution, as is shown in Table 2.1, which lists some of the most recent distributions
of ROS. Because ROS 2 is the future of ROS, this chapter mainly describes the architecture and
concepts of ROS 2.

1It can also be described as a robotics software development kit (SDK).

17

18 Technological background

Table 2.1 List of most recent ROS distributions

Distribution LTS ROS version Release End-of-life
Iron Irwini No ROS 2 May 2023 -
Humble Hawksbill Yes ROS 2 May 2022 May 2027
Galactic Geochelone No ROS 2 May 2021 December 2022
Foxy Fitzroy Yes ROS 2 June 2020 May 2023
Noetic Ninjemys Yes ROS 1 May 2020 May 2025
Eloquent Elusor No ROS 2 November 2019 November 2020
Melodic Morenia Yes ROS 1 May 2018 May 2023
Lunar Loggerhead No ROS 1 May 2017 May 2019

2.1.1 Motivation for robotic frameworks
Writing software for robotic systems is difficult because different types of robots use varying
hardware components and sensors, and thus code reuse is not trivial. The code base for a
robotic system can be enormous and usually requires the expertise of multiple domains, which is
unattainable by a single researcher. Additionally, the scope and scale of these systems continue
to grow. Therefore researchers started creating various, usually single-purpose, frameworks that
tried to create abstraction or provide architectural methods to decompose the whole system into
manageable pieces. Only a few could rival ROS in its significance and usage in the industry.

ROS was initially designed to solve specific challenges in developing large-scale service robots
and mobile manipulators. However, the resulting architecture was far more general and reusable
for other types of robotic systems. Its modular structure promotes reusability and collabora-
tive development. It enables the development of generic logging, visualizations, and playback
capabilities and is lightweight but scalable.

2.1.2 ROS 2 overview
ROS 2 aimed to fulfill several design requirements like security, real-time computing, product
readiness, diverse network architectures, or embedded systems support. Additionally, the design
was guided by a set of principles: distribution, abstraction, asynchrony, and modularity. These
principles have their trade-offs but generally lead towards benefits like code reuse, global scale
collaboration, better fault isolation, and software testing. The architecture of ROS 2 follows
an approach of distributed systems with several abstraction layers. Modularity is enforced on
multiple levels, and the whole ecosystem is distributed across many decoupled packages, so the
users can choose which parts to use or exchange various components. As shown in Figure 2.1, the
abstraction is generally hidden behind a set of client libraries that provide core communication
APIs and are implemented in many different languages, making ROS language agnostic. These
client libraries are used to develop components in ROS, and the main two languages used are
Python and C++. However, the community has developed and continues to maintain many client
libraries for other programming languages. These client libraries depend on a common inter-
mediate interface written in C called rcl. Underneath this interface is a middleware abstraction
layer called rmw (ROS MiddleWare).

The communication architecture of ROS 2 has been redesigned and based on Data Distribu-
tion Service (DDS), an open standard for communication used in critical infrastructures. DDS
uses UDP protocol, which does not automatically re-transmit data. On top of this, ROS 2
introduced a set of Quality-of-Service (QoS) settings that can be used for communication op-
timization for available bandwidth and latency but also allowed for designing embedded and
real-time systems. Some of the most common QoS settings allow configuring if message delivery
is guaranteed (reliability) or if the messages are forgotten after they are sent (durability), or how

Robot operating system 19

Figure 2.1 Client library API stack in ROS 2 (adapted from [28])

many messages are buffered when the network cannot keep up with the communication (history).
The communication in ROS is asynchronous, creating an event-based system where each compo-
nent can have a different frequency of providing and accepting data. As for security, DDS comes
with its own security standard, but ROS 2 also provides additional tools for managing security
infrastructure.

The ROS 2 ecosystem can be divided into three categories: middleware, algorithms, and
development tools. The middleware category refers to the underlying communication infrastruc-
ture for sending data between components running in ROS. The second category aggregates
libraries with implementations of standard algorithms used in robotics like planning, perception,
or simultaneous localization and mapping (SLAM). Furthermore, ROS provides an abundance of
command line and graphical development tools for logging, visualization, or other development
processes.

Unlike ROS 1, ROS 2 can integrate with the cloud making it possible to connect to cloud
resources. ROS 2 should also have additional platform support for Windows and macOS, but
Linux is still preferred and widely used for ROS development.

2.1.3 Concepts
This section provides an overview of some of the most fundamental concepts in ROS. Some of
the concepts, like nodes and all the communication patterns, are depicted in Figure 2.2. The
reader can refer to this visualization when reading about these concepts.

2.1.3.1 Nodes
Nodes are one of the fundamental concepts of ROS. It is an essential organizational unit allowing
more straightforward reasoning about complex systems. In ROS 1, a node corresponded to a
single process, but in ROS 2, multiple nodes can share a single process and use resources more
efficiently. A robotic system typically comprises many nodes, each usually responsible for spe-
cific functionality. Nodes communicate explicitly via message passing, so the ROS components
can have separate runtime execution contexts and be distributed over multiple heterogeneous
systems. The term node arises from the fact that ROS systems are usually visualized at run-
time as graphs with individual components as nodes and communication between them as arcs.

20 Technological background

Figure 2.2 ROS 2 nodes and communication patterns with their interfaces (adapted from [28])

Such visualization can be found in Figure 2.3, where nodes are depicted as ovals and topics as
rectangles.

Such a modular structure makes it possible to connect and disconnect nodes in runtime easily
and thus dynamically modify the graph of nodes running in a system. This is especially useful
when running nodes under active development alongside well-tested modules so that only the
single node being developed and tested needs to be restarted repeatedly instead of the whole
system. ROS 2 also brought a new pattern for managing the life cycle of nodes, which was not
present in ROS 1. Nodes now have states like unconfigured, inactive, active, and finalized, which
further enhance the system’s management as a whole.

2.1.3.2 Messages
ROS nodes exchange data through messages, which are strictly typed data structures. The fields
in a message can be either built-in primitive types, other messages, or even arrays of these.
Messages are used in all three communication patterns ROS 2 provides: topics, services, and
actions. Each pattern has to define its communication interface with message types2, which
is done using a language-neutral interface definition language (IDL). An example of a simple
message interface is shown in Code listing 2.1. This message has three fields. The first one is
of a primitive type, and the second one is an unbounded dynamic array. The last field is of a
message type, which has its own fields and can be defined in a different package.

Many commonly used messages are already available in ROS but users can provide their own
custom interface definitions in the IDL format. A code required for communication in any used
client library language is generated at compile time from the IDL interface definition. Because
of this, ROS provides a language agnostic message passing scheme and components written in
different languages can be mixed and matched.

2.1.3.3 Topics
Topics are an asynchronous communication pattern providing an anonymous publisher-subscriber
architecture. It is the most straightforward and used pattern in ROS, allowing many-to-many

2A message is also an interface because topics, the simplest communication pattern, use simple messages.

Robot operating system 21

Figure 2.3 Visualization of nodes and topics running in ROS created by the RQt visualization tool
(image from [30])

Code listing 2.1 Example message definition

uint32 id
float32 [] seq
geometry_msgs/Pose pose

communication between nodes. The nodes can publish messages to topics, and other nodes can
subscribe to topics to receive messages that were published there. Topics act as a bus for message
exchange and are accessed by their name. A node can publish or subscribe to any number of
topics simultaneously, and multiple concurrent publishers and subscribers for a single topic can
exist. However, the message interface is strictly defined, so nodes can subscribe and publish
only the defined message type. As the publishers and subscribers are unaware of each other’s
existence, the overall communication is anonymous. Because of this architecture, communication
introspection can be done by simply subscribing to a topic that needs to be monitored, as shown
in Figure 2.2.

2.1.3.4 Services
Services are a request-response communication pattern defined by a pair of messages. This
pattern is analogous to web services. Unlike topics, only one node can advertise a service of a
particular name, which is then referred to as a service server. Any number of other nodes can
then send request messages to the advertised service, becoming service clients. ROS 2 makes it
possible for the client’s process not to be blocked during a call, and it can check for the response
later. The client can ensure that a particular task was completed, as the request-response pair
are associated together. The service interface defines the request-response message pair, as shown
in Code listing 2.2.

2.1.3.5 Actions
Actions are an asynchronous communication pattern unique for ROS 2 that is best suited for
goal-oriented, long-running tasks. They are similar to services with the difference that actions
can be canceled anytime and provide periodic feedback during execution. The action interface
has three parts: goal, result, and feedback. The goal and result are analogous to the service’s
request and response messages. An example of such an interface definition is shown in Code
listing 2.3.

22 Technological background

Code listing 2.2 Example service interface definition

request
int32 a
int32 b

response
int32 sum

Code listing 2.3 Example action interface definition

Goal
geometry_msgs/Pose goal_pose

Result
bool is_done

Feedback
geometry_msgs/Pose current_pose

One node can advertise an action of a particular name as an action server. Then other nodes,
as action clients, can trigger the action by sending a goal message. While waiting for the action
to finish and receive the result message, they receive periodic feedback, usually reporting the
progress. During that time, they can also choose to cancel the running action.

Internally, actions are built on topics and services. The periodic feedback is realized via a
single topic. The goal and result messages are sent via services, where the receivers send an
acknowledgment back to the sender in a response message. In Figure 2.2, action is depicted in a
more simplified way.

2.1.3.6 Parameters
Nodes can be configured via parameters. In ROS 1, parameters were global variables stored in
a parameter server. However, in ROS 2, the parameters are implemented using service calls,
and each node maintains its own set of parameters. The parameter type has to be declared in
advance and is enforced. The values of parameters can be manipulated at runtime.

2.1.3.7 Packages
ROS applications are organized into packages that support the collaborative development of
larger systems and are partially the result of the modular ecosystem of ROS. The definition
of the ROS package is open-ended. In general, the ROS package is a container for ROS code,
and in its minimal form, a package is a directory with an XML file describing it and listing its
dependencies. A collection of such packages is a directory tree, where packages are at the leaves.
In general, the ROS package is a container for ROS code. ROS provides utilities for building
packages and their creation for a user-specified client library and specified dependencies.

As packages can aggregate a set of functionalities and components to support their configura-
tion and startup, ROS provides a launch system. It makes it possible to define launch files that
act as package executables. These launch files can be used to configure the system, including
what nodes will run, where to run them, in what order they will start, or what arguments will be
provided to them. Furthermore, the launch system is also responsible for monitoring the started
processes, reporting their state, or reacting to their state changes. In ROS 1, launch files were
defined in XML files, but in ROS 2, YAML and Python can also be used. Using Python scripts
as launch files is especially powerful because it gives the developer more flexibility.

Robot operating system 23

(a) RViz visualization (b) RViz visualization

Figure 2.4 Simple robot example described in URDF visualized in RViz and Gazebo

2.1.4 Unified robotics description format
Unified robot description format (URDF) is an XML format for specifying robots in ROS, in-
cluding their geometry, physical properties, control parameters, and more. The format is stan-
dardized, and libraries inside ROS know how to use it. Code listing 2.4 contains an example
description of a simple robot constructed from basic shapes with a base link and two cylindrical
links connected by two revolute joints. Figure 2.4 then shows its visualization in both RViz and
Gazebo3.

The <link> and <joint> XML blocks are two fundamental building blocks of robot descrip-
tion. The <link> block describes visual geometry, collision geometry, and physical properties
like the mass and inertia of a link. The link geometry can be described using basic shapes, as
in Code listing 2.4, but also complex meshes in standard formats like STL, DAE, or Wavefront
(OBJ), with the first two being used the most. The <joint> block describes the joint’s type and
parameters, like their limits and axes of movement, and references both parent and child links.
All measurements in URDF format use meters for distance, radians for angles, and kilograms for
weight.

Other XML tags can define sensors or transmissions between actuators and joints. Some tools
or packages can also extend the URDF format to include their specific description elements. A
great example is Gazebo, which includes tags for configuring its plugins.

2.1.4.1 Materials
The URDF description can also define some simple materials that can be applied to links. The
materials are usually solid colors, but a simple texture could also be used, although it is more
complicated to define in the URDF. In the example code in Code listing 2.4, a blue material is
defined and applied to the base link and one of the two cylindrical links. In the RViz visualization
shown in Figure 2.4a, the two links are displayed in blue color, and the last link has a red color,
which is the default RViz material. Unfortunately, these materials are ignored by Gazebo, as
shown in Figure 2.4b, because Gazebo uses its own material definitions. This is done by defining
a Gazebo reference for a specific link and specifying one of the materials defined by Gazebo, as
seen at the end of Code listing 2.4. Gazebo’s blue material has been applied to one of the robot’s
links, and in Gazebo, it appears in blue. However, the remaining URDF materials of the other

3RViz and Gazebo are described in Secions 2.1.6.2 and 2.2. Note that the robot described in Code Listing 4
could not spawn in a Gazebo scene. Gazebo requires the robot description to include physical properties of the
links, like mass, collision geometry, and inertia tensors. The Gazebo visualization was obtained by extending the
URDF considerably and is meant to show different material handling discussed in Section 2.1.4.1.

24 Technological background

Code listing 2.4 Example of a URDF file describing a simple robot with two revolute joints and a
base with two cylindrical links

<?xml version="1.0"?>
<robot name="simple_robot">

<material name="blue">
<color rgba="0␣0␣0.8␣1" />

</material >

<link name="base_link">
<visual >

<geometry >
<box size="0.4␣0.4␣0.05" />

</geometry >
<material name="blue" />

</visual >
</link>

<link name="arm_link">
<visual >

<origin xyz="0␣0␣0.25" rpy="0␣0␣0" />
<geometry >

<cylinder radius="0.05" length="0.5" />
</geometry >

</visual >
</link>

<link name="forearm_link">
<visual >

<origin xyz="0␣0␣0.2" rpy="0␣0␣0" />
<geometry >

<cylinder radius="0.04" length="0.4" />
</geometry >
<material name="blue" />

</visual >
</link>

<joint name="shoulder_joint" type="revolute">
<parent link="base_link" />
<child link="arm_link" />
<axis xyz="0␣1␣0" />
<limit effort="10" velocity="1.0" lower=" -1.1" upper="1.1" />

</joint>

<joint name="elbow_joint" type="revolute">
<parent link="arm_link" />
<child link="forearm_link" />
<origin xyz="0␣0␣0.5" rpy="0␣0␣0" />
<axis xyz="0␣1␣0" />
<limit effort="10" velocity="1.0" lower=" -1.8" upper="1.8" />

</joint>

<gazebo reference="arm_link">
<material >Gazebo/Blue</material >

</gazebo >
</robot >

Robot operating system 25

links are ignored, and Gazebo displays them in its default white material. So, suppose the user
wants to define the materials in the robot description directly. In that case, they usually have
to define the materials twice and use the Gazebo’s limited list of pre-defined colors.

A more flexible and straightforward approach is including the material data directly in the
mesh file. The DAE format, unlike STL, contains information about materials and textures in
the same file. These are automatically used in Gazebo and RViz when the robot description with
the mesh is used4. The advantage of this approach is that different parts of the mesh can have
different materials, and advanced texturing methods can be used to achieve the desired look.

2.1.4.2 Xacro
Robot descriptions in URDF format can quickly become extensive and unclear, even for simple
robots. This is problematic, especially when the design of the robot is subject to change or the
description file has to be maintained regularly. The Xacro package simplifies the writing and
maintenance of robot descriptions by extending the URDF format with additional functionalities,
reducing the amount of work that has to be done. The Xacro format is beneficial for development,
but other packages and components usually do not support it. Fortunately, the Xacro package
provides a command line utility that generates a URDF file out of a Xacro robot description.
This conversion is often done directly in a launch file, where the URDF description will be used.

Xacro, which stands for XML macro, extends the URDF format by adding properties and
macros, performing mathematical operations, and splitting the description into multiple de-
scription files. Properties in the Xacro format define constant values that can be referenced
throughout the robot description by name. When the value needs to be changed, perhaps due to
a design decision, it can be done in a single place. Macros serve a similar purpose as the prop-
erties. Oftentimes, various URDF elements are repeated multiple times throughout the robot
description, and if the element has to be changed, it needs to be modified in multiple places.
Macros can be used to define potentially parametrized URDF elements that can be reused in the
robot description repeatedly. Xacro also makes it possible to split the description into multiple
xacro files and compose the whole robot description by including them. For example, macros,
properties, and materials could be in separate files and then be included in the main xacro file,
which defines the links and joints of the robot.

2.1.4.3 Semantic robot description format
Semantic robot description format (SRDF) is a complement to URDF that is intended to specify
additional semantic information about the robotic system that is not in the URDF file. For
example, the SRDF file may include additional virtual or passive joints, joint and link groups,
default robot configurations and poses, or additional collision-checking information for ignoring
self-collisions of specific links. SRDF can be used for various applications, like specifying semantic
information for motion planning in the MoveIt project (see Section 2.1.7). In the case of MoveIt,
the SRDF file can be generated using a provided setup assistant with GUI.

2.1.5 ros2 control
The ros2_control package serves as a platform for connecting hardware interfaces and con-
trol algorithms, also called controllers. It decouples the two software groups and makes them
communicate through a common interface. This allows easier maintenance and extendability of
the robot control, and the user can pick and choose different controllers and hardware interfaces
based on their needs. Moreover, as communication is done over a common interface, sharing and
using existing controllers and hardware interfaces is easier.

4The two tools visualize colors differently, so they might not match the intended shade.

26 Technological background

Figure 2.5 An illustrated example of controllers and hardware interfaces managed by the controller
manager from the ros2 control package

The ros2_control does not need to know what type of robot is controlled. It only knows
what hardware interfaces are available and what control algorithms should communicate with
them. A component called the controller manager is responsible for managing available hardware
interfaces and controllers and pairing them together.

2.1.5.1 Hardware interfaces
The hardware interface, sometimes called the hardware component, is software that directly
communicates with the robot’s hardware and exposes it to ROS in the standard ros2_control
way. It is almost exclusively written in C++, as it is meant to be fast and create minimal latency
between the hardware and the control algorithms. A hardware interface is specific to a particular
piece of hardware and its API and capabilities, so usually, the same hardware interface cannot
be reused on two different actuators from different manufacturers. Hardware manufacturers
sometimes provide hardware interfaces for their products, but the robot users must often develop
the hardware interface themselves.

The hardware interface represents the hardware by exposing command interfaces and state
interfaces. Command interfaces are used for things in the hardware that can be controlled and
have read and write capabilities. So for a motor that can be controlled by both velocity and
torque, there would be one command interface for velocity control and one for torque control.
However, in that example, they would not be used simultaneously. The state interfaces are used
for things that can only be monitored and have only read capabilities. So the same motor might
have encoders that can report the velocity and position of the robot. Therefore, there would
be two state interfaces for velocity and position, and they could be used simultaneously because
they only read the data. Hardware interfaces are also used for non-actuated components like
sensors.

A robotic system can have multiple hardware interfaces, each exposing multiple command
and state interfaces. The control manager has a component called the resource manager which
is responsible for aggregating all the available interfaces and exposing them together so the
controllers can access the whole list of available interfaces. This is illustrated on the right side of
Figure 2.5. However, the resource manager has to know what hardware interfaces are available
for the robot. These are listed in the URDF robot description directly inside a ros2_control
description block.

Robot operating system 27

2.1.5.2 Controllers
The ROS ecosystem uses the controllers to interact with ros2_control, and they will be designed
to accommodate specific robot applications. On one side, they can subscribe to other ROS topics
to listen for inputs like joint states or direct teleoperation. On the other side, they communicate
with the hardware interfaces. The controllers can perform some computations to calculate the
correct inputs for hardware interfaces. However, controllers do not necessarily need to control
anything. They can also be used only to publish data from hardware interfaces to ROS topics.
Because there are some typical applications in robotics, the ros2_control package already
provides several controllers that can be used for them, but the user can write custom controllers.

The controller manager is responsible for managing the controllers. It will load specified
controllers and match them with appropriate command and state interfaces, as shown in Fig-
ure 2.5. Only one controller can use one command interface. The state interfaces, however, can
be shared between multiple controllers as they are read-only. If several controllers are loaded,
the controller manager can be used to switch between them if needed. A YAML configuration
is created to set up the controllers and provide the required parameters, and it is passed to the
controller manager during startup. Besides the YAML configuration, the controller manager
usually needs the robot description from the URDF file. It can be started via a node provided
inside the ros2_control package, but the user can also write their own node that will start and
use the controller manager. Once the controller manager is running, the user can interact with
it using several available ROS services, command line tools, or specialized nodes.

2.1.6 Visualization tools
ROS provides a range of debugging and visualization tools for developers to use. Visualization
is beneficial when working with ROS and in robotics in general. It helps with visual design
verification during the design phase of a robotic system, but it is also used in the production phase
when the system needs to be monitored. One of the more unique use cases for ROS is message
visualization. Because the messages are often not in human-readable form or transmitted with a
high frequency, simple communication introspection by subscribing to topics from the command
line is insufficient. Fortunately, this modular architecture of ROS 2 allows for creation of generic
visualization tools such as RQt and RViz.

2.1.6.1 RQt
RQt [31] is a plugin-based visualization framework for ROS built using Qt [32]. Users can run all
the existing GUI tools as dockable windows in RQt, allowing them to create custom visualization
interfaces for their applications, as shown in Figure 2.6. The various tools, referred to as RQt
plugins, can also be run as standalone applications, but RQt makes it easier to manage and view
all the tools in a single window. Using either Python or C++, users can also create their own
RQt plugins or easily turn existing Qt widgets into RQt plugins.

There are numerous RQt plugins to choose from. The rqt_graph is a standard plugin for
visualizing the ROS computation graph and, optionally, some topic statistics. Figure 2.3 was
exported from this plugin. The rqt_console provides a GUI for viewing and filtering ROS mes-
sages being published with the ability to display detailed information about any of them. Other
plugins facilitate interactive Python console, web browser, image viewing, plotting functionali-
ties, or means to publish messages or call services and actions.

2.1.6.2 RViz
RViz [34] is a powerful 3D visualization tool for ROS. Its strength and one of its primary uses
is a visualization of what the robot sees through its sensors, like cameras and lasers. RViz
does this by subscribing to appropriate topics and visually representing incoming messages like

28 Technological background

Figure 2.6 Multiple RQt plugins docked in RQt layout (image from [33])

images, point clouds, depth maps, meshes, and more. It is also great for visualizing URDF
robot descriptions during their development or validating a robotic system’s design. Another
powerful feature of RViz is the support of custom visual markers that can be implemented for
visual debugging purposes, like displaying a trajectory a robot is following. Interactive markers
can also be implemented so the developer can use markers in RViz to interact with the robotic
system. A great example is an interactive gizmo at the manipulator’s end effector, through which
an operator can control the robot from RViz. A screenshot from RViz is shown in Figure 2.7.

Like RQt, RViz is plugin-based, allowing users to develop custom tools or visualization types
in C++ and arrange their windows into a custom layout specifically for their application. As
with all other libraries and components of ROS, it also had to be ported to ROS 2. The ROS
2 version of RViz is referred to as RViz2, and fortunately, its migration is almost finished, and
most of the plugins have been successfully ported.

Importantly, RViz is not a simulator. It can only visualize data and has no physics engine to
compute interactions between objects in the environment. However, it is common to use RViz
together with a simulation tool. The simulation tool is used to visualize and simulate the robotic
system and its environment, and RViz is used to visualize message data or debugging markers.

2.1.7 MoveIt
MoveIt [36, 35] is a widely used open-source motion planning framework for ROS. It incor-
porates motion planning, manipulation, control, perception, and navigation. MoveIt can solve
inverse kinematics and generate trajectories for robotic manipulators that can be directly pub-
lished through standard interfaces to control robotic hardware or its digital twin. As shown in
Figure 2.7, MoveIt provides RViz tools for out-of-the-box visualization and testing of various
planning algorithms and control. The included planners in MoveIt use algorithms from the Open
Motion Planning Library (OMPL) [37], Trajectory Optimization for Motion Planning (trajopt)
framework [38], and Pilz Industrial Motion Planner [39]. MoveIt also provides a setup assistant
with GUI that helps users to create a MoveIt configuration for their robotic manipulator.

As with all ROS tools, MoveIt is going through the migration process to ROS 2. The new
port is called MoveIt 2, and the migration process is almost finished. However, the GitHub

Gazebo 29

Figure 2.7 RViz visualization of a robotic arm with MoveIt plugins (image from [35])

Figure 2.8 Screenshot from Gazebo

repository of MoveIt 2 [40] is overflowing with open issues and bug reports, so it can be currently
challenging to integrate MoveIt 2 with a robotic application in ROS 2.

2.2 Gazebo
Simulation enables the emulation of physical environments and the testing of robotic systems
in those environments. Section 1.4 mentions this is critical for developing mechanical hardware
and applications, as it quickens the iterations between modifications. Robotic simulators are
usually capable of simulating physics as well as sensors such as lasers. One such simulator that
is extensively used in the industry and built with ROS in mind is Gazebo5.

Gazebo [41] is a free and open-source 3D simulation software developed by its community led
by Open Robotics, currently in its last version, Gazebo 11. Its development started in 2002, and

5Because of its redesign and migration process to ROS 2 (see Section 2.2.3.1), Gazebo is now referred to as
Gazebo Classic. The new version was called Ignition or Ignition Gazebo but was renamed back to Gazebo in
2022. For convenience and clarity, this text uses the name Gazebo for the classic version of Gazebo and Ignition
Gazebo for the new redesign of Gazebo.

30 Technological background

it is a general-purpose robotic simulator that does not specialize in one type of robotics system.
It has evolved alongside ROS, sharing a significant portion of its community. Therefore, one
of its considerable advantages is its out-of-the-box integration with ROS. Figure 2.8 shows the
default layout of the Gazebo simulator.

2.2.1 Components
Several components come into play when it comes to using Gazebo. Arguably, rendering and
physics are the most critical aspects of any 3D simulation software, but the GUI and scene editor
is also helpful. As ROS, Gazebo also follows a distributed architecture where all separate libraries
are used for different simulator components, like physics, rendering, sensors, and GUI.

2.2.1.1 Rendering and physics
Gazebo uses the Object-Oriented Graphics Rendering Engine (OGRE) [42] for 3D rendering. It
is an open-source real-time rendering engine that is scene-oriented. The GUI of Gazebo is built
on the Qt library.

For the physics simulation, Gazebo uses its physics library, which provides a generic interface
to physics simulation, including rigid bodies, colliders, and joints. By default, Gazebo uses the
ODE physics engine, but the physics library has also been integrated with Bullet, Simbody, and
DART. Unfortunately, the only way to switch between the physics engines is to build Gazebo
from source code with a different physics engine.

