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Abstract

The field of autonomous vehicles has been
rapidly growing in recent years, with com-
panies and researchers working on devel-
oping vehicles that can navigate complex
environments without human intervention.
One possible way of achieving such a feat
is through the use of reinforcement learn-
ing.

To explore this option, OpenAI has de-
veloped a 2D car racing environment that
can serve as a testbed for autonomous
driving algorithms which utilize reinforce-
ment learning techniques. The environ-
ment provides researchers with real-life
physics and a continuous action space en-
abling development and testing without
the need for physical testing environments
and expensive hardware.

One of the current baselines in Deep
Reinforcement Learning is the Proximal
Policy Optimization (PPO) algorithm cre-
ated by OpenAI. It has recently gained
popularity thanks to its effectiveness in
discrete and continuous action spaces and
is being used even in models such as Chat-
GPT.

In this thesis, we will modify the car
racing environment by introducing wind
that can fluctuate in speed and direction.
Wind can affect the movement of the car,
and hence the driving agent has to take
it into consideration. We will investigate
how the PPO algorithm effectively adapts
to handle the modified environment (with
the wind). We will empirically evaluate
PPO in the original and modified car rac-
ing environments while investigating pre-
trained and non-pre-trained agents.

By investigating the impact of an out-
side and unpredictable factor such as wind
on the learning of our agent, this project
aims to contribute to the development
of more robust and reliable self-driving
vehicles.

Keywords: Artificial Intelligence,
Neural Network, Deep Reinforcement
Learning, Car Racing, Proximal Policy
Optimization (PPO), Wind

Supervisor: doc. RNDr. Lukáš Chrpa,
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Abstrakt

Oblast autonomních vozidel se v posled-
ních letech rychle rozvíjí a společnosti
a výzkumníci pracují na vývoji vozidel,
která se dokáží pohybovat v komplexním
prostředí bez zásahu člověka. Jedním z
možných způsobů, jak takového výsledku
dosáhnout, je využití zpětnovazebného
učení.

Za účelem prozkoumání této možnosti
vyvinula společnost OpenAI prostředí pro
2D automobilové závody, které může slou-
žit jako testovací prostředí pro algoritmy
autonomního řízení využívající techniky
posilování učení. Prostředí poskytuje vý-
zkumníkům fyziku reálného světa a spo-
jitý akční prostor umožňující vývoj a tes-
tování bez nutnosti fyzických testovacích
prostředí a drahého hardwaru.

Jedním ze současných základních po-
stupů v oblasti hlubokého zpětnovazeb-
ného učení je algoritmus Proximal Po-
licy Optimization (PPO) vytvořený spo-
lečností OpenAI. Ten si v poslední době
získal popularitu díky své efektivitě v dis-
krétních i spojitých akčních prostorech a
používá se i v modelech, jako je ChatGPT.

V této práci upravíme prostředí au-
tomobilových závodů zavedením větru,
který může kolísat v rychlosti a směru.
Vítr může ovlivnit pohyb automobilu,
a proto ho musí řidičský agent brát v
úvahu. Budeme zkoumat, jak se algorit-
mus PPO efektivně přizpůsobí uprave-
nému prostředí (s větrem). Empiricky vy-
hodnotíme PPO v původním a uprave-
ném prostředí automobilových závodů,
přičemž budeme zkoumat předem natré-
nované a nenatrénované agenty.

Zkoumáním vlivu vnějšího a nepředví-
datelného faktoru, jako je vítr, na učení
našeho agenta chce tento projekt přispět
k vývoji robustnějších a spolehlivějších
autonomních vozidel.

Klíčová slova: Umělá inteligence,
Neuronová síť, Hluboké posilované učení,
Automobilové závody, Optimalizace
proximální politiky (PPO), Vítr

Překlad názvu: Hluboké zpětnovazební
učení na modifikovaném prostředí
závodění aut
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Chapter 1

Introduction

In recent years, Deep Reinforcement Learning (DRL) has been gaining popu-
larity while being applied to a wide range of complex problems. From playing
board games and computer games to teaching humanoid robots to walk, this
field has achieved astounding results. One of the most promising applica-
tions of DRL, which we aim to focus on, is the development of self-driving
vehicles, which are finding themselves in increasingly complex environments.
As humanity moves towards an autonomous future, safety is becoming an
ever-present concern.

To explore safety, we decided the ideal choice would be the Proximal
Policy Optimization algorithm (PPO). PPO has recently gained popularity
thanks to its state-of-the-art results and wide range of use cases. Fortunately,
OpenAI, one of the leading AI research groups in the world, created the
perfect environment for us to learn on using PPO. Driving a car is a massive
task; hence it is better to begin with a 2D-controlled environment without
all the moving distractions facing us on the roads. Nevertheless, to make
the learning more similar to real-life scenarios, we are adding winds into the
environment.

1.1 Contribution of this work

This work takes quite a simple racing environment and enhances it by adding
multiple winds acting with random strengths from different sides. By testing
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....................................1.1. Contribution of this work

continuous and gusty winds, we gain invaluable insight into how the algorithm
reacts.

Another contribution of this work is a detailed analysis of the PPO al-
gorithm comprising a study of the meaning of each hyperparameter and
its effects on the objective function. Furthermore, rigorous training and
evaluation of the PPO agent on 25 different wind variations.

