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Abstract
This bachelor thesis presents a novel ap-
proach for enhancing the precision of plan-
ners that employ abstractions. In tradi-
tional abstraction processes, certain infor-
mation is inevitably discarded, leading to
a potential loss of accuracy. However, our
proposed method utilizes a part of this
discarded information by incorporating it
into transition probabilities. By assigning
probabilities to the transitions based on
the discarded information, we construct a
Markov Decision Process (MDP) that fa-
cilitates the application of value iteration
for cost prediction in the given problem.

The primary objective of this research
is to demonstrate the feasibility and effec-
tiveness of leveraging statistical informa-
tion within abstractions. Through a com-
prehensive examination of the abstraction
process, we illustrate how our method
optimizes the use of available data, ul-
timately resulting in more informative
heuristics.

A series of experiments are conducted
to evaluate our method’s performance.
The findings demonstrate the superior-
ity of our approach in terms of precision.
Additionally, we discuss potential avenues
for further development and optimization.

Keywords: Planner, PDDL, Planning,
MDP, Abstractions, Projections,
Probability

Supervisor: Ing. Rostislav Horčík, Ph.D
E-322, Charles Square 13, Prague 2

Abstrakt
Tato bakalářská práce představuje nový
přístup ke zvýšení přesnosti plánovačů vy-
užívajících abstrakce. V tradičních pro-
cesech abstrakce dochází k nevyhnutelné
ztrátě určitých informací, což může vést ke
ztrátě přesnosti. Nicméně náš navrhovaný
přístup využívá část těchto ztracených in-
formací tím, že je zahrnuje do pravděpo-
dobností přechodů. Přiřazením pravděpo-
dobností přechodům na základě těchto
ztracených informací konstruujeme Mar-
kovský rozhodovací proces (MDP), který
umožňuje aplikaci iterace hodnot pro pre-
dikci nákladů v daném problému.

Hlavním cílem této práce je demonstro-
vat proveditelnost a účinnost využívání
statistických informací v rámci abstrakcí.
Skrze podrobné zkoumání procesu abs-
trakce ukazujeme, jak náš přístup optima-
lizuje využití dostupných dat a nakonec
vede k více informovaným heuristikám.

Pro vyhodnocení výkonnosti naší me-
tody jsou provedeny řady experimentů.
Výsledky těchto experimentů jednoznačně
prokazují převahu našeho přístupu v ob-
lasti přesnosti. Navíc diskutujeme mož-
nosti dalšího rozvoje a optimalizace.

Klíčová slova: Plánovač, PDDL,
Plánování, MDP, Abstrakce, Projekce,
Pravděpodobnost

Překlad názvu: Abstrakce využívající
statistickou informaci
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Chapter 1
Introduction

Planning is a field within artificial intelligence that dates back to the 1960s,
with the goal of replicating human problem-solving abilities. There are many
different approaches to planning, each with its own specific goals and scope,
but all of them aim to design a tool that can automatically find a plan based
on a high-level description of an initial state, a goal, and a set of available
operators. A plan is a series of operators that transforms the initial state
into one that satisfies the goal.

The ideal goal in planning is to create a single tool that can solve all tasks
in a reasonable amount of time. One of the main problems of planning is the
vast state space of planning tasks, making it impossible to solve in real-time.
Different methods have been used to tackle this problem. What discerns our
method from the others is that methods that use abstractions (which will
be explained in more detail later) result in the loss of a lot of information,
making the solution much more imprecise. The main difference between these
methods and ours is that we utilize a part of the lost information instead of
discarding it entirely.

1.1 Methods of solution

Planning tasks are commonly solved using search algorithms such as A*
(A-star) or GBFS (Greedy Best-First Search) that are guided by a heuristic
function denoted as h. The purpose of the heuristic function is to estimate
the distance or cost from each state to the goal state. By providing this
estimation, the heuristic guides the search algorithm to prioritize exploration
in directions that are likely to lead to the goal state. It is important to note
that heuristics are not guaranteed to find optimal solutions but rather aim to
find reasonable solutions quickly. The effectiveness of a heuristic depends on
the quality of the estimates it provides and how well they reflect the actual
cost of the solution.

One approach to constructing a heuristic function is through the use of
abstractions.
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1. Introduction .....................................
1.2 Abstractions

Abstractions[9] involves simplifying the planning problem by representing it
at a higher level of granularity. This process reduces the complexity of the
problem by omitting or aggregating specific details. The abstraction can then
be used to derive a heuristic function that provides estimates of distance or
cost based on the simplified representation. This enables more efficient search
and decision-making by focusing on essential aspects of the problem while
still aiming to reach the actual goal state. This process can be observed in
Figure 1.1

problem

problem′

solution

solution′

solution/find heuristics

inverse abstraction
abstraction

Figure 1.1: Correspondence between Abstract and Concrete Level

It is important that the abstraction accurately reflects the task, as the
solution derived from the abstract representation should be directly applica-
ble to the original task. In other words, the abstraction must be a faithful
representation of the task in order to be useful. By stripping away unnec-
essary details and focusing on the key components, abstractions allow us to
understand and solve complex problems more efficiently.

For example, if we have a planning problem with a delivery system, we can
ignore a trucks fuel reserve or the capacity of the truck can be overlooked.

