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Title:
Microservice pattern Saga as a state machine

Abstract: This research focuses on investigating the Saga pat-
tern as a state machine in the context of microser-
vices architecture. Implementing the Saga pattern as a
state machine offers both theoretical and practical ad-
vantages and provides a natural mechanism for repre-
senting different states that a Saga can transition be-
tween. This approach facilitates a better understanding
of Saga behavior, particularly when it involves a com-
plex sequence of local transactions. The state machine
framework, which is formal and well-studied, is benefi-
cial for modeling the behavior of distributed systems and
aids in the analysis and justification of Saga properties.
This work includes the implementation of Orchestration
Saga, which is encapsulated in a separate module. This
module has an API for run-time Saga creation and exe-
cution.

Key words: Microservice Architecture, Saga Pattern, State Ma-
chine, Data Consistency, System Behavior Modeling,
Distributed Systems.

Název práce:
Mikroservisní vzor Sága jako stavový automat

Abstrakt: Tento výzkum se zaměřuje na zkoumání vzoru Saga jako
stavového stroje v kontextu architektury mikroslužeb.
Implementace vzoru Saga jako stavový stroj nabízí teo-
retické a praktické výhody a poskytuje přirozený mech-
anismus pro označení různých stavů, mezi kterými může
Saga přecházet. Tento přístup usnadňuje lepší pochopení
chování Sagi, zejména když zahrnuje komplexní sekvenci
lokálních transakcí. Rámec stavového stroje, který je for-
mální a dobře studovaný, je prospěšný pro modelování
chování distribuovaných systémů a pomáhá při analýze
a odůvodnění vlastností Sagi. Tato práce obsahuje im-
plementaci Orchestrační Ságy, která je zapouzdřena v
samostatném modulu. Tento modul má rozhraní pro
vytváření a provádění Ságy za běhu.

Klíčová slova: Architektura mikroslužeb, Vzor Saga, Stavový stroj,
Konzistence dat, Modelování chování systému, Dis-
tribuované systémy.
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Chapter 1

Introduction

In recent years, there has been a growing trend toward the use of microservice ar-
chitecture [1] in the design of new software applications. This architectural style is
characterized by the decomposition of a monolithic application into a collection of
small, autonomous services that can be developed, deployed, and scaled indepen-
dently. The popularity of this approach is driven by several key benefits, including
improved scalability, increased flexibility, enhanced fault isolation, and greater or-
ganizational alignment [2].

However, while these new methods can effectively address a wide range of issues
and provide specific features, they also introduce unique challenges. In other words,
some microservice patterns are derived from another pattern’s issues. It could be
clearly seen in the following diagram 1.1:

Figure 1.1: Microservice Patterns board [3]
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2 Chapter 1. Introduction

It is crucial to consider the problem that a new design pattern addresses while
studying it. By referring to the diagram provided, we can identify the pattern that
leads to the problem and approach it from a different angle.

For example, according to the diagram, the Saga pattern is derived from the Database
per Service. As the name implies, the Database per Service pattern [4] presumes that
every service in topology has its own fully isolated database. This pattern contributes
a lot of advantages and it is essential for microservice architecture. By giving each
microservice its own dedicated database, it is easier to ensure that each microservice
can evolve and scale independently of the others. This independence allows different
developer’s teams to choose the best technology stack and data models for each
microservice and avoid potential conflicts that could arise from sharing a monolithic
database [5]. On the other hand, this autonomy can make it difficult to ensure that
data remains consistent across services, especially in the presence of failures or net-
work partitions. In other words, after integrating this pattern into our application
we will get a system with data inconsistency. The Saga pattern addresses this issue
by providing a way to coordinate transactions across multiple services in a consistent
and reliable manner [6].

The Saga pattern defines a series of local transactions that are executed by each
service, and a set of compensating transactions that can be executed in case of
failures. These transactions are executed in a specific order and are connected using
asynchronous messaging, which enables the system to follow the "story" of a request’s
processing. If a failure occurs, the system can revert to the previous consistent state
by executing the compensating transactions in the reverse order [7].

Another advantage of the Saga pattern compared to other mechanisms is that it
helps to maintain the consistency of the data without locking data across the sys-
tem [8] (e.g., in contradistinction to the two-phase commit). This eliminates the
contention issues caused by locks and enhances performance by decreasing delays.

The purpose of this study is to investigate the Saga pattern, including its features
and propose an implementation.



Chapter 2

Analysis

2.1 Saga: Origin

A microservice-based application is essentially a distributed system that is comprised
of multiple smaller services that work together to deliver the desired functionality.
Despite its benefits, this architecture style faces challenges, particularly in managing
transactions that involve multiple services [9].

Adopting a database-per-microservice approach offers several advantages in a mi-
croservice architecture [4]. By isolating domain data, each service can utilize its
optimal data storage type and schema, independently scale its own database, and
remain unaffected by failures in other services. However, maintaining data consis-
tency across multiple service-specific databases presents challenges.

2PC1 protocol, which is a form of distributed transaction, requires all parties in-
volved in a transaction to either commit or roll back before it can progress [10].
However, certain implementation types, such as NoSQL databases and message bro-
kering, are not compatible with this protocol. Moreover, all participating services
must be available for the distributed transactions to commit using 2PC, which can
potentially reduce overall system availability [11].

Thankfully, there is an alternative to traditional distributed transaction implemen-
tation that doesn’t greatly affect the system’s availability - the Saga pattern.

2.2 Saga: Basics

The Saga architecture pattern provides distributed transaction management in dis-
tributed systems using a sequence of local transactions [12]. The Saga pattern was
developed to address the need for breaking down long-lived transactions into smaller,
more manageable ones. These local transactions are executed within the context of

1The two-phase commit
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4 Chapter 2. Analysis

a single service and rely on the assumption that each service utilizes a database that
supports ACID2 transactions to ensure consistency. The key concept introduced by
the Saga pattern is the use of compensable local transactions, which refer to trans-
actions that must be rolled back if necessary. In general, a Saga can be defined as a
sequence of local transactions, all of which possess the capability for compensation.
A successful saga flow where no service fails (Figure 2.1):

Figure 2.1: Successful Saga flow

In the event of a failure within one of the services, the Saga pattern ensures that all
previous local transactions are rolled back and the Saga terminates with an error,
see Figure 2.2.

Figure 2.2: Alternative Saga flow

According to Chris Richardson, there are two basic types of saga implementa-
tions.[13]

2Atomicity, Consistency, Isolation, Durability
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1. Choreography: the decision making and sequencing among the saga partic-
ipants. They primarily communicate by exchanging events.

2. Orchestration: a saga’s coordination logic in a saga orchestrator class. A
saga orchestrator sends command messages to saga participants telling them
which operations to perform.

2.2.1 Saga Orchestration

Saga orchestration provides a centralized mechanism for managing transactions
across multiple microservices. The way service are interconnected is shown in Figure
2.3. In this approach, a coordinator service is responsible for executing a series of
steps in a defined order and ensuring that the overall system remains in a consistent
state. If a microservice fails, the coordinator can take appropriate action, such as
rolling back transactions, to ensure that the system remains consistent.

Figure 2.3: Saga Orchestration [14]

2.2.2 Saga Choreography

Choreography, on the other hand, is a decentralized approach to coordination,
where microservices interact with each other directly without a centralized coordi-
nator. In this approach, microservices communicate with each other using message
passing, and the coordination of the overall system is managed through the interac-
tions between microservices which is represented in Figure 2.4. This approach results
in a loosely coupled system, but error handling and transaction management can be
more complex.



6 Chapter 2. Analysis

Figure 2.4: Saga Choreography [14]

2.2.3 Saga pattern excellence

In summary, Saga orchestration provides a centralized mechanism for transaction
management and error handling, while Choreography results in a loosely coupled
system with decentralized control. The choice between these approaches depends on
the specific requirements of a system and the trade-offs between centralization and
decoupling. Anyways, both two approaches share common features [15]:

1. Flexibility: Sagas provide more flexibility in terms of handling failures and
ensuring consistency. In a Saga, each microservice can implement its own com-
pensation logic for rolling back changes in case of failures, whereas in 2PC, all
microservices must agree to commit or roll back a transaction [16].