Overall, this thesis aims to provide valuable insights into the development
of more robust and reliable autonomous systems by investigating the impact
of an outside and unpredictable factor such as wind.
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Chapter 2

Car Racing Environment

For training agents using Reinforcement Learning, it is useful to create an
environment with which the agent can communicate without human input.
We chose a premade environment from the Python library gym simulating a
car driving on a track in 2D space. This environment intrigued us because
of its similarity to real life with its usage of physics and a continuous action
space.

2.1 Gym Library

Gym is an open-source Python library for developing and comparing Rein-
forcement Learning algorithms by providing a standard API to communicate
between learning algorithms and environments, as well as a standard set of en-
vironments compliant with that API. Since its release, Gym’s API has become
the field standard for doing this. [1]. It also implements parallel/vectorized
environments to accelerate the training. Its documentation can be found on
https://www.gymlibrary.dev/environments/box2d/car_racing/.
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..........................................2.2. Description

2.2 Description

Figure 2.1: Left: Render for humans, Right: 96x96 render for agents [1]

Our chosen environment CarRacing-v2 is a part of Box2D environments
based on real-life physics. A random race track is generated for each episode
which the agent can observe as an RGB image of size 96x96, which represents
a top-down view of the racetrack with the car centered.

Some indicators are shown at the bottom of the window under the state
RGB buffer. From left to right: actual speed, four ABS sensors, steering
wheel position, and gyroscope. It is a powerful rear-wheel drive car, making
it easy to start uncontrollably drifting.

2.2.1 Actions

. If continuous: There are three components of each action that can
be combined since they are represented as a vector of size 3 (steering,
throttle, break). The action is applied only in one step and does not
propagate to the next step. What is quite inefficient and often happened
with the model is that it can break and throttle simultaneously.. steering: (0 is full left, +1 is full right). Any number in the

range [0,1] is acceptable. 0.5 means no steering is applied. (The
original environment has the interval [-1,1], which we normalized as
described in subsection 2.3.2).. throttle: (0 is no throttle, 1 is full throttle). Any number in the
range [0,1] is acceptable.. break: (0 is no break, 1 is full break). Any number in the range
[0,1] is acceptable.
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..........................................2.2. Description

. If discrete: There are five actions: do nothing, steer left, steer right,
throttle, and brake.

We used the more challenging continuous action space for this project because
it better represents the real world.

2.2.2 Episode End

There are two types of episode endings:

.Termination: If the car goes so far off the track, it reaches the outside
of the map..Truncation: If we reach the time limit for an episode. If a lap is finished,
which in our case means completing at least 95% of the track. Since
the track is generated randomly, the number of tiles in a track is also
decided randomly for each episode. The track is a closed loop where the
car begins somewhere on the right side, driving counterclockwise.

2.2.3 Rewards

The reward for an episode is -0.1 for every step and +1000/track_length for
every track tile visited, where track_length is the total number of tiles in
the track.

episode_reward = 1000
track_length

× tiles_visited − 0.1 × frames

Meaning that if a track has a length of 500 tiles, there would be a positive
reward of 2 for each track tile visited.

If the car finishes the whole track, the equation simplifies to

episode_reward = 1000 − 0.1 × frames

For example, if you have finished the whole track in 420 frames, your
reward is 1000 - 0.1*420 = 958 points. If the car drives completely off the
field, it gets an additional -100.
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......................................... 2.3. Modifications

This means the only policy for gaining a good positive score is staying on
the track while driving fast. This equation for rewards also prevents a good
score for an agent that cuts corners over grass or even, in extreme cases, one
that makes a 360◦ turn at the beginning to go immediately through the end.
The accepted score for solving this environment is 900.

2.2.4 Difficulties

There are an enormous number of different states because the track is gener-
ated randomly, so if the agent chooses an action, it cannot be known with
certainty which state will follow. If the state could be any image of the given
size, the number of possible states would be 2563∗96∗96 for RGB colors from
0-255; however, they use only some colors, and the image needs to look like a
track. Nevertheless, the number would still be enormous.

The last issue is that the rendered view for a human has much more pixels
than the observation returned from the environment, as seen in figure 2.1.
This negatively affects the training accuracy, but it speeds it up tremendously.

2.3 Modifications

We decided to apply modifications using environment wrappers since they
provided us with a clear division of each modification and the ability to stack
them on top of each other easily. Environment wrappers are functions that
stand between the agent and the environment and can alter the action or
the observation that is being sent. In our case, we always had a wrapper
normalizing the observation and clipping the action. Following these, we either
had nothing for the environment without wind or added a single wrapper to
simulate wind.

2.3.1 Normalized Observation

The first modification was normalizing the observation image vector. By
squishing the RGB 0-255 values in the 0-1 range, we offer the Neural Network
more convenient numbers to work with. This also removed any need for
normalization later on.
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......................................... 2.3. Modifications

2.3.2 Normalized Action

The second modification was normalizing the action to be between 0 and
1. This removes negative numbers from our equations which is often a well-
received change. In our case, it even enabled our code for wind wrappers to
be much shorter and clearer.