To demonstrate the role of abstraction, suppose that we have n operators
and k states. A state space can then be represented as a n ∗ k ∗ k table, where
1 will mean that a path exists from k to k′ and 0 means that a path doesn’t
exist. Such a table of integers will take 4 ∗ n ∗ k ∗ k bytes, quickly becoming
impossible to fit into a regular computer.

This work focuses on a particular type of abstraction, namely projections.
Projections are among the most common abstractions applied in classical
planning. They became popular after their use in the pattern database
heuristics [4].

2



........................................ 1.3. MDP

1.3 MDP

To create the heuristics, we will turn the projection into an MDP. The Markov
decision process (MDP) is a mathematical framework that has become a
prominent tool for modeling decision-making under uncertainty; see, for
instance, [8]. The MDP allows decision-makers to choose among a set of
actions in order to maximize some long-term reward or utility, even when the
outcomes of these actions are uncertain and depend on various factors. MDPs
have found broad applicability in many different fields, including robotics,
automatic control, economics, and manufacturing, where decision-making
processes are often complex and uncertain. By utilizing the MDP framework,
decision-makers can model and solve problems in which multiple decision
points are present, and decisions must be made over an extended period of
time with uncertain outcomes.

The mathematical foundation of MDPs traces back to Andrey Markov, a
prominent Russian mathematician. The MDP represents a generalization of
Markov chains, which are mathematical models that describe the probability
of a system transitioning from one state to another over time. MDPs extend
this model by adding decision-making processes.

MDPs are often represented as a tuple, consisting of a set of states, a set of
actions, a transition function that describes the probability of transitioning
between states given a particular action, a reward function that assigns a
reward to each state-action pair, and a discount factor that reflects the pref-
erence for immediate rewards over future rewards. Given this representation,
a decision-maker can use various algorithms, such as value iteration or policy
iteration, to find the optimal policy for decision-making.

1.4 Summary

In this thesis, we develop a method using statistical information when creating
abstractions to turn the abstract transition system into an MDP. Abstractions
allow us to represent and reason about complex environments and tasks in a
more simplified and tractable manner. However, the creation of abstractions
also results in the loss of information. To address this issue, we propose using
statistical information during the abstraction creation process, which can
then be incorporated into a Markov Decision Process (MDP) to calculate
an expected cost to the goal. That can then be used for countering the
information loss.
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Chapter 2
Background

2.1 Labeled Transition Systems and Abstractions

To define planning tasks formally, we must first introduce labeled transition
systems (LTSs) because planning tasks are succinctly represented LTSs; for
details, see [6].

Definition 2.1. A labeled transition system is a tuple Θ = ⟨S, L, T, s0, S∗⟩
where S is a finite set of states, L is a finite set of labels, T ⊆ S × L × S is a
set of labeled transitions, s0 ∈ S is the initial state, and S∗ ⊆ S is a set of
goal states.

An LTS Θ can be viewed as a directed graph whose arcs are labeled by
elements from L. A triple ⟨s, l, t⟩ ∈ T represents an arc leading from s to t

and labeled by l. We denote such a triple as s
l−→ t.

A path π = s0
l1−→ s1

l2−→ s2 · · · sn−1
ln−→ sn from s0 to a state sn ∈ S∗ is a

solution for Θ. The shortest path is called optimal. For any state s ∈ S, we
define h∗(s) as the length of the shortest path from s to a goal state.

The optimal solution for an LTS can be found using an algorithm that finds
the shortest path in a directed graph, like Dijkstra’s algorithm. However,
planning often deals with huge transition systems that do not fit into memory.
Thus algorithms like A∗ or Greedy Best First Search (GBFS) are usually
applied to find a solution; see e.g. [8]. These algorithms are navigated by a
heuristic function. A heuristic function for an LTS Θ is a function h : S → R
estimating h∗(s) for each state s ∈ S.

There are various methods of constructing heuristic functions. One of them
employs abstractions.

Definition 2.2. Let Θ = ⟨S, L, T, s0, S∗⟩ be an LTS and α : S → Sα a sur-
jective function to a set of abstract states. The map α defines an LTS
Θα = ⟨Sα, L, T α, α(s0), α(S∗)⟩ where T α = {⟨α(s), l, α(t)⟩ | ⟨s, l, t⟩ ∈ T}.

Using an abstraction, we reduce the size of the original LTS Θ and replace
it with a smaller one Θα so that it fits into memory. Consequently, we can
solve the abstract LTS Θα by searching the shortest path. Even though we
lose some information on Θ, we can at least get a lower bound for h∗(s) in Θ.

5



2. Background .....................................
Note that if

π = s1
l1−→ s2

l2−→ s3 · · · sn−1
ln−→ sn ∈ S∗

is a path in Θ ending in a goal state, then

α(π) = α(s1) l1−→ α(s2) l2−→ α(s3) · · · α(sn−1) ln−→ α(sn) ∈ α(S∗)

is a path in Θα ending in a goal state. Consequently, if π is the shortest path
from s1 to a goal state of length n in Θ, α(π) is a path in Θα of the same
length. Thus we have h∗(α(s1)) ≤ h∗(s1).

Each abstraction α : S → Sα induces an equivalence relation on the set of
states S as follows:

s ∼α t if, and only if, α(s) = α(t).

In other words, s and t are equivalent if they are mapped to the same
abstract state. For a state s ∈ S, the equivalence class containing s is
denoted [s]α = {t ∈ S | α(s) = α(t)}. Given an abstract state s′ ∈ Sα, one
can also define the equivalence class of all states that are mapped to s′ as
α−1(s′) = {s ∈ S | α(s) = s′}.