2. Scalability: 2PC requires that all participants in a transaction be available
and respond promptly. This can be a bottleneck in large and distributed sys-
tems. Sagas, on the other hand, are more scalable as they do not require all
participants to be available and responsive at the same time.

3. Loose coupling: 2PC tightly couples the microservices involved in a transac-
tion, while Sagas allow for more loose coupling between microservices as they
do not require coordination between participants.

2.2.4 Saga pattern flaws

The Saga pattern is a powerful approach for managing transactions in a distributed
system or a microservices architecture. By dividing long-lived transactions into a
series of local transactions, it helps to maintain the overall consistency of the system,
even when individual services fail. However, like any architectural approach, the Saga
pattern is not without its shortcomings. Here, we’ll explore some of the notable flaws
of the Saga pattern [17].

1. Failure Handling: When a failure occurs in a Saga, compensating trans-
actions are triggered to roll back the changes. However, this compensating
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transactions themselves could fail, leading to a challenging situation where
the system needs to decide how to handle such failures.

2. Increased Latency: Since a Saga involves a series of local transactions that
need to be coordinated, it could lead to increased latency compared to a mono-
lithic architecture where all data could be updated in a single database trans-
action.

3. Increased Complexity in Design: Implementing Sagas requires a shift in
thinking and adds complexity to the design and implementation of the system.
It requires developers to identify and implement compensating transactions,
manage transaction ordering, and handle failures.

4. Dependency on Reliable Messaging: The Saga pattern often relies on
reliable messaging to communicate between services, especially in the chore-
ography approach. If the messaging system fails or messages are lost, it could
disrupt the correct functioning of the Saga.

In summary, while the Saga pattern offers significant benefits for managing transac-
tions in distributed systems, it’s not without its flaws. The choice to use this pattern
should be made carefully, considering the specific requirements and constraints of
the system, and the trade-offs involved. Implementing Sagas effectively also requires
a significant level of expertise and understanding of distributed systems.





Chapter 3

Proposal

Both saga orchestrator and choreography are approaches to managing distributed
transactions in a microservices architecture. While choreography is based on event-
driven communication between services, the saga orchestrator pattern relies on a
centralized component to manage the saga’s execution. It is typically a challenging
task to choose between these two approaches. Several factors heavily influence the
choice between choreography and orchestration in practice.

For this project, we will utilize the orchestration approach to implement saga since
it can be more effectively encapsulated within a separate architectural component.

3.1 Saga as a state machine

The implementation of the Saga pattern as a state machine can provide several
benefits from both a theoretical and practical perspective [18]

From a theoretical perspective, state machines provide a natural way to represent
the different states that a Saga can be in, and the transitions between them. This
facilitates a clear and structured understanding of the behavior of a Saga, espe-
cially when it involves a complex sequence of local transactions. Additionally, state
machines offer a formal and well-studied framework for modeling the behavior of
distributed systems, which can be useful when analyzing and reasoning about the
properties of a Saga implementation [19].

Figure 3.1: Proposed Saga hierarchy model

It is necessary to introduce another crucial abstraction, namely, state propagation,
which operates as a means of communication directed in the opposite direction
among the three aforementioned abstractions, transmitting information from the

9



10 Chapter 3. Proposal

service call to the saga. The primary objective of state propagation is to eliminate
circular dependencies among these three abstractions, thus adopting a form of the
Publish-Subscriber design pattern [20]

3.1.1 State Propagation

In essence, the issue that state propagation resolves arises from the division of Saga
into three distinct abstractions. Were we to have a single, overarching state machine,
such a problem would not present itself. However, through the introduction of this
layer of abstraction, we are able to establish interconnection among all parts of Saga
and maintain a requisite level of coupling between them.

The general rule for state propagation is that it propagates an ended state of a
downstream state machine to an upstream one. The only exclusion will be described
later in the Saga Transaction section 3.1.3.

3.1.2 Service Call

Saga operates asynchronous messages by definition. Service call represents a simple
request to a particular service. It reaches either succeed or failed states depending
on the corresponding response. The state diagram is depicted in Figure 3.2

Figure 3.2: Service call state diagram

The prefix SP1 means state propagation. The transition labeled as SP SUCCEED
on the diagram signifies that the target service in the service call has successfully
processed the request and returned a response that is considered a success. Similarly,
the term SP FAILED implies that the response received from the target service was
unsuccessful or a failure.

Note that the primary concept of state propagation involves propagating the actual
state from a downstream state machine to an upstream one (more in State Prop-
agation section 3.1.1). However, in this specific scenario, it operates in a slightly
different manner because the service call functions as a ’boundary’ state machine
and therefore does not possess any downstream state machines. That’s why the state

1State Propagation
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propagations addressed to the service call is not a state propagation in essence. The
decision to utilize state propagation abstraction for service calls is prompted by the
desire to standardize the state machine template across all state machines.

3.1.3 Saga Transaction

Saga Transaction represents a sequence of local transactions between Saga and a
service which, after execution, turns the service into a consistent state from its Saga
point of view. This abstraction serves as a logical encapsulation of the functionality
pertaining to requesting a service, enabling the separation of Saga steps. The state
diagram of Saga Transaction is represented in Figure 3.3.

The SUCCEED state has been designated as a semi-end state. Broadly speaking, in
the context of this work, this state is considered as an end state, however, it can be
modified in a single scenario: during Saga roll-backing.

Figure 3.3: Saga transaction state diagram

Service calls under a saga transactions are created and running in the scope of
PENDING and COMPENSATION states. That means, that the responsibility of
service call creation is on a saga transaction.

3.1.4 Saga

Finally, introducing previous abstractions allows us to develop a comprehensive Saga
state diagram design. This abstraction is the most important. All saga transactions
under a saga are created during saga creation and running in the scope of PEND-
ING and COMPENSATION states. The Figure 3.4 depicts the Saga state machine
diagram.



12 Chapter 3. Proposal

Figure 3.4: Saga state diagram

Figure 3.5: How it works together: Saga perspective
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3.2 How it works together

To illustrate the functioning of the entire mechanism, let’s consider saga state dia-
gram extended by particular saga transactions. In Figure 3.5 is depicted a scenario,
when the first two saga transactions passes and the third one fails. Following the
compensating stage will successfully roll back all of them.

It should be noted that we have internal transitions, denoted as PENDING-to-
PENDING and COMPENSATION-to-COMPENSATING. To distinguish between
state changes, a counter N has been introduced. This counter functions as a pointer
that identifies which Saga transaction is to be executed following the subsequent
entry into either the PENDING or COMPENSATING states.

Let us proceed by presenting a state diagram of Saga transactions, augmented by
service calls.

Figure 3.6: How it works together: Saga Transaction perspective

The scenario under consideration in Figure 3.6 proceeds as follows: a saga transac-
tion initiates the first service call, which ultimately fails. Subsequently, it triggers a
compensatory service call, which successfully rolls back the previous service call.

In both two examples, we can see that the end state of a downstream state machine
serves as a transition event for the upstream one.

3.3 Proof of concept: Design

We shall now examine a simplified, practical instance of Saga implementation.
Specifically, we shall assume an application comprising four microservices: A, B,
C, and Saga Orchestrator. A corresponding component diagram is presented in Fig-
ure 3.7. In an effort to encapsulate inter-service call details, we shall introduce two
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straightforward abstractions: Response and Request. These abstractions are char-
acterized by a Service Call ID and a content field, which is typed as an Object,
meaning that it can assume any form. It is essential to adopt a generalized content
type, as it enhances the re-usability of the Saga Orchestrator.

