
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Applications of Graph Neural Networks in
Classical Planning

Bohdan Nazarenko

Supervisor: Ing. Rostislav Horčík, Ph.D.
Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science
May 2023



ii



BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

498934 Personal ID number:  Nazarenko  Bohdan Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Cybernetics 

Open Informatics Study program: 

Artificial Intelligence and Computer Science Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Applications of Graph Neural Networks in Classical Planning  

Bachelor’s thesis title in Czech: 

Aplikace grafových neuronových sítí v klasickém plánování  

Guidelines: 

The thesis aims to implement a planner based on graph neural networks (GNNs). The student is expected to fulfill the 
following objectives: 
1. Familiarize yourself with the language PDDL standard for planning task specifications (McDermott 2000) and the Fast 
Downward Planning System (Helmert 2006). 
2. Survey and analyze the recent results (Ståhlberg, Bonet, and Geffner 2022) on policy learning for a planning domain 
using GNNs. 
3. Implement a planner consisting of two components. The first component learns a policy for a given planning domain. 
The second one searches for a plan to solve a given planning task by exploiting the learnt policy. 
4. Test the implemented planner on the domains from the International Planning Competitions. Compare your results with 
the results obtained in (Ståhlberg, Bonet, and Geffner 2022). 

Bibliography / sources: 

[1] McDermott, Drew M. 2000. “The 1998 AI Planning Systems Competition.” AI Magazine 21 (2): 35–56. 
https://doi.org/10.1609/aimag.v21i2.1506. 
[2] Helmert, M. 2006. “The Fast Downward Planning System.” Journal of Artificial Intelligence Research 26: 191–246. 
https://doi.org/10.1613/jair.1705. 
[3] Ståhlberg, Simon, Blai Bonet, and Hector Geffner. 2022. “Learning General Optimal Policies with Graph Neural Networks: 
Expressive Power, Transparency, and Limits.” Proceedings of the International Conference on Automated Planning and 
Scheduling 32 (June): 629–37. 

Name and workplace of bachelor’s thesis supervisor: 

Ing. Rostislav Horčík, Ph.D.    Department of Computer Science  FEE 

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   26.05.2023 Date of bachelor’s thesis assignment:   09.01.2023 

Assignment valid until:   22.09.2024 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 
prof. Ing. Tomáš Svoboda, Ph.D. 

Head of department’s signature 
Ing. Rostislav Horčík, Ph.D. 

Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Acknowledgements

I want to thank Ing. Rostislav Horčík,
Ph.D., for giving me this topic, being will-
ing to provide me help at any time, guid-
ing, teaching, and for the feedback during
whole development. I would also like to
thank my family for helping me during
my years of study.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

In Prague, 25. May 2023

v



Abstract

In this work, we study Graph Neural
Networks (GNNs) application in Classi-
cal Planning appeared in [SBG22]. We
reimplement and modify the original code
and add new parts. We employ GNNs
for learning optimal general policies in
Classical Planning domains. We train
GNN Models using supervised learning to
approximate the optimal value function
V (s) for various sampled states s. We
reproduce the results of the experiments
conducted in [SBG22].
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Abstrakt

V této práci studujeme aplikaci grafových
neuronových sítí (GNN) v klasickém plá-
nování, která se objevila v článku [SBG22].
Reimplementujeme a upravujeme původní
kód, přidáváme nové části kódu. Využí-
váme GNNs pro učení optimálních obec-
ných strategií v doménách klasického plá-
nování. Trénujeme GNN modely pomocí
učení s učitelem k aproximaci optimální
hodnotové funkce V (s) pro různé náhodně
generované stavy s. Reprodukujeme vý-
sledky experimentů provedených v článku
[SBG22].

Klíčová slova: GNN, Grafová
neuronová síť, Klasické Plánování,
Plánování, Plánovač, PDDL, Umělá
Inteligence, AI

Překlad názvu: Aplikace grafových
neuronových sítí v klasickém plánování
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Chapter 1

Introduction

In recent years, Graph Neural Networks (GNNs) have emerged as a powerful
and rapidly evolving field of study. Researchers have been harnessing the
potential of GNNs to tackle a wide range of complex problems across various
domains. One noteworthy application is highlighted in the paper [SBG22],
which focuses on utilizing GNNs to learn general optimal policies for solving
Classical Planning problems.

In this bachelor’s thesis, we delve into the methods and applications of
GNNs in the context of Classical Planning, building upon the research pre-
sented in [SBG22]. Our primary objectives encompass reimplementing their
existing code solutions, introducing new contributions, providing clear appli-
cation explanations, and reproducing the experimental results documented in
[SBG22]. The structure of the thesis is organized as follows.

Firstly, we provide an in-depth review of Classical Planning and Classical
Planning problems. This section establishes a foundational understanding of
the domain and the challenges in it.

Next, we delve into the Planning Domain Definition Language (PDDL),
which serves as a language for describing Classical Planning problems. We
also explore the Fast Downward Planner, an automated planning system that
supports PDDL problems and generates solution plans with associated costs.

Subsequently, we revisit the fundamentals of Neural Networks, including
the classical training loop used for training neural models. Additionally, we
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1. Introduction .....................................
introduce the architecture of Graph Neural Networks, specifically designed to
handle relational structures.

Building upon this knowledge, we delve into the general pipeline of work-
ing with GNNs and discuss their specific application in Classical Planning,
utilizing relational structures. We explore the algorithms deployed in this
context, elucidating their functionality.

Following the theoretical groundwork, we briefly overview our code imple-
mentation. This section highlights the key components and functionalities of
the implemented system, emphasizing the modifications and enhancements
made to facilitate GNN-based planning.

Finally, we conduct two types of experiments to evaluate the effectiveness
and performance of our GNN-based planning approach. These experiments
aim to validate the contributions made in this thesis and shed light on the
capabilities and potential of GNNs in solving Classical Planning problems.

By delving into the methods and applications of GNNs in Classical Planning,
this thesis contributes to the growing body of research in the field. The
findings and insights derived from our work can potentially advance state-of-
the-art planning systems, opening avenues for more efficient and intelligent
decision-making in complex real-world scenarios.

2
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1. Introduction .....................................

Part I

Background
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......................................1. Introduction

This part provides a brief overview of the subject area, the key concepts,
and the current state of knowledge in the field. It consists of two chapters:
the first chapter (Chapter 2) discusses Classical Planning; the second chapter
(Chapter 3) discusses Graph Neural Networks.
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Chapter 2

Classical Planning

This chapter familiarizes the reader with classical planning and describes
tools to work with it. The following chapter is drawn from [SBG22], [Hel06],
[Lip14], [Mar13], [Gre23] and [GKW+98].

2.1 Classical Planning

Classical planning is a branch of Artificial Intelligence (AI) that develops
algorithms and techniques for automated planning in deterministic, fully
observable, discrete, and static environments.

In classical planning, the problem consists of domain and domain instances.
A domain typically includes a set of rules and constraints that define the
allowable actions, preconditions, and effects of those actions within the domain.
A domain instance is a specific problem within a given domain defined by
objects, facts, and initial and goal states. Then, the task is to generate a
sequence of actions (a plan) that can transform the system’s initial state to
one that satisfies the given goals.

For example, consider a scenario where a delivery company needs to trans-
port packages from one city to another. The initial state could be the location
of the packages, cities, predefined routes between them, and available vehi-
cles, while the goal state could be the packages’ desired destinations. The

7



2. Classical Planning...................................
available actions include loading packages onto a truck, driving the truck
to the destination city, and unloading the packages at the destination. The
transport problem domain aims to find a sequence of actions to move the
packages from the initial state to the goal state while minimizing the cost
or time required to complete the task. The illustrative picture is shown in
Figure 2.1.

Figure 2.1: Example of transport domain instance

Now we define planning tasks formally. A classical planning task is a pair
P = ⟨D, I⟩ consisting of a planning domain D and a domain instance I. The
planning domain D is determined by a first-order relational language L and
a set of action schemata A. Relational structures over L form states of the
planning task P and the action schemata define possible transitions between
states.

An action schema a(x⃗) ∈ A is specified by three sets of atomic formulas
prea(x⃗), adda(x⃗), dela(x⃗) built up from variables among the action parameters
x⃗, and called preconditions, add effects, and delete effects, respectively. Let S
an L-structure over a set of objects O. Given a sequence of objects o⃗ of the
same length as x⃗, we can create a ground action a(o⃗) by substituting objects
o⃗ for the parameters x⃗. The ground action a(o⃗) is said to be applicable in
S if all its preconditions hold in S, i.e., S |= p(o⃗) for each atomic formula
p(o⃗) ∈ prea(o⃗). In that case, we can apply the action a(o⃗) in S. The result of
the application is an L-structure S′ that is a modification of S so that..1. S′ |= p(o⃗) for each p(o⃗) ∈ adda(o⃗),..2. S′ |= ¬p(o⃗) for each p(o⃗) ∈ dela(o⃗), and..3. S′ |= p(o⃗) iff S |= p(o⃗) for the ground atoms p(o⃗) ̸∈ adda(o⃗) ∪ dela(o⃗).

8



.................................. 2.1. Classical Planning

The planning instance I = ⟨SI , ψG⟩ consists of an L-structure SI called the
initial state and a set of ground atomic formulas ψG called the goal. To solve
the planing task P , we need to find a sequence π of ground actions that
transform the initial state into a state satisfying the goal. In this thesis, we
focus only on actions of the unit cost. Thus the cost of π is defined as its
length. The plan π is said to be optimal if there is no shorter plan.
Example 2.1. We illustrate the above definitions with a simple example from
the transport domain. The relational language L consists of three binary
predicates at, in, and road. There are three types of objects, namely trucks,
packages, and cities. The types can be modelled by unary predicates truck,
package, and city. Further, the domain contains three action schemata:
drive(t, c1, c2), load(p, t, c), and unload(p, t, c). Formally, they are defined as
follows:

. predrive(t, x, y) = {truck(t), city(x), city(y), at(t, x), road(x, y)},. adddrive(t, x, y) = {at(t, y)},. deldrive(t, x, y) = {at(t, x)},. preload(p, t, c) = {package(p), truck(t), city(c), at(p, c), at(t, c)},. addload(p, t, c) = {in(p, t)},. delload(p, t, c) = {at(p, c)},. preunload(p, t, c) = {package(p), truck(t), city(c), in(p, t), at(t, c)},. addunload(p, t, c) = {at(p, c)},. delunload(p, t, c) = {in(p, t)}.

