
Title:

Student:

Supervisor:

Study program:

Branch / specialization:

Department:

Validity:

Assignment of master’s thesis

Detection and removal of watermarks from image data

Bc. Tomáš Halama

Ing. Miroslav Čepek, Ph.D.

Informatics

Knowledge Engineering

Department of Applied Mathematics

until the end of summer semester 2022/2023

Instructions

Removal of visible watermarks from images is a well-known task in the image 

restoration domain. While some watermarks are easy to remove, others are more 

difficult and might require using a more sophisticated method. 

In recent years, there has been a breakthrough in applying various deep learning models 

to computer vision tasks.

The goal of this thesis is to explore deep learning approaches to watermark removal. 

Adapt and apply a selected deep learning method for detecting and removing 

watermarks to a supplied real-world dataset.

Steps:

1) Identify and analyze types of watermarks present in the dataset.

2) Survey available deep learning methods for detecting and removing watermarks.

3) Survey transformer networks suitable for watermark removal task.

4) Design and implement a deep learning model suitable for the watermark removal.

5) Prepare a training pipeline for image watermark removal using the supplied dataset.

6) Experimentally evaluate the performance of available models and the implemented 

method using PSNR, SSIM or similar metrics. Discuss the limitations of the implemented 

method.

Electronically approved by Ing. Magda Friedjungová, Ph.D. on 19 August 2022 in Prague.





Master’s thesis

DETECTION AND
REMOVAL OF
WATERMARKS FROM
IMAGE DATA

Bc. Tomáš Halama

Faculty of Information Technology
Department of Applied Mathematics
Supervisor: Ing. Miroslav Čepek, Ph.D.
April 20, 2023



Czech Technical University in Prague
Faculty of Information Technology
© 2023 Bc. Tomáš Halama. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Halama Tomáš. Detection and removal of watermarks from image data. Master’s
thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.



Contents

Acknowledgments vii

Declaration viii

Abstract ix

List of Acronyms x

Introduction 1
0.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
0.3 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Watermarks 3
1.1 What is a Watermark? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 History and Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Watermark Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Human Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Watermark Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.1 Image Inpainting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 State-of-the-Art 9
2.1 Survey on Watermark Removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Algorithmic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Deep Learning Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Survey on Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Core Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.3 Vision Transformer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.4 Transformers as Computer Vision Backbones . . . . . . . . . . . . . . . . 19
2.2.5 Task-Specific Transformers . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Dataset 23
3.1 Dataset Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Types of Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.1.2 Dataset Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Watermark Synthesis Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.1 Text Watermarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Colored Logo Watermarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.3 Ad Banner Watermarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.4 Dataset Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

iii



iv Contents

4 Transformer Architecture for Watermark Removal 29
4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1.1 Watermark Remover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.1.2 Watermark Refiner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.3 Discriminator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2 Training Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Dataset Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2 Loss Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.3 Composition of the Final Output . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.4 Hyperparameter Selection and Training . . . . . . . . . . . . . . . . . . . 38

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.1 Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.2 External Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Methodology 41
5.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Image Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.1.2 Watermark Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.1 Model Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2.2 Benchmarking Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.3 Training the Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2.4 Evaluation on Real-World Images . . . . . . . . . . . . . . . . . . . . . . . 45

6 Results and Analysis 47
6.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.1.2 Visualized Outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.1 Transformer Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2.2 Real-World Image Performance Disparity . . . . . . . . . . . . . . . . . . 50
6.2.3 Thresholded Mask . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2.4 Adversarial Training Impact . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.3 Limitations and Possible Improvements . . . . . . . . . . . . . . . . . . . . . . . 51
6.3.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

A Watermark Removal Visualization Samples 55

B Visualization for Näıve High-Resolution Inference 63

Enclosed Media Contents 71



List of Figures

1.1 Examples of watermark usage in images. . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Comparison of watermark perceptibility. . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 Visual comparison of watermark removal methods. . . . . . . . . . . . . . . . . . 12
2.2 Visualization of the transformer architecture. . . . . . . . . . . . . . . . . . . . . 15
2.3 Visualization of the ViT architecture. . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Partitioning of self-attention calculation windows of patches. . . . . . . . . . . . 20

3.1 Samples from the categories of images in the dataset. . . . . . . . . . . . . . . . . 24
3.2 Visualization of the dataset composition. . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Examples of watermarks and other visual noise present in the dataset. . . . . . . 26
3.4 Example of a generated text watermark. . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Example of a generated logo watermark. . . . . . . . . . . . . . . . . . . . . . . . 27
3.6 Example of a generated ad banner watermark. . . . . . . . . . . . . . . . . . . . 28
3.7 Example of combining all watermark types. . . . . . . . . . . . . . . . . . . . . . 28

4.1 Visualization of the two proposed architectures for the first stage of the model. . 30
4.2 Composition of the coarse result and the original image. . . . . . . . . . . . . . . 32
4.3 Architectural layout of the refinement network. . . . . . . . . . . . . . . . . . . . 33
4.4 Discriminator’s inputs and outputs visualized. . . . . . . . . . . . . . . . . . . . . 34

5.1 Validation metrics progress. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.1 Removal demonstration on a sample from the Cars Various dataset. . . . . . . . 48
6.2 Removal demonstration on a sample from the real-world dataset. . . . . . . . . . 49

A.1 Visualization of methods on a random sample from the Cars Text dataset. . . . . 56
A.2 Visualization of methods on a random sample from the Cars Text dataset. . . . . 57
A.3 Visualization of methods on a random sample from the Cars Various dataset. . . 58
A.4 Visualization of methods on a random sample from the Cars Various dataset. . . 59
A.5 Visualization of methods on a random sample from the CLWD dataset. . . . . . 60
A.6 Visualization of methods on a random sample from the CLWD dataset. . . . . . 61

B.1 Visualization for näıvely upscaled results on real images. . . . . . . . . . . . . . . 63

v



List of Tables

4.1 Hyperparameter values and their meanings . . . . . . . . . . . . . . . . . . . . . 38

5.1 Summary of the model variants used in experiments. . . . . . . . . . . . . . . . . 43
5.2 Summary of the datasets used for evaluation. . . . . . . . . . . . . . . . . . . . . 44

6.1 Evaluation metrics on the validation Cars Text dataset. . . . . . . . . . . . . . . 47
6.2 Evaluation metrics on the validation Cars Various dataset. . . . . . . . . . . . . 47
6.3 Evaluation metrics on the validation CLWD dataset. . . . . . . . . . . . . . . . . 48

vi



Author: Hey ChatGPT, let’s write a funny acknowledgements
section for my thesis. First, let’s thank my thesis supervisor, Ing.
Miroslav Čepek, Ph.D.
ChatGPT: Of course! Big thanks to Ing. Miroslav Čepek, Ph.D.,
the mastermind behind my research journey, who’s kept me sane
and on track despite the occasional science-induced meltdown.

Author: Nice, now let’s thank my girlfriend, Ivetka.
ChatGPT: To my fantastic girlfriend, Ivetka, thank you for your
unwavering support, and for mastering the art of decoding my
research rambles. You deserve a medal!

Author: Good! Now, let’s acknowledge my family.
ChatGPT: A huge shout-out to my family, the dream team that’s
always had my back, even when my thesis turned our home into a
fortress of books and papers.

Author: Great, now let’s thank my friends and the Žabla tým.
ChatGPT: To my friends and the unstoppable Žabla tým, thank
you for providing comic relief and reminding me that laughter truly
is the best medicine during thesis-writing marathons.

Author: Lastly, let’s thank the other researchers and their brilliant
work.
ChatGPT: And finally, a toast to the inspiring researchers whose
work lit the way for my own research. Your brilliance and creativity
have me convinced you’re part-time superheroes.

Author: Thanks, ChatGPT! This funny version is perfect for my
acknowledgements section.
ChatGPT: You’re welcome, Author! I’m glad I could help, don’t
forget to cite me [1]. Best of luck with your thesis!

vii



Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources of
information in accordance with the Guideline for adhering to ethical principles when elaborating
an academic final thesis. I acknowledge that my thesis is subject to the rights and obligations
stipulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that
the Czech Technical University in Prague has the right to conclude a license agreement on the
utilization of this thesis as a school work under the provisions of Article 60 (1) of the Act.

In Prague on April 20, 2023 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

viii



Abstract

Digital image watermarking is a widely used technique for protecting intellectual property or
authenticating digital media, but it can negatively impact image quality and usability. This mo-
tivates the need for removing watermarks from images, and deep learning presents a potential
solution. This thesis develops a deep learning method for watermark removal, including a survey
of existing techniques and the proposal of a novel architecture. The method’s performance is
evaluated in terms of watermark detection accuracy and image reconstruction quality.

Keywords deep learning, image editing, watermark removal, watermark, transformer, GAN

Abstrakt

Digitálńı obrazové vodoznaky jsou široce použ́ıvanou technikou pro ochranu duševńıho vlastnictv́ı
nebo ověřováńı digitálńıch médíı, ale mohou mı́t negativńı vliv na kvalitu a použitelnost obrázk̊u.
To motivuje potřebu odstraňovat vodoznaky z obrázk̊u a hluboké učeńı představuje potenciálńı
řešeńı. V této práci je vyvinutá metoda pro odstraňováńı vodoznak̊u pomoćı hlubokého učeńı,
včetně rešerše stávaj́ıćıch technik a návrhu architektury. Úspěšnost metody je vyhodnocena z
hlediska přesnosti detekce vodoznak̊u a kvality rekonstrukce p̊uvodńıch obrázk̊u.

Kĺıčová slova hluboké učeńı, úprava obrazu, odstraněńı vodoznaku, vodoznak, transformer,
GAN

ix



List of Acronyms

BCE Binary Cross-Entropy
BN Batch Normalization
cGAN Conditional Generative Adversarial Network
CLWD Colored Large-scale Watermark Dataset
CNN Convolutional Neural Network
CPU Central Processing Unit
GAN Generative Adversarial Network
GPU Graphics Processing Unit
IoU Intersection over Union
LVW Large-scale Visible Watermark Dataset
LSTM Long Short Term Memory
MAT Mask-Aware Transformer
MS COCO Microsoft Common Objects in Context
MLP Multi-Layer Perceptron
MSE Mean Squared Error
NLP Natural Language Processing
PSNR Peak Signal-to-Noise Ratio
PVT Pyramid Vision Transformer
RGB Red Green Blue (color model)
RNN Recurrent Neural Network
RMSE Root Mean Square Error
SLBR Self-calibrated Localization and Background Refinement
SN Spectral Normalization
SSIM Structural Similarity Index Measure
TAWR Transformer Architecture for Watermark Removal
ViT Vision Transformer
wBCE Weighted Binary Cross-Entropy
WDnet Watermark-Decomposition Network

x



Introduction

It is important to emphasize that removing watermarks from digital media may lead to copy-
right infringement. The presented research results are intended for analysis and improvement
of watermarking systems and are to be used within legal boundaries only.

0.1 Motivation
Watermarking is a widely used technique for protecting intellectual property or authenticating
digital media. However, the presence of watermarks can have negative impacts on image quality
and usability for image processing tasks, including various tasks of data mining or feature ex-
traction.

This motivates the need for removing watermarks from images in order to enhance their quality
and make them more suited for further use. By removing watermarks from images, it is also
possible to test the limits of the robustness of the watermarking methods and therefore provide
insights into their effectiveness and areas for improvement.

Deep learning’s success in image-based tasks such as classification, object detection, segmenta-
tion, and content generation suggests its suitability for solving the task of watermark removal.
Exploring this approach for our use case is intuitive, given the potential to learn from large
datasets.

0.2 Objectives
Our goal is to develop a method using deep neural networks to effectively detect and remove
watermarks without compromising image quality. The explicit objectives of this thesis are to:

survey existing watermark removal techniques and vision transformer models,

design a deep learning architecture for removing watermarks,

implement and train the proposed deep learning method in a suitable framework,

and evaluate its watermark detection and image reconstruction performance.

1



2 Introduction

0.3 Structure of the Thesis
This thesis is structured into six main chapters:

Chapter 1 provides an overview of the theory and mathematical foundations behind water-
marking. This chapter includes a review of relevant literature on the principles and techniques
of watermarking.

Chapter 2 contains a review of existing methods and models for detecting and removing
watermarks, as well as an overview of transformer networks and their applications in vision
tasks.

Chapter 3 describes the provided dataset and its processing. We discuss the characteristics of
the dataset, outline the preprocessing steps performed, and propose a watermarking process
required for synthesizing the training datasets.

Chapter 4 proposes a deep learning architecture for watermark removal. We describe the
design of the proposed model in detail, including its building blocks, their purpose, the utilized
loss functions and various other components required for training the model.

Chapter 5 describes the methodology and setup of the conducted experiments. This chapter
summarizes metrics used, the model variants, and their comparison scenarios, i.e. the datasets
used for evaluation and their characteristics.

Chapter 6 presents the results of our experiments using the proposed model. The chapter
includes experimental results and an analysis of the model’s performance in the detection
and reconstruction tasks. Additionally, we provide a discussion on the model’s limitations
and possible improvements.

This thesis is intended for a reader who has a respectable knowledge of the machine learning
field. Background information about key concepts can be found in other publications [2].



Chapter 1

Watermarks

1.1 What is a Watermark?

The general purpose of using watermarks is to embed additional information into an existing
carrier (such as a piece of art or digital media) without substantially damaging it. The moti-
vations and methods of such information attachment allow us to distinguish between different
areas such as steganography, watermarking, or other forms of general information hiding [3].

CONFI
DEN

TI
AL

Lauren Ipson

Lorem Ipsum

October 2017

1 Introduction

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a fauci-
bus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum
diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue
quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis
porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo
facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et
vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim
ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque
egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames
ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo.
Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum
fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac,
lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor.
In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit
amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu,
malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus
tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In
hac habitasse platea dictumst. Integer tempus convallis augue. Etiam facilisis.
Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed
gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim.
Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae
risus porta vehicula.

1

(a) Watermarked document (b) Colored organization logo (c) Copyright specification

Figure 1.1 Examples of watermark usage in images.

The main distinguishing characteristic between watermarking and other methods is whether the
original data is the main object of interest or whether it is merely a message carrier. If our main
goal is to send a hidden message while using the carrier data for masking the message’s exis-
tence, then we are dealing with steganography. In contrast, in the watermarking scenario, the
carrier object is our main point of interest and we can use the information embedded by a water-
mark to prove the origin or affiliation of the object without significantly distorting its appearance.

In summary, attaching messages to data can be done with the goal of [3]:

providing additional information about the data (watermarking),

hiding a message unrelated to the data (steganography),

or other inclusion of a message unrelated to the data, without necessarily hiding it.

3



4 Watermarks

1.1.1 History and Examples
The historical roots and first documented watermarks come from papermaking, where the paper
was made thinner and thus more translucent in certain areas. When the paper is exposed to
light, the thinner areas become lighter in color and form a watermark [4]. The term watermark
itself was first used in the 18th century and is not actually related to water, but rather to the
similarity between the appearance of watermarks and the smudges left on water-damaged pa-
per [5]. Ever since watermarks began to be used to indicate the authenticity of paper money,
counterfeits began to appear, causing a competition between watermarking and counterfeiting
methods [3].

Watermarks can be created in different ways depending on the form and medium of the object.
Nowadays, digital watermarks are very popular mainly because of copyright protection of media
content. The concept of digital watermarking can be extended to other kinds of data such as
audio [6, 7], video [8] or even neural networks [9, 10].

(a) Original image (b) Visible watermark (c) Invisible watermark

Figure 1.2 Comparison of watermark perceptibility.

1.2 Watermark Taxonomy
Watermark types can be grouped according to several criteria. Loosely following the classifica-
tion given in [11], a brief comparison of the different forms of watermarks will be demonstrated.
For the purposes of this work, only digital image watermarks are considered, but the described
general concepts apply across different forms of media.

Although not important for our purposes, other aspects for classifying watermarking methods
also exist, such as the bit capacity of the watermark, requirements for retrieving the embedded
information, or any relevant party’s awareness of the watermark’s presence [11, 12].

1.2.1 Human Perception
One of the possible classifications is determined by human perceptibility of the watermark. In
the case of image media, we distinguish between visible watermarks and invisible watermarks.
A comparison between the two can be seen in Figure 1.2, where Figure 1.2c demonstrates the
use of an invisible watermark. For this particular example, a steganographic tool [13] for hiding
files in images was used to encode a plaintext file containing the word watermark into the image
data. The information is imperceptible to the human eye, but can be recovered if needed.



Watermark Removal 5

The use of visible watermarks directly degrades the original image by obscuring it. To be effective,
a visible watermark ought to cover a large enough portion or critical area of the image to prevent
it from being easily removed by cropping. In contrast, invisible watermarks are not perceptible
to the user and usually do not significantly distort the image signal.

1.2.2 Robustness
An important aspect to consider is the ability of the watermark to withstand various damage
and modifications to the carrier. In an image, a robust watermark should be detectable even
after applying commonly used transformations such as scaling, compression, noise addition et
cetera [12]. Approaches where the watermark information is easily corrupted by minor distur-
bances are called fragile. It should be noted that the properties of perceptibility and robustness
are conflicting and mutually limiting [3, 12]. Creating a more robust watermark requires a more
significant change, which in turn leads to higher perceptibility of the watermark embedding in
the image.