2.2.1.2 Headless mode
Commonly, simulation software like Gazebo supports execution in headless mode, which refers to
running the software without the graphical user interface. In the headless mode, the simulation
runs in the background without rendering and displaying visual output. Because of this, some
components like rendering can be omitted, spending fewer resources and possibly using them in
the physics simulation. As no visuals have to be displayed, the simulation can run as fast as
possible, which is useful when training machine learning models.

In addition to the separate libraries, Gazebo is divided into two separate processes: gzserver
and gzclient. In regular use, these two processes run simultaneously and communicate with
each other. While gzserver is responsible for simulating the physics, sensors, and rendering, the
gzclient provides the graphical interface for visualization and interaction with the simulation.
When using Gazebo in headless mode, only gzserver runs the simulation.

2.2.1.3 Models
Gazebo includes an extensive collection of pre-built models ranging from simple props to complex
industrial robots and buildings in its model library. The model library is open to community
contributions, so it gradually grows as users share their models. The library is accessible in
Gazebo through the internet, so it takes a while until the list of models loads in the GUI,
and when a model is selected, Gazebo has to download it. Custom user models saved on their
computer will also appear in the model library after a path to the models is imported to Gazebo.

2.2.1.4 GUI and scene editor
The graphical user interface of the Gazebo is divided into several panels providing various func-
tionalities to interact with the scene and the simulation. The central part of the simulator is the
scene view, where simulated objects are rendered as they interact with the environment. Using
a mouse, users can interact with this scene view to move, rotate and zoom the camera view or

Gazebo 31

Figure 2.9 Illustration of Gazebo using plugins to interact with ROS

select objects. Two side panels can be displayed, resized, or hidden. The left panel provides the
means to view the list of models in the scene, modify the parameters of the models, open the
model library, or organize and manage visualization groups. The right panel, which is hidden by
default, is used only for interaction with mobile parts when a model in the scene is selected. The
upper toolbar exposes some of the most used tools for the scene editor, like moving, rotating,
and scaling the selected objects, creating basic 3D shapes and light sources. Simulation data
like time passed in simulation, the real-time factor (see Section 2.2.1.7), or camera FPS is shown
in the bottom toolbar. It also provides interactive buttons to play or pause the simulation or
manually step forward through the simulation. Overall the user interface of the Gazebo is simple
and user-friendly.

2.2.1.5 Gazebo-ROS communication
Every time Gazebo wants to interact with something outside itself, including ROS, it needs to
use plugins. Plugins are pieces of code that Gazebo can execute at a specified or appropriate
time. For example, a plugin would be used to receive control inputs from ROS and move the
simulated robot, another one would be used for reporting simulated joint poses back to ROS, and
for any simulated sensor, a separate plugin would get its data and send it to the corresponding
ROS topic. Figure 2.9 shows an example of a possible Gazebo-ROS interaction. When running
Gazebo with ROS integrations, instead of running it directly, Gazebo provides a ROS package
called gazebo_ros with a launch file that starts Gazebo with some of the ROS interactions for
us. For example, Gazebo will automatically begin publishing some performance metrics to a
ROS topic.

2.2.1.6 URDF extension
The <gazebo> element is an extension of the URDF format that can be used for specifying
properties for Gazebo simulation. There are three types of the <gazebo> element. It can either
reference one specific link or a joint, as shown in Code listing 2.4, or it can be specified without
the reference property, which means it is related to the whole robot model. The element is mainly
used to determine what control or sensor plugins run in Gazebo or specify additional physical or
kinematic properties used in the simulation. Only Gazebo utilizes these XML elements, so when
Gazebo is not running, the elements are ignored.

In some robotic systems, like robotic arms, it is desirable to have certain robot parts fixed to
the environment. The example robotic arm defined in Code listing 2.4 would fall on its side in a
Gazebo simulation due to movement or gravity because the base is not fixed to the ground. To
fix this issue, the URDF would be extended by a virtual fixed joint that attaches the base_link
to an additional link called world, as shown in Code listing 2.5.

32 Technological background

Code listing 2.5 Fixing the base link to the world with a virtual fixed joint

<link name="world" />
<joint name="virtual_joint" type="fixed">

<parent link="world" />
<child link="base_link" />

</joint >

2.2.1.7 Simulation time
ROS keeps track of time, which by default uses the system clock, and all the running nodes can
synchronize by using the ROS API. However, in simulation, it is common to pause or restart the
simulation time or run the simulation at a different speed. If the ROS nodes are synchronized
with the system time, some unexpected behavior might occur in the simulation. Therefore, all
nodes in ROS have a parameter called use_sim_time, which, when set to true, the ROS API
calls will use the time that is published into /clock topic. Gazebo and other simulation tools
can publish the simulation time into this topic.

A standard metric in simulation is the real-time factor (RTS), which describes how fast the
simulation runs. A real-time factor equal to one means the simulation runs in real-time. A
factor greater than one means that the simulation runs faster, which is very useful when the
visualization of the simulation is not essential or the simulation is used in the training process
of machine learning algorithms. On the other hand, a factor of less than one slows down the
simulation time. Gazebo lowers the real-time factor if the simulation is too complex, and the
physics engine could use more time for its computations.

2.2.2 SDF
The SDFormat, or Simulation Description Format (SDF), is an XML format used in Gazebo
for both robot and environment descriptions. It is similar to URDF as it can be used for an
accurate description of a robot. While URDF can be used to describe a robotic system, SDF is
more general and can be used to define a whole scene with multiple robots, objects, and light
sources inside. Gazebo can then load these SDF files as scenes and models that can be imported
into the environment. The advantage of describing models and scenes in the XML format is that
they can be modified programmatically, making a simulation process easier to automate.

In ROS, the robots are described in the URDF format, which differs from SDF. It is still
possible to use URDF description because Gazebo provides tools that can convert URDF to
SDF format. Specifically, the ROS package gazebo_ros includes a spawner script, illustrated in
Figure 2.9, that spawns a robot model in a running Gazebo scene. When the script is provided
with a URDF file, it converts it to SDF.

2.2.3 Alternatives
There are many alternatives to choose from when it comes to robotic simulation, and comparative
studies are often done to compare their features or simulation capabilities [43, 44]. The most
notable include CoppeliaSim [45], Webots [46], and ARGoS [47]. There are also various domain-
specific simulators which are usually modified or created for a specific application. Lastly, the
Ignition Gazebo will soon replace Gazebo as its successor.

2.2.3.1 Ignition Gazebo
Like ROS 2, Ignition Gazebo is a complete architectural redesign of the classic Gazebo, bringing
a more modular and distributed design with a new GUI overhaul. Ignition Gazebo has been

Gazebo 33

Figure 2.10 Screenshot from CoppeliaSim simulator

developed alongside ROS 2 and is the successor of Gazebo, which will meet its end of life in
2025. Even though Ignition Gazebo is still not complete and bug-free, it has proven itself
in several applications and continues to evolve. The architecture change has enabled several
significant modifications compared to Gazebo. Its modularity allows the interchanging of various
components, like renderers or physics engines as plugins, without building the framework from
source code. Also, it is supported on all major operating systems, including Windows and macOS.

The rendering engine stayed the OGRE, although Ignition Gazebo uses a newer version of
OGRE. The default physics engine used has changed from ODE to DART, and no other physics
engines are currently supported. However, they will be added in the future as plugins.

2.2.3.2 CoppeliaSim
CoppeliaSim [45], formerly known and often found in literature as the Virtual Robot Experi-
mentation Platform (V-REP), is a versatile robotic simulation framework used in the industry
developed by Coppelia Robotics. Unlike Gazebo, it is cross-platform, so it can be easily in-
stalled and run on operating systems other than Linux. It is plugin-based, providing various
functionalities like motion planning, data visualization, or image processing as interchangeable
components. Users can develop their own plugins and add-ons for the framework. Scene man-
agement and creation are also more versatile than in Gazebo, and it is possible to customize
user interface elements. CoppeliaSim can also be integrated with ROS and provide other pro-
gramming approaches to customize the simulation, like scripting and developing remote API
clients. Multiple physics engines are available as libraries, including ODE, Bullet, or MuJoCo,
providing more flexibility in the physics simulation. As shown in the screenshot of the simulator
in Figure 2.10, the rendered visualization in CoppeliaSim has a particular, almost stylized, look.
Mainly all sharp edges in the scene are outlined, making the visualization clearer and objects
more distinguishable.

CoppeliaSim has a bit more complicated and unclear licensing since not all of its libraries
are open source, and a commercial license might be required for commercial use. There are
three versions of the software available: CoppeliaSim Player, CoppeliaSim Edu, and CoppeliaSim
Pro. The problem is that the three versions are stated to be different, but the differences are not
specified explicitly. For example, the CoppeliaSim Player only has simulation functionalities, but
editing is limited. Moreover, the pricing for the CoppeliaSim Pro, which can be used commercially
without any restrictions, is not publicly available. Because the CoppeliaSim Player versions seem
to be limited compared to the pro version, and CoppeliaSim Edu cannot be used by research

34 Technological background

Figure 2.11 The default layout of the Unity Editor

institutions and non-profit organizations, Gazebo is used more in the research, and CoppeliaSim
is more suited for commercial use.

2.3 Unity game engine
Unity [48], also formerly known as Unity3D, is a game engine developed by Unity Technologies
since 2005 [49], which has grown into a modern real-time 3D development platform also exten-
sively used across multiple non-game industries, including architecture, automotive, film, and
more. Unity has flourished over the years because of its ease of use and gentle learning curve
compared to similar tools, making it a preferable choice for interactive installations, data visual-
ization, model prototyping, and research. Further advantages of Unity are a massive community
and the abundance of official end community-created learning materials. The Unity community
supports other developers and creates assets for others to use, thus increasing development speed
and efficiency.

The applications in Unity are developed in C# programming language, and users can use
various development tools included in the Unity Editor (shown in Figure 2.11), like a built-in
profiler, debug console, version control, and more. Some use cases might not require programming
at all. Unity’s asset workflow makes it effortless to import, update, use, or even directly edit
various assets. The 3D or 2D scenes are easily managed through the scene view or in the
hierarchy window, and objects can be animated in the built-in animator. Various functionalities
and scripts, called components, are already available and can be directly added to objects in the
scene. The properties and methods from the scripts can be exposed in the inspector window so
they can be configured or called easily from the editor directly, even during the run time.

Being multiplatform is another core feature of Unity, making it an excellent choice for a broad
user base. Unity editor can build and deploy applications for almost any operating system for
mobile, desktop, web, console, and VR platforms. Switching the target platform is usually a
matter of two clicks in the build settings of the editor. On the other hand, the target platform
for Unity Editor itself is Windows, with fairly decent support for macOS. The support for Linux
could still be considered to be in a preview state6, as it is limited to Ubuntu 18.04, Ubuntu

6In Unity, “preview” refers to a state in the development lifecycle of a package, which is considered somewhat
experimental and risky to use in production.

Unity game engine 35

20.047, and CentOS 78 [50], and users regularly encounter bugs or performance issues.

2.3.1 Main modules
The development platform provided by Unity is very flexible and modular, with its support of
packages that can be imported and updated via a package manager accessible directly from
the Unity editor. Unity Technologies provide a wide range of official packages available in
the Unity Registry, which provide the core modules of the underlying engine and fundamental
functionalities of the editor. User-made packages containing editor plugins, scripts, or assets
are distributed through the official Unity Asset Store or published on GitHub and also can be
imported through the package manager.

The lifecycle of a Unity package usually has three stages. First, it is in development and is
not directly available to the users. When it is ready for Unity users to test and provide feedback,
it enters the preview state. This stage is considered experimental, and it is risky to use in
production. Some preview packages also require users to have additional training or expertise,
thus, are not recommended to use in normal circumstances. Because of this, the preview packages
are not discoverable in the package manager. After additional development and several testing
and validation stages, preview packages enter the verified state and appear in the Unity editor.

2.3.1.1 Real-time rendering
As a game engine and 3D development platform, real-time rendering is a crucial module of Unity
that has continuously improved to meet today’s industry standards. Both 2D and 3D real-time
rendering is supported, allowing the creation of nearly any type of interactive media. Unity
provides several built-in render pipelines that can be used in different contexts and the required
tools to create a custom render pipeline to suit the user’s specific needs. Currently, the most
versatile render pipeline is the Universal Render Pipeline (URP), which makes it easy to optimize
graphics across a range of target platforms, from mobile, including standalone VR headsets, to
high-end computers. However, there are better choices for high-fidelity graphics trying to achieve
photorealism9.

Depending on their availability on the target platform, Unity supports several graphics APIs
the user can choose from directly in the project settings inside the editor. The choice of graphics
API that will be used will affect the application’s performance. By default, Unity will automat-
ically choose a preferred graphics API for the target platform, and the user will need to change
this setting only in very specific use cases. Table 2.2 lists the supported graphics APIs based on
the target platform.

Table 2.2 Supported graphics APIs based on the target platform

Platform Supported graphics APIs
Windows DirectX, OpenGL, Vulkan
Mac Metal, OpenGL
Linux OpenGL, Vulkan

2.3.1.2 Physics
Physics simulation is also an essential part of modern game engines. In games, physics can be
used in many ways, such as procedural physics-based animations, projectile simulation, particle

7The current LTS version of Ubuntu is Ubuntu 22.04 LTS, released on April 2022.
8CentOS 7 will reach its end of life at the end of June 2024.
9For example, Unity precisely provides the High Definition Render Pipeline (HDRP) for this purpose.

36 Technological background

systems, and rigid-body or soft-body simulations. The laws of physics can be altered to suit the
needs of the specific game or application.

In object-oriented projects, Unity provides built-in 2D physics as an integration of the Box2D
physics engine [51] and a built-in 3D physics, which integrates the Nvidia PhysX engine [21].
Users can also use third-party physics engines like Bullet [52] or MuJoCo [53] to replace the
built-in physics. This might be because the third-party physics engine implements a feature that
is not implemented in PhysX. As the physics engines improve over time, the physics simulations
in Unity improve with them.

For data-oriented projects, Unity develops its own Unity Physics package, which is the default
physics engine for Unity’s Data-Oriented Technology Stack (DOTS). Alternatively, the user can
switch to an implementation of the Havok physics engine for Unity, which is subject to a specific
licensing scheme and is available only for the users of Unity’s Pro and Enterprise plans (see
Section 2.3.3).

2.3.1.3 Virtual reality
Unity makes creating VR and AR experiences seamless by providing the XR Interaction Toolkit
package. It is a high-level interaction system that provides cross-platform controller support with
inputs, haptics, visual feedback, 3D and UI interactions, and more. Together with the URP and
Unity’s deployment workflow, it is relatively easy to develop and deploy VR and AR applications
on standalone headsets, consoles, or computers with VR support.

2.3.1.4 Artificial intelligence
It is common for games to have various non-player characters (NPC) that need to be managed
and controlled. A combination of pre-defined scenarios and behaviors evaluated in runtime is
often used to create an illusion of intelligence for these characters. Techniques such as behavior
trees, navigation meshes, path-finding, crowd simulation, or finite state machines are used to
create these behaviors. Many of the path-finding features are provided in Unity within an AI
Module.

Additionally, Unity developed Unity ML-Agents Toolkit [54], a project that enables the train-
ing of intelligent agents using various techniques like reinforcement learning or imitation learning,
or any other method directly in the unity project. It can serve as an AI research platform or for
creating NPC behaviors and automated testing.

Closely related is also the Perception package, which can be used for computer vision appli-
cations. It excels in generating large-scale synthetic datasets for the training and validation of
computer vision algorithms.

2.3.1.5 Inputs and user interfaces
Unity provides a modern and mature Input System, which handles a significant amount of input
capabilities with minimal integration and development done by the user. It is a high-level input
module, and the user usually does not need to understand specific controllers and their layouts
and haptic capabilities to implement generic controls for the application. The input system makes
it easy to support connecting and disconnecting controllers during runtime, control remapping,
or even local co-op multiplier10.

Unity UI, a toolkit for designing and developing user interfaces, is also part of the Unity
editor. It can be used to create and arrange UI elements directly from the editor and connect
them to event systems that can trigger various user-defined functionalities.

10A type of non-networked multiplier, also known as couch co-op, where players play on a single device and
use multiple controllers to control their individual characters.

Unity game engine 37

Figure 2.12 A simplified version of a script lifecycle flowchart in the Unity game engine

2.3.2 Game loop
Compared to other types of applications, one specific aspect of games, or other multimedia real-
time applications, is their execution architecture. Games run in an active execution loop referred
to as the game loop or, in a more general context, the rendering loop. Therefore game engines,
including Unity, natively support and run under this architecture. The execution loop runs on
the application’s main thread and executes various event functions in a predetermined order.
In this loop, the application continuously evaluates the physics interactions and input events,
executes necessary logic, updates the state of the objects in the scene, and renders a new frame
displayed to the user at the end of the loop. Generally speaking, the length of the individual loop
iterations directly impacts the application’s frame rate. If the developer executes a slow blocking
operation in the code implementing the application’s logic, the rendering would be blocked,
negatively impacting the final user experience. Fortunately, most modern game engines offload
some processes like physics computations, audio handling, or rendering to different threads to
achieve current industry standards. In Figure 2.12, a simplified version of a script lifecycle
flowchart with Unity’s order of execution [55] is depicted.

This variable update frequency is inherent to this execution architecture but is not ideal
for physics updates. Physics calculations generally benefit from a fixed update period, in other
words, a fixed time step between updates. So the physics update loop seen in Figure 2.12 is,
to some degree, independent of the main game cycle and is executed at a fixed rate. When the
application’s frame rate is higher than the fixed update rate, the physics update loop can be
skipped during the game loop iteration. Otherwise, if the fixed time step is less than the frame
update time, the physics update can be executed multiple times during one frame cycle. The
fixed time step can be configured, and by default, Unity will update physics 50 times per second.

2.3.2.1 MonoBehaviour
Every Unity script derives from a base class called MonoBehaviour. The base class provides
a framework that procures the script’s life cycle, as shown in Figure 2.12, by providing hooks
into events from the game loop. These include Awake and Start hooks, which run before the
application enters the rendering loop, or the Update, FixedUpdate, and LateUpdate hooks,
executed repeatedly. The MonoBehavior also allows attaching user-created scripts to objects in
the scene as components. The base class also allows users to start, stop, and manage coroutines,
a code that can run asynchronously over a longer period or wait for specific actions to complete.

38 Technological background

Code listing 2.6 Example of a Unity script

public class ObjectSpawner : MonoBehaviour {
[SerializeField] private GameObject objPrefab;
[SerializeField] private Material blueMaterial;
private List <GameObject > instances;
private float speed = 100f;

private void Start() {
instances = new List <GameObject >();
for (var i = 0; i < 20; i++) {

var randomPos = new Vector3(Random.Range(-5f, 5f), 0f,
Random.Range(-5f, 5f));

var instance = Instantiate(objPrefab , randomPos ,
Quaternion.identity);

instances.Add(instance);
StartCoroutine(ChangeMaterial(instance));

}
}

private void Update () {
foreach (var instance in instances)

instance.transform.Rotate(
speed*Vector3.up*Time.deltaTime);

}

private IEnumerator ChangeMaterial(GameObject obj) {
yield return new WaitForSeconds(Random.Range (0f, 10f));
var renderer = obj.GetComponent <Renderer >();
if (renderer != null)

renderer.material = blueMaterial;
}

}

An example of such a user-created script is in Code listing 2.6, where multiple cube objects
are spawned into the scene at the application’s start. For each instance of the object, a coroutine
is started, which waits for a random amount of time before changing the object’s material. The
Update hook, executed every frame, rotates each object instance. A screenshot from running
this script is shown in Figure 2.13. The picture also shows how the script is attached to an
object in the scene called Spawner and how some properties are exposed and assigned through
the Inspector window.

2.3.3 Plans and licensing
Unity offers a range of plans from Personal, which is free, to Enterprise, which is best suited for
larger organizations [56]. The licensing is pretty lenient, especially for research purposes, which
usually do not generate considerable profits. Unless the revenue or funding of a project exceeds
100,000 USD in the last 12 months, the free Personal plan for Unity is sufficient. Otherwise, one
of the paid plans will be needed based on the revenue. Moreover, students and educators also
have free access to the Pro version of the Unity Editor.

Naturally, different plans provide different features to the user. Most notable in the context
of this project are technical support, better cloud diagnostics and collaboration tools, and Havok
Physics for Unity.

Unity game engine 39

Figure 2.13 MonoBehavior and coroutine example in Unity

2.3.4 Unity for robotics
Using game engines in robotic applications is not uncommon [57, 58, 59, 60, 61], especially for
simulation and visualization purposes. For some particular use cases, it might be impractical
or even impossible to use conventional tools used in robotics. For example, applications using
virtual reality [62, 63, 64] or mixed and augmented reality [65, 66] in the field of human-robot
interaction (HRI), or even for immersive teleoperation, are great examples where game engines
are preferred to other simulators used in the industry. Amongst the game engines used in these
robotic applications, Unity is a common choice because of its maturity, ease of use, gentle learning
curve, and massive community support.

The main advantage of using game engines in robotics, specifically the Unity game engine,
is that they are far more versatile than other specialized tools. As mentioned in the previous
sections, Unity supports deployment to almost any platform and easily accessible VR and AR
development. Rigging and animation can be used to animate robotic hardware, humans, or other
objects in the scene to create complex scenarios for robotic simulation. Procedural generation
of scenes and tasks can be implemented to train models for robot control, and the user interface
can be tailored to a specific use case of the application. Additionally, modern game engines
are constantly improving to keep up with the advancements and trends in real-time rendering
and physics simulation. As game developers often need to build extensive scenes, game engines
provide various tools and techniques for optimization so that the games can run smoothly and be
less demanding on the hardware. All of this can be beneficial for robotic applications. Naturally,
in some cases, a game engine might not be a suitable tool for a robotic application, as there
can also be some downsides to using game engines. As the gaming industry has different needs
than robotics, the tools for game development, including game engines, have their specific focus.
One example that is especially relevant in robotics is physics simulation. Physics engines used in
games were known for using algorithms that favor speed over physical accuracy or take advantage
of various shortcuts as the physics in games usually does not need to depict reality accurately,
and maximizing the frame rate is always desired. However, modern physics engines are so
versatile and configurable that this is becoming a problem of the past, as is shortly dissected in
Section 1.5. They can be fine-tuned for specific needs by advanced users. Unless the application
needs a hyper-realistic physics simulation and the computational time is not limited, then using

40 Technological background

a game engine should not pose a significant disadvantage over conventional robotic simulators.

2.3.4.1 Unity-ROS integration
As ROS is becoming a standard in the robotics community, the number of robotic projects using
Unity and integrating with the ROS framework is also increasing. All of these projects had
to solve the problem of Unity-ROS integration and thus overcome one obstacle: ROS is built
on message passing and Unity on frame-based execution. Over the years, there were several
attempts to integrate Unity and ROS, and most of the solutions were developed for the specific
needs of the project in which they were used. The overall general approach in these solutions
was similar. On the ROS side, there would be some library converting ROS messages sent to
some particular topics to other formats like JSON or BSON and sending them over some network
connection. In the opposite direction, the library would receive JSON data, convert them to ROS
messages and publish them to desired ROS topics. The rosbridge11 library, in particular, was
adapted for this in several projects using the WebSocket protocol for communication and was
gradually transformed into a collection of packages called RosBridgeSuite which is still available
and used today [68]. On the Unity side, a different library would set up a connection to ROS and
define some Unity publishers and subscribers. In the main rendering thread, it would deserialize
received JSON data into appropriate structures that could be used by other scripts running in the
Unity project. In [69], the authors provide a short and comprehensive overview of the attempts
to link Unity and ROS before 2018.

Although the general approach to Unity-ROS integration has mostly stayed the same, these
solutions are generally not used today for various reasons. Many solutions created during that
period were either abandoned or could not keep up with the ROS development and were not
migrated to ROS 2. The exception is the rosbridge library, which is still used for communication
outside of the ROS framework in general. However, the Unity side was not as mature, and the
existing solutions were not generic enough to be used in multiple different robotic applications
in Unity. So in 2018, Siemens started developing a set of open-source libraries and tools called
ROS# (RosSharp) that also utilized the rosbridge library and could be used for communication
between ROS and Unity. The ROS# library is still available and used today.

2.3.4.2 RosSharp
ROS# (RosSharp) [70] is a set of open-source libraries and tools developed by Siemens that can
be used for Unity-ROS communication based on the RosBridgeSuite [68] package. It is also
directly available in the Unity Asset Store [71] and can be imported to any Unity project. The
ROS# project is split into generic interfaces for easy reuse in other non-Unity .NET applications
and Unity-specific extensions of these interfaces used in Unity. The main library of ROS# is
the RosBridgeClient which, together with the RosBridgeSuite, provides communication between
ROS and Unity via WebSocket connections transferring JSON and BSON data. This is the only
supported way of communication in ROS#, but additional protocols could be potentially added
by implementing a provided protocol interface. Using ROS#, it is possible to create scripts in
the Unity application that behave like publishers, subscribers, services, or even action servers.
Because of the use of WebSocket protocol and RosBridgeSuite, the RosBridgeClient library has
several external dependencies.

Figure 2.14 depicts the setup for the Unity-ROS integration using this solution. The ROS en-
vironment on the left side of the diagram illustrates some ROS applications running several nodes
that communicate through topics12. The RosBridgeSuite also runs on the ROS side. Mainly two
nodes are started by launching the RosBridgeSuite. The node called rosapi is responsible for

11Not to be mistaken with ros1 bridge [67], which is a package that enables message exchange between ROS 1
and ROS 2 over a network bridge.

12As is standard practice in ROS, nodes are depicted as ovals, topics as rectangles, and arrows indicate how
nodes subscribe or publish messages to topics.

Unity game engine 41

Figure 2.14 Unity-ROS integration using ROS Sharp and RosBridgeSuite

getting ROS meta-information about running nodes, available topics and parameters, and more.
The node rosbridge_websocket handles the message conversion from and to JSON/BSON for-
mat and handles WebSocket connections. On the right side of the diagram, the Unity application
is depicted. An instance of the RosBridgeClient library is running in the Unity application re-
sponsible for communicating with the rosbridge_websocket via a WebSocket connection and
converting JSON messages to and from appropriate C# interfaces. Other scripts in the appli-
cation can work with these deserialized messages but also use the RosBridgeClient to register
topic subscriptions or publish messages. From the design of ROS, the ROS applications can be
distributed over multiple machines, and so can the Unity application run on a different machine
than ROS as long as an appropriate network connection can be achieved for communication.