The instance is specified by an L-structure representing the initial state
and a goal condition. Our example comprises five objects: t1 of type truck, p1
of type package, and c1, c2, c3 of type city. As all the predicate symbol except
of the unary ones are binary, we can represent L-structures as a digraph
where the validity of an atom, e.g. at(p, c), is represented by an arc from
p to c labelled by the predicate symbol at. The initial state is depicted in
Figure 2.2. The goal is ψG = {at(p1, c3)}. To solve this instance, we first
need to drive the truck t1 to the city c2, load the package p1, drive t1 to
c3, and finally unload p1. Thus the plan is a sequence of ground actions
drive(t1, c1, c2), load(p1, t1, c2), drive(t1, c2, c3), unload(p1, t1, c3). Its cost is
4 and it is an optimal plan.

The classical planners takes the planning task as its input and search for
an (optimal) plan using a search algorithm like A∗ navigated by a heuristic

9



2. Classical Planning...................................

t1 c1 c2

c3

p1
at road

roa
d road

at

Figure 2.2: The initial state.

t1 c1 c2

c3

p1
at road

roa
d road

at

atG

Figure 2.3: The initial state extended by the goal.

function. In this thesis, instead of solving a single instance, we implement
a program solving all the domain instances employing machine learning
methods. Our solution for a domain is a policy assigning to each state a next
action we should apply to get closer to a goal state.

We can work with all domain instances at once because any state in any
domain instance is represented by a relational structures over a fixed language
L. However, particular instances might differ in their goals. To encode the
information about the goal into the state, we expand the language L by
new predicate symbols. For each predicate symbol p in L, we introduce a
fresh predicate symbol of the same arity as p denoted pG. Let LG be the
resulting language. Given a state S (i.e., an L-structure) and a goal ψG, we
expand it to an LG-structure SG so that SG |= pG(o⃗) for each ground atom
p(o⃗) ∈ ψG. Thus the expanded state SG contains the information on the
current goal, we want to achieve. For example, the extended initial state
from Example example:planning-task is depicted in Figure 2.3.

Let SD be the set of all expanded states, i.e., LG-structures. We represent
policies for the domain D as value functions. A value function V : SD → R is
a real-valued function estimating how far is a goal state from a given state.
Each value function determines a greedy policy πV that assigns to a given
state S a ground action that leads to a state S′ with the minimum V (S′). A
policy πV solves a planning instance if following the policy from the initial
state always end up in a goal state. Moreover, πV is optimal if it generates
an optimal plan. Using machine learning techniques, we strive to find a value
function V that would ideally represent an optimal policy πV .

10



..........................2.2. Planning Domain Definition Language

2.2 Planning Domain Definition Language

The planning tasks defined in the previous section are usually specified
in the Planning Domain Definition Language (PDDL). PDDL is a formal
language used to describe classical planning problems in AI. PDDL provides
a standard syntax and semantics for representing the problem domain and
domain instances using the language of first-order logic. PDDL includes a set
of constructs that can specify first-order relational language, action schemata,
initial state, goal state, and other relevant aspects of a planning problem. For
example, PDDL allows the planner to specify the preconditions and effects of
each action, as well as any constraints on the execution of those actions.

PDDL is widely used in the research and development of classical planning
systems, and many automated planners support PDDL as a standard input
format. In this work, the reference planner (Fast Downward) and GNN
planner use PDDL input files.

To specify a planning task in PDDL, we must create two files. The first
defines the planning domain, i.e., the first-order relational language and a set
of action schemata. The second defines the planning instance, i.e., an initial
state and a goal. An example of the domain file and the instance file can be
seen in Listings 2.1 and 2.2.

2.3 Fast Downward Planner

Fast Downward (FD) is a popular automated planning system that supports
the PDDL planning language. It uses search algorithms and heuristic functions
that estimate the distance to the goal state to generate high-quality plans
for various planning problems. The planner works in two phases: translate
and search. The search phase employs some standard search algorithm like
A∗ endowed with a selected heuristic and searches a plan in a state space
represented by the output of the translate phase.

The translate mode translates the input PDDL files (i.e., the domain file
and the instance file) into a SAS1 output. During this process the first-
order representation of the planning task is transformed into a propositional
representation. Moreover, FD applies several pruning techniques to reduce the

1https://www.fast-downward.org/TranslatorOutputFormat [accessed 9 May, 2023]
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2. Classical Planning...................................
Listing 2.1: Transport domain PDDL file example.

( d e f i n e ( domain t ranspor t )
( : requ i rements : s t r i p s : negat ive −pr e cond i t i on s )
( : p r e d i c a t e s

( package ? obj )
( truck ? truck )
( c i t y ? c i t y )
( road ? c i ty −from ? c i ty −to )
( at ? obj ? c i t y )
( in ? obj ? truck ) )

( : a c t i on load
: parameters (? obj ? truck ? c i t y )
: p r e cond i t i on ( and

( package ? obj )
( truck ? truck )
( c i t y ? c i t y )
( at ? truck ? c i t y )
( at ? obj ? c i t y ) )

: e f f e c t ( and
( not ( at ? obj ? c i t y ) )
( in ? obj ? truck ) )

)
( : a c t i on unload

: parameters (? obj ? truck ? c i t y )
: p r e cond i t i on ( and

( package ? obj )
( truck ? truck )
( c i t y ? c i t y )
( at ? truck ? c i t y )
( in ? obj ? truck ) )

: e f f e c t ( and
( not ( in ? obj ? truck ) )
( at ? obj ? c i t y ) )

)
( : a c t i on dr iv e

: parameters (? truck ? c i ty −from ? c i ty −to )
: p r e cond i t i on ( and

( truck ? truck )
( c i t y ? c i ty −from )
( c i t y ? c i ty −to )
( road ? c i ty −from ? c i ty −to )
( at ? truck ? c i ty −from ) )

: e f f e c t ( and
( not ( at ? truck ? c i ty −from ) )
( at ? truck ? c i ty −to ) )

)
)

12



................................ 2.3. Fast Downward Planner

Listing 2.2: Transport domain instance PDDL file example.
( d e f i n e ( problem transport −1−0)

( : domain t ranspor t )
( : o b j e c t s c i t y 1 c i t y 2 c i t y 3 truck1 package1 )
( : i n i t

( package package1 )
( truck truck1 )
( c i t y c i t y 1 )
( c i t y c i t y 2 )
( c i t y c i t y 3 )
( road c i t y 1 c i t y 2 )
( road c i t y 2 c i t y 1 )
( road c i t y 2 c i t y 3 )
( road c i t y 3 c i t y 2 )
( road c i t y 3 c i t y 1 )
( road c i t y 1 c i t y 3 )
( at truck1 c i t y 1 )
( at package1 c i t y 2 )

)
( : goa l

( and
( at package1 c i t y 3 )

)
)

)

resulting state space to be searched. Formally, the propositional representation
known as the SAS+ representation [BN95] is a tuple Π = ⟨V,O, s0, sg⟩ where
V is a finite set of variables. Each variable v ∈ V has its domain dom(v).
Using the variables, we define states. A partial state is a partial function
s : V →

⋃
v∈V dom(v) such that s(v) ∈ dom(v). When s is a total function,

i.e. the value s(v) is defined for each variable v ∈ V , s is said to be a state.
Note that one can represent the partial states as sets of pairs of the form
⟨v, b⟩ for v ∈ V and b ∈ dom(v).

Further the propositional representation Π consists of an initial state s0
and a partial state sg specifying the goal. A state s is a goal state if sg ⊆ s.

The transition between states are define by the set of operators O. Each
operator a ∈ O is a pair of two partial states a = ⟨prea, effa⟩ encoding the
preconditions and effects, respectively. The operator a is applicable in a state
s if prea ⊆ s, i.e., all the preconditions are satisfied. Applying a to s results

13



2. Classical Planning...................................
in a state s′ defined as follows:

s′(v) =
{

effa(v) if effa is define for v,
s(v) otherwise.

Given a planning task P = ⟨D, I⟩, the Fast Downward translator creates
the corresponding SAS output. For our purposes, we need to know how the
variables and their domains are built from the planning task P . First, one can
split the predicate symbol occurring in P to static and dynamic predicates.
A predicate symbol is called dynamic if it occurs among the add or delete
effects of any action schemata. On the other hand, a predicate is said to be
static if it occurs only in the action preconditions. So the interpretations
of static predicates is determined by the initial state SI and is fixed in all
reachable states. The interpretations of dynamic predicates might change as
we apply actions. Thus to represent a state, it suffices to remember only the
interpretations of the dynamic predicates.

To create the variables and their domains, FD utilizes so-called mutex
groups. A set of ground atomic formulas M is called a mutex group if for
any reachable state S, we have S |= p for at most one atom p ∈ M . The
domain dom(v) of any variable v ∈ V is created from a mutex group M . As
we know that at most of the atoms in M can be true in a state, it is sufficient
to know which of them it is. Thus the domain dom(v) consists of atoms in M .
In addition, dom(v) can be extended by a special value none-of-those if it
may happen that none of the atoms holds in a reachable state. Consequently,
given a state s in the SAS output, we can restore the original structure S
corresponding to s, by collecting the atoms s(v) for v ∈ V and expanding
them by the interpretation of the static predicates.

Fast Downward, by default, uses various pruning techniques to reduce
the resulting state space represented by the SAS output. First, it removes
unreachable ground atoms, i.e., atoms that can never be true in a reachable
state. Further, based on the goal specification, it can remove unnecessary
SAS variables that do not have any helpful information that leads to a goal
SAS state. As the paper [SBG22] whose results we try to replicate does not
apply the pruning based on the goal, we need to keep the unnecessary SAS
variables in the SAS output. To do that, one can use Fast Downward Planner’s
parameter --translate-options --keep-unimportant-variables.
Example 2.2. Consider the planning task from Example 2.1. Its SAS output
consists of two variables v1, v2. The first variable represents the truck’s
location and the second the package’s location. So we have dom(v1) =
{at(t1, c1), at(t1, c2), at(t1, c3)} and dom(v2) = {at(p1, c1), at(p1, c2), at(p1, c3)}.
The interpretations of the unary predicates and the predicate road are static.
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................................ 2.3. Fast Downward Planner

Listing 2.3: SAS plan for transport domain instance shown in Listing 2.2.
( d r i v e truck1 c i t y 1 c i t y 2 )
( load package1 truck1 c i t y 2 )
( d r i v e truck1 c i t y 2 c i t y 3 )
( unload package1 truck1 c i t y 3 )
; co s t = 4 ( un i t co s t )

The initial state s0 = {⟨v1, at(t1, c1)⟩, ⟨v2, at(p1, c2)⟩}. The partial state
representing the goal is sg = {⟨v2, at(p1, c3)⟩}.

Example of SAS output (translate mode output) could be generated by Fast
Downward with parameter --translate-options --keep-unimportant-variables
for domain instance given in Listing 2.2.