2.2 Planning

In this thesis, we will consider the SAS+ planning tasks [1].
Definition 2.3. A planning task is a 4-tuple P = ⟨V, O, s0, sg⟩, where:. V = {v1, v2, ..., vN } is a set of variables such that each variable v ∈ V

has its finite domain Dom(v). Using the variables, we define (partial)
states. A partial state is a partial map s from V to ∪v∈V Dom(v) such
that s(v) ∈ Dom(v) for each v ∈ V where s is defined.
We can view s as a set of pairs in the form ⟨v, d⟩, where v ∈ V and
d ∈ Dom(v). Given a partial state s, the set of its variables is Var(s) =
{v ∈ V | ⟨v, d⟩ ∈ s for some d ∈ Dom(v)}.
A partial state s is called a state if s is defined for all v ∈ V , i.e., for
each variable v ∈ V there is d ∈ Dom(v) such that ⟨v, d⟩ ∈ s. The set of
all states over V is denoted SV .. O = {o1, o2, ...oN } is a set of operators in the form o = ⟨Preo, Effo⟩,
where Preo, Effo are partial states. To simplify the construction of MDP,
we assume that all operators have a unit cost.. s0 is a state called initial.. sg is a partial state called goal.

Now let’s define transitions. An operator o ∈ O is applicable in a state s if
Preo ⊆ s. If we apply o in s, we obtain a state t = o[s] defined as follows:

t(v) =
{

Effo(v) if Effo(v) is defined,
s(v) otherwise.

(2.1)

6



..................................... 2.3. Projections

Given a state s, an s-plan is a sequence of operators π = o1, ..., on, such
that there exist states s = s0, s1, ..., sn where oi ∈ O is applicable in si−1 for
all i ∈ 1, ..., n and sn is a goal state. A state sn is a goal state if sg ⊆ sn. As
we consider only unit costs, the cost of π is its length, i.e., n. The shortest
plan is said to be optimal.

Note that any planning task P = ⟨V, O, s0, sg⟩ induces an LTS ΘP =
⟨SV , O, T, s0, S∗⟩ where S∗ = {s ∈ SV | sg ⊆ s} and

T = {⟨s, o, t⟩ | o is applicable in s and t = o[s]}.

111start 211

121 221

112 212

122 222

o1

o1

o2 o2

o2 o2

Figure 2.1: Example LTS

Example 2.4. Suppose V = {v1, v2, v3} such that Dom(vi) = {1, 2} for all i ∈
{1, 2, 3}. The number of all states is |SV | = 23 = 8. Consider a planning task
P = ⟨V, O, s0, sg⟩, where s0 = {⟨v1, 1⟩, ⟨v2, 1⟩, ⟨v3, 1⟩}, sg = {⟨v1, 2⟩, ⟨v3, 2⟩},
and O = {o1, o2} are operators defined as follows:

Preo1 = {⟨v1, 1⟩, ⟨v2, 2⟩}
Effo1 = {⟨v1, 2⟩, ⟨v3, 2⟩}
Preo2 = {⟨v1, 1⟩}
Effo2 = {⟨v2, 2⟩}

The corresponding LTS is depicted in Figure 2.1. The states are represented
by sequences of respective variable values. For instance, the sequence 211
denotes the state {⟨v1, 2⟩, ⟨v2, 1⟩, ⟨v3, 1⟩}. The optimal plan o2, o1 corresponds
to the shortest path from 111 to any of the ending states 222 and 212. It has
a length of 2.

2.3 Projections

Let P = ⟨V, O, s0, sg⟩ be a planning task. One of the standard abstractions
applied for planning tasks is projections. Projections have several advantages.
In particular, they are easily computed, and the resulting abstract LTS
can also be represented as a planning task. Let U ⊆ V be a subset of
variables V . Given a partial state s, we define the restriction of s to U by
s|U = {⟨v, d⟩ ∈ s | v ∈ U}.

7



2. Background .....................................
Definition 2.5. Let P = ⟨V, O, s0, sg⟩ be a planning task, ΘP its LTS, and
U ⊆ V . The projection is the map πU : SV → SU mapping a state s ∈ SV

to its restriction s|U ∈ SU . The corresponding abstract LTS ΘπU
P can be

represented as the planning task PU = ⟨U, OU , s0|U , sg|U ⟩ where the set
operators of OU = {⟨Preo|U , Effo|U ⟩ | o ∈ O}.

We will abuse the notation and denote the operators in PU by the same
symbols as operators in P. The projection PU determines an equivalence
relation ∼U on the set of states SV . We have s ∼U s′ if the states s, s′ ∈ SV

agree on U , i.e., s|U = s′|U . For any state s and its equivalence class
[s]U = {s′ ∈ SV | s ∼U s′}, the size of [s]U equals

∏
v∈V \U |Dom(v)|.

1XXstart 2XX
o1

o2

Figure 2.2: The projection of P from Example 2.4 into the variable v1.

Example 2.6. Consider the planning task P from Example 2.4. Let U = {v1}.
The projection PU consists of 2 states, namely SU = {{⟨v1, 1⟩}, {⟨v1, 2⟩}}.
The initial state is s0|U = {⟨v1, 1⟩} and the goal is sg|U = {⟨v1, 2⟩}.