Here is the formula we used to normalize our actions from a range of [-1,1]
to [0,1]:

newAction = oldAction + 1
2

2.3.3 Wind

We decided to work with multiple different wind wrappers. Due to the
implementation of the CarRacing-v2 environment, we decided that working
with winds blowing from the left and right sides of the car would be a viable
and interesting choice. Furthermore, we implemented continuously blowing
winds and also gusty winds, gusty meaning that there are blocks of no wind
and blocks of wind that alternate. One set of wrappers was purely for a left
wind, another for a right wind, and the last for a mix of both.

All wrappers have parameters to be able to experiment more freely. There
is always a wind strength range from which a number is randomly taken,
representing the percentage change due to the wind.

Let us show a general example of how a left continuous wind works. If we
have a wind strength range of [a, b] then our new action is calculated as

strength = random number ∈ [a, b]
wind = 1 − strength

new_action =

steer × wind
throttle
break


where steer, throttle, and break are components of the incoming action. Here
the subtraction from one is there because we want to lower the number in
the action, making it turn more to the left. For a right wind, we exchange
“wind = 1 − strength” for “wind = 1 + strength” to enlarge steer (while
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......................................... 2.3. Modifications

ensuring the value does not overflow the allowed maximum steer, which is 1.
This is done by assigning all values larger than 1 back to 1).

To show a specific example, let us say our agent chose the action (0.9,0,0),
meaning turn sharply to the right, and we had a wind blowing to the left with
a strength range from 40% to 50%. Our random generator chooses a strength
of 45% for the current step. The wind would change the first component of
the action to 0.9× (1−0.45) = 0.495, making the action (0.495,0,0). Lowering
the first number of the vector means steering more to the left.

This is the only parameter of the continuous left and right winds, while
the continuous wind from both sides also has a block range. This is a range
such as [10,50] from which a number is randomly taken, representing how
many steps the current wind should act. For example, we could start with a
left wind which generates a block length of 23 which means for the following
23 steps, a left wind will be applied. After this block is finished, we switch to
the right wind and generate a new block length from the range for the right
wind. If this new block length is 42, we apply the right wind from step 24 to
step 24+42. This process repeats until the end of the episode.

Gusty winds have the same strength parameter while having a separate
block range for when a wind is applied and also when a wind is not applied.
We separated these into two different parameters for more flexibility since
we wanted to see what happens when the blocks with wind last three times
longer than the blocks without wind.

Gusty winds from both sides work on the same principles. They begin with
wind from a random side, and after its block is finished, a block without wind
begins. These two blocks switch between each other, while the wind block
always chooses a random side to blow from. This means that there can be an
episode without a right wind if random change chooses to make it so. This
episode would be the same as a gusty wind from the left. This is, however,
highly unlikely.

All these random choices from ranges are meant to better simulate the real
world’s unpredictability.
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Chapter 3

Proximal Policy Optimization (PPO)

Deep Reinforcement Learning has experienced immense growth in recent years,
and one of the stable baselines has become the Proximal Policy Optimization
algorithm (PPO) [2]. PPO learns a policy that minimizes its loss and therefore
maximizes its reward. It is part of the Policy Gradient algorithms and is a
modified superior version of the Trust Region Policy Optimization algorithm
(TRPO) [3]. We will only describe PPO and its objective function; however,
we recommend the original PPO paper for a full understanding of where it
came from and how it is better than previous algorithms.

The proximal part of the algorithm refers to the fact that the policy is
regularized to encourage it to stay close to the previous policy, which helps
to improve the stability of the learning process. This regularization can also
help avoid overfitting and improve the algorithm’s overall performance.

3.1 Policy Gradient Method

This algorithm falls in the family of Policy Gradient methods. These algo-
rithms learn online, which is the main difference between them and Deep-Q
Networks (DQN). Policy gradient methods don’t store past experiences in a
replay buffer; instead, they learn directly from what the agent encounters.
Once the batch of experiences is used, it is discarded. This is being called less
sample efficient. DQN uses their experiences multiple times combined with
experiences from other episodes, while Policy Gradient methods use them
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...................................... 3.2. Objective Function

from only the current episode and then delete them. Whereas standard Policy
Gradient methods perform one gradient update per data sample, PPO has a
novel objective function that enables multiple epochs of minibatch updates.

Figure 3.1: PPO algorithm [2]

There are two alternating threads in PPO, the first of which (inner for
loop in 3.1) collects experiences from interacting with the environment. If
the hardware allows it, multiple actors can collect experiences at once. The
second thread then runs gradient descent on the policy network using the
saved experiences.

This division of labor can enable large-scale training with hundreds of CPU
workers generating experiences and a couple of powerful GPUs learning from
these experiences.

3.2 Objective Function

The objective function in the case of PPO is the loss function the model aims
to minimize. Before we get to the objective function, let us define some useful
formulae. Let rt(θ) denote the probability ratio (also called the likelihood
ratio) of new to old policy such that r(θold) = 1.

rt(θ) = πθ(at|st)
πθold

(at|st)
(3.1)

Where π is the policy with θ parameters (This will be, in our case, a Deep
Neural Network.). at is the action to be chosen, and st is the current state.
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...................................... 3.2. Objective Function

TRPO maximizes the surrogate objective, which can be described as a
conservative policy iteration.

LCP I(θ) = Êt

[
rt(θ)Ât

]
(3.2)

Where Ât is an estimate of the advantage function.