Additionally, there are two other valuable libraries in ROS#. The MessageGeneration library
generates C# source code for ROS interfaces, as it is commonly done for C++ and Python in
ROS. This allows the use of these interfaces from Unity scripts. Furthermore, the UrdfImporter
library is a URDF file parser that allows importing robots with their meshes to Unity from their
robot description files in the URDF format.

2.3.4.3 Unity Robotics Hub
Around 2020, Unity Technologies started its own endeavors to make Unity a better platform
for robotic simulation. They started with significant upgrades to the underlying physics engine
by switching to PhysX 4.1, which is more capable of simulating real hardware and modeling
kinematic chains. This upgrade allowed an addition of a new solver, called Temporal Gauss-
Seidel, which better mitigates inaccuracies in joint simulation compared to the default Projected
Gaus-Seidel solver. Another addition was physical articulations which can be used to model open
kinematic chains and use joint coordinate representation, which also helps with the accuracy of
the physics simulation (see Section 1.5). Physical articulations in Unity are constructed as a
chain of objects with Articulation Body components attached to them. This component has
replaced the previous way of modeling articulation chains as a combination of Rigid Body and
Joint components.

Following the Unity game engine changes that improved robot simulation, Unity Technologies
started working on the official Unity-ROS integration by creating a fork of the ROS# project
into two separate packages - ROS TCP Connector [72] and URDF Importer [73]. Since then,
these two packages are being developed in parallel with the ROS# project and are in the preview
stage. Around the same time, Unity Robotics Hub [74] was created, a central GitHub repository
for Unity’s documentation, demo projects, resources, and tools for robotic simulation in Unity,
which is under active development. Naturally, these robotics packages can also be used with

42 Technological background

Figure 2.15 Unity-ROS integration using the ROS TCP Endpoint provided by Unity Robotics Hub

other assets and packages. The Unity team demonstrated this in a demo project combining
robotics and the Perception package for training and deploying a deep learning model for object
pose estimation in a pick-and-place scenario with a robotic arm.

Unity has made several changes and improvements to the Unity-ROS integration. As is
shown in Figure 2.15, the general concept of the integration setup stayed the same. The main
difference is that instead of RosBridgeSuite, direct TCP-based binary data communication is
established. RosBridgeClient from ROS# has been replaced with the ROS TCP Connector
package, which serializes and deserializes messages as ROS would internally do and handles both
sending and receiving data. The original message generation functionality is also present but
has been extended, so the generated C# classes from ROS interfaces now also include methods
responsible for their serialization and deserialization. On the ROS side, the RosBridgeSuite has
been replaced with a custom ROS package called ROS TCP Endpoint [75], created by Unity. This
package creates a TCP endpoint that runs as a ROS node to accept and send messages from Unity
as it works directly with the ROS TCP Connector. These changes increase the communication
speed between Unity and ROS, which is especially beneficial when sending large messages like
image data from cameras. As this integration works with both ROS 1 and ROS 2, the ROS
TCP Endpoint package is available for both versions of ROS separately. ROS TCP Connector
can seamlessly switch between ROS versions in its settings. As with the RosBridgeClient from
ROS#, other scripts in the Unity scene can use ROS TCP Connector to publish messages or
register subscriptions. With one exception that the support of ROS actions is currently limited.

The URDF Importer has been moved to a separate Unity package and incorporated a signifi-
cant change. The robot from a parsed URDF file is imported into Unity using articulation bodies,
unlike the URDFImporter from ROS#, which still uses standard Joint and Rigid Body compo-
nents. This is a significant advantage for modeling open kinematic chains like robotic arms. On
the other hand, the downside of articulation bodies is that they currently do not support cycles,
so it is impossible to model closed kinematic chains. For this purpose, the URDFImporter from
ROS# would have to be used.

In addition to these core packages adopted from the original ROS# project, the Unity team
working on the Unity Robotics Hub will most likely provide other tools and improvements for
robot simulation in Unity. The latest addition to the available tools is the Unity Robotics
Visualization package, which can track and visualize incoming and outgoing ROS messages. A
default visualization of standard interfaces is already provided, but also a set of APIs that can
be used to create custom visualizations. Messages can be tracked in a user interface on the
screen, but the strength of the package is to visualize more complex data directly in the scene,
like point clouds and images. Creating such visualizations of ROS messages directly in the Unity
simulation can replace the need to use RViz.

Unity game engine 43

2.3.4.4 Unity editor as a simulator
The Unity game engine can be used for robotic simulation in two ways. The first approach is
to develop a custom simulator that can be built and distributed using Unity as an underlying
engine. The other approach is using the Unity editor for the simulation directly. Both approaches
have their advantages and disadvantages. However, in this use case, unlike in game development,
the user has the flexibility to combine or switch between both approaches to get the best of both
worlds.

Developing a standalone simulator can be a complex and time-consuming endeavor. All the
features required for the specific application must be developed and tested. So, for example, if
the user needs a simulator similar to Gazebo, they need to develop all the scene controls like
camera movement, management of objects in the scene, simulation pausing or restarting, and
more. All these features may require unique controls or user interfaces. However, the benefit is
that the simulator can be as lightweight or as complex as the user desires. Moreover, the final
build runs more efficiently than running it from the editor because it does not need to run some
of the overhead required for the editor.

Unity editor allows running the developed application directly from the editor in play mode.
When the play mode is active, changes can be made to the scene or the exposed properties of all
the objects in the scene but will be discarded when the play mode is terminated. This feature is
used to test the application or to configure various properties interactively. So a robot simulation
can be run or stopped anytime in the play mode without building it. The significant difference
is that all the editor’s functionalities and tools are available while the application runs. So the
scene can be modified in the scene view or the hierarchy window as the application is running,
and the profiler and statistics are accessible. The editor’s user interface for scene management is
already there, assets can be easily dragged into the scene, and even the properties of the robotic
arm can be changed interactively. The downside is that the simulator may not need some of the
tools and processes the editor is running, creating unnecessary overhead. Also, the editor may
be more challenging for inexperienced users than a specifically designed user interface for the
target simulation.

Combining these two approaches can be a great way to use Unity for robot simulation.
Utilizing the available tools and the complexity of the Unity editor to develop scenes and custom
functionalities and run various test scenarios can be very efficient. Specific scenes, tests, and
scenarios can be individually built for specific purposes, like benchmarks or demonstrations, to
get the most performance and precision from the available hardware.

2.3.5 Alternatives
In terms of game development, there are many alternatives to the Unity game engine. Most
of them serve a specific purpose or support the development of a narrow niche of game genres.
For example, GameMaker [76] for 2D games, Ren’Py [77] for visual novels, RPG Maker [78]
for top-down pixel art role-playing games, and Adventure Game Studio [79] for point-and-click
adventures, to name a few. The most direct competitor to Unity in terms of game engines
also used as a real-time 3D development platform in other industries is the Unreal Engine [80].
Another aspiring game engine that became an excellent alternative to Unity during the last few
years is the Godot Engine [81]. However, it is yet to be widely used in industries other than
game development.

2.3.5.1 Unreal Engine
Unreal Engine [80] is a powerful game engine and real-time 3D creation tool developed by Epic
Games with a long history since 1998. It is written in and also supports development in C++
programming language, but also supports visual scripting. As well as Unity, other industries
have also adopted it, but even though their use cases overlap, they are different. Unreal Engine

44 Technological background

Figure 2.16 Screenshot of the Unreal Engine user interface in the minimal default interface layout
(image from [82])

is more suited and praised for its capabilities to create projects that look hyper-realistic, and it is
used significantly more by professional game studios compared to Unity. With its compatibility
with other professional tools used in the gaming industry and the latest advancements in creating
high-fidelity procedural assets and scenes, Unreal Engine is an excellent replacement for custom
game engines created by professional game studios specifically for their projects. In these regards,
Unreal Engine is more potent than Unity. On the other hand, when it comes to 2D games, even
though Unreal Engine supports their development, Unity is a better fit as it has more and better
2D tools.

Unlike Unity, Unreal Engine is known to have a very steep learning curve and a more com-
plicated user interface, which can be seen in Figure 2.16. Therefore Unity is more used among
starting independent game developers, small studios, or research teams. Another interesting
difference is in licensing, where the commercial use of Unreal Engine is based on a royalty model.

As for its use in robotics, Unreal Engine has also been utilized [57, 83] multiple times, but
not as predominantly as Unity and even less often in combination with ROS [84]. Although the
applications developed in Unreal Engine are programmed in C++, integration with ROS poses
several challenges [85] and is far from seamless. For example, to ensure high performance, Unreal
Engine has a custom and very strict C++ coding standard, and many features widely used in
the ROS framework are unavailable. This makes it very difficult to integrate ROS and Unreal
Engine directly, so usually, bridging techniques were used with libraries like rosbridge. Unreal
Engine also uses the Nvidia PhysX engine to simulate physics.

2.3.5.2 Godot Engine
Godot Engine [81] is a relatively young cross-platform 2D and 3D game engine initially released
in 2014. However, it is an interesting game engine to consider, especially in the future. It is a free
and open-source game engine developed mainly by its growing community. Over its relatively
short lifetime, it has already become one of the most relevant competitors to Unity. The project
even received several grants and donations from companies like Microsoft, Facebook, and Epic
Games to develop or improve various game engine features. The scripting in Godot can be
done in C++, C#, or GDScript, a scripting language syntactically similar to Python. Additional
community-supported languages like Rust, Haskell, Swift, and more can be used. However, unlike
Unity and Unreal Engine, Godot uses the Bullet physics engine for 3D physics simulation, which
is also free and open-source. Godot is also great for 2D games, with a dedicated 2D rendering

Unity game engine 45

Figure 2.17 Screenshot of the Godot Engine user interface in the default interface layout (image from
[86])

engine. Figure 2.17 shows a screenshot from the editor.
Godot Engine has not yet been used in robotics research, but there are already working

attempts to integrate ROS with this engine [87, 88]. Especially this project [88], which integrates
Godot and ROS 2.

46 Technological background

Chapter 3

Robotic arm RR1

“I think having a small-scale Industry 4.0 on the table could be great for research and testing.”
– Pavel Surynek [89]

This chapter presents the faculty-developed desktop robotic arm Real Robot One (RR1) [89,
90]. In the first section, the motivation behind the development of this custom manipulator is
explained. Later sections describe the robotic arm in more detail and provide technical specifi-
cations.

The robotic arm is currently in active development, with the first functional prototype1

already built. The second prototype is being designed and constructed at the time of writing
this thesis and will bring improvements in many aspects. Although the following chapters work
with the models of the second prototype that are available from the RR1 GitHub repository [90],
this chapter mainly describes the first prototype. Nevertheless, Section 3.3 will shortly disclose
some changes the second prototype will adapt.

3.1 Motivation
The motivation behind the development of RR1 is to have a desktop robotic arm that is both
similar to standard industrial manipulators [91, 92] and can be effectively produced in large
numbers. Therefore the overall design of the robotic system aims to lower the cost of production
and make it possible to construct at the faculty or even at home while maintaining the standard
joint layout of robotic arms used in the industry. The smaller form factor of the robot decreases
the build cost but also makes it safer to operate compared to large systems used in production
lines. Nevertheless, RR1 is much bigger and more capable than some toy robotic arms used in
academia but could still be categorized as a desktop-size manipulator.

The main goal for RR1 is to be usable in both research and academia but also have practical
applications. The arm has enormous research potential in the field of motion planning, especially
in the multi-robot setting, where many robotic manipulators cooperate precisely and without
collisions. This topic has been extensively covered for mobile robots [93] but poses a more
significant challenge for multiple robotic arms [94, 95] as the configuration space usually has
many more dimensions.

Besides the research, RR1 could be used for academic demonstrations of AI and planning
algorithms or student projects. It could also have additional practical applications as a laboratory
robotic arm and enable remote manipulation.

1The first prototype is called “revision 1” or “rev. 1” in short. The second prototype is referred to as “rev.
2”.

47

48 Robotic arm RR1

(a) Robotic arm Real Robot One (RR1) (b) Robotic arm RR1 from the profile

Figure 3.1 First functional prototype of RR1 robotic arm, called “rev. 1”

3.2 RR1 in detail
The robotic system of this manipulator consists of two parts: the robotic arm RR1 itself and a
separate control computer called Real Box One (RB1). The first prototype of RR1 can be seen
in Figure 3.1, and the control computer in Figure 3.3. For a quick summary of the technical
specification of this system, documented in the following sections, refer to Table 3.1.

Table 3.1 Technical specification of the RR1 robotic system [89]

Mass 14kg (RR1) + 8kg (RB1)
Reach Approximately 80cm
Repeatability TBD2

Payload 1kg tested
Actuators 4x NEMA 23 + 3x NEMA 17 stepper motors
Reducers 3D printed custom planetary gear reducers
Electronics Arduino Due
Stepper drivers 7x DM556

3.2.1 Overview
RR1 is a six DoF desktop robotic arm with a gripper end-effector (see Section 3.2.3). It is
actuated by stepper motors and should be capable of lifting two kilograms of payload3. One
feature distinguishing this robotic arm from similar projects [96, 97, 98, 99] is that RR1 does
not use belts to transfer power to the joints. This design choice simplifies certain aspects of the
robot construction. Instead, all the torque transmission in RR1 is done via custom 3D-printed
gear reducers.

The initial cost of constructing the first prototype was approximately 4,500 USD, including
all the materials and electronics but also the cost of a new 3D printer and other tools. The

2Repeatability is in the process of experimental evaluation.
3This is only a theoretical payload limit. So far, the first prototype was tested with a 1kg payload, which it

had no problem lifting.

RR1 in detail 49

Figure 3.2 Model of split-ring planetary gearset used in the main lower joint of RR1 (model for the
second prototype)

building cost of the consequent versions of the robotic arm will be lower as they will not require
some of the aforementioned initial investments.

Several desktop robotic manipulators are related to RR1 with their size, design, construction
process, or purpose. Namely the commercially available Niryo One [99] or its successor Niryo
Ned2, open source 3D-printed robotic arm BCN3D Moveo [96], and the AR3 and AR4 [97, 98]
manipulators.

3.2.2 Joints and actuators
The robotic arm RR1 has six main joints that provide the manipulator with six degrees of
freedom and one extra joint operating the end-effector at the end of the arm. The number of
joints and their layout in the manipulator is standard in the robotic industry.

Each of the six main joints is actuated by a stepper motor. Namely, four motors NEMA
23 [100] and two smaller ones, NEMA 17 [101], are used. An accurate encoder is connected
to every motor of the robot, so the joint angles are known at any given moment, creating an
entirely closed-loop system. The torque transmission of every joint is done via a custom-built
3D-printed planetary gear reducer which can be seen in Figure 3.24. Specifically, it is a split-ring
compound planetary gear reducer consisting of three herringbone gears as planets and one middle
gear connected to the stepper motor axle. The rotating ring that moves the connected link is
fixed using bearing balls. Herringbone gears have the advantage of smoother and more precise
rotation. At the same time, the split-ring design makes it possible to achieve significantly higher
gear ratios than a standard planetary gear reducer. There are six gearboxes of various sizes, one
for each joint. It consists of three herringbone gears as planets and one middle gear connected to
the stepper motor axle. The rotating ring that moves the connected link is fixed using bearing
balls. Herringbone gears [102] have the advantage of smoother and more precise rotation. There
are six of these gearboxes of various sizes, one for each of the joints.

For example, the lower main joint of the manipulator uses the largest NEMA 23 stepper
motor generating torque of 3Nm, which is connected to a planetary reducer with a gear ratio of
1:40. This should, in theory, provide a torque of 120Nm for the main joint.

4Note that the figure is the model of 3D-printed parts for the gearbox and does not contain bearing balls and
bolts used in the assembly.

50 Robotic arm RR1

(a) Control computer Real Box One (RB1) (b) Interior of the control computer RB1

Figure 3.3 Control computer Real Box One (RB1) housing electronics needed to control RR1’s
actuators

3.2.3 End-effector
As shown in Figure 3.1, the end of the manipulator is equipped with a two-finger gripper end-
effector, which can be used for object manipulation in the robot’s workspace. It is an angular
impactive gripper actuated by an additional NEMA 17 stepper motor.

The first prototype of RR1 showed some issues with the surface material of the gripper, caus-
ing smooth and heavier objects to slip out of the grip. The problem was temporarily mitigated
with rubber bands, but it will be resolved in the next prototype of the robot (see Section 3.3).

3.2.4 Control computer RB1
The robot’s control computer RB1 supports modular design as it is separated from the main
robotic arm. Having such a separate control unit allows many of the electronics to be offloaded
from the body of RR1. However, the disadvantage of this approach is that the two modules of
the robotic system have to be connected via potentially lengthy cables. These cables are subject
to interference and have to be shielded and grounded. Both the exterior and interior of the RB1
can be observed in Figure 3.3. The RB1 is directly connected to the main robotic arm and houses
electronics that control individual joint actuators. These electronics include Arduino Due [103],
responsible for the general electronic control of all the motors, and seven 2-phase digital stepper
drivers DM556T [104], each directly connected to one of the seven stepper motors in the arm.

It is important to note that this control computer will not perform any motion planning as the
Arduino Due would not have the computational capacity to run complex planning algorithms.

Second prototype 51

(a) Second prototype of RR1 (b) Orthographic side view render of RR1 “rev. 2”

Figure 3.4 Render of the RR1 “rev. 2” in orange color

This process will be done on a separate machine, which will communicate with the Arduino
Due in RB1 and send commands or planned trajectories to it. This separate machine can be a
standard laptop or a computer connected directly to the Arduino via a serial connection.

3.3 Second prototype
The second prototype of RR1, called “rev. 2”, will improve several aspects of its predecessor.
The whole arm will be shifted a bit forward relative to the base, so it will become eccentric,
as shown in Figure 3.4. This improves the arm’s reach and makes the robot’s workspace more
natural. Such a configuration can often be seen in industrial robotic arms.

The planetary gearboxes of the joints overgone multiple improvements resulting in a signifi-
cant reduction of backlash, which turned out to be a problem in the first prototype of the robot.
Additional bearings were added to the rotating parts of the joints as one of these improvements,
resulting in a slight increase in the robot’s weight. Another significant change in the joint design
is that the encoders have been moved to the arm links and connected to the joints via belts, as
shown in Figure 3.5b. Experiments with the first prototype showed that having the encoder on
the motor shaft did not meet the accuracy expectations.

Additionally, more anti-slip components will be added to the gripper of the “rev. 2” model
to mitigate the problems encountered with the first prototype, mentioned in Section 3.2.3.

There are already some plans for future iterations of this robotic system. For example,
using cycloidal reducers instead of planetary ones is being considered. These reducers have
higher torque capacity than the current planetary gearboxes but would increase the arm’s weight.
Therefore some structural components might be machined out of metal for increased durability
and payload limit.

52 Robotic arm RR1

(a) Upper arm link with two main joints (b) Encoders moved from motor shafts to arm links

Figure 3.5 Upper arm link with two main joints for the second prototype of RR1

Chapter 4

Prototype rationale

This chapter serves as a bridge between the theoretical and practical parts of the thesis. It
provides some rationale behind the developed prototype described in the next chapter, including
its motivation, why certain technologies were chosen, and the expected results. The last section
of this chapter explores previous work related to this thesis.

4.1 Prototype motivation
The prototype developed in this thesis should serve as a proof-of-concept for performant robotic
simulation in Unity, mainly used for manipulators like RR1. The motivation is to use such a
simulator to improve the development process and testing of the robotic arm itself and later in
research of multi-robot motion planning, where several digital twins would operate simultane-
ously. Up to a hundred robots could be simulated in the planned multi-robot scenarios. As the
design of RR1 should make this possible in the physical world in the future, the performance
evaluation of Unity as a primary simulation tool for RR1 is highly prioritized. Additional goals
are to use the simulation for academic demonstrations of core concepts of motion planning and
robotics manipulators or to showcase the robotic arm at the faculty or various conventions. The
potential use of virtual reality is also considered for several simulation scenarios. Because of
these goals, the assessment of the performance and usability of Unity has to be enabled through
the developed prototype.

As RR1 does not currently have any higher level of control or any robotic applications, a
considerable portion of the prototype realization is the development of the ROS backend along
with the robot description to enable simulation in ROS. The development of the ROS backend
for RR1 has been approached in such a way that it is not designed only for simulation purposes
but can be reused for the physical robot with minimal effort when its construction is finished.

4.2 Choice of technologies
ROS 2 was chosen as a robotic framework for RR1 as ROS has become a standard in the
industry, and ROS 2 seems to be the future of robotic frameworks. Namely, the Humble Hawksbill
distribution has been chosen (see Section 2.1). As it is the last LTS version of ROS 2 and the first
ROS 2 distribution to have the standard five years long support period, it is an excellent choice
for any new project in robotics. Although some libraries have yet to be migrated to ROS 2 or
experience some issues after the migration, starting a project in ROS 1 is not recommended as
it will be shortly discontinued. Specific ROS 2 components used in the prototype are mentioned
in the next chapter.

53

54 Prototype rationale

For the simulation part, a game engine was used instead of a simulator specifically designed for
robotic applications. The reason is that game engines should provide a wider range of function-
alities compared to conventional simulators, including animations and easier scenario scripting,
more flexible rendering pipelines, ability to build custom user interfaces and controls, and VR
support. Moreover, a game engine will potentially provide more tools for optimization to increase
performance in scenarios with big amounts of robots simulated simultaneously. Specifically, Unity
game engine was chosen for the implementation. As explained in Sections 2.3.4 and 2.3.5. Of
the two, Unity was chosen due to its reasonable learning curve, extensive community, and abun-
dant learning materials. These attributes are important because multiple students or researchers
might work on the simulator over time, and Unity is easier to get into without prior experience.
With the Unity Robotics Hub, Unity also provides better support for robotic applications than
the Unreal engine.

Gazebo was chosen for the performance comparison of the prototype implemented using Unity
because it is a free and standard simulator choice in combination with ROS, and it is heavily
used in the industry. Gazebo is also relatively easy to integrate within a robotic application as it
works out-of-the-box with ROS. The second reason is that studies comparing various simulators
commonly evaluate Gazebo, making the experiments and comparisons done in this thesis at least
remotely extrapolatable to other simulation tools to compare to Unity. Even though Ignition
Gazebo should soon become a more viable option than Gazebo after some initial issues are
resolved, it is still immature and lacks comparison studies with other simulation tools.

4.3 Expectations
From the nature of the two compared platforms, it is evident that Unity will be more flexible
and provide more functionalities than Gazebo due to the broader range of use cases in game
development. However, it is also expected that for most of the features the platforms have
in common, Unity will provide a better user experience or more functionality. For example,
the efficient creation of complex scenes is more called for in game development than in robotic
simulation. Although necessary in both fields, Unity will likely have better scene creation and
management tools.

As for the performance, Unity is also expected to be more performant than Gazebo. Ren-
dering and its performance are critical aspects of video games, so Unity provides more flexible
and configurable rendering pipelines. Numerous optimization techniques can be used in game
development, already incorporated and available in the Unity engine, so the performance can be
improved when unacceptable.

4.4 Related work
Several comparison studies have been published comparing multiple simulation tools used in
robotics. Some studies approached the comparison from a specific task or application perspective,
while others performed general evaluations. Commonly, the underlying physics engines used in
the simulators are evaluated, and the functionalities of different simulation applications are
explored.

4.4.1 Simulator comparison for agricultural robotics
In [105] and [43], the authors considered numerous frameworks for simulation in agricultural
robotics with ROS integration in mind. They compared a wide range of simulation platforms
used in academia and industry but also reviewed customized frameworks specifically modified
or created for the simulation of agricultural robots or farm machinery. The publications offer

Related work 55

a short and comprehensive introduction to these simulation platforms. Gazebo, V-REP, and
ARGoS1 were additionally selected for in-depth feature and performance comparison.

The performance benchmarks were run in both the headless and GUI modes. The tests
included 1, 5, 10, and 50 robots simulated in a small scene that contained only a 2D plane and
a large scene with an imported model of an industrial building. Unfortunately, the simulated
robots were not the same in each simulator, but the authors tried selecting robots of similar
complexity from the models available in the libraries of the three simulators. Real-time factor,
CPU, and RAM usage were selected metrics for the comparison.

Of the three simulators, ARGoS had the fewest features, the smallest model library, and
no scene editor. However, it used the smallest number of resources, and in the simple scene,
it could simulate a large number of robots more efficiently, making it a good choice for simple
simulations of swarms of robots. The comparison of Gazebo and V-REP in these publications is
more relevant for this work. Featurewise, V-REP was shown to be more sophisticated and flexible
than Gazebo but also used more resources. However, Gazebo was not as limited as ARGoS. With
the large scene, Gazebo performed the best regarding the real-time factor and consumed fewer
resources than V-REP, which did not excel in any of the performance experiments. Moreover,
the simulation of 50 robots in both scenes and the simulation of 10 robots in the large scene was
not feasible in V-REP. This, however, could have resulted from a more complex robot model
used in V-REP and low-end hardware used for the performance tests.

4.4.2 Gazebo, V-REP, and Unity quantitative study
From a thorough literature review, in [44], the authors concluded that the three most promising
simulation tools for robotics are Gazebo, V-REP, and Unity. These three frameworks were then
analyzed and compared in more detail, especially regarding their usability.

The experiment consisted of three experts, each with experience with only one of the three
tools, and they had to complete a specified task in each simulator to asses their usability in a
questionnaire. The assignment required them to install the software, create a simple scene with
four walls, insert a mobile robot model inside the walls, and implement keyboard control of the
robot.

The V-REP achieved an excellent score in the quantitative study, and both Gazebo and
Unity achieved a decent score, with Unity graded the lowest, just behind Gazebo. However,
a few discrepancies exist in their comparison of the task execution with the three tools. For
example, V-REP was praised for its scripting feature and that ROS connection is not needed
to control the mobile robot. A simple script was written in Lua programming language to
control the robot. On the other hand, Gazebo does not support a scripting functionality, so the
installation of ROS was required, which was described as challenging. Even though Unity also
provides a scripting functionality, the choice of implementing the robot control directly in the
scene was substantiated by the complexity of connecting Unity to ROS using the ROS# project.
The authors found Unity to be intuitive regarding scene building and script implementation. The
scene in both V-REP and Unity was created using resizeable blocks as walls, and in Gazebo, a
build in wall builder seems to be utilized from the figures shown in the publication. Although the
same mobile robot was used in the three simulators, the models were not identical. Especially in
the case of Unity, the model is substantially different than in the other two simulators, and the
authors were met with complications regarding its import to Unity and physical stability during
the simulation.

1ARGoS is an open-source simulator explicitly developed for efficient real-time simulation of enormous swarms
of robots.