Its transition system corresponding to PU is depicted in Figure 2.2. The
states are denoted by the value of variable v1 followed by XX as the second
and the third variable were discarded, e.g., {⟨v1, 1⟩} is denoted 1XX. The
state 2XX is the only goal state. The length of the optimal plan for PU is 1,
particularly we have 1 = h∗(1XX) = h∗(πU (111)) ≤ h∗(111) = 2.

For each state s ∈ SV , the equivalence class [s]U is of size 22 = 4. For
example, π−1

U (1XX) = {111, 112, 121, 122}.

2.4 MDP

Definition 2.7. A Markov Decision Process (MDP) is M = ⟨S, A, T, R, γ⟩
where. S is a set of states,. A is a map assigning to each state s a set A(s) of applicable actions in s,. T is a transition map assigning to each state s ∈ S, an action a ∈ A(s),

and a state t a probability T (t|s, a) ∈ [0, 1] that the MDP gets into t if a
is applied in s,. R is a reward function assigning to each transition, i.e., a triple ⟨s, a, t⟩
for states s, t and an action a ∈ A(s), a real number R(s, a, t) ∈ R.. and γ ∈ [0, 1) is a discount factor.

8



........................................ 2.4. MDP

2.4.1 Optimal policy

A policy is a map σ assigning to each state s a probability distribution
over A(s), i.e., σ(a | s) expresses the probability that we apply an action
a ∈ A(s) provided we are in the state s. The policy σ is called determinitic if
σ(a | s) ∈ {0, 1}, i.e., we always apply a single action for a fixed state s.

Let σ be a policy and s a state. If we start in s and follow the policy σ,
we obtain a sequence ⟨Rt | t = 0, . . .⟩ of random rewards. A value function
for the policy σ is the function V σ : S → R assigning to each state s ∈ S the
expected value of discounted cummulative reward:

V σ(s) = E

[ ∞∑
t=0

γtRt

]
.

The discounted factor γ ensures the converge of the above infinite sum for
γ < 1. It reflects the trade-off between the immediate reward and the
long-term rewards.

To solve an MDP, we look for a policy σ∗ that maximizes its value function
denoted V ∗, i.e., V ∗(s) ≥ V σ(s) for any policy σ and any state s ∈ S. It
is known that such policy σ∗ exists and we may even assume that σ∗ is
deterministic.

2.4.2 Bellman Equation

To construct an algorithm computing the optimal value function V ∗, one can
start from the Bellman Equation [2]. The Bellman equation combines two
essential concepts: the immediate expected reward obtained from taking an
action in a state and the expected value of the resulting state. It considers the
probabilistic nature of transitions between states and the discounted future
rewards.

V ∗(s) = max
a∈A(s)

 ∑
s′∈S

T (s′|s, a)R(s, a, s′) + γ
∑
s′∈S

T (s′|s, a)V ∗(s′)

 (2.2)

where
∑

s′∈S T (s′|s, a)R(s, a, s′) is the expected reward when we apply the
action a ∈ A(s) in s and

∑
s′∈S T (s′|s, a)V ∗(s′) is the expected value of the

next state over all possible next states s′.

2.4.3 Value Iteration

The value iteration[8] algorithm is an iterative process used to find the optimal
value function V ∗. The value iteration leverages the Bellman equation (2.2).
By iteratively improving the value estimates, value iteration converges to the
actual optimal values, allowing the agent to make optimal decisions based on
the computed values.

The algorithm goes as follows:..1. Initialize the value function for each state to zero.

9



2. Background .......................................2. For each state, update the value function based on the Bellman equation
using the previous value function and the transition probabilities and
rewards...3. Repeat Step 2 until convergence, where convergence is defined as a small
change in the value function or a maximum number of iterations is
reached...4. Once the value function has converged, compute the optimal policy by
selecting the action that maximizes the expected value using the updated
value function...5. Return the optimal policy and the value function.

We need only the value function V ∗ since our heuristic introduced in the
next chapter utilizes only V ∗.
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Chapter 3
Abstractions with Statistical Information

Moving on from acquiring foundational knowledge regarding the methods
utilized in this thesis, we now delve into the discussion of our own methodology.
In Section 3.1, we will tackle the issue of lost information by using probabilities
in a projection. Then, in Section 3.2, we will explain the necessary changes
to operators in the projection. Finally, in Section 3.3, we will combine it to
create the MDP.

Before going into the exact details, let us briefly explain the method.
Consider that we have a task where after creating an abstraction, we have
three states left only; the task is depicted in Figure 3.1.

State 2 is divided into two halves, such that operator o2 is applicable only
in the bottom half. If we use the abstraction, without our method, the cost
from State 1 to State 3 would be 2, which will most likely be wrong since
in the original problem, such a path need not exist, but due to the “merge”
State 2, the states inside become indistinguishable, thus, making a valid path
in the abstraction.

In the abstract LTS, we do not know if the resulting original state after
applying o1 belongs to the applicability region of o2. However, we can at least
quantify the chances of it by computing the probability that o2 is applicable
for a randomly chosen original state in State 2. Consequently, it allows us to
build an MDP from the abstract LTS.