This can be calculated by subtracting the baseline estimate (the value
output from the critic part of our Neural Network) from the discounted
sum of rewards. In our case, we used a truncated version of the generalized
advantage estimation, which is defined as follows

Ât = δt+(γλ)δt+1 + · · · + (γλ)T −t+1δT −1 (3.3)
where δt = rt + γVθ(st+1) − Vθ(st)

t ∈ [0, T ]

Where T is our hyperparameter horizon and Vθ(st) is our first output
of the Deep Neural Network, also called the Critic (further information in
section 3.3). λ is one of our hyperparameters called GAE lambda (generalized
advantage estimation).

PPO clips the surrogate objective to prevent unreasonably large updates.
The following is the clipped loss which is the main part of PPO’s objective
function.

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât)

]
(3.4)

Here ϵ is a hyperparameter that we tune under the name clipping range.

As shown in figure 3.2, when the advantage is positive (meaning the outcome
we obtained was better than expected), we clip actions with a high reward to
not overly change the policy in one update. When the advantage is negative,
our outcome is worse than expected, and we want to undo our previous step
by a proportional amount. This represents the linear part of the graph.

11 ctuthesis t1606152353



................................. 3.3. Deep Neural Network Structure

Figure 3.2: Clipping [2]

Finally, the full equation for the objective function of PPO can be defined
as follows

LP P O(θ) = Êt

[
LCLIP

t (θ) − c1LV F
t (θ) + c2S[πθ](st)

]
(3.5)

where c1, c2 are the value function coefficient and entropy coefficient. S
denotes the entropy which we obtain from a Beta probability distribution
created using our other two outputs of the neural network. These other two
outputs are called the Actor (further information in section 3.3). LV F

t is the
predicted value (from our Neural Network) minus the target value squared.

LV F
t = (Vθ(st) − V target

t )2 (3.6)

3.3 Deep Neural Network Structure

The PPO algorithm falls in the family of Actor-Critic methods, which use a
Deep Neural Network structure [4] oriented around having an Actor network
and a Critic network. Our network has both the Actor and the Critic in a
single network because they share the layers processing the observed game
state (RGB image 96x96 pixels).

The Critic is responsible for estimating the expected value of a state. The
value is the sum of all rewards it expects to receive in the future. This value
is a scalar, and we obtain it from a single dense layer with a linear activation
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................................. 3.3. Deep Neural Network Structure

because it can be any number. This layer can be seen on the bottom right of
figure 3.3.

The Actor is responsible for generating a probability value for each possible
action from the observed state. Since we used a continuous action space, our
probability had to be expressed using a probability distribution. For this
experiment, we used the Beta probability distribution [5], whose probability
density function is defined as

f(x, α, β) = xα−1(1 − x)β−1

B(α, β) (3.7)

We obtain the alpha and beta variables from the bottom right dense layers
with a slight readjusting using the Lambda layer.

Both Actor and Critic share a convolution network that processes the
inputted observation to extract some features and lower the number of total
parameters. The current number of parameters of the whole network is 632
999, all being trainable.

Figure 3.3: Our Deep Convolutional Neural Network
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Chapter 4

Hyperparameter tuning

Each Deep Reinforcement Learning program has hyperparameters. One can
perfectly write the algorithm; however, for it to be effective, a suitable value
for each hyperparameter has to be found. Where to even begin? One of
our previous projects 1 was a detailed study of what each hyperparameter
represents and how it affects learning of a Deep Reinforcement Learning
agent on the original CarRacing-v2 environment [6]. This chapter will be a
summary of our findings.

We decided to initialize the hyperparameters using our previous knowledge
[7, 8] combined with the knowledge gained from the original PPO paper [2].

1This was a university semestral project focused on exploring the topic and beginning
the work of a future bachelor’s thesis.
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Our initial hyperparameters were

horizon = 128
mini-batch size = 256

epochs per episode = 3
clipping range = 0.2

gamma = 0.99
gae lambda = 0.95

value function coefficient = 1
entropy coefficient = 0.01

learning rate = 2.5e–4

All of the hyperparameters could be found by testing a range of numbers
taken from the theoretical description of what each hyperparameter does.
Some did not affect the outcome as much as others. For example, changing
the entropy or value coefficients did not change the outcome by a large margin,
whereas changing the gamma or the learning rate had some drastic effects.
The tested hyperparameters were chosen based on theory; however, the final
ones were chosen because of their performance in our experiments.

Firstly, the horizon is the number of steps in each episode. A new lap
begins if the lap terminates before reaching the horizon. From this information,
we can deduce that a low horizon would result in the car exploring the track in
small portions before moving further. In contrast, a large horizon would result
in the car exploring large portions of the track, slowing its initial learning.
We decided on a large horizon to allow more exploration of the track.

The experience we collect during the episode can grow to a number in
the higher tens of thousands, and even with great hardware, we cannot
optimize our Neural Network with all of the experiences at once. This is
where mini-batches come in. We optimize using gradient descent using a
single batch of experiences simultaneously. Smaller mini-batch sizes are often
preferred because they are noisy, which offers a regularizing effect and lowers
generalization error. In our case, the best results were surprising, with a
substantially large mini-batch size of 1024.

