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Abstract

This thesis proposes an extension to the
IREANN evolutionary algorithm to en-
hance its performance in combinatorial
optimization problems, specifically the Ca-
pacitated Arc Routing Problem (CARP).
The extension allows valuable informa-
tion about superior solution features to
be shared across the entire population
during computation. This propagation
mechanism, applied periodically, enhances
the nearest neighbor heuristic, thereby
improving the overall optimization capa-
bilities of the algorithm. The effective-
ness of these modifications is empirically
tested using standard CARP benchmark
datasets.

Keywords: evolutionary computation,
local search, metaheuristics, genetic
algorithm, nearest neighbor heuristic
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Abstrakt

Tato prace navrhuje rozsireni evolu¢niho
algoritmu IREANN s cilem zvysit jeho
vykonnost v kombinatorickych optima-
liza¢nich problémech, konkrétné v pro-
blému CARP (Capacitated Arc Routing
Problem). Rozsifeni umoziuje, aby se bé-
hem vypoctu sdilely cenné informace o
vynikajicich vlastnostech feSeni napfic ce-
lou populaci. Tento pravidelné aplikovany
mechanismus sireni informaci vylepsuje
heuristiku nejblizsiho souseda, a tim zlep-
suje celkové optimalizac¢ni schopnosti algo-
ritmu. Uéinnost téchto tprav je empiricky
testovana pomoci standardnich referenc-
nich datovych sad CARP.

Kli¢ova slova: evolucni algoritmus,
lokélni prohleddvani, metaheuristiky,
geneticky algoritmus, heuristika
nejblizsiho souseda

Pteklad nazvu: Evolu¢ni algoritmy s
neptimou reprezentaci



Contents

1 Introduction 1
2 Problem definition 3
3 Related work
3.1 Exact and lower bound methods . 5
3.2 Heuristics . .. ...t (
4 Preliminaries 9
4.1 Evolutionary Algorithms........ 9|
4.2 Local Search Procedures . ......
4.3 Memetic Algorithms ..........
44TREANN ... .. ... ... 12l
4.4.1 Indirect representation. .....
4.4.2 Extended Nearest Neighbor
Constructive Procedure ........
5 Proposed method 15
5.1 IREANN customizations to
CARP.........
5.1.1 Indirect representation. .. ...
5.1.2 Extended nearest neighbor
constructive procedure .........
5.1.3 Solution feasibility .........
5.1.4 Individual Fitness.......... 18
5.1.5 Comparison of Individuals ..
5.1.6 Selection . .................
5.1.7 Crossover .................
5.1.8 Mutation .................
5.1.9 Local search optimization . . .
5.1.10 Dealing with duplicate
solutions ..................... 22|

5.1.11 Extended IREANN algorithm

5.2 IREANN extensions. .......... 24
5.2.1 Illustration of Analysis .....
5.2.2 Analysis Versions ..........

6 Experiments 31

6.1 Compared algorithms .........

6.2 Configuration of algorithms .. ..

6.3 Datasets . .................... 32|

6.4 Experiments .................
6.4.1 Experiment A .............
6.4.2 Experiment B .............

vii

6.4.3 Experiment C
6.5 Results
6.5.1 Experiment A
6.5.2 Experiment B
6.5.3 Experiment C

7 Conclusion
Bibliography

A Experiment graphs

HE B HEEEE



Figures

4.1 The extended nearest neighbor
construction procedure

4.2 Example of the extended nearest
neighbor constructive procedure

(source: [KS14])

5.1 Extended nearest neighbor
constructive procedure modified for

CARP........ 18]
5.2 Pseudocode of the Extended

IREANN . ... ... ........... 29
5.3 Effect of analysis on route

construction. ................... 30

6.1 Experiment A convergence
comparison

6.2 Experiment B convergence
comparison

6.3 Experiment C convergence

COMPATISON .« vt ee e 138
A.1 Experiment A comparison . .. ..
A.2 Experiment B comparison . .. ..
A.3 Experiment C comparison . .. ..

viii

Tables

4.1 Key Concepts in Evolutionary

Algorithms. ........... ... ... ...
6.1 Hyperparameter Configuration .
6.2 Algorithm configurations used in

experiments .................... 132
6.3 Dataset Information........... 33

6.4 Result of Experiment A, p-values
of test between NODE100 and
VANILLA, between EDGE and VANILLA
are shown, in bold if less than 0.01

6.5 Result of Experiment B, p-values
of test between NODE20 and BASIC20,
between EDGE and BASIC20 are
shown, in bold if less than 0.01 ...

6.6 Result of Experiment C, p-values of
test between NODE200 and BASIC200,
between EDGE and BASIC200 are

shown, in bold if less than 0.01 ...



Chapter 1

Introduction

Combinatorial optimization problems are a class of challenging tasks that
involve finding the best arrangement or combination of discrete elements from
a large set of possibilities. These problems arise in various fields, such as
logistics, scheduling, network design, and resource allocation. Examples of
combinatorial optimization problems include the traveling salesman problem
(TSP), the knapsack problem, or the graph coloring problem to name only
a few. The complexity of these problems lies in the exponential growth of
possible solutions as the problem size increases, making it computationally
infeasible to search the entire solution space.

Metaheuristics have emerged as a powerful technique to face the computa-
tional challenges posed by complex combinatorial problems. Metaheuristics
provide a flexible and robust framework for addressing optimization challenges
by operating at a higher level of abstraction. These algorithms offer a unique
approach to problem-solving by exploring large solution spaces efficiently and
effectively. They are particularly well-suited for combinatorial optimization
problems where traditional methods, such as linear programming, integer
programming, etc., struggle due to the high-dimensional and non-linear nature
of the search space.

Among many other, evolutionary algorithms (EAs) represent a powerful
class of metaheuristics that have demonstrated remarkable effectiveness in
solving combinatorial optimization problems. Inspired by the principles of
natural evolution, these algorithms emulate the process of natural selection
and adaptation to guide the search for optimal or near-optimal solutions.
They typically work with a population of individuals, where each individual
represents a possible solution to the problem at hand. On top of what EAs
can offer, it is common practise to integrate local search techniques in order to
enhance the performance. Local search focuses on exploring the neighborhood
of a given solution to find better nearby solutions. By combining local search
with evolutionary algorithms, the search process benefits from both global
exploration and local exploitation, leading to improved solution quality and
convergence.

An example of such evolutionary based algorithm is IREANN, introduced
by Kubalik and Snizek in [KS14]. IREANN uses an indirect representation
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1. Introduction

and a so-called nearest neighbor heuristic, which is a constructive procedure
suited for routing problems. Both of these concepts used in IREANN are
heavily exploited in this thesis. Local search heuristics might be incorporated
to IREANN to yield even better performance.

However, given the nature of IREANN’s indirect representation function-
ality, improvements made by local search heuristics would only affect the
single individual whose neighborhood of solution space was searched. The
information about local improvements can not be easily passed between other
individuals in a population.

The objective of this thesis is to propose an extension to the IREANN
algorithm that enables the propagation of valuable information about high-
quality features of individual solutions across the entire population during
computation. This extension aims to ensure that the entire population
can potentially benefit from the insights gained from individually discovered
superior features, thereby enhancing the overall performance and optimization
capabilities of the algorithm.