1.3 Watermark Removal

As stated before, this work focuses solely on image data, specifically on removing visible water-
marks. While there are methods designed to perform robust imperceptible watermarking [12],
we will omit dealing with such methods in favor of focusing on robust visible watermarks. In
real life data, visible image watermarks appear in various forms and shapes. The most common
are diverse transparent elements such as logos, texts or geometric shapes overlaying the image.
Sometimes an opaque graphic inserted into the image can also be considered a watermark, as it
still follows the definition of a watermark described in Section 1.1. This type of watermarking
can be used in cases where the watermark form and shape blends in with the rest of the content
or is placed outside the main subject of the image and is not too visually disruptive.

Removing watermarks can be beneficial in several scenarios. As long as we own the copyright to
the content or are permitted to edit it in such a way, we can use watermark removal to improve
the visual quality of the content. Additionally, watermark removal methods enable media owners
to analyze the effectiveness of their own watermarking system for copyright protection. There
are various approaches of attacking a watermarked image, but historically this would require
significant manual human effort. Nowadays, various automated methods exist (see Section 2.1)
and their effectiveness is bound to how and what information they leverage to achieve a recon-
struction of the original unwatermarked image.

Manually removing a single visible watermark using common graphic editing software is usually
a feasible task for an experienced user. However, bulk automatic watermark removal on a larger
dataset is a significantly more difficult problem. One of the biggest challenges when trying to
automatically remove a watermark is finding it, as in the most general case, we do not know
where the watermark is, what it looks like and whether it is even present. As we can see, it is
essential to have at least an approximate understanding of the underlying watermarking process.

Once we are able to detect the watermark’s position and shape we can attempt to reconstruct the
image beneath. If the watermark is opaque, we are dealing with an image inpainting scenario, as
there is no information about the original data. For a transparent watermark, we can estimate
the watermark and its transparency level and attempt to recover the true original data. This
usually leads to a coarse result, but serves as a good baseline for further refinement [14, 15, 16].



6 Watermarks

1.3.1 Image Inpainting
Watermark removal and image inpainting share some similarities, as both involve replacing a
specific region of pixels in an image with a seamless and plausible replacement. A major break-
through in solving such tasks was made possible through the introduction of Generative Ad-
versarial Networks (GANs) [17, 18], which have greatly increased the perceptual quality of the
results.

However, one potential downside of using such techniques for watermark removal is that they are
typically user-guided, which is not compatible with our lack of knowledge about the watermark’s
position and shape [14]. Our problem is more similar to the blind inpainting problem [19, 20],
where we need to reconstruct a corrupted image without knowing which region is corrupted.
Usage of such a framework would implicitly require the model to estimate the location of the
corrupted region on its own. However, these methods generally do not assume any transparency
of the damage, which can lead to suboptimal results when dealing with transparent watermarks.

One potential solution to this problem is to develop a deep learning model that can automatically
estimate the damage mask and its transparency within an image. This model could use tech-
niques such as image segmentation to identify the watermark and determine its transparency.
By incorporating this information into the inpainting process, we could create more effective and
efficient algorithms for removing watermarks (see Section 2.1.2).

1.3.2 Problem Definition
Let us introduce the watermarking process using mathematical notation. Let X, W, M ∈ Rw×h

be the original unwatermarked image matrix, the watermark and an alpha mask for the water-
mark, respectively1. Additionally (as the elements of M describe the opacity percentage of the
watermark), 0 ≤ Mi,j ≤ 1 holds for all valid i, j.

Using the introduced matrix notation, watermarked image X̂ is then created as

X̂ = X ⊙ (1 − M) + W ⊙ M

or alternatively, following similar notation as [21], for any given particular pixel position (i, j)
we can write the relationship as

X̂i,j = (1 − Mi,j)Xi,j + Mi,jWi,j , (1.1)

which allows us to describe the inverse relationship as

Xi,j = X̂i,j − Mi,jWi,j

1 − Mi,j
.

This relationship is important for our use case, because it describes the watermark removal
process. To avoid understating the difficulty of the task, notice that in a real-world scenario, we
are given only the X̂ matrix and everything else is an unknown variable.

1For simplicity, we neglect that images usually have 3 channels for RGB values. These formulas can be trivially
extended to account for all channels at once.



Watermark Removal 7

1.3.2.1 Overlapping Watermarks
Due to possibly having multiple watermarks embedded in a single image, let us mathematically
describe the intuitive result of overlaying watermarks, i.e. watermarking an already watermarked
image. Equation 1.1 describes the image-watermark composition, let us reuse it for two water-
marks W ′, W ′′ with their respective masks M ′, M ′′. Firstly we apply the formula to a water-
marked image X̂, then we expand X̂ using the same formula and finally simplify the expression
and rearrange the terms.

ˆ̂
Xi,j = (1 − M ′′

i,j)X̂i,j + M ′′
i,jW ′′

i,j

ˆ̂
Xi,j = (1 − M ′′

i,j)((1 − M ′
i,j)Xi,j + M ′

i,jW ′
i,j) + M ′′

i,jW ′′
i,j

ˆ̂
Xi,j = (1 − M ′

i,j)(1 − M ′′
i,j)Xi,j + M ′

i,j(1 − M ′′
i,j)W ′

i,j + M ′′
i,jW ′′

i,j

As we can see, the information from the original image X gets multiplied by the complement of
both watermarks’ opacities. This goes in line with the intuition that there is less information
from the original image left after overlaying watermarks. This process could easily be repeated
to show similar relationship for an arbitrary number of watermarks.



8 Watermarks



Chapter 2

State-of-the-Art

This chapter provides a review of existing literature on watermark removal and vision transform-
ers. The works included are organized chronologically in order to demonstrate the evolution of
these methods.

2.1 Survey on Watermark Removal

In the following text, several methods for watermark removal are presented, starting with tradi-
tional algorithmic methods and following up with deep learning approaches.

2.1.1 Algorithmic Methods
Up until recently, watermark removal methods were limited to a single image scenario, without
learning from multiple examples [22, 23, 24]. These methods are mostly based on low-level fea-
tures (such as textures, edges, individual pixel colors etc.) without exploiting high-level semantic
information. While delivering promising results, recent breakthroughs in computer vision tasks
using deep learning would suggest a data-driven approach to be more generally applicable.

The authors of [21] propose a learning method of attacking watermarks through learning the
specific watermarking process. Under the assumption that all images have the same watermark,
the authors show that after collecting enough samples it is possible to isolate their watermarks
and use them to infer the embedding process. With this knowledge, the authors present a way to
invert the process, effectively allowing them to attack any previously unseen image with the same
watermark. This approach is highly dependent on nuances such as scale, image resolution, and
the watermarking process being exactly the same and deterministic. While the method proves to
be very effective for attacking stock images from public databases, it is unsuitable for arbitrary
watermark removal.

In a recent publication [25], a new interactive method for manipulating image data is introduced.
Unlike traditional methods, it doesn’t need any labeled training data as it’s based on building
a complete representation of the image using a morphological tree. This allows users to perform
various image editing tasks, including object editing, semantic segmentation and visible water-
mark removal. However, due to the need for user guidance and long preprocessing times, this
method is not suitable for large-scale use.

9



10 State-of-the-Art

2.1.2 Deep Learning Methods
Each section of the following text corresponds to a single publication on the watermark removal
topic. The vast majority of the deep learning methods presented rely on common convolutional
operations as the basic building block of the networks.

2.1.2.1 Large-Scale Visible Watermark Detection and Removal
One of the first methods to employ a large-scale dataset for the task is [26]. The authors introduce
the Large-Scale Visible Watermark Dataset (LVW), which was synthesized using tens of thou-
sands real-world images from the PASCAL VOC 2012 dataset [27] and 80 different gray-scale
watermarks. To show generalization of the method, the authors avoid using the same watermark
objects in training and testing subsets.

The proposed model is built as a straightforward two-stage architecture. The first stage detects
and locates the area of the image where the watermark was placed. The second part attempts to
reconstruct the original image from the cropped patch around the watermarked area as an image-
to-image translation using a convolutional encoder-decoder architecture based on U-Net [28].
While the original experiments were limited to single colored gray-scale watermarks, the model
showed very promising results.

2.1.2.2 Blind Visual Motif Removal
The approach introduced in Blind Visual Motif Removal (BVMR) [29] consists of using a single
encoder network to obtain a latent representation of the input followed by three parallel decoders,
where each serves a different purpose: one decoder outputs a full reconstruction of the image,
one outputs a binary mask specifying the watermarked pixels and one outputs an estimation of
the watermark.

In terms of the notation introduced in Section 1.3.2, the model tries to directly estimate all
of the matrices X, M and W from its input X̂. The final result is then composed using the
estimated mask to select pixels from either the input image X̂ or the reconstructed estimation of
X. The authors synthesized their own dataset, which included watermarks with either colored
text or simple clip-art images.

2.1.2.3 Photo-Realistic Visible Watermark Removal with cGAN
The authors of [30] present a GAN based solution aimed to reduce a noticeable loss of clarity
during watermark removal using previous methods. The essence of the approach lies in using the
generator and the discriminator networks, which are trained jointly and thus improve each other.
The generator is conditioned with a watermarked image on its input and is trained to output
the unwatermarked reconstruction as a convolutional image-to-image model. The discriminator
is a classifier trained to differentiate between real watermarked images and generator’s recon-
structions. Training this model using a conventional reconstruction loss, perceptual loss and
the mentioned adversarial loss leads to superior results compared to previous state-of-the-art.
While the authors mention improving the results with regards to real-world diversity of water-
marks, their results are shown only for the LVW dataset with 80 randomly scaled and positioned
gray-scale watermarks.



Survey on Watermark Removal 11

2.1.2.4 Two-Stage Visible Watermark Removal Architecture
Motivated by observing that there has been little work put into removing watermarks of colors
other than white, authors in [15] synthesized two datasets for their use case. One contained
transparent white watermarks, making it similar to LVW, while the other contained watermarks
with the color set to be the average color of the pixels the watermark is embedded into. The latter
approach leads to watermarks blending in with the background more seamlessly, thus making
them more difficult to detect and remove. Similarly to [30], the architecture is based on the
GAN architecture, but the authors present a more sophisticated generator due to recognition of
similarities to image inpainting. The generator is divided into two stages, where the first stage
serves only the purpose of watermark extraction and removal while the second stage is used as
a refining stage, using insights from the image inpainting task. In both settings, the proposed
method outperformed previous approaches. The datasets are not publicly available.

2.1.2.5 Split then Refine
A significant improvement for the quality of watermark removal was presented in [14]. Taking
inspiration from other works based on multi-task learning [31, 32, 33], the authors argue that
having the model learn to do multiple tasks at once might lead to an overall improvement in
performance compared to learning a single task. The name of the work is Split then Refine, which
indicates the model’s two-stage architecture. The multitask nature of the process is employed in
the first part of the network, the SplitNet. It comprises a shared encoder and three decoders for
each of the tasks. The weights of the first layers of the decoders are shared across all decoders,
but their importance is re-weighted through task-specific attentions.

The three tasks being solved jointly by the SplitNet are: watermark detection, watermark re-
moval and watermark recovery. The watermark detection task outputs a mask, the watermark
removal task outputs a reconstruction of the occluded image, and the watermark recovery task
outputs the estimation of the original watermark. This makes it architecturally similar to the
model presented in [29]. While the last task is not directly needed, authors show that providing
the model with additional information about the watermark’s original appearance during train-
ing and having the model learn to reconstruct it improves the performance for the other two
tasks. The second part of the network is called RefineNet and its purpose is to take the coarse
result (created by replacing the part of the input by the reconstruction in areas given by the
estimated watermark mask) and refine it with the goal of removing artifacts, improving textures
and giving an overall seamless reconstruction for the originally watermark area.

Since the training process utilizes additional new information compared to previous work, no
dataset had all the required information directly available. This led to the authors synthesizing
several novel datasets: LOGO-L, LOGO-H, LOGO-Gray and LOGO30K (based on the VAL2014
subset of the MS COCO dataset [34]). The first two datasets use colored watermarks and differ
in difficulty, namely by the relative sizes and opacities of the embedded watermarks. LOGO-Gray
is motivated by the observation that gray-scale watermarks are very common in the real world
and it is reasonable to evaluate the model in a setting focused on this scenario. The last dataset
is the largest and aims to be diverse regarding aspects such as watemark sizes, opacities and
locations. All of the mentioned datasets are publicly available1. The results of the experiments
on all of the evaluated scenarios suggest this approach to be vastly superior to previous works.

1https://github.com/vinthony/deep-blind-watermark-removal

https://github.com/vinthony/deep-blind-watermark-removal


12 State-of-the-Art

2.1.2.6 Watermark-Decomposition Network
It is not uncommon in scientific discoveries for multiple people to arrive at similar solutions to the
same problem through comparable approaches [35, 36]. Just one day after the Split then Refine
model [14] was released, the authors of [16] published a model with a very similar approach
(both for dataset generation and the architecture setup) called Watermark-Decomposition Net-
work (WDnet). Their model did not handle the multioutput from the first stage of the model as
intricately as [14] did and nearly all of the weights are shared among the output decoders, except
for the last output layer. This work’s two stages used for watermark removal and refinement are
called DecompNet and RefineNet. Their inputs, outputs and general role are nearly identical to
the previously mentioned model. In addition to this two-stage architecture, the authors intro-
duce a discriminator to supply an adversarial loss during the training.

Similarly as in the previous work, the authors needed to synthesize a new dataset, because
the publicly available LVW was unsuitable for their training pipeline. The dataset was named
Colored Large-scale Watermark Dataset (CLWD) and is presented as a successor to the LVW
dataset, as it contains images overlayed with 200 different colored watermarks. The dataset was
publicly released for further comparison2.

Since Split then Refine and WDnet were released at the same time, there was no direct comparison
available to judge which approach is better, and both of the approaches claimed to be a new
state-of-the-art method. It was not until [37] was published, where a direct comparison between
the two methods was made on WDnet’s CLWD dataset. Unfortunately, the authors of the
comparison found an error in the evaluation code for WDnet and subsequently discovered its
real performance to be significantly inferior to that of Split then Refine on its own dataset.

(a)
Input

(b)
Watermark

(c)
Original

(d)
SLBR

(e)
SplitRefine

(f)
BVMR

(g)
WDnet

(h)
cGAN

Figure 2.1 Visual comparison of watermark removal methods presented in [37].
Left to right: The watermarked image on the input, the embedded watermark, the original undamaged
image, SLBR [37], Split then Refine [14], BVMR [29], WDnet [16] and the cGAN approach from [30].

2https://github.com/MRUIL/WDNet

https://github.com/MRUIL/WDNet


Survey on Watermark Removal 13

2.1.2.7 Self-Calibrated Localization and Background Refinement
The most recent state-of-the-art method is called Visible Watermark Removal via Self-calibrated
Localization and Background Refinement (SLBR) [37] and it outperforms both [14] and [16] by
a significant margin. The experiments were evaluated on the LVW and CLWD datasets and
demonstrate the SLBR model outperforming all previously mentioned approaches in all consid-
ered metrics (for visual comparison, see Figure 2.1).

The main contributions of this method lie in additional information propagation using skip-
connections between the coarse and refinement stages, as well as between the watermark sepa-
ration tasks in the first stage.

Several novel architectural blocks are introduced, including a mechanism for refining the esti-
mated watermark mask and using it to guide the background reconstruction. The refinement
stage of the network is implemented via architecturally repeating the refining feature-fusing block
N times, which has been to shown to improve the result with growing size of N (the authors use
N = 3).

While the method has demonstrated superiority to previous approaches based on benchmarks
on publicly available datasets, and we consider it to be the current state-of-the-art method, it
requires a significantly more intricate architecture and is computationally more demanding.



14 State-of-the-Art

2.2 Survey on Transformers
Nowadays, many deep learning tasks are receiving new state-of-the-art results thanks to the
transformer model architecture and its derivatives [openai2023gpt4, kocian2021siamese, 38,
39, 40]. Originally designed for solving NLP problems without using recurrent relationships,
transformers proved to be able to model useful robust relationships and leverage more infor-
mation than previously possible. In its core lies the self-attention mechanism, which enables
modeling of pair-wise relationships between different parts of its input.

In order to be compatible with the architecture, the input is split into tokens of a fixed size
which serve as the base block for finding the relationships. For NLP tasks, the tokens are some
indivisible parts of a sentence such as letter n-grams, words, punctuation or special sequence
control symbols (delimiters, line breaks, et cetera). For computer vision, it is also possible
to employ similar concepts for image inputs. While there are some architectural adjustments
needed, the approach is proving to be competitive to traditional convolutional methods (CNN)
[38, 39, 41] in either performance, computational complexity or both.

2.2.1 Core Concepts
In the following sections, we will introduce the concepts behind the transformer architecture and
capture its evolution to the domain of computer vision and image processing.

2.2.1.1 Attention Mechanism
The name itself is very descriptive for the purpose of the mechanism, as its motivation lies in
introducing a way for machine learning methods to preserve and focus on important pieces of
information and put less of an emphasis on insignificant information.

While similar approaches were presented earlier, a major work [42] used attentional mecha-
nism for solving neural machine translation (demonstrated on French-English language pair).
The method is based on an sequence-to-sequence encoder-decoder architecture, where both the
encoder and the decoder are certain recurrent models (RNN). In previous works [43, 44], the
vector representation is the output of the encoder after processing the last input token, which
possibly leads to the vector encoding less information from the beginning of the input, as the
newly incorporated tokens might degrade previously encountered information. To solve this is-
sue, the authors present a method which builds a context vector for each of the input tokens and
enables the decoder network to “attend” to different input context vectors with different weights
for each output word. There are many methods for calculating the context vectors and weights,
but the general idea of weighing vector representations of input tokens proved to be very useful
as an enhancement to RNN models for overcoming their shortcomings.