Example of SAS plan (search mode output) generated by Fast Downward
domain instance given in Listing 2.2 can be seen in Listing 2.3.
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Chapter 3

Graph Neural Networks

This chapter familiarizes the reader with graph neural networks. The following
chapter is drawn from [SBG22], [RN10], [Bou23], [SGT+09], and [ZLLS21].

3.1 Neural Networks

Neural Networks (NN) refer to a cluster of algorithms and mathematical
models inspired by the structure and function of the human brain. They
comprise layers of interconnected processing nodes or neurons that receive
input signals, process them through weighted connections, and generate an
output signal. NNs can be trained to recognize patterns, classify data, and
make predictions based on input data. They are often used in machine
learning applications, such as image recognition, speech recognition, natural
language processing, and predictive analytics, pattern recognition. Various
architectures can implement NNs, such as feedforward, recurrent, convolu-
tional, graph, and deep neural networks. Illustration of NN layers can be
seen in Figure 3.1.

General steps to create a NN model:

. Define the problem and determine the input and output variables.
1https://www.tibco.com/sites/tibco/files/media_entity/2021-05/

neutral-network-diagram.svg [accessed 27 Apr, 2023]
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3. Graph Neural Networks ................................

Figure 3.1: Neural Network layers1.

. Gather and preprocess the data for training the model. Before using the
data, it is essential to clean it up, standardize or adjust the features, and
divide it into three sets: training, validation, and testing.. Choose a suitable neural network architecture appropriate for the prob-
lem at hand. It could be a feedforward network, recurrent network,
convolutional network, or a combination of these..Define the number of layers, the number of neurons in each layer, and
the activation functions for each neuron. It determines the complexity
and capacity of the model..Train the network by running a training loop with an optimization
algorithm, such as stochastic gradient descent or Adam, to minimize
the loss between predicted and actual output (see substeps of this step
below).. Evaluate the performance of the trained model on the validation or test
dataset to assess its accuracy and generalization ability..Tune the model’s hyperparameters (hardcoded values), such as the
learning rate, batch size, and regularization strength, to improve its
performance and prevent overfitting..Deploy the trained model to make predictions on new data. Creating
a Neural Network model requires understanding the problem domain,
data preprocessing techniques, and neural network architectures and
optimization algorithms. Achieving optimal results requires an iterative
process that involves experimentation and fine-tuning.

Steps typically involved in the training loop (the train step from above) of
a Neural Network:

18
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. Initialize the weights and biases of the Neural Network.. Input the training data into the network.. Compute the output of the network using the current weights and biases.. Calculate the loss between the predicted output and the actual output.. Use backpropagation to compute the loss gradient for the weights and
biases.. Update the weights and biases using an optimization algorithm, such as
stochastic gradient descent.. Repeat all the steps above except for the first one for a fixed number of
iterations or until validation or training loss converges to desired one or
no improvements occur.

The training loop may also include techniques such as regularization, early
stopping, learning rate schedules, splitting the training dataset into small
batches for lowering computational complexity, and model checkpointing to
improve the training process and prevent overfitting. Take a look at Figure
3.2.

Figure 3.2: Neural Network training loop2.

This work uses Graph Neural Network (GNN) to predict cost and plan for
classical problems.

2https://i0.wp.com/galaxyinferno.com/wp-content/uploads/2021/08/Slide3.
jpg?w=1280&ssl=1 [accessed 27 Apr, 2023]
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3. Graph Neural Networks ................................
3.2 Graph Neural Networks

Graph Neural Networks (GNNs) are machine learning models operating
on graph-structured data, such as social networks, molecular structures,
and knowledge graphs. GNNs learn to model the complex interactions and
dependencies between nodes and edges in a graph by recursively aggregating,
combing, and propagating information between neighboring nodes (message
passing), using a Neural Network to update node and edge representations
at each step. It allows GNNs to capture a graph’s structural and feature
information and perform tasks such as node classification, link prediction,
and graph classification. There are many variants and extensions of GNNs.
The choice of GNN architecture depends on the specific problem and the
characteristics of the graph data.

GNNs have been applied to various domains, including social networks,
chemistry, computer vision, and recommendation systems. They have shown
promising results in protein structure prediction, drug discovery, and traffic
congestion prediction in road networks.

GNNs are an active area of research, and numerous advancements have
occurred in recent years. However, they also present several challenges,
including scalability to large graphs, generalization to new graphs, and
interpretability of learned representations.

In this work, the Aggregate-Combine Graph Neural architecture of GNN
[BKM+20] is used (we will refer to them shortly as GNN) to learn Value
Function. Our application of GNNs will be described in the following chapters
of this work (see Sections 4.3 and 5.2).

The input of a GNN is a graph G = (V,E) together with feature vectors
s

(0)
v ∈ Rn for each vertex v ∈ V . There are two standard tasks GNNs are used

for. The first is Vertex classification where the output of the GNN is a map
assigning to each vertex a label. The second is Graph classification where the
GNN assign a single label to the whole input graph. We will employ GNNs
only for the second task.

A GNNs consists of several GNN layers L(1), . . . , L(d) followed by the
final readout layer. A GNN layer L(i) of input dimension n and output
dimension m is specified by two functions: an aggregation function agg and
a combination function comb : R2n → Rm. The aggregation function agg
maps finite multisets of vectors in Rn to vectors in Rn. Recall that a multisets
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................................ 3.2. Graph Neural Networks

are collection of elements that allow for multiple occurrences of any element.

The layer L(i) transform the feature vectors s
(i−1)
v from the previous layer

L(i−1) and transforms them to new feature vectors s
(i)
v . To define the transfor-

mation, we need to introduce the set of neighbors of a vertex. Given a vertex
v ∈ V , we define the set of its neighbors in G as N(v) = {u ∈ V | (u, v) ∈ E}.
The feature vector created by the i-th layer L(i) is computed as follows:

s(i)
v = comb

(
s(i−1)

v ,agg({{s(i−1)
u | u ∈ N(v)}})

)
where {{s

(i−1)
u | u ∈ N(v)}} denotes the multiset of the feature vectors of the

vertices from N(v).

See one iteration of GNN Model over one object in Figure 3.3

Figure 3.3: One iteration of GNN Model over one object v from structure S

The final readout layer is specified by a readout function ro : Rm → R
where m is the output dimension of the last GNN layer L(d).

The function comb and agg are usually fixed across the GNN layers. The
aggregation function agg is typically the sum, pointwise maximum, of the
arithmetic mean of the vectors in the multiset. The combination function
comb together with the readout function ro are represented through feed-
forward NNs so that their parameters can be learnt by the backpropagation
algorithm.
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Part II

Application
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................................ 3.2. Graph Neural Networks

This part of the work revolves around work conducted by [SBG22]. The
majority of the original provided code is modified, improved, reimplemented,
or in any other way changed. It consists of two chapters: the first chapter
(Chapter 4) discusses what is GNN Data Generator, GNN Model, and GNN
Planner; the second chapter (Chapter 5) provides a brief overview of the
implementation of the generator, the model, and the planner.
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Chapter 4

Application of GNN

The current chapter describes the application of GNN. Firstly, it introduces
the application pipeline (see Section 4.1). Then, it explains three parts of the
application: GNN Data Generator and its algorithm (see Section 4.2), GNN
Model and its algorithm (see Section 4.3), and GNN Planner prediction part
and its algorithm (see Section 4.4).

4.1 Pipeline

If we have a problem domain, we want to solve its instances. An alternative
to classical solving methods is to apply Graph Neural Network (GNN).
Firstly, we generate training data from domain problem instances. Then, we
use the generated data to train the GNN Model to approximate the Value
Function. Lastly, we implement the greedy policy based on the Value Function
represented by the trained GNN Model to solve any domain problem instance.
Take a look at Figure 4.1.

4.2 Generator

Bunch of example input-output pairs are required to train any AI model to
predict the closest output compared to the real one. In our case, the pairs
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4. Application of GNN..................................

Figure 4.1: GNN application pipeline

consists of a state represented by an LG-structure S enriched by the goal (see
Section 2.1) and its cost (the length of the shortest plan transforming S to a
goal state.

Firstly, we use Fast Downward Planner’s translate mode to get SAS output
(see Fast Downward Planner and SAS output description in Section 2.3) from
given PDDL files. Then, we work with SAS initial state and SAS operators
from that SAS output, where SAS operators provide us functionality of
transitioning between SAS states if possible. Because of that, it allows us to
explore SAS state space and generate new SAS states.

Next, we parse PDDL files. We get from domain file predicate names,
predicates arities and dynamic predicate names. We get from domain instance
file object names and initial list of tuples of predicate and its objects.

Lastly, we combine SAS states and parsed information from PDDL files for
the current PDDL domain instance using the following sequence of actions:

. 1. Create number mappings for predicate names.. 2. Create number mappings for object names.. 3. Map predicates arities using mappings from Step 1.
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. 4. Extract list of tuples of static predicates (facts) from initial list of
tuples of predicate and its objects using dynamic predicate names. Map
facts using mappings from Step 1 and Step 2. Facts are valid for any
state generated from the current PDDL instance.. 5. Map goal SAS state using mappings from Step 1 and Step 2.. 6. Map generated list of tuples of cost and SAS state using mappings
from Step 1 and Step 2.

We save generated data for every PDDL domain instance. It includes
predicate names number mappings, predicate arities, object names number
mappings, facts (list of tuples of static predicate and its objects), goal (list of
tuples dynamic predicate and its objects that should be satisfied), and list of
cost-state pairs (state is represented as a list of tuples of dynamic predicate
and its objects).

We aggregate generated data from all PDDL domain instances to create
relational LG-structures. Firstly, we create a model from GNN Model’s
MLPp nets from predicates arities (these are fixed for all predicates for any
instance of some given domain). See details about MLPp in Section 4.3.
Then, we transform cost-state pairs into cost-relational-structure pairs, where
relational structures are built from some state (list of tuples of dynamic
predicate and its objects) with facts (list of tuples of static predicate and
its objects) and goals (list of tupels of dynamic predicate and its objects).
Lastly, the model’s training uses aggregated cost-relational-structure pairs
from all generated data from all instances.

This work uses Algorithm 1 for GNN Data Generator. Description:

. Lines 1–4: Initialization steps for an infinite loop.. Lines 6–25: Infinite generating loop with break conditions.. Lines 7–11: Conditions of breaking out of infinite generating loop.
Breaking out if one of the following conditions are met: too many
unsuccessful iterations in a row without newfound states, the timer
is out, or the desired number of generated states is acquired.. Line 13: Taking random SAS state from already found state_cost_pairs.. Line 14: Transitioning given_length times from SAS state from
the previous line into some neighbor SAS state.. Line 15: Firstly, creating SAS output file with SAS state from the
previous line as initial state. Next, creating Fast Downward plan.
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Figure 4.2: The Gaifman graph of the LG-structure from Figure 2.3.