The principle of enhancing the algorithm si to incorporate a mechanism
that during computation captures and retains information about the features
that contibute the most to high-quality solutions. The mechanism involves
periodically storing the relevant information which is subsequently used in
the nearest neighbor heuristic, and serves as a proxy to information about the
actual distance. The whole algorithm was specifically designed to solve the
Capacitated arc routing problem (CARP), which is more challenging than
the famous TSP and introduces more constraints.

Several slight modifications of above mentioned approach have been im-
plemented as a result of this thesis. The effects of proposed extension on
solution quality were empirically verified by testing on standard available
CARP benchmark datasets.

The thesis is structured as follows. Chapter 2 formally defines the Capac-
itated Arc Routing Problem. Chapter 3 gives an overview of related work.
Preliminaries are introduced in chapter 4. The extension to IREANN is
proposed in chapter 5 a the experiments are carried out in chapter 6.



Chapter 2

Problem definition

The capacitated arc routing problem (CARP), firstly introduced by Golden
and Wong [GW8]], is a subject in combinatorial optimization, commonly
appearing in operations research and transportation logistics. In this chapter,
we will provide a formal definition of the CARP, establish relevant terminology,
and underline the basic properties that characterize this complex problem.

The Capacitated Arc Routing Problem (CARP) is a variant of the arc
routing problem where a fleet of vehicles of uniform capacity is used to service
a set of arcs or edges in a network. The fundamental challenge is to design the
minimum cost set of routes such that each vehicle originates and terminates
at a depot, each edge in the network requiring service is traversed by exactly
one vehicle, and the total demand serviced by any vehicle does not exceed its
capacity.

The problem is defined on a connected, undirected graph G = (V, E),
where V is the set of vertices and E is the set of edges. Every edge e € E has
a non-negative cost or length ¢, and a non-negative demand for service d.
The edges with positive demand make up the subset of the required edges
FER. In CARP, the graph is typically undirected, meaning that each edge can
be traversed in either direction with equal cost. Throughout this thesis, the
terms cost and distance are used interchangibly. The demand d. of an edge e
represents the quantity of some resource or service that must be delivered
along that edge. Each vehicle has a maximum capacity Q and the total
demand of all edges in its route cannot exceed this capacity. Given a vehicle
capacity @), the CARP consists of finding a set of vehicle routes of minimum
cost, such that every required edge is serviced by exactly one vehicle, each
route starts and ends at a prespecified vertex vg € V (the depot) and the
total demand serviced by a route does not exceed the vehicle capacity . The
number of maximum vehicles K used is also constrained. Golden and Wong
[GWSI] show that the CARP is NP-hard.






Chapter 3

Related work

The Capacitated Arc Routing Problem (CARP) is known to be NP-hard.
Due to its complexity, it is possible to solve it exactly only for small-sized in-
stances. Instances of larges size usually make use of heuristic, more specifically
metaheuristic approaches.

This chapter provides an overview of known techniques and algorithms
that have been utilized in the literature to solve instances of the CARP.

. 3.1 Exact and lower bound methods

Lower bound methods provide a tight lower bound on its optimal cost.
Such a bound is helpful when evaluating larger CARP instances, where
heuristic approach has to be employed, since solving them exactly would be
computationally too demanding and not feasible at all. Thus, achieving a
solution which is close to a lower bound might be a good measure of quality
for heuristic algorithms. A simplified integer linear model was proposed by
Belenguer and Benavent [BB03]. The sparse formulation used does not lead
to a valid CARP solutions, but presents very tight lower bounds for the
problem. Only one integer is used for each edge, which results in not being
able to say which vehicles service which edges.

First possible way of solving CARP is based on transforming the problem
into a node routing problem and then using existing VRP methods to solve
it. Quality of the solution depends on how well, meaning how compact such
a transformation can get. The goal is for the dimension to not increase
drastically. First transformation of its kind was introduced by Pearn, Assad
and Golden [PAGS87] which reduced the CARP problem into CVRP problem,
but was regarded as unpractical, the resulted graph had too many vertices.
Similar transformation was then proposed by Longo, Aragao and Uchoa
[LAUOG], which further reduced the number of vertices. More recently, a
compact transformation was introduced recently by Les Foulds et al. [FLM15]
where the number of nodes is at most larger only by one than the number of
edges. A adapted version of branch-and-cut-and-price algorithm for CVRPs
was used to obtain the results. The authors managed to solve all of the
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3. Related work

instances from the gdb dataset, however some instances in the larger dataset
egl were not solved satisfactorily.

As mentioned by Bode and Irnich [BI12], converting arc routing problems
into node routing ones has significant drawbacks, which are models with
inherent symmetry, dense underlying networks or models with huge number
of vertices. Therefore, it is worth considering specialized CARP methods to
address these issues. Specialized exact algorithms for CARP often involve
solving integer programs using branch-and-cut or branch-and-bound combined
with column generation. Branch-and-cut uses a cutting plane approach, in
which inequalities are added to the optimization problem. By adding these
cuts, the feasible region of the subproblems can be further restricted, which
can help the algorithm find the optimal solution more efficiently. Column
generation, on the other hand, involves iteratively generating and adding
columns (variables) to the problem’s constraint matrix until an optimal
solution is found. Mentioned algorithms are used in [BI12], [BCL13] to solve
instances with up to 190 nodes to optimality. Instances with number of nodes
greater than 200 remain unsolved by exact approaches.

. 3.2 Heuristics

Heuristics algorithms are approximate methods that are used to quickly find
a solution to an optimization problem that is likely to be close to the optimal
solution. They are typically used when the exact optimization problem is too
computationally expensive to solve in a reasonable amount of time, which is
the case for solving larger instances of the CARP. The main focus will be on
meta-heuristics, which represent more general techniques applicable to wide
range of optimization problems.

One of the most famous algorithms for solving CARP is a tabu search
algorithm called CARPET proposed by Hertz, Laporte and Mitaz [HLMO0OQ].
In CARPET, a solution in represented by a set of nodes representing all
traversed edges. Solutions violating vehicle capacity are accepted but pe-
nalized. The search process in a tabu search is guided by the tabu rules,
which specify which moves are allowed and which are "tabu" (forbidden) at
each step. Number of improvement procedures which are used in the search
process are presented in CARPET (Shorten, Drop, Add, Paste, Cut, Switch
and Postopt).