More generally, given an input x split into discrete tokens xi and some vector embedding
c(xi) ∈ Rn, we can compute the importance wi of each xi in a given context. Usually we
require that

∑
i wi = 1, wi ∈ [0, 1], which is typically done using the softmax function. The final

output of the computation is then obtained as the convex combination of
∑

i wic(xi) ∈ Rn.

The input embedding function c is some trainable mapping, such as a dictionary map or a neural
network. The weights wi are recalculated in each output iteration, as each output token attends
to different locations of the input. There are many different ways of obtaining the attention
weights wi [45], but they are generally in the form of a scoring function between current output’s
hidden state and an embedding of the considered input token.



Survey on Transformers 15

Building upon success of the approach, new methods solving other related tasks using attention
were introduced, even related to computer vision. In [46] the authors present an image captioning
model, which uses attention mechanism to describe the contents of an image using natural
language. They used a CNN to extract a small-resolution feature map of the image, which was
then attended to during a RNN-based generation of the output text description.

2.2.1.2 Self-Attention
Originally introduced in [47], the authors show that attention is useful not only for attending
to the input when considering a particular output token, but also when relating different input
tokens against each other, giving rise to the self-attention mechanism. Using this idea jointly
with a LSTM network to solve tasks such as language modeling, sentiment analysis or natural
language inference, the authors are able to build general contextual representations for the input
sentences which perform on-par with or better than state-of-the-art methods at the time.

In practice, the self-attention module is a transformation from an input sequence of length n to
n context vectors, each calculated as the aforementioned convex combination. Its output can
encode both global and local relationships within the input sequence, as opposed to previously
modeling relationships between some context, i.e. the output sequence, and the input sequence.
This concept eventually proved very powerful and is a crucial component of transformer models.

2.2.2 Transformer

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 2.2 Visualization of the transformer architecture as presented in [48].

The attention mechanism proved to be a strong enhancement, but up until now, it still relied on
working jointly with a different neural architecture, usually a recurrent network. RNNs inher-
ently work in a sequential manner and are thus hard to effectively parallelize and scale.



16 State-of-the-Art

A notional revolution in the field occurred with release of the Attention is all you need [48] paper,
as it introduced the transformer architecture targeted towards NLP tasks, specifically sequence-
to-sequence language translation. The major change against previous efforts is that it relies
solely on relationships computed through attention mechanisms instead of recurrent information
flow. The setup of the architecture allows significantly higher parallelization, as the input is not
processed sequentially and the computation can be performed concurrently in all the positions.

2.2.2.1 Architecture
The network keeps the general encoder-decoder architecture, where the task of the encoder is
to consume input tokens x1, x2, ..., xn and output their vector representations z1, z2, ..., zn with
the goal of extracting useful features and relationships. The decoder’s task is to generate output
sequence y1, y2, ..., ym based on the encoder’s outputs in a sequential manner, which means that
other than considering all available zi values at once, it is also auto-regressively conditioned on
its own previous outputs.

As we can see in Figure 2.2, both encoder and decoder are built using common building blocks,
namely:

Input/Output embeddings – Learnable embeddings from the data domain (e.g. words)
to a vector representation.

Positional encoding – A method presented in the original paper to encode the token’s
position directly to its vector embedding, originally performed though adding specific sine or
cosine terms to the vector. This is required since its relative location to other tokens would
be lost in the self-attention calculation, which is undesirable as the semantics of the token
heavily depend on its location in the input sequence. There are other ways of dealing with
this problem in other use cases or domains [39, 49, 40].

(Masked) Multi-Head Attention – The crucial component which models attention rela-
tionships between all of its input’s locations. A single block of multi-head attention performs
multiple self-attention calculations, each head with different Q, K, V transformations (de-
scribed in Section 2.2.2.2). The goal of employing multiple heads is to increase the modeling
capacity of each layer and thus capture different sorts of relationships. The authors claim
this setup is superior to that of a single larger head with the same number of parameters.
Implementation-wise the handling of all the heads is performed within a single matrix, which
allows the computation to be more efficient. During the decoding phase, some of the com-
puted elements are zeroed out in order to prevent attending to tokens yet to be generated.

Feed Forward – A block consisting of a fully connected network with a nonlinear activation
function. It is typically placed after the self-attention calculation, as it serves the role of
compositing results of the previous computations in a non-linear manner, which is crucial for
building strong representations. There is a single set of neural weights used independently in
all of the input locations, which makes the calculation highly parallelizable.

Add & Norm – There is heavy usage of residual connections throughout the architecture.
These allow data from previous layers to be combined with outputs of current layers, with the
motivation of allowing the model to transfer previously learned representations into deeper
layers. The outputs are then normalized through a method outlined in [50] in order to improve
stability of training and reduce convergence times.

Linear & Softmax – In order for the decoder to be able to generate tokens, there is a linear
classifier with a softmax activation as the last layer before each decoder’s output, which tells
us the probabilities for outputting any given token (i.e. a probability distribution over indices
from a predefined dictionary).



Survey on Transformers 17

As can be seen in the visualization in Figure 2.2, the encoder block is architecturally repeated
N times until the final representation is built and the same applies for the decoder before out-
putting its result.

2.2.2.2 Query, Key and Value
Introduced along with the transformer model, a new interpretation and generalization was pre-
sented for the (self-)attention calculation. It is based on a loose analogy to database retrieval,
where we have a query to use as a search criteria, keys to match it against and values to return to
the user. For usage in attention computation, all three of these components are specific vectors,
obtained either as a direct embedding of an input/output token, or as a result of a previous
layers within the deep learning model.

For attention calculation with respect to a single location (meaning a single query), the semantics
are:

Query – The vector representing our current location or token of interest. The goal is to
produce weights wi that reflect the level of influence that each part of the data has relative
to the query.

Key – The key vectors represent the data we are attending to and are used for measuring
similarity with the query. The attention weights wi are calculated solely based on the query
and the keys. We usually require that queries and keys have the same dimension.

Value – The value vectors are coupled with the key vectors and they are the same dimension
as the output of the attention is. The overall result is the convex combination of value vectors
and attention weights.

Many different methods can be used for calculating the similarity between keys and values, but
a scaled dot-product was used in the original paper, i.e. the attention weights are a result of
softmax being applied to a dot-product of the query and keys, scaled by a certain factor related
to their dimension.

In order to perform multiple queries at once, we construct matrices Q, K, V as containing the col-
umn vectors of queries, keys and values, respectively. Then we can write the general attention
calculation presented in [48] as

Attention(Q, K, V) = softmax
(

QKT

√
k

)
V,

where k is the dimension of the query and key space.

For the self-attention setting, assuming we have a tokenized input x1, x2, ..., xn embedded into
m dimensional space, we can represent it as a matrix X ∈ Rn,m. We can perform three different
embeddings Q, K : Rm 7→ Rk, V : Rm 7→ Rv, where k is the query/key dimension size and v
is the values/output dimension size. Considering strictly linear transformations, each of these
mappings can be expressed as a matrix WQ, WK ∈ Rn,k, WV ∈ Rn,v. Finally, we can calculate
the overall self-attention value as

Self-Attention(X) = Attention(XWQ, XWK , XWV ).

The vector representations computed by stacking various attention-based layers with additional
non-linear transformations in the transformer lead to a language model with strong capabilities,
eventually achieving state-of-the-art results in many areas.



18 State-of-the-Art

2.2.3 Vision Transformer
Up until adapting the transformer architecture for the image domain, CNN models dominated
among newly proposed methods for computer vision problems. While the usage of attention-
based components in neural networks saw several successful uses in image-based tasks, they
usually were a mere enhancement to existing convolutional approaches [51, 52, 53, 54].

Motivated by the success of replacing RNNs by self-attention mechanisms for NLP problems,
the authors of An image is worth 16x16 words [55] present a way to abolish convolutional oper-
ations through adapting the transformer architecture for image classification.

Giving a rise to Vision Transformer (ViT), the authors adapt architecture setup from original
transformer [48]. The main challenge to overcome was that, originally solving NLP problems,
the transformer input is inherently structured as a sequence of tokens. In comparison, image
data are typically represented as a 2D matrix of RGB pixels. The most straightforward way to
feed an image to a transformer model is to perform per-pixel tokenization. This is practically
infeasible, as each of the pixels on its own holds little semantic value and their amount in a single
image leads to them being computationally intractable.

Published as a conference paper at ICLR 2021

Transformer Encoder

MLP 
Head

Vision Transformer  (ViT)

*

Linear Projection of Flattened Patches
*  Extra learnable

     [ c l ass]  embedding

1 2 3 4 5 6 7 8 90Patch + Position 
Embedding

Class
Bird
Ball
Car
...

Embedded 
Patches

Multi-Head 
Attention

Norm

MLP

Norm

+L x

+

Transformer  Encoder

Figure 1: Model overview. We split an image into fixed-size patches, linearly embed each of them,
add position embeddings, and feed the resulting sequence of vectors to a standard Transformer
encoder. In order to perform classification, we use the standard approach of adding an extra learnable
“classification token” to the sequence. The illustration of the Transformer encoder was inspired by
Vaswani et al. (2017).

3 METHOD

In model design we follow the original Transformer (Vaswani et al., 2017) as closely as possible.
An advantage of this intentionally simple setup is that scalable NLP Transformer architectures – and
their efficient implementations – can be used almost out of the box.

3.1 VISION TRANSFORMER (VIT)

An overview of the model is depicted in Figure 1. The standard Transformer receives as input a 1D
sequence of token embeddings. To handle 2D images, we reshape the image x ∈ RH×W×C into a
sequence of flattened 2D patches xp ∈ RN×(P 2·C), where (H,W ) is the resolution of the original
image, C is the number of channels, (P, P ) is the resolution of each image patch, andN = HW/P 2

is the resulting number of patches, which also serves as the effective input sequence length for the
Transformer. The Transformer uses constant latent vector size D through all of its layers, so we
flatten the patches and map to D dimensions with a trainable linear projection (Eq. 1). We refer to
the output of this projection as the patch embeddings.

Similar to BERT’s [class] token, we prepend a learnable embedding to the sequence of embed-
ded patches (z00 = xclass), whose state at the output of the Transformer encoder (z0L) serves as the
image representation y (Eq. 4). Both during pre-training and fine-tuning, a classification head is at-
tached to z0L. The classification head is implemented by a MLP with one hidden layer at pre-training
time and by a single linear layer at fine-tuning time.

Position embeddings are added to the patch embeddings to retain positional information. We use
standard learnable 1D position embeddings, since we have not observed significant performance
gains from using more advanced 2D-aware position embeddings (Appendix D.4). The resulting
sequence of embedding vectors serves as input to the encoder.

The Transformer encoder (Vaswani et al., 2017) consists of alternating layers of multiheaded self-
attention (MSA, see Appendix A) and MLP blocks (Eq. 2, 3). Layernorm (LN) is applied before
every block, and residual connections after every block (Wang et al., 2019; Baevski & Auli, 2019).

3

Figure 2.3 Visualization of the ViT architecture as presented in [55].

The approach the authors choose is to split the image into patches, each having the size of 16×16
pixels. Such a way of splitting up the data both increases the semantic information of a single
patch and decreases the overall number of tokens. These 16 × 16 patches of 3-channel pixels are
then flattened into vectors and linearly embedded in a very similar manner as within the original
transformer architecture.

In direct comparison to the original transformer architecture, there are some minor alterations,
but the overall information flow in the ViT model stays nearly the same. There is no need for a
complex decoder, a simple classification head suffices, as the desired output is a single summa-
rizing prediction rather than a dense sequence of tokens.

In order to perform the classification step, a special learnable class token is prepended to the
linear embeddings of the patches before entering the encoder. After passing through the encoder
layers, a fully-connected classifier attached to the special token’s location decides the output.



Survey on Transformers 19

Another difference is the order of operations within the encoder block. The core layout stays
the same, except for the normalization step taking place before both the attention calculation
and the additive residual connection. The authors of [56] suggest this order of operations to lead
to better-behaved gradients, increased stability and consequently lowered training time require-
ments.

The authors conclude that on canonical image-classification datasets, the newly proposed method
often comes short in a direct comparison to previous CNN efforts. The main culprit is identified
as inductive biases of the CNN, where they are seemingly more suitable for the task due to
their inherent locality, 2D structure and translation equivariance. Nevertheless, the authors are
able to overcome these biases and beat the previous model architectures by pretraining ViT on
a large image dataset and later fine-tuning it for smaller tasks of interest. This type of transfer
learning is shown to perform better than state-of-the-art transfer learning methods applied to
CNN classifiers. This would suggest the new vision transformer to have a high overall learning
capacity, while requiring large training datasets to leverage it effectively.

2.2.4 Transformers as Computer Vision Backbones
The transformer architecture had proved to be suitable for computer vision as well, although
it was yet to be shown usable for other than classification tasks. The works presented in this
section have the goal of modifying the transformer architecture to be able to serve as a general
backbone for image-related tasks. This follows directly from CNN architectures, where a single
general architecture can be used in various scenarios and is generally called a backbone and serves
the role of extracting features from the input image.

The main obstacles in adapting the transformer to tasks with complex dense predictions such as
semantic segmentation, object detection or image inpainting are the inherently higher granularity
requirements on the input and its subsequent processing. The original ViT model has poor
scalability since the time complexity grows quadratically with image size, as well as it suffers
from a loss of fine-grained detail due to smallest units being 16 × 16 patches.

2.2.4.1 Pyramid Vision Transformer

The Pyramid Vision Transformer (PVT) model [57] involves a shrinking operation that is repeat-
edly applied to the input image as it traverses through the network. This builds a progressive
pyramid scheme of patches of decreasing resolution and increasing embedding size, which enables
the method to output a high resolution prediction. The idea is similar to the way CNNs extract
multiscale features, where with the increase of network depth, the channel dimension gradually
grows, and the output resolution progressively shrinks.

The model’s encoder replaces multi-head attention layer with a proposed spatial-reduction at-
tention, which reduces spatial dimension of the keys and values during the calculation. This
makes the model less intensive on both memory and computational resources.

PVT is compared to the previously proposed ViT through extensive experiments, where the
output feature maps are used jointly with standard detectors. The results show that PVT
outperforms both ViT and state-of-the-art CNN backbones in many downstream tasks, including
object detection, instance segmentation and semantic segmentation.



20 State-of-the-Art

2.2.4.2 Swin Transformer
In this work [49], the transformer architecture was also successfully adapted to image tasks of
object detection and semantic segmentation, while effectively reaching state-of-the-art results
in both of them. The authors argue the model is versatile and efficient enough to serve as a
general backbone, which was made computationally possible through its hierarchical structure.
The self-attention calculation is limited to local windows of patches with exponentially increasing
resolution in each of the layers. The window partitioning boundaries are shifted in each layer,
which allows previously disjoint areas to exchange information in the self-attention calculation.

Swin Transformer: Hierarchical Vision Transformer using Shifted Windows

Ze Liu†* Yutong Lin†* Yue Cao* Han Hu*‡ Yixuan Wei†

Zheng Zhang Stephen Lin Baining Guo
Microsoft Research Asia

{v-zeliu1,v-yutlin,yuecao,hanhu,v-yixwe,zhez,stevelin,bainguo}@microsoft.com

Abstract

This paper presents a new vision Transformer, called
Swin Transformer, that capably serves as a general-purpose
backbone for computer vision. Challenges in adapting
Transformer from language to vision arise from differences
between the two domains, such as large variations in the
scale of visual entities and the high resolution of pixels
in images compared to words in text. To address these
differences, we propose a hierarchical Transformer whose
representation is computed with Shifted windows. The
shifted windowing scheme brings greater efficiency by lim-
iting self-attention computation to non-overlapping local
windows while also allowing for cross-window connection.
This hierarchical architecture has the flexibility to model
at various scales and has linear computational complexity
with respect to image size. These qualities of Swin Trans-
former make it compatible with a broad range of vision
tasks, including image classification (87.3 top-1 accuracy
on ImageNet-1K) and dense prediction tasks such as object
detection (58.7 box AP and 51.1 mask AP on COCO test-
dev) and semantic segmentation (53.5 mIoU on ADE20K
val). Its performance surpasses the previous state-of-the-
art by a large margin of +2.7 box AP and +2.6 mask AP on
COCO, and +3.2 mIoU on ADE20K, demonstrating the po-
tential of Transformer-based models as vision backbones.
The hierarchical design and the shifted window approach
also prove beneficial for all-MLP architectures. The code
and models are publicly available at https://github.
com/microsoft/Swin-Transformer.

1. Introduction

Modeling in computer vision has long been dominated
by convolutional neural networks (CNNs). Beginning with
AlexNet [39] and its revolutionary performance on the
ImageNet image classification challenge, CNN architec-
tures have evolved to become increasingly powerful through

*Equal contribution. †Interns at MSRA. ‡Contact person.

Figure 1. (a) The proposed Swin Transformer builds hierarchical
feature maps by merging image patches (shown in gray) in deeper
layers and has linear computation complexity to input image size
due to computation of self-attention only within each local win-
dow (shown in red). It can thus serve as a general-purpose back-
bone for both image classification and dense recognition tasks.
(b) In contrast, previous vision Transformers [20] produce fea-
ture maps of a single low resolution and have quadratic compu-
tation complexity to input image size due to computation of self-
attention globally.

greater scale [30, 76], more extensive connections [34], and
more sophisticated forms of convolution [70, 18, 84]. With
CNNs serving as backbone networks for a variety of vision
tasks, these architectural advances have led to performance
improvements that have broadly lifted the entire field.