State 1
State 2

State 3

o1

o2

Figure 3.1: An example showing that an abstract plan need not be a plan in
the original LTS.
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3. Abstractions with Statistical Information.........................
3.1 Operator Probability in Projections

Whenever we apply a non-trivial abstraction to an LTS, we lose some in-
formation on the transitions. As a result, a plan found in the LTS need
not be a plan in the original planning task. Consider the planning task
P = ⟨V, O, so, sg⟩ from Example 2.4 and its projection PU from Example 2.6.
The plan for the projection consists of a single operator o1. However, o1 is
not applicable in the initial state s0 of P. Generally, whenever we apply an
operator o in an abstract state s′, it need not be applicable in all preimages
from π−1

U (s′) = {s ∈ SV | πU (s) = s′}. Even though we lose the information
where o is applicable, we can at least collect some statistics, particularly for
how many states from π−1(s′) is o applicable. This allows us to define a
probability that application o will be successful for a randomly chosen state
in the equivalence class π−1(s′).

Let P = ⟨V, O, s0, sg⟩ be a planning task and U ⊆ V defining the projection.
Let s ∈ SV be a state. Suppose the an operator o is applicable in the abstract
state s|U , i.e., Preo|U ⊆ s|U . Now let us consider a random state s′ ∈ [s]U .
What is the probability that o is applicable in s′? First, note that the number
of states in [s]U is

∏
v∈V \U |Dom(v)|. As we have Preo|U ⊆ s|U , the operator

o is applicable in s′ if the preconditions are also satisfied on the remaining
variables V \ U , i.e., Preo|V \U ⊆ s′. The number of states s′ ∈ [s]U satisfying
this condition is ∏

v∈V \(U∪Var(Preo))
|Dom(v)|,

so transforming this, we can get the probability:

p(o, s|U ) =
∏

v∈V \(U∪Var(Preo)) |Dom(v)|∏
v∈V \U |Dom(v)| (3.1)

= 1∏
v∈Var(Preo)\U |Dom(v)| (3.2)

To better understand the concept, let us demonstrate the planning task P
from Example 2.4 and its projection PU from Example 2.6. Two operators o1
and o2 are applicable in the initial state 1. The corresponding equivalence
class of preimages π−1(1) = {111, 112, 121, 122} has four elements. The
operator o1 is applicable in two states from π−1(1), namely 121 and 122.
Thus the probability of successful application of o1 on randomly chosen state
in π−1(1) is 1/2. This agrees with Equation (3.2) as we have

p(o1, 1) = 1
|Dom(v2)| = 1/2.

Similarly, o2 is applicable in any state from π−1(1) because Preo2 = {⟨v1, 1⟩}.
Thus p(o2, 1) = 1 as there is no variable in Var(Preo2) \ U = ∅.

12



.................................. 3.2. Operator reduction

3.2 Operator reduction

Using the definition from the previous section, we can define the probability
of every operator in the projection. Quite often, several operators represent
the same transition in the projection. For efficiency reasons, we want to keep
only a single transition between any pair of abstract states. The question is
how to determine its probability.

Assume that P = ⟨V, O, so, sg⟩ is a planning task, U ⊆ V , and PU is the
corresponding projection. Let s′, t′ ∈ SU be abstract states and O′ = {o ∈
O | s′ o−→ t′}, i.e., the set of all operators such that o represents a transition
from s′ to t′. We replace the set O′ with a single transition with a probability
p. The probability p expresses our chances to get from a randomly chosen
state s ∈ π−1

U (s′) by applying a suitable operator from O′ depending on the
chosen s.

There are two obvious bounds on p. The lower bound is max{p(o, s′) |
o ∈ O′} as we can always try to apply the operator having the maximum
probability. On the other hand, a trivial upper is 1. The upper bound corre-
sponds to the situation when we do not consider the statistical information
at all. Another observation regarding the probability p is that it is sufficient
to consider only operators o ∈ O′ with incomparable preconditions. More
precisely, let o, o′ ∈ O′. If Preo ⊆ Preo′ , then o is applicable everywhere where
o′ is. Moreover, p(o, s′) ≥ p(o′, s′) by Equation 3.2. Consequently, o′ can be
safely removed from O′.

Now we assume that O′ contains only operators with pairwise incomparable
preconditions with respect to the inclusion. To compute p precisely, we would
have to calculate the size of the union

⋃
{s ∈ π−1

U (s′) | Preo ⊆ s, o ∈ O′}.
As the sets in the union need not be disjoint, the size can be computed
by the inclusion-exclusion principle. However, this involves an exponential
computation in the number of operators in O′. To simplify the calculation,
we propose to estimate the probability p by the following formula:

p = max{1,
∑

o∈O′

p(o, s′)}. (3.3)

Hence p might be larger than the actual probability, but it is bounded by the
upper bound used in the projection without the statistical information.

To summarize, the reduction process consists of the following steps:..1. Find the clusters O′ of operators representing the same operator in the
projections...2. Prune each cluster O′ by removing the operators o′ ∈ O′ such that there
is another operator o ∈ O′ with Preo ⊆ Preo′ ...3. Finally, apply Equation 3.3 to compute the probability of the single
abstract operator in the projection representing the whole cluster O′.
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3. Abstractions with Statistical Information.........................
s t

sot′

o/p(o, s)

o/1 −
p(o, s)

o
′ /p

o′/p

Figure 3.2: The shadow state so behaving like s without the operator o, i.e.,
whenever there is a transition from s to a state t′ labelled by an operator o′ ≠ o
with a probability p, the same transition leads from so.