Subsequently, Hertz and Mittaz in [HMO1] applied a new algorithm to
solve the CARP, which is the Variable Neighborhood Descent algorithm
(VND). It replaces the framework of the tabu search with the framework of
the variable neighborhood search and achieves slightly better solutions. It
involves exploring a sequence of neighborhoods around the current solution.
Several descents with different neighborhoods are performed until a local
optimum for all considered neighborhoods is reached. However successful
the solutions, the encoding used by CARPET and VND leads to intricate
improving procedure, thus potentially making the search space vast.
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Lacomme, Prins and Ramdane-Chérif [LPRCOI] proposed a memetic algo-
rithm (LMA), a genetic algorithm hybridized with a local search. Genetic
part of the algorithm is inspired by the process of natural evolution and
use techniques such as selection, crossover, and mutation to search for the
optimal solution to a problem. Based on this evaluation, the algorithm selects
the fittest individuals to survive and reproduce, and combines their genetic
material through crossover to create new offspring. Mutation is then used to
introduce random changes to the genetic material of the offspring, in order
to explore a wider range of potential solutions. MA uses a more compact
and natural encoding. Each edge is represented by only two indices, one for
each direction. A route can then be defined by a list of such indices. Two
consecutive edges in a route are connected by implicit shortest paths, which
can be computed in advance. This encoding scheme is very useful when only
fraction of edges are required and has been used in almost all metaheuristics
published after CARPET and VND. MA achieves is more successful on the
standard testing sets than CARPET, while also being twice as fast.

Are recent tabu search algorithm for solving a modified version of the
original CARP problem was recently proposed in [LZJQ18]. They consider
split-delivery CARP (SDCARP), which generalizes conventional CARP by
allowing an arc to be serviced by more than one vehicle. Forest-based tabu
search utilizing forest-based neighborhood operators is used in this approach.

A similar memetic algorithm to (LMA) with extended neighborhood search
(MAENS) was proposed in [TMY09]. This work proposed a novel local search
operator, which is capable of searching using large step sizes and is less likely
to become trapped in locally optimal solutions.

To tackle the largest CARP benchmark instances, Mei, Tang and Yao
[MLY13] present a mechanism called Random Route Grouping (RRG) de-
signed to decompose the large-scale CARP (LSCARP). RRG is combined
with a cooperative co-evolution (CC) model to give yield impressive result
on large datasets. The cooperative co-evolution framework is a natural
way to implement divide-and-conquer strategy. Generally, CC is a type of
evolutionary algorithm that involves the simultaneous evolution of multiple
subpopulations, or "species," that are interdependent and work together to
find a solution to a problem. A bit later, authors of [MLY14] improve on the
decomposition procedure by incorporating information about the quality of
the best solution found in the search.

Another group of possible meta-heuristic approaches are ant-colony algo-
rithms, which are inspired by the behaviour of ant colonies. A set of artificial
ants is initialized at selected locations of the network, the network is then
explored by the ants which are combining local information (the cost of the
arc connecting the current node to the next one), with the global informa-
tion (pheromone levels on the arcs). Pheromone levels store the information
about the quality of the solutions found so far. Ants deposit pheromones
on the arcs as they traverse, which influences the behaviour of other ants.
Tirkolaee et al. [TAH™19] introduce an ant colony based metaheuristic with
some modifications. They use a modified version of the Ant Colony Opti-
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mization algorithm derived from Ant System called Max-Min Ant System
(MMAS). MMAS was firstly presented by Stiitzle and Hoos in [SHO0], their
main contribution was the introduction of upper and lower bounds for the
value of the pheromones which avoids stagnation of the search. [TAH™19)
further improves the performance of MMAS by utilizing a mechanism called
Pheromone Trial Smoothing (PTS), which results in preventing premature
convergence, avoiding local optima and increasing efficient search space.

In [MLRRI11], a biased random key genetic algorithm is combined with a
local search. Optimal or near optimal solutions were obtained while achieving
small computation times during testing on sets of CARP benchmark instances.
Classical local search methods which “fine-tune” its solutions are used to
potentially find better ones. Local search might be applied in different ways.
One is to pass the best solution found by RKGA to a local search algorithm to
be further optimized, another possibility is to use local search as a mutation
operator within RKGA.

Open CARP is a variant of the original CARP problem which releases the
constraint which states that routes must begin and end at a depot, which
means that the routes in this variant do not have form cycles. A recent work of
[AU1S]| deals with the open CARP by introducing a Hybrid genetic algorithm,
whose main features is standard genetic algorithm combined with local search
and feasibilization procedure which is responsible for obtaining a feasible
solution from chromosome. Feasibilization proved to have substantial role on
performance. It also includes a population restart which avoids premature
convergence of the population, which happens when the genetic diversity is
low and only small are of the search space is being explored.

In some cases, the demand for a product or service may be uncertain
or subject to random fluctuations. Such behaviour is modeled by one of
the most recently studied variant of the CARP problem, the Uncertain
CARP (UCARP). It was proposed to better reflect the aspects of real-
world problems. In UCARP, the travel cost between vertices in the graph
and demand of tasks is unknown in advance, and is revealed during the
process of executing the services. In this case, a preplanned solution may
become worse or even infeasible. Authors of [WMZY21] propose a novel
genetic programming approach, which simplifies the routing policies during
the evolutionary process using a niching technique, which leads to a more
interpretable policies. Niching is a technique used to preserve diversity among
populations of solutions. It avoids aforementioned premature convergence,
where the algorithm would get stuck in a local optimum. Instead of having
a single population of solutions that all evolve together, niching involves
dividing the population into subpopulations, or niches. These niches contain
solutions that are similar to each other, but distinct from those in other
niches. This way, the search space is expanded, increasing the chances of
finding the best solution.



Chapter 4

Preliminaries

B a1 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are a diverse family of optimization techniques
rooted in the principles of biological evolution. Mimicking nature’s underlying
processes, they use mechanisms inspired by natural selection and genetics
to solve complex search and optimization problems. The general approach
of EAs is to maintain a population of candidate solutions for the problem
at hand and to iteratively improve this population over time. They are
characterized by their population-based search approach, their utilization
of stochastic processes, and their capability of maintaining and exploring
a diversity of solutions. This provides an inherent robustness, allowing for
a versatile exploration of the search space, and makes EAs well-suited for
a wide range of problems, including those with large and intricate search
spaces, non-linear relationships, or poorly understood fitness landscapes.
The versatility of EAs is showcased in the “Humies” competition, hosted at
https://human-competitive.org/l This competition serves as a platform
to demonstrate how EAs can excel in various domains by producing solutions
that are comparable to or even outperform those created by human designers.

The main operators utilized within EAs are selection, crossover (or recom-
bination), and mutation, which emulate the mechanisms of survival of the
fittest, mating, and random genetic mutation respectively.

Pseudocode of a general evolutionary algorithm:

1: Initialize population Fy

2: while termination condition is not met do

3: Evaluate fitness of individuals in P;

4 Select parents from Py

5 Generate offspring by crossover and mutation

6: Evaluate fitness of offspring

7 Select individuals for P;4; from parents and offspring
8: end while

Above, the provided pseudocode outlines a general evolutionary algorithm
in five steps. First, it creates the initial population of candidate solutions.

9
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Then, the algorithm iteratively evaluates the fitness of individuals in the
current population. Next, parents are selected from the population, and
offspring are generated through crossover and mutation operations. The
fitness of the offspring is then evaluated. Finally, individuals for the next
population are selected from both the parents and the offspring. This iterative
process continues until the termination condition is met, which usually is
the maximum number of generations. The pseudocode serves as a flexible
template for implementing various evolutionary algorithms tailored to specific
optimization problems.

It is necessary to provide a summary of key terms and concepts commonly

used in evolutionary algorithms. A few of the most important terms were
selected from [HGBT] by Beyer et al.