56 Prototype rationale

4.4.3 Gazebo and Unity physics comparison
In thesis [106], the author analyzed the physics performance of the Unity simulation of a mobile
robot. The results of the experiments were compared with real-world experiments and Gazebo
simulations of the same scenarios provided by a third-party company. At the end of the thesis, a
successful case study of a SLAM application for the used robot was performed in Unity. For both
the experiments and the case study, ROS 1 was used, and the integration with Unity was done
using the ROS# project. The experiments in Unity were performed in Windows, on top of which
an additional virtual machine was running Linux and ROS. The Gazebo tests were performed
on different hardware in Linux.

The results of the experiments showed that the overall behavior of Unity’s physics simulation
was satisfactory. Even though the simulations showed non-deterministic aspects, the general
behavior of the simulated robot was more similar to the reality compared to Gazebo. Gazebo
showed more idealistic behavior with almost no errors, which was impossible to achieve with the
real robot experiments. Some configurable parameters that impacted the physics simulation in
Unity were identified and experimented with during the investigations. However, it was shown
that even small changes in the parameters of the physics engines, or changes in the robot model
itself, can significantly impact the overall simulation results. Both underlying physics engines,
PhysX and ODE, have many configurable parameters, making it very challenging to compare
the physics performance of the two simulation tools directly.

Chapter 5

Prototype realization

This chapter describes the realization of the prototype in a systematic succession of steps needed
to achieve the final proof of concept used for experimentation. The first section reviews the
development process in a high-level overview, and the following sections explore specific steps
in more depth. From the creation of the robot description for RR1 to the developed Unity
components, the chapter covers common issues encountered in developing a robot simulation
and design decisions made throughout the implementation process.

5.1 Overview

In reference to the concepts of digital twins explained in Section 1.4, the virtual entity for the
second prototype of the RR1 robotic arm (revision 2) is created in this proof of concept. The
entity is then simulated in a virtual environment inside Unity or Gazebo, which is one of the core
processes of digital twins in robotics. However, because the second revision of RR1 still needs to
be finished and constructed, twinning cannot occur. Therefore, to be precise, part of developing
this proof of concept is creating a digital twin prototype. This digital twin prototype can be
used for further development of the robotic hardware and jumpstart the preparations for future
twinning and implementation of custom virtual processes specific to the digital twin of RR1.

5.1.1 Development steps
The developed prototype can be divided into three separate parts. First, the ROS backend
must be developed for the RR1 robot, including the URDF robot description and control. This
backend is mainly necessary for the prototype to simulate the robotic virtual entity in Gazebo
and Unity. Nevertheless, the developed backend should serve as a good foundation for the future
extension to control physical hardware as well.

The second step of development is the Gazebo simulation. This step is entangled with the
first one, as additional launch files will be needed to start Gazebo simulations and spawn robot
instances inside the simulation world, which will also be part of the ROS backend in a separate
package.

Lastly, Unity is integrated with ROS using the official solution from Unity Robotics Hub,
and a simulation prototype is developed. This includes custom controllers for the simulated arm
and other Unity components used in the simulator.

57

58 Prototype realization

5.1.2 Gripper simulation
From the prototype development’s beginning, the gripper motion in the simulations was omitted.
There were three reasons for this decision:

1. The separate models for the gripper fingers were unavailable in the RR1 GitHub repository
[90], ruling out a robot description with functional gripper control. The repository contains
models of completely assembled links of the articulation chain, and grippers were part of the
last link.

2. Functional grippers in the simulation are unimportant for the performance comparison be-
tween Unity and Gazebo as they bring no additional value.

3. Gripper control and motion planning for robotic arms, including griping objects, is a separate
topic outside of the scope of this thesis.

Nevertheless, almost at the end of the development process, the model of the last link was
decomposed, and separate models of gripper fingers were made available in the repository. The
gripper control was then added to the simulated robot to demonstrate the movement of the
grippers. However, no additional simulated scenarios were developed to utilize the grippers in a
pick-and-place application.

5.2 ROS package organization
Given the distributed architecture of ROS and how it encourages modularity, robotic applications
are also usually distributed over several packages. The ROS backend for the RR1 manipulator
also consists of several packages, as shown in Figure 5.1. The package organization follows some
best practices and naming conventions used in ROS applications for robotic arms. This setup
allows independent development of various application components that can be tested alongside
already tested packages, increasing the whole application’s maintainability in the process. The
following subsections shortly describe all of the developed packages and the dependencies between
them. Separate sections were dedicated to the main parts of the ROS backend, like robot
description and control of the robotic arm. The Gazebo simulation is also part of the application
as a separate package of the ROS backend.

The packages can be categorized into three levels, as also illustrated in Figure 5.1, with depen-
dencies between the packages. The low-level packages contain mainly the robot description and
definition of custom ROS interfaces for the application but do not provide any functionality. The
mid-level depends on the low-level layer and provides some functionality, including algorithms,
visualizations, and simulation in Gazebo. The high-level layer brings everything together, mainly
with launch files orchestrating launches of multiple components at once for specific use cases.

5.2.1 rr1 bringup
The bring-up package is a high-level package used to bring together other packages in the ap-
plication and house launch files with necessary configurations for orchestrating whole systems of
ROS nodes. The launch files usually start nodes from other packages and provide the necessary
parameters.

RR1’s bring-up package acts as a single entry point for the end user, containing complete
launch files that start subsets of the application modules. Namely, one launch file starts a Gazebo
simulation of RR1, and another one is responsible for starting necessary nodes for simulation
in Unity. An additional helpful launch file was created for RViz visualization of the robot and
manual joint control, which is very useful when validating the robot description

ROS package organization 59

Figure 5.1 The RR1 ROS package structure

5.2.1.1 rr1 description
Robotic systems are commonly described in a separate low-level description package containing
the URDF file and all the meshes and configurations related to the robot description. The
package has no additional functionality and usually does not need to depend on any other
package. Section 5.3, which covers the creation of the robot description for RR1, exclusively
relates to this package.

5.2.2 rr1 rviz
The rr1_rviz package is a small package containing the launch file and configuration files for
RViz. Other packages use this package to start RViz with saved configuration for visualization
purposes during simulation. However, to visualize the robot itself, the path to the URDF file
has to be provided, or an additional node publishing the description has to be started. RViz
is an essential and straightforward tool for visualization during the development of the robot
description.

5.2.3 rr1 gazebo
Robotic systems integrated with Gazebo often have a separate package like this one. Inside
this package, specific configurations and launch files for starting Gazebo and spawning robot
instances into the world are developed. SDF files with custom environments and models would
also be present here, along with necessary mesh files.

5.2.4 rr1 control
The control package aggregates all control algorithms or custom controllers for the robotic sys-
tem. It is also common to develop hardware interfaces inside this package. However, when the
hardware interfaces are more complicated or the custom controllers are reusable for different
robotic systems, the hardware interfaces can be moved into a dedicated package.

The rr1_control package currently contains implementations of ROS nodes and launch
files that start them with desired parameters that emulate planning algorithms sending control
trajectories and commands to the robotic arm. These nodes can be used to test the controllers
of the arm and for experiments with scenarios simulating the robotic arm. Uniquely to the other
packages, this one is hybrid, supporting both C++ and Python implementations. The reason for
this is that it is expected that the hardware interfaces for the robotic arm, which are strictly

60 Prototype realization

implemented in C++, will be added to this package once the physical manipulator has been
constructed. Other nodes and scripts are implemented in Python.

5.2.5 rr1 interfaces
Sometimes the robotic application needs custom messages, services, or actions in addition to
the standard ones existing in ROS. These are usually defined in a separate package dedicated
to custom interfaces. The custom interfaces are primarily needed for custom control, planning
algorithms, or custom-made sensors used in the robotic hardware. Therefore, packages like
rr1_control will often depend on this package.

In the current RR1 application, there is no particular need for custom interfaces. Nevertheless,
the deployment infrastructure has been prepared in this package if the need arises in the future.
The package was utilized to create custom messages used in the experiments (see Section 6.2.1).

5.2.6 rr1 moveit config
Robotic arms are commonly integrated with the MoveIt framework. During the integration pro-
cess using the setup assistant provided by MoveIt, a configuration package is created, commonly
named with the suffix _moveit_config. Unfortunately, for RR1, this integration was created
and successfully tested only in ROS 1, as the MoveIt 2 framework still has some issues. Nev-
ertheless, the MoveIt integration is not essential for the performance tests and the developed
prototype.

5.2.7 rr1 experiments
On top of the developed ROS backend for RR1, another package called rr1_experiments was
created. It contains launch files, node implementations, and other Python scripts used in the
experimentation phase. The package shows how the components are decoupled and can be reused
in other packages. It also contains scripts for measuring the targeted metrics, measured data
themselves, and Jupyter notebooks analyzing the measured data. The individual experiments
and their results are described in Chapter 6.

5.3 Robot description
To simulate a virtual entity of RR1, a URDF robot description has to be created. Before this
step, the available models had to be assessed and modified for use in the URDF, as discussed in
Section 5.3.1. After the meshes are prepared, the joints and visuals of the links can be described
in the URDF. This allows visualization in RViz, but additional collision and inertial features
of the links and kinematic properties of the joints have to be specified to enable simulation in
Gazebo. Lastly, when the visual and physical properties of the robotic arm are described in the
URDF, additional control specification is usually included in the robot description.

5.3.1 Model preparation
The original mesh for the RR1 robotic arm is available in the RR1 GitHub repository [90], where
it is divided into separate STL files as individual links of the robot1. Although the STL format
is supported in Gazebo and other visualization or simulation tools and can be directly used in
the URDF format, two issues must be addressed: mesh complexity and model materials.

1As mentioned in Section 5.1.2, the gripper fingers were decoupled from the last link later in the prototype
development.

Robot description 61

(a) Original mesh (1,140,430 trian-
gles)

(b) Decimated mesh (456,167 trian-
gles)

(c) Collision mesh (1,100 triangles)

Figure 5.2 RR1 meshes used for the robot description

5.3.1.1 Mesh complexity
The original model for each of the links is a union of individual components designed in CAD.
As the models were created for 3D printing, they are unnecessarily complex for simulation. The
original mesh, shown in Figure 5.2a, has 1,140,430 triangles. Using such a detailed model does
not bring any value to the simulation but creates an increased load on the hardware. As the
main goal is a multi-robot simulation, the mesh should be simplified as much as possible.

Using Blender, the original mesh for each link was decimated by 60%. This factor was chosen
as it simplified the mesh as much as possible without altering the visual of the robot significantly.
The resulting mesh contains 456,167 triangles and is shown in Figure 5.2b. Further simplification
should be possible if desired but would require a considerable amount of modeling and result in
a simplified visual appearance of the robotic arm in simulation.

5.3.1.2 Textures and materials
Using the STL file format is common in 3D printing and CAD. However, the STL format does
not save the texture and material information of the mesh, which is not ideal for simulation
purposes, where the model is used as a visual asset in the scene. It is possible and common to
use the STL format to specify a mesh in URDF, and as discussed in Section 2.1.4.1, a simple
material can be defined and assigned to it. However, this is not attainable for a complex model
such as RR1 because the links would need to be broken down into individual components with
different materials.

Several materials were created in Blender and assigned to various parts of the mesh to achieve
the correct visual appearance of the robot shown in Figure 5.2. The models of the individual
links were then exported in the DAE format, which saves the material together with the mesh
and is supported by ROS, Gazebo, and Unity.

5.3.1.3 Collision mesh
Collision mesh is used by the physics engine to detect collisions between objects in the scene.
This collision mesh must be defined for the simulated robot to interact with other physical objects
in the simulated environment. As mentioned in Section 1.2.2.1, this collision model should be as
simple as possible.

The collision mesh for RR1 was created in Blender for every link of the manipulator by
creating a convex hull around the link and then decimating the mesh. The result is a collision
model for RR1 with 1,100 triangles, shown in Figure 5.2c. As the colliders are only used in

62 Prototype realization

(a) Links and joints of RR1 (b) RR1 transforms in RViz

Figure 5.3 Links and joints of RR1 and their transform origins visualized in RViz

collision detection, there is no need for materials or textures. Therefore, the collision mesh for
each link was exported as an STL file and can be used in ROS, Gazebo, and Unity. Potentially,
the collision mesh could be further optimized by dividing the links using basic 3D objects.

5.3.2 RR1 description
The robot description for RR1 robotic arm has to describe all of its nine links and eight joints
shown in Figure 5.3a. The link description specifies the visual mesh, collision model, and inertial
properties. The joints connect individual links and specify the transform positions of the child
link, as shown in the visualization in Figure 5.3b. Additional kinematic properties and joint
limits are also specified. Following subsections describe the URDF description of RR1 in more
detail, starting with auxiliary macros and adherent Xacro files and then tying everything together
with the base link description example. Further sections of the robot description regarding the
robot control are later mentioned in Section 5.4.

5.3.2.1 Xacro structure
Due to the complexity of the robotic arm, Xacro format was utilized to make the robot description
easier to develop and maintain. The URDF file was divided into several Xacro files, as shown
in Figure 5.4, logically dividing various description components. The main Xacro file of the
robot description is called rr1.urdf.xacro and includes several other Xacro files. Before the robot
description is used in ROS, the Xacro command is used to generate a single URDF file that ROS
supports.

5.3.2.2 Inertial macros
Inertial properties of a link include its mass and moment of inertia tensor. These properties are
specified inside an XML block called <inertial>, which is part of the <link> block. Gazebo
requires all links to have these properties specified. Otherwise, it would not spawn the model
inside the scene.

The inertia tensor is provided by some modeling programs, or it can be experimentally mea-
sured on the physical hardware. As in this prototype, the links are sometimes substituted with

Robot description 63

Figure 5.4 File structure of the robot description

Code listing 5.1 Inertial macro that returns a inertial block for specified box size

<xacro:macro name="inertial_box" params="mass␣x␣y␣z␣*origin">
<inertial >

<xacro:insert_block name="origin" />
<mass value="${mass}" />
<inertia

ixx="${(1/12)␣*␣mass␣*␣(y*y+z*z)}" ixy="0.0" ixz="0.0"
iyy="${(1/12)␣*␣mass␣*␣(x*x+z*z)}" iyz="0.0"
izz="${(1/12)␣*␣mass␣*␣(x*x+y*y)}" />

</inertial >
</xacro:macro >

basic geometry like cylinders or boxes, whose moment of inertia tensors are easy to compute
from known formulas.

Instead of performing the calculations of inertia matrices on the side and then inserting the
results into a URDF file, Xacro format makes it possible to create macros that perform the
computations during the generation of the final URDF file. In the inertial_macros.xacro file,
several inertial macros have been created for some basic geometric shapes. A macro computing
inertial matrix for a cuboid is shown in Code listing 5.1. The macro takes the mass and dimensions
of the cuboid as parameters, as well as an <origin> element, and returns the whole <inertial>
block defined inside the macro. The <origin> element defines an offset of the center of mass
from the transform of a given link. The inertia matrix, defined inside the inertia XML element,
is calculated from the parameters. Because the inertia matrix is a 3x3 rational matrix, it can be
represented by only six elements:

I =

ixx ixy ixz
ixy iyy iyz
ixz iyz izz

64 Prototype realization

Code listing 5.2 Custom macro for RR1 links that constructs the whole link block for a given part
of RR1

<xacro:macro name="rr1_link"
params="name␣mesh_file␣*origin␣*inertial">

<link name="${name}">
<visual >

<xacro:insert_block name="origin" />
<geometry >

<mesh scale="${ model_scale}"
filename="package: //path/to/${ mesh_file }.dae" />

</geometry >
</visual >
<collision >

<xacro:insert_block name="origin" />
<geometry >

<mesh scale="${ model_scale}"
filename="package: //path/to/${ mesh_file }.stl" />

</geometry >
</collision >
<xacro:insert_block name="inertial" />

</link>
</xacro:macro >

5.3.2.3 RR1 link macro
Nine links need to be described in the RR1 URDF and have the same XML structure. Visual mesh
is prepared in a corresponding DAE file with the correct materials. The <collision> element
must be specified for the simulations, and the collision mesh is prepared in a corresponding STL
file. Both <visual> and <collision> elements share the same origin, which can be used to
offset the mesh from the link transform. The positions of joints in the articulation chain define
the transform position and rotation. Lastly, the <inertial> block has to be included inside the
<link> block.

A custom macro called rr1_link macro has been developed to make the robot description
easier to navigate, read, and maintain. The macro is shown in Code listing 5.2. It is provided
with a link name, mesh file name, <origin> element, and <inertial> block as parameters and
returns a complete <link> description block2.

5.3.2.4 Links
With the two macros shown in Code listings 5.1 and 5.2, all the links can be easily defined. The
link definitions are in the rr1.urdf.xacro file, and Code listing 5.3 shows an example definition of
the base_link using the created macros. When the final URDF file is generated using the Xacro
command, this description is expanded as shown in Code listing 5.43. Figure 5.5 then shows the
resulting visual, collision, and inertial components of the base_link visualized in RViz.

All other links can be defined in the same way. The mass of the individual links is unknown
because the second prototype of the RR1 has not been completed yet. Currently, mass estima-
tions based on the initial prototype have been used in the URDF description and can be easily
modified in the inertial macro call. The origin poses throughout the whole description, including
joint origins, are heavily dependent on the original robot model. Their definition is an iterative

2Note that the file paths have been shortened to fit the code listing, and the model scale is a Xacro property
defined elsewhere and used for all the meshes.

3Again, the code has been formatted to fit the width of the page, and the paths were shortened.

Robot description 65

Code listing 5.3 Definition of the RR1’s base link using custom Xacro macros

<xacro:rr1_link name="base_link" mesh_file="01 _RR1_extended_base">
<origin rpy="0␣0␣0" xyz=" -0.052␣ -0.013␣0.179" />
<xacro:inertial_box mass="4.0" x="0.36" y="0.15" z="0.09">

<origin rpy="0␣0␣0" xyz="0.105␣0␣0.0375" />
</xacro:inertial_box >

</xacro:rr1_link >

Code listing 5.4 Definition of the RR1’s base link in the generated URDF

<link name="base_link">
<visual >

<origin rpy="0␣0␣0" xyz=" -0.052␣ -0.013␣0.179"/>
<geometry >

<mesh scale="0.001␣0.001␣0.001"
filename="package: //path/to/01 _RR1_extended_base.dae" />

</geometry >
</visual >
<collision >

<origin rpy="0␣0␣0" xyz=" -0.052␣ -0.013␣0.179"/>
<geometry >

<mesh scale="0.001␣0.001␣0.001"
filename="package: //path/to/01 _RR1_extended_base.stl" />

</geometry >
</collision >
<inertial >

<origin rpy="0␣0␣0" xyz="0.105␣0␣0.0375"/>
<mass value="4.0"/>
<inertia ixx="0.010199" ixy="0.0" ixz="0.0"

iyy="0.045899" iyz="0.0"
izz="0.050699"/>

</inertial >
</link>

(a) base link visual (b) base link collision (c) base link inertial

Figure 5.5 RR1 base link visualized in RViz with visual mesh, collision mesh, and inertial

66 Prototype realization

Code listing 5.5 Definition of RR1 shoulder joint inside the rr1.urdf.xacro file

<joint name="shoulder_joint" type="revolute">
<parent link="base_link" />
<child link="shoulder_link" />
<origin xyz="0␣0␣0.07" />
<axis xyz="0␣0␣1" />
<limit lower=" -${PI *3/4}" upper="${PI*3/4}"

effort="${ effort}" velocity="${ velocity}" />
<dynamics damping="${ damping}" friction="${ friction}" />

</joint >

process of measuring and modifications specific to the robotic system described and a particular
model used4.

5.3.2.5 Joints
Between the links, joints have to be defined using a <joint> description block. In Code listing 5.5,
the shoulder_joint definition is presented. The <origin> element defines the position of the
child link transform as a relative offset from the parent link transforms, creating a transform tree
as visualized in Figure 5.3b. Additionally, the axes of movement and kinematic properties of the
joint are specified. In the shoulder_joint example, xacro properties effort, velocity, damping,
and friction are used. These properties are defined in the rr1.urdf.xacro file as the robot’s
parameters. The Xacro parameter PI is one of the constant parameters defined in constants.xacro
file.

Concluding the joint definitions, the RR1 description is complete, making it possible to
visualize the robot in RViz and spawn it in Gazebo. However, no control has been defined, so
the robotic arm will fall to the ground under gravity in the simulated environment in Gazebo.

5.4 Robot control
The primary part of robot control is the ability to move it by sending commands according to
some planned trajectory. But in general, the robot should also report back the state of its joints
to consider them in the planning process or to visualize the robot’s pose in visualization tools
like RViz. If there were any additional sensors in the system, it would also be desirable to receive
data from the sensors as well.

For the simulated robot in Gazebo, all of these tasks can be solved relatively quickly and
easily by Gazebo plugins, which are discussed in Section 2.2.1.5. Numerous Gazebo plugins are
available to provide these functionalities. A plugin called gazebo_ros_joint_state_publisher
can be used to report simulated joint configurations to the /joint_states topic, and a plu-
gin called gazebo_ros_joint_pose_trajectory can be used to publish control trajectories to
a topic called /set_joint_trajectory that the plugin is subscribed to. Unfortunately, al-
though straightforward, this solution is Gazebo-specific. Later, switching between the control of
the virtual entity and the physical RR1 robot should be possible when the hardware is ready.
So a different solution would need to be implemented for the physical robot. Therefore, the
ros2_control package, explained in Section 2.1.5, is used in this prototype. It is more compli-
cated to set up but standardly used, and it allows the same control code to be used for both
Gazebo and the real robot, minimizing future modifications.

4For example, the position of the link’s origin, also referred to as pivot in some modeling applications, and
the rotation in the original link mesh significantly impacts the positioning in the URDF.

Robot control 67

Figure 5.6 Overview of the RR1 control setup with ros2 control

5.4.1 Overview
To allow control of the RR1 robotic arm using ros2_control, the URDF has to be extended
to tell the resource manager what hardware interfaces will be used and which joints will be
controlled. Conversely, a YAML configuration has to be created for the controller manager,
which will describe controllers and their configuration. As shown in Figure 5.6, the RR1 control
setup follows a similar structure as illustrated in Section 2.1.5.

5.4.1.1 Hardware interfaces
In the case of the virtual entity in Gazebo, the only hardware interface that will be used is
one provided specifically for Gazebo, called gazebo_ros2_contro/GazeboSystem. A position
command interface is exposed for each of the joints in the arm, which sends position commands
to the hardware joints. Three state interfaces for position, velocity, and effort were exposed,
although not all are currently used.

When the physical robotic arm is completed, additional hardware interfaces will be developed,
and the exposed interfaces will mostly depend on the capabilities of the hardware actuators.

5.4.1.2 Controllers
As simple robotic arm control is a common application in robotics, all used controllers are
available in ros2_control. Namely, three controllers were set up and can be used:

1. The joint_state_broadcaster is a controller which reports joint states into /joint_states
and /dynamic_joint_states topics, which makes it possible to visualize the robot in RViz.
It supports all types of hardware interface types.

2. The joint_trajectory_controller is the primary controller used for RR1 control in this
prototype. It can receive joint trajectories that the robot will follow, which can be sent over
a specific topic or action interface. It supports joints with position, velocity, or effort control
interfaces.

3. The forward_command_controller is a secondary controller for this prototype which can be
used to receive commands and forward them to the hardware interfaces. Currently, it is used
for position commands that can set joints to provided positions. Unlike the previously men-
tioned joint_trajectory_controller, the robot does not continuously follow a trajectory
but snaps directly into a specified position.

68 Prototype realization

Code listing 5.6 Macro used for joint control description

<xacro:macro name="ros2_control_joint"
params="name␣min_lim␣max_lim">

<joint name="${name}">
<command_interface name="position">

<param name="min">${ min_lim}</param>
<param name="max">${ max_lim}</param>

</command_interface >
<state_interface name="position">

<param name="initial_value">0.0</param>
</state_interface >
<state_interface name="velocity">

<param name="initial_value">0.0</param>
</state_interface >
<state_interface name="effort">

<param name="initial_value">0.0</param>
</state_interface >

</joint>
</xacro:macro >

5.4.2 Extending the URDF
A separate Xacro file called ros2_control.xacro was created for all robot description ele-
ments connected to robot control and included in the main Xacro file. Most importantly, the
<ros2_control> element must be added, and the hardware interface and controlled joints must
be specified inside it. Secondly, because of using Gazebo, a <gazebo> element has to be added,
specifying a plugin used by Gazebo to integrate with the ros2_control.

5.4.2.1 Joint control macro
State interfaces and the control interface, including limits, must be specified for each of the
eight joints. Therefore another custom macro has been created to shorten the contents of the
<ros2_control> description element. The macro, called ros2_control_joint, is shown in Code
listing 5.6. It takes the joint name and the joint limits as parameters and returns a complete
<joint> block used inside the <ros2_control> tag.

5.4.2.2 ros2 control URDF element
The added element is shown in Code listing 5.7. From this element, the resource manager of
ros2_control receives the information on what hardware interfaces are used and which joints are
exposed through command and state interfaces. The hardware interface, in the <ros2_control>
element referred to as plugin, is specified using a hardware tag. It implements how to talk to
the Gazebo simulation like it is real hardware. Then, the command and state interfaces for all
the joints are described using the ros2_control_joint macro.

5.4.2.3 Gazebo plugin
As discussed in Section 2.2.1.5, Gazebo uses plugins to interact with ROS. In this case, a plugin
has to be added that tells Gazebo to use ros2_control. Not only does this plugin set up things
on the Gazebo’s end to control the simulated robot, but it also starts its own controller manager
node. So when using this plugin, the users do not need to start it on their own, and they can

Robot control 69

Code listing 5.7 Added URDF description for ros2 control

<ros2_control name="GazeboSystem" type="system">
<hardware >

<plugin >gazebo_ros2_control/GazeboSystem </plugin >
</hardware >

<xacro:ros2_control_joint name="shoulder_joint"
min_lim=" -${PI *3/4}" max_lim="${PI*3/4}" />

<xacro:ros2_control_joint name="upper_arm_joint"
min_lim=" -${PI/8}" max_lim="${PI/8}" />

<xacro:ros2_control_joint name="elbow_joint"
min_lim=" -${PI/2}" max_lim="${PI/2}" />

<xacro:ros2_control_joint name="forearm_joint"
min_lim=" -${PI *3/4}" max_lim="${PI*3/4}" />

<xacro:ros2_control_joint name="wrist_joint"
min_lim="0" max_lim="${PI}" />

<xacro:ros2_control_joint name="hand_joint"
min_lim=" -${PI *3/4}" max_lim="${PI*3/4}" />

<xacro:ros2_control_joint name="finger_joint"
min_lim="0" max_lim="${PI *3/8}" />

<xacro:ros2_control_joint name="opposite_finger_joint"
min_lim="0" max_lim="${PI *3/8}" />

</ros2_control >

just spawn the controllers they want to use5. When starting the controller manager, the plugin
will also provide the robot description to it automatically. However, the YAML configuration
file has to be specified as a parameter, as shown in Code listing 5.8. The configuration file is
discussed in Section 5.4.3. Additionally, the used hardware interface is identified.