On the other hand, the evolution of network architectures
in natural language processing (NLP) has taken a different
path, where the prevalent architecture today is instead the
Transformer [64]. Designed for sequence modeling and
transduction tasks, the Transformer is notable for its use
of attention to model long-range dependencies in the data.
Its tremendous success in the language domain has led re-
searchers to investigate its adaptation to computer vision,
where it has recently demonstrated promising results on cer-
tain tasks, specifically image classification [20] and joint
vision-language modeling [47].

In this paper, we seek to expand the applicability of
Transformer such that it can serve as a general-purpose

ar
X

iv
:2

10
3.

14
03

0v
2 

 [
cs

.C
V

] 
 1

7 
A

ug
 2

02
1

(a) Comparison of Swin transformer patches (left)
and original ViT patches (right) and their

self-attention context
backbone for computer vision, as it does for NLP and
as CNNs do in vision. We observe that significant chal-
lenges in transferring its high performance in the language
domain to the visual domain can be explained by differ-
ences between the two modalities. One of these differ-
ences involves scale. Unlike the word tokens that serve
as the basic elements of processing in language Trans-
formers, visual elements can vary substantially in scale, a
problem that receives attention in tasks such as object de-
tection [42, 53, 54]. In existing Transformer-based mod-
els [64, 20], tokens are all of a fixed scale, a property un-
suitable for these vision applications. Another difference
is the much higher resolution of pixels in images com-
pared to words in passages of text. There exist many vi-
sion tasks such as semantic segmentation that require dense
prediction at the pixel level, and this would be intractable
for Transformer on high-resolution images, as the compu-
tational complexity of its self-attention is quadratic to im-
age size. To overcome these issues, we propose a general-
purpose Transformer backbone, called Swin Transformer,
which constructs hierarchical feature maps and has linear
computational complexity to image size. As illustrated in
Figure 1(a), Swin Transformer constructs a hierarchical rep-
resentation by starting from small-sized patches (outlined in
gray) and gradually merging neighboring patches in deeper
Transformer layers. With these hierarchical feature maps,
the Swin Transformer model can conveniently leverage ad-
vanced techniques for dense prediction such as feature pyra-
mid networks (FPN) [42] or U-Net [51]. The linear compu-
tational complexity is achieved by computing self-attention
locally within non-overlapping windows that partition an
image (outlined in red). The number of patches in each
window is fixed, and thus the complexity becomes linear
to image size. These merits make Swin Transformer suit-
able as a general-purpose backbone for various vision tasks,
in contrast to previous Transformer based architectures [20]
which produce feature maps of a single resolution and have
quadratic complexity.

A key design element of Swin Transformer is its shift
of the window partition between consecutive self-attention
layers, as illustrated in Figure 2. The shifted windows
bridge the windows of the preceding layer, providing con-
nections among them that significantly enhance modeling
power (see Table 4). This strategy is also efficient in re-
gards to real-world latency: all query patches within a win-
dow share the same key set1, which facilitates memory ac-
cess in hardware. In contrast, earlier sliding window based
self-attention approaches [33, 50] suffer from low latency
on general hardware due to different key sets for different
query pixels2. Our experiments show that the proposed

1The query and key are projection vectors in a self-attention layer.
2While there are efficient methods to implement a sliding-window

based convolution layer on general hardware, thanks to its shared kernel

Figure 2. An illustration of the shifted window approach for com-
puting self-attention in the proposed Swin Transformer architec-
ture. In layer l (left), a regular window partitioning scheme is
adopted, and self-attention is computed within each window. In
the next layer l + 1 (right), the window partitioning is shifted, re-
sulting in new windows. The self-attention computation in the new
windows crosses the boundaries of the previous windows in layer
l, providing connections among them.

shifted window approach has much lower latency than the
sliding window method, yet is similar in modeling power
(see Tables 5 and 6). The shifted window approach also
proves beneficial for all-MLP architectures [61].

The proposed Swin Transformer achieves strong perfor-
mance on the recognition tasks of image classification, ob-
ject detection and semantic segmentation. It outperforms
the ViT / DeiT [20, 63] and ResNe(X)t models [30, 70] sig-
nificantly with similar latency on the three tasks. Its 58.7
box AP and 51.1 mask AP on the COCO test-dev set sur-
pass the previous state-of-the-art results by +2.7 box AP
(Copy-paste [26] without external data) and +2.6 mask AP
(DetectoRS [46]). On ADE20K semantic segmentation, it
obtains 53.5 mIoU on the val set, an improvement of +3.2
mIoU over the previous state-of-the-art (SETR [81]). It also
achieves a top-1 accuracy of 87.3% on ImageNet-1K image
classification.

It is our belief that a unified architecture across com-
puter vision and natural language processing could benefit
both fields, since it would facilitate joint modeling of vi-
sual and textual signals and the modeling knowledge from
both domains can be more deeply shared. We hope that
Swin Transformer’s strong performance on various vision
problems can drive this belief deeper in the community and
encourage unified modeling of vision and language signals.

2. Related Work
CNN and variants CNNs serve as the standard network
model throughout computer vision. While the CNN has ex-
isted for several decades [40], it was not until the introduc-
tion of AlexNet [39] that the CNN took off and became
mainstream. Since then, deeper and more effective con-
volutional neural architectures have been proposed to fur-
ther propel the deep learning wave in computer vision, e.g.,
VGG [52], GoogleNet [57], ResNet [30], DenseNet [34],

weights across a feature map, it is difficult for a sliding-window based
self-attention layer to have efficient memory access in practice.

2

(b) The proposed partitioning scheme

Figure 2.4 Partitioning of self-attention calculation windows (outlined in red) of patches (gray
squares) as shown in [49].

In Figure 2.4 we can see the comparison to ViT patches, where the self-attention was computed
globally in each layer. The hierarchical approach of isolating the self-attention mechanism to
smaller patches and later merging them through the shifted windows scheme has shown strong
results in both performance and (due to being linear-time with respect to image size) computa-
tional complexity, as opposed to ViT ’s quadratic runtime.

Another modification presented in this work is introduced through abolishing the absolute po-
sition embedding, which had been inherited from the original transformer almost unchanged.
This work adds a learnable parameterized bias matrix Bn,n, where n2 is the number of images
patches.

Attention(Q, K, V) = softmax
(

QKT

√
k

+ B
)

V

The authors show that this learnable relative position bias performs better than explicitly con-
structing absolution position embeddings.

Both PVT and this work share similar architecture regarding shapes of data in each of the
layers, which arise as an inspiration from CNNs. The main difference of the two approaches lies
in the attention calculation, where this work splits up the calculation into smaller areas and PVT
progressively reduces the sizes of patches.



Survey on Transformers 21

2.2.4.3 PVTv2
Authors of the original PVT backbone saw several possible adjustments to the framework, which
led to significant improvements in computational demands and qualitative performance. Giving
rise to PVTv2 [40], there were three major modifications introduced:

a linear-complexity attention layer,

overlapping patch embeddings,

and the addition of a convolutional layer to the feed-forward block.

The motivation behind these adjustments lies in poor scalability of original PVT to large im-
ages. Reduction in the attention calculation complexity is achieved through replacing original
spatial-reduction projection by an adaptive average pooling layer, which can output a fixed-sized
output for an arbitrarily sized input. The complexity of the reduction is parameterized by the
size of the output shape, rather than by the reduction’s magnitude, which was the case for the
original PVT and led to poor scalability.

Tokenizing the image into disjoint patches removes local continuity among them, which is partly
alleviated by positional embeddings. To further improve upon local continuity between patches,
a modification to the patch embedding process is presented. The proposed method allows for
overlaps in neighboring patches. Specifically, the patch size is increased to contain approximately
a half of its left neighboring patch and a half of its right neighboring patch. The same applies
for vertical neighbors. The number of patches stays unchanged, so the effect is equivalent to
increasing the receptive field for each of the patches. The image is zero padded as necessary to
allow for calculation around the borders.

Absolute position encoding has a fixed dimension for images of all sizes and is thus unsuitable for
inputs of varying scales. To address this problem, the authors propose an additional convolutional
layer to be added to the architecture of the feed-forward block. This is motivated by the fact
that convolutional layers used jointly with zero-padding have been shown to encode positional
encoding implicitly [58].

2.2.5 Task-Specific Transformers
To the best of our knowledge, nobody has yet adapted a transformer-based model to the task of
watermark removal. That aside, there has been a variety of specialized architecture variations
for other specific use cases. This section aims to show some successful application of vision
transformers to tasks similar or related to watermark removal.

2.2.5.1 Segformer
Although the previously presented general backbones have been shown to perform well when
attached to standard segmentation detectors, they posed only as an encoder. The authors of
Segformer [39] use a hierarchical PVTv2 -like encoder and a simple MLP decoder to solve the se-
mantic segmentation task, which requires outputting a fine-grained per-pixel classification.

The encoder is pretrained using the ImageNet dataset [59] on a classifying task to later serve as
a starting point for the model training on a segmentation dataset of interest. Several variants of
the model are presented, differing in the number of parameters. The results on various datasets
suggest robust performance, as Segformer outperforms previous transformer and CNN methods
in comparative regimes regarding parameter count and required computational resources.



22 State-of-the-Art

One thing to note is that image watermark detection is equivalent to performing a semantic
segmentation for two classes – watermarked section and undamaged section. This might suggest
that the transformer architecture is suited for at least detecting the watermark, as this is one of
the tasks directly solved by some of the methods presented in Section 2.1.2.

2.2.5.2 Mask-Aware Transformer for Large Hole Image Inpainting
In [38], the authors adapt a transformer as the main backbone (based on Swin transformer [49])
for inpainting images, i.e. filling in a user-specified area in an image as seamlessly as possi-
ble. Exploring the approaches suggested by the authors seems encouraging for the scope of our
work, as there are notable similarities between image inpainting and watermark removal (see
Section 1.3.1).

The shapes of image data passing through the model are first decreasing and then increasing in
resolution, being reminiscent of a CNN encoder-decoder architecture. The transformer block’s
attention is adjusted to account for invalid tokens, which are initially specified by the input’s
inpainting mask. Other than having transformer body, the model also uses convolutional layers,
specifically as head and tail blocks of the whole architecture, as well as using them for the down-
sampling and upsampling operations on the image between transformer blocks.

Alongside the main transformer calculation, a style manipulation module is proposed to enable
the outputs to be diverse and have various styles for unchanging fixed inputs. This is achieved
through an additional noise input and modulating the weights of convolutional layers, thus en-
abling plurality of the model’s output.

The model is trained with a loss consisting of three components:

adversarial discriminator loss, i.e. performing a GAN-like training,

gradient penalty for the discriminator,

perceptual loss, i.e. minimizing the distance between hidden layer activations of a pretrained
convolutional network between real and inpainted images.

This work achieves strong and diverse results on publicly available image datasets and is presented
as a state-of-the-art method, dominating previous (mostly CNN) approaches in a comparable
setting.



Chapter 3

Dataset

The image dataset specified in, and provided as part of this thesis’ assignment contains images
from car ads gathered from the internet. It is a large collection of images, coming from various
sources and thus offering a significant variety in appearance and content. In this chapter, we
will discuss the different types of images in the dataset, what features they contain, the steps
performed for filtering the data and its usage for solving the watermark removal task.

3.1 Dataset Analysis

The car ad image dataset consists of millions of images collected from various online marketplaces.
They include advertising photos taken and digitally processed by professional photographers at
premium dealerships as well as amateur photos taken by low quality cameras.

3.1.1 Types of Images
The dataset includes a variety of images related to cars and after manual inspection, we decided
to categorize the images into several distinct groups:

exterior – Photos displaying a vehicle exterior, where the entire car or most of the car is
visible.

closeup exterior, wheel – Closeup view of a feature on the outside of the car such as lights,
handles, registration plates, et cetera. Wheels are separated from closeup photos, as they
might be more useful for other use cases, such as estimating the car’s price.

interior – These photos provide an inside look at a vehicle’s interior features such as seating
arrangements, dashboard layout and design, audio/navigation systems and others.

trunk, engine – Photos showing either storage compartment or engine, as these can be both
interior or exterior photos, depending on the camera’s angle and position.

miscellaneous – Photos not showing the car at all (dealership ads, documents, keys, ...).

With the goal of creating a homogeneous dataset for a practical usage, we eliminate some of the
diversity by focusing solely on exterior images. These are often the first to be seen in the ad and
are the most prone to containing an obstructing watermark.

23



24 Dataset

(a) exterior (b) closeup exterior (c) wheel

(d) interior (e) trunk (f) engine

(g) miscellaneous

Figure 3.1 Samples from the recognized categories of images in the dataset.

3.1.2 Dataset Filtering
In order to isolate suitable samples for generating the training datasets, we must first classify
the available images based on some criteria. This section describes the process of filtering the
images via defining the required classification tasks, manually labeling a subset of the images
and then training suitable classifier models to obtain labels for the entire dataset.

3.1.2.1 Classifier Network
As the classification model, a pretrained instance of a convolutional RegNet [60] architecture
was used, in particular we chose the regnet y 32gf configuration as it was suggested to be the
most powerful one by its authors. We used a publicly available implementation of the model
provided by torchvision and initialized the model using weights on pretrained on the ImageNet
dataset [61, 59] as a starting point for fine-tuning on our data.

The following preprocessing steps were applied to the dataset before training the classifier:

1. Delete possible bit-perfect duplicates for each image.

2. Drop potential transparency layers.

3. Apply padding to a square shape to prevent content distortion on resizing.

4. Resize the image to 224 × 224 (as required by the RegNet model).



Dataset Analysis 25

To suit our needs, the last fully-connected layer from the pretrained model is replaced to match
the number of classes in a given classification scenario. While we could work with a frozen RegNet
backbone and train only the last classifying layer, we instead fine-tune the whole model on our
dataset in an effort to obtain better classifying accuracy. Our data is not distributed into classes
uniformly, so we perform balancing to mitigate biasing the model towards majority classes.Share	of	image	types

closeup exterior 7.5%

engine 2.7%

exterior 31.7%

interior 41.5%

miscellaneous 3.2%

trunk 7.5%

wheel 5.8%

closeup exterior engine exterior interior miscellaneous
trunk wheel

meta-chart.com

Figure 3.2 Visualization of the dataset composition.

3.1.2.2 Training the Model
We manually labeled over 10 000 image samples to the outlined categories. For fine tuning, we
arrived to best results for the validation set with settings of batch size set to 16 and the Adam
optimizer with a low learning rate of 10−5. For the testing phase, the model’s state was restored
to the epoch with highest validation score during training.

The model achieved near 100% accuracy on the training set and 98.68% and 98.28% on the
validation and testing sets, respectively. Upon inspecting the failure cases, almost all of them
were either ambiguous images or errors made during manual labeling. We deemed these results
to be sufficient to progress further and we used the trained classifier to obtain labels for the
entire available dataset.

With the labeled dataset available, we filter out the desired exterior images. As the classifier can
not be perfect, we leverage the output score of the model to interpret it as a confidence of the
predictions. By limiting ourselves with a threshold of 90% confidence after passing through the
softmax layer, we obtain a subset where the model is fairly sure of its prediction.

3.1.2.3 Watermarked Images in the Dataset
As expected, since we are dealing with real-life data, there is a lot of visual noise, including
watermarks. Some examples of visual noise include but are not limited to:

text watermarks,

colored logo watermarks,

opaque graphics,

ad banners and miscellaneous contact information around the image,

text and logos present on real objects surrounding the car,

or censorship of registration plates.



26 Dataset

Figure 3.3 Examples of watermarks and other visual noise present in the dataset.

In order to train a model for removing watermarks, we need clean target images with no graphics
inserted into them. For this purpose, we train a second classifier. Due to the wide range of visual
noise present in the dataset, we manually label several thousand images into categories of:

watermark,

opaque graphics,

ad banner,

or clean image.

The process for training the classifier is the same as described in Section 3.1.2.1, except for not
using a standard categorical cross-entropy loss with a softmax activation. This is due to the fact,
that these categories are not mutually exclusive. Instead, we train 4 separate classification heads
placed after a single common convolutional backbone as a binary classification task, one for each
of the categories. For filtering, we require that confidence of a clean image is higher than 95%
and confidence for other categories is less than 5%.

3.2 Watermark Synthesis Process

In order to obtain both watermarked images and ground truth images for training the model, we
use a simulated watermark insertion process on the clean dataset to emulate real-world image
watermarks. The types of image watermarks we synthesize are semi-transparent watermarks as
these are empirically most common and most difficult to remove automatically (i.e. due to being
placed in the center of the image). In order to train the model, we also create a mask that
indicates the location of the watermark on the image and a mask describing its opacity.

The process begins by selecting a set of clean exterior images from the dataset and creating
a simulated watermark for each image. Following the analysis of actual watermarks present in
the dataset above, we propose synthesizing three types of watermarks. With the motivation for
the model to generalize, we aim to capture enough characteristics of real watermarking systems.



Watermark Synthesis Process 27

3.2.1 Text Watermarks
Text watermarks are added to an image using a variety of different fonts, sizes, and colors.
The pool of fonts used were gathered as a subset of the fonts available in a default installation
of Windows 10 [62], totaling nearly 100 different samples.