Term Description

Gene The fundamental unit in an individual’s solution, representing
a specific piece of information or parameter.

Genotype  The complete set of genes that make up an individual’s
solution. It represents the encoded solution in the search
space.

Phenotype The manifestation of the genotype in the problem space,
denoting the actual solution to the problem.

Individual  Represents a single solution to the optimization problem,
characterized by its genotype and associated phenotype.

Fitness The quality or suitability of a solution, measured by a
problem-specific fitness function.

Population The collection of individuals in a given generation, represent-
ing the pool of current solutions in the search space.

Evolution  The iterative process of generating new populations with po-
tentially improved fitness over generations through selection,
crossover, and mutation.

Table 4.1: Key Concepts in Evolutionary Algorithms

While all EAs share these commonalities, different types of EAs have
emerged, customizing these concepts to particular problem types or applica-
tion areas. Each type has its unique features and specializations, with notable
examples including Genetic Algorithms, Genetic Programming, Differential
Evolution, Evolution Strategies, and Evolutionary Programming [M™18|. Ge-
netic algorithms and their memetic extension will be discussed in further
detail below.

Genetic Algorithms (GAs) constitute a significant branch of EAs, with a
strong emphasis on the mechanisms of natural selection and genetics. Taking
inspiration from Charles Darwin’s theory of natural evolution, GAs maintain
a population of candidate solutions that evolve over generations. They were
introduced by Holland and Goldberg [MGT95].

Although GAs are a part of the broader EA family, their distinctive feature
lies in their particular implementation of the evolutionary principles. The

10
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concrete representation of solutions as chromosomes, the clear distinction of
generations, and the straightforward usage of genetic operators make GAs a
robust and versatile tool for a wide array of optimization problems.

Each individual solution in a GA is characterized by a set of parameters
or variables, encoded in a data structure analogous to a chromosome. These
chromosomes can be binary strings, real-valued vectors, or other appropriate
structures depending on the specific problem being addressed.

The fitness of each individual is assessed using an objective function specific
to the problem, similar to how an individual organism’s fitness for survival
might be measured in nature. This objective function acts as the primary
evaluator and driver for the progression of solutions, pushing the evolution
process towards optimal or near-optimal solutions.

GA operates using three main genetic operators:

® Selection: This operator mimics the survival of the fittest principle. It
selects the individuals with higher fitness values to pass their genes to
the next generation.

® Crossover (or Recombination): It emulates the genetic recombination
observed in nature, where offspring inherit genetic information from their
parents. In GA, it is a method to create new candidate solutions by
combining parts of the ’chromosomes’ of two or more selected individuals
from the current population.

8 Mutation: This operator introduces random modifications in the chro-
mosome of individuals, promoting genetic diversity and enabling the
exploration of new areas of the search space.

. 4.2 Local Search Procedures

Local search optimization is a crucial aspect of evolutionary algorithms,
providing an exploration of the neighborhood of solutions to refine the global
search. It can greatly enhance the performance of the evolutionary algorithm
by allowing it to find better solutions that might be missed in the course of
the global search. [BKK14]

A local search is conducted by perturbing the current solution slightly to
create a neighboring solution, then comparing the fitness of the new solution
to the fitness of the current solution. If the new solution is better (i.e., it has
a higher fitness), it replaces the current solution, and the process is repeated.
This is commonly known as hill climbing, since it can be visualized as climbing
the peak of a fitness landscape.

Given the stochastic nature of evolutionary algorithms, the incorporation of
local search techniques adds an additional layer of robustness and effectiveness
to the solution process. As a result, evolutionary algorithms provide a strong
global search capability, local search on the other hand allows for refinement
and exploitation of the best solutions found, which again provides a balance
between exploring and exploiting possible solutions.
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B 23 Memetic Algorithms

Memetic algorithms (MAs) represent an extension of the traditional genetic
algorithms, which on top the genetic framework employ local search operators
during the computation. They were introduced by Moscato in [M™89]. MAs
are described by Moscato as “a marriage between a population-based global
search and the heuristic local search made by the individuals.” The word
“meme”, which was the inspiration for the term memetic algorithms, denotes
the idea of a unit of imitation. Moscato uses the analogy of martial arts to
describe memes as those undecomposable movements, which when individually
composed form a more complex movement. Put simply, memetic algorithms
improve genetic algorithm, which rely almost entirely upon recombination
mechanisms to improve solution quality, by combining them with some kind
of local optimisation of each individual in population.

B 4.4 IREANN

The foundation for the proposed extension in this thesis is based on the work
of Kubalik and Snizek [KS14]. Their research introduces an Evolutionary
Algorithm with Indirect Representation and Extended Nearest Neighbor
Constructive Procedure (IREANN), specifically designed for solving the
Traveling Salesman Problem (TSP). The functionality and effectiveness of the
IREANN algorithm in addressing the TSP are demonstrated in their study.

B 4.4.1 Indirect representation

IREANN uses an indirect representation as a sequence of required nodes which
is called a priority list, where the order of nodes define the order in which
they will be inserted into an existing route via extended nearest neighbor
heuristic. For example, a priority list 5, 2, 4, 1, 3 represents a solution that
is constructed through steps of application of the nearest neighbor heuristic
to the cities 5, 2, 4, 1 and 3, in this order.

The optimal solution can be represented by various priority lists, depending
on the nature of a specific TSP instance which is being solved. This flexibility
is advantageous as it allows the optimal solution to be attracted by multiple
different priority lists. However, it is also possible that the given representation
may not be able to reach the optimal solution if there is no priority list that
accurately represents it.

B 4.4.2 Extended Nearest Neighbor Constructive Procedure

The central objective of the Constructive Nearest Neighbor Procedure (CNNP)
is to formulate a valid route of length n based on any given priority list. Note,
that the terms “Extended Nearest Neighbor Constructive Procedure” and
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4.4. IREANN

1: Initialize n single node components start; =i,end; =i fori =1,...,n

2: j+1

3: do

4: Take j-th city, P[j], from the priority list P

5: Identify component Cj, to which city P[j] belongs
6: if P[j] is either starty or endy, of Cy then

7: N < nearestNeighbor(P[j])

8: add edge (N, P[j])

9: else

10: N; + nearestNeighbor(starty)

11: Ny < nearestNeighbor(endy)

12: if dist(Ny, starty) < dist(Ny,endy) then
13: add edge (N1, starty)

14: else

15: add edge (No, endy,)

16: end if

17: end if

18: Jj++

19: while j < n

Figure 4.1: The extended nearest neighbor construction procedure

“Constructive Nearest Neighbor Procedure” are used interchangibly in this
thesis. The procedure begins with n separate route components. Each route
component, denoted as C}, is marked by its boundary cities starty, endy.
Initially, every city serves as its own distinct component, implying start; = i
and end; = i for each city i from 1 to n.

Throughout the procedure, the algorithm iterates over the priority list, using
the nearest neighbor heuristic at each step. At each iteration 4, it processes
an element from the priority list P[i]. Depending on P[i], a component CY is
identified, which may contain one or multiple nodes.