Because of the need to simulate multi-robot scenarios, a namespace and topic remapping
are done. A Xacro argument has been created, which can be specified when running the Xacro
command and defaults to value “rr1”. The value of this argument is used as a namespace, so
the started controller manager node and any other node are started under this namespace.
The /tf topic is also remapped to include the namespace. So for a namespace “rr1”, an
rr1/controller_manager will be started, and the instance of the robot will publish its trans-
forms into the /rr1/tf topic. This allows spawning multiple robot instances under different
namespaces and controlling them independently via their own controllers.

5.4.3 Controller configuration
In ROS, YAML files are commonly used to configure parameters for nodes. In ros2_control,
parameters are provided in such a YAML file for the controller manager and specified controllers.
This configuration file has been created inside the rr1_description package.

Code listing 5.9 shows the beginning of the configuration file, including parameters for the
controller manager node. The first line contains a wildcard for the namespace, indicating that the
same parameters are used for all the nodes configured in this file that run under any namespace.
This allows running multiple controller nodes for individual instances of the simulated RR1
robot. The names and types of discussed controllers are specified in the controller manager
configuration, as well as some other parameters like update rate, which will also limit the update
rate of individual controllers. After the controllers are defined here, they can be configured

5Note that when Gazebo is not used, like when controlling a real robot, the controller manager node has to
be started manually, for example, from a launch file.

70 Prototype realization

Code listing 5.8 Gazebo plugin that tells Gazebo to use ros2 control

<gazebo >
<plugin filename="libgazebo_ros2_control.so"
name="gazebo_ros2_control">

<robot_sim_type >
gazebo_ros2_control/GazeboSystem

</robot_sim_type >
<parameters >

$(find rr1_description)/ config/rr1_controller.yaml
</parameters >
<ros>

<namespace >/$(arg ns)</namespace >
<remapping >/tf: =/$(arg ns)/tf</remapping >

</ros>
</plugin >

</gazebo >

Code listing 5.9 Parameters for the controller manager node

/**:
controller_manager:

ros__parameters:
update_rate: 50 # Hz
use_sim_time: true

joint_state_broadcaster:
type: joint_state_broadcaster/JointStateBroadcaster

forward_position_controller:
type: forward_command_controller/ForwardCommandController

joint_trajectory_controller:
type: joint_trajectory_controller/JointTrajectoryController

individually, as shown in Code listing 5.10 for the joint_trajectory_controller6. In this
application, the joint state broadcaster controller does not need to be configured. The controlled
joints must be listed for the other two controllers, and interface command or state interfaces must
be specified. This allows the controller_manager to assign interfaces to the controllers correctly.
Each controller can have their own specific parameters.

5.4.4 Sending control trajectories
The actual act of controlling the robot is currently done by test nodes developed inside the
rr1_control package, as mentioned in Section 5.2.4. One node can be used for sending position
commands to the forward_position_controller and another node for sending trajectories to
the joint_trajectory_controller. Both of the nodes have their YAML configuration files
which contain the testing data and some additional parameters like frequency of message pub-
lishing. Launch files are also provided for the nodes making it also possible to configure the
topic where the control commands are published. Therefore in a multi-robot setting, multiple
instances of the nodes can be started, each sending commands to a different controller.

Additionally to these nodes, two scripts have been implemented to make it easier for the
user to interact with the controller manager. One script can be used to switch between the

6Note that the configuration for the joint trajectory controller node is incomplete. Additional controller-
specific parameters are configured in the YAML file.

Gazebo simulation 71

Code listing 5.10 Configuration of the joint trajectory controller

joint_trajectory_controller:
ros__parameters:

joints:
- shoulder_joint
- upper_arm_joint
- elbow_joint
- forearm_joint
- wrist_joint
- hand_joint
- finger_joint
- opposite_finger_joint

command_interfaces:
- position

state_interfaces:
- position

state_publish_rate: 50.0
action_monitor_rate: 20.0
...

controllers that have been launched, and another script can be used to publish joint positions
via a command line.

5.5 Gazebo simulation
The prototype Gazebo simulation is tightly connected to ROS, as it extends the URDF format
and is the only entity currently possible to control with ros2_control. Therefore, some of
the preparations for the Gazebo simulation have been done in Section 5.4. The remaining task
is creating launch files for correctly orchestrating appropriate ROS nodes and Gazebo scripts.
Specifically, Gazebo has to be started, and the virtual entity has to be spawned with all the
ros2_control nodes, as shown in Figure 5.7. Optionally, RViz can also be started to visualize
the robot’s state inside the Gazebo simulation. When the controlled robot is simulated, additional
nodes that publish control trajectories can be started.

5.5.1 Starting Gazebo
As Section 2.2.1.5 mentions, a launch file from the gazebo_ros package is used when running
Gazebo with ROS integration. However, because the simulation uses custom meshes for the
RR1 robot, Gazebo has to be able to find those meshes. Therefore, a custom launch file that
starts Gazebo has been created in the rr1_gazebo package. The launch file modifies some path
environment variables used by Gazebo to locate models and plugins so that they include paths
to the models used in the RR1 description. Then, the launch file from the gazebo_ros package
is included and configured to start a world provided inside the rr1_gazebo package7.

7The world file contains only a default empty world scene but can be overwritten by another world file. The
deployment process has been developed, so the world file is shared within ROS when the package is built, and
the Gazebo launch file can find and open it.

72 Prototype realization

Figure 5.7 RR1 Gazebo simulation landscape

5.5.2 Spawning RR1
Once Gazebo runs, a robot instance, including the controllers, can be spawned. This includes
running several nodes, from which some have dependencies on others and have to be started in
a specific order. Therefore a launch file is created inside the rr1_gazebo package to orchestrate
the process of spawning a robot into Gazebo.

5.5.2.1 Starting robot state publisher
Firstly, a robot_state_publisher node has to be started to publish the robot description into
a /robot_description topic. As illustrated on the left side of Figure 5.7, a single URDF
description file for the RR1 robot is generated from the Xacro files using the Xacro command.
A namespace can be provided as an argument for the command because the Xacro description
has a namespace argument. The output URDF file of this command is used as a parameter for
the robot_state_publisher, which then publishes its copy to the /robot_description topic
continually. This makes it possible for other nodes to retrieve the robot description from that
topic.

5.5.2.2 Spawning RR1 in Gazebo
A spawner script provided in the gazebo_ros package is used to spawn the robot. The spawner
script retrieves the robot description from the /robot_description topic, spawns the simulated
robot, and starts the plugin specified in the URDF. Arguments can be provided to the spawner
script to specify the position where the entity should be spawned, as well as its name that will
be used in the Gazebo scene hierarchy. The plugin, discussed in Section 5.4.2.3, also starts the
controller_manager node from ros2_control. The plugin provides the path to the controller
YAML configuration file, as it was specified in the URDF, and the controller_manager also
retrieves the robot description from the /robot_description topic.

5.5.2.3 Starting controller nodes
After the robot is spawned in Gazebo and the controller_manager node is running. A spawner
script of the controller manager is used to spawn the individual controller nodes. Because the

Gazebo simulation 73

Code listing 5.11 Example of the event handler for starting the joint state broadcaster controller

joint_state_broadcaster = Node(
package="controller_manager",
executable="spawner",
arguments =[

"joint_state_broadcaster",
"--controller -manager", f"/{ NAMESPACE }/ controller_manager"

]
)

joint_state_broadcaster_event = RegisterEventHandler(
event_handler=OnProcessExit(

target_action=spawn_robot ,
on_exit =[joint_state_broadcaster]

)
)

controller manager knows about the available controllers and their configurations from the pro-
vided YAML file, the spawning is straightforward. However, the controller_manager node has
to be running to spawn the controllers.

Although the spawner script will wait a while for the controller manager to start, if it is
not running, the control manager may become active after this waiting period. Special event
handlers are created in the launch file to start actions after other actions are finished. So, for
example, the node responsible for starting a controller can be run after the Gazebo spawner
script has finished its execution.

With these events set up, the joint_state_broadcaster node is started first, after the
controller_manager node has been started, as shown in Code listing 5.11. The joint state
publisher starts publishing the joint states into the /joint_states topic. The robot state
publisher uses these joint states to update and publish the transforms of RR1, which RViz
can use, for example. In the same way, the two controllers, forward_position_controller
and joint_trajectory_controller, are started after the joint state broadcaster is running.
However, the forward_position_controller is purposefully started in an inactive state because
two controllers cannot control the same hardware interfaces. However, when it is started as
inactive, the controller manager can switch between them if needed.

Independently on this launch process, a test node from the rr1_control package can be
started to publish trajectories or position commands to appropriate topics. The virtual entity
simulated in Gazebo starts the trajectory execution immediately once the controller is started
and the control commands are published to the topic.

5.5.3 Multi-robot simulation
Several choices have been made to make the multi-robot simulation of RR1 easier inside the
Gazebo. First, the URDF is parametrized with a namespace name, which is then used inside the
Gazebo plugin specification. The plugin uses the namespace to run the command_controller
and other related nodes under this namespace. Additionally, the launch file for spawning the
robot inside Gazebo demonstrates the use of namespaces. Using namespaces is also illustrated
in Figure 5.4.2.3, where the default namespace rr1 is used. Lastly, it is possible to configure the
topic used by the testing control nodes from the rr1_control package.

To run a multi robot simulation in Gazebo, a launch file has to generate multiple URDF files,
each parametrized with a different namespace. A robot state publisher has to be started for each
robot instance. These robot state publishers are used to spawn all robot instances inside Gazebo

74 Prototype realization

Figure 5.8 Multi-robot simulation scenario in Gazebo

on specified locations, also resulting in multiple controller managers being started in appropriate
namespaces. For each controller manager, the controllers required for the application must be
spawned. This is possible because the controller YAML configuration file uses a namespace
wildcard as shown in Code listing 5.9. Finally, nodes publishing trajectories to the topic the
controllers are subscribed to can also be spawned. Such a multi-robot Gazebo simulation is
shown in Figure 5.8.

5.6 Unity simulation
The Unity simulation is not so entangled with ROS as using Gazebo but still takes advantage of
some of the previous work. Mainly, the URDF robot description can be imported directly into the
Unity project, creating a persistent asset that can be manually or programmatically instantiated
multiple times into the scene. Figure 5.9 illustrates a classic single-robot simulation in Unity
similar to the one in Gazebo, using a joint trajectory controller, with other available controllers
indicated. However, most of the controllers and other ROS publishers had to be implemented
for Unity, as the Unity Robotics Hub does not provide them. These controllers are implemented
as components that can be attached to the robot asset so they are instantiated with the robot
model. Once the Unity-ROS integration is established, ROS nodes can communicate with the
controllers attached to the simulated instance inside Unity, as shown in Figure 5.10.

5.6.1 Unity-ROS integration
Unity packages from the Unity Robotics Hub are used for the Unity-ROS integration, which is
explained in Section 2.3.4.3. Namely, the ROS TCP Connector on the Unity side and the ROS
TCP Endpoint package on the ROS side are used for communication between ROS and Unity.
All the developed publishers or subscribers implemented in Unity, including the robot controllers,
use a ROS TCP Connector instance to subscribe or publish messages to topics inside the ROS
ecosystem. The Unity-ROS communication, done over a single ROS node called UnityEndpoint,
is shown in Figure 2.15. In Figure 5.9, however, the communication stream is decomposed,
making it more apparent which Unity components communicate with which ROS topics.

In the rr1_bringup ROS package, a launch file for running the Unity simulation has been
prepared. The launch file starts the UnityEndpoint node from the ROS TCP Endpoint package
and optionally can also start RViz to visualize the state of the simulated RR1 instance. The
testing nodes from the rr1_control package can be started to send testing trajectories to Unity.

Unity simulation 75

Figure 5.9 RR1 Unity simulation landscape

Figure 5.10 RR1 simulation prototype in Unity

76 Prototype realization

Figure 5.11 Unity-ROS integration on Windows

Because the Unity controllers can use the same topics used by the ros2_control, the simulation
can run in Gazebo and Unity simultaneously.

5.6.1.1 ROS docker image
The Unity simulation can be run in Linux, together with ROS. However, Unity editor can
encounter some issues with certain Linux distributions, and overall, Unity development is more
convenient on Windows. On the other hand, the Windows support of ROS is limited, and the
ROS development on Windows is unfavorable as the community is used to Linux from ROS 1.
Nevertheless, running ROS on a Linux virtual machine or inside a Docker container running on
Windows is possible, as depicted in Figure 5.11.

Both approaches using a virtual machine and a Docker container were used during the de-
velopment and testing of the prototype simulation. It allows running ROS, as well as RViz
or Gazebo on Windows. However, both solutions lack GPU acceleration, so running RViz and
Gazebo yields very low FPS and is not recommended. However, no issues were encountered
facilitating ROS and its communication with Unity running on Windows.

Running a virtual machine has a downside: the user must install Linux and all ROS de-
pendencies independently. In Docker, all setup processes can be automatized for the user by
providing a complete Dockerfile. Therefore, the use of Docker is recommended for the simula-
tion, and a custom Docker image has been developed specifically for the RR1 robotic arm. When
built, the Docker image installs ROS 2 Humble with all dependencies and development tools.
The ROS TCP Endpoint from Unity Robotics Hub and all the RR1 ROS packages are cloned
from GitHub, and the ROS workspace is built and loaded. When users start a container from
this image, they can immediately run any launch file developed for RR1, including the Unity
integration.

5.6.2 Importing robot into Unity
Using the URDF importer from the Unity Robotics Hub, the RR1 robot can be imported into
the Unity project. The importer does not support the Xacro format, so the robot description
has to be converted to a single URDF file using the Xacro command beforehand. After that, the
rr1_description package can be copied to the project’s assets folder, and then the URDF file

Unity simulation 77

(a) Materials imported by URDF Importer ap-
pear pink

(b) Fixed materials after importing the URDF

Figure 5.12 Shader issue encountered when using Unity’s Universal Render Pipeline instead of the
Built-in Render Pipeline

can be imported using the URDF importer8. The importer will construct the articulation chain
in the scene with all the visual and collision meshes. One manual step is needed for a robotic
arm like this: the base_link object has to be located in the articulation chain and set its link
component to be immovable. The articulation body component must also be set as a base link
of the articulation chain.

The robot model can be dragged back to the assets folder from the hierarchy window, which
creates a prefab from the game object9. Depending on the application, different components can
be added to the prefab. In the case of these simulated robotic arms, the components can be
robot controllers, for example.

5.6.2.1 Material issues in URP
The Universal Render Pipeline (URP) is used in the prototype instead of the Built-in Render
Pipeline. The URP provides more flexibility when it comes to graphics, and it better accommo-
dates virtual reality projects. However, the two render pipelines use different shaders, affecting
how materials are displayed. When the robot is imported into a project that uses URP, the
materials will appear pink, as shown in Figure 5.12a. The problem is that a shader from the
Built-in Render Pipeline is assigned to the materials. Unity provides an automated way to con-
vert materials to URP, which switches the used shader one made for the URP. However, before
this step, the materials must be extracted from the mesh files into separate material files so that
the shader change can be saved inside the Unity project. This process is easily accessible from
the inspector window inside the Unity editor. Figure 5.12b shows the result after the material
conversion.

5.6.3 Unity robot controllers
In the current state of the prototype, several robot controllers are available for the simulated
RR1 robotic arm. Most were implemented specifically for this proof of concept because they

8Note that Unity has to be able to find the meshes on paths specified inside the URDF file. For this particular
robot description, this can be achieved by dragging the single URDF file outside the rr1 description directory.

9Prefabs are game objects saved together with all their components and settings. These prefabs can then be
instantiated multiple times in the scene.

78 Prototype realization

were unavailable in the Unity Robotics Hub. However, they are also generic enough to be used
in other robotic arms imported via the URDF importer. The following subsections describe their
use and functionalities.

5.6.3.1 Manual robot controller
Once a robotic arm URDF is imported, the URDF importer automatically attaches a component
called RobotController to it, developed by the Unity Robotics Hub. This component can be used
for direct keyboard control of the robotic arm by using arrows to switch between individual joints
and adjust their angles.

The controller used Unity’s old input system, which is hard to maintain and operate in a
larger project. In this prototype, the component has been modified to use the new input system
and renamed to ManualRobotController.

5.6.3.2 Joint state listener
The JointStateListener is a custom controller component subscribing to the /joint_states topic
and receiving joint state messages from ROS. The fixed update call mirrors the joint states in the
simulated RR1 instance, resulting in a similar behavior to RViz visualization. Although, RViz
listens to transforms, which are updated by the robot state publisher from the received states.
This controller can be used to visualize the state of the real robot as its encoders will report the
joint states to ROS.

5.6.3.3 Joint state broadcaster
On the other hand, the JointStateBroadcaster component publishes the simulated joint states
into the /joint_states ROS topic. It is a custom Unity controller corresponding to the
joint_state_broadcaster used with the ros2_control package. In the Gazebo simulation,
this controller was used to report joint states to ROS, which the robot state publisher used to
update the transforms. RViz could then visualize the simulated robot by subscribing to the
updated transforms. However, the Unity prototype can publish the updated transforms directly
without needing a robot state publisher running in ROS. So there is currently no need to use
the JointStateBroadcaster component.

5.6.3.4 Joint trajectory controller
Corresponding to the joint_trajectory_controller from ros2_control, the JointTrajecto-
ryController is a custom component used as a primary controller in the simulation prototype.
It subscribes to a configurable topic, receiving messages of the JointTrajectory message type, as
the ros2_control does, and has the same behavior as the joint_trajectory_controller.

Upon receiving a trajectory, it starts a coroutine following the specified trajectory until it is
completed or until a new trajectory is received. Code listing 5.12 shows a SubscriberCallback
method, which is called when a new trajectory message arrives at the subscribed topic. A
new instance of the FollowTrajectory coroutine is started. The coroutine follows the individual
trajectory points with motion durations specified in the received message. In each update, when
the coroutine execution continues, based on the elapsed time in the trajectory execution, a
target position for each of the joints is computed using linear interpolation and set for all joints
simultaneously.

5.6.3.5 Forward position controller
The ForwardPositionController is a custom Unity component equivalent to its ros2_control
counterpart. It can subscribe to a ROS topic that is configurable via launch arguments and

Unity simulation 79

Code listing 5.12 Coroutine from the JointTrajectoryController component following a received tra-
jectory

private void SubscriberCallback(JointTrajectoryMsg message) {
if (currentTrajectoryExecution != null)

StopCoroutine(currentTrajectoryExecution);

currentTrajectoryExecution = StartCoroutine(
FollowTrajectory(message.points));

}

private IEnumerator FollowTrajectory(
JointTrajectoryPointMsg [] points) {

foreach (var point in points) {
var motionDuration = (float)(point.time_from_start.sec

+ point.time_from_start.nanosec * NanoToSec);

var initialPoint = GetJointPositions ();
var elapsedTime = 0.0;
while ((elapsedTime += Time.deltaTime) < motionDuration) {

var targetPoint = Mathd.Lerp(initialPoint , point.positions ,
elapsedTime / motionDuration);

SetJointTargets(targetPoint);
yield return null;

}
SetJointTargets(point.positions);

}
currentTrajectoryExecution = null;

}

80 Prototype realization

receive position control commands. When a message is received, it snaps the simulated joints
into the requested positions.

5.6.3.6 Transform tree publisher
In one of the demo projects developed by Unity Robotics Hub, a TransformTreePublisher com-
ponent has been developed and used in a mobile robot simulation. This component was adapted
in the RR1 simulation prototype and can publish the transform tree of the simulated articulation
chain into the /tf topic. RViz can read these transform messages to visualize the state of the
simulated entity if needed.

5.6.4 Other components
A few additional components were developed for the Unity simulation prototype. In this section,
some of the most notable are described.

5.6.4.1 GUI
The ROS TCP Connector package already comes with some essential GUI elements displaying
the status of the Unity-ROS connection and messages being passed. A custom GUI panel was
also created to enable turning different controllers on and off in run time and switching between
them. This panel can be seen in the top-right corner of Figure 5.10.

5.6.4.2 ROS clock publisher
In section 2.2.1.7, the need for a simulator to keep track of time instead of ROS was explained. In
the case of the simulator being Unity, the ROSClockPublisher component can be used to publish
the Unity time to the /clock topic periodically. The Unity time can be scaled based on the
application’s need allowing the simulation to run faster or to be slowed down.

5.6.4.3 Camera control
In the play mode of the application or the build, the camera control from the scene view is
unavailable, as it is a feature of the Unity editor. Therefore a custom camera control has been
developed using the new Unity input system. The camera control allows free movement around
the simulated robotic arm.

5.6.4.4 Frame rate counter
Because the performance of the simulation is one of the main points of interest in this prototype
realization, a component tracking the actual frame rate of the simulation has been implemented.
The frame rate value is then visibly displayed in the GUI, as shown in Figure 5.10.

Code listing 5.13 shows the code of the component. Because the time that elapses between
individual frames can be very variable and dynamic, the frame rate is updated four times per
second. Between these frame rate updates, the game loop will execute many times, and the
average elapsed time between individual frames is more stable.

5.6.5 Multi-robot simulation
Running a multi-robot simulation in Unity is less complicated compared to Gazebo. For the
Gazebo simulation, a substantial number of nodes had to be started for each robot instance.
In Unity, because a prefab of the robot has been created, this prefab can be dragged into the

Unity simulation 81

Code listing 5.13 Coroutine from the JointTrajectoryController component following a received tra-
jectory

public class FPSCounter : MonoBehaviour {
[SerializeField] private Text label;
[SerializeField] private float fps = 0.0f;

private int frameCnt = 0;
private float dt = 0.0f;
private float updateRate = 4.0f; // 4 updates per sec.

public void Update () {
frameCnt ++;
dt += Time.deltaTime;
if (dt > 1.0f / updateRate) {

fps = (frameCnt / dt) * Time.timeScale;
frameCnt = 0;
dt -= 1.0f / updateRate;

label.text = (int)fps + "␣FPS";
}

}
}

Code listing 5.14 Instantiating multiple robots into Unity scene and setting correct ROS namespace
for the ROS topics

List <Vector3 > positions = generateRobotPositions ();
for (var i = 0; i < robotCount; i++) {

string ns = $"{namespacePrefix}_{i}";
var robot = Instantiate(RobotPrefab , positions[i],

RobotPrefab.transform.rotation , ParentTransform);
robot.name = ns;
var jtc = robot.GetComponent <JointTrajectoryController >();
jtc.TopicName = $"/{ns}{ TopicName}";

}

scene multiple times or instantiated programmatically, as indicated in Code listing 5.14. In
this code example, the JointTrajectoryController components are used for the simulated robot
control. Therefore the namespace of the ROS topic the controllers subscribe to has to be set up
correctly, so the robots can be controlled independently. It is also possible for all the controllers
to subscribe to the same topic.

On the ROS side, appropriate nodes must be started to send trajectories to the correct
topics. This was also done in the Gazebo simulation via the testing nodes from the rr1_control
package. A launch file can be written to start a corresponding number of these nodes, publishing
trajectories to appropriate topics used by the RR1 instances simulated in Unity. A multi-robot
simulation example in Unity can be seen in Figure 5.13b.

5.6.6 VR simulation
In order to demonstrate the flexibility and capabilities of simulation in Unity, a multi-robot scene
was developed in virtual reality using the XR Interaction Toolkit mentioned in Section 2.3.1.3.
In the scene, the user can take control of two hands that are animated and physically interact

82 Prototype realization

(a) (b)

Figure 5.13 Screenshots from multi-robot simulation in virtual reality

with the robotic arms. There is also an interactable object the user can grab. Figure 5.13 shows
screenshots from the VR scene. The VR simulation was tested with the Oculus Quest 2 headset
wirelessly connected to a computer.

The robotic arms in the scene were programmatically spawned with configured JointTrajec-
toryController components and are controlled from ROS by the test nodes in the rr1_control
package. The setup was the same as in the multi-robot simulation. Only the VR control was
added on top.

Chapter 6

Experiments

In this chapter, the experiments performed with Gazebo and Unity are described, and the results
are presented. The first section overviews the experimentation approach, including used metrics,
their measurement, and the hardware on which the experiments were done. The second section
describes tested scenarios and their purpose. Before reviewing the results of the tested scenarios,
the third section introduces a comprehensive comparison between Gazebo and Unity, which is
also essential when choosing the right tool for multi-robot simulation. The last two sections then
present the results of tested scenarios.

6.1 Overview

The primary purpose of the proposed experiments is to evaluate the performance of Gazebo and
Unity in relation to the scene complexity and their usability for the simulation of many robotic
arms in a multi-robot scenario. Additionally to the experiment scenarios and test configurations,
the functionalities and features of both simulators are taken into consideration.

6.1.1 Performance metrics
Several metrics were selected and monitored throughout the tests to evaluate the performance of
Gazebo and Unity. However, not all could be obtained programmatically or from a single script.
Moreover, one of the commonly used metrics used to compare robot simulators, the real-time
factor, is unavailable in Unity. The following subsections discuss some of these metrics, and the
methods of measuring them are described in Section 6.1.3.

6.1.1.1 Frame rate
The frame rate is a commonly used metric for graphical applications. It measures the number
of frames generated in one second of execution. Generally corresponding with how fast and
responsive the application is, it is a straightforward and understandable measurement for the
end user to evaluate the overall performance of applications and compare their performance.

Increasing the visual complexity of a scene results in a decrease in frame rate as the individual
frames take longer to render. For game engines like Unity, where other operations are also part
of the rendering loop, blocking operations or extensive computations will negatively impact the
frame rate as well. In Gazebo, where the simulation and graphical interface are separated into
two running processes, the impact of physics complexity might not affect the frame rate at all.

83

84 Experiments

It is also important to note that when it comes to optimizing and profiling the application’s
performance during development, the frame rate is not a good metric. To find problems in the
execution and potential optimizations, measuring frame times between individual frames and
identifying overloaded frames is better.

6.1.1.2 Real-time factor
The real-time factor (RTF) is a standard metric used to compare the performance of robotic
simulators and is explained in Section 2.2.1.7. Gazebo reports the RTF in its GUI, and the
metric is also published into a ROS topic. When the physics simulation is too complex, Gazebo
will decrease the RTF, slowing the simulation time to give the physics engine more time to
perform the calculations. It is not possible to enforce a particular RTF in Gazebo.