Figure 3.7: Example component diagram

The Saga pattern postulates the asynchronous messaging between services. The
subsequent illustration 3.8 demonstrates the architecture of the message broker.
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Figure 3.8: Example component broker diagram

As illustrated in the schematic, each participating service possesses a distinct in-
put topic designated by the service’s name. In other words, the communication
from the Orchestrator to the service is processed through the corresponding service
topic. Conversely, interactions from the service to the Orchestrator employ a singu-
lar topic, denoted as "Response". The determination of topic allocation is predicated
on the type of message and the number of subscribers involved. The guiding prin-
ciple stipulates that a distinct topic shall be established for each message category
and individual subscriber, thereby enabling the delegation of message distribution
responsibilities to the message broker.





Chapter 4

Implementation

4.1 Technology stack

To meet the prescribed prerequisites, it is imperative to incorporate external li-
braries. The forthcoming application will be built on the Spring Boot platform,
with a primary emphasis on leveraging the Spring StateMachine framework for its
core functionality. In order to proficiently handle asynchronous messages, the uti-
lization of the Spring Kafka extension is essential. Additionally, the inclusion of
Spring Data is imperative to facilitate the seamless execution of our Sagas. Lombok
is also part of the dependency list because it aids in streamlining Java boilerplate
code through the use of annotations. A comprehensive Listing of the project’s POM1

dependencies is provided in Listing 7.1 of Appendix A

4.2 State machines configuration

Utilizing Spring Boot configurations, the Spring StateMachine framework provides
an efficient method for setting up state machines. This section delves into the Spring
StateMachine configuration of Service Call, Saga Transaction, and Saga state ma-
chines, elucidating their respective functionalities and implementation details. Ba-
sically, the way of the configuration of each state machine is pretty much the same.
By this configuration, we only build a model of the state machine. For this purpose,
we have to provide a set of states and mark these states by their role. It could be
an initial state or an end state.

4.2.1 Service Call

In order to define a state machine within the Spring StateMachine framework, three
essential configurations need to be provided: state configuration, transition config-

1Project Object Model

17



18 Chapter 4. Implementation

uration, and persistence configuration. The following Listing 4.1 shows the configu-
ration file.

Listing 4.1: Service Call state machine configuration
public void configure( // Persistence configuration

StateMachineConfigurationConfigurer<ServiceCallStates,
ServiceCallEvents> config

) throws Exception {
config.withPersistence()

.runtimePersister( stateMachineRuntimePersister );
}

public void configure( // State configuration
StateMachineStateConfigurer<ServiceCallStates, ServiceCallEvents>

states
) throws Exception {
states.withStates()

.initial( NOT_EXECUTED )

.state( PENDING )

.end( SUCCEED )

.end( FAILED )

.stateEntry( SUCCEED, serviceCallPropagateSucceed )

.stateEntry( FAILED, serviceCallPropagateFailed );
}

public void configure( // Transition configuration
StateMachineTransitionConfigurer<ServiceCallStates,

ServiceCallEvents> transitions
) throws Exception {
transitions

.withExternal()
.source( NOT_EXECUTED )
.target( PENDING )
.event( EXECUTE )
.action( callService ).and()

.withExternal()
.source( PENDING )
.target( FAILED )
.event( SP_FAILED ).and()

.withExternal()
.source( PENDING )
.target( SUCCEED )
.event( SP_SUCCEED );

}

Note, that Spring StateMachine differentiates 2 types of places from which actions
are being invoked. There are so-called entry actions and transition actions. Following
the idea of this work, all end states start with a state propagation. The callService
action is defined as a transition action, bean definitions of actions are described in
detail in subsection 4.2.5. Evidently, it becomes imperative to define certain beans,
namely actions and state machine runtime persister (will be defined in section 4.2.4).
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4.2.2 Saga Transaction

The uniformity of state machine configuration is maintained throughout the entire
application, courtesy of Spring StateMachine. In the next Listing 4.2 we will show
all three state machine configuration definitions.

Listing 4.2: Saga Transaction state machine configuration
public void configure( // Persistence configuration
StateMachineConfigurationConfigurer<SagaTransactionStates,

SagaTransactionEvents> config
) throws Exception {

config.withPersistence()
.runtimePersister( sagaTransactionStateMachineRuntimePersister );

}

public void configure( // State configuration
StateMachineStateConfigurer<SagaTransactionStates, SagaTransactionEvents>

states
) throws Exception {

states.withStates()
.initial( NOT_EXECUTED )
.state( PENDING )
.state( COMPENSATING )
.state( SUCCEED )
.end( CRITICAL )
.end( COMPENSATED )
.stateEntry( SUCCEED, sagaTransactionPropagateSucceed )
.stateEntry( COMPENSATED, sagaTransactionPropagateCompensated )
.stateEntry( CRITICAL, sagaTransactionPropagateCritical );

}

public void configure( // Transition configuration
StateMachineTransitionConfigurer<SagaTransactionStates,

SagaTransactionEvents> transitions
) throws Exception {

transitions
.withExternal()

.source( NOT_EXECUTED )

.target( PENDING )

.event( EXECUTE )

.action( executeForwardServiceCall ).and()
.withExternal()

.source( PENDING )

.target( SUCCEED )

.event( SP_SUCCEED ).and()
.withExternal()

.source( PENDING )

.target( COMPENSATING )

.event( SP_FAILED )

.action( executeRollbackServiceCall ).and()
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.withExternal()
.source( COMPENSATING )
.target( CRITICAL )
.event( SP_FAILED ).and()

.withExternal()
.source( COMPENSATING )
.target( COMPENSATED )
.event( SP_SUCCEED ).and()

.withExternal()
.source( SUCCEED )
.target( COMPENSATING )
.event( COMPENSATE )
.action( executeRollbackServiceCall );

4.2.3 Saga

The configuration of the Saga state machine (depicted in Listing 4.3) is analogous
to the previous two, with one minor distinction - the actions for the PENDING
and COMPENSATING states are entry actions. In contrast, the Service Call and
Saga Transaction only use entry actions for terminal states. For the Saga state
machine, we must adopt a different methodology and allocate entry actions to non-
terminal states. This is crucial since the executeNextSagaTransaction and compen-
sateNextSagaTransaction actions necessitate the state machine to be in a defined
state for execution.

Listing 4.3: Saga state machine configuration
public void configure( // Persistence configuration
StateMachineConfigurationConfigurer<SagaStates, SagaEvents> config
) throws Exception {

config.withPersistence()
.runtimePersister( sagaStateMachineRuntimePersister );

}

public void configure( // State configuration
StateMachineStateConfigurer<SagaStates, SagaEvents> states
) throws Exception {

states.withStates()
.initial( NOT_EXECUTED )
.state( PENDING )
.state( COMPENSATING )
.end( CRITICAL )
.end( SUCCEED )
.end( COMPENSATED )
.stateEntry( PENDING, executeNextSagaTransaction )
.stateEntry( COMPENSATING, compensateNextSagaTransaction );

}

public void configure( // Transition configuration
StateMachineTransitionConfigurer<SagaStates, SagaEvents> transitions
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) throws Exception {
transitions

.withExternal()
.source( NOT_EXECUTED )
.target( PENDING )
.event( EXECUTE ).and()

.withExternal()
.source( PENDING )
.target( PENDING )
.event( SP_SUCCEED ).and()

.withExternal()
.source( PENDING )
.target( SUCCEED )
.event( TO_SUCCEED ).and()

.withExternal()
.source( PENDING )
.target( COMPENSATING )
.event( SP_COMPENSATED ).and()

.withExternal()
.source( PENDING )
.target( COMPENSATING )
.event( SP_CRITICAL ).and()

.withExternal()
.source( COMPENSATING )
.target( COMPENSATING )
.event( SP_COMPENSATED ).and()

.withExternal()
.source( COMPENSATING )
.target( COMPENSATING )
.event( SP_CRITICAL ).and()

.withExternal()
.source( COMPENSATING )
.target( CRITICAL )
.event( TO_CRITICAL ).and()

.withExternal()
.source( COMPENSATING )
.target( COMPENSATED )
.event( TO_COMPENSATED );

}

4.2.4 Persistence

To maintain the persistence characteristics of our system, it is necessary to incor-
porate a mechanism that enables state machines to persist. Fortunately, the Spring
StateMachine framework natively supports this particular feature. An example of
such configurations is shown in Listing 4.4

Listing 4.4: State machines persistence configuration
@Bean
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public StateMachineRuntimePersister<States, Events, String>
sagaTransactionStateMachineRuntimePersister(

JpaStateMachineRepository jpaStateMachineRepository
) {

return new JpaPersistingStateMachineInterceptor<>(
jpaStateMachineRepository );

}

@Bean
public StateMachineService<States, Events>

sagaTransactionStateMachineService(
StateMachineFactory<States, Events> stateMachineFactory,
StateMachineRuntimePersister<States, Events, String>

stateMachineRuntimePersister
) {

return new DefaultStateMachineService<>( stateMachineFactory,
stateMachineRuntimePersister );

}

Basically, all three different state machines will have such 2 beans each. We will pro-
vide only one definition as the only thing changes is the state enumeration and event
enumeration in diamond brackets (e.g. Saga will have <SagaStates, SagaEvents>.
StateMachineService defined in the Listing above is provided by Spring StateMa-
chine and serves as a sycnhonizing service and cache at the same time.