If P[i] turns out to be a boundary node of Cj, the procedure picks the
city closest to P[i] and adds it to the route. Alternatively, if P[] is not a
boundary node, it locates the nearest neighbors of the boundary nodes start
and endy, of the component Cy, labeled as N; and N,. Of the two possible
edges (N1, starty) and (N2, endy), the one with the shorter distance is chosen
and added to the route.

At every step, the process merges two components into a single one. This
sequence of actions repeats until only a single component is left, symbolizing
the final route.

Figure [4.2) provides a graphical illustration of this procedure, constructing
a route from the priority list P ={A, [, H, F, J, E, C, D, G, B}. As observed,
4.2/ a) processes {A, I, H, F}, wherein each step selects the shortest link
to a node’s neighbor, leading to two components {A, J, I} and {F, G, H}.
However, when the node J is considered, it’s already part of a component
and not a boundary node. Hence, the nearest neighbor is sought from nodes
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4. Preliminaries

Figure 4.2: Example of the extended nearest neighbor constructive procedure

(source: [KS14])

I and A. Since the link between I and H is shorter than that between A and
B, the components are connected through the I and H edge. The final route,
as shown in 4.2| ¢), is derived by applying the same rules to the remaining

priority list.

As previously mentioned, several priority lists might eventually represent
the same route. In this straightforward instance, {A, I, H, F, J, E, C, D, G,
B} {I, C,E, B, H, F, A, J, G, D}, and {F, A, C, H, I, E, D, B, G, J} all
lead to the same final route.

b)
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Chapter 5

Proposed method

This chapter proposes an extended version of the original IREANN algorithm,
whose main contribution is the incorporation of a feature extraction and
propagation mechanism. This mechanism aims to leverage high-quality fea-
tures from individual solutions and propagate the knowledge across the entire
population. The primary purpose is to increase the algorithm’s effectiveness in
dealing with complex combinatorial optimization problems. This mechanism
is described in detail in section 5.2l

As a test case for the extended IREANN, an arc routing problem named the
Capacitated Arc Routing Problem (CARP) was chosen. However, IREANN
was originally designed to solve the Travelling Salesman Problem, a vehicle
routing problem. That implies some changes to the core IREANN algorithm
were necessary to adapt it to the nuances of CARP. CARP introduces addi-
tional complexities not present in the Travelling Salesman Problem. It is a
more complex problem that not only requires routing, but also involves ser-
vicing edges or arcs with specific demands while defining capacity constraints
of the vehicles.

The adjustment of the inner representation of routes for each individual
in the population and the modification of the nearest neighbor heuristic is
crucial for the domain of the CARP, furthermore the adaptation of local search
operators specifically for CARP, which play a crucial role in the algorithm’s
efficiency, is also required.

On the other hand, the core components of the evolutionary framework,
specifically, the selection, crossover, and mutation operators remain largely
unchanged. This is because these genetic operators are fundamentally problem-
independent and can be applied in the same way across a wide variety of
combinatorial optimization problems.

. 5.1 IREANN customizations to CARP

In CARP, the atomic element shifts from a node to an edge. Instead of
cities as it is the case in TSP, the entities to be visited are now the required
edges of a graph, each having a specific demand to be serviced. This change
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5. Proposed method

in representation has a direct impact on the design of the nearest neighbor
heuristic as well, which is a key component in constructing new solutions.

B 5.1.1 Indirect representation

Proposed extended version of IREANN, uses priority list of edges instead of
nodes. Similarly to the original IREANN [KS14] for TSP, the priority list
represents the order in which the nearest neighbor heuristic will be applied,
but in this case, on edges during the process of developing the set of routes.

The priority list, serving as the genotype within the evolutionary framework,
shifts from representing a sequence of nodes or cities in TSP to representing
a sequence of required edges in CARP. The overall functionality remains the
same as it was the case in the original version, which means that the priority
list represent the order in which the nearest neighbor heuristic is applied.

We represent a solution CARP as a set of routes. Each route is represented
by a list of required edges. The corresponding routing plan to a given solution
is obtained by connecting every two subsequent required edges with the
shortest path between them (i.e., shortest path from the head node of the
preceding required edge to the tail node of the subsequent edge). Distance
between each pair of two nodes on the graph are easily computed by Floyd-
Warshall’s algorithms [Flo62].

Bl 5.1.2 Extended nearest neighbor constructive procedure

In Section 4.4.2, the constructive nearest neighbor procedure (CNNP) was
introduced and its functionality was demonstrated on the TSP. However,
directly applying the same CNNP to the Capacitated Arc Routing Problem
is not possible. The transition to CARP requires several modifications to the
CNNP to effectively handle the distinct requirements and constraints of this
more complex problem.

Procedure is formally described in Fig. [5.1/ The process starts with n
independent route components, where n is the number of required edges.
Each required edge initially belongs to its own component. Each component
C} is defined by its boundary nodes starty, endy. Let us define boundary
edge as a required edge which on either of its two ends, is not connected to
any other required edge. Futher, a boundary node is a node belonging to a
boundary edge, through which the edge is not linked to any other required
edge. Which means that in the beginning of the CNNP, boundary nodes of
all components are the two nodes of each corresponding required edge.

In each step of the constructive procedure, either two components are
merged together if their conjunction satisfies the capacity constraints, or
nothing is done if there is no pair of route components that would meet the
maximum capacity constraint () after they were merged together.

In particular, in i-th step the corresponding requried edge at i-th position
in the priority list, denoted as working edge P[i], is taken and the component
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5.1. IREANN customizations to CARP

to which the edge PJi] belongs, C;, is identified. Nearest available neigbors
to the start; and end; boundary nodes of the component C;, N1 and Ny, are
found. N; and N> have to meet several constraints imposed by the CARP
definition. Firstly, both N7 and Ns have to be boundary nodes of some other
components Cj, C} where ¢ # j and i # k.

Secondly, only boundary nodes of Cj, such that the sum of demands along
components C; and C is less or equal to the maximum capacity @, are
considered. This is to ensure that the maximum vehicle capacity constraint
@ will not be violated.

Finally, the shorter path out of (INVi, start;) and (N3, end;) is added to
a constructed solution while merging together the component C; with the
component containing the selected boundary node (Nj or N3). A path
between two arbitrary nodes, v; and w9, refers to the shortest possible path
on the entire graph G. It is important to stress, that this path can potentially
include passing even a required edge. By definition, the passing of required
edges without servicing them is permitted. This allows for more flexibility in
finding the shortest path between the specified nodes.

Note, that it is possible that no other node in the entire graph with
its corresponding component satifies the vehicle capacity constraint. That
situation would result in continuing to (i+1)-th step right away, without
extending any component. The procedure ends after all n required edges
from priority list have been processed. At the end, we are left with a certain
number of components |C| < n, i.e. multiple separate routes, where each
route is served by a single vehicle. |C| might be greater than the maximum
number of vehicles allowed K, which would make the constructed set of routes
an invalid solution, this drawback is discussed in further detail in Section
o.1.3l

To sum up the differences between the original constructive procedure for
TSP and this modifed version for CARP, most notably we have to check each
candidate whether is satisfies the constraint imposed by the CARP definition.
The rest of the procedure is very similar, we are just dealing with edges
instead of individual nodes.