Conversely, Unity does not have such a mechanism and will always run in real-time (RTF = 1)
unless explicitly set differently. Specifically, Unity’s time scale can be changed. By default, it
equals one but can be decreased or increased, making the simulation time slower or quicker,
respectively. However, the fixed delta time, the amount of time between physics updates, must
be scaled appropriately1. These settings can also be done programmatically. Therefore, a Time-
Manager component has been created for benchmark purposes to accommodate the time scale
changes if needed.

6.1.1.3 Hardware utilization
Additional metrics were measured, providing insight into the hardware utilization of the two
simulators. Namely, CPU utilization was measured individually for each CPU core, and RAM,
GPU, and VRAM usage were measured. The temperature of the CPU and GPU were also
monitored.

6.1.2 Workstation specifications
All the experiments were done on a single workstation specified in Table 6.1. The tests were
performed on Windows 10 Education and Ubuntu 22.04.2 LTS, installed in a dual-boot configu-
ration. When ROS had to be used for Windows tests, a Docker image based on the same Ubuntu
version was used.

Table 6.1 Hardware specifications of the test workstation

Motherboard ASUS TUF GAMING B550-PLUS
CPU AMD Ryzen 7 3700X (3.6 GHz)
CPU Cores 8 Cores (16 logical processors)
RAM 32 GB 3600 MHz DDR4
GPU GeForce RTX 2060 SUPER
GPU VRAM 8 GB GDDR6

6.1.3 Experiment and measurement methods
All test scenarios, specified in Section 6.2, were performed in Gazebo on Linux, Unity on Linux,
and Unity on Windows. Each of the test configurations was run as a separate simulation.
Precisely, a simulation process was not reused to run a different scenario or increasingly complex
scene. After the measurements were performed for a specific test configuration, the simulation

1Lowering the time scale without scaling down the fixed delta time results in a slowed simulation, where
physics objects visibly snap between positions as their update rate is low.

Overview 85

was terminated completely, including any ROS nodes, before the next test. Between the tested
configurations, the temperature was monitored, and the hardware components were allowed to
cool down to avoid thermal throttling. Mainly the GPU was cooled down below 40°C, during
which time the CPU already cooled down below 30°C. The whole system was restarted between
individual scenarios or when switching to a different simulator.

A Python script was developed for metrics measurements, which runs during the simulation
and can be manually triggered to log measured values. It has been further modified for Gazebo
and Unity tests, and the tests run on Windows because different metrics can be measured in
those situations. Each of these versions is described in the following subsections. An additional
lightweight Python script was developed for the CPU and GPU temperature monitoring between
test runs.

6.1.3.1 Gazebo measurements
The Python script measuring the metrics uses psutil and gpustat Python libraries to retrieve
information about the system utilization. The psutil library is used to track the utilization of
individual CPU cores, CPU temperature, and RAM usage. The gpustat library, on the other
hand, is used to log the GPU utilization and temperature and the VRAM usage. For Gazebo
specifically, the script retrieves the current RTF from a topic called /performance metrics, where
Gazebo publishes it.

The script waits for the user to start measuring when several samples are taken at a specified
rate. However, retrieving the RTF from a ROS topic takes considerable time, decreasing the
possible sampling rate significantly. For each test configuration, twenty samples are measured
and logged, and then averaged during the analysis process.

6.1.3.2 Unity measurements (Linux)
For Unity on Linux, the only modification is skipping the RTF measurement, as Unity does not
provide this metric. Because the script does not need to retrieve any message from a ROS topic,
the sampling rate can be significantly higher. However, it is kept at a similar pace to Gazebo
measurements.

6.1.3.3 Unity measurements (Windows)
On Windows, the script has to be further modified. The psutil library was not able to retrieve
information about the CPU temperature. Therefore this metric has been removed. The script
used for temperature monitoring between test runs uses the same API. However, the tests on
Linux showed that by the time the GPU cools down sufficiently, the CPU also cools down
significantly. So only the GPU temperature was closely monitored on Windows.

6.1.3.4 Frame rate measurements
The frame rate is a bit more complicated to obtain in Gazebo. It is reported individually for any
sensor in the simulated world, such as a single camera in the experiment scene. The camera’s
frame rate is shown only in the Gazebo’s GUI on the right side of the bottom bar. By default,
the frame rate is limited to 62 FPS every time Gazebo starts, and although the camera object
is specified in the world’s SDF file, the frame rate limit property is not present. However, it
can be changed in the camera’s properties from the left panel in Gazebo. Therefore, before each
experiment, the frame rate limit is manually set to 1000 FPS, allowing the reported frame rate
to increase to the value limited by the scene complexity and available hardware. The camera’s
frame rate is not published to any ROS topic as a performance metric, so it is recorded separately
upon visual observation.

86 Experiments

Figure 6.1 Illustration of the TCP endpoint latency experiment

Code listing 6.1 Message interface with a payload size 32 Bytes

float64 timestamp
byte [32] payload

In Unity, the frame rate is not limited by default. To create a similar environment for
experiments as in Gazebo, a simple component has been created to monitor the frame rate, as
discussed in Section 5.6.4.4. The metric has been recorded the same way as for Gazebo.

6.2 Scenarios
Several performance experiments have been performed to evaluate the performance of Gazebo
and Unity. Because the immediate goal of the selected simulator is a multi-robot simulation, the
primary test scenario is a multi-agent performance test with RR1 robotic arms. Before this test,
a set of task-unrelated tests were done to test the general performance and scalability of the two
simulation tools. The scenarios are described in the following subsections.

6.2.1 TCP endpoint latency
As discussed in Section 5.6.1, the simulation prototype in Unity is integrated with ROS using the
packages provided by the Unity Robotics Hub. The communication between Unity’s components
and ROS nodes is done via TCP and a single ROS node. Gazebo, on the other hand, communi-
cates with ROS directly. The TCP endpoint latency experiment was performed to measure the
latency created by the additional communication step and how it behaves with the increasing
size of the messages sent. The test compares the latency of a message sent from ROS to ROS
and ROS to Unity, as illustrated in Figure 6.1.

6.2.1.1 Message interfaces
The test uses custom message interfaces generated with a Python script inside the rr1 interfaces
ROS package. The messages must also be imported into Unity, so the C# interfaces can be
generated. The message consists of a timestamp, which the publisher provides as a time when
the message was published and a payload. The payload ranges in size from 2 Bytes to 16
Mebibites. An example interface is shown in Code listing 6.1 with a payload of size 32 Bytes.

Scenarios 87

(a) Visual mesh (250,000 triangles) (b) Collision mesh (256 triangles)

Figure 6.2 Model of 3DBenchy boat used in experiments

6.2.1.2 Test method
The experiment is performed on Linux only. A new publisher and subscriber nodes are launched
for every message size for the ROS to ROS communication. The publisher sends a message of a
given size with a timestamp and a payload. When the subscriber receives the message, it logs
how long it took for the message to arrive based on the timestamp in the message. For each
message size, 1000 messages are sent with sufficient time spacing, so a message is sent after the
subscriber has received the previous message.

For the ROS to Unity communication, a publisher node and the ROS TCP Endpoint are
launched in ROS. The subscriber runs as a simple Unity component in a clean Unity project
with an empty scene. Unfortunately, the project could not run in headless mode due to some
build issues. However, no camera was present in the scene, so nothing was being rendered.

6.2.2 Static scene
The static scene experiment tests the general performance of Gazebo and Unity with the in-
creasing complexity of static geometry in the scene. No dynamic objects are in the scene, so no
physics simulation is needed.

The test is performed by running a Gazebo or Unity simulation with a static test scene and
measuring the selected metrics during the run. Each test configuration creates a more complex
scene, ranging from an empty scene with the ground plane to a complex static scene with 125
million triangles.

6.2.2.1 Static objects
A 3D boat model called 3DBenchy, shown in Figure 6.2a, was used to emulate the increasing
scene complexity. This model is commonly used for benchmarks of 3D printers and was selected
because of its higher complexity than other 3D models used in benchmarks. Its mesh was slightly
modified to contain exactly 250,000 triangles, which is also conveniently close to one-half of the
complexity of the RR1 model. In this particular experiment, only the visual mesh is used.

Figure 6.2b also shows a collision mesh created for the 3DBenchy model. It was created the
same way as the collision meshes for RR1. However, the collision mesh is not used in the static
scene experiment.

6.2.2.2 Scene creation
In Unity, the process of scene creation was straightforward. A prefab was created from the boat
model, and a simple spawner component was implemented that instantiates a given number of

88 Experiments

(a) Static scene experiment in Gazebo (b) Static scene experiment in Unity

Figure 6.3 Static scene experiment in Gazebo and Unity with 200 static models of 3DBenchy

boat models at the start of the application. The number of boats was given as a command
line argument when starting the built application, and the objects are placed in as compact a
rectangle formation as possible, as shown in Figure 6.3. Scenes ranging from 0 to 500 boats were
tested.

For Gazebo, the same scenes were created and tested. However, the process of scene creation
was far more complicated. Gazebo does not have a very flexible scene editor, and for a use
case like this, the only possibility is to create an SDF world description programmatically. This
is sometimes praised in literature as a great feature, but creating an SDF world description
is inconvenient compared to Unity’s instantiation process. First, an SDF model of the boat
had to be created, which was complicated by Gazebo’s crashes. Then a simple scene with the
boat was created, which served as a base for a custom world generator Python script, creating
an SDF file with multiple copies of the boat’s XML description blocks. A Python script was
created to orchestrate the test. First, it starts the world generation script, which generates a
world description with a given number of boat models. Then it starts Gazebo with the world
description file loaded.

6.2.3 Dynamic scene
The dynamic scene experiment tests the general performance of the two simulators with the
increasing complexity of dynamic geometry in the scene. This time, the boat objects are simu-
lated rigid bodies with collision meshes. Therefore, on top of the static geometry that needs to
be rendered, the physics engine has to compute the physical forces applied to the objects and
resolve collisions between them.

The testing method is similar to the static scene experiment, but the objects are placed in a
tall tower formation that falls to the ground when the simulation starts. The start and end of
the experiment are shown in Figure 6.4. This tower collapse creates a large number of collisions
that the physics engine has to resolve. The measurement of the metrics is manually started after
the top of the tower falls onto the heap of fallen objects. Again, scenes with 0 to 500 objects are
tested.

6.2.3.1 Dynamic objects
The model of 3DBenchy is used together with the collision mesh shown in Figure 6.2b. The
collider was deliberately created in a way that it contains 256 triangles. If the mesh was more
complex, Unity would print out warnings into the console that the mesh should be simplified or
divided into multiple colliders. Naturally, the same mesh is used for Unity and Gazebo.

Scenarios 89

(a) Dynamic scene in Gazebo (b) End of dynamic experiment in Gazebo

(c) Dynamic scene in Unity (d) End of dynamic experiment in Unity

Figure 6.4 Dynamic scene experiment in Gazebo and Unity with 200 dynamic models of 3DBenchy

6.2.3.2 Scene creation
The scenes in Unity and Gazebo were constructed in the same way as for the static scene
experiment, but the models were placed into a tall tower formation. Several constraints were
placed on the column creation to ensure some collisions between individual objects. For example,
if there are fewer than 20 objects in the test configurations, the tower is constructed with only
a single column. As the number of objects increases, the number of tower columns increases up
to 6, as shown in Figure 6.4a or Figure 6.4c.

Because the frame rate limit in Gazebo has to be manually modified before the experiment
starts, the simulation is paused in the SDF world description. When Gazebo loads it on launch,
the simulation time is stopped and can be manually started when the experiment is ready. The
same feature was implemented in Unity for convenience. The simulation starts paused and can
be unpaused by pressing the spacebar, as in Gazebo.

6.2.4 Multi-robot simulation
The multi-robot simulation experiment is the most relevant benchmark for this thesis. The
previous tests in Gazebo and Unity used ROS only to launch Gazebo and retrieve its real-time
factor during simulation. In the multi-robot simulation experiment, the ROS infrastructure
needed to start the simulation and control the individual robots is launched. One of the test
configurations is shown in Figure 6.5.

The individual test configurations spawn multiple instances of the RR1 robot in an empty
scene, ranging from 1 to 120 robots. The robots are spawned from the URDF described in
Chapter 5. Only the joint trajectory controller is used to control the robot movements, and one
controller is started for every single robot instance. The metrics are measured as in the previous

90 Experiments

(a) Twelve robots simulated in Gazebo (b) Twelve robots simulated in Unity

Figure 6.5 Multi-robot simulation experiment with twelve robots simulated in Gazebo and Unity
controlled from ROS

Gazebo and Unity experiments. The measurement starts once all the ROS nodes are started and
all simulated robots follow their trajectories.

6.2.4.1 Gazebo
The structure of the Gazebo simulation is explained in Section 5.5. Once Gazebo is started,
the robot instances are spawned from the URDF through the robot state publisher node. A
separate controller manager with a joint trajectory controller is started for each of them. Each
of the robot instances uses its own ROS namespace. Test joint trajectories are published from
the nodes implemented in the rr1 control package.

6.2.4.2 Unity on Linux
With Unity on Linux, the simulation is performed as explained in Section 5.6. In Unity, the
robotic arms with only the JointTrajectoryController component are spawned using a custom
spawner component. On the ROS side, the ROS TCP Endpoint is started to establish commu-
nication between Unity and ROS, and nodes from the rr1 control package are started to publish
joint trajectories to the individual robot instances.

6.2.4.3 Unity on Windows
The main difference with the experiment on Windows is that ROS runs in a Docker container
mentioned in Section 5.6.1.1. Everything else is the same as in the Linux experiment.

6.3 Simulator comparison
During the practical preparation of the prototype and the experiments, features, and character-
istics of Gazebo and Unity have been observed and compared. The comprehensive comparison
is available in Table 6.2. The table is adapted from [43], where a similar comparison has been
made between Gazebo, V-REP, and ARGoS so that the results can be extrapolated to other
simulators. The list of characteristics has been extended, and the description of the Gazebo was
updated based on the experience from this thesis. The following subsections then highlight and
further develop some of the characteristics from the table.

Simulator comparison 91

Table 6.2 Comparison between Gazebo and Unity. The table follows a structure from [43] where
the comparison has been made between V-REP, Gazebo, and ARGoS. The table is extended, and the
Gazebo characteristics are updated based on findings from this thesis.

Gazebo Unity
Supported on Linux and is best used on
Ubuntu distribution. Can be run from a VM
or Docker container on Windows but without
GPU acceleration.

The editor is best used on Windows or ma-
cOS. Linux is supported, but issues can be
encountered on certain distributions. Appli-
cations can be built for any OS.

Built-in capabilities
The ODE physics engine is available by de-
fault. Gazebo can be built from code with a
different physics engine.

The Nvidia PhysX (3D) and Box2D (2D)
physics engines are available by default.
Other engines can be imported as packages
or installed as plugins.

Does not include a code editor. External code
editing tools have to be used separately.

Does not include a code editor but has a
great integration with the most commonly
used IDEs.

Includes a scene editor, but is very lim-
ited. It is possible to interact with scene ob-
jects. However, several basic functionalities
are missing, like selecting multiple objects at
once.

Includes a feature-rich scene editor, which is
very intuitive to use.

The scene can be manipulated during the sim-
ulation but does not return to the original
state when the simulation is restarted.

The scene can be manipulated from the scene
window or hierarchy window in the play
mode. When the play mode is exited, all
changes roll back.

Has a built-in wall editor, which can be used
to build textured walls into the scene quickly.
This can be useful for mobile robot simula-
tion.

Walls have to be built and textured manually
from resizable cube objects. However, there
are packages available that provide dynamic
wall creation.

Mesh manipulation is not supported. Mesh can be fully manipulated programmati-
cally. Minimal mesh manipulation is possible
in the editor by default, but some packages
are available for complete mesh manipulation.

Simulation outputs include log files or saved
video frames as pictures.

No out-of-the-box outputs are included. How-
ever, logging and camera capture can be eas-
ily implemented.

No particle systems. Has built-in particle systems.
Has a model editor which can be used to cre-
ate an SDF model from simple shapes or from
imported meshes. It is very unintuitive and
sometimes crashes Gazebo.

Has a very mature asset system with drag-
and-drop capabilities which flawlessly inte-
grates with other modules in Unity. Prefabs
of imported meshes can be created, which can
be dragged into the scene or instantiated pro-
grammatically.

Animating objects is not possible. Has a mature built-in animation system that
can be used to animate objects in the scene.

VR support is limited to Oculus Rift VR
headset using the OculusVR SDK (not
tested).

Extensive VR support and commonly used to
develop VR applications. Supports a long list
of VR headsets.

continues on next page

92 Experiments

Can be run in a headless mode. It should be possible to build headless ap-
plications commonly used as game servers.
However, some build issues prevented verify-
ing this.

No audio support. Audio sources can be placed into the scene or
generated programmatically, which are then
picked up by the camera.

No custom inputs for the user. Has a robust built-in input system that al-
lows users to create applications with custom
controls and controller support.

Robot and other models
Includes a diverse model library, including
various objects, buildings, and robots. The
models are pretty simple in complexity.

Does not include a model library. Models
can be found on Unity Asset Store and then
imported from the package manager into the
project. Models vary in their complexity, and
not all of them are free.

Custom robot models can be imported from
URDF or SDF descriptions.

Custom robot models can be imported from
URDF using the URDF Importer package
from Unity Robotics Hub.

To add custom object models to the scene,
an SDF model must first be created manu-
ally by writing its XML code (which did not
work properly) or using the model editor in-
side Gazebo (often crashed).

Mash files can be simply dragged from the file
explorer into the project files in the editor and
are ready to be used in the scene. On Linux,
the files had to be imported through a context
menu in the editor because the drag-and-drop
did not work.

Imported meshes cannot be changed or opti-
mized. Third-party 3D modeling applications
have to be used.

Unity packages are available on Unity Asset
Store or GitHub that can be used to optimize
a mesh or perform other modifications.

Programming methods
The scene (world) is saved as an XML file
(SDF). Creating scripts to modify the XML
file and then run simulations is possible.

The scene is saved in Unity’s custom scene
file format, which is saved as an asset in
the project. Scenes can be divided into sub-
scenes and loaded dynamically. The file for-
mat makes it hard to version with standard
version control tools. However, Unity pro-
vides a robust API that makes it possible
to construct and modify scenes programmat-
ically, so there is no need for external scripts.

Lacks scripting capabilities. Functionality
can be added only as compiled C++ plugins.
Additionally, some functionality can be added
with ROS applications.

Scripting is possible in C# language, which
allows quick testing. Unity provides an API
that also makes it possible to extend the ed-
itor’s functionalities and create plugins or UI
elements.

Visual scripting is not supported. Visual scripting is supported.
No analysis tools for developers. Provides multiple analysis tools, including

profiler, physics and frame debuggers, and
more.

User interface (UI)
continues on next page

Simulator comparison 93

The GUI application often froze and some-
times crashes the whole Gazebo, especially
when using the model editor or importing
URDF models.

No freezing issues were experienced. On
Linux, the editor printed an error into the
console because of a known issue, but the per-
formance and usability were unaffected.

The UI capabilities are relatively limited.
Some issues were encountered, especially with
object manipulation in the scene and chang-
ing properties.

The UI is intuitive for people with some expe-
rience with game engines, and the UI layout
is fully configurable. No issues were encoun-
tered.

The model library is not distributed with the
application but is downloaded on demand.
The user has to wait until the model library
loads the list of models.

Unity does not have a model library. How-
ever, when models are imported from the
package manager or copied to the project,
they are always available in the assets folder.

The model library is a long list of models that
is hard to navigate.

The user can structure the assets folder of a
Unity project however they want to improve
the navigation.

Community and documentation
A fairly comprehensive documentation with
some step-by-step tutorials.

An extensive documentation that is easy to
navigate and read. Unity provides a lot of
official courses and tutorials [107], but the
community creates a lot of tutorial content
as well.

Gazebo seems to have a large community, but
it is distributed over too many communica-
tion canals.

Unity has a massive community that is con-
centrated around the Unity Forum. The fo-
rum has a subforum specifically for robotics.

6.3.1 Scene manipulation
Both tools have a scene editor, where individual objects in the scene can be manipulated. Objects
can be added, removed, moved, scaled, or rotated. Unity provided a significantly more feature-
rich and intuitive experience. Gazebo was missing several important features that made using
the scene editor inconvenient. For example, multiple objects cannot be selected at once. In
Unity, multiple objects can be selected and manipulated simultaneously.

In Gazebo, it is possible to manipulate the scene during simulation. However, the scene does
not return to its original state when the simulation is restarted. In Unity, the scene can also be
modified inside the scene or hierarchy window in the play mode. Once the play mode is exited,
all changes roll back to the original state.

6.3.2 Adding custom models
Adding custom models to the Unity project is relatively easy. On Windows, the mesh files can
be dragged from the file explorer into the Unity Editor’s project explorer or the assets folder in
the file system. This drag-and-drop feature did not work on Linux, and files had to be imported
using a context menu inside the editor. Once the meshes are in the assets folder, they can be
dragged into the scene and used or instantiated programmatically.

In Gazebo, the process is more complicated. A mesh file of an object cannot be used directly.
First, a model has to be created, which is an SDF file that describes the model and its meshes.
This should be possible to do outside of Gazebo, but it did not work as expected. Fortunately,
Gazebo’s model editor can be used to import the meshes and save the model in SDF format.
However, this process is unintuitive, and Gazebo crashed several times in the model editor. Once
the model is created, it has to be imported into Gazebo by providing a path to its directory, and
then it can be instantiated into the scene.

94 Experiments

6.3.3 VR capabilities
The VR support for Unity is extensive, and Unity is commonly used to develop VR applica-
tions. A considerable portion of Unity’s community also works with VR, providing assets and
learning materials. The VR support was successfully tested on this prototype as mentioned in
Section 5.6.6. The support was tested on Oculus Quest 2 VR headset.

Gazebo states VR support in its documentation using the OculusVR SDK and is only limited
to Oculus Rift VR headset. This feature was impossible to test as only the Oculus Quest 2 headset
was available for development.

6.3.4 Application issues
Gazebo experienced multiple issues with the GUI application. The application froze several
times, especially when using the model editor or importing a robot using URDF, sometimes
completely crashing the application. No such issues were experienced with Unity.

6.3.5 Community support
Unity has a massive community centered around the Unity Forum, where anyone can ask ques-
tions relevant to Unity development. The community also creates and shares a lot of tutorials
and free assets. Although the community of robotic enthusiasts using Unity is less predominant,
a separate subforum on Unity Forum is dedicated to robotics. An additional channel, more
suited for shorter questions rather than more extended discussions, is Uniy Answers.

Gazebo, together with ROS, also has a relatively large community. However, the communi-
cation is distributed over many channels, and it is unclear what the primary hub is. There are
Gazebo Answers, Gazebo Community, ROS Answers, ROS Discourse, and Robotics Stack Ex-
change, where Gazebo Answers and ROS Answers seem to be the main hubs for getting support
and asking questions.

From the interactions on these forums, Unity did subjectively better. Four threads were
created in the Robotics subforum on Unity Forum, and all were answered or sparked a more
extensive discussion. Some additional questions were asked in other subforums, leading to dis-
cussions. However, more people visit those subforums, so getting an answer is more expected.
Five threads were created on Gazebo Answers and ROS Answers, and only one was answered.

6.4 Performance evaluation

This section presents the results of the experiments discussed in Section 6.2. All the recorded
metrics have been plotted, and the reader can find all the figures in Appendix B. In this section,
only the most relevant or discussed plots are shown.

6.4.1 TCP endpoint latency
The TCP endpoint latency experiment showed that the added layer in communication between
ROS and Unity does add some latency overhead. As shown in Figure 6.6a, the latency overhead
is not increasing with the message size but stays relatively constant. The latency might be con-
sidered when working with sensors that generate large amounts of data, like cameras. However,
for the use case of this prototype, where the message sizes are not very big, the added latency is
negligible. Figure 6.6b shows the latency for smaller message sizes.

Performance evaluation 95

(a) Complete results of the experiment scenario (b) Results for small message sizes

Figure 6.6 Results of the TCP endpoint latency experiments

Table 6.3 Summary of the most important results from the general performance experiments (number
of objects is in the brackets)

Simulator Average
CPU
(>=20)

RAM
(10)

RAM
(100)

VRAM
(10)

VRAM
(100)

FPS
(10)

FPS
(100)

Gazebo 16.34% 1.88 GiB 2.12 GiB 579 MB 584 MB 558 71
Unity (Linux) 9.93% 1.65 GiB 1.65 GiB 609 MB 721 MB 488 59
Unity (Windows) 3.03% 4.84 GiB 4.87 GiB 449 MB 458 MB 562 62

6.4.2 General performance
The results of the general performance tests in Gazebo and Unity are divided into several

subsections based on the measured metrics. The CPU and GPU temperatures were disregarded as
meaningful metrics because the temperature was allowed to decrease between individual test runs,
and the tests were only running for a short time so that the temperature could truly reflect the
load on the hardware. However, some interesting observations can be made in the temperature
plots shown in Appendix B. The GPU temperature during Gazebo runs is considerably higher
than in the Unity runs. Although it might not be the only reason, it is believed that this is the
result of the Gazebo running for a short while before the measurements were captured, as the
camera frame limit has to be changed manually before every experiment. The full experiment
results are plotted in Figures B.3, B.4, B.5, and B.6. Additional tests, where the simulation time
in Unity was scaled down, are explained in Section 6.4.2.5, and the measurements are plotted in
Figures B.7, B.8, B.9, B.10, B.11, and B.12.

6.4.2.1 Real-time factor
The real-time factor measured in the two experiments in Gazebo shows how it is only affected
by the complexity of the physics simulation in the dynamic scene. As shown in Figure 6.7 and
Table 6.52, Gazebo will decrease the real-time factor to accommodate this complexity and give
the physics engine more time to perform the computations.

2Only a selection of the test configurations is listed in the table to fit the page.

96 Experiments

Figure 6.7 Effects of static and dynamic scene complexity on the real-time factor in Gazebo

Table 6.5 Gazebo’s real-time factor relative to number of simulated objects in a falling tower

Number of objects 0 10 20 50 100 200 500
RTF 1.00 1.00 0.98 0.40 0.19 0.08 0.03

6.4.2.2 Frame rate
Figure 6.8 shows the measured frame rate during the static and dynamic scene experiments in
Gazebo and Unity. Interestingly, the performance of the two simulators is almost identical. Unity
starts at a much higher frame rate with small scene complexity but drops quickly as the scene
gets more complex and then follows the Gazebo’s trajectory. When the difference in frame rate
between Gazebo and Unity is plotted, shown in Figures 6.8c and 6.8d, it seems that Unity is a
bit less performant than Gazebo. Nevertheless, the difference is negligible.