An epoch refers to one cycle through the full training dataset. Our training
dataset is the experience buffer from one episode. It is recommended to train
with more than one epoch, each having randomized mini-batches, because
it leads to better generalization with not yet seen batches of experiences.
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In theory, the more epochs we have, the more information can be learned
from one experience buffer; however, it is not the best strategy in practice.
Too many epochs can cause overfitting, which may, in extreme cases, lead to
almost no increase in rewards. We decided on three epochs per episode.

The clipping range is where we deem the surrogate objective acceptable.
It is used to ensure that the policy update is not excessively large. A more
detailed description was in section 3.2. Shortly, the higher the clipping range,
the larger the policy update can be done, which could result in a drastic
change in the policy. To keep the policy stable, a smaller number is often
used. The number 0.15 worked well for us.

The discount factor represented by the Greek letter gamma (γ) accounts
for the fact that our agent prefers rewards that it will receive now rather than
the same reward further down the line. This can be compared to interest with
finances, as a person would rather get the same amount of money now than in
a year. To explain this further, if we have gamma=0.9, the reward in 6 steps
is half as important as the immediate reward, whereas, with gamma=0.99,
the reward in 60 steps is half as important as the immediate reward. We
went for 0.99 since a much more long-term view of the situation is preferred
when driving.

GAE lambda (λ) is used to control the bias-variance trade-off. If you
want a smoother training curve corresponding to more stable training, choose
a λ close to zero. A number close to zero means high bias and low variance,
while a number close to 1 means the opposite. Having a high variance in
training is beneficial if one does not want to get stuck in a local minimum
which is why we determined 0.9 would work best.

The value function coefficient controls the impact of the value function
loss on PPO’s objective function. It decides how influential our prediction of
a state’s value should be. We tried linearly spaced numbers between 0.5 and
1, and none was a misstep. Our final choice of 0.64 was because it had the
highest recorded reward.

The entropy coefficient can also be called a regularizer because it helps
prevent premature dominance of one action probability over the policy, which
could prevent exploration. A policy has minimum entropy when a single
action has an overly dominant probability. This means that if we always
wanted to be greedy and choose the current best action, we would have
entropy as low as possible and a high entropy if we wanted to explore the
state space. A very small entropy coefficient was the best choice in our case
since one wrong action could lead to an uncontrollable drift out of the track.
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The learning rate is how large of an impact the optimizer should have
during a single update. For our experiment, we chose the Adam optimizer
[9]. The original PPO paper described using a discounted learning rate [2];
however, we wanted to experiment with both discounted and constant learning
rates. After experience collection and before our agent started learning, we
applied a function to the learning rate to get a new one for each episode. If
we wanted a discounted learning rate, we multiplied the initial learning rate
by a decreasing number (1 − current episode number

final episode number ), which decreased linearly
from 1 to 0.

A decreasing learning rate is used because, at the beginning of training,
it is useful to explore and be able to escape some local minima. As the
agent learns and becomes better at gaining a positive reward, it is much less
desirable to change the policy significantly in a single update.

The experiments showed that a learning rate of 0.0003 achieved the best
results in both constant and discounted runs. If compared, the difference
between discounted and constant learning rates was negligible. Since, in theory,
a discounted learning rate should be better, we decided on the discounted
0.0003.

Ultimately, we decided to continue with these hyperparameters, which
gained a stable score of 900-940 in the environment without wind.

horizon = 2250
mini-batch size = 1024

epochs per episode = 3
clipping range = 0.15

gamma = 0.99
gae lambda = 0.9

value function coefficient = 0.64
entropy coefficient = 0.0071

learning rate = 3e–4

17 ctuthesis t1606152353



Chapter 5

Training models

In this chapter, we will focus on training the agents using each of the different
winds mentioned in subsection 2.3.3. We decided to train on 4 strength ranges
for each wind to be able to compare how the wind affects training when we
increase or decrease the strength of the same wind. These strength ranges
are between a 10% to 50% change in the incoming action. They are always
mentioned in the graph’s legend. The graphs will also have a graph with
the training curve in the original environment without wind (noWind) for
comparison.

We also experimented with different wind ranges (the number of steps
wind is applied) and found some interesting occurrences. In the end, we took
a pre-trained model from the original environment without wind and tried
training it in an environment with a very strong and unpredictable wind.
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5.1 Continuous Wind from one Side

Figure 5.1: Continuous left wind

Figure 5.2: Continuous right wind
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Let us begin with the most basic wind, being a never-ending wind from a
single side, where the only changing state is the strength of the wind. For
each step, a random wind strength from the strength range is chosen. We
can see these strength ranges in the legends of each graph in this chapter.

It is not surprising how little of an impact the lower wind strengths have
on the speed of training and maximum attainable score. If we think about
it, the agent only needs to realize that the actions it is choosing have to be
always tweaked in the same direction with almost the same number. What
can be better seen in Figure 5.1 is that the stronger the wind, the slower the
training, which is quite logical.

What is quite interesting are the fluctuations of the [0.3, 0.4] (green) curve
of the left wind (Figure 5.1). Since we saved a model each 10 training episodes
(22500 steps), we were able to render these models visually with the same
conditions to see what was happening.