4.2.5 Actions

As was mentioned previously, there are two different types of action, actions that
flow from an upstream to the downstream state machine (e.g. from Saga to Saga
Transaction), and actions flows from a downstream state machine to the upstream
one. All 3 action configurations for each state machine look pretty much the same
at this point. Let’s look at Listing 4.5

Listing 4.5: Service Call action configuration
@Bean
public Action<ServiceCallStates, ServiceCallEvents> callService() {

return serviceCallActionService::callService;
}

@Bean
public Action<ServiceCallStates, ServiceCallEvents>

serviceCallPropagateSucceed() {
return stateContext -> {

var stId = getSagaTransactionId( stateContext.getExtendedState() );
applicationEventPublisher.publishEvent( new

StatePropagationToSagaTransaction( this.getClass(), SUCCEED,
stId ) );

};
}
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@Bean
public Action<ServiceCallStates, ServiceCallEvents>

serviceCallPropagateFailed() {
return stateContext -> {

var stId = getSagaTransactionId( stateContext.getExtendedState() );
applicationEventPublisher.publishEvent( new

StatePropagationToSagaTransaction( this.getClass(), FAILED,
stId ) );

};
}

This is the definition of actions for the Service Call state machine. The actions
serviceCallPropagateSucceed() and serviceCallPropagateFailed() are state propaga-
tion actions that direct the flow towards an upstream state machine, in this case,
the Saga Transaction. Essentially, all actions aimed at an upstream state machine
merely redirect the relevant event to a message queue. This event is then intercepted
by the StatePropagationHandler, which will be further elaborated in the subsequent
section 4.3. Another type of actions directed to the downstream state machines is
simply call the relevant state machine service. These services will be described later
in section 4.4.

4.3 StatePropagationHandler

As alluded to earlier, the state propagation mechanism is conceived and structured
to mitigate the issue of circular dependencies [21], a common challenge in system
design. The root cause of this predicament stems from the methodology we have
adopted, particularly, the high degree of inter-connectivity between state machines.
This scenario results in an intertwined network of dependencies, which can lead
to the manifestation of various system complexities. For further elaboration, we
will delve into diagram 4.2. This visual representation elucidates the intricate inter-
dependencies that emerge in the absence of a state propagation layer, thereby high-
lighting the critical role such a layer plays in preventing the creation of cyclical
dependencies.
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Figure 4.1: Circular dependency diagram

The circles, spawned by this approach are indicated by red and blue colors. To
resolve this, we will use native Spring messaging support.

Figure 4.2: Circular dependency diagram: resolved

The subsequent Listing 4.6 provides a representation of the StatePropagationSer-
vice’s structure and composition.

Listing 4.6: State Propagation service
private final Map<ServiceCallResponseCode, ServiceCallEvents>

serviceCallStatePropagationMap = Map.of(
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ServiceCallResponseCode.SUCCESS, ServiceCallEvents.SP_SUCCEED,
ServiceCallResponseCode.ERROR, ServiceCallEvents.SP_FAILED

);

private final Map<ServiceCallStates, SagaTransactionEvents>
sagaTransactionStatePropagationMap = Map.of(

ServiceCallStates.SUCCEED, SagaTransactionEvents.SP_SUCCEED,
ServiceCallStates.FAILED, SagaTransactionEvents.SP_FAILED

);

private final Map<SagaTransactionStates, SagaEvents>
sagaStatePropagationMap = Map.of(

SagaTransactionStates.SUCCEED, SagaEvents.SP_SUCCEED,
SagaTransactionStates.COMPENSATED, SagaEvents.SP_COMPENSATED,
SagaTransactionStates.CRITICAL, SagaEvents.SP_CRITICAL

);

@EventListener // from KafkaListener to ServiceCall
public void statePropagationToServiceCall( StatePropagationToServiceCall

statePropagation ) {
serviceCallStatemachineService

.acquireStateMachine(
statePropagation.getTargetStatemachineId() )

.sendEvent( just( withPayload(
serviceCallStatePropagationMap.get(
statePropagation.getStatePropagationCode() ) ).build() ) )

.blockLast();
}

@EventListener // from ServiceCall to SagaTransaction
public void statePropagationToSagaTransaction(

StatePropagationToSagaTransaction statePropagation ) {
sagaTransactionStatemachineService

.acquireStateMachine(
statePropagation.getTargetStatemachineId() )

.sendEvent( just( withPayload(
sagaTransactionStatePropagationMap.get(
statePropagation.getStatePropagationCode() ) ).build() ) )

.blockLast();
}

@EventListener // from SagaTransaction to Saga
public void statePropagationToSaga( StatePropagationToSaga

statePropagation ) {
sagaStatemachineService

.acquireStateMachine(
statePropagation.getTargetStatemachineId() )

.sendEvent( just( withPayload( sagaStatePropagationMap.get(
statePropagation.getStatePropagation() ) ).build() ) )

.blockLast();
}



26 Chapter 4. Implementation

The aforementioned Listing predictably features three Spring Messaging event lis-
teners, namely KafkaListener-to-ServiceCall, ServiceCall-to-SagaTransaction, and
SagaTransaction-to-Saga. As elucidated earlier, the KafkaListener-to-ServiceCall is
not classified as a ’pure’ state propagation since KafkaListener does not qualify as
a state machine. However, to accommodate a more generalized definition of a state
machine, this departure from the norm has been permitted. An additional intriguing
feature to note from the aforementioned Listing pertains to event maps. Considering
that state machines dispatch their pertinent end states to the StatePropagationSer-
vice, it is imperative that these end states are accurately mapped to the correspond-
ing upstream transition events. This function is fulfilled by the maps situated at the
commencement of the Listing, underscoring their importance in ensuring the correct
alignment between end states and transition events.

4.4 State machine services

This level of abstraction functions as the business logic for each specific state ma-
chine, with the exception of the state propagation mechanism which is common to
all state machines. All these services utilize the StateMachineService bean, an aggre-
gated component provided by the Spring StateMachine framework (more about this
service in 4.2.4). In our project, this layer is comprised of two categories of services
for each state machine. The first category follows the naming convention of <state-
machine-name>Service and is responsible for managing the lifecycle of the state ma-
chine. The second category, conforming to the <state-machine-name>ActionService
naming convention, is tasked with handling all the residual business logic specific to
that state machine.