3.3 MDP from Projection

An MDP’s transitions should be a stochastic matrix, meaning that the
rows/column in sum should add to 1. We currently have a probability p(o, s),
which means that the operator o was successfully applied in an abstract
state s. But what if the action can’t be applied in the state s? For this
reason, we introduce so-called "shadow" states, which represent an unsuccessful
application of an operator o.

Let s be an abstract state and o an operator applicable in s. The probability
that the application of o is unsuccessful is:

1 − p(o, s) (3.4)

So we need to expand our abstract LTS by a new transition labeled by o
leading from s with the probability 1 − p(o, s). It remains to decide where
this transition leads. One possibility is to model the transition as a loop on
s. However, if we are in a state represented by the abstract state s where o
is not applicable, we cannot fix it by repetitive applications of o. We must
apply another operator(s) first. Therefore, we introduce a shadow state so

having the same transitions as s except that o is not applicable in so; see
Figure 3.2. Thus, if o was unsuccessfully applied in s, we get into so where
another operator has to be applied.

Now, let’s define an MDP M = ⟨S, A, T, R, γ⟩ on a projection PU . The set
of states S will now be S{v0}∪U where Dom(v0) = O ∪ {∅}.

A normal abstract state s ∈ SU corresponds to {⟨v0, ∅⟩}∪s, while a shadow
state of state s corresponding to an unsuccessful application of an operator o
is represented as {⟨v0, o⟩} ∪ s.

All applicable actions for any state s = {⟨v0, d⟩} ∪ s′ for some d ∈ Dom(v0)
and s′ ∈ SU are defined as follows:

14



................................... 3.4. Heuristic values

A(s) =


∅ if s′ is a goal state in PU ,

{o ∈ O | Preo|U ⊆ s′} if s′ not a goal and d = ∅ (normal state),
{o ∈ O | o ̸= o′, Preo|U ⊆ s′} if d = o′ ∈ O (shadow state)

(3.5)
The shadow state has the same actions as the original state except for the
action that created the shadow state.

Now let us define the transition probabilities.
Let s = {⟨v0, d⟩} ∪ s′ for some d ∈ Dom(v0) and s′ ∈ SU and o ∈ A(s), for
some t ∈ S,

T (t|s, o) =


p(o, s′) if t = {⟨v0, ∅⟩} ∪ o[s′],
1 − p(o, s′) if t = {⟨v0, o⟩} ∪ s′,

0 otherwise.
(3.6)

As we assume that the operators have the unit cost, the rewards are defined
as follows:

R(s, o, s′) =
{

−1 if s′ is not a shadow state,

0 otherwise.
(3.7)

Continuing from our projection example (Example 2.6), Figure 3.3 shows
an MDP created from the projection depicted in Figure 2.2, where node 1′

denotes the state {⟨v0, o1⟩, ⟨v1, 1⟩}. The letter S will be added to the node
names to denote shadow states.

1XXstart

1′XXS

2XX
o1/1

2

o2/1

o1/1
2 o2/1

Figure 3.3: The MDP created from the projection presented in Example 2.6.

3.4 Heuristic values

After creating the MDP, we can start the Value Iteration algorithm on our
MDP to compute the optimal value function V ∗. Let s be a state in the MDP.
Recall that V ∗(s) is the expected discounted cumulative reward for s. As our
rewards are either −1 or 0, the opposite number −V ∗(s) equals the expected
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3. Abstractions with Statistical Information.........................
cost of getting from the state s to a goal state. Thus −V ∗ can then be used
as a heuristic for a search algorithm, such as GBFS. Since the original states
have been "merged" into one state, the heuristic for the original state will be
the value function for the state that it belongs to in the abstraction.
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Chapter 4
Example

Having provided a detailed exposition of the underlying concepts and modifi-
cations to traditional approaches, it is now possible to showcase the practical
application of our proposed methodology in a real-world scenario.

Our example will be a simplified version of a task called "Transport" from
the IPC 2008 competition. In our problem, we have trucks, packages, and
the capacities of the trucks. Our goal is to get different packages from some
cities to others while minimizing the number of times the trucks move. For
simplicity reasons, we omit the truck capacity in our example below.

Our planning task will be described with SAS+ [1], which is a variation on
the propositional STRIPS [5].

4.1 SAS+ example

Let us consider the transport problem as a planning task P = ⟨V, O, s0, sg⟩.
We have 2 variables, so V = {v1, v2} and each variable domain is defined as
follows:

Dom(v1) = {1, 2}
Dom(v2) = {1, 2, T}

The domain values for v1 are interpreted as at(truck-1, city-loc-1), at(truck-
1, city-loc-2), respectively. Analogously, the interpretation of the domain
values for v2 is at(package-1, city-loc-1), at(package-1, city-loc-2), in(package-
1, truck-1), respectively.

The initial and goal states are defined as follows:

s0 = {⟨v1, 1⟩, ⟨v2, 2⟩}
sg = {⟨v2, 1⟩}

17



4. Example.......................................
Since most of the operators are the same, just the variables in the precon-

ditions are different, we list only some of them. The symbol o1 denotes the
operator drive truck-1 city-loc-1 city-loc-2 and o2 denotes drop truck-1
city-loc-1 package-1:

Preo1 = {⟨v1, 1⟩}
Effo1 = {⟨v1, 2⟩}

Preo2 = {⟨v1, 1⟩, ⟨v2, T ⟩}
Effo2 = {⟨v2, 1⟩}

For simplicities sake, we will use the operators’ short name (e.g., drive1
instead of drive truck-1 city-loc-1 city-loc-2). Figure 4.1 shows the full state
space of the task, where the node naming follows the same rules as in Example
2.4, so the sequence 2T denotes the state {⟨v1, 2⟩, ⟨v2, T ⟩}.