Firstly, we focused on the section roughly from 180k steps to 270k steps
since there the training slowed and then got exponentially better. At first,
the model was driving really slow and always sliding to the left; however,
it was already able to go through turns correctly. The next model was still
sliding to the left because of the wind but was getting better at driving in the
center of the road. The next model got faster, but only when it was in the
middle of the road. The final model drove surprisingly well until it reached
a right-hand turn which it drove through in a straight line. What can be
deduced is that the training slowed down because the agent started going
slower and focusing more on its direction. Even though none of these models
could successfully overcome the wind for long, they got faster which gained
them more positive rewards.

Secondly, we focused on the drop from the first peak above 800, meaning
from 450k to 540k steps. What we found out is that the model started slipping
a lot when going into sharper turns. It did not press the brakes correctly;
it rather stomped on them and made the car drift on the grass. With the
later models, we could see that the model somehow got worse and worse at
finding its way back on track. After the lowest point, the model realized that
it should drive more carefully through sharp turns and use the brakes more
gently as not to drift.
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5.2 Gusty Wind from one Side

Figure 5.3: Gusty left wind

Figure 5.4: Gusty right wind
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Gusty winds had overall less smooth curves compared to the continuous
winds since the agent had to learn a combination of driving without wind and
driving with wind and how to assess when the wind is active. Nevertheless, the
training curves are smoother than if we used algorithms other than PPO since
PPO has the clipping part of its loss function, which prevents unreasonably
large changes in the agent’s strategy.

With the gusty left winds, we decided to focus on the area around the
highest peak of the green curve in Figure 5.3. More specifically, around
400k to 700k steps of the strength [0.3, 0.4] curve. When we visualized the
models, in the beginning, the car wiggled a lot while staying on track and
even managed to get back on the right track after doing a 720◦ turn while
drifting. We could clearly see the parts when the wind hit, and the car had
issues only when it hit during a sharp turn. Around the peak of the graph,
the agent learned that staying on the right side of the road is a good strategy.
After that, the agent started having issues with breaking when approaching
turns. With these issues came more and more going completely off the track
to the point that one could only see grass around. It even got to a point when
it started doing a continuous donut in the middle of the grass. This is quite
surprising since the agent is using reinforcement learning which should force
it to gain as much positive reward as possible. Staying on grass achieves the
exact opposite. On top of that, if the agent is on grass, it does not matter
what action it chooses since all give the same reward. With this in mind,
why would the agent learn to drift in a circle? The only explanation we could
think of is the agent having some kind of a default action when the rewards
over a long period show all actions as equal. This is quite possible since the
agent chooses an action based on a sample from a probability distribution.
This probability distribution is what is generated from the output of the
Critic neural network. If the probability distribution of an action is close to
a constant line parallel to the x-axis, all actions bear the same probability.
And depending on how the function is coded, we might end up with the same
action over and over. In the end, the agent learned again how to use brakes
through turns; however, it learned for a short period to drive, which was in a
controlled state of slight drift. Surprisingly, it was quite successful in such a
state.

In the gusty right wind environment, we have a parameter of how long the
winds should last (represented as a range from which a random number of
steps will be chosen) and wanted to explore if it affects training. What we
discovered is that the step range does not significantly affect the training.
We tried to compare [10,50] with [50,100] and [100,150], always choosing
a random number of steps to apply wind for, and there was no significant
difference. Our thinking behind this was that a smaller wind range means
the car gets only partially out of its track and has enough time to get back
on its original track while with a [100,150] wind range, the car can get much
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further away from its original path and won’t be able to make it back in the
short time without wind.

5.3 Continuous and Gusty winds from both sides

Figure 5.5: Continuous wind from both sides
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Figure 5.6: Gusty wind from both sides

Looking at Figures 5.5 & 5.6, we can observe very similar learning curves to
the previous winds. Logically, the agent would have more difficulties learning
under stronger winds; however, that was not the case with the three weaker
winds. The only outlier is the strongest version of each wind.

The first anomaly we wanted to explore is why the model training on the
strongest gusty winds took so long to see some rapid growth. We visualized
our saved models from around the point where the red learning curve started
growing just after 600k steps in Figure 5.6. Before the turning point, the car
drives straight relatively slowly and does nothing of use, which corresponds to
its score. After the turning point, it starts driving faster and quite well, albeit
always having its right wheels outside of the track, which is quite unusual
since we have winds from both sides. Continuing, the car drives relatively
well until it sees two turns close to each other, at which point the car freezes
and slowly drives off into the abyss. Even when there is a track on the screen
that it could see, there is not even a slight movement toward this track.

From this observation, we can deduce that our agent is surprisingly good
at conquering even the strongest winds having little issues with staying on
the track if there are no difficult turns. The ability to drive through turns
comes afterward.
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Another thought-provoking segment of the gusty winds training curves is
the fluctuations of the second strong wind shown in green. This segment is
from 400k to 800k steps. We begin with a car able to navigate anything that
comes it’s way except for a 170° turn. Due to this, the car starts forgetting
how to navigate through the sharper turns and uncontrollably drifts into the
grass. Following this, the car starts breaking before turns, and if it starts
drifting out of the track, it is able to drift back on track. Speed and sharp
turns continue to be its most prominent enemies. After this point, the car
continued to speed up and failed at turning even 90° turns. There was even a
point when the car drove completely off the map, receiving a reward of -100.

This drive reminded us that there was not a single model in our testing
which could recognize that it was driving the wrong way, even if it was
correctly driving on the road instead of the grass. The image the model
received contained the current score in the bottom left; however, PPO does
not have a memory which is the likely explanation.