4.4.1 ServiceCall Services

The following Listing 4.7 shows both types of services for the ServiceCall state
machine:

Listing 4.7: Service Call service and Service Call action service
@Service
@RequiredArgsConstructor
public class ServiceCallService {

private final StateMachineService<ServiceCallStates,
ServiceCallEvents> serviceCallStatemachineService;

public StateMachine<ServiceCallStates, ServiceCallEvents>
buildServiceCall( String sagaTransactionId, Services
targetService, Object content ) {
var scSm = serviceCallStatemachineService.acquireStateMachine(

randomUUID().toString() );
setSagaTransactionId( scSm.getExtendedState(), sagaTransactionId );
setTargetService( scSm.getExtendedState(), targetService );
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setContent( scSm.getExtendedState(), content );
return scSm;

}
}

@Service
@RequiredArgsConstructor
public class ServiceCallActionService {

private final ServiceRequestSender serviceRequestSender;

public void callService( StateContext<ServiceCallStates,
ServiceCallEvents> stateContext ) {
var scId = stateContext.getStateMachine().getId();
var targetService = getTargetService(

stateContext.getExtendedState() );
var content = getContent( stateContext.getExtendedState() );
var request = new ServiceCallRequestDto( scId, content );
serviceRequestSender.callService( targetService, request );

}

}

It’s important to note that each state machine maintains its data storage. This data
can be accessed using the following method: sm.getExtendedState().getVariables(),
which returns a map of <VariableName, VariableValue>. To make this potentially
cumbersome access more user-friendly, static utility access classes have been imple-
mented for each state machine.

Another noteworthy aspect is the ServiceRequestSender dependency. This simply
dispatches a message to a selected service via Kafka. In simpler terms, the ’callSer-
vice’ action specified in the ServiceCall state machine configuration offloads the task
of action processing to the ServiceCallActionService. This service then employs the
ServiceRequestSender to dispatch the given message to the appropriate service.

4.4.2 SagaTransaction Services

The following Listing 4.8 depicts the way the service layer is implemented for Saga-
Transaction state machine:

Listing 4.8: Saga Transaction service and Saga Transaction action service
@Service
@RequiredArgsConstructor
public class SagaTransactionService {

private final StateMachineService<SagaTransactionStates,
SagaTransactionEvents> sagaTransactionStatemachineService;
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public StateMachine<SagaTransactionStates, SagaTransactionEvents>
buildSagaTransaction( TransactionSpecification
transactionSpecification, String sagaId ) {
var stSm = sagaTransactionStatemachineService.acquireStateMachine(

randomUUID().toString() );
setSagaId( stSm.getExtendedState(), sagaId );
setTargetService( stSm.getExtendedState(),

transactionSpecification.getTargetService() );
setPrimaryContent( stSm.getExtendedState(),

transactionSpecification.getPrimaryContent() );
setRollbackContent( stSm.getExtendedState(),

transactionSpecification.getRollbackContent() );
return stSm;

}

public StateMachine<SagaTransactionStates, SagaTransactionEvents>
findById( String id ) {
return sagaTransactionStatemachineService.acquireStateMachine( id

);
}

}

@Service
@RequiredArgsConstructor
public class SagaTransactionActionService {

private final ServiceCallService serviceCallService;

public void executeForwardServiceCall(
StateContext<SagaTransactionStates, SagaTransactionEvents>
stateContext ) {
var stSmId = stateContext.getStateMachine().getId();
var targetService = getTargetService(

stateContext.getExtendedState() );
var content = getPrimaryContent( stateContext.getExtendedState() );
serviceCallService

.buildServiceCall( stSmId, targetService, content )

.sendEvent( just( withPayload( EXECUTE ).build() ) )

.blockLast();
}

public void executeRollbackServiceCall(
StateContext<SagaTransactionStates, SagaTransactionEvents>
stateContext) {
var stSmId = stateContext.getStateMachine().getId();
var targetService = getTargetService(

stateContext.getExtendedState() );
var content = getRollbackContent( stateContext.getExtendedState()

);
serviceCallService

.buildServiceCall( stSmId, targetService, content )
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.sendEvent( just( withPayload( EXECUTE ).build() ) )

.blockLast();
}

}

The implementation approach for SagaTransactionService is quite similar to that for
ServiceCall. However, SagaTransactionActionService exhibits more complex behav-
ior than ServiceCall. This action service enables us to execute a forward ServiceCall
by invoking the relevant function and also executin a rollback ServiceCall.

4.4.3 Saga Services

The subsequent illustration 4.9 demonstrates how the service layer is implemented
for the Saga state machine:

Listing 4.9: Saga Service and Saga action service
@Service
@RequiredArgsConstructor
public class SagaService {

private final StateMachineService<SagaStates, SagaEvents>
sagaStatemachineService;

private final SagaTransactionService sagaTransactionService;

public StateMachine<SagaStates, SagaEvents> buildAndStartSaga(
SagaSpecification sagaSpecification ) {
var sagaSm = sagaStatemachineService.acquireStateMachine(

randomUUID().toString() );
var stIdList = sagaSpecification

.getTransactionSpecifications()

.stream()

.map( ts -> sagaTransactionService.buildSagaTransaction(
ts, sagaSm.getId() ) )

.map( StateMachine::getId )

.collect( toList() );

setTransactionIdList( sagaSm.getExtendedState(), stIdList );
setRunningTransactionOrder( sagaSm.getExtendedState(), -1 );
setTotalTransactionsCount( sagaSm.getExtendedState(),

sagaSpecification.getTransactionSpecifications().size() );

sagaSm.sendEvent( just( withPayload( EXECUTE ).build() )
).blockLast();

return sagaSm;
}
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}

@Service
@RequiredArgsConstructor
public class SagaActionService {

private final SagaTransactionService sagaTransactionService;

public void executeNextSagaTransaction( StateContext<SagaStates,
SagaEvents> stateContext ) {
var stSmNextOrder = getRunningTransactionOrder(

stateContext.getExtendedState() ) + 1;
var stSmTotalXAmount = getTotalTransactionsCount(

stateContext.getExtendedState() );
if ( stSmTotalXAmount == stSmNextOrder ) {

stateContext.getStateMachine().sendEvent( just( withPayload(
TO_SUCCEED ).build() ) ).blockLast();

} else {
sagaTransactionService

.findById( getTransactionIdList(
stateContext.getExtendedState() ).get(
stSmNextOrder ) )

.sendEvent( just( withPayload( EXECUTE ).build() ) )

.blockLast();
setRunningTransactionOrder( stateContext.getExtendedState(),

stSmNextOrder );
}

}

public void compensateNextSagaTransaction( StateContext<SagaStates,
SagaEvents> stateContext ) {
var stSmNextOrder = getRunningTransactionOrder(

stateContext.getExtendedState() ) - 1;
if ( stSmNextOrder == -1 ) {

stateContext.getStateMachine().sendEvent( just( withPayload(
TO_COMPENSATED ).build() ) ).blockLast();

} else {
sagaTransactionService

.findById( getTransactionIdList(
stateContext.getExtendedState() ).get(
stSmNextOrder ) )

.sendEvent( just( withPayload( COMPENSATE ).build() ) )

.blockLast();
setRunningTransactionOrder( stateContext.getExtendedState(),

stSmNextOrder );
}

}

}

The SagaService maintains the trend and handles the lifecycle component. A key
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distinction from other lifecycle services is its ability to create downstream state
machines based on input parameters. The SagaActionService enables the execution
of the next SagaTransaction or the compensation of a SagaTransaction, which is
quite suitable for our needs. For a clearer understanding, please refer back to figure
3.4.





Chapter 5

Testing

The system discussed in this paper is sufficiently complex and requires thorough
testing. A number of unit tests were introduced during the development phase,
but they are not sufficient for a system of this scale. Furthermore, testing within a
microservice architecture demands a unique approach, like service component testing
[22].

5.1 Testing approach

The service component testing approach eliminates the need to develop a real mi-
croservice for testing another microservice. As a result, we will create stubs for each
service (Service A, Service B, Service C). After configuring these stubs to respond as
anticipated, we will achieve a state where we can conduct end-to-end testing of our
system, since we are decoupled from the other services. This approach is depicted
in Figure 5.1.