We generated the text as a string consisting of a random number of random characters from a
predefined set of letters, numbers and punctuation marks. The font, size, and color of the text
are also randomly selected, with a possibility of a colored outline as well. The watermark is then
superimposed on the image at a random position, with a random transparency within a range
from 20% to 80%.

Figure 3.4 Example of a generated text watermark.
In order: Watermarked image, watermark, transparency mask, binary mask.

3.2.2 Colored Logo Watermarks
This type of watermarking works by randomly selecting a logo image from a set of predefined
watermark images, and then resizing and rotating the watermark to a random size and ori-
entation. The transparency level of the watermark is also randomly selected, same as for text
watermarks. The watermark is then overlaid on the image at a random position.

In order to prevent the model from removing only a certain type of watermarks, we gathered
a set of image logos with transparent backgrounds. These logos are compiled from two sources:

a publicly available Kaggle dataset [63] (after filtering out images with no alpha channel),

and logos used in the CLWD dataset [16].

The resulting pool of available watermarks consists of nearly 5000 semi-transparent logos and is
thus much more diverse in comparison to CLWD, which contained only 200 watermarks.

Figure 3.5 Example of a generated logo watermark.
In order: Watermarked image, watermark, transparency mask, binary mask.



28 Dataset

3.2.3 Ad Banner Watermarks
Another type of watermark we consider is an ad banner. It consists of a banner overlaid on an
image, usually containing a variety of different designs and colors. These fundamentally differ
from logo watermarks, as they usually span the entire width of the image and are thus very
intrusive, but positioned near an edge of the image.

To simulate this kind of intrusion, we used an advertisement dataset [64] and filtered only images,
which had the correct aspect ratio (i.e. they were significantly wider than taller). This lead to
a pool of over 10000 images to use for watermarking. These images are then randomly cropped
to have a banner shape and are inserted either to the top or the bottom edge of the image with
a random transparency level.

Figure 3.6 Example of a generated ad banner watermark.
In order: Watermarked image, watermark, transparency mask, binary mask.

3.2.4 Dataset Generation
We synthesize two different datasets, each with over 340 000 samples. The first dataset is sim-
pler, as it imposes only text watermarks on the image. The second scenario uses combinations
of all of the watermark types, with a possibility of overlaying multiple watermarks over one an-
other. If this happens, the opacity mask is calculated in accordance with formulas presented in
Section 1.3.2.1.

After obtaining the dataset, we can use it as input for our model’s training pipeline and quan-
titatively verify its effectiveness at removing synthetic watermarks and empirically judge its
performance on real-world data. More information about the training dataset format can be
found in Section 4.2.1 and Table 5.2.

Figure 3.7 Example of combining all watermark types.
In order: Watermarked image, watermark, transparency mask, binary mask.



Chapter 4

Transformer Architecture for
Watermark Removal

In this chapter, we propose an architecture for watermark detection and reconstruction. Our
model utilizes a transformer-based encoder-decoder architecture and a refinement network with
a GAN-like discriminator. The key components of the model and their functions are described,
including a comprehensive summary of the training loop, including all the loss functions and
related hyperparametrs.

4.1 Architecture
The following section will outline the key components of the model and their functions. The text
is divided into three parts, each focusing on one of the major stages of the model.

4.1.1 Watermark Remover
The first stage of the model is responsible mainly for detecting the watermark, and providing
a rough estimate for further refinement. Namely, there are five tasks the model performs in this
stage in order to provide input for subsequent stages:

Feature extraction – Initial preprocessing of the image.

Image reconstruction – Aims to recover the original image.

Watermark reconstruction – Learns the appearance of the watermark.

Watermark detection – Classifies each pixel in the image as watermarked or undamaged.

Opacity estimation – Estimates the opacity used to embed the watermark.

Following the notation presented in Section 1.3.2, the module learns to provide an estimate for
each of the X, M and W matrices.

29



30 Transformer Architecture for Watermark Removal

(a) Variant with watermark detection performed via a convolutional decoder.

(b) Variant with Segformer-based segmentation detection.

Figure 4.1 Visualization of the two proposed architectures for the first stage of the model, comprising
transformer modules (in blue), convolutional decoders (in orange) and MLP-based modules (in green).



Architecture 31

4.1.1.1 Feature Extraction
The first stage of the model utilizes a transformer encoder-decoder architecture to construct
features usable for watermark detection and rough estimation of components used for creating
the watermarked image. Within our experiments, we utilize different variants of the PVTv2 en-
coder, initialized using pretrained weights published by its authors [40]. We build the decoder by
reusing the building blocks of the encoder, but with an additional upsampling step in the patch
embedding to increase the spatial resolution in each of the blocks. This is similar to how the
authors of [38] created a transformer decoder, although they used a different base model [49].

The encoder generates hierarchical feature maps at different resolutions for a given input image.
For example, for a 256 × 256 input image, the encoder produces four outputs with a decreasing
spatial resolution (i.e. 64 × 64, 32 × 32, 16 × 16, 8 × 8) and an increasing number of channels.
The later outputs of the encoder contain higher-level representations, and we use the decoder
to combine them with the lower-level representations using skip connections between the en-
coder and decoder. The decoder then uses these representations to generate its final output with
a resolution of 64 × 64. This setup allows us to use a shared symmetrical setup of the encoder
and decoder. The decoder’s representation is spatially smaller than the original image, we use
subsequent decoders for tasks such as watermark detection and image recovery to reach original
resolution.

This module is highlighted in blue in Figure 4.1. While the data flow is consistent across all
conducted experiments, various sizes of the model were evaluated to assess the impact on overall
performance. Specifically, the size of the embedding dimensions used for projecting the patches
in the self-attention calculation was varied across experiments (see Section 5.2.1).

4.1.1.2 Image and Watermark Reconstruction
Both image and watermark reconstruction modules share the same CNN-based image decoder
architecture. The decoder applies a set of convolutional and upsampling operations to progres-
sively increase the spatial resolution of the image. To introduce non-linearity, the model uses the
LeakyReLU activation function in the convolutional layers, except for the last layer, which uses
a ReLU activation. The module includes batch normalization after every convolutional operation.

The estimation of the watermark is not necessary during inference as the primary focus is on
reconstructing the original image. Nevertheless, previous works suggest that training the model
to recover the watermark as well improves overall performance [14]. These two modules are
referred to as RGB Decoders in Figure 4.1 and maintain a consistent architecture across all
performed experiments.

4.1.1.3 Watermark Detection and Opacity Mask Estimation
The task of estimating the watermark mask involves two subtasks: binary segmentation of the
watermark and estimation of its alpha channel. For the opacity estimation subtask, we propose
using a convolutional decoder with the same architecture as the image and watermark decoders,
with the difference of it outputting a single channel rather than an RGB image.

For the binary segmentation subtask, we propose two approaches. The first approach is to treat
it as an image decoding task using convolutions. For this scenario, first couple of layers and their
weights are shared with the opacity estimation model, since the tasks are nearly identical. Only
the final output layers are task-specific in this scenario.



32 Transformer Architecture for Watermark Removal

The second approach is to directly leverage the hierarchical output from the PVTv2 model and
use a decoding head compatible with multilevel features, such as the output module from the
Segformer model [39]. This approach has advantages of being lightweight, natively compatible
with the PVTv2 transformer, and being capable of achieving state-of-the-art results for semantic
segmentation of objects in an image, which is a closely related task.

The two approaches and their differences are visualized in Figure 4.1. Each of them is shown in
a separate figure, as the data flow is influenced by this architectural change.

4.1.2 Watermark Refiner
The previous stage of the model is capable of learning to differentiate between the watermark and
the background image, as well as provide us with an estimation of the components necessary to
synthesize the original input. Nevertheless, the reconstruction of the image is often blurred, color
degraded or otherwise unsatisfactory to be directly used as a replacement for the damaged pixels.
We will refer to the image reconstruction from the Watermark Remover stage as a “coarse” result.

The refining stage is designed to improve the fidelity and visual quality of the reconstructed image,
allowing for more accurate and detailed results. This is achieved through a convolutional model
based on the well-known U-Net architecture [28]. The module is built as a fully-convolutional
autoencoder-like architecture with skip connections implemented via concatenating the features
between the encoder and decoder.

The first step is to replace the watermarked pixels in the original image with the coarse re-
construction, which can be done using the binary mask provided by the watermark detection
decoder.

Figure 4.2 Composition of the coarse result and undamaged areas of the original image.



Architecture 33
2

U-Net input
643

128

256

512

1024

25
6 
x 

25
6

64

128

256

32
²

16
² 

5121024

512 256

256 

64128 64 3

Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Refinement output

12
8 
x 

12
8

64
 x

 6
4

64
 x

 6
4

12
8 
x 

12
8

25
6 
x 

25
6

128 

Convolution 3x3, BN, ReLU
Skip connection (concatenated)
Max-pooling 2x2
Upsampling x2
Convolution 1x1

512

Figure 4.3 Architectural layout of the refinement network. Visualization created as a modification
of a figure from the original U-Net paper [28].

The use of skip connections in U-Net is a key feature, which improves the propagation of high-
resolution information. This enables the model to effectively leverage the undamaged parts of
the image to create a more accurate and sharper replacement for the originally watermarked
area. During the training, the refiner aims to reconstruct the entire image, but a significantly
higher weight is placed on the objective of reconstructing the area given by the detected mask.

4.1.3 Discriminator
Finally, the authenticity of the refined image is judged by a convolutional discriminator. Lever-
aging an adversarial training mode, originally introduced in [17] (GAN), we train this module
to classify between real unwatermarked images and reconstructions outputted from the refining
stage. As the discriminator learns to recognize the difference between genuine and reconstructed
image, the rest of the model is trained to confuse the discriminator. This effectively aims to
increase the likeliness of the results to the original images, to help with the reduction of artifacts
and improving the overall perceived authenticity of the reconstructed image. This approach is
motivated by the prevalent use of GAN-based modules for other tasks related to image manipu-
lation via deep learning [65, 38, 66].

Since the discriminator network is used only during training and can be completely discarded
for inference, we decided to also include the ground truth watermark mask in its input. This
decision was made to help the discriminator focus on the reconstructed parts of the image, as it
is likely that most of the input is the same as the original unwatermarked image.

During the experiments, we compare two different variants of the discriminator network. For
the first variant, we use a lightweight convolutional network, consisting of four strided convo-
lutional blocks, each with a progressively increasing number of filters and decreasing spatial
resolution. The blocks are equipped with a batch normalization layer, dropout and a LeakyReLU
activation function. The final layer is a linear layer with a single output and a sigmoid activation
function and its output is interpreted as a probability of the input being a real image.



34 Transformer Architecture for Watermark Removal

Original image, true maskRefinement output, true mask

Authenticity score

Figure 4.4 Discriminator’s inputs and outputs visualized.

The other variant of the discriminator’s architecture serves an identical purpose, but has a higher
number of parameters and thus an increased learning capacity. It consists of 8 convolutional
blocks and the general idea of the model is very similar to the first variant, except for being
considerably larger. The exact architecture for the discriminator was borrowed from SRGAN [66],
but we additionally perform spectral normalization (SN) on each convolutional layer [67].

4.2 Training Pipeline
This section outlines a training pipeline for the proposed architecture. The pipeline includes
steps for the dataset setup, loss functions definition, hyperparameter selection, training loop
and post-processing for inference. By following this pipeline, we were able to train the model to
achieve the performance reported in Chapter 6. The specific details of each step will be discussed
in the following subsections.

4.2.1 Dataset Setup
In order to train the model for watermark removal, it is necessary to obtain a dataset for wa-
termark removal in a particular format. Specifically, the dataset should include watermarked
input images, their corresponding clear ground-truth images, the watermarks themselves, their
opacity masks, and their binary segmentation masks. All of these components should be resized
to a common resolution (256 × 256 in our scenario).

The composition of the dataset and the watermarks should be diverse enough and should reflect
the target real-world scenario. This is vital in ensuring that the network generalizes well and
can be effectively utilized to attack real watermarked images. For example, if the dataset only
includes watermarks from a single source, the model may not be able to effectively remove wa-
termarks from other sources.

In Section 3.2.4 we discussed the process of synthesizing our training datasets composed of
car images with diverse watermarks. Any other type of image can also be used as long as it
follows the same format for the data. The resolution of images we chose was decided mainly for
computational reasons and for simpler comparison with previous methods [14, 37]. Depending on
the specific requirements of the application, one can increase the size of the images as necessary
(with possible minor architectural changes to the model).



Training Pipeline 35

4.2.2 Loss Functions
The goal of training is to converge to model parameters which minimize the overall loss function
and maintain the performance on the validation set. The overall objective loss function for the
training process is given as a combination of different loss functions, each with a weight that
determines its relative importance. Each of these loss functions constitutes a different aspect of
the model’s performance, all of which will be described in this section.

Please note that all the formulas presented in this section assume a single input and output
for clarity, however, in reality, they relate to optimizing the expected value of the function over
the data and are actually computed in batches of samples during training. The loss functions’
input arguments are left out to keep the presentation brief, but it is assumed that the reader has
a general understanding of their concepts and purpose.

4.2.2.1 Binary Cross-entropy
For watermark detection we experiment with two variants of architecture (see Figure 4.1), each
with a different loss function. For the Segformer variant, we use a common binary cross-entropy
loss, which is usually defined as follows:

LBCE = − 1
N

N∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)],

where N is the number of pixels in the image, yi is the ground truth value of the ith pixel (either
0 or 1), and ŷi is the predicted value of the ith pixel.

For our specific case of watermark removal, we recognize that the majority of pixels are usually
undamaged, and we want the detection algorithm to find all of the damaged pixels, even at
a possible cost of classifying some undamaged pixels as watermarked. To aid the training towards
this goal, we use weighted BCE, where we increase the weight of the positive samples by a factor
of λpos:

LwBCE = − 1
N

N∑
i=1

[λposyi log(ŷi) + (1 − yi) log(1 − ŷi)].

4.2.2.2 Mean Error Losses
The L1 or L2 loss functions are commonly used for image restorations tasks. In our case, we also
use them for watermark detection in the case of using a convolutional decoder, i.e. we treat the
binary mask estimation problem as general regression rather than binary classification. These
loss functions are defined as follows:

L1 = 1
N

N∑
i=1

|yi − ŷi|,

L2 = 1
N

N∑
i=1

(yi − ŷi)2,

where N is the number of pixels in the image, ŷi is the value of the ith pixel in the output, and
yi is the value of the ith pixel in the target.



36 Transformer Architecture for Watermark Removal

The L2 loss corresponds to MSE and measures the difference between the watermarked and
watermark-free images in terms of squares of errors of the pixel values, while the L1 loss mea-
sures the absolute difference between the two images.

Intuitively, it may be expected that the L2 loss would perform better as it places more weight
on larger errors. Nevertheless, previous research [68] has demonstrated it often produces worse
results compared to using the absolute L1 for image restoration tasks. This is likely due to being
more prone to getting stuck in local optima. Similar behavior was empirically observed during
our initial experiments.

To conclude with a summary, in our reported experiments we use the L1 loss for the following
tasks: coarse image reconstruction, watermark reconstruction, opacity estimation and refined
image reconstruction. We use either L1 or wBCE for watermark detection, depending on the
architecture.

4.2.2.3 Adversarial Loss
As described in Section 4.1.3, our architecture uses an adversarial discriminator, which is trained
jointly with the network. This results in two “competing” loss functions, each optimizing a dif-
ferent part of the model. The standard GAN loss is built as a modification of the BCE loss,
which stems from the fact that the discriminator performs a two-class classification. The formu-
las presented below assume the discriminator to have a sigmoid activation function at its output.

Let X be the original unwatermarked image, X̂ the watermarked image, Xrefine the output of
the final refining stage of the proposed model for watermark removal and D the discriminator.
The discriminator is taught to optimize the following expression, equivalent to LBCE objective
for classifying between real images and the model’s outputs:

Ldisc = − log D(X) − log (1 − D(Xrefine)) .

The rest of the model then optimizes the opposite objective given by

Ladv = log (1 − D(Xrefine)) .

Note that the first term is omitted, as the watermark removing model has no direct influence
over the terms present in it.

4.2.2.4 Overall Objective
With the loss functions presented in the previous sections, we can build the overall loss function
L the model ultimately optimizes. The objective for the discriminator is given by Ldisc above
and will not be discussed further, as its objective is trained independently and separate from the
other loss functions being discussed.

Let us denote the terms needed to compute the loss. From the dataset, we need the following:

the original unwatermarked image X,

the watermarked image X̂,

the watermark W ,

the true watermark binary mask M and opacity mask M ′.



Training Pipeline 37

After feeding the watermarked image X̂ through the first stage of the model, we obtain the
following predictions (see Section 4.1.1):

the coarse reconstruction Xcoarse,

the estimation of the watermark Wcoarse,

the estimation of the watermark’s binary mask Mdet and its opacity M ′
coarse,

thresholded Mdet into a bool array Mbool

and then finally by refining the coarse image we obtain Xrefine (see Section 4.1.2).

The composition of the final loss function is given by adding the respective loss functions, and
weighing them through λ-denoted hyperparameters. The overall objective function for the Wa-
termark Remover and Watermark Refiner parts of the model are given by:

L =λL1

(
L1 (X, Xcoarse) + L1 (X, Xrefine) + L1 (W, Wcoarse) + L1 (M ′, M ′

coarse)
)

+

+ λL1m

(
L1(X ⊙ Mbool, Xcoarse ⊙ Mbool) + L1(X ⊙ Mbool, Xrefine ⊙ Mbool)

)
+

+ λdetLdet + λadvLadv.