12start

22 2T

1T 11

21

drive1

drive2

drop1

pick1

drive2

drive1

drop2

pick2

drive1

drive2

Figure 4.1: Simplified transport LTS.
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......................................4.2. Projection

4.2 Projection

For our projection, we keep the package only, i.e., the variable v3. Thus,
the truck and capacity do not exist anymore. So for example, the state
{⟨v1, 1⟩, ⟨v2, 2⟩} will now be {⟨v2, 2⟩}. As for operators, drive1 have no
preconditions or effects, so we can apply it anywhere, and it is just a self-loop.
Analogously drive2 is a self-loop on any abstract state.

The probability of the drive1 operator will be 1/2 since it is applicable in
the half of all states where v1 equals 1. Similarly, the probability of derive2 is
1/2. Since drive1 and drive2 represent the same abstract transitions, we merge
them into a single operator drive with probability 1 because the preconditions
of drive1 and drive2 are incomparable; see Section 3.2.

The probability of pick1, drop1, pick2, and drop2 are 1/2. To see that
consider, for example, the operator drop1. It is applicable in the abstract
state XT . Its corresponding equivalence class is π−1

U (XT ) = {1T, 2T}. The
original operator drop1 is applicable only in 2T . Thus the probability is 1/2.
The other probabilities can be computed analogously.

The resulting abstract LTS together with the operator probabilities is
depicted in Figure 4.2.

X2start XT X1

drive 1 drive 1 drive 1
pick1 1/2

drop1 1/2

drop2 1/2

pick2 1/2

Figure 4.2: Projection of the transport graph

4.3 MDP

Before creating the MDP, we must create the shadow states. For each
operator whose probability is not 1, we should make a shadow state that the
unsuccessful operator goes to.1 The shadow state have the same operators
as the original state, except for the original operator. To improve clarity
and make the graph more easily understandable, we abbreviate the names of
the operators. So drop1 is denoted d1, pick1 is denoted p1, and analogously
for pick2 and drop2. The names of the shadow states for an operator o are
expanded by the name of o. For example, the shadow state expressing the
unsuccessful application of p1 at X2 is denoted p1X2. The resulting MDP is
shown in Figure 4.3.

1For the operators with probility 1, it makes no sense to introduce a shadow state
because the probability of the transition into it would be 0.
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4. Example.......................................

X2start

p1X2

XT

d2XT d1XT

X1

p2X1

drive 1 drive 1 drive 1
p1 1/2

d1 1/2

p2 1/2

d2 1/2

p1
1/

2

dr
iv

e
1

d2
1/

2

dr
iv

e
1d1

1/2

d2 1/2

d1 1/2

d1
1/2

drive
1 d2

1/
2

p2
1/2

drive
1

Figure 4.3: MDP of the transport task

4.4 Value Iteration

Now let us perform some steps of the value iteration algorithm to find the cost
from the start to the goal state. Let us consider that γ = 0.9 and ϵ = 0.01.
Since our task contains seven states, we will demonstrate only 1 step on the
starting state. First, we should initialize the value of each state to 0.

V (s) = 0, ∀s ∈ S (4.1)

V (X2) = max
{ p1︷ ︸︸ ︷(1

2 × −1 + 1
2 × 0 + 0.9 × 1

2 × 0 + 0.9 × 1
2 × 0

)
,

drive︷ ︸︸ ︷
−1 × 1 + 0.9 × 1 × 0

}
= −1

2

V (p1X2) = max
{ drive︷ ︸︸ ︷

−1 × 1 + 0.9 × 1 × 0
}

= −1

After the first iteration, the value function for our states will be V (X2) = −1
2

and V (p1X2) = −1.
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....................................4.4. Value Iteration

Here is the second iteration for the previous states:

V (X2) = max
{ p1︷ ︸︸ ︷

1
2 × −1 + 1

2 × 0 + 0.9 × 1
2 × −1

2 + 0.9 × 1
2 × −1

drive︷ ︸︸ ︷
−1 × 1 + 0.9 × 1 × −1

2

}
= −1.175

V (p1X2) = max
{ drive︷ ︸︸ ︷

−1 × 1 + 0.9 × 1 × −1
2

}
= −1.45

As we can see, the costs are gradually increasing, while the cost of the
shadow state is higher because it is further away from the goal. The value
iteration will continue until the difference between the previous values and
the current is smaller than our defined ϵ or until the maximum amount of
iterations is completed.

Here is how the value function will look like after 23 iterations:

V (X2) = −2.8026446283589297,

V (XT ) = −1.5964107708929134,

V (X1) = 0.0,

V (p1X2) = −3.5216789580317283,

V (d2XT ) = −2.4366569612259945,

V (d1XT ) = −1.5964107708929134,

V (p2X1) = −1.0

The actual cost of the task is 5, while the predicted cost from the starting
state to the goal state will be 2.8. The cost of the abstracted task would
have been 2, which is smaller than using our method. We can also observe
that the close a state is to the goal state, the lower the cost, proving that our
predictions can be used as a heuristic.
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Chapter 5
Experiments

In order to evaluate the effectiveness of our proposed method, we will conduct
empirical studies using carefully designed experiments that will allow us
to collect and analyze data on various relevant metrics, such as accuracy,
efficiency, and scalability.