After that, creating new SAS states using initial SAS state and
actions from the plan, creating corresponding costs such that initial
SAS state has the original cost from the plan and every following
SAS state has lesser and lesser cost by one. Finally, adding only
unique states with their costs to all already found state-cost pairs
(state_cost_pairs).. Lines 18–22: Updating patience variable. If no new state was
found - decrease the variable; otherwise, reset the variable.. Line 24: Saving the current count of state-cost pairs

4.3 GNN Model

The main task of GNN Model is to learn the Value Function (see Section 2.1)
from provided data. The model’s learnt Value Function determines a greedy
policy employed in the actual planner.

As the input for the GNN model are relational structures (not graphs), the
architecture presented in Chapter 3 has to be modified accordingly. To each
relational L-structure S with the set of objects O, one can construct so-called
Gaifman graph (see e.g. [EF95, Lib04]). Its vertices are the objects from O
and two objects o1, o2 ∈ O are connected by an edge if there is a predicate
symbol p and tuple of objects o⃗ such that S |= p(o⃗) and both o1, o2 occur in o⃗.
Moreover, we label such an edge by the predicate symbol p. Note that each
ground atom p(o⃗) valid in S defines a clique in the Gaifman graph labelled
by p.
Example 4.1. Consider the initial state from Example 2.1 enriched by the
goal depicted in Figure 2.3. As all its predicates are at most binary, its
Gaifman graph can be obtained from the digraph in Figure 2.3 by forgetting
the arc directions; see Figure 4.2.

When implementing a GNN model over the Gaifman graph, we need
to distinguish neighbors based on the edge label. The architecture from
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[SBG22] introduces for each predicate symbol p its feed-forward neural net
MLPp aggregating the features vectors of all objects occurring in o⃗ such
that S |= p(o⃗). The GNN model first iterates over all ground atoms p(o⃗)
valid in S and computes a message mp(o⃗) for each of them by MLPp. To
compute an updated feature vector s

(i)
o for an object o ∈ O, we aggregate

the multiset of all the messages mp(o⃗) such that o ∈ o⃗ using either sum or
smooth maximum (implemented as LogSumExp). Thus we gather all the
information from the neighboring objects in the Gaifman graph. Finally, we
update the current feature vector s

(i−1)
o by the aggregated messages by means

of a feed-forward neural net MLPU . See Figure 4.3. The model also uses
two other feed-forward neural nets MLP1 and MLP2 to compute the final
readout.

Figure 4.3: One iteration of GNN Model over c3 object in relational structure
from Figure 4.2

Each MLP in the GNN model is a feed-forward neural net with two dense
layers, the first with the ReLU activation function and the second with a
linear activation function.

The details on the GNN model from [SBG22] are shown in Algorithm 2.
Description:

. Line 1: Initialization of every object feature vector s
(0)
o by concatenating

the zero vector 0 and a random vector whose components are drawn
from the normal distribution N (0, 1), each of dimension k/2, where k
represents is the dimension of feature vector and it is hyperparameter
(equals 32 in this work as in the original work).. Line 2–9: Looping L times, where L represents GNN layers (stages) and
it is an hyperparameter (equals 30 in this work as in the original work).
Updating so (feature vectors) throughout L stages, with s

(i)
o denoting
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4. Application of GNN..................................
the feature vectors after stage i. There are two parts: the first inner loop
(Lines 3–5) and the second inner loop (Line 6–8).. Lines 3–5: Looping throughout every atom p(o⃗) valid in the given

relational structure S and computing the message mp(o⃗) using
MLPp.. Lines 6–8: Looping throughout every object o from O. Updating the
feature vector s

(i−1)
o to s

(i)
o by aggregating and combining messages

corresponding to the object o using MLPU , where the aggregation
function agg is either sum or smooth maximum.. Line 10: Construction of the final predicted value for the relational

structure S using MLP1 and MLP2 nets.

4.4 Planner

The Planner’s main task is to plan actions needed to reach the goal and
calculate the plan’s cost for a given domain problem instance using provided
GNN Model. Firstly, GNN Model is trained using generated data; then, it
is applied to create a plan and its cost in the same format created by FD
Planner (see Listing 2.3).

We use Fast Downward Planner’s translate mode to get SAS output (see
Fast Downward Planner and SAS output description in Section 2.3) from
given PDDL files. Then, we work with SAS initial state and SAS operators
from that SAS output, where SAS operators provide us the functionality of
transitioning between SAS states if possible. For any current SAS state, we
find all neighbor SAS states, transform them into relational structures, predict
cost using trained GNN Model, and choose the neighbor SAS state with the
lowest predicted cost till the reaching the goal, dead-end (no neighbors SAS
states), or exceeding the given maximum number of neighbor transition.

This work uses Algorithm 3 for GNN Planner. Description:

. Lines 1–5: Initialization steps for an infinite loop.. Lines 7–33: Infinite generating loop with break conditions.. Lines 7–10: Condition of breaking out of infinite generating loop.
Breaking out if the goal state is reached.
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. Lines 12–16: Condition of breaking out of infinite generating loop.
Breaking out and resetting the plan with the plan’s cost if steps
exceeded given_steps number.. Line 18: Saving the current state to the list of visited states called
visited. Lines 20–27: Finding an action that leads to a state with the lowest
predicted cost to the goal state.. Lines 29–32: Updating all variables for the next iteration of the
infinite loop.
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Algorithm 1 Generator
Prerequisites: get_state_cost_pairs_to_goal — a function that creates

an actual plan for given state using FD Planner and extracts SAS states
with costs from the plan; count — a function that returns a count of
given data structure of state-cost pairs; get_random_state — a func-
tion that returns random state from given data structure of state cost
pairs; walk_random — a function that transitions given state given times;
add_unique — a function that adds to given data structure of state cost
pairs unique states from another given data structure of state cost pairs

Input: given_count — maximum number of states to be generated;
given_length — length of random transitions (random walk),
given_patience — maximum tries without finding new states,
given_timer — time to be spend on the problem

Output: state_cost_pairs — generated states and their true cost
1: state_cost_pairs := get_state_cost_pairs_to_goal(given_state)
2: patience := given_patience
3: timer := given_timer
4: previous_count := count(state_cost_pairs)
5:
6: while true do
7: if patience ⩽ 0
8: or timer ⩽ 0
9: or previous_count ≥ given_count

10: break
11: end if
12:
13: random_state := get_random_state(state_cost_pairs)
14: random_state := walk_random(random_state, given_length)
15: add_unique(state_cost_pairs,
16: get_state_cost_pairs_to_goal(random_state))
17:
18: if count(state_cost_pairs) == previous_count
19: patience = patience - 1
20: else
21: patience := given_patience
22: end if
23:
24: previous_count := count(state_cost_pairs)
25: end while
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Algorithm 2 Aggregate-Combine Graph Neural Network
Input: Relational structure S over a set of objects O [state (s)]
Output: v ∈ R [value V (s)]

// Partial random initialization
1: s

(0)
o ∼ 0k/2N (0, 1)k/2 for each object o ∈ O

2: for i ∈ {1, . . . , L} do
3: for atom p(o⃗) := p (o1, . . . , on) such that S |= p(o⃗) do

// Generate messages
4: mp(o⃗) := MLPp

(
s

(i−1)
o1 , . . . , s

(i−1)
on

)
5: end for
6: for o ∈ O do

// Aggregate messages and update
7: s

(i)
o := MLPU

(
s

(i−1)
o , agg

(
{{mp(o⃗) | o ∈ o⃗,S |= p(o⃗)}}

))
8: end for
9: end for

// Final Readout
10: v := MLP2

(∑
o∈O MLP1

(
sL

o

))
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Algorithm 3 Planner
Prerequisites: list — a function that creates empty list structure;

get_n_state_action_tuples — a function that returns all neighbor
states of given state and actions that produced them; predict_costs

— a function that predicts costs for states from given states-action tu-
ples; get_lowest_cost_triple_not_visited — a function that returns
triple from given state-action-cost triples with the lowest predicted cost
and not visited state; add — a function that adds to a list new entry

Input: given_model — trained GNN Model; given_state - starting/initial
state; given_goal_state — the goal state; given_steps — number of
maximum steps

Output: plan and plan_cost — list of actions and total action cost
1: plan := list()
2: plan_cost := 0
3: state := given_state
4: steps := 0
5: visited := list()
6:
7: while true do
8: if state == given_goal_state
9: break

10: end if
11:
12: if steps > given_steps
13: plan := NULL
14: plan_cost := -1
15: break
16: end if
17:
18: add(visited, state)
19:
20: n_state_action_tuples := get_n_state_action_tuples(state)
21: n_state_action_cost_triples := predict_costs(
22: given_model, n_state_action_tuples
23: )
24: n_best_triple := get_lowest_cost_triple_not_visited(
25: n_state_action_cost_triples, visited
26: )
27: best_state, best_action, best_cost := n_best_triple
28:
29: state := best_state
30: add(plan, best_action)
31: plan_cost := plan_cost + 1
32: steps := steps + 1
33: end while
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Chapter 5

Modification & Implementation

The current chapter describes the implementation of the generator program
(see Section 5.1). Then, it explains the implementation of the GNN Model
(see Section 5.2). Finally, it describes the modification of the planner program
(see Section 5.3) compared to the provided code from [SBG22].

Download the work from GitLab using link https://gitlab.fel.cvut.
cz/nazarboh/gnn [accessed 25, 2023].

The implementation of GNN in the paper [SBG22] involves utilizing several
popular open-source tools and frameworks, including Python, PyTorch, and
PyTorch Lightning, to apply deep learning techniques to create GNN. Python
is an interpreted universal programming language popular among the machine
learning community due to its ease of use, a large ecosystem of libraries,
and support for scientific computing ([Fou23]). PyTorch is a popular deep-
learning framework that provides efficient tensor computation with automatic
differentiation capabilities ([Con23]). PyTorch Lightning is a higher-level
framework built on top of PyTorch in order to simplify the process of training
and evaluating deep learning models ([AI23]). These tools have enabled
researchers to build and evaluate GNN Models that achieve state-of-the-art
performance on their target problems.

This work uses the same tools to modify and implement some additional
things. In Sections 5.1 and 5.3, all implemented classes have their own .py
files named in the snake convention in Program/Code folder; otherwise, it is
pointed out.
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5. Modification & Implementation.............................
5.1 Generator

To train GNN Value Function, the input data in a special form with many
state cost pairs is needed. The original work ([SBG22]) does not provide the
generator, which is why the one was implemented. In this section, all technical
details of the GNN Data Generator are described (see the application details
in Section 4.2).