B 5.1.3 Solution feasibility

Because of the nature of the capacitated arc routing problem, the challenge
of solution feasibility arises. After the evaluation of given individual using
the nearest neighbor constructive procedure, it is possible the resulting set of
routes violates the constraint of maximum vehicle used. Such problem would
not come up if the goal was to solve the Travelling salesman problem using
similar heuristic to CNNP, but for the CARP which defines the maximum
vehicle contraint, solutions violating this constraint are not acceptable.
Another constraint is the maximum capacity of each vehicle, meaning that
the sum of demands of each required edge in a single route must not exceed
the defined limit @), which is same for the whole fleet. The solutions however
can not possibly violate this constraint thanks to the way the routes are
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5. Proposed method

1: Initialize n single edge components start;, end; are the boundary nodes
of each required edge 7 for ¢t =1,...,n

2: 11

3: while i <n do

4: Take i-th edge, PJi], from the priority list P

5 Identify component C; to which edge P[i] belongs

6: (N1, Cn1) < nearestNeighbor(start;) where sum of C;, Cy1 satisfies
() constraint

7 (N3, Cn2) < nearestNeighbor(end;) where sum of C;, Cny satisfies

() constraint

8: if dist(Ny, start;) < dist(Np,end;) then
9: add path(start;, Ny)

10: merge components(Cj, Cn1)

11: else

12: add path(endy, N2)

13: merge components(C;, Cn2)

14: end if

15: i++

16: end while

Figure 5.1: Extended nearest neighbor constructive procedure modified for CARP

constructed via the CNNP. (See Section |5.1.2) CNNP does not allow a route
to be extended with another one which would result in such violation. That
results in only the maximum vehicle count constraint being vulnerable to
violation, not the maximum capacity one which is always satisfied by the
innate design of this approach.

To deal with the infeasibility obstacle, one idea would be to leave every
infeasible solution out of the population of candidate solutions and not
consider them at all. However, this approach would cause a lot of trouble,
because in order to create the initial population, chromosomes of individuals
in the first generation are set arbitrarily. Most of the chromosomes with
randomly ordered genes are unlikely to generate a valid solution in terms
of the number of vehicles used, which would make it almost impossible to
generate an initial generation of only individuals with feasible solutions.

Instead, individuals representing infeasible solutions are allowed to exist
in the population, but we need a way of telling which infeasible solutions
are better than others in order to guide the computation in the correct
direction and thus converge to a state where there is a population with
feasible individuals. That is where the fitness evaluation of each individuals
comes into play.

B 5.1.4 Individual Fitness

Using the terminology introduced in Table 4.1, in the evaluation process
the individual’s genotype is taken as input. It is then converted to its
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5.1. IREANN customizations to CARP

corresponding phenotype, which serves as the basis for computing the final
fitness, which is the output of this procedure.

To make it clear, in the case of our implementation of extended IREANN
algorithm for the CARP, genotype is the priority list of required edges, which
is what mainly defines each individual. However, because of the indirect
representation aspect (see Section |5.1.1), this priority list (genotype) is
converted into the actual set of routes (phenotype) the fleet of vehicle has
to travel through via the means of CNNP (see Section |5.1)). It is this set of
routes upon which the fitness is computed, not the priority list. Because of
the reasons stated in Sections [5.1.3, we can not simply define the fitness of an
individual by a single number representing the cumulative cost of its set of
routes. We also need to capture the count of such set of routes, in order to be
able to tell whether the individual violates the maximum vehicle constraint.

As a result, the fitness is represented by the pair of values being (1) the
total cumulative cost of the set of routes computed by the CNNP, and (2)
the number of routes in such a set of routes.

B 5.1.5 Comparison of Individuals

For the reasons stated in Section [5.1.3, we have to come up with a mechanism
which incentivizes the population to converge to a state where there are only
individuals with valid number of vehicles.

Ultimately, the desired functionality is to be able to tell which individuals
are the fittest with respect to each other. That enables us to create hierarchy
within given population of individuals, giving the more fit individuals higher
chance of “survival” through the selection operator, which is the main driving
force behind the evolutionary process towards finding optimal solutions.

We are not able to establish such a hierarchy just by sorting the population
by the measure of the cumulative cost of all the routes in an individual’s
solution. Although that is the end goal of the whole computation, to find
a solution that minimizes this attribute, we can not neglect the number of
vehicles used during this process. The reason behind that is the possibility
of a situation where a solution with lower cumulative cost and a number of
vehicles over the limit K would be considered more fit than a solution with
satisfactory number of vehicles and a greater cost. Put simply, a solution
that violates the constraints defined by CARP (i.e., one with |C| > K) would
be considered more fit than a valid one, which is obviously an undesirable
behaviour which would disable the evolutionary process from achieving any
progress.

Optimization of both the cost and vehicle count at the same time is not
possible. Hence, the fitness evaluation will prioritize driving the vehicle count
down first, and after that optimize the total routes cost when a satisfactory
vehicle count has been reached. This desired functionality is achieved by
designing a custom comparator, that decides which one of two individuals is
“more” fit. This comparator is utilized to sort the population, which results
in having an ordered sequence of individuals with the fittest ones at the
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beginning. In the end, that is what the fitness function is for, to tell how
good the solutions are with respect to each other so that during the selection
phase (details in Section |5.1.6)), the right individuals in population are picked
to be mated with each other, according to the selection rules.

Comparator is a method which takes two individuals as input and decides
which one of them is more fit according to criteria mentioned above. Several
options might occur:

® Vehicle count of both individuals is greater than the limit, then the one
with lower vehicle count is deemed more fit. The cost is the deciding
factor only when the vehicle counts are equal.

® First individual has satisfactory vehicle count, the other has not. In this
case, the first individual is preferred no matter the cost of their solution.

® Both vehicle counts are less or equal than the limit, then the individual
with lower cost is preferred.

B 5.1.6 Selection

It is through effective selection that promising individuals are identified and
retained, contributing to the improvement of solutions over time. It is the
iterative process of selecting and evaluating individuals which guides the
evolutionary algorithm towards better performing solutions.

In our implementation, the tournament selection method is utilized as the
primary selection mechanism. This method involves selecting a fixed number
of individuals, known as the tournament size, from the population [MG™95].
The tournament size is an arbitrary hyperparameter that can be adjusted
based on the desired selection pressure. The individual with the best fitness
score is the winner of that tournament.

By choosing a larger tournament size, more individuals participate in each
tournament, increasing the competition and favoring the selection of fitter
individuals. This intensifies the selection pressure and promotes exploitation
of promising solutions. Conversely, a smaller tournament size allows weaker
individuals to have a better chance of being selected, facilitating exploration
and diversifying the population.

In our case, we need to run the tournament selection twice in order to
obtain the parent individuals needed to produce an offspring. Our tournament
selection procedure has two paramenters t; and to, which represent the
tournament sizes for both selected parents. Both group of individuals in each
tournament are sorted according to our comparator described in Section [5.1.5|
and the first element, considered the winner of a tournament is selected to
be one of the parents for the offspring, which is about to generated through
means of recombination from the two parent individuals.
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I 5.1.7 Crossover

After performing the tournament selection process on the current population,
a pair of parent individuals is selected. For each pair of parents, two offspring
are created using crossover and mutation operators.