5.4 Training a pre-trained model on strong gusty
winds

We wanted to explore how a well-trained model in the original environment
without wind will handle training in an environment with strong gusty winds
from both sides. This would give us insight into the difference between
learning from scratch and learning with some preexisting knowledge.
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Figure 5.7: Pretrained on an environment without wind, trained on a gusty
wind from both sides

In Figure 5.7, we can see the comparison of training a model from scratch
(strength_[0.3, 0.4]) with training a model which had already been well
trained on the same environment, but without wind (PRET strength_[0.3,
0.4]). For this, we decided to use a strong gusty wind from both sides which
would offer quite a challenge. The same strengths are visualized by the same
color, while the models trained from scratch are shown with a more faded
version of the color.

As we have seen with the previous graphs, there was always quite a straight
beginning followed by a steep rise. This was probably because of the challenge
of overcoming the first turn. Once a model learned to drive through one turn,
it rapidly achieved a higher score. Now if we compare that to the pre-trained
models, we can see a similar case with the softer wind shown by the green
curve. On the other hand, the stronger wind shown by the red curve shows a
slower incline.

When visualizing the beginning of the training of the pre-trained [0.4, 0.5]
strong wind (vibrant red), we can notice the slight wiggling of the car due to
the winds. Nonetheless, this wiggling was quite small if we consider that we
are in the first ten episodes of the learning. Another aspect is the car cutting
almost every turn. This continues to be an issue, albeit slowly disappearing,
while the car learns to navigate the track faster and faster.
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What can be taken from this section is the fact that pre-training a model
definitely makes a difference since it gains a basic understanding of the
environment, what it is looking at, where it should be aiming, and what each
action does.
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Chapter 6

Evaluating models

After the successful training, we were left with 25 trained models, one for
no wind and four per wind type. To get as much information out of these
models we decided to evaluate all of them in all the environments we had.
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Figure 6.1: Average score over 100 episodes

In this comprehensive heatmap (Figure 6.1) can be seen a lot of information
and an explanation of the axes is in place. left1to2 means a continuous left
wind (pushing to the left) with a strength range [0.1, 0.2], in other terms
the wind changes the agent’s actions by 10% to 20%. Other models follow
the same logic of naming. And lastly, there is one model (noWind) and its
corresponding environment representing the original environment without
wind.

We let the evaluation run for 100 episodes and took the mean score hoping
for a quite accurate representation. The higher the score the better the
model’s performance.
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The heatmap itself presents us with a lot of information and to analyze
it let us begin with finding the overall performance of each model. In Table
6.1 we can see the mean score of each model over all environments. This
represents a mean over each row of the heatmap.

Model/Agent Mean of scores
gustyLeft4to5 840
gustySides3to4 825
gustyLeft3to4 815

sides3to4 811
sides2to3 810

gustySides2to3 799
sides4to5 793

gustyLeft2to3 789
sides1to2 788

gustySides4to5 769
gustySides1to2 764
gustyRight4to5 734
gustyRight2to3 709
gustyLeft1to2 677

gustyRight3to4 658
gustyRight1to2 557

noWind 462
left1to2 357

right1to2 355
right4to5 309
left2to3 263

right2to3 217
right3to4 209
left3to4 153
left4to5 -20

Table 6.1: The mean score of each model over all environments taken from the
heatmap in Figure 6.1

As can be seen in this table, the best model overall is the gusty wind
pushing to the left with strengths between 40% and 50%. This is quite a
surprise since we thought that the best models would be the ones trained
on the middle ranges of strength from 20% to 40%. Our reasoning for this
was that they could better generalize for the other wind strengths. A model
trained on 40% to 50% winds should not be better than a model trained on
30% to 40% winds in a 10% to 20% winds environment. And this hypothesis
is actually correct. If we look at the heatmap and compare gustyLeft4to5
and gustyLeft3to4 we can see that in all instances of 1to2 environments, the
gustyLeft3to4 had a higher score. Even if we compare these two models on
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every environment, the gustyLeft3to4 is better at 15/25 environments which is
a majority. The issue here lies in consistency. gustyLeft4to5 is better in overall
performance because it consistently gets high scores in all environments, while
gustyLeft3to4 ’s score drops significantly in some environments, which worsens
a lot the overall score.

Returning to the overall winner, the second surprising part is that it is a
model trained on a wind from one side. We thought that a model trained on
a wind from both sides would be more prepared for whatever wind comes it’s
way due to its higher levels of generalization. By examining the heatmap, if
we take the gusty left model and evaluate it on gusty right environments, it is
always worse than the gusty sides model. This shows that our thinking was
correct, however, there will again be some sort of other explanation as to why
gustyLeft4to5 is the best. And again the explanation seems to be the same as
in the previous paragraph. gustyLeft4to5 has consistently high scores while
gustySides3to4 has some enormous drops such as in the left4to5 environment.

Speaking of the left4to5 environment and also the left4to5 model, they
seem to be the worst in everything by a large margin. The heatmap clearly
shows this, with the dark red cells being most present in one row and one
column representing left4to5. If we jump back to Figure 5.1 about the training
of the left models, we can clearly see that the model left4to5 training on the
strongest winds had much more difficulty training than its respective right
wind model. Reinforcement learning depends a lot on randomness; however,
in this case, if we look at the training of the gusty left wind and its right
counterpart, we can see the exact same outcome of the comparison of the
red curves. This could mean that there is some proof to the models overall
having more issues with the left wind.