5.1.1 Prerequisites

The following things are required:

. Python1. Compiled FD Planner2 (see Section 2.3). Python frozendict package3

5.1.2 Executable Main Scripts

The generator has two types of main executable Python scripts that are in
Program folder:

. main_terminal_gnn_data_generator.py. main_gnn_data_generator.py

The first type of main parses arguments passed through the command line.
The second one parses one argument — the name of the JSON file, then parses
arguments from that given JSON file. After argument parsing, an instance of

1https://www.python.org/downloads/ [accessed 5 May, 2023]
2https://www.fast-downward.org/ObtainingAndRunningFastDownward [accessed 5

May, 2023]
3https://pypi.org/project/frozendict/ [accessed 5 May, 2023]
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class GnnDataGenerator is created, then generator mode is chosen, and the ap-
propriate instance method is called. The generator has two modes: single and
multiple. In folder Program, see the README_GNN_DATA_GENERATOR.md file for
the user manual and all parameter descriptions. Also, take a look at the pre-
pared JSON files for both modes in the Program folder: single_config.json
and multiple_config.json.

5.1.3 Generator Single Mode

The single mode generates a bunch of cost-state pairs in the form of class-
container GnnData. The method single is a method of the GnnDataGenerator
class instance. It is used by main scripts (see the description of Executable
Main Scripts in Subsection 5.1.2) or by the multiple method of the same
class instance (see the description of Generator Multiple Mode in Subsection
5.1.4). The method takes one argument of the SingleConfig class instance
(class from the configs.py file in the Program/Code folder). This container
class captures all arguments passed by the caller. Then, the following sequence
of operations in the method is executed:

. 1. Creates a unique number to put in the name of every temporary file.. 2. Runs Fast Downward Planner as a subprocess to create a translation
of given PDDL files into a SAS output file. See details about the SAS
format and the SAS output file in Section 2.3.. 3. Parses created SAS file from step 2 into an instance of the SasData
class using the functionality of the SasFileParser class instance. See
details about the SasFileParser class in Subsection 5.1.5.. 4. Reads given PDDL files and captures them in a PddlData class
instance using the functionality of the PddlFileReader class instance.
See details about the PddlFileReader class in Subsection 5.1.6.. 5. Creates cost and SAS state pairs for the instance of SasData class cre-
ated in step 3 using the functionality of the SasCostStatePairsGenerator
class instance. See details about the SasCostStatePairsGenerator
class in Subsection 5.1.7.. 6. Adapts the SasData class instance from step 5 and the PddlData
class instance from step 4 into an instance of GnnData class using the
functionality of the GnnDataAdapter class instance. See details about
the GnnDataAdapter class in Subsection 5.1.8.
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. 7. Writes the SasData class instance from step 6 into a JSON file using

the functionality of the GnnDataJsonWriter class instance. See details
about the GnnDataJsonWriter class in Subsection 5.1.9.. 8. Cleans up all temporarily created files.

5.1.4 Generator Multiple Mode

The multiple mode generates a bunch of cost-state pairs for every PDDL file
in a given PDDL folder in the form of class-container GnnData by calling the
single method (see the description of Generator Single Mode in Subsection
5.1.3) within the same class instance. The method multiple is a method
of the GnnDataGenerator class instance. It is used by main scripts (see the
description of Executable Main Scripts in Subsection 5.1.2). The method
takes one argument of the MultipleConfig class instance (class from the
configs.py file in the Program/Code folder). This container class captures
all arguments passed by the caller.

5.1.5 SAS File Parser

The main purpose of the SasFileParser class is to provide the functionality
to parse the SAS output files created by the translate mode of FD Planner.
See details about the SAS output file in Section 2.3.

Call the parse method of the SasFileParser class instance to parse the
file. The parsing process is straightforward — it parses the SAS file line
by line. The method parses every section of the SAS file using appropriate
section parsing instance methods. Every section parser method saves info
using SAS structs implemented in the sas_file_structs.py file from the
Program/Code folder. In the end, the method parse saves and returns all
parsed sections in an instance of SasData container class.

5.1.6 PDDL File Reader

The main purpose of the PddlFileReader class is to provide the functionality
to read useful information from the PDDL domain and the PDDL domain
instance files (see the examples of PDDL files in Listings 2.1 and 2.2).
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Call the read method of the PddlFileReader class instance to read the
data. The reading process is matching desired information using regular
expressions. It reads:

. predicates names from domain file. predicate arities (number of arguments) from domain file. effect predicates (predicates that are effected in PDDL actions / dynamic
predicates) from domain file. objects names from domain instance file. initial predicate states from domain instance file

In the end, the method read saves and returns all read data in an instance
of PddlData container class.

5.1.7 SAS Cost-State Pairs Generator

The main purpose of the SasCostStatePairsGenerator class is to provide
the functionality to create a bunch of cost and SAS state pairs for a given
instance of the SasData class. See details about the SAS format and the SAS
output file in Section 2.3.

Call the generate method of the SasCostStatePairsGenerator class
instance to generate cost and SAS state pairs. The method n_random_walk
represents Algorithm 1 described in Section 4.2. The implementation idea: a
given instance of the SasData class has a list of SAS operators, and every SAS
operator has the method called apply that can be applied on some state to
produce a neighbor SAS state or nothing if the operator is not applicable. This
way, in any state, SAS neighbors could be potentially found, and the SAS state
could be transitioned into some next neighbor SAS state. See the method
apply from the SAS Operator class in the sas_file_structs.py file in
the Program/Code folder. The method random_walk transitions given times
random neighbor SAS state out of given start SAS state, then, with final SAS
state, the method named get_state_cost_dictionary_using_planner is
called. This method creates a SAS plan from a given SAS state to the goal
SAS state using FD Planner and parses SAS states and costs from it and
saves them into SAS state and cost dictionary structure, where the state is
a key and the cost is a value. It is implemented this way to keep track of
unique states.
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5.1.8 GNN Data Adapter

The main purpose of the GnnDataAdapter class is to provide the functionality
to transform and merge a given instance of the PddlData class (see the
creation of the PddlData instance in Section 5.1.6) and a given instance of
the SasData class (see the creation of the SasData class instance in Sections
5.1.5 and 5.1.7) into an instance of the GnnData class.

Before now, we read the PDDL files (the PddlData class instance), read
the SAS output file (the SasData class instance), and created a bunch of
SAS states (the SasData class instance), but this data should be merged and
potentially saved, so the GnnDataAdapter class instance does the following:

. 1. Crates the mappings of predicate names from the PddlData class
instance to numbers. It is the predicates variable in the GnnData class.. 2. Maps the predicate arities from the PddlData class instance using the
mappings from Step 1. It is the variable predicate_arity_tuples in
the GnnData class.. 3. Crates the mappings of object names from the PddlData class instance
to numbers. It is the objects variable in the GnnData class.. 4. Creates a list of tuples of static predicate and its objects (static
predicates are predicates that are not effected in PDDL actions) by
extracting effect predicates (dynamic predicates) from the initial list of
tuples of predicate and its objects (effect predicates and initial list of
tuples of predicate and its objects are from the PddlData class instance).
It is the facts variable in the GnnData class.. 5. Maps the goal SAS state from the SasData class instance into number
representation (list of tuples of dynamic predicate and objects) using the
mappings from Steps 1 and 3. It is the goals variable in GnnData class.. 6. Maps every SAS state in cost-state pairs from the SasData class
instance into number representation (list of tuples of cost and state,
where state is a list of tuples of dynamic predicate and its objects) using
the mappings from Steps 1 and 3. It is the cost_state_pairs variable
in the GnnData class.

This way, we have some intermediate stored data, but still it is not in the
form of GNN Input.
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Call the adapt method of the GnnDataAdapter class instance to adapt all
the given data into the needed form, to create and return an instance of the
GnnData class.

5.1.9 GNN Data JSON Writer

The main purpose of the GnnDataJsonWriter class is to provide the func-
tionality to save a given instance of theGnnData class into a JSON file.

Call the write method of the GnnDataJsonWriter class instance to write
a given data into a file. The implementation uses the json.dumps function
to create a JSON string of the class that will be written into the file. The
format description:

. Predicates: dictionary of predicate ids and predicate names. Predicate arities: list of tuples consisting of predicate id and its arity.Objects: dictionary of object ids and object names. Facts: list of of tuples consisting of predicate id and list of passed
argument objects. Goals: list of tuples consisting of predicate id and list of passed argument
objects. Cost state pairs: list of tuples consisting of cost and list of tuples
consisting of predicate id and list of passed argument objects

Take a look at Listing 5.1 (three dots represent omitted cost-state pairs).

An alternative class s described in Subsection 5.1.10.

5.1.10 GNN Data TXT Writer

The main purpose of GnnDataTxtWriter class is to provide the functionality
to save a given instance of the GnnData class into TXT file.
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Listing 5.1: Generator JSON file output (blocks_clear_2_0)
{

" p r e d i c a t e s " : {
" 0 " : " on " ,
" 1 " : " ontab le " ,
" 2 " : " c l e a r " ,
" 3 " : " handempty " ,
" 4 " : " ho ld ing "

} ,
" p red i ca te_ar i ty_tup l e s " : [

[ 0 , 2 ] ,
[ 1 , 1 ] ,
[ 2 , 1 ] ,
[ 3 , 0 ] ,
[ 4 , 1 ]

] ,
" o b j e c t s " : {

" 0 " : "b " ,
" 1 " : " a "

} ,
" f a c t s " : [ ] ,
" g oa l s " : [

[ 2 , [ 1 ] ]
] ,
" co s t_state_pa i r s " : [

[
0 . 0 ,
[

[ 1 , [ 0 ] ] ,
[ 1 , [ 1 ] ] ,
[ 2 , [ 0 ] ] ,
[ 2 , [ 1 ] ] ,
[ 3 , [ ] ]

]
] ,
. . .

}
}
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Call the write method of the GnnDataTxtWriter class instance to write
given data into a file. The method uses appropriate write instance methods
to create out of GnnData class instance properties a list of strings that will be
written into a file. The format description is the same as in Subsection 5.1.9,
but in TXT form. Take a look at Listing 5.2 (three dots represent omitted
cost-state pairs).

An alternative class is described in Subsection 5.1.9.

5.2 GNN Model

The original code has two implemented models: add and max. These models
are in the Program/Code/Models folder in add.py and max.py files. They
were slightly restructured and refactored, but the main structure was not
changed. (See the application details in Section 4.3 There are four classes:
RelationMessagePassing, Readout, RelationMessagePassingModel, and
AddModel (or MaxModel).