We used an order-based crossover, defined by Syswerda in [Sys91]. The
crossover constructs an offspring so that first several cities randomly chosen
from the priority list of the first parent are copied to the offspring into the
same positions as they appear in the parent. The remaining positions are
filled in with the remaining cities, in the same relative order as in the second
parent.

B 5.1.8 Mutation

Mutation operator is very simple, it randomly changes the position of a single
edge in the priority list. While some argue that memetic algorithms may
not require a mutation operator due to the local search component, we have
chosen to retain it in our algorithm. The mutation operator provides an
additional source of exploration and helps maintain genetic diversity within
the population.

B 5.1.9 Local search optimization

Local search procedures, introduced in [4.2| play a crucial role in yielding
competitive results [M™T18§].

We implemented several local search procedures, which operate on the
phenotype level of solutions. That means, we try to tweak the inner solution
representation ever so slightly (i.e., modify the set of routes in one of many
ways), while seeking improvement in the objective function. If we come
across such an improvement, we incorporate it into the representation of
given individual.

Our implementation of local search operators was heavily inspired by the
work [TMY09] by Tang, Mei and Yao. They presented one of the most famous
algorithms for solving the capacitated arc routing problem, abbreviated the
“MAENS”. Several local search heuristics utilized in MAENS were in some
form adopted for this implementation.

Firstly, we list three traditional move operators, namely the single insertion,
reversal and 2-opt moves. All of the moves mentioned operate in a determin-
istic manner, trying out every possible combination looking for improvement
in the fitness score. A greedy approach is favored, which means that if an
improvement is found, it is applied right away.

B Single insertion

In single insert move, an edge is removed from its current position and
reinserted into another position in the sequence of edges. Edge might be
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reinserted either to the route, in which it originally was, or to any other route
is the whole set that given individual possesses.

B Reversal moves

Reversal move simply reverses the direction of an edge.

B 2-opt moves

We differentiate between two types of 2-opt moves, one for a single route and
the other for double routes. 2-opt for single route reverses the direction of its
whole subroute, and reconnects it in the best way possible. 2-opt for double
routes disconnects two routes, which results in four different subroutes, which
are then optimally reconnected.

B Merge-Split operator

As the authors of [TMY09] argue, all of the traditional move operators
mentioned above adopt a rather simple schemes to generate new solutions,
which results in new solutions that are very similar to the original ones.
They describe them as having a “small” step size, thus being capable of
searching only a “small” neighborhood. It is further discussed, that it would
be neat to have a move operator with larger step size. That could be
theoretically achieved by extending the traditional move operators, but would
be too computationally demanding. For that purpose, the Merge-Split (MS)
operator is devised by the authors of [TMY09].

Our implementation takes inspiration from MS operator and uses a simpli-
fied version, the improvements it yields are vastly superior to traditional move
operators. It basically selects p(p>1) routes of a given individual, merges
them together and tries to reconnect them in a way that leads to a decrease in
the total cost. When reconnecting this subset of individual’s set of routes, the
same constructive procedure to the one used during evaluation of offsprings
is employed. Which basically means, that we are trying to reconnect all the
edges in the selected subset again via the CNNP, but this time, all the edges
which are part of routes that were not selected by the MS operator, are not
visible at all. That heavily influences the workings of CNNP, which thanks
to this functionality is very likely to discover new possible connections, which
would be unattainable if the CNNP considered every single edge in the graph
as it is the case during standard offspring evaluation.

B 5.1.10 Dealing with duplicate solutions
Maintaining a diverse population is crucial in evolutionary algorithms to
ensure effective exploration of the search space and avoid premature con-

vergence to suboptimal solutions. One aspect of diversity is the absence of
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duplicate individuals within the population. Duplicates can limit the explo-
ration capability of the algorithm by occupying multiple slots with identical
solutions, reducing the diversity of available genetic material. By preventing
duplicates, the algorithm is encouraged to explore a wider range of solutions,
increasing the chances of finding better and more diverse solutions.

It would be easy to ensure that there are no two individuals with the same
genotype, i.e. priority list. But if two individuals have exactly the same
priority lists, they might still be different on the phenotype level. Their inner
representation might differ thanks to the local search procedures applied.
That is why we came up with a way of checking for duplicity on a deeper level,
where the inner representation of each individual is considered. Basically, two
individuals are deemed identical, if the set of routes each of them possesses,
is exactly the same.

There still may be cases where allowing a certain degree of duplicity can be
advantageous. To address this, we introduce a parameter called maxDuplicates,
which specifies the maximum number of identical individuals with the same set
of routes that are allowed to proceed to the next generation. This parameter
offers a level of control over the tolerance for duplicity within the population.

B 5.1.11 Extended IREANN algorithm

All the components discussed in this chapter are combined to form an extended
IREANN algorithm, which addresses the capacitated arc routing problem.
The proposed algorithm falls under the category of memetic algorithms and
builds upon the IREANN algorithm [KS14], incorporating modifications
specific to the CARP, as well as a mechanism, which during computation
identifies high-quality features and propagates that information across the
entire population (described in detail in Chapter |5.2]).

Figure [5.2] gives an overview of the extended IREANN in pseudocode. As
we can see, the computation consists of mazxGenerations number of total
generations. Firstly, an initial population of candidate solutions is created
by means of random perturbation of a list of all required edges. All of these
individuals in the initial population are expected to be of a very poor quality.

During each iteration of the evolutionary process, a new population of
offspring individuals, referred to as the "interPopulation," is created. This
interPopulation is the same size as the original population. Depending on the
value of parameters probCross and probMutation, a different way of generating
an offspring might be employed. probCross represent the probability, that
offsprings will be, in given iteration, generated via the means of crossover
operator. ProbMutation represents the probability those offspring are further
mutated to achieve more genetic variety. With probability 1— probCross, the
offspring in that single generation will have the same priority lists as their
parent, except they are just mutated. It is reasonable to keep the value of
parameter probCross close to 1.

The fitness of each new offspring created in the interPopulation is then
evaluated through a process described in Section [5.1.4. This fitness score is
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then further improved by numerous local search procedures introduced in
Section 15.1.9L

The two populations are then merged into a single one, which is twice the
size. This large population is then sorted according to criteria described in
Section [5.1.5, favoring the "more fit" individuals to be listed closer to the
beginning of this sequence. Only the first half this sorted large population
survives and “makes it” to the next generation (becoming the new resulting
population the same size as in the beginning of this process), the second half
of individuals is considered to be of lesser a quality and is tossed away. A
mechanism that filteres out duplicate candidates, i.e. identical individuals is
incorporated as well, explanation is provided in Section [5.1.10.

Is important to mention, that all of the terms popSize, maxGenerations,
probCross, probMutation, tournamentSize, M and k are all parameters of
the main evolutionary method, whose values need to be carefully chosen as
they have a significant influence on the performance of the algorithm. As
hyperparameters, there is not one universally optimal set of values for them
that will work best for every problem. Instead, their optimal values need
to be determined through a process of experimentation, observation, and
adjustment. Parameters M, k and mazEpochSize are specific to the IREANN
extension and their effect is dicussed in Section 5.2l

. 5.2 IREANN extensions

We have proposed an extension to the IREANN algorithm, specifically adapted
for the CARP. Firstly, a motivation behind this extension is described.