Table 6.2 shows the mean of scores but this time shows environments
instead of models. In this table, we see that left4to5 was the most challenging
environment of them all. We can also see that all right wind environments are
above all left wind environments. One reasonable explanation for this phe-
nomenon could be the issue of map generation. It is possible that the creator
of the original CarRacing-v2 environment unknowingly made the generation
of sharp right turns more frequent than the generation of sharp left turns.
If we add a strong wind pushing to the left, it becomes much more difficult
to successfully steer through sharp right turns. This is, however, opposed
by the fact that the track is a loop where the car drives counterclockwise,
meaning it has to pass through more left turns than right turns. We even
triple-checked the implementation of our winds to be sure that a left wind in
our code means wind blowing the car to the left.

With all information combined, our only explanation for this phenomenon
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is the environment having sharper right turns than left turns, making it more
likely for the car to make a mistake while being affected by the strongest left
wind.

Environment/Wind Mean of scores
right1to2 725
right2to3 714

gustyRight1to2 701
gustyRight2to3 700

noWind 697
gustyRight3to4 697

right3to4 693
gustyRight4to5 686
gustySides1to2 679
gustyLeft1to2 669

right4to5 668
left1to2 664

sides1to2 661
gustySides2to3 647
gustyLeft2to3 617

sides2to3 597
left2to3 595

gustySides3to4 566
gustyLeft3to4 535

sides3to4 508
left3to4 447

gustySides4to5 339
sides4to5 276

gustyLeft4to5 268
left4to5 92

Table 6.2: The mean score of each environment/wind over all models taken
from the heatmap in Figure 6.1
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Chapter 7

Conclusion

In conclusion, this thesis delved deep into the algorithm known as Proximal
Policy Optimization, from understanding how it works to testing its limits
in unpredictable environments. We can confidently say that even though
PPO does not have a memory, its ability to understand and negate even the
strongest of winds was quite unprecedented.

We were able to test a multitude of different winds thanks to the CarRacing-
v2 environment from OpenAI’s gym. It allowed us to replicate unpredictable
winds while working with real-life physics of driving, continuous actions for a
more accurate choice of action, and a random track generation.

Having explored ten hyperparameters, we can say that some had a larger
impact than others. With some, the best one could be immediately observed
from the learning curve, while with others, it was not so straightforward. We
were surprised by how well the training went, even when facing the strongest
winds.

Ultimately, we evaluated all models in all environments creating a com-
prehensive heatmap that helped us uncover that the best model overall was
surprisingly trained on the strongest gusty left wind. In contrast, the worst
was trained on the strongest continuous left wind. It also helped us show
that the most brutal wind was the strongest continuous left wind, while the
easiest environment to navigate was the one with the weakest right wind.

The information gained in these experiments could be used to design ex-
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periments with real autonomous cars. Experiments aiming at the robustness
of driving under severe weather conditions. For future projects, more unpre-
dictable variables could be added to the environment, such as narrower roads,
obstacles on the track, or even some traffic.
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Appendix A

Hardware used for Training

The access to the computational infrastructure of the OP VVV funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics” is
gratefully acknowledged.

We ran our experiments with a maximum number of 128 parallel threads
set in TensorFlow. We found out that the optimal number of parallel envi-
ronments was 6. With these numbers set, we ran experiments using 32GB
per CPU and 1 CPU per task.

Information about the Research Center for Informatics can be found here
http://rci.cvut.cz/
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Appendix B

Software used & Repository with code

This thesis was written in the Python programming language [10]. The main
Deep Learning library used was TensorFlow [11]. The rest of the libraries and
a tutorial for replicating our environment using an Anaconda environment
[12] or a Singularity container [13] are included in a README.md file in the
attachment.

The attachment includes the necessary files from this project’s GitHub
repository, which can be found here

https://github.com/sykoravojtech/PPOthesis

The GitHub repository additionally has some files for plotting graphs,
running files on the RCI cluster, and archived models from which some videos
were generated.

B.1 Directory Structure of the Attachment

PPO_thesis_code.zip
CITATION.cff
LICENSE
PPO_CarRacing_project_Sykora.pdf
README.md
requirements.txt
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..............................B.1. Directory Structure of the Attachment

tf210.yml
ppo

PPO.py
__init__.py
actorcritic.py
model_paths.py
my_parser.py
run_model.py
train_model.py
utils.py
wrappers.py
BEST

gustyLeft
ep390_2to3
ep530_1to2
ep680_3to4
ep690_4to5

gustyRight
ep650_2to3
ep670_1to2
ep670_3to4
ep670_4to5

gustySides
ep1240_2to3
ep760_3to4
ep780_4to5
ep830_1to2

left
ep560_4to5
ep580_2to3
ep640_3to4
ep690_1to2

noWind
projectBEST

right
ep670_3to4
ep680_1to2
ep680_2to3
ep680_4to5

sides
ep400_1to2
ep400_4to5
ep420_2to3
ep820_3to4

images
network-structure.drawio
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..............................B.1. Directory Structure of the Attachment

network-structure.png
ppo-alg.jpg
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