The RelationMessagePassing class is written as the PyTorch Module
class, but inherits the PyTorch Lightning LightningModule class to use
PyTorch Lightning functionality later. The class is different in files add.py and
max.py, because the forward instance method has corresponding combination
function. The forward instance method corresponds to the Lines 3–8 in
Algorithm 2. MLPp is stored in the relation_modules variable and MLPU

is stored in the update variable. MLPp nets are initialized using predicates
arities (fixed numbers). Nets have corresponding positioning of the predicate
number mappings (fixed numbers). Any input should have the same predicate
mappings and its arities, which holds true for instances of the same domain,
even though they have different amount of objects.

The Readout class is written as the PyTorch Module class, but inherits
the PyTorch Lightning LightningModule class to use PyTorch Lightning
functionality later. The forward instance method corresponds to the Line
10 in Algorithm 2. MLP1 and MLP2 are stored in the pre and the post
variables.

The RelationMessagePassingModel class is written as the PyTorch Module
class, but inherits the PyTorch Lightning LightningModule class to use Py-
Torch Lightning functionality later. The class is just combination of the
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Listing 5.2: Generator TXT file output (blocks_clear_2_0)
BEGIN_OBJECTS
0 b
1 a
END_OBJECTS
BEGIN_PREDICATES
0 on
1 ontab le
2 c l e a r
3 handempty
4 ho ld ing
END_PREDICATES
BEGIN_PREDICATE_ARITY_TUPLES
0 2
1 1
2 1
3 0
4 1
END_PREDICATE_PREDICATE_ARITY_TUPLES
BEGIN_FACT_LIST
END_FACT_LIST
BEGIN_GOAL_LIST
2 1
END_GOAL_LIST
BEGIN_STATE_LIST
BEGIN_LABELED_STATE
0.0
BEGIN_STATE
1 0
1 1
2 0
2 1
3
END_STATE
END_LABELED_STATE
. . .

END_STATE_LIST
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RelationMessagePassing and the Readout classes. The forward instance
method corresponds to the Lines 1-13 (all lines) in Algorithm 2.

The AddModel class from add.py (or the MaxModel class from max.py) is
the PyTorch Lightning wrapper of the RelationMessagePassingModel class.

See the structure of GNN Model at Figure 5.3.

RelationMessagePassing, Readout, and RelationMessagePassingModel
classes were written as PyTorch Module classes, but they inherit PyTorch
Lightning LightningModule class, because later it provides functionality to
work with different types of the processing units.

AddModel’s from add.py (or MaxModel’s from max.py) forward class method
has input format of the tuple that consists of combined relational structure
and a list of relation maximum object number (where we represent the relation
structure as a dictionary with the key of a predicate and a value of a list of
objects argument lists that are in relation with that predicate). The combined
relation structure is a dictionary with the key of a predicate and a value of a
list of objects that are in relation with that predicate. Relation maximum
object numbers are for decoding any encoded relational structure from the
combined relational structure.

Notice that no information is lost. Predicate mappings and arities are
encoded in GNN Model; there is no need for a list of argument lists because
we can take from one large object list just an arity amount objects at a time.
The maximum object number for any relational structure restores all objects
from the combined structure - the objects from the current structure are
bigger than the sum of all previous maximum object numbers and less than
that sum plus the current maximum object number. This way, any relational
structure information could be restored.

Because of encoding predicate number mappings and arities of these pred-
icates, we can have instances with any amount of objects as long as it has
the same predicate numbers and predicate arities (fixed amount of predicates
and their arities). See Example 5.1.
Example 5.1. We illustrate the above definitions with a simple example from
the transport domain. The relational language L consists of three binary
predicates at, in, and road. There are three types of objects, namely trucks,
packages, and cities. The types can be modelled by unary predicates truck,
package, and city.
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Listing 5.3: Relational structures represented in a dictionary

The f i r s t s t r u c t u r e : | The second s t r u c t u r e :
{ | {

0 : [ [ 0 , 1 ] , [ 3 , 1 ] ] | 0 : [ [ 0 , 1 ] ]
2 : [ [ 1 , 2 ] ] | 1 : [ [ 2 , 0 ] ]
3 : [ [ 3 , 2 ] ] | 3 : [ [ 2 , 1 ] ]

} | }

Listing 5.4: GNN Input: Tuple consisting of combined relational structure
represented in a dictionary and a list of relational structure’s maximum object
numbers

(
{

0 : [ 0 , 1 , 3 , 1 , 4 , 5 ]
1 : [ 6 , 4 ]
2 : [ 1 , 2 ]
3 : [ 3 , 2 , 6 , 5 ]

} ,
[ 4 , 3 ]

)

Imagine we have two LG-structures depicted in Figures 5.1 and 5.2. The
instance from the first figure comprises four objects: t1 of type truck, p1
of type package, and c1, c2 of type city. The instance from the first figure
comprises three objects: t1 of type truck, p1 of type package, and c1 of type
city. Then, we map predicates for both LG-structures with the same numbers:
at is 0, in is 1, road is 2, and atG is 3. After that, we map objects from both
structures individually. The mappings for the first relational structure are:
t1 is 0, c1 is 1, c2 is 2, and p1 is 3. The mappings for the second relational
structure are: t1 is 0, c1 is 1, and p1 is 2.

These two LG-structures we can represent as a dictionary, where the key is
predicate number mapping and the value is a list of arguments lists. Take a
look at Lissting 5.3.

Then, we can encode two relational structures into one, along with a list of
the maximum object numbers of every structure. Take a look at Listing 5.4.

The first relational structure objects are from 0 to 4, and the second
relational structure objects are from 4 to 7. When the relational structure
is decoded, we could decode the amount of that predicate in the original
relational structure by knowing objects and predicate arities: predicate 0
(arity 2) in the first relational structure has objects 0, 1, 3, and 1. So we can
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t1 c1 c2

p1

at road

atGat

Figure 5.1: First LG-structure

t1 c1

p1

at

atGin

Figure 5.2: Second LG-structure

restore predicate 0 with list arguments of [0, 1] and [3, 1].

Figure 5.3: Structure of add and max models.

5.3 Planner

The main purpose of GNN Planner is to create a plan of actions with total
action cost. The original work ([SBG22]) does not provide the functionality
of creating a plan, which is why the one was implemented. Additionally, other
functionalities were modified and refactored. In this section, all technical
details of GNN Planner are described (see the application details in Section
4.4).
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5.3.1 Prerequisites

The following things are required:

. Python4. PyTorch5. PyTorch-Lightning6.(predict mode) Compiled FD Planner7 (see Section 2.3).(predict mode) Python frozendict package8

5.3.2 Executable Main Scripts

The planner has two types of main executable Python scripts that are in
Program folder:

. main_terminal_gnn.py. main_gnn.py

The first type of main parses arguments passed through the command line.
The second one parses one argument — the name of the JSON file, then parses
arguments from that given JSON file. After argument parsing, an instance of
the Gnn class is created, then planner mode is chosen and appropriate instance
method is called. The planner has four modes: train, resume, test, and predict.
In folder Program, see the README_GNN.md file for the user manual and all
parameter descriptions. Also, take a look at the prepared JSON files for
modes in the Program folder: train_config.json, resume_config.json,
test_config.json, and predict_config.json.

4https://www.python.org/downloads/ [accessed 5 May, 2023]
5https://pytorch.org/get-started/locally/ [accessed 6 May, 2023]
6https://lightning.ai/docs/pytorch/stable/starter/installation.html [ac-

cessed 6 May, 2023]
7https://www.fast-downward.org/ObtainingAndRunningFastDownward [accessed 5

May, 2023]
8https://pypi.org/project/frozendict/ [accessed 5 May, 2023]
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5.3.3 Planner Train Mode

The train mode trains a GNN Model using provided train and validation
datasets. The method train is a method of the Gnn class instance. It is used
by main scripts (see the description of Executable Main Scripts description
in Subsection 5.3.2). The method takes one argument of the TrainConfig
class instance (class from the configs.py file in the (Program/Code folder).
This container class captures all arguments passed by the caller. Then, the
following sequence of operations in method is executed:

. 1. Creates an instance of GnnDataJsonReader class. See details about
the GnnDataJsonReader class in Subsection 5.3.7.. 2. Creates train dataset — an instance of the GnnDataset class using the
GnnDataJsonReader class instance created in step 1. See details about
the GnnDataset class in Subsection 5.3.9.. 3. Creates a dataloader — an instance of the PyTorch DataLoader class
using the dataset created in step 2, the fuction from the gnn_dataset.py
file called collate_batch_of_gnn_dataset_state_cost_pairs func-
tion, and other given parameters. See the explanation of collate functions
in Subsection 5.3.11.. 4. Creates validation dataset — an instance of the GnnDataset class
using the GnnDataJsonReader class instance created in step 1. See
details about the GnnDataset class in Subsection 5.3.9.. 5. Creates a dataloader — an instance of the PyTorch DataLoader class
using the dataset created in step 4, the fuction from the gnn_dataset.py
file called collate_batch_of_gnn_dataset_state_cost_pairs func-
tion, and other given parameters. See the explanation of collate functions
in Subsection 5.3.11.. 6. Creates a GNN Model (instance of AddModel or MaxModel class). See
details about the GNN Model in Section 5.2.. 7. Creates a trainer instance of the Pytorch Lightning Trainer class
using setup method load_trainer of the Gnn class instance. See details
about the load_trainer method in Subsection 5.3.12.. 8. Trains the model from step 6 with dataloaders from steps 3 and 5
using the method fit of the instance of the Pytorch Lightning Trainer
class from step 7.
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5.3.4 Planner Resume Mode

The resume mode continues training of a provided GNN Model using given
train and validation datasets. The method resume is method of the Gnn
class instance. It is used by main scripts (see description the of Executable
Main Scripts in Subsection 5.3.2). The method takes one argument of
the ResumeConfig class instance (class from the configs.py file in the
Program/Code folder). This container class captures all arguments passed by
the caller. Then, the same sequence of operations as in train mode from
Subsection 5.3.3 is executed, except for step 6, where instead GNN model is
loaded from provided PyTorch checkpoint.