The Ladv term is defined above in Section 4.2.2.3 and relates to the adversarial component of
the training process. The Ldet term can be either L1(M, Mdet) for convolutional detection or
LwBCE(M, Mdet, λpos) for Segformer detection (see Section 4.1.1.3).

The terms weighed by λL1m correspond to an increased reconstruction effort placed on the image
areas detected as watermarked. An important aspect of these terms is that the thresholded
Mbool matrix is detached from the computational graph and thus does not propagate gradients
for optimization. This is done to prevent biasing the watermark detection area towards lower
reconstruction error and thus hindering the performance of the detection itself.

4.2.3 Composition of the Final Output
While the final directly optimized output of the model is the Xrefine image mentioned above,
we perform an additional post-processing step to improve the image quality. Similar to how the
coarse estimation is composited with the original image via the estimated watermark mask (see
Figure 4.2), we perform the same operation to combine the original watermarked image and the
refined output. This ensures there is no degradation of quality to the parts of the image which
were not detected as watermarked.

Using this operation, we can also perform näıve high-resolution inference for watermark removal.
Although the model is limited to a resolution of 256 × 256 for the scope of this work, we can
resize the refined image to match the original image and compose them together. While this
leads to image quality degradation and blurring in the originally watermarked areas, it might
serve as a suitable compromise, depending on the use case. For visualized results on real-world
data obtained via this process, see Appendix B.



38 Transformer Architecture for Watermark Removal

4.2.4 Hyperparameter Selection and Training
Choosing the right optimizer is a crucial decision, as it determines how the model’s parameters
are adjusted for minimizing the loss function. We picked the Adam optimizer [69], which has
attained over 136 000 citations at the time of writing, making it one of the most widely-used
optimizers for similar applications in deep learning. Its ability to adapt the learning rate for
each parameter makes it a popular choice. In comparison to other widely used optimizers, Adam
often achieves faster convergence and better performance [70]. It was used for optimizing both
the proposed model and its adversarial discriminator.

The values of the hyperparameters used during training the model were selected through a com-
bination of domain knowledge, prior experience, and trial-and-error method. The selection was
primarily based on empirical evaluation with a focus on balancing the scale of the loss functions’
values to match their relative importance.

While a more thorough search for the optimal hyperparameter values through experimentation
or other methods would be preferred, it is not feasible due to constraints in the scope of this
project. Training a single model from scratch takes more than a week, making a large-scale
investigation infeasible.

The following table presents a summary of hyperparameters and their values, as they were used
within the scope of the conducted experiments:

Table 4.1 Hyperparameter values and their meanings

Meaning Value Notation
Shared loss weight for L1 reconstructions 1 λL1
Additional weight for L1 loss in watermarked areas 10 λL1m

Weight for the adversarial loss 5 · 10−4 λadv

Detection loss weight (Segformer) 10 λdet

Detection loss weight (convolutions) 1 λdet

Weight for the positive class in BCE calculation 5 λpos

Max number of epochs for training 100 epochs –
Batch size 8 –
Image size 256 × 256 –
Optimizer Adam –
Initial learning rate for the model 10−3 –
Initial learning rate for the discriminator 10−3 –
Learning rate schedule 65 epochs –
Learning rate decay 10−1 –

The learning rate is set to decrease by multiplying it with the learning rate decay value. This
process happens with a frequency given by the scheduling parameter. In our setup, it leads
to the last third of training having the learning rate decreased by a factor of 10, which aims
to reflect the expected convergence towards the end of the training.



Implementation 39

4.3 Implementation

This section presents a brief overview of various tools employed in the model’s implementation.
It covers the technologies utilized, such as hardware, programming languages, libraries, as well
as external sources, including pre-existing tools that were utilized in the process.

4.3.1 Technologies
The model is built using the standard Python data science stack, including libraries and tools
such as NumPy [71], PIL [72] or OpenCV [73] for image data manipulation and preparation,
and scikit-learn [74] for tasks such as dataset preprocessing and evaluation. PyTorch and
torchvision [61] were used as the base framework for deep learning, providing us the essentials
for defining and training all of the proposed models.

4.3.2 External Sources
For building the model, parts of publicly available architectures and their implementations were
used. Reusing proven and well-performing components speeds up the development while reduc-
ing the risk of introducing new bugs.

The project’s code is structured based on the public implementation1 of SLBR [37]. The codebase
was refactored and adapted for our purposes and no components from their original architecture
were utilized. It served as a useful starting point. The authors of SLBR appear to have adapted
the codebase from another publication [14], but its previous origins are unknown to us.

Our architecture draws upon several existing works, summarized in the list below.

The used variants of the PVTv2 [40] encoder were obtained via the official implementation2

and accompanying pretrained weights. We customized the code to build the PVTv2 decoder
by reusing and modifying the encoder submodules.

The Segformer detection uses the SegformerHead class from the mmseg library [75].

The larger discriminator variant is adapted from [66] and was implemented by modifying
a public implementation3.

The refining network is a U-Net-based architecture [28], using a public implementation4.

The official MAT [38] implementation5 provided us with a wrapper to simplify working with
2D convolutional layers.

In conclusion, the use of various external components was a crucial aspect of the implementa-
tion process. The public repositories and libraries disclosed above were essential for achieving
the desired results.

1https://github.com/bcmi/SLBR-Visible-Watermark-Removal
2https://github.com/whai362/PVT
3https://github.com/ozanciga/gans-with-pytorch#srgan
4https://github.com/milesial/Pytorch-UNet
5https://github.com/fenglinglwb/MAT

https://github.com/bcmi/SLBR-Visible-Watermark-Removal
https://github.com/whai362/PVT
https://github.com/ozanciga/gans-with-pytorch#srgan
https://github.com/milesial/Pytorch-UNet
https://github.com/fenglinglwb/MAT


40 Transformer Architecture for Watermark Removal

4.3.3 Hardware
For training such relatively large models on large-scale datasets with hundreds of thousands
of samples, a powerful hardware system is required. The majority of training and evaluation
described within this thesis was performed using the NVIDIA DGX Station A100 hardware
system. This system is equipped with a high-performance CPU, 512 GB of system memory, a
high-speed RAID storage and four NVIDIA A100 GPUs which provide a total of 160 GB of GPU
memory. Combination of these components achieves substantial performance for deep learning
applications.

Additionally, some of the models were trained on a different slightly less powerful machine with
NVIDIA V100 GPU. The training took slightly longer, but helped us to carry out the experi-
ments in a timely manner.

The training setup was identical on both of the mentioned machines. The university’s provision
of access to such powerful hardware was an invaluable learning experience and played a key role
in the successful conduct of this research.



Chapter 5

Methodology

This chapter describes the methodology and setup of the conducted experiments. We summarize
the types of metrics used, the trained model variants and their comparison scenarios.

5.1 Metrics
The proposed model is evaluated using a combination of metrics to assess its performance in both
the watermark detection and removal tasks. First, let us introduce the metrics for measuring
the quality of overall image reconstruction.

5.1.1 Image Reconstruction
For evaluating the similarity between the watermarked and watermark-free images, these metrics
will be used: root mean squared error (RMSE), peak signal-to-noise ratio (PSNR), and structural
similarity index (SSIM):

Root Mean Squared Error is a commonly used metric to measure the error in regression
tasks with continuous outputs. In the context of our model, a low RMSE between the model’s
output and the ground truth image indicates higher quality of the reconstruction. It is
calculated as the root of the mean squared error per pixel between the watermarked and
watermark-free images:

MSE = 1
N

N∑
i=1

(xi − yi)2,

RMSE =
√

MSE,

where N is the number of pixels in the image, xi is the value of the ith pixel in the watermarked
image, and yi is the value of the ith pixel in the watermark-free image.

Peak signal-to-noise ratio measures the similarity between the watermarked and watermark-
free images in terms of their pixel values. It is defined as follows:

PSNR = 10 log10
MAX2

I

MSE
,

where MAXI is the maximum possible pixel value (e.g. 255 for 8-bit images). A higher
PSNR value indicates a lower reconstruction error. The metric is commonly used to evalu-
ate the performance of image compression, restoration, denoising or similar methods.

41



42 Methodology

Structural similarity index measures the similarity between the watermarked and watermark-
free images in terms of their luminance, contrast, and structure. The function is defined as
follows:

SSIM = (2µxµy + C1)(2σxy + C2)
(µ2

x + µ2
y + C1)(σ2

x + σ2
y + C2) ,

where x and y are the watermarked and watermark-free images, respectively, µx and µy are
the means of x and y, σx and σy are the standard deviations of x and y, σxy is the covariance
of x and y, and C1 and C2 are constants for stabilizing in the case of a low denominator.

5.1.2 Watermark Detection
For watermark detection, the model’s ability to accurately detect the presence and location of
watermarks in images will be evaluated using the following metrics:

Mean intersection-over-union (IoU) measures the overlap between the predicted water-
mark mask and the ground truth mask. It is defined as the ratio of true positive predicted
pixels to the total number of pixels:

IoU = TP

TP + FP + FN
,

where TP, TN, FP and FN are the numbers of true positive, true negative, false positive
and false negative pixels in the predicted masks, respectively. This metric ranges from 0 to 1,
with a higher value indicating a larger overlap and thus a higher performance.

Accuracy measures the overall accuracy of the predicted watermark mask. It is defined as:

Accuracy = TP + TN

TP + TN + FP + FN
,

where N is the number of pixels in the image, yi is the ground truth value of the ith pixel,
and ŷi is the predicted value of the ith pixel. A higher Accuracy value indicates a more
accurate prediction.

F1 score accounts for class imbalance in a classification problem. It is the harmonic mean
of two related metrics, with higher scores indicating better performance.

F1 = 2 · Precision · Recall

Precision + Recall
,

where Precision is the fraction of true positives among the predicted watermark pixels, and
Recall is the fraction of true positives among all actually watermarked pixels:

Precision = TP

TP + FP
,

Recall = TP

TP + FN
.

Recall is a particularly interesting metric for our use case, as it measures the model’s ability
to identify all watermarked pixels, regardless of any over-extension into non-watermarked
areas. In our scenario, a higher recall, even at the cost of slightly lower values of other
metrics, might be preferable for following watermark removal attempts.



Experimental Setup 43

5.2 Experimental Setup
As we proceed, several variants of the proposed model will be evaluated using the metrics pre-
sented above to assess and compare their performance in the watermark removal and detection
tasks.

Experimenting with various model architectures on datasets of varying sizes and complexities
can help us gain a deeper understanding of the strengths and limitations of each model variant
and the factors influencing their performance. By identifying which models perform best on
specific tasks, we can gain insights into the underlying causes of their successes and failures.

5.2.1 Model Variants
The proposed architecture allows for several degrees of freedom in their specific design and
implementation. For the scope of this work, as described in Section 4.1, we experiment with
altering the following aspects of the architecture:

the size of the PVTv2 encoder (b0 or b1 variant with 3.7M or 14M parameters, respectively),

watermark detection module (Segformer or convolutional decoder, see Figure 4.1),

the size of the discriminator (simple or SRGAN, see Section 4.1.3).

We decided to use one concrete variant of the model as the base scenario and derive three other
variants by altering one of the aspects of the model. The base scenario has the b1 encoder, wa-
termark detection through a convolutional decoder and a simple discriminator. Each of the three
derived models is created by changing exactly one of these aspects to its alternative. The models
are summarized in the table below.

Table 5.1 Summary of the model variants used in experiments.

Model Name Encoder Watermark Detection Discriminator
TAWR Base PVTv2 b1 Convolutional Simple
TAWR Lite PVTv2 b0 Convolutional Simple
TAWR Segformer PVTv2 b1 Segformer Simple
TAWR Adversary PVTv2 b1 Convolutional SRGAN + SN

While other architectural aspects that could be explored exist, the combination of the presented
model variants provides a promising starting point for our exploratory experiments. However, it is
worth highlighting that the training process of these models is resource and time intensive, which
limits the number of combinations that can be examined within the restricted scope of this work.
Nevertheless, the outcomes obtained from the models described above are expected to provide
valuable information in terms of insights into the effectiveness of the proposed architecture and
its respective components.



44 Methodology

5.2.2 Benchmarking Datasets
The performance measures are directly evaluated on three datasets. One of them is the publicly
available CLWD dataset [16], commonly used for benchmarking watermark removal methods.
The other two are based on the car dataset provided for the purposes of this thesis (see Chap-
ter 3). The proposed model variants are directly compared against current state-of-the-art model
SLBR [37] on all the datasets and against some other methods presented in Section 2.1.2 on
the publicly available CLWD dataset. Regarding the image size and information available for
each sample, the datasets share a common nearly identical format. The main properties of the
datasets are summarized in the following table.

Table 5.2 Summary of the datasets used for evaluation.

Dataset name Description # training samples # val. samples
CLWD diverse photos + logos 60 000 10 000
Cars Text cars + texts 313 032 34 764
Cars Various cars + texts, logos, ads 312 976 34 776

5.2.3 Training the Models
Each of the proposed model variants is trained on the three described datasets and additionally
the SLBR model is trained on the car datasets. The PVTv2 encoder module is initialized with
pretrained weights (see Section 4.3.2). Training takes ˜11 days on a single NVIDIA A100 GPU
for the car datasets and a little over 2 days for the CLWD dataset. To remain consistent, we save
the weights with the highest PSNR score after 100 epochs, following the SLBR training logic.

0.86
0.87
0.88
0.89
0.9

0.91
0.92
0.93
0.94
0.95
0.96
0.97

-10 0 10 20 30 40 50 60 70 80 90 100 11

(a) Mask detection, F1 score

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

-10 0 10 20 30 40 50 60 70 80 90 100 11

(b) Mask detection, IoU score

25

26

27

28

29

30

31

32

-10 0 10 20 30 40 50 60 70 80 90 100 11

(c) Image reconstruction, PSNR score

0.89

0.9

0.91

0.92

0.93

0.94

0.95

0.96

-10 0 10 20 30 40 50 60 70 80 90 100 11

(d) Image reconstruction, SSIM score

Figure 5.1 Validation metrics progress over 100 training epochs, TAWR Base on the Cars Various
dataset.



Experimental Setup 45

5.2.4 Evaluation on Real-World Images
Unfortunately, it is difficult to quantitatively assess the performance of the models on the supplied
real-world data in a straightforward manner, as there are no ground truth labels. Nevertheless,
we have included visualized comparison of multiple models in Figure 6.2.

Some additional visualizations obtained via the TAWR Segformer model variant are provided
in Appendix B. This variant was chosen for visualizations based due its high Recall score (see
Chapter 6) on synthetic data, which we observed to correlate with improved detection capabili-
ties in real-world data.

It is worth noting that the sample images we used were not chosen based on their performance.
Rather, they were the first images in our demo set that had watermarks that were deemed
interesting. We excluded images that lacked watermarks or had unremarkable ones.



46 Methodology



Chapter 6

Results and Analysis

In this final chapter, we present and analyze the results of the conducted experiments. In
the discussion section, we highlight the limitations of the model and suggest areas for potential
improvement through future work.

6.1 Results

The quantitative results are presented first section, followed by output visualizations to provide
an insight into the human perception of the watermark removal results.

6.1.1 Performance Metrics
In this section, we present the results and comparison for each of the evaluated methods. The pro-
cess for obtaining the results and their explanation is thoroughly explained in Chapter 5.

Watermark detection Reconstruction
F1 Recall Accuracy IoU PSNR SSIM RMSE

SLBR [37] 0.9451 0.9453 0.9977 0.9014 38.74 0.9821 3.03
TAWR Base 0.8989 0.8958 0.9958 0.8266 37.76 0.9802 3.415
TAWR Lite 0.5049 0.4176 0.9829 0.3849 32.06 0.964 7.319
TAWR Segformer 0.7990 0.9753 0.9889 0.6768 37.93 0.9812 3.355
TAWR Adversary 0.9025 0.9028 0.9959 0.8317 37.74 0.9802 3.423
Table 6.1 Evaluation metrics on the validation Cars Text dataset.

Watermark detection Reconstruction
F1 Recall Accuracy IoU PSNR SSIM RMSE

SLBR [37] 0.9852 0.9847 0.9962 0.9734 35.46 0.9801 4.954
TAWR Base 0.9677 0.9635 0.9914 0.9419 32.46 0.9632 6.75
TAWR Lite 0.4557 0.3538 0.8696 0.3372 22.39 0.918 22.61
TAWR Segformer 0.9467 0.9899 0.9841 0.9044 32.15 0.9616 7.012
TAWR Adversary 0.9574 0.9576 0.9887 0.9291 31.19 0.9543 7.809
Table 6.2 Evaluation metrics on the validation Cars Various dataset.

47



48 Results and Analysis

The comparison in Table 6.3 also includes results of some other models presented in Section 2.1.2.
These values were taken directly from the latest surveyed work [37], as it provides a thorough
comparison for the reconstruction metrics.

Watermark detection Reconstruction
F1 Recall Accuracy IoU PSNR SSIM RMSE

SLBR [37] 0.834 0.829 0.9883 0.7589 38.19 0.9805 3.807
Split then Refine [14] – – – – 37.41 0.9787 4.23
BVMR [29] – – – – 35.89 0.9734 5.02
WDNet [16] – – – – 35.53 0.9738 5.11
TAWR Base 0.7715 0.7641 0.9842 0.6817 36.6 0.9756 4.56
TAWR Lite 0.6961 0.6899 0.9781 0.597 34.95 0.9695 5.596
TAWR Segformer 0.7363 0.8724 0.9748 0.6214 36.65 0.9761 4.616
TAWR Adversary 0.763 0.7546 0.9834 0.6719 36.2 0.9743 4.786
Table 6.3 Evaluation metrics on the validation CLWD dataset.