Figure 5.1: Service Component Testing: Stubs [23]

33
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Fortunately, there is a framework, Spring Contract, that enables the creation of
stubs, even when using Kafka messaging. Essentially, in Spring Contract we define
a contract that afterward will be tested on both API1 consumer and API producer
sides. On the API producer side, we primarily simulate an input call to our microser-
vice and validate the output message. On the API consumer side, our approach to
testing involves creating a message listener configured according to the contract.
This listener intercepts the message and if it aligns with the contract, it sends a
response message defined in the same contract back. The sequence diagram of that
process is shown in Figure 5.2

Figure 5.2: Spring Contract: Sequence diagram [23]

5.2 Technology stack

Another module, ’Contract’, has been introduced specifically for testing. This mod-
ule will act as a mock for all three services (Service A, Service B, Service C). Ad-
ditionally, the Contract module has the responsibility of deploying contract stubs.
The deployment model is depicted in Figure 5.3.

1Application Programming Interface
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Figure 5.3: Deployment Model: Testing

The Contract module employs two key technologies: Spring Boot and Spring Con-
tract. All other dependencies are derived from these two. The Contract module in-
cludes the following dependency in its Project Object Model (POM) is represented
in Listing 7.2 of Appendix A

5.3 Spring Cloud Contract modification

Now, let’s examine the contracts themselves. The subsequent Listing 5.1 presents
simple Kafka message contracts:

Listing 5.1: Plain Spring Cloud contract
make {

input {
messageFrom(’service-a’)
messageBody([

serviceCallId: 1,
content: ’AMOGUS’

])
messageHeaders {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallRequestDto’)

}
}
outputMessage {

sentTo(’orchestrator’)
body(

serviceCallId: 1,
code: ’ERROR’

)
headers {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallResponseDto’)

}
}

},
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make {
input {

messageFrom(’service-a’)
messageBody([

serviceCallId: 1,
content: $(consumer(regex(’^(?:(?!AMOGUS).)*$’)),

producer(’CONTENT’))
])
messageHeaders {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallRequestDto’)

}
}
outputMessage {

sentTo(’orchestrator’)
body(

serviceCallId: 1,
code: ’SUCCESS’

)
headers {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallResponseDto’)

}
}

}

Each contract initiates with an input block where the topic (messageFrom), message
content (messageBody), and message headers are specified. Following the input block
is the output message block, where the topic (sentTo), message content (body), and
headers are also defined. This contract indicates that for an input that matches the
input block, a message matching the output message block will be returned. Take
note that these contracts define the messageBody block only for service calls with
an ID of 1. Essentially, this implies that any other service call ID will be dismissed,
and therefore, no output message will be dispatched.

Nonetheless, our aim is to induce a bit complex behavior. We aspire to broaden
the input and output definitions to enhance the functionality of mocks. This can be
achieved by introducing a new stipulation to our contract:

outputMessage.body.serviceCallId = input.messageBody.serviceCallId

Regrettably, Spring Contract doesn’t accommodate this feature as its contracts are
not designed to tackle such concerns [24]. For this reason, we plan to make minor
adjustments to the Spring Contract library. Take a look at the following Listing 5.2
updated contract:

Listing 5.2: Modified Spring Cloud contract
make {

input {
messageFrom(’service-a’)
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messageBody([
serviceCallId: $(consumer(regex(’[A-Za-z-_0-9]+’)),

producer(’SERVICE_CALL_ID’)),
content: ’AMOGUS’

])
messageHeaders {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallRequestDto’)

}
}
outputMessage {

sentTo(’orchestrator’)
body(

serviceCallId: $(consumer(’$fromInput(serviceCallId)’),
producer(’SERVICE_CALL_ID’)),

code: ’ERROR’
)
headers {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallResponseDto’)

}
}

},
make {

input {
messageFrom(’service-a’)
messageBody([

serviceCallId: $(consumer(regex(’[A-Za-z-_0-9]+’)),
producer(’SERVICE_CALL_ID’)),

content: $(consumer(regex(’^(?:(?!AMOGUS).)*$’)),
producer(’CONTENT’))

])
messageHeaders {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallRequestDto’)

}
}
outputMessage {

sentTo(’orchestrator’)
body(

serviceCallId: $(consumer(’$fromInput(serviceCallId)’),
producer(’SERVICE_CALL_ID’)),

code: ’SUCCESS’
)
headers {

header(’__TypeId__’,
’cz.cvut.fel.orchestrator.api.ServiceCallResponseDto’)

}
}

}
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The main difference is that now we introduce consumer/producer values differenti-
ation. The expression ’$(consumer(value1), producer(value2))’ indicates that value1
will be utilized for the consumer-side test, while value2 will be employed for the
producer-side test. We won’t need a universal matcher on the producer side, as our
main focus is on the API consumer. Contracts allows us to match strings using reg-
ular expressions [25], the syntax is represented by ’regex()’ block. The correlation
id logic is implemented through the use of placeholders. Consider the service call id
in the output message for the consumer. The ’(())’ formation, which isn’t inherently
supported by Spring Contract, is utilized here. This is the segment that we aim to
manipulate to attain the correlation id behavior. Since this notation is exclusively
employed for the consumer side, let’s bring in revised Spring Contract configurations
for our orchestrator module (the API consumer) represented on Listing 5.3

Listing 5.3: StubRunnerKafkaTransformer modification
public class CustomStubRunnerKafkaTransformer {

...
public Message<?> transform( Contract groovyDsl, Message<?>

referenceMessage ) {
Object outputBody = outputBody(groovyDsl);
// the point of use insertReferences()
outputBody = insertReferences( outputBody, referenceMessage );
Map<String, Object> headers =

groovyDsl.getOutputMessage().getHeaders().asStubSideMap();
Message newMessage = MessageBuilder.createMessage(outputBody, new

MessageHeaders(headers));
this.selector.updateCache(newMessage, groovyDsl);
return newMessage;

}
...

// this function inserts placeholder ’fromInput’ by the value
specified in brackets

private Object insertReferences( Object outputBody, Message<?>
referenceMessage ) {
try {

var regex = "^\\$fromInput\\((.*)\\)$";
var objectMapper = new ObjectMapper();
var outputBodyMapping = objectMapper.readValue( (String)

outputBody, HashMap.class );
var referenceMessageBodyMapping = objectMapper.readValue(

objectMapper.writeValueAsString(
referenceMessage.getPayload() ), HashMap.class );

for ( var key : outputBodyMapping.keySet() ) {
var outputBodyValue = (String) outputBodyMapping.get( key

);
if ( outputBodyValue.matches( regex ) ) {

var referenceMessageBodyMappingKey = substringBetween(
outputBodyValue, "(", ")" );

var referenceMessageBodyValue = (String)
referenceMessageBodyMapping.get(
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referenceMessageBodyMappingKey );
outputBodyMapping.put( key, referenceMessageBodyValue );

}
}

return new JSONObject( outputBodyMapping ).toString();
} catch ( Exception e ) {

return outputBody;
}

}
}

Given that we don’t have the permission to replace or extend a specific function, we
are compelled to rewrite the entire bean. Following this, we will expressly override
the bean usage with the ’@Import( CustomStubRunnerKafkaConfiguration.class )’
annotation on the base test class on the consumer side.