Another interesting finding is that the difference between a static and a dynamic scene does
not affect the frame rate very much. This was expected in Gazebo, as the GUI and simulation
processes are separated. Nevertheless, it was expected to affect Unity’s performance. In this
case, it seems that the physics simulation is not as CPU-demanding to slow down the frame rate
of the whole application.

6.4.2.3 CPU and GPU utilization
The CPU performance was recorded per each logical processor (threads). Figure 6.9 shows the
utilization of the four most loaded CPU threads. Gazebo shows expected behavior. Only the
GUI process fully utilizes a single thread during the static scene test. Once physical objects
in a dynamic scene are simulated, the Gazebo’s process responsible for simulation starts fully
utilizing another thread. In the plot showing the overall CPU utilization, shown in Figures B.4a
and B.4b, this seems like the dynamic scene doubles the CPU utilization.

Unity tested on Linux fully utilizes a single thread, as was expected. However, on Windows,
the CPU utilization is very low. This was expected to be an issue in the psutil library on
Windows, but the result was confirmed in the performance tab of the Windows Task Manager.
It seems that on Windows, Unity’s load is very well balanced to all the available cores.

Gazebo and Unity utilize the GPU fully, regardless of the complexity of the scene. Although
Gazebo seems to utilize the GPU less in the dynamic scene, as shown in Figures B.4c and B.4d.

6.4.2.4 RAM and VRAM usage
The RAM and VRAM usage show more interesting results, as shown in Figure 6.10. The Unity
on Windows experiments shows high RAM usage compared to the tests performed on Linux

Performance evaluation 97

(a) Frame rate (static scene) (b) Frame rate (dynamic scene)

(c) Frame rate difference (static scene) (d) Frame rate difference (dynamic scene)

Figure 6.8 Frame rate measured during the static and dynamic scene experiments with a difference
compared to Gazebo’s frame rate

98 Experiments

(a) CPU cores utilization (static scene)

(b) CPU cores utilization (dynamic scene)

Figure 6.9 CPU utilization measured during the static and dynamic scene experiments

Performance evaluation 99

(a) RAM used (static scene) (b) RAM used (dynamic scene)

(c) VRAM used (static scene) (d) VRAM used (dynamic scene)

Figure 6.10 RAM and VRAM usage meassurements during the static and dynamic scene experiments

because Windows alone uses more RAM. Without the simulation, Linux used around 1.5 GB
of RAM and Windows around 4.8 GB. The results show that with increasing scene complexity,
Gazebo increases its RAM consumption linearly, unlike Unity which keeps it constant.

In the case of VRAM usage, Unity tested on Linux showed some increase, but Gazebo and
Unity on Windows stayed constant. However, the curve in Figure 6.10d seems to be affected
by some other process, as additional experiments with the dynamic scene showed a curve more
similar to that in Figure 6.10c. Nevertheless, the increase in VRAM usage is present. This
different behavior compared to Windows may be caused by different graphical APIs being used.

6.4.2.5 Scaled time in Unity
An additional set of experiments was performed to check if Unity’s performance does not benefit
from scaled-down time. The dynamic scene experiments were rerun in Unity, both on Linux
and Windows. However, the time was scaled down by the RTF measured in Gazebo for the
same test configuration. The results are plotted in Figures B.7, B.8, and B.9, where the results
are compared with Gazebo, as in the previous cases. In Figures B.10, B.11, and B.12, a direct
comparison between the Unity runs is made, with scaled time and without scaled time. The
tests showed that scaling the time down did not affect the performance3.

However, scaling the time down improved the quality of the physics simulation significantly.
As Unity does not do this independently, unlike Gazebo, the physics simulation takes shortcuts

3Note that as the results for Linux showed no impact on performance, only a few test configurations were
tested to verify the same expected behavior on Windows.

100 Experiments

(a) Eighty robots simulated in Gazebo (b) Eighty robots simulated in Unity

Figure 6.11 Multi-robot simulation experiment with eighty robots simulated in Gazebo and Unity
controlled from ROS, where Gazebo was unable to spawn all the robots and their controllers

to meet the real-time execution criterion. When the user scales down the time, the collisions
between objects are resolved with more accuracy, which was visually apparent in the simulation.

6.4.3 Multi-robot simulation
The multi-robot simulation experiments, where up to 120 robots were simulated, were expected
to yield similar results as the dynamic scene tests, as the robots participate in the physics
simulation. Although this seems to be the case, a few differences in the performance results should
be pointed out. Also, some issues were observed that need to be addressed, like Gazebo’s problem
of spawning many robots and the desynchronization of ROS nodes. All plottet meassurements
can be find in Figures B.13, B.14, and B.15.

6.4.3.1 Gazebo limits

During the Gazebo experiments, a problem was encountered where Gazebo could not spawn
more than 12 robots. When a test configuration with a little over 12 robots was tested, Gazebo
would usually spawn only 12 robots. The robots not spawned successfully were always random
instances from the whole set. Sometimes, even the 12 robots test would be inconsistent, with
one robot missing or spawned without its controllers. When the number of robots in the test
configuration was large, Gazebo usually spawns more than 12 robots, as shown in Figure 6.11a,
where 14 robots out of 80 were spawned. However, the spawned robots usually do not start
their controllers successfully in such cases. On the other hand, Figure 6.11b shows the same
experiment in Unity, where all 80 robots were spawned and are executing a trajectory.

6.4.3.2 ROS node desynchronization

One issue arose with the increasing number of simulated robots. The test trajectories are sent
from simple ROS nodes implemented in the rr1 control package, which sends one trajectory to
the controller every six seconds. The first trajectory is also sent after six seconds after the node
starts. However, when many nodes are started, ROS starts them sequentially, taking some time.
Because there is no synchronizing mechanism, some nodes send trajectories sooner than others.
With large numbers of nodes, it can also happen that some nodes will send trajectories before
all of the nodes are successfully started. Therefore in a real scenario, the nodes should wait until
after all the nodes are started successfully and then synchronize before sending trajectories.

Performance evaluation 101

(a) Frame rate (multi-robot)

(b) Frame rate (multi-robot, zoomed) (c) Frame rate difference (multi-robot)

Figure 6.12 Frame rate measured during the multi-robot simulation experiments with a difference
compared to Gazebo’s frame rate

6.4.3.3 Performance
With the limited measurements from Gazebo experiments, the performance is similar to the
dynamic scene experiments. However, as shown in Figure 6.12, Unity on Linux performs worse
than Gazebo and Unity on Windows, with a considerably lower frame rate for the simulation of
a few robots.

The other differences are in the RAM usage. During Unity experiments on Linux, the RAM
consumption increases with the number of robots as ROS nodes are being started in addition
to the Unity simulation. As shown in Figure 6.13, a large amount of RAM is consumed during
Windows experiments because of Docker. Even though the Docker container did not need this
much RAM, the WSL 2 backend used for Docker uses the available RAM by default. This
behavior can be configured, however.

Table 6.6 Summary of the most important results from the multi-robot simulation experiments
(number of simulated robots is in the brackets)

Simulator Max
robots

FPS (1) FPS (3) FPS
(10)

FPS
(100)

Min
CPU

Max
CPU

Gazebo 12 606 326 146 NA 11.15% 16.96%
Unity (Linux) 120 422 232 59 12 9.50% 17.59%
Unity (Windows) 120 696 337 66 12 5.32% 83.51%

102 Experiments

Figure 6.13 RAM usage meassurements during the multi-robot simulation experiments

6.5 Summary of results
Overall, the performed experiments showed that the performance of Unity and Gazebo is very
comparable when using their default rendering and physics engines with the default configura-
tions. On the other hand, Unity is more configurable than Gazebo regarding physics simulation
settings and has robust rendering pipelines that are interchangeable, scriptable, and configurable.
Unfortunately, in the multi-robot simulation experiment, Gazebo could not spawn more than 12
robots, which was a significant downfall, rendering it unusable for multi-robot simulation with
many robots. Not to mention how Unity compares to Gazebo in usability and how Gazebo
experienced severe issues, including crashes that Unity did not have.

Regarding the features and characteristics, the results in Section 6.3 revealed that Gazebo
is inferior to Unity in both usability and available features. Unity is a feature-rich tool that is
very versatile and extendable through packages. On the other hand, Gazebo is very limited,
being a robotics simulation tool. What Gazebo is also missing, compared to Unity, is a range of
analytics tools and optimization methods that can be used to enhance the performance in certain
use cases or specific types of scenes. Importantly for the multi-robot simulation of RR1, Unity
provided better scene editing and scripting capabilities that made spawning a large number of
robots inside a scene very straightforward.

Conclusion

This work has contributed to the development of the robotic arm RR1 by producing a ROS
backend with control capabilities for the arm and a digital twin prototype that allows simulation.
The robot was used in a multi-robot simulation in Gazebo and a prototype simulation created in
Unity, which resulted in a direct comparison between the two simulators and a set of performance
experiments.

In Chapter 1 and Chapter 2, the reader was familiarized with the theoretical background
and technologies used in this thesis. Chapter 3 introduced the faculty-developed robotic ma-
nipulator RR1 with an in-depth description. Chapter 4 discussed related work and provided a
rationale for the prototype development and chosen technologies. In Chapter 5, the prototype
was realized, including developing the ROS backend for RR1, Gazebo simulation, and Unity sim-
ulation prototype. Lastly, Chapter 6 compared the two simulations and evaluated the performed
experiments.

The prototype simulation showed that it is possible to integrate Unity with ROS and use
it for multi-robot simulation with many robotic arms. The prototype alone could be used for
a visual demonstration of the robot or concepts of motion planning in academia and could be
extended for specific research use cases.

Review of the thesis aims
All of the subtasks set in this thesis’s introduction were successfully done. The subtasks were
the following:

Develop a ROS backend for RR1 robotic arm and create a digital twin prototype.

Create a simulation prototype of the digital twin in Gazebo and Unity with ROS integration.

Compare the two tools and perform experiments assessing their performance in multi-robot
simulation.

The first two tasks were done in Chapter 5. The URDF robot description for RR1 has been
developed, and the robot control was implemented using the ros2 control package, minimizing
the work needed when migrating to the physical robot prototype. With the robot description
done, the Gazebo simulation could be performed as described in Section 5.5. Lastly, a simulation
prototype was created in Unity, verifying the possibility of Unity-ROS integration and Unity’s
usability for multi-robot simulation. This process is described in Section 5.6. The last goal of the
thesis, the performance experiments and comparison between Gazebo and Unity, was performed
in Chapter 6. The feature and characteristics comparison was made in Table 6.2 and further
elaborated in Section 6.3, and the results of the performance experiments were summarized in
Section 6.5.

103

104 Conclusion

Future work
The prototype showed that using Unity for a multi-robot simulation is possible. However, it can
be improved or serve as a base for a specific simulation use case. The simulation performance
can also be improved by creating a simplified model of RR1. Additionally, some more significant
additions and research topics are possible:

Simulating the gripper in a pick-and-place simulation.

Research of multi-robot motion planning algorithms for robotic arms.

Synchronizing the ROS control of robotic arms with many simulated instances.

Transfer into practice
The prototype developed in this work has already been used to demonstrate the RR1 robotic arm
at a faculty-hosted career fair. Its expected transfer further into practice is becoming the primary
software, both the simulator and ROS control backend, for the faculty-developed manipulator
RR1. It will aid the completion of the second prototype of the robot and make the development
of the subsequent prototypes quicker. Then, together with the robotic hardware, it is expected
to become educational equipment for robotics courses in academia and enable large-scale multi-
robot motion planning research for robotic manipulators, which is the central vision for RR1.

Appendix A

Large figures

105

106 Large figures

Table
A

.1
D

efinitions
ofdigitaltw

in
characteristics

proposed
in

[15](Table
reprinted

from
[15])

C
haracteristic

D
efinition

PhysicalEntity/Tw
in

T
he

physicalentity/tw
in

that
exists

in
the

physicalenvironm
ent

V
irtualEntity/Tw

in
T

he
virtualentity/tw

in
that

exists
in

the
virtualenvironm

ent
PhysicalEnvironm

ent
T

he
environm

ent
w

ithin
w

hich
the

physicalentity/tw
in

exists
V

irtualEnvironm
ent

T
he

environm
ent

w
ithin

w
hich

the
virtualentity/tw

in
exists

State
T

he
m

easured
valuesforallparam

eterscorresponding
to

the
physical/virtualentity/tw

in
and

its
environm

ent
M

etrology
T

he
act

ofm
easuring

the
state

ofthe
physical/virtualentity/tw

in
R

ealisation
T

he
act

ofchanging
the

state
ofthe

physical/virtualentity/tw
in

Tw
inning

T
he

act
ofsynchronising

the
states

ofthe
physicaland

virtualentity/tw
in

Tw
inning

R
ate

T
he

rate
at

w
hich

tw
inning

occurs
Physical-to-V

irtualC
onnection/Tw

inning
T

he
data

connections/process
of

m
easuring

the
state

of
the

physical
entity/tw

in/environm
ent

and
realising

that
state

in
the

virtualentity/tw
in/environm

ent
V

irtual-to-PhysicalC
onnection/Tw

inning
T

he
data

connections/processofm
easuring

the
state

ofthe
virtualentity/tw

in/environm
entand

realising
that

state
in

the
physicalentity/tw

in/environm
ent

PhysicalProcesses
T

he
processesw

ithin
w

hich
the

physicalentity/tw
in

isengaged,and/orthe
processesacting

w
ith

or
upon

the
physicalentity/tw

in
V

irtualProcesses
T

he
processes

w
ithin

w
hich

the
virtualentity/tw

in
is

engaged,and/or
the

processes
acting

w
ith

or
upon

the
virtualentity/tw

in

Appendix B

Experiment plots

(a) Complete results of the experiment scenario (b) Results for small message sizes

Figure B.1 Results of the TCP endpoint latency experiments

Figure B.2 Effects of static and dynamic scene complexity on the real-time factor in Gazebo

107

108 Experiment plots

(a) CPU cores utilization (static scene)

(b) CPU cores utilization (dynamic scene)

Figure B.3 CPU cores utilization measured during the static and dynamic scene experiments

109

(a) CPU utilization (static scene) (b) CPU utilization (dynamic scene)

(c) GPU utilization (static scene) (d) GPU utilization (dynamic scene)

Figure B.4 CPU and GPU utilization measured during the static and dynamic scene experiments

110 Experiment plots

(a) RAM used (static scene) (b) RAM used (dynamic scene)

(c) VRAM used (static scene) (d) VRAM used (dynamic scene)

(e) GPU temperature (static scene) (f) GPU temperature (dynamic scene)

Figure B.5 RAM and VRAM usage meassurements and GPU temperature during the static and
dynamic scene experiments

111

(a) Frame rate (static scene) (b) Frame rate (dynamic scene)

(c) Frame rate difference (static scene) (d) Frame rate difference (dynamic scene)

Figure B.6 Frame rate measured during the static and dynamic scene experiments with a difference
compared to Gazebo’s frame rate

112 Experiment plots

(a) CPU cores utilization (dynamic scene, scaled time)

(b) CPU utilization (dynamic scene, scaled time) (c) GPU utilization (dynamic scene, scaled time)

Figure B.7 CPU and GPU utilization measured during the dynamic scene experiment with Unity
scaled down the time based on meassured RTF in Gazebo

113

(a) GPU temperature (dynamic scene, scaled time)

(b) RAM used (dynamic scene, scaled time) (c) VRAM used (dynamic scene, scaled time)

Figure B.8 RAM and VRAM usage meassurements and GPU temperature during the dynamic scene
experiment with Unity scaled down the time based on meassured RTF in Gazebo

(a) Frame rate (dynamic scene, scaled time) (b) Frame rate difference (dynamic scene, scaled time)

Figure B.9 Frame rate measured during the dynamic scene experiment with Unity scaled down
the time based on meassured RTF in Gazebo with a difference compared to Gazebo’s frame rate (less
configurations tested for Unity on Windows)

114 Experiment plots

(a) CPU cores utilization (Unity time scale)

(b) CPU utilization (Unity time scale) (c) GPU utilization (Unity time scale)

Figure B.10 CPU and GPU utilization measured during the dynamic scene experiments comparing
Unity with and without scaled time

115

(a) GPU temperature (Unity time scale)

(b) RAM used (Unity time scale) (c) VRAM used (Unity time scale)

Figure B.11 RAM and VRAM usage meassurements and GPU temperature during the dynamic scene
experiments comparing Unity with and without scaled time

(a) Frame rate (Unity time scale) (b) Frame rate difference (Unity time scale)

Figure B.12 Frame rate measured during the dynamic scene experiments comparing Unity with and
without scaled time with a difference compared to Gazebo’s frame rate (less configurations tested for
Unity on Windows with scaled time)

116 Experiment plots

(a) CPU cores utilization (multi-robot)

(b) CPU utilization (multi-robot) (c) GPU utilization (multi-robot)

Figure B.13 CPU and GPU utilization measured during the multi-robot simulation experiments

117

(a) GPU temperature (multi-robot)

(b) RAM used (multi-robot) (c) VRAM used (multi-robot)

Figure B.14 RAM and VRAM usage meassurements and GPU temperature during the multi-robot
simulation experiments

118 Experiment plots

(a) Frame rate (multi-robot)

(b) Frame rate (multi-robot, zoomed) (c) Frame rate difference (multi-robot)

Figure B.15 Frame rate measured during the multi-robot simulation experiments with a difference
compared to Gazebo’s frame rate

Bibliography

1. Robots and their Arms [online]. 2023. [visited on 2023-05-04]. Available from: http://
infolab.stanford.edu/pub/voy/museum/pictures/display/1-Robot.htm.

2. VIRGALA, Ivan; KELEMEN, Michal; PRADA, Erik. Kinematics of Serial Manipulators.
In: VOLOŞENCU, Constantin; KÜÇÜK, Serdar; GUERRERO, José; VALERO, Oscar
(eds.). Automation and Control. Rijeka: IntechOpen, 2020, chap. 7. Available from doi:
10.5772/intechopen.93138.

3. BOŽEK, Pavol. Robot path optimization for spot welding applications in automotive
industry. Tehnicki vjesnik/Technical Gazette. 2013, vol. 20, no. 5, pp. 913–917.

4. PELLEGRINELLI, Stefania; PEDROCCHI, Nicola; TOSATTI, Lorenzo Molinari; FIS-
CHER, Anath; TOLIO, Tullio. Multi-robot spot-welding cells for car-body assembly: De-
sign and motion planning. Robotics and Computer-Integrated Manufacturing. 2017, vol. 44,
pp. 97–116. issn 0736-5845. Available from doi: https://doi.org/10.1016/j.rcim.
2016.08.006.

5. PÉREZ, Rodrigo; GUTIÉRREZ, Santiago C; ZOTOVIC, Ranko. A study on robot arm
machining: Advance and future challenges. Annals of DAAAM & Proceedings. 2018, vol. 29.

6. ABBAS, Adel T; ALY, Mohamed F; HAMZA, Karim. Optimum drilling path planning
for a rectangular matrix of holes using ant colony optimisation. International Journal of
Production Research. 2011, vol. 49, no. 19, pp. 5877–5891.

7. GLEESON, Daniel; JAKOBSSON, Stefan; SALMAN, Raad; EKSTEDT, Fredrik; SAND-
GREN, Niklas; EDELVIK, Fredrik; CARLSON, Johan S.; LENNARTSON, Bengt. Gen-
erating Optimized Trajectories for Robotic Spray Painting. IEEE Trans Autom. Sci. Eng.
2022, vol. 19, no. 3, pp. 1380–1391. Available from doi: 10.1109/TASE.2022.3156803.

8. GASPARETTO, Alessandro; VIDONI, Renato; PILLAN, Daniele; SACCAVINI, Ennio.
Automatic Path and Trajectory Planning for Robotic Spray Painting. In: ROBOTIK 2012
- Proceedings for the conference of ROBOTIK 2012, 7th German Conference on Robotics,
21-22 May 2012, International Congress Center Munich (ICM) in conjunction with AU-
TOMATICA, Munich, Germany. VDE-Verlag, 2012. Available also from: http://www.
vde-verlag.de/proceedings-de/453418039.html.

9. MONKMAN, Gareth J; HESSE, Stefan; STEINMANN, Ralf; SCHUNK, Henrik. Robot
grippers. John Wiley & Sons, 2007.

10. CHOSET, Howie; LYNCH, Kevin M.; HUTCHINSON, Seth; KANTOR, George; BUR-
GARD, Wolfram; KAVRAKI, Lydia; THRUN, Sebastian. Principles of Robot Motion:
Theory, Algorithms, and Implementations. MIT Press, 2005. isbn 0262033275.

11. GREGORY, Jason. Game engine architecture. crc Press, 2018.

119

http://infolab.stanford.edu/pub/voy/museum/pictures/display/1-Robot.htm
http://infolab.stanford.edu/pub/voy/museum/pictures/display/1-Robot.htm
https://doi.org/10.5772/intechopen.93138
https://doi.org/https://doi.org/10.1016/j.rcim.2016.08.006
https://doi.org/https://doi.org/10.1016/j.rcim.2016.08.006
https://doi.org/10.1109/TASE.2022.3156803
http://www.vde-verlag.de/proceedings-de/453418039.html
http://www.vde-verlag.de/proceedings-de/453418039.html

120 Bibliography

12. LAVALLE, Steven M. Planning Algorithms. Cambridge University Press, 2006. isbn 9780511546877.
Available from doi: 10.1017/CBO9780511546877.

13. KAVRAKI, Lydia E; LAVALLE, Steven M. Motion planning. In: Springer handbook of
robotics. Springer, 2016, pp. 139–162.

14. GRIEVES, Michael. Digital twin: manufacturing excellence through virtual factory repli-
cation. White paper. 2014, vol. 1, no. 2014, pp. 1–7.

15. JONES, David; SNIDER, Chris; NASSEHI, Aydin; YON, Jason; HICKS, Ben. Charac-
terising the Digital Twin: A systematic literature review. CIRP Journal of Manufacturing
Science and Technology. 2020, vol. 29, pp. 36–52.

16. LIU, Mengnan; FANG, Shuiliang; DONG, Huiyue; XU, Cunzhi. Review of digital twin
about concepts, technologies, and industrial applications. Journal of Manufacturing Sys-
tems. 2021, vol. 58, pp. 346–361.

17. LIANG, Ci-Jyun; MCGEE, Wes; MENASSA, Carol; KAMAT, Vineet. Bi-Directional
Communication Bridge for State Synchronization between Digital Twin Simulations and
Physical Construction Robots. In: 2020. Available from doi: 10.22260/ISARC2020/0205.

18. EREZ, Tom; TASSA, Yuval; TODOROV, Emanuel. Simulation tools for model-based
robotics: Comparison of bullet, havok, mujoco, ode and physx. In: 2015 IEEE international
conference on robotics and automation (ICRA). IEEE, 2015, pp. 4397–4404.

19. RÖNNAU, Arne; SUTTER, F; HEPPNER, Georg; OBERLÄNDER, Jan; DILLMANN,
Rüdiger. Evaluation of physics engines for robotic simulations with a special focus on the
dynamics of walking robots. In: 2013 16th International Conference on Advanced Robotics
(ICAR). IEEE, 2013, pp. 1–7.

20. BOEING, Adrian; BRÄUNL, Thomas. Evaluation of real-time physics simulation systems.
In: Proceedings of the 5th international conference on Computer graphics and interactive
techniques in Australia and Southeast Asia. 2007, pp. 281–288.

21. NVIDIA CORPORATION. PhysX SDK [online]. 2023. [visited on 2023-03-18]. Available
from: https://developer.nvidia.com/physx-sdk.

22. SMITH, Russell. Open Dynamics Engine [online]. 2008. [visited on 2023-04-01]. Available
from: http://www.ode.org/.

23. COUMANS, Erwin. Bullet Real-Time Physics Simulation [online]. 2013. [visited on 2023-
04-01]. Available from: https://pybullet.org/.

24. TECH, Georgia; UNIVERSITY, Carnegie Mellon. Dynamic Animation and Robotics Toolkit
[online]. 2012. [visited on 2023-04-01]. Available from: https://dartsim.github.io/.

25. SHERMAN, Michael; EASTMAN, Peter. Simbody: Multibody Physics API [online]. 2012.
[visited on 2023-04-01]. Available from: https://simtk.org/projects/simbody.

26. PYO, Yoonseok; CHO, Hancheol; JUNG, Leon; LIM, Darby. ROS Robot Programming
(English). ROBOTIS, 2017. isbn 9791196230715. Available also from: http://community.
robotsource.org/t/download-the-ros-robot-programming-book-for-free/51.

27. QUIGLEY, Morgan; CONLEY, Ken; GERKEY, Brian; FAUST, Josh; FOOTE, Tully;
LEIBS, Jeremy; WHEELER, Rob; NG, Andrew Y, et al. ROS: an open-source Robot
Operating System. In: ICRA workshop on open source software. Kobe, Japan, 2009, vol. 3,
p. 5. No. 3.2.

28. MACENSKI, Steven; FOOTE, Tully; GERKEY, Brian; LALANCETTE, Chris; WOODALL,
William. Robot Operating System 2: Design, architecture, and uses in the wild. Science
Robotics. 2022, vol. 7, no. 66, eabm6074. Available from doi: 10.1126/scirobotics.
abm6074.

https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.22260/ISARC2020/0205
https://developer.nvidia.com/physx-sdk
http://www.ode.org/
https://pybullet.org/
https://dartsim.github.io/
https://simtk.org/projects/simbody
http://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51
http://community.robotsource.org/t/download-the-ros-robot-programming-book-for-free/51
https://doi.org/10.1126/scirobotics.abm6074
https://doi.org/10.1126/scirobotics.abm6074

Bibliography 121

29. OPEN ROBOTICS. ROS 2 Documentation [online]. [visited on 2023-04-06]. Available
from: https://docs.ros.org/en/humble/index.html.

30. ROS-INDUSTRIAL REVISION. Using rqt Tools for Analysis [online]. 2017. [visited on
2023-05-03]. Available from: https://industrial-training-master.readthedocs.io/
en/melodic/_source/session6/Using-rqt-tools-for-analysis.html.

31. OPEN ROBOTICS. Overview and usage of RQt [online]. [visited on 2023-04-08]. Available
from: https://docs.ros.org/en/humble/Concepts/About-RQt.html.