Specifically, we will select a range of benchmark problems that are represen-
tative of the types of real-world planning tasks that our method is intended
to solve, and we will compare the performance of our approach against that of
other state-of-the-art planning techniques. By conducting these experiments,
we aim to provide empirical evidence that supports the effectiveness of our
method and demonstrates its potential to improve state of the art in planning
and decision-making in complex domains.

Additionally, we will examine the strengths and weaknesses of our approach
in various scenarios and explore potential avenues for further improvement and
development. Overall, our goal is to demonstrate our approach’s practical
utility and effectiveness in addressing real-world planning challenges and
provide a basis for future research in this area.

5.1 Implementation details

Our implementation [7] is implemented in Python using Numpy for the MDP.
A third-party library[3] has been used to solve the Value Iteration. Since the
MDP library doesn’t support MDPs where not all actions are applicable in a
state, a workaround has been used, where if an action is not applicable, the
cost is set to a large number so that the action is not picked during the value
iteration.

All tests have been run on an i5-12600KF 3.70 GHz CPU with 32 GB
DDR5 RAM.

5.2 Gamma importance

In almost all tests, the higher the discount factor γ, the closer to the actual
cost was the approximation given by the value function. Figures 5.1 and
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5. Experiments .....................................
5.2 show two tasks with different projections, where we can see that the
projection does not strongly affect the relationship between γ and the actual
cost.

Figure 5.1: Gamma test on the transport domain from the IPC 2008

Figure 5.2: Gamma test on the zenotravel domain from the IPC 2002

Figures 5.1 and 5.2 show that having a larger γ close to 1 will always
be better and that its predicted cost is always higher than the cost in the
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abstraction.

An interesting note is that γ can even be 1, which usually is not allowed
in value iteration. In our case, we can have it 1 since it will never self-loop
because the rewards are negative or zero. In the following sections, we will
usually assume that γ = 0.999 if not stated otherwise.

5.3 Projection size and Speed/Precision

Our projection’s size and variable selection directly affect our predictions’
precision since we lose information by decreasing the projection’s size. But in
some cases, we can get the same or even better predictions with a smaller
projection.

In Figure 5.3, we have picked an example where all projections have the
same final value, yet the time needed for calculation differs quite a lot. Note
that the time axis uses the log scale since the difference between times is so
big.

Figure 5.3: Zenotravel-4, value is -2.7848

In Figure 5.4, we can observe that increasing the projection can increase
the precision, but that is not always the case. Since some variables do not
play a big role in the final solution, there is no point in using them.
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5. Experiments .....................................

Figure 5.4: Zenotravel 4, speed/precision

Here are all possible combinations of all variables, with the maximum
projection length being 4. Some jitter has been added to see the points. All
points with 0 value have been removed.

Figure 5.5: Zenotravel 4, 3 projection sizes

As you can see, there isn’t even a need to have a big projection most of
the time. The most important part is having the correct/important variables
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inside the projection to get a precise approximation. Having a lot of variables
that are needed to satisfy the goal condition can significantly improve the
precision.

5.4 Comparison to actual costs

For the following tests, the FastDownward planner has been used to find the
actual cost of the solution, while our planner finds the cost in an abstracted
state space and the predicted (expected) cost based on the value function.
Twelve instances have been used from different domains from the IPC problem
bank.

The results in Figure 5.6 are the comparison between the predicted costs
and the actual costs. The projections had a constant size. Thus the predicted
cost is generally the same. When comparing the results to Figure 5.7, we
can observe that the predictions are much closer to the actual cost than the
abstract costs. By increasing the projection size for bigger problems, we can
further improve the precision. Figure 5.6 also demonstrates that the heuristic
based on predicted costs is not admissible, in general.

Figure 5.6: Real/Predicted costs
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5. Experiments .....................................

Figure 5.7: Real/Abstracted costs

In Figure 5.8, we compare the predicted and abstract costs. We can see
that the predicted costs are always either higher or the same, so it directly
improves upon using only abstractions and proves our point on real data.

Figure 5.8: Abstracted/Predicted costs
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Chapter 6
Conclusion

In summary, our method offers several important advantages compared to
traditional abstraction processes. Instead of throwing away information,
we use it by including transition probabilities, resulting in a significant
improvement in precision compared to the usual raw abstraction technique.

Moreover, there are possibilities for further improvements, like using smart
methods to choose the best projection based on specific problem characteristics.
By tailoring the projection to each problem, we can enhance the performance
and effectiveness of our method, as finding a suitable projection currently
takes a lot of time.

Most importantly, our method allows for efficient solutions to complex
problems that would otherwise require extensive computing power and time.
This highlights its potential for practical applications and advancements in
related fields.

Future research can focus on enhancing the implementation by rewriting it
in a faster programming language like Julia.

By connecting statistical information with abstraction, our research pro-
vides valuable insights and techniques to the field. Our findings lay a strong
foundation for further exploration in this direction.

In conclusion, our method offers a promising approach for more accurate
and efficient problem-solving.
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