5.3.1 Bean name issue

There is a bug in Spring Contract of 3.1.6 version found during the development.
The issue occurs then we try to run the contract test on the consumer side using
contracts which accepts more than one input message topics. The following Listing
5.4 shows the source code of a Spring Contract bean:

Listing 5.4: StubRunnerKafkaTransformer bug
...
public class StubRunnerKafkaConfiguration {
...
@Bean
@ConditionalOnMissingBean(name = "stubFlowRegistrar")
public FlowRegistrar stubFlowRegistrar(ConfigurableListableBeanFactory

beanFactory,
BatchStubRunner batchStubRunner) {

Map<StubConfiguration, Collection<Contract>> contracts =
batchStubRunner.getContracts();

for (Entry<StubConfiguration, Collection<Contract>> entry :
contracts.entrySet()) {
StubConfiguration key = entry.getKey();
Collection<Contract> value = entry.getValue();
String name = key.getGroupId() + "_" + key.getArtifactId(); // name
MultiValueMap<String, Contract> map = new LinkedMultiValueMap<>();
for (Contract dsl : value) {

if (dsl == null) {
continue;

}
if (dsl.getInput() != null && dsl.getInput().getMessageFrom()

!= null
&& StringUtils.hasText(

dsl
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.getInput()

.getMessageFrom()

.getClientValue()
) ) {

String from =
dsl.getInput().getMessageFrom().getClientValue();

map.add(from, dsl);
}

}
for (Entry<String, List<Contract>> entries : map.entrySet()) {

List<Contract> matchingContracts = entries.getValue();
final String flowName = name + "_" + entries.getKey() + "_" +

Math.abs(matchingContracts.hashCode()); // flowName
StubRunnerKafkaRouter router = new

StubRunnerKafkaRouter(matchingContracts, beanFactory);
StubRunnerKafkaRouter listener = (StubRunnerKafkaRouter)

beanFactory.initializeBean(router, flowName);
...
beanFactory.registerSingleton(flowName, listener);
registerContainers(beanFactory, matchingContracts, flowName,

listener);
}

}
return new FlowRegistrar();

}

private void registerContainers(ConfigurableListableBeanFactory
beanFactory, List<Contract> matchingContracts,

String flowName, StubRunnerKafkaRouter listener) {
ConsumerFactory consumerFactory =

beanFactory.getBean(ConsumerFactory.class);
for (Contract matchingContract : matchingContracts) {

if (matchingContract.getInput() == null) {
continue;

}
String destination = MapConverter

.getStubSideValuesForNonBody(
matchingContract

.getInput()

.getMessageFrom()
)

.toString();
ContainerProperties containerProperties = new

ContainerProperties(destination);
KafkaMessageListenerContainer container =

listenerContainer(consumerFactory, containerProperties,
listener);

String containerName = flowName + ".container"; // container
name: duplicate namings

Object initializedContainer =
beanFactory.initializeBean(container, containerName);
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beanFactory.registerSingleton(containerName,
initializedContainer);

...
}

}
...
}

This is where Spring Contract creates listeners for input topics in the input section of
each contract. If you trace the construction process of the containerName, the issue
of duplication will become evident. There’s a straightforward solution to this issue:
we’ll adjust the containerName by incorporating the hash code of the corresponding
contract into its name. The result of such manipulations is represented on Listing
5.5

Listing 5.5: StubRunnerKafkaTransformer bug fix
private void registerContainers(ConfigurableListableBeanFactory

beanFactory, List<Contract> matchingContracts,
String flowName, CustomStubRunnerKafkaRouter listener) {

ConsumerFactory consumerFactory =
beanFactory.getBean(ConsumerFactory.class);

for (Contract matchingContract : matchingContracts) {
...
// contract hash code is added to the containerName
String containerName = flowName + ".container" +

matchingContract.hashCode();
Object initializedContainer =

beanFactory.initializeBean(container, containerName);
beanFactory.registerSingleton(containerName, initializedContainer);

}
}

5.4 Saga Flow Test

These preparatory steps enable us to conduct the intended test, which will examine
the saga flow from end to end using a mock generated from the contract. Let’s begin
by showcasing the test configuration employed in this saga flow test:

Listing 5.6: Test configuration
@TestConfiguration
@AutoConfigureBefore( StubRunnerKafkaConfiguration.class )
public class TestConfig {

@Value( "${spring.kafka.bootstrap-servers}" )
private String bootstrapAddress;

@Bean
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@Primary
public ProducerFactory<String, ServiceCallResponseDto>

testProducerFactory() {
var configs = new HashMap<String, Object>();
configs.put( BOOTSTRAP_SERVERS_CONFIG, bootstrapAddress );
configs.put( KEY_SERIALIZER_CLASS_CONFIG, StringSerializer.class );
configs.put( VALUE_SERIALIZER_CLASS_CONFIG, StringSerializer.class

);
return new DefaultKafkaProducerFactory<>( configs );

}

@Bean
@Primary
public KafkaTemplate<String, ServiceCallResponseDto>

testKafkaTemplate() {
return new KafkaTemplate<>( testProducerFactory() );

}

}

Here in this configuration we are simply define a KafkaTemplate which will be used
during stubs auto-generation.

The upcoming Listing 5.7 demonstrates the test itself:

Listing 5.7: Saga flow test
@SpringBootTest
// overriding of the default Spring Contract stub configuration bean
@Import( { CustomStubRunnerKafkaConfiguration.class, TestConfig.class } )
// specifying the place stub artifacts are located
@AutoConfigureStubRunner( ids = "cz.cvut.fel:Contract:+:stubs:8090",

stubsMode = LOCAL )
@DirtiesContext
// runs a Kafka broker in scope of the test
@EmbeddedKafka( partitions = 1, brokerProperties = {

"listeners=PLAINTEXT://localhost:9092", "port=9092" } )
public class SagaFlowIntegrationTest {

@Autowired
SagaService sagaService;

@Autowired
SagaTransactionService sagaTransactionService;

@SpyBean
ServiceResponseHandler serviceResponseHandler;

@SpyBean
KafkaTemplate<String, ServiceCallRequestDto> kafkaTemplate;

@Captor
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ArgumentCaptor<ServiceCallRequestDto>
serviceCallRequestDtoArgumentCaptor;

@Captor
ArgumentCaptor<ServiceCallResponseDto>

serviceCallResponseDtoArgumentCaptor;

@Test
void success() {
// ARRANGE

var primaryContent1 = "PRIMARY1";
var rollbackContent1 = "ROLLBACK1";
var primaryContent2 = "PRIMARY2";
var rollbackContent2 = "ROLLBACK2";
var primaryContent3 = "PRIMARY3";
var rollbackContent3 = "ROLLBACK3";
var ts1 = new TransactionSpecification( SERVICE_A,

primaryContent1, rollbackContent1 );
var ts2 = new TransactionSpecification( SERVICE_B,

primaryContent2, rollbackContent2 );
var ts3 = new TransactionSpecification( SERVICE_C,

primaryContent3, rollbackContent3 );
var sagaSpecification = new SagaSpecification( List.of( ts1, ts2,

ts3 ) );

// ACT
// this function starts builds a saga from saga transaction
var sagaSm = sagaService.buildAndStartSaga( sagaSpecification );

// ASSERT
verify( kafkaTemplate, timeout( 5000 ).times( 3 ) )

.send( argThat( Set.of( SERVICE_A_TOPIC, SERVICE_B_TOPIC,
SERVICE_C_TOPIC )::contains ),
serviceCallRequestDtoArgumentCaptor.capture() );

assertThat( serviceCallRequestDtoArgumentCaptor.getAllValues() )
.allSatisfy( request -> {

assertThat( request.getContent() ).isIn(
primaryContent1, primaryContent2, primaryContent3 );

} );
verify( serviceResponseHandler, timeout( 5000 ).times( 3 )

).processResponse(
serviceCallResponseDtoArgumentCaptor.capture() );

assertThat( serviceCallResponseDtoArgumentCaptor.getAllValues() )
.anySatisfy( response -> {

assertThat( response.getServiceCallId() )
.isEqualTo(

serviceCallRequestDtoArgumentCaptor
.getValue()
.getServiceCallId()
);

assertThat( response.getCode() ).isEqualTo( SUCCESS );
} );
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sleep( 1000 );
assertThat( sagaSm.getState().getId() ).isEqualTo( SUCCEED );
assertThat(

getTransactionIdList( sagaSm.getExtendedState() )
.stream()

.map( sagaTransactionService::findById )

.map( StateMachine::getState )

.map( State::getId )

.collect( toList() )
).allSatisfy( SagaTransactionStates.SUCCEED::equals );

}

@Test
void compensated() {
// ARRANGE

var primaryContent1 = "CONTENT1";
var rollbackContent1 = "ROLLBACK1";
var primaryContent2 = "CONTENT2";
var rollbackContent2 = "ROLLBACK2";
var primaryContent3 = "AMOGUS";
var rollbackContent3 = "ROLLBACK3";
var ts1 = new TransactionSpecification( SERVICE_A,

primaryContent1, rollbackContent1 );
var ts2 = new TransactionSpecification( SERVICE_B,

primaryContent2, rollbackContent2 );
var ts3 = new TransactionSpecification( SERVICE_C,

primaryContent3, rollbackContent3 );
var sagaSpecification = new SagaSpecification( List.of( ts1, ts2,

ts3 ) );