32. QT GROUP. Qt Framework [online]. [visited on 2023-04-08]. Available from: https://
www.qt.io/product/framework.

33. OPEN ROBOTICS. rqt: Package Sumary [online]. [visited on 2023-04-08]. Available from:
http://wiki.ros.org/rqt.

34. OPEN ROBOTICS. RViz [online]. [visited on 2023-04-08]. Available from: http://wiki.
ros.org/rviz.

35. PICKNIK ROBOTICS. MoveIt Homepage [online]. [visited on 2023-04-08]. Available from:
https://moveit.ros.org/.

36. COLEMAN, David; SUCAN, Ioan; CHITTA, Sachin; CORRELL, Nikolaus. Reducing the
Barrier to Entry of Complex Robotic Software: a MoveIt! Case Study. 2014. Available from
arXiv: 1404.3785 [cs.RO].

37. ŞUCAN, Ioan A.; MOLL, Mark; KAVRAKI, Lydia E. The Open Motion Planning Library.
IEEE Robotics & Automation Magazine. 2012, vol. 19, no. 4, pp. 72–82. Available from
doi: 10.1109/MRA.2012.2205651. https://ompl.kavrakilab.org.

38. SCHULMAN, John; HO, Jonathan; LEE, Alex X; AWWAL, Ibrahim; BRADLOW, Henry;
ABBEEL, Pieter. Finding locally optimal, collision-free trajectories with sequential convex
optimization. In: Robotics: science and systems. Berlin, Germany, 2013, vol. 9, pp. 1–10.
No. 1.

39. PICKNIK ROBOTICS. Pilz Industrial Motion Planner [online]. [visited on 2023-04-08].
Available from: https://ros- planning.github.io/moveit_tutorials/doc/pilz_
industrial_motion_planner/pilz_industrial_motion_planner.html.

40. PICKNIK ROBOTICS. moveit2 [online]. GitHub [visited on 2023-04-08]. Available from:
https://github.com/ros-planning/moveit2.

41. KOENIG, Nathan; HOWARD, Andrew. Design and Use Paradigms for Gazebo, An Open-
Source Multi-Robot Simulator. In: IEEE/RSJ International Conference on Intelligent
Robots and Systems. Sendai, Japan, 2004, pp. 2149–2154.

42. OGRE3D TEAM. Object-Oriented Graphics Rendering Engine cite [online]. 2008. [visited
on 2023-04-13]. Available from: https://www.ogre3d.org/.

43. PITONAKOVA, Lenka; GIULIANI, Manuel; PIPE, Anthony; WINFIELD, Alan. Feature
and performance comparison of the V-REP, Gazebo and ARGoS robot simulators. In:
Towards Autonomous Robotic Systems: 19th Annual Conference, TAROS 2018, Bristol,
UK July 25-27, 2018, Proceedings 19. Springer, 2018, pp. 357–368.

44. DE MELO, Mirella Santos Pessoa; SILVA NETO, José Gomes da; DA SILVA, Pedro Jorge
Lima; TEIXEIRA, João Marcelo Xavier Natario; TEICHRIEB, Veronica. Analysis and
comparison of robotics 3d simulators. In: 2019 21st Symposium on Virtual and Augmented
Reality (SVR). IEEE, 2019, pp. 242–251.

45. ROHMER, Eric; SINGH, Surya PN; FREESE, Marc. V-REP: A versatile and scalable
robot simulation framework. In: 2013 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 2013, pp. 1321–1326. www.coppeliarobotics.com.

https://docs.ros.org/en/humble/index.html
https://industrial-training-master.readthedocs.io/en/melodic/_source/session6/Using-rqt-tools-for-analysis.html
https://industrial-training-master.readthedocs.io/en/melodic/_source/session6/Using-rqt-tools-for-analysis.html
https://docs.ros.org/en/humble/Concepts/About-RQt.html
https://www.qt.io/product/framework
https://www.qt.io/product/framework
http://wiki.ros.org/rqt
http://wiki.ros.org/rviz
http://wiki.ros.org/rviz
https://moveit.ros.org/
https://arxiv.org/abs/1404.3785
https://doi.org/10.1109/MRA.2012.2205651
https://ompl.kavrakilab.org
https://ros-planning.github.io/moveit_tutorials/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html
https://ros-planning.github.io/moveit_tutorials/doc/pilz_industrial_motion_planner/pilz_industrial_motion_planner.html
https://github.com/ros-planning/moveit2
https://www.ogre3d.org/

122 Bibliography

46. MICHEL, Olivier. Cyberbotics ltd. webots™: professional mobile robot simulation. Inter-
national Journal of Advanced Robotic Systems. 2004, vol. 1, no. 1, p. 5.

47. PINCIROLI, Carlo; TRIANNI, Vito; O’GRADY, Rehan; PINI, Giovanni; BRUTSCHY,
Arne; BRAMBILLA, Manuele; MATHEWS, Nithin; FERRANTE, Eliseo; DI CARO, Gi-
anni; DUCATELLE, Frederick, et al. ARGoS: a modular, parallel, multi-engine simulator
for multi-robot systems. Swarm intelligence. 2012, vol. 6, pp. 271–295.

48. UNITY TECHNOLOGIES. Unity homepage [online]. 2023. [visited on 2023-03-16]. Avail-
able from: https://unity.com/.

49. HAAS, John K. A history of the unity game engine. Diss. Worcester Polytechnic Institute.
2014, vol. 483, no. 2014, p. 484.

50. UNITY TECHNOLOGIES. Install the Unity Hub [online]. 2021. [visited on 2023-03-16].
Available from: https://docs.unity3d.com/hub/manual/InstallHub.html.

51. CATTO, Erin. Box2D [online]. 2023. [visited on 2023-03-18]. Available from: https://
box2d.org/.

52. DEANE, Ian. Bullet Physics For Unity [online]. 2017. [visited on 2023-03-25]. Available
from: https://assetstore.unity.com/packages/tools/physics/bullet-physics-
for-unity-62991.

53. MUJOCO. MuJoCo Documentation: Unity Plug-in [online]. [visited on 2023-03-25]. Avail-
able from: https://mujoco.readthedocs.io/en/latest/unity.html.

54. JULIANI, Arthur; BERGES, Vincent-Pierre; TENG, Ervin; COHEN, Andrew; HARPER,
Jonathan; ELION, Chris; GOY, Chris; GAO, Yuan; HENRY, Hunter; MATTAR, Mar-
wan; LANGE, Danny. Unity: A general platform for intelligent agents. arXiv preprint
arXiv:1809.02627. 2020.

55. UNITY TECHNOLOGIES. Order of execution for event functions [online]. 2021. [visited
on 2023-03-21]. Available from: https://docs.unity3d.com/Manual/ExecutionOrder.
html.

56. UNITY TECHNOLOGIES. Choose the plan that is right for you [online]. 2023. [visited
on 2023-03-16]. Available from: https://store.unity.com/compare-plans.

57. CARPIN, Stefano; LEWIS, Mike; WANG, Jijun; BALAKIRSKY, Stephen; SCRAPPER,
Chris. USARSim: a robot simulator for research and education. In: Proceedings 2007 IEEE
International Conference on Robotics and Automation. 2007, pp. 1400–1405. Available from
doi: 10.1109/ROBOT.2007.363180.

58. OHASHI, Osamu; OCHIAI, Eiji; KATO, Yuka. A Remote Control Method for Mobile
Robots Using Game Engines. In: 2014 28th International Conference on Advanced In-
formation Networking and Applications Workshops. 2014, pp. 79–84. Available from doi:
10.1109/WAINA.2014.23.

59. BARTNECK, Christoph; SOUCY, Marius; FLEURET, Kevin; SANDOVAL, Eduardo B.
The robot engine—Making the unity 3D game engine work for HRI. In: 2015 24th IEEE
International Symposium on Robot and Human Interactive Communication (RO-MAN).
IEEE, 2015, pp. 431–437.

60. SITA, Enrico; HORVÁTH, Csongor Márk; THOMESSEN, Trygve; KORONDI, Péter;
PIPE, Anthony G. Ros-unity3d based system for monitoring of an industrial robotic pro-
cess. In: 2017 IEEE/SICE International Symposium on System Integration (SII). IEEE,
2017, pp. 1047–1052.

61. PAN, Junhao; ZHUO, Yong; HOU, Liang; BU, Xiangjian. Research on simulation system
of welding robot in Unity3d. In: Proceedings of the 15th ACM SIGGRAPH Conference on
Virtual-Reality Continuum and Its Applications in Industry-Volume 1. 2016, pp. 107–110.

https://unity.com/
https://docs.unity3d.com/hub/manual/InstallHub.html
https://box2d.org/
https://box2d.org/
https://assetstore.unity.com/packages/tools/physics/bullet-physics-for-unity-62991
https://assetstore.unity.com/packages/tools/physics/bullet-physics-for-unity-62991
https://mujoco.readthedocs.io/en/latest/unity.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://docs.unity3d.com/Manual/ExecutionOrder.html
https://store.unity.com/compare-plans
https://doi.org/10.1109/ROBOT.2007.363180
https://doi.org/10.1109/WAINA.2014.23

Bibliography 123

62. KUTS, Vladimir; OTTO, Tauno; TÄHEMAA, Toivo; BONDARENKO, Yevhen. Digital
twin based synchronised control and simulation of the industrial robotic cell using virtual
reality. Journal of Machine Engineering. 2019, vol. 19, no. 1, pp. 128–145.

63. CODD-DOWNEY, Robert; FOROOSHANI, P Mojiri; SPEERS, Andrew; WANG, Hui;
JENKIN, Michael. From ROS to unity: Leveraging robot and virtual environment middle-
ware for immersive teleoperation. In: 2014 IEEE International Conference on Information
and Automation (ICIA). IEEE, 2014, pp. 932–936.

64. WHITNEY, David; ROSEN, Eric; ULLMAN, Daniel; PHILLIPS, Elizabeth; TELLEX,
Stefanie. Ros reality: A virtual reality framework using consumer-grade hardware for ros-
enabled robots. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2018, pp. 1–9.

65. HÖNIG, Wolfgang; MILANES, Christina; SCARIA, Lisa; PHAN, Thai; BOLAS, Mark;
AYANIAN, Nora. Mixed reality for robotics. In: 2015 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). 2015, pp. 5382–5387. Available from doi: 10.
1109/IROS.2015.7354138.

66. LIU, Yuzhou; NOVOTNY, Georg; SMIRNOV, Nikita; MORALES-ALVAREZ, Walter;
OLAVERRI-MONREAL, Cristina. Mobile delivery robots: mixed reality-based simulation
relying on ros and unity 3D. In: 2020 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2020, pp. 15–20.

67. OPEN ROBOTICS. ros1 bridge [https://github.com/ros2/ros1 bridge]. GitHub, 2018 [vis-
ited on 2023-03-25].

68. ROBOT WEB TOOLS. rosbridge suite [online]. [visited on 2023-03-25]. Available from:
http://wiki.ros.org/rosbridge_suite.

69. HUSSEIN, Ahmed; GARCÍA, Fernando; OLAVERRI-MONREAL, Cristina. ROS and
Unity Based Framework for Intelligent Vehicles Control and Simulation. In: 2018 IEEE
International Conference on Vehicular Electronics and Safety (ICVES). 2018, pp. 1–6.
Available from doi: 10.1109/ICVES.2018.8519522.

70. SIEMENS. ros-sharp [online]. GitHub, 2018 [visited on 2023-03-25]. Available from: https:
//github.com/siemens/ros-sharp.

71. SIEMENS. ROS# [online]. [visited on 2023-03-25]. Available from: https://assetstore.
unity.com/packages/tools/physics/ros-107085.

72. UNITY TECHNOLOGIES. ROS TCP Connector [online]. GitHub, 2020 [visited on 2023-
03-29]. Available from: https://github.com/Unity-Technologies/ROS-TCP-Connector.

73. UNITY TECHNOLOGIES. URDF Importer [online]. GitHub, 2020 [visited on 2023-03-
29]. Available from: https://github.com/Unity-Technologies/URDF-Importer.

74. UNITY TECHNOLOGIES. Unity Robotics Hub [online]. GitHub, 2020 [visited on 2023-03-
29]. Available from: https://github.com/Unity-Technologies/Unity-Robotics-Hub.

75. UNITY TECHNOLOGIES. ROS TCP Endpoint [online]. GitHub, 2020 [visited on 2023-
03-29]. Available from: https://github.com/Unity-Technologies/ROS-TCP-Endpoint.

76. OVERMARS, Mark; YOYO GAMES. GameMaker [online]. 2023. [visited on 2023-03-18].
Available from: https://gamemaker.io/en.

77. ROTHAMEL, Tom. Ren’Py [online]. 2023. [visited on 2023-03-18]. Available from: https:
//www.renpy.org/.

78. RPG Maker [online]. 2023. [visited on 2023-03-18]. Available from: https://www.rpgmakerweb.
com/.

79. JONES, Chris. Adventure Game Studio [online]. 2023. [visited on 2023-03-18]. Available
from: https://www.adventuregamestudio.co.uk/.

https://doi.org/10.1109/IROS.2015.7354138
https://doi.org/10.1109/IROS.2015.7354138
http://wiki.ros.org/rosbridge_suite
https://doi.org/10.1109/ICVES.2018.8519522
https://github.com/siemens/ros-sharp
https://github.com/siemens/ros-sharp
https://assetstore.unity.com/packages/tools/physics/ros-107085
https://assetstore.unity.com/packages/tools/physics/ros-107085
https://github.com/Unity-Technologies/ROS-TCP-Connector
https://github.com/Unity-Technologies/URDF-Importer
https://github.com/Unity-Technologies/Unity-Robotics-Hub
https://github.com/Unity-Technologies/ROS-TCP-Endpoint
https://gamemaker.io/en
https://www.renpy.org/
https://www.renpy.org/
https://www.rpgmakerweb.com/
https://www.rpgmakerweb.com/
https://www.adventuregamestudio.co.uk/

124 Bibliography

80. EPIC GAMES. Unreal Engine [online]. 2023. [visited on 2023-03-18]. Available from:
https://www.unrealengine.com.

81. LINIETSKY, Juan; MANZUR, Ariel. Godot Engine [online]. 2023. [visited on 2023-03-18].
Available from: https://godotengine.org/.

82. EPIC GAMES. Unreal Engine 5.1 Documentation: Level Editor [online]. [visited on 2023-
03-26]. Available from: https://docs.unrealengine.com/5.1/en-US/level-editor-
in-unreal-engine/.

83. SHAH, Shital; DEY, Debadeepta; LOVETT, Chris; KAPOOR, Ashish. AirSim: High-
Fidelity Visual and Physical Simulation for Autonomous Vehicles. 2017. Available from
arXiv: 1705.05065 [cs.RO].

84. YOUNG, Parker; KYSAR, Sam; BOS, Jeremy P. Unreal as a simulation environment for
off-road autonomy. In: DUDZIK, Michael C.; JAMESON, Stephen M. (eds.). Autonomous
Systems: Sensors, Processing, and Security for Vehicles and Infrastructure 2020. SPIE,
International Society for Optics and Photonics, 2020, vol. 11415, 114150F. Available from
doi: 10.1117/12.2559006.

85. JIANG, Fan; HAO, Qi. Pavilion: Bridging Photo-Realism and Robotics. In: 2019 Interna-
tional Conference on Robotics and Automation (ICRA). IEEE, 2019, pp. 8285–8290.

86. LINIETSKY, Juan; MANZUR, Ariel. godot [online]. GitHub, 2014 [visited on 2023-03-26].
Available from: https://github.com/godotengine/godot.

87. RUDYVIC. ROS-Websocket [online]. GitHub, 2021 [visited on 2023-03-26]. Available from:
https://github.com/godotengine/godot.

88. FLYNN, Evan. godot [online]. GitHub, 2021 [visited on 2023-03-26]. Available from: https:
//github.com/flynneva/godot_ros.

89. SURYNEK, Pavel. RR1: Real Robot One - a DIY Desktop Robotic Arm [online]. 2022-06.
[visited on 2023-03-12]. Available from: https://hackaday.io/project/185958-rr1-
real-robot-one-a-diy-desktop-robotic-arm.

90. SURYNEK, Pavel. RR1 [https://github.com/surynek/RR1]. GitHub, 2022 [visited on
2022-11-10].

91. KUKA. KR 210 R2700 extra [online]. KUKA Deutschland GmbH, 2022 [visited on 2023-
03-24]. Available from: https://www.kuka.com/-/media/kuka-downloads/imported/
6b77eecacfe542d3b736af377562ecaa/0000182736_en.pdf.

92. FANUC. FANUC Robot M-800iA/60 [online]. Fanuc Corporation, 2022 [visited on 2023-03-
24]. Available from: https://www.fanuc.co.jp/en/product/catalog/pdf/robot/RM-
800iA(E)-01b.pdf.

93. HEIDEN, Eric; PALMIERI, Luigi; BRUNS, Leonard; ARRAS, Kai O.; SUKHATME,
Gaurav S.; KOENIG, Sven. Bench-MR: A Motion Planning Benchmark for Wheeled Mo-
bile Robots. IEEE Robotics and Automation Letters. 2021, vol. 6, no. 3, pp. 4536–4543.
Available from doi: 10.1109/LRA.2021.3068913.

94. CHEN, Jingkai; LI, Jiaoyang; HUANG, Yijiang; GARRETT, Caelan Reed; SUN, Dawei;
FAN, Chuchu; HOFMANN, Andreas G.; MUELLER, Caitlin; KOENIG, Sven; WILLIAMS,
Brian C. Cooperative Task and Motion Planning for Multi-Arm Assembly Systems. CoRR.
2022, vol. abs/2203.02475. Available from doi: 10.48550/arXiv.2203.02475.

95. ZHANG, Hejia; CHAN, Shao-Hung; ZHONG, Jie; LI, Jiaoyang; KOENIG, Sven; NIKO-
LAIDIS, Stefanos. A MIP-Based Approach for Multi-Robot Geometric Task-and-Motion
Planning. In: 18th IEEE International Conference on Automation Science and Engineer-
ing, CASE 2022, Mexico City, Mexico, August 20-24, 2022. IEEE, 2022, pp. 2102–2109.
Available from doi: 10.1109/CASE49997.2022.9926661.

https://www.unrealengine.com
https://godotengine.org/
https://docs.unrealengine.com/5.1/en-US/level-editor-in-unreal-engine/
https://docs.unrealengine.com/5.1/en-US/level-editor-in-unreal-engine/
https://arxiv.org/abs/1705.05065
https://doi.org/10.1117/12.2559006
https://github.com/godotengine/godot
https://github.com/godotengine/godot
https://github.com/flynneva/godot_ros
https://github.com/flynneva/godot_ros
https://hackaday.io/project/185958-rr1-real-robot-one-a-diy-desktop-robotic-arm
https://hackaday.io/project/185958-rr1-real-robot-one-a-diy-desktop-robotic-arm
https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/0000182736_en.pdf
https://www.kuka.com/-/media/kuka-downloads/imported/6b77eecacfe542d3b736af377562ecaa/0000182736_en.pdf
https://www.fanuc.co.jp/en/product/catalog/pdf/robot/RM-800iA(E)-01b.pdf
https://www.fanuc.co.jp/en/product/catalog/pdf/robot/RM-800iA(E)-01b.pdf
https://doi.org/10.1109/LRA.2021.3068913
https://doi.org/10.48550/arXiv.2203.02475
https://doi.org/10.1109/CASE49997.2022.9926661

Bibliography 125

96. BCN3D TECHNOLOGIES. BCN3D MOVEO: A fully Open Source 3D printed robot arm
[online]. 2016. [visited on 2023-03-12]. Available from: https://www.bcn3d.com/bcn3d-
moveo-the-future-of-learning-robotic-arm/.

97. PURDON, Kyla; SETATI, Tiro; MARAIS, Stephen. Manufacturing and Evaluation of the
Open-Source AR3 Robot Arm for Educational Uses. In: 2021 Rapid Product Development
Association of South Africa - Robotics and Mechatronics - Pattern Recognition Association
of South Africa (RAPDASA-RobMech-PRASA). 2021, pp. 01–05. Available from doi: 10.
1109/RAPDASA-RobMech-PRAS53819.2021.9829064.

98. ANNIN, Chris. Annin Robotics homepage [online]. 2016. [visited on 2023-03-12]. Available
from: https://www.anninrobotics.com/.

99. NIRYO. Niryo One Mechanical Specifications [online]. 2018. [visited on 2023-03-24]. Avail-
able from: https://ozrobotics.com/wp- content/uploads/2020/11/Niryo- One-
Mechanical-Specifications.pdf.

100. NANOTEC. SCA5618 – Stepper motor – NEMA 23 [online]. 2023. [visited on 2023-03-14].
Available from: https://en.nanotec.com/products/2749-nema-23-stepper-motor-
sca5618.

101. NANOTEC. ST4118 – Stepper motor – NEMA 17 [online]. 2023. [visited on 2023-03-14].
Available from: https://en.nanotec.com/products/250- st4118- stepper- motor-
nema-17.

102. ERRICHELLO, Robert. Herringbone Gears. In: Encyclopedia of Tribology. Ed. by WANG,
Q. Jane; CHUNG, Yip-Wah. Boston, MA: Springer US, 2013, pp. 1638–1639. isbn 978-0-
387-92897-5. Available from doi: 10.1007/978-0-387-92897-5_583.

103. ARDUINO. Arduino Due Documentation [online]. 2023. [visited on 2023-03-12]. Available
from: https://docs.arduino.cc/hardware/due.

104. STEPPERONLINE. Digital Stepper Drive DM556T: User Manual [online]. 2017. [visited
on 2023-03-12]. Available from: https : / / www . omc - stepperonline . com / download /
DM556T.pdf.

105. R SHAMSHIRI, Redmond; HAMEED, Ibrahim A; PITONAKOVA, Lenka; WELTZIEN,
Cornelia; BALASUNDRAM, Siva K; J YULE, Ian; GRIFT, Tony E; CHOWDHARY,
Girish. Simulation software and virtual environments for acceleration of agricultural robotics:
Features highlights and performance comparison. 2018.

106. KONRAD, Anna. Simulation of Mobile Robots with Unity and ROS: A Case-Study and
a Comparison with Gazebo. In: 2019.

107. UNITY TECHNOLOGIES. Unity Learn [online]. 2023. [visited on 2023-04-29]. Available
from: https://learn.unity.com/.

https://www.bcn3d.com/bcn3d-moveo-the-future-of-learning-robotic-arm/
https://www.bcn3d.com/bcn3d-moveo-the-future-of-learning-robotic-arm/
https://doi.org/10.1109/RAPDASA-RobMech-PRAS53819.2021.9829064
https://doi.org/10.1109/RAPDASA-RobMech-PRAS53819.2021.9829064
https://www.anninrobotics.com/
https://ozrobotics.com/wp-content/uploads/2020/11/Niryo-One-Mechanical-Specifications.pdf
https://ozrobotics.com/wp-content/uploads/2020/11/Niryo-One-Mechanical-Specifications.pdf
https://en.nanotec.com/products/2749-nema-23-stepper-motor-sca5618
https://en.nanotec.com/products/2749-nema-23-stepper-motor-sca5618
https://en.nanotec.com/products/250-st4118-stepper-motor-nema-17
https://en.nanotec.com/products/250-st4118-stepper-motor-nema-17
https://doi.org/10.1007/978-0-387-92897-5_583
https://docs.arduino.cc/hardware/due
https://www.omc-stepperonline.com/download/DM556T.pdf
https://www.omc-stepperonline.com/download/DM556T.pdf
https://learn.unity.com/

126 Bibliography

Contents of enclosed SD card

readme.txt file with short description of SD card contents
builds................................builded Unity applications for Windows and Linux
src..directory with source codes and models

Models...................................Blender files and exported 3DBenchy meshes
ROS Docker....................................custom Docker image for ROS Humble
ROS Packages.................................all ROS packages implemented for RR1
thesis.................................directory with LATEX source codes of the thesis
Unity Projects..............................Unity projects files and implementations

text...directory with the text of the thesis
thesis.pdf.. the thesis text in PDF format

visdoc..............................directory with visual documentation of the prototype

127

	Acknowledgments
	Declaration
	Abstract
	Acronyms
	Introduction
	Aim of the thesis
	Expected outcome
	Structure of the thesis

	Theoretical background
	Robotic arms
	Joints
	End-effectors
	2R planar manipulator

	Simulation in 3D
	Scene representation
	Physics simulation

	Motion planning
	Workspace
	Configuration space
	Forward kinematics
	Inverse kinematics
	Motion planning problem

	Digital twin
	Motivation for digital twins
	Core characteristics
	Twinning
	Life cycle

	Physics engines
	Coordinate representation
	Precision-speed trade-off

	Technological background
	Robot operating system
	Motivation for robotic frameworks
	ROS 2 overview
	Concepts
	Unified robotics description format
	ros2_control
	Visualization tools
	MoveIt

	Gazebo
	Components
	SDF
	Alternatives

	Unity game engine
	Main modules
	Game loop
	Plans and licensing
	Unity for robotics
	Alternatives

	Robotic arm RR1
	Motivation
	RR1 in detail
	Overview
	Joints and actuators
	End-effector
	Control computer RB1

	Second prototype

	Prototype rationale
	Prototype motivation
	Choice of technologies
	Expectations
	Related work
	Simulator comparison for agricultural robotics
	Gazebo, V-REP, and Unity quantitative study
	Gazebo and Unity physics comparison

	Prototype realization
	Overview
	Development steps
	Gripper simulation

	ROS package organization
	rr1_bringup
	rr1_rviz
	rr1_gazebo
	rr1_control
	rr1_interfaces
	rr1_moveit_config
	rr1_experiments

	Robot description
	Model preparation
	RR1 description

	Robot control
	Overview
	Extending the URDF
	Controller configuration
	Sending control trajectories

	Gazebo simulation
	Starting Gazebo
	Spawning RR1
	Multi-robot simulation

	Unity simulation
	Unity-ROS integration
	Importing robot into Unity
	Unity robot controllers
	Other components
	Multi-robot simulation
	VR simulation

	Experiments
	Overview
	Performance metrics
	Workstation specifications
	Experiment and measurement methods

	Scenarios
	TCP endpoint latency
	Static scene
	Dynamic scene
	Multi-robot simulation

	Simulator comparison
	Scene manipulation
	Adding custom models
	VR capabilities
	Application issues
	Community support

	Performance evaluation
	TCP endpoint latency
	General performance
	Multi-robot simulation

	Summary of results

	Conclusion
	Review of the thesis aims
	Future work
	Transfer into practice

	Large figures
	Experiment plots
	Contents of enclosed SD card