Please note that our measurements of SLBR [37] performance on the CLWD dataset [16] show
slight differences from the values reported in the original paper. We used the original authors’
code to obtain these values, but their published pretrained weights likely differ from the ones
used for the original evaluation. Nevertheless, there are only slight differences without an effect
on the relative ordering of the methods.

6.1.2 Visualized Outputs

(a) Input (b) Ground truth (c) SLBR [37] (d) TAWR Base

(e) TAWR Lite (f) TAWR Segformer (g) TAWR Adversary

Figure 6.1 Removal demonstration on a sample from the Cars Various dataset.

Figures in this section provide a comparison of the performance of watermark removal techniques
on both synthetic and real-world images. The two cases show different scenarios, with the first
Figure 6.1 demonstrating the effectiveness of various algorithms on a synthetic image created



Discussion 49

(a) Input (b) SLBR [37] (c) TAWR Base (d) TAWR Lite

(e) TAWR Segformer (f) TAWR Adversary

Figure 6.2 Removal demonstration on a sample from the real-world dataset.

by the same process as the training data, while the second Figure 6.2 provides a comparison on
a sample from the real-world watermarked images in the original dataset.

Please note that the samples were not selected based on the results, but rather hand-picked
for their perceived complexity and only evaluated afterwards. Nevertheless, it is important to
stress that the limited number of samples used in this section makes it difficult to draw definitive
conclusions about expected performance based solely on the visualizations presented, given the
diversity of possible watermark damage. For a more detailed display of the outputs from various
models, some additional visualizations are provided in Appendix A and Appendix B.

6.2 Discussion
Our proposed model achieved satisfactory results for the considered metrics when tested on
synthesized watermarks and was effective in removing various watermarks from diverse images.
However, we acknowledge that our model’s performance falls short of the current state-of-the-art
method, SLBR [37], in most cases. The only exception is the Recall detection metric, where our
TAWR Segformer model consistently outperforms SLBR. While this is a promising result for
certain scenarios and improves reconstruction metrics compared to other TAWR variants, it is
not sufficient to match the performance of the state-of-the-art method reconstruction-error wise.

6.2.1 Transformer Size
We observed the TAWR Lite perform notably worse compard to other variants, which is a con-
sequence of using a smaller transformer in the model’s first stage. This suggests that further
increasing the capacity of the transformer for initial feature extraction could potentially yield
better results. It is to be noted that we only experimented with the two smallest architectures
(PVTv2 b0 or b1) presented in the original work [40], therefore exploring even larger architec-
tures could be beneficial, while leading to significantly higher computational requirements.



50 Results and Analysis

6.2.2 Real-World Image Performance Disparity
The output visualizations provided further support for our quantitative results, demonstrating
that our proposed model could successfully remove various types of watermarks while preserving
the image’s overall visual quality.

We can observe the surprisingly poor performance of the SLBR model on the real-world data,
although the quantitative results on the synthesized data would suggest otherwise. This is not
an isolated example and we observed similar behavior while empirically evaluating the visual
results, where our method seems significantly better at generalizing from synthetic to real data.
From what we observed, the SLBR method was able to generalize to real-world data for the first
few epochs and then its performance started to degrade. The behavior is very reminiscent of
overfitting on the training data, except we observed no decrease on the synthetic validation set
performance.

If this observation really is a specific kind of overfitting, it might be worth adjusting the syn-
thesizing process. Namely, instead of having a static training dataset, we could utilize dynamic
synthesizing, i.e. generate the watermarked samples randomly at training time. This could pos-
sibly help to alleviate this issue, as the model would never see the same exact sample twice.

As mentioned before, unfortunately, we have no way of measuring the reconstruction error on
real-world dataset, as the ground truth label is not provided. We deem this as phenomenon
worthy of further research.

6.2.3 Thresholded Mask
Some artifacts were observed in the reconstructed images in both the synthesized and real-world
scenario, which could be addressed by improving the image composition process. Specifically,
our current approach utilizes a thresholded method (see Section 4.2.2.4) for image composition,
where the model internally generates an intermediate image using a binary mask between the
first and second stages of the architecture (see Figure 4.2).

We selected the thresholded binary mask composition based on our specific requirements for
the output image. For instance, we needed to identify which precise pixels come from lower
resolution representation for upscaling purposes. Instead of using a binary mask, we could have
used a continuous mask that would produce the intermediate image as a weighted sum of the
coarse and input image. We believe that utilizing this approach could improve the model’s
capabilities in ambiguous areas around the watermark, which are prone to producing artifacts.

6.2.4 Adversarial Training Impact
Although a larger discriminator is more expensive to train, its cost for inference remains un-
changed since the discriminator is discarded after training. However, we cannot conclude that
using a significantly larger discriminator in the TAWR Adversarial variant resulted in a signif-
icant improvement to the model’s output. While the metrics may not show an improvement
compared to other variants, our visualization results (see Appendix A) indicate that the larger
discriminator had a positive impact on the model’s ability to reconstruct the original watermark
from the image, which we interpret as a better understanding of the watermarking process.



Limitations and Possible Improvements 51

Additionally, we suppose further experimentation with tuning the adversarial component of
the entire model might lead to better results, especially given that its validation performance
continued to improve even at the 100 epoch training limit, implying that the model may require
additional training.

6.3 Limitations and Possible Improvements
Apart from not reaching state-of-the-art results, the proposed model has some limitations and
shortcomings, including the low resolution of images at training time and a high cost of training
and inference. Training the model on higher resolution images at various scales is likely to lead
to improved quality and generalization, but unfortunately also exceedingly increases the time
required for the training.

Due to computational and time constraints, the model has also not been fine-tuned to achieve
the best possible results. Given the high performance demands, thoroughly searching the hyper-
parameter space is infeasible.

Additionally, a larger transformer or an architecture modification may be crucial for improved
feature extraction in the first stage, as mentioned in the previous section. Unfortunately, this is
likely to come at an increased cost.

One possible inexpensive improvement is the continuous version of the composition mask men-
tioned earlier. Furthermore, taking note of the SLBR [37] mask refinement process for inspiration,
it may be beneficial to incorporate an additional mechanism to enhance the accuracy of the de-
tection mask. This could be accomplished by leveraging the adversarial discriminator already
present in the architecture. Although the discriminator currently only judges the reconstructed
image in relation to the true mask, it may be sensible to let it also assess the authenticity of the
estimated mask with respect to the watermarked image.

Furthermore, if we could obtain original ground truth images for the real-world data, we could
likely train a model that would perform much better in the real scenario than one trained on
synthetic data.

6.3.1 Future Work
Considering the limitations and potential improvements discussed above, we are currently work-
ing on incorporating some of the proposed changes to the model. We aim to share our findings
at a conference to contribute to the research in this field.



52 Results and Analysis



Conclusion

In this thesis, we aimed to develop a method using deep neural networks to effectively detect and
remove watermarks without compromising image quality. To accomplish the set out objectives,
we performed the following steps:

We conducted a comprehensive survey of existing watermark removal techniques and vision
transformer models. This helped us to understand the state-of-the-art approaches in this
field and allowed us to make decisions for designing the architecture of the proposed method.

We analyzed the supplied image data and designed a process for creating datasets in a format
suitable for our training. The steps to achieve this included manual labeling of data, training
several classifiers and synthesizing various watermark types.

We proposed a deep learning architecture for removing watermarks from images. Our method
uses the insights from previously published works on the topic, but incorporates novel archi-
tectural modifications with the aim of improving the achieved results.

We trained several experimental variants of the proposed deep learning method, as well
as the current state-of-the-art method [37] for direct comparison. Each model variant was
trained on two newly synthesized datasets and one publicly available dataset.

We evaluated the performance of our method in terms of watermark detection accuracy and
image reconstruction quality and provided an analysis, interpretation and visualization of
the achieved results.

In conclusion, we have achieved our goals of designing a novel deep learning method for removing
watermarks from images, which we have quantitatively evaluated in the scenario where we have
access to the precise original watermarking process. Although our method did not reach decisive
state-of-the-art results, there is considerable scope for improvement.

Our implementation may be useful for future research, as well as for practical applications in
areas such as digital forensics, copyright protection, and image editing. We encourage the open-
source use of our work and have made the code for the TAWR Segformer variant available on
GitHub1 for others to freely access and utilize.

1https://github.com/halamto2/TAWR

53

https://github.com/halamto2/TAWR


54 Results and Analysis



Appendix A

Watermark Removal
Visualization Samples

This appendix chapter aims to visually compare the performance of the evaluated watermark
removal methods on two randomly selected samples from each of the three datasets introduced
in Chapter 5.

The samples come from the validation set and are inferred at a resolution of 256 × 256. Each
visualization contains the model’s input, the ground truth unwatermarked image, the original
image reconstruction, the true watermark location mask, the predicted watermark location mask
and the estimated watermark image where applicable (as the SLBR [37] model does not estimate
the appearence of the original watermark).

55



56 Watermark Removal Visualization Samples

Input

Target

Output

True mask

Predicted
mask

Watermark
output

(a)
SLBR [37]

(b)
Base

(c)
Lite

(d)
Segformer

(e)
Adversary

Figure A.1 Visualization of methods on a random sample from the Cars Text dataset.



57

Input

Target

Output

True mask

Predicted
mask

Watermark
output

(a)
SLBR [37]

(b)
Base

(c)
Lite

(d)
Segformer

(e)
Adversary

Figure A.2 Visualization of methods on a random sample from the Cars Text dataset.



58 Watermark Removal Visualization Samples

Input

Target

Output

True mask

Predicted
mask

Watermark
output

(a)
SLBR [37]

(b)
Base

(c)
Lite

(d)
Segformer

(e)
Adversary

Figure A.3 Visualization of methods on a random sample from the Cars Various dataset.



59

Input

Target

Output

True mask

Predicted
mask

Watermark
output

(a)
SLBR [37]

(b)
Base

(c)
Lite

(d)
Segformer

(e)
Adversary

Figure A.4 Visualization of methods on a random sample from the Cars Various dataset.



60 Watermark Removal Visualization Samples

Input

Target

Output

True mask

Predicted
mask

Watermark
output

(a)
SLBR [37]

(b)
Base

(c)
Lite

(d)
Segformer

(e)
Adversary

Figure A.5 Visualization of methods on a random sample from the CLWD dataset.



61

Input

Target

Output

True mask

Predicted
mask

Watermark
output

(a)
SLBR [37]

(b)
Base

(c)
Lite

(d)
Segformer

(e)
Adversary

Figure A.6 Visualization of methods on a random sample from the CLWD dataset.



62 Watermark Removal Visualization Samples



Appendix B

Visualization for Näıve
High-Resolution Inference

This appendix chapter provides visualized examples of näıve high-resolution inference for water-
mark removal introduced in Section 4.2.3. The motivation behind this upscaling operation is to
mitigate the impact of the low internal resolution of the watermark removal model and partially
alleviate its influence. The model used to produce the results for these samples is the TAWR
Segformer variant trained on Cars Various dataset. The inference is performed on randomly
selected real-world samples, rather than the synthesized validation set.

(a) Watermarked image (b) Upscaled composition after removal

Figure B.1 Visualization for näıvely upscaled results on real images.

63



64 Visualization for Näıve High-Resolution Inference

(a) Watermarked image (b) Upscaled composition after removal



Bibliography

1. OPENAI. ChatGPT: A Large Language Model by OpenAI. 2021. https://www.openai.com.
2. MURPHY, Kevin P. Machine learning: a probabilistic perspective. MIT press, 2012. isbn

0262018020.
3. COX, Ingemar; MILLER, Matthew; BLOOM, Jeffrey; FRIDRICH, Jessica; KALKER,

Ton. Digital Watermarking and Steganography, 2nd Ed. (The Morgan Kaufmann Series
in Multimedia Information and Systems). Hardcover. Morgan Kaufmann, 2007. isbn 978-
0123725851.

4. BIERMANN, Christopher J. Handbook of Pulping and Papermaking. Hardcover. Academic
Press, 1996. isbn 978-0120973620.

5. HARPER, Douglas. Etymology of watermark. In: Online Etymology Dictionary [online].
2014 [visited on 2022-09-29]. Available from: https : / / www . etymonline . com / word /
watermark.

6. TAI, Yuan-Yen; MANSOUR, Mohamed F. Audio Watermarking over the Air With Modu-
lated Self-Correlation. arXiv, 2019. Available from doi: 10.48550/ARXIV.1903.08238.

7. JAIN, Ritu; TRIVEDI, Munesh Chandra; TIWARI, Shailesh. Digital Audio Watermarking:
A Survey. In: BHATIA, Sanjiv K.; MISHRA, Krishn K.; TIWARI, Shailesh; SINGH, Vivek
Kumar (eds.). Advances in Computer and Computational Sciences. Singapore: Springer
Singapore, 2018, pp. 433–443. isbn 978-981-10-3773-3.

8. JAYAMALAR, T; RADHA, V. Survey on digital video watermarking techniques and at-
tacks on watermarks. International Journal of Engineering Science and Technology. 2010,
vol. 2, no. 12, pp. 6963–6967.

9. CHEN, Xinyun; WANG, Wenxiao; BENDER, Chris; DING, Yiming; JIA, Ruoxi; LI, Bo;
SONG, Dawn. Refit: a unified watermark removal framework for deep learning systems
with limited data. In: Proceedings of the 2021 ACM Asia Conference on Computer and
Communications Security. 2021, pp. 321–335.

10. LI, Yue; WANG, Hongxia; BARNI, Mauro. A survey of deep neural network watermarking
techniques. Neurocomputing. 2021, vol. 461, pp. 171–193.

11. CHAWLA, Gaurav; SAINI, Ravi; YADAV, Rajkumar, et al. Classification of watermarking
based upon various parameters. International Journal of Computer Applications & Infor-
mation Technology. 2012, vol. 1, no. II.

12. TAO, Hai; CHONGMIN, Li; ZAIN, Jasni Mohamad; ABDALLA, Ahmed N. Robust image
watermarking theories and techniques: A review. Journal of applied research and technology.
2014, vol. 12, no. 1, pp. 122–138.

65

https://www.etymonline.com/word/watermark
https://www.etymonline.com/word/watermark
https://doi.org/10.48550/ARXIV.1903.08238


66 Bibliography

13. NATHANAËL COTTIN. Hide & Reveal. 2013. Version 1.7.0. Available also from: http:
//hidereveal.ncottin.net/.

14. CUN, Xiaodong; PUN, Chi-Man. Split then refine: stacked attention-guided ResUNets for
blind single image visible watermark removal. In: Proceedings of the AAAI Conference on
Artificial Intelligence. 2021, vol. 35, pp. 1184–1192. No. 2.

15. JIANG, Pei; HE, Shiwen; YU, Hufei; ZHANG, Yaoxue. Two-stage visible watermark re-
moval architecture based on deep learning. IET Image Processing. 2020, vol. 14, no. 15,
pp. 3819–3828.

16. LIU, Yang; ZHU, Zhen; BAI, Xiang. Wdnet: Watermark-decomposition network for visible
watermark removal. In: Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision. 2021, pp. 3685–3693.

17. GOODFELLOW, Ian; POUGET-ABADIE, Jean; MIRZA, Mehdi; XU, Bing; WARDE-
FARLEY, David; OZAIR, Sherjil; COURVILLE, Aaron; BENGIO, Yoshua. Generative ad-
versarial networks. Communications of the ACM. 2020, vol. 63, no. 11, pp. 139–144.

18. HALAMA, Tomáš. Image Inpainting Using Generative Adversarial Networks. 2020. Bach-
elor’s thesis. Czech Technical University in Prague, Faculty of Information Technology.

19. WANG, Yi; CHEN, Ying-Cong; TAO, Xin; JIA, Jiaya. Vcnet: A robust approach to blind
image inpainting. In: European Conference on Computer Vision. Springer, 2020, pp. 752–
768.

20. LIU, Yang; PAN, Jinshan; SU, Zhixun. Deep blind image inpainting. In: International
Conference on Intelligent Science and Big Data Engineering. Springer, 2019, pp. 128–141.

21. DEKEL, Tali; RUBINSTEIN, Michael; LIU, Ce; FREEMAN, William T. On the effective-
ness of visible watermarks. In: Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 2017, pp. 2146–2154.

22. SANTOYO-GARCIA, Hector; FRAGOSO-NAVARRO, Eduardo; REYES-REYES, Roge-
lio; SANCHEZ-PEREZ, Gabriel; NAKANO-MIYATAKE, Mariko; PEREZ-MEANA, Hec-
tor. An automatic visible watermark detection method using total variation. In: 2017 5th
International Workshop on Biometrics and Forensics (IWBF). IEEE, 2017, pp. 1–5.

23. PEI, Soo-Chang; ZENG, Yi-Chong. A novel image recovery algorithm for visible water-
marked images. IEEE Transactions on information forensics and security. 2006, vol. 1, no.
4, pp. 543–550.

24. HUANG, Chun-Hsiang; WU, Ja-Ling. Attacking visible watermarking schemes. IEEE trans-
actions on multimedia. 2004, vol. 6, no. 1, pp. 16–30.