// ACT
var sagaSm = sagaService.buildAndStartSaga( sagaSpecification );

// ASSERT
verify( kafkaTemplate, timeout( 10000 ).times( 6 ) )

.send( argThat( Set.of( SERVICE_A_TOPIC, SERVICE_B_TOPIC,
SERVICE_C_TOPIC )::contains ),
serviceCallRequestDtoArgumentCaptor.capture() );

assertThat( serviceCallRequestDtoArgumentCaptor.getAllValues() )
.allSatisfy( request -> {

assertThat( request.getContent() ).isIn(
primaryContent1,rollbackContent1, primaryContent2,
rollbackContent2, primaryContent3, rollbackContent3
);

} );
verify( serviceResponseHandler, timeout( 10000 ).times( 6 )

).processResponse(
serviceCallResponseDtoArgumentCaptor.capture() );

assertThat( serviceCallResponseDtoArgumentCaptor.getAllValues() )
.allSatisfy( response -> {

assertThat( response.getServiceCallId() ).isIn(
serviceCallRequestDtoArgumentCaptor
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.getAllValues().stream()

.map(
ServiceCallRequestDto::getServiceCallId
)

.collect( toSet() )
);
assertThat( response.getCode() ).isIn( SUCCESS, ERROR );

} );
sleep( 2000 );
assertThat( sagaSm.getState().getId() ).isEqualTo( COMPENSATED );

}

}

The provided Java test, SagaFlowIntegrationTest, is designed to conduct end-to-
end testing of a Saga pattern, a design pattern used to manage transactions across
multiple microservices, using a local Kafka broker.

In this test class, the @SpringBootTest annotation denotes that it’s a Spring Boot
test, hence it bootstraps the entire application context. Custom configurations are
imported using the @Import annotation to override the default Spring Contract stub
with a custom one (CustomStubRunnerKafkaConfiguration.class) and to import
test configurations (TestConfig.class). The @AutoConfigureStubRunner annotation
specifies the location of the stub artifacts.

The test class contains two tests: success() and compensated(). These tests are
designed to verify the successful execution of a saga and its proper compensation
upon encountering an error, respectively.

In the success() test, a saga is built and started using predefined transaction spec-
ifications. The test then verifies that the correct Kafka messages are sent and pro-
cessed, that the correct response codes are returned, and that the saga and its associ-
ated transactions reach the ’SUCCEED’ state. The success of this test is guaranteed
as its service call specifications do not contain word ’AMOGUS’ (see 5.2.

In the compensated() test, a saga is again built and started, but one of the trans-
actions is set to trigger an error. The test verifies that the correct Kafka messages
are sent and processed, including the rollback commands for the completed transac-
tions. It then checks that the saga reaches the ’COMPENSATED’ state, indicating
that the transactions have been correctly rolled back due to the error. Note, that
this test fails as the third service call specification contains word ’AMOGUS’ in its
content, that’s why the relevant stub declines this request and return with an error
(see 5.2).

Both tests leverage Mockito’s @SpyBean to monitor actual beans and @Captor to
capture arguments for further assertions. These tests help to ensure that the Saga
pattern is working as expected, both in normal operation and when errors occur,
thereby improving the reliability and robustness of the system.

As previously stated, the method buildAndStartSaga in SagaService both constructs
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and initiates the entire saga. The validity of this claim is confirmed in the assertion
section.



Chapter 6

Conclusion

Additionally, the Saga pattern provides two different modes of coordination - orches-
tration and choreography. Orchestration uses a central controller or "orchestrator"
to control the interaction between services. On the other hand, Choreography decen-
tralizes the decision-making process, letting each service decide the next service to
involve. Each approach has its pros and cons and the choice between them is often
dependent on the complexity of the system and the inter-dependencies between the
services.

One of the most compelling features of the Saga pattern is its ability to maintain the
overall system’s consistency, even in the face of individual microservice failures [26].
By breaking down a global transaction into a series of local transactions, each with
its own compensating transaction, Sagas ensure that the system can "undo" changes
in the event of a failure. This ability to recover from failures is a critical requirement
in distributed systems, where individual components may fail or become temporarily
unavailable.

However, it is important to mention that using the Saga pattern does require a shift
in how we think about consistency. Instead of relying on the database’s built-in
ACID properties to manage global transactions, the Saga pattern enforces eventual
consistency across multiple services. This means that while individual local transac-
tions are immediately consistent, the overall system may not be in a consistent state
at all times. Over time, and assuming no failures, the system eventually reaches a
consistent state, as each service completes its part of the global transaction.

Overall, the Saga pattern is a robust and resilient strategy for managing transactions
in distributed systems, particularly in microservices architectures. It offers a prag-
matic trade-off between consistency and availability, contributing to the scalability
and resilience of distributed systems.
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Chapter 7

Future work

In this project, we have successfully built an extensive Saga pattern utilizing state
machines. While this is a commendable achievement, it is important to note that
the Saga pattern has its own unique characteristics that need to be addressed.

A significant concern is the issue of isolation deficiency. This problem surfaces as
a counteracting measure since the Saga operates as a highly-available system. In
simpler terms, a rise in availability often leads to a corresponding drop in isolation,
and vice versa. However, in practical, real-world situations, we are likely to need
a particular balance between isolation and availability. Achieving this balance is
crucial for maintaining system integrity and ensuring smooth operation [27].

Therefore, from my perspective, the logical next step in this project is to design and
implement a mechanism that provides us with the ability to fine-tune the level of
isolation and availability. This would mean creating a system that can be configured
to meet specific needs or situations, making it more adaptable and robust. This
would not only enhance the functionality of the Saga pattern but also significantly
improve its applicability in diverse scenarios [28].

By focusing on this next step, we can better address the complexities inherent in the
Saga pattern and further optimize it for greater efficiency and effectiveness. With
the right approach and tools, we can continue to refine our system and push the
boundaries of what’s possible with state machine-based Saga patterns.
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Appendix

A Dependencies

Listing 7.1: Implementation dependencies
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<version>2.7.10</version>

</dependency>
<dependency>

<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.8.11</version>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-jpa</artifactId>
<version>2.7.10</version>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>2.7.10</version>

</dependency>
<dependency>

<groupId>org.springframework.statemachine</groupId>
<artifactId>spring-statemachine-core</artifactId>
<version>3.2.0<version>

</dependency>
<dependency>

<groupId>org.springframework.statemachine</groupId>
<artifactId>spring-statemachine-starter</artifactId>
<version>3.2.0</version>

</dependency>
<dependency>

<groupId>org.springframework.statemachine</groupId>
<artifactId>spring-statemachine-data-jpa</artifactId>
<version>3.2.0</version>

</dependency>
<dependency>
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<groupId>org.springframework.statemachine</groupId>
<artifactId>spring-statemachine-autoconfigure</artifactId>
<version>3.2.0</version>

</dependency>
<dependency>

<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<version>1.18.24</version>

</dependency>

Listing 7.2: Testing dependencies
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter</artifactId>
<version>2.7.10</version>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<version>2.7.10</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId>
<version>2.8.11</version>

</dependency>
<dependency>

<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka-test</artifactId>
<version>2.8.11</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
<version>2.7.10</version>

</dependency>
<dependency>

<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-contract-verifier</artifactId>
<version>3.1.6</version>
<scope>test</scope>

</dependency>
<dependency>

<groupId>org.testcontainers</groupId>
<artifactId>junit-jupiter</artifactId>
<version>1.18.0</version>
<scope>test</scope>

</dependency>
<dependency>
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<groupId>org.testcontainers</groupId>
<artifactId>kafka</artifactId>
<version>1.18.0</version>
<scope>test</scope>

</dependency>
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