5.3.5 Planner Test Mode

The test mode calculates the ratio of the error cost summation to the actual
cost summation using provided GNN Model and test dataset: Σ(predicted_cost−
true_cost)/Σ(true_cost). The method test is method of the Gnn class
instance. It is used by main scripts (see the description of Executable
Main Scripts in Subsection 5.3.2). The method takes one argument of the
TestConfig class instance (class from the configs.py file in the Program/Code
folder). This container class captures all arguments passed by the caller. Then,
the following sequence of operations in method is executed:

. 1. Creates an instance of the GnnDataJsonReader class. See details
about the GnnDataJsonReader class in Subsection 5.3.7.. 2. Creates test dataset — an instance of the GnnDataset class using the
GnnDataJsonReader class instance created in step 1. See details about
the GnnDataset class in Subsection 5.3.9.. 3. Creates a dataloader — an instance of the PyTorch DataLoader class
using he dataset created in step 2, the fuction from the gnn_dataset.py
file called collate_batch_of_gnn_dataset_state_cost_pairs func-
tion, and other given parameters. See the explanation of collate functions
in Subsection 5.3.11.. 4. Loads a GNN Model (the instance of theAddModel or the MaxModel
class) from a provided PyTorch checkpoint. See details about the GNN
Model in Section 5.2.. 5. Creates a trainer instance of the Pytorch Lightning Trainer class.
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. 6. Tests the model from step 4 with the dataloader from step 3 using
the method test of the instance of the Pytorch Lightning Trainer from
step 5.

5.3.6 Planner Predict Mode

The predict mode predicts a plan of actions leading the goal state and their
total cost in Fast Downward Planner’s SAS plan format (see the example
of FD Planner’s plan in Listing 2.3). The method predict is method of
the Gnn class instance. It is used by main scripts (see the description of
Executable Main Scripts in Subsection 5.3.2). The method takes one argu-
ment of the PredictConfig class instance (class from the configs.py file
in theProgram/Code folder). This container class captures all arguments
passed by the caller. Then, the following sequence of operations in method is
executed:

. 1. Creates a unique number to put in the name of every temporary file.. 2. Runs Fast Downward Planner as a subprocess to create a translation
of given PDDL files into a SAS output file. See details about the SAS
format and the SAS output file in Section 2.3.. 3. Parses created SAS file from step 2 into an instance of the SasData
class using the functionality of the SasFileParser class instance. See
details about the SasFileParser class in Subsection 5.1.5.. 4. Reads given PDDL files and captures them in a PddlData class
instance using the functionality of the PddlFileReader class instance.
See details about the PddlFileReader class in Subsection 5.1.6.. 5. Loads a GNN Model (the instance of the AddModel or the MaxModel
class) from a provided PyTorch checkpoint. See details about the GNN
Model in Section 5.2.. 6. Creates an instance of the SasPlanData class using the instance of
SasData class from step 3, the instance of PddlData class from step 4, the
GNN Model from step 5, and the functionality of the SasPlanPreditor
class instance. See details about the SasPlanPreditor class in Subsec-
tion 5.3.13.. 7. Writes the instance of the SasPlanData class from step 6 into the
Fast Downward Planner’s SAS plan format using the instance of the
SasPlanWriter class. See details about the SasPlanWriter class in
Subsection 5.3.15.. 8. Cleans up all temporarily created files.
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5.3.7 GNN Data JSON Reader

The main purpose of the GnnDataJsonReader class is to provide the func-
tionality to load an instance of the GnnData class from a given JSON file.

Call the read method of the GnnDataJsonReader class instance to read
the data from a given JSON file. The implementation uses the json.load
function to read a JSON string that then is converted using the functionality
of the GnnDataJsonDecoder class instance into an instance of the GnnData
class and returned. See the description of the JSON file format in Subsection
5.1.9. See the example of the JSON file in Listing 5.1 (three dots represent
omitted cost-state pairs).

An alternative class is described in Subsection 5.3.8.

5.3.8 GNN Data TXT Reader

The main purpose of the GnnDataTxtReader class is to provide the function-
ality to load an instance of the GnnData class from a given TXT file.

Call the read method of the GnnDataJsonReader class instance to read the
data from a given TXT file. The method uses appropriate instance methods to
read sections of the GnnData class instance properties in the TXT file, creates
an instance of the GnnData class and returns it. The format description is
the same as in Subsection 5.1.9, but in the TXT form. See the example of
the TXT file in Listing 5.2 (three dots represent omitted cost-state pairs).

An alternative class is described in Subsection 5.3.7.

5.3.9 GNN Dataset

The main purpose of the GnnDataset class is to provide the functionality to
load an instance of the GnnData class from a given folder from all files that
are of the GnnData form, transform every of them into an instance of the
GnnDatasetEntry class using an instance of the GnnDatasetEntryAdapter
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class and aggregate them within itself in one huge dataset. See details about
the GnnDatasetEntryAdapter class in Subsection 5.3.10.

Call the GnnDataset constructor method with path of folder with saved
JSON or TXT files of the GnnData class form to create the GnnDataset
class instance. Property state_cost_pairs contains all aggregated state-
cost pairs from all files from the folder. Property predicate_arity_tuples
captures all predicate arities.

5.3.10 GNN Dataset Entry Adapter

The main purpose of the GnnDatasetEntryAdapter class is to provide the
functionality to transform a given instance of the GnnData class into an
instance of the GnnDatasetEntry class.

In this part of the code, transformation of states happens (creation of LG-
structures). To every GNN state in the cost_state_pairs variable it adds
the facts and the goals (all variables are from the GnnData class instance).
Relational structure representation is described in Section 5.2.

Call the adapt method of the GnnDatasetEntryAdapter class instance
to adapt a given instance of the GnnData class into an instance of the
GnnDatasetEntry class.

5.3.11 Collate Functions

All collate functions are implemented in the gnn_dataset file in the Program/Code
folder. The functions are used to do transformation of data (or batch of data)
before sending it into the forward function of some AI model.

In this work, collate function passed into the PyTorch DataLoader (see
Subsections 5.3.3, 5.3.4, or 5.3.5), so that every given batch of relational
structures will be collated into one tuple consisting of a combined relational
structure and a list of the maximum object numbers (GNN input). Also collate
function is used in predicate mode of the planner to use forward method
of GNN Model to produce cost (see Subsection 5.3.14). Tuple consisting of
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a combined relational structure and a list of the maximum object numbers
(GNN input) representation is described in Section 5.2.

5.3.12 Trainer Setup Method

Trainer setup method load_trainer is implemented in class the Gnn. The
main purpose of the load_trainer is to set up the PyTorch Lightning
Trainer class instance. The method sets up output folder name for trained
models, output content of trained models, early stopping criteria, checkpoint
criteria, and logger. Then, it returns an instance of Trainer class.

5.3.13 SAS Plan Predictor

The main purpose of the SasPlanPredictor class is to predict a plan of
actions leading the goal state and their total cost in the Fast Downward
Planner’s SAS plan format (see the example in Listing 2.3), save it in an
instance of the SasPlanData class, and return it. Also see details about the
SAS format and the SAS output file in Section 2.3.

It implements Algorithm 3 described in Section 4.4.

Call the predict method of the SasPlanPredictor class instance to get
predicted SAS plan. It uses the get_all_neighbor_info_of_sas_state
instance method to find all accessible neighbor SAS states of the current SAS
state with their predicted cost, then follows neighbor SAS state with the
lowest predicted cost while predicate with objects used to transition into this
neighbor SAS state is saved into the plan. To predict cost of some SAS state
an instance of the SasStateCostPredictor class is used. See details about
the SasStateCostPredictor class in Subsection 5.3.14.

5.3.14 SAS State Cost Predictor

The main purpose of the SasStateCostPredictor class is to predict a cost
of some given SAS state. See details about the SAS format and the SAS
output file in Section 2.3.
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Call the predict_costs method of the SasStateCostPredictor class in-
stance to get predicted costs of given SAS states. It uses a given SasData
class instance and a given PddlData class instance to get GnnData states from
given SAS states (instance methods from class GnnDataAdapter, see Subsec-
tion 5.1.8), then it is transformed into GnnDataset states (instance methods
from GnnDatasetEntryAdapter, see Subsection 5.3.10), later it collated into
one state (GNN Input) using function collate_gnn_dataset_state (see
the explanation of collate functions in Subsection 5.3.11, see GNN Input in
Section 5.2), finally it is fed to the forward method of a given GNN Model
(see details about the GNN Model in Section 5.2) to get predict costs of all
SAS states encoded in collated state. Take a look at Figure 5.4.

Figure 5.4: States trasformations before passing into GNN Model’s forward
method.

5.3.15 SAS Plan Writer

The main purpose of the SasPlanWriter class is to provide the functionality
to write instance of the SasPlanData class into the Fast Downward Planner’s
SAS plan format. See the example in Listing 2.3. See details about the SAS
plan in Section 2.3.

Call the write method of the SasPlanWriter class instance to write given
data into a file.
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Experiments
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....................................... 5.3. Planner

This part of the work reproduces the results conducted by the original work
[SBG22] using GNN Data Generator, GNN Model, and GNN Planner. It
consists of two chapters: the first chapter (Chapter 6) discusses what to use
to do experiments with the generator, the model, and the planner; the second
chapter (Chapter 7) provides instructions on how results from [SBG22] work
were reproduced.

The results obtained in this study were made possible only due to the
availability of high-performance computing resources, specifically the Graph-
ical Processing Units (GPUs) provided by the university (CTU RCI Clus-
ter9). The author acknowledges the support of the OP VVV-funded project
CZ.02.1.01/0.0/0.0/16_019/0000765 “Research Center for Informatics” and
the author is also grateful for the access to the computational infrastructure
of the project.

9https://login.rci.cvut.cz/wiki/start [accessed 13 May, 2023]
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Chapter 6

Experiments Flow

To measure GNN Model results, we compare Fast Downward Planner’s plan
and GNN Planner’s plan for every specific domain instance problem. See
details in Section 6.1.

We use Python scripts to automate and speed up work with GNN, which
we run on a server with sizeable computational potential. See details in 6.2.

6.1 Resultor

An executable Python script named resultor.py is located in the root
folder GNN. The purpose of this script is to create actual and predicted
plans of domain instance problems, compare them, and save results into a
CSV table. The script has three modes: generate, examine, and read. See
README_RESULTOR.md file for the user manual and all parameters description.
See details about modes in Subsections 6.1.1, 6.1.2, and 6.1.3.

6.1.1 Resultor Generate Mode

The main purpose of this script mode is to create Fast Downward Planner’s
plan and GNN Planner’s plan for every domain instance problem using
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provided trained GNN Model. This way, every instance will have three
plans: Fast Downward Planner’s plan, GNN Planner’s add model plan, and
GNN Planner’s max model plan. If there is some plan missing, it means the
corresponding tool failed.

If Fast Downward Planner’s plan already exists for the corresponding
domain instance problem, the script does not rerun Fast Downward Plan-
ner. FastDownwardResults folder consists of precalculated Fast Downward
Planner’s plans for every domain instance problem for every domain problem.
These plans could be used as starting point for any new results folder.