25. WANG, Jieying; SILVA, Dennis J; KOSINKA, Jǐŕı; TELEA, Alexandru; HASHIMOTO,
Ronaldo F; ROERDINK, Jos BTM. Interactive image manipulation using morphological
trees and spline-based skeletons. Computers & Graphics. 2022.

26. CHENG, Danni; LI, Xiang; LI, Wei-Hong; LU, Chan; LI, Fake; ZHAO, Hua; ZHENG, Wei-
Shi. Large-scale visible watermark detection and removal with deep convolutional networks.
In: Chinese conference on pattern recognition and computer vision (prcv). Springer, 2018,
pp. 27–40.

27. EVERINGHAM, Mark; ESLAMI, SM; VAN GOOL, Luc; WILLIAMS, Christopher KI;
WINN, John; ZISSERMAN, Andrew. The pascal visual object classes challenge: A retro-
spective. International journal of computer vision. 2015, vol. 111, no. 1, pp. 98–136.

28. RONNEBERGER, Olaf; FISCHER, Philipp; BROX, Thomas. U-net: Convolutional net-
works for biomedical image segmentation. In: International Conference on Medical image
computing and computer-assisted intervention. Springer, 2015, pp. 234–241.

http://hidereveal.ncottin.net/
http://hidereveal.ncottin.net/


Bibliography 67

29. HERTZ, Amir; FOGEL, Sharon; HANOCKA, Rana; GIRYES, Raja; COHEN-OR, Daniel.
Blind visual motif removal from a single image. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition. 2019, pp. 6858–6867.

30. LI, Xiang; LU, Chan; CHENG, Danni; LI, Wei-Hong; CAO, Mei; LIU, Bo; MA, Jiechao;
ZHENG, Wei-Shi. Towards photo-realistic visible watermark removal with conditional gen-
erative adversarial networks. In: International Conference on Image and Graphics. Springer,
2019, pp. 345–356.

31. XIAO, Jin; GU, Shuhang; ZHANG, Lei. Multi-domain learning for accurate and few-shot
color constancy. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. 2020, pp. 3258–3267.

32. WANG, Xudong; CAI, Zhaowei; GAO, Dashan; VASCONCELOS, Nuno. Towards universal
object detection by domain attention. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. 2019, pp. 7289–7298.

33. LIU, Shikun; JOHNS, Edward; DAVISON, Andrew J. End-to-end multi-task learning with
attention. In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2019, pp. 1871–1880.

34. LIN, Tsung-Yi; MAIRE, Michael; BELONGIE, Serge; HAYS, James; PERONA, Pietro;
RAMANAN, Deva; DOLLÁR, Piotr; ZITNICK, C Lawrence. Microsoft coco: Common
objects in context. In: European conference on computer vision. Springer, 2014, pp. 740–
755.

35. WHITTY, Robin W. Some Comments on Multiple Discovery in Mathematics. Journal of
Humanistic Mathematics [online]. 2017, vol. 7, no. 1, pp. 172–188 [visited on 2022-10-10].
Available from doi: 10.5642/jhummath.201701.14.

36. WIKIPEDIA. List of multiple discoveries — Wikipedia, The Free Encyclopedia [http :
//en.wikipedia.org/w/index.php?title=List%20of%20multiple%20discoveries&
oldid=1101649825]. 2022. [Online; accessed 10-October-2022].

37. LIANG, Jing; NIU, Li; GUO, Fengjun; LONG, Teng; ZHANG, Liqing. Visible Watermark
Removal via Self-calibrated Localization and Background Refinement. In: Proceedings of
the 29th ACM International Conference on Multimedia. 2021, pp. 4426–4434.

38. LI, Wenbo; LIN, Zhe; ZHOU, Kun; QI, Lu; WANG, Yi; JIA, Jiaya. MAT: Mask-Aware
Transformer for Large Hole Image Inpainting. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2022, pp. 10758–10768.

39. XIE, Enze; WANG, Wenhai; YU, Zhiding; ANANDKUMAR, Anima; ALVAREZ, Jose M;
LUO, Ping. SegFormer: Simple and efficient design for semantic segmentation with trans-
formers. Advances in Neural Information Processing Systems. 2021, vol. 34, pp. 12077–
12090.

40. WANG, Wenhai; XIE, Enze; LI, Xiang; FAN, Deng-Ping; SONG, Kaitao; LIANG, Ding; LU,
Tong; LUO, Ping; SHAO, Ling. Pvt v2: Improved baselines with pyramid vision transformer.
Computational Visual Media. 2022, vol. 8, no. 3, pp. 415–424.

41. CUENAT, Stéphane; COUTURIER, Raphaël. Convolutional Neural Network (CNN) vs
Vision Transformer (ViT) for Digital Holography. In: 2022 2nd International Conference
on Computer, Control and Robotics (ICCCR). IEEE, 2022, pp. 235–240.

42. BAHDANAU, Dzmitry; CHO, Kyunghyun; BENGIO, Yoshua. Neural machine translation
by jointly learning to align and translate. arXiv preprint arXiv:1409.0473. 2014.

43. CHO, Kyunghyun; VAN MERRIËNBOER, Bart; GULCEHRE, Caglar; BAHDANAU, -
Dzmitry; BOUGARES, Fethi; SCHWENK, Holger; BENGIO, Yoshua. Learning phrase
representations using RNN encoder-decoder for statistical machine translation. 2014.

https://doi.org/10.5642/jhummath.201701.14
http://en.wikipedia.org/w/index.php?title=List%20of%20multiple%20discoveries&oldid=1101649825
http://en.wikipedia.org/w/index.php?title=List%20of%20multiple%20discoveries&oldid=1101649825
http://en.wikipedia.org/w/index.php?title=List%20of%20multiple%20discoveries&oldid=1101649825


68 Bibliography

44. SUTSKEVER, Ilya; VINYALS, Oriol; LE, Quoc V. Sequence to sequence learning with
neural networks. Advances in neural information processing systems. 2014, vol. 27.

45. LUONG, Minh-Thang; PHAM, Hieu; MANNING, Christopher D. Effective approaches to
attention-based neural machine translation. arXiv preprint arXiv:1508.04025. 2015.

46. XU, Kelvin; BA, Jimmy; KIROS, Ryan; CHO, Kyunghyun; COURVILLE, Aaron; SALAK-
HUDINOV, Ruslan; ZEMEL, Rich; BENGIO, Yoshua. Show, attend and tell: Neural image
caption generation with visual attention. In: International conference on machine learning.
PMLR, 2015, pp. 2048–2057.

47. CHENG, Jianpeng; DONG, Li; LAPATA, Mirella. Long short-term memory-networks for
machine reading. arXiv preprint arXiv:1601.06733. 2016.

48. VASWANI, Ashish; SHAZEER, Noam; PARMAR, Niki; USZKOREIT, Jakob; JONES,
Llion; GOMEZ, Aidan N; KAISER,  Lukasz; POLOSUKHIN, Illia. Attention is all you
need. Advances in neural information processing systems. 2017, vol. 30.

49. LIU, Ze; LIN, Yutong; CAO, Yue; HU, Han; WEI, Yixuan; ZHANG, Zheng; LIN, Stephen;
GUO, Baining. Swin transformer: Hierarchical vision transformer using shifted windows.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. 2021,
pp. 10012–10022.

50. BA, Jimmy Lei; KIROS, Jamie Ryan; HINTON, Geoffrey E. Layer normalization. arXiv
preprint arXiv:1607.06450. 2016.

51. YU, Jiahui; LIN, Zhe; YANG, Jimei; SHEN, Xiaohui; LU, Xin; HUANG, Thomas S. Gen-
erative image inpainting with contextual attention. In: Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018, pp. 5505–5514.

52. ZHANG, Han; GOODFELLOW, Ian; METAXAS, Dimitris; ODENA, Augustus. Self-atten-
tion generative adversarial networks. In: International conference on machine learning.
PMLR, 2019, pp. 7354–7363.

53. WANG, Fei; JIANG, Mengqing; QIAN, Chen; YANG, Shuo; LI, Cheng; ZHANG, Honggang;
WANG, Xiaogang; TANG, Xiaoou. Residual attention network for image classification.
In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2017,
pp. 3156–3164.

54. XIAO, Tianjun; XU, Yichong; YANG, Kuiyuan; ZHANG, Jiaxing; PENG, Yuxin; ZHANG,
Zheng. The application of two-level attention models in deep convolutional neural network
for fine-grained image classification. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. 2015, pp. 842–850.

55. DOSOVITSKIY, Alexey; BEYER, Lucas; KOLESNIKOV, Alexander; WEISSENBORN,
Dirk; ZHAI, Xiaohua; UNTERTHINER, Thomas; DEHGHANI, Mostafa; MINDERER,
Matthias; HEIGOLD, Georg; GELLY, Sylvain, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint arXiv:2010.11929. 2020.

56. XIONG, Ruibin; YANG, Yunchang; HE, Di; ZHENG, Kai; ZHENG, Shuxin; XING, Chen;
ZHANG, Huishuai; LAN, Yanyan; WANG, Liwei; LIU, Tieyan. On layer normalization in
the transformer architecture. In: International Conference on Machine Learning. PMLR,
2020, pp. 10524–10533.

57. WANG, Wenhai; XIE, Enze; LI, Xiang; FAN, Deng-Ping; SONG, Kaitao; LIANG, Ding;
LU, Tong; LUO, Ping; SHAO, Ling. Pyramid vision transformer: A versatile backbone
for dense prediction without convolutions. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision. 2021, pp. 568–578.

58. ISLAM, Md Amirul; KOWAL, Matthew; JIA, Sen; DERPANIS, Konstantinos G; BRUCE,
Neil DB. Position, padding and predictions: A deeper look at position information in cnns.
arXiv preprint arXiv:2101.12322. 2021.



Bibliography 69

59. DENG, Jia; DONG, Wei; SOCHER, Richard; LI, Li-Jia; LI, Kai; FEI-FEI, Li. Imagenet: A
large-scale hierarchical image database. In: 2009 IEEE conference on computer vision and
pattern recognition. Ieee, 2009, pp. 248–255.

60. RADOSAVOVIC, Ilija; KOSARAJU, Raj Prateek; GIRSHICK, Ross; HE, Kaiming; DOLL-
ÁR, Piotr. Designing network design spaces. In: Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition. 2020, pp. 10428–10436.

61. PASZKE, Adam; GROSS, Sam; MASSA, Francisco; LERER, Adam; BRADBURY, James;
CHANAN, Gregory; KILLEEN, Trevor; LIN, Zeming; GIMELSHEIN, Natalia; ANTIGA,
Luca; DESMAISON, Alban; KOPF, Andreas; YANG, Edward; DEVITO, Zachary; RAI-
SON, Martin; TEJANI, Alykhan; CHILAMKURTHY, Sasank; STEINER, Benoit; FANG,
Lu; BAI, Junjie; CHINTALA, Soumith. PyTorch: An Imperative Style, High-Performance
Deep Learning Library. In: Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 2019, pp. 8024–8035. Available also from: http://papers.neurips.cc/
paper/9015- pytorch- an- imperative- style- high- performance- deep- learning-
library.pdf.

62. CORPORATION, Microsoft. Windows 10 [https : / / www . microsoft . com / en - us /
windows/]. 2015–.

63. PAWAR, Rutuparn. Logo Images Dataset [online]. 2021. [visited on 2022-09-21]. Available
from: https://www.kaggle.com/datasets/inputblackboxoutput/logoimagesdataset.

64. HUSSAIN, Zaeem; ZHANG, Mingda; ZHANG, Xiaozhong; YE, Keren; THOMAS, Christo-
pher; AGHA, Zuha; ONG, Nathan; KOVASHKA, Adriana. Automatic understanding of im-
age and video advertisements. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2017, pp. 1705–1715.

65. WU, Xian; XU, Kun; HALL, Peter. A survey of image synthesis and editing with generative
adversarial networks. Tsinghua Science and Technology. 2017, vol. 22, no. 6, pp. 660–674.

66. LEDIG, Christian; THEIS, Lucas; HUSZÁR, Ferenc; CABALLERO, Jose; CUNNING-
HAM, Andrew; ACOSTA, Alejandro; AITKEN, Andrew; TEJANI, Alykhan; TOTZ, Jo-
hannes; WANG, Zehan, et al. Photo-realistic single image super-resolution using a gener-
ative adversarial network. In: Proceedings of the IEEE conference on computer vision and
pattern recognition. 2017, pp. 4681–4690.

67. MIYATO, Takeru; KATAOKA, Toshiki; KOYAMA, Masanori; YOSHIDA, Yuichi. Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957. 2018.

68. ZHAO, Hang; GALLO, Orazio; FROSIO, Iuri; KAUTZ, Jan. Loss functions for image
restoration with neural networks. IEEE Transactions on computational imaging. 2016,
vol. 3, no. 1, pp. 47–57.

69. KINGMA, Diederik P; BA, Jimmy. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980. 2014.

70. CHOI, Dami; SHALLUE, Christopher J; NADO, Zachary; LEE, Jaehoon; MADDISON,
Chris J; DAHL, George E. On empirical comparisons of optimizers for deep learning. arXiv
preprint arXiv:1910.05446. 2019.

71. WALT, Stéfan van der; COLBERT, S. Chris; VAROQUAUX, Gaël. NumPy [http : / /
numpy.org]. 2022.

72. CLARK, Alex; CONTRIBUTORS. Python Imaging Library (PIL) [https : / / pillow .
readthedocs.io/en/stable/]. 2022.

73. TEAM, OpenCV. OpenCV [https://opencv.org/]. 2000–.

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.microsoft.com/en-us/windows/
https://www.microsoft.com/en-us/windows/
https://www.kaggle.com/datasets/inputblackboxoutput/logoimagesdataset
http://numpy.org
http://numpy.org
https://pillow.readthedocs.io/en/stable/
https://pillow.readthedocs.io/en/stable/
https://opencv.org/


70 Bibliography

74. PEDREGOSA, Fabian; VAROQUAUX, Gaël; GRAMFORT, Alexandre; MICHEL, Vin-
cent; THIRION, Bertrand; GRISEL, Olivier; BLONDEL, Mathieu; PRETTENHOFER,
Peter; WEISS, Ron; DUBOURG, Vincent; VANDERPLAS, Jake; PASSOS, Alexandre;
COURNAPEAU, David; BRUCHER, Matthieu; PERROT, Matthieu; DUCHESNAY, Édou-
ard. Scikit-learn: Machine Learning in Python [http://scikit-learn.org]. 2022.

75. CONTRIBUTORS, MMSegmentation. OpenMMLab Semantic Segmentation Toolbox and
Benchmark. 2020. Available also from: https://github.com/open-mmlab/mmsegmentation.

http://scikit-learn.org
https://github.com/open-mmlab/mmsegmentation


Enclosed Media Contents

All code attachments for the thesis can also be found at https://github.com/halamto2/TAWR,
along with a manual for setting up the Python environment. The state of the repository as
provided is equivalent to the TAWR Segformer variant (see Section 5.2.1).

TAWR
README.md...........................Project description and environment setup guide.
conda packages env.txt...................List of conda packages used in the project.
env setup cmds.txt................Commands for setting up the Python environment.
train.sh...........................Script for starting the training loop for the model.
validate.sh..........................Script for starting the model validation process.
dataset................................Scripts for generating and loading the dataset.

CLWDDataset.py
CarDataset.py
generate dataset demo.ipynb

modules..................................Building blocks for the deep learning model.
Discriminator.py
TAWR.py
WatermarkRefiner.py
WatermarkRemover.py

pretrained weights ....................... Initial weights for the transformer module.
pvt v2 b1.pth

scripts.................................Scripts for training and evaluating the model.
evaluation.py
options.py
train.py
validate.py

trainers............................................Wrappers for training the model.
BasicTrainer.py
TAWRTrainer.py

71

https://github.com/halamto2/TAWR

	Acknowledgments
	Declaration
	Abstract
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Structure of the Thesis

	Watermarks
	What is a Watermark?
	History and Examples

	Watermark Taxonomy
	Human Perception
	Robustness

	Watermark Removal
	Image Inpainting
	Problem Definition


	State-of-the-Art
	Survey on Watermark Removal
	Algorithmic Methods
	Deep Learning Methods

	Survey on Transformers
	Core Concepts
	Transformer
	Vision Transformer
	Transformers as Computer Vision Backbones
	Task-Specific Transformers


	Dataset
	Dataset Analysis
	Types of Images
	Dataset Filtering

	Watermark Synthesis Process
	Text Watermarks
	Colored Logo Watermarks
	Ad Banner Watermarks
	Dataset Generation


	Transformer Architecture for Watermark Removal
	Architecture
	Watermark Remover
	Watermark Refiner
	Discriminator

	Training Pipeline
	Dataset Setup
	Loss Functions
	Composition of the Final Output
	Hyperparameter Selection and Training

	Implementation
	Technologies
	External Sources
	Hardware


	Methodology
	Metrics
	Image Reconstruction
	Watermark Detection

	Experimental Setup
	Model Variants
	Benchmarking Datasets
	Training the Models
	Evaluation on Real-World Images


	Results and Analysis
	Results
	Performance Metrics
	Visualized Outputs

	Discussion
	Transformer Size
	Real-World Image Performance Disparity
	Thresholded Mask
	Adversarial Training Impact

	Limitations and Possible Improvements
	Future Work


	Watermark Removal Visualization Samples
	Visualization for Naïve High-Resolution Inference
	Enclosed Media Contents