6.1.2 Resultor Examine Mode

The main purpose of this script mode is to compare plans for every domain
instance problem for every domain problem and save results into a CSV table.
It uses the following logic: if the predicted plan costs less or equal to the
actual plan - it is an optimal plan; otherwise, it is a suboptimal one. If some
plan out of three is missing for a specific domain instance problem, it assumes
the corresponding tool failed and saves the failure in the table.

6.1.3 Resultor Read Mode

The main purpose of this script mode is to read saved CSV table.

6.2 Jober

Generation of GNN input files, then training of GNN add and max models, and
finally, the creation of results (plans for every domain instance problem) for
every domain problem requires significant computation power and ability. For
this reason, CTU RCI Cluster1 was used. It has many CPUs and GPUs with
a large amount of memory. The server uses the SLURM scheduler, which uses a
technique of submitting jobs (a job is a small bash script with all the cluster
metadata and commands to be run). See the README_CTU_RCI_CLUSTER file
for the user manual.

1https://login.rci.cvut.cz/wiki/start [accsssed 13 May, 2023]
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........................................ 6.2. Jober

The Python script jober.py has functions that could be run on the server.
Master functions are:

. create_and_run_jobs_single_mode_all function creates and runs GNN
input files generation jobs for every domain instance problem for every
domain problem type from Data/Pddl folder.. create_and_run_jobs_train_mode_all function creates and runs GNN
add and max model training jobs for every domain problem.. create_and_run_jobs_results_all function creates and runs GNN
plan creation jobs for every GNN Model type for every domain instance
problem for every domain problem type.
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Chapter 7

Results

In this chapter, we discuss GNN hypersetup (see Section 7.1), then two
experiments (see Sections 7.2 and 7.3), and finally, expirements’ result tables
(see Section 7.4).

7.1 Hypersetup

Results below use hypersetup from [SBG22] work:

. k hypervalue is 32 (GNN Planner’s training mode parameter called
--hidden_size); number of dimensions of feature vectors in Algorithm 2. L hypervalue is 30 (GNN Planner’s training mode parameter called
--iterations); number of layers in Algorithm 2. Learning rate is 0.0002 (GNN Planner’s training mode parameter called
--learning_rate). L1 regularization set to 0.0001 for GNN add model and 0.0 for GNN max
model (GNN Planner’s training mode parameter called --l1_factor).Maximum steps of predicted plan is 100 (GNN Planner’s prediction mode
parameter called --step_limit)

67



7. Results .......................................
Every domain instance problem data were generated until the generated

data met the criteria of either 4 hours of generation, 20000 generated states,
or 100 unsuccessful in-row tries to generate a new state.

All the models were trained till the model meets criteria of either 24 hours
of training or 1000 epochs of training.

7.2 Experiment 1

The first experiment reproduces results obtained by [SBG22] work. In this
experiment, we work with full SAS state space (see the explanation of full
SAS state space in 2.3). The results of this experiment are saved in the
results_full.csv file and shown in Table 7.1a in Section 7.4.

To produce results with full SAS state space data, conduct the following
sequence of actions:

. Generate data for all Transport domain instance problems from Data/Pddl/Transport
folder using GNN Data Generator with fastdownward-pruning False
parameter and add it to already provided other data by [SBG22] (Data/JsonFull
folder)..Train GNN add and max models for every domain problem (TrainedModelsFull
folder) using data from Data/JsonFull.../Train and Data/JsonFull.../Validation
folders.. Generate plans (ResultsFull folder) for every domain instance problem
(Data/JsonFull/.../Test folder) using GNN Planner predict mode
with fastdownward-pruning False parameter.. Create a result table by comparing true plans created by Fast Down-
ward Planner (FastDownwardResults folder) and predicted plans from
ResultsFull folder.

7.3 Experiment 2

The second experiment is the same as the first one, but it is conducted in the
pruned SAS state space (see the explanation of pruned SAS state space in Sec-
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tion 2.3). The results of this experiment are saved in the results_pruned.csv
file and shown in Table 7.1b in Section 7.4.

To produce results with pruned SAS state space data conduct the following
sequence of actions:

. Generate data for all domain instance problems for all different problems
from Data/Pddl folder using GNN Data Generator with fastdownward-pruning True
parameter (Data/JsonPruned folder)..Train GNN add and max models for every domain problem using data from
Data/JsonPruned.../Train and Data/JsonPruned.../Validation fold-
ers (TrainedModelsPruned folder).. Generate plans for every domain instance problem (Data/JsonFull/.../Test
folder) using GNN Planner predict mode with fastdownward-pruning True
parameter (ResultsPruned folder).. Create a result table by comparing true plans from FastDownwardResults
folder created by Fast Downward Planner and predicted plans from
ResultsPruned folder.

7.4 Result Tables

In Table 7.1a, we see that the results of Experiment 1 almost match the
results obtained by [SBG22] work. The only difference is that we got worse
results for the Rover domain. A sampling error likely causes it.

In Table 7.1b, we see that the results of Experiment 2 are slightly better
than the results of Experiment 1. Experiment 2 uses pruned SAS state
space, which benefits Fast Downward Planner’s translation part in GNN Data
Generator. After pruning, unnecessary SAS variables and unnecessary SAS
operators are omitted, so more potentially goal-leading states are generated
(see SAS state space pruning in Section 2.3). It helps GNN Model to learn
more correctly.
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Domain(#) GNN-SUM:
Optimal

GNN-SUM:
Suboptimal,
Failed GNN

GNN-MAX:
Optimal

GNN-MAX:
Suboptimal,
Failed GNN

BlocksClear (11) 10 1 + 0 (1) 11 0 + 0 (0)
BlocksOn (11) 11 0 + 0 (0) 11 0 + 0 (0)
Gripper (39) 39 0 + 0 (0) 39 0 + 0 (0)
Logistics (8) 8 0 + 0 (0) 8 0 + 0 (0)
Miconic (95) 95 0 + 0 (0) 95 0 + 0 (0)
ParkingBehind (32) 29 3 + 0 (3) 32 0 + 0 (0)
ParkingCurb (32) 32 0 + 0 (0) 32 0 + 0 (0)
Pathing (6) 3 3 + 0 (3) 6 0 + 0 (0)
Rover (26) 2 4 + 20 (24) 16 2 + 8 (10)
Satellite (20) 20 0 + 0 (0) 20 0 + 0 (0)
Transport (20) 20 0 + 0 (0) 20 0 + 0 (0)
Visitall (12) 12 0 + 0 (0) 12 0 + 0 (0)
Total (312) 281 11 + 20 (31) 302 2 + 8 (10)
Total (%) 90.06% 9.94% 96.79% 3.21%

(a) : Results with Full SAS Space

Domain(#) GNN-SUM:
Optimal

GNN-SUM:
Suboptimal,
Failed GNN

GNN-MAX:
Optimal

GNN-MAX:
Suboptimal,
Failed GNN

BlocksClear (11) 11 0 + 0 (0) 11 0 + 0 (0)
BlocksOn (11) 11 0 + 0 (0) 11 0 + 0 (0)
Gripper (39) 39 0 + 0 (0) 39 0 + 0 (0)
Logistics (8) 7 1 + 0 (1) 8 0 + 0 (0)
Miconic (95) 95 0 + 0 (0) 95 0 + 0 (0)
ParkingBehind (32) 27 5 + 0 (5) 32 0 + 0 (0)
ParkingCurb (32) 31 1 + 0 (1) 32 0 + 0 (0)
Pathing (6) 6 0 + 0 (0) 6 0 + 0 (0)
Rover (26) 17 0 + 9 (9) 25 1 + 0 (0)
Satellite (20) 20 0 + 0 (0) 20 0 + 0 (0)
Transport (20) 20 0 + 0 (0) 20 0 + 0 (0)
Visitall (12) 12 0 + 0 (0) 12 0 + 0 (0)
Total (312) 296 7 + 9 (16) 311 1 + 0 (1)
Total (%) 94.87% 5.13% 99.68% 0.32%

(b) : Results with Pruned SAS Space

Table 7.1: Results
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Chapter 8

Conclusion

In this bachelor’s thesis, our primary objective was to explore the various
methods and practical applications of Graph Neural Networks (GNNs) in
Classical Planning, as suggested by the work referenced [SBG22].To achieve
our goals, we undertook a series of essential steps.

Firstly, we presented a clear and concise explanation of the potential
applications of GNNs in Classical Planning. This foundational understanding
served as a solid starting point for our subsequent work.

Next, we focused on the implementation aspect of our research. We
developed a GNN Data Generator, which allowed us to generate suitable
datasets for training and evaluation purposes. This tool streamlined the data
preparation process and facilitated efficient experimentation.

Furthermore, we refactored and modified the existing codebase of the GNN
Model, ensuring its robustness and compatibility with our research objectives.
By optimizing and enhancing the code, we improved the overall performance
and functionality of the GNN Model, making it more suitable for our specific
requirements.

In addition to code refactoring, we made implementations and reimplemen-
tations to the GNN Planner, tailoring it to incorporate GNN-based techniques
and algorithms. These implementations and reimplementations allowed us
to leverage the power of GNNs for planning tasks, enabling more effective
and intelligent decision-making processes. One of our key contributions was
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implementing a Value-Function-based prediction mode for the planner.

Finally, we successfully reproduced the results obtained in the experiments
conducted in the work referenced [SBG22]. This achievement validates our
research methodology and implementation, further reinforcing the reliability
and credibility of our findings.

Overall, our work has made notable advancements in Classical Planning
by exploring the applications and methodologies of GNNs. Our contributions
include the development of a GNN Data Generator, code refactoring of
the GNN Model, modifications to the GNN Planner, implementation of a
Value-Function-based prediction mode, and successful replication of previous
experimental results, all following [SBG22].

The outcomes of this thesis provide valuable insights into the potential of
GNNs applications in Classical Planning, paving the way for future research
and innovation in this area. By harnessing the power of GNNs, we can expect
more efficient and intelligent planning systems that can address complex
real-world problems effectively.
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Appendices
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Appendix A

Acronyms

AI Artificial Intelligence. 7, 27, 55

FD Fast Downward. 11, 14, 28, 29, 32, 38, 39, 40, 41, 50, 53, 56, 57, 63, 64,
68, 69

GNN Graph Neural Network. 1, 2, 5, 11, 19, 20, 25, 27, 29, 30, 31, 32, 37,
38, 42, 47, 49, 51, 52, 53, 55, 56, 57, 61, 63, 64, 65, 67, 68, 69, 71, 72

NN Neural Network. 1, 17, 18, 19, 20

PDDL Planning Domain Definition Language. 1, 11, 28, 29, 32, 39, 40, 41,
42, 53

VF Value Function. 20, 27, 30, 38
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