Local search operators have the potential to substantially improve the
fitness of an individual. They are applied during the evolution process to
every newly generated offspring (see line 38 of 5.2). Local search procedures
operate on the inner representation of individual’s routes, constructed by
the CNNP from the priority list. They improve the fitness of an individual
by reconnecting required edges within the set of existing routes. Hence, it
is impossible to mirror back the information about local improvements into
the individual’s priority list and benefit from that information later on. In
other words, there is no way to share the local improvements applied in one
individual to other individuals in the current and subsequent populations.

Each time a new offspring is evaluated, the construction of a new set of
routes through the CNNP is implied. The extension we introduce incorporates
a process we’ve named “analysis” of a population. This mechanism periodically
computes and retains data regarding the characteristics contributing to
high-quality solutions. This information is then incorporated into the inner
workings of CNNP, acting as a proxy to the information about actual distance
between two nodes. In essence, this extension provides the CNNP algorithm
with a more focused information, enabling it to construct better solutions
by utilizing insights gained from well-performing individuals produced in the
past generations.
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The proposed extension is incorporated into the pseudocode provided in
figure 5.2. The core of the extension is on lines 8 to 22. It relies on the
analysis procedure that is conducted with a certain frequency, see lines 11 and
16. The analysis scans the population for high-quality features among the
fittest individuals. Using that information, it then alters the data in a data
structure we have nicknamed the “journal”. Journal serves as an augmented
version of the distance table used in the CNNP. We refer to distance table as
a structure, which for every boundary node dictates the order of its nearest
neighbors (every other boundary nodes), by the traditional measure of actual
distance provided by the Floyd’s algorithm. When the CNNP needs to
evaluate the nearest neighbor of a given boundary node, it iterates over this
ordered list, the first boundary node to satisfy the constraints defined by
CARP is returned as the nearest neighbor. In extended IREANN, we have
renamed the distance table to journal. Journal adds a layer of additional
information on top of the actual distances between nodes. This information
isn’t about physical distances between nodes in the graph G, but rather about
the “value” of connecting two nodes based on previous successful solutions.
For every node, journal keeps track of an ordered list of nearest neighbors,
just like the distance table. However, the metric for a “nearest” neighbor
has shifted from the original distance to a more insightful measure. This
measure takes into account not only the spatial proximity of the two nodes,
but also the success ratio of the link between the two nodes as justified by
the evolutionary process so far.

For every two boundary nodes on the graph G, the journal incorporates the
information obtained from analysis. Information about the average fitness of
a solution that realizes the connection between these two nodes, on top of
the information about actual distance. The order of nearest neighbors for a
particular node u is thus determined by the average quality of the solutions in
which the neighbors are linked to the node wu, rather than only by the actual
distance. This shift in metric combines both spatial and solution-quality
information, making it a composite indicator.

The main idea behind using the journal derived from analysis, is that final
routes present only in elite individuals are very likely to carry important
information. This information, if harnessed effectively, holds significant
potential in constructing high-quality solutions in subsequent generations.
That is why we introduce a new parameter N, which determines the number
of best individuals, which will be analyzed.

After assembling the journal from analysis of the best N individuals in
population, it is then passed to the CNNP, where it substitutes the original
distance table during the route construction process. In other words, the
journal acts as an augmented distance table that not only includes the
original distance information but also represents the accumulated wisdom
from previous generations’ successful solutions. It should be noted that the
journal doesn’t replace the original distance table completely. If a connection
to a given node is not present in any of the elite individuals (i.e., it was not
observed in their routes), priority of such nodes is derived from the distance
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5. Proposed method

table. But while keeping the priority of all the nodes, to which the connections
were observed in elite individuals, higher.

Journal derived from analysis is not immediately used from the first gen-
eration of the population. Instead, we introduce a warm-up phase, during
which the journal derived only from the original distance table is used. We
define a new parameter M, which tells how many generations from beginning
this warm-up phase spans over. The motivation behind this decision is to
allow the evolution enough time to manifest the original distance information
at first, and use the journal derived from analysis later when it gets harder
to make improvements in the objective function.

After the warm-up phase, journal derived from analysis is employed in
subsequent generations and is rederived periodically every k generations. This
k number of generation is called a period. In each generation of one period, the
same journal is used to evaluate individuals. Separating the evolution process
into periods serves two main purposes: it mitigates the risk of oscillation of
the computation and provides a sufficient number of generations so that the
evolutionary process is able to converge toward increasingly better solutions.

Therefore, the journal not only collects the wisdom of the past generations
but also adapts to new knowledge that is continuously being generated as
the algorithm evolves the population. By doing so, newly emerging patterns
in the elite portion of population are recognized and incorporated into the
journal’s understanding of beneficial connections between nodes.

However, if the information in the journal becomes too dominant, the
algorithm runs into the risk of becoming overly exploitative, potentially
converging prematurely to sub-optimal solutions and losing its explorative
capabilities. Moreover, in the worst-case scenario, the dominance of analysis
derived information in journal could potentially lead to a diverging loop. This
could occur if the algorithm is not able to find a new best solution within a
single period. That would imply a new journal being derived from increasingly
worse solutions. Using such a journal, we are not likely to discover a new
best solution. If this cycles repeats, it inevitably leads to a downward spiral
of performance.

To counter this, a mechanism allowing to get the computation back on track
is incorporated into the algorithm. The algorithm stores the best individual
found so far in BSF_solution (see lines 6 and 10 of 5.2), along with the journal
BSF _journal, using which this BSF _solution was constructed. Whenever a
new BSF_solution is discovered, BSF_journal gets updated accordingly (see
lines 9-13 of 5.2))

Furthermore, the whole process runs in epochs. An epoch is a sequence of
periods during which the algorithm is permitted to continue without finding
a new best solution. The parameter maxFEpochSize is introduced to set the
maximum size of the epoch. This value is essentially a patience parameter
that dictates how long the algorithm will persist with the current journal
before considering it unproductive. As a result, after these maxEpochSize
periods have taken place, the journal is reset to BSF journal and a new
epoch starts, see lines 18-19 of [5.2]
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5.2. IREANN extensions

At the start of each new period, a new journal is derived from the analysis
of elite individuals. Hence, the whole population is reevaluated using this
new journal. Additionally, the whole population is perturbed (see line 21),
meaning that the priority lists of every individual in population are randomly
shuffled. The reason behind, is that at the end of each period, the population
is not diverse (i.e., priority lists of individuals are similar), due to the effects
of the evolutionary process. By shuffling the whole population, we aim to
incentivize more exploration.

B 5.2.1 Illlustration of Analysis

Let’s illustrate the workings of analysis on an example depicted in Figures|5.3a
and [5.3bl The Figure |5.3a shows a valid solution to a CARP instance. Full
lines represent required edges of the instance, connected by unrequired dashed
edges. The depot is at the node numbered 0. Now let’s look at what an entry
in the journal (or distance table) of such example might look like. For node
10, the entry in purely distance-based journal would like this: (11, 5, 4, 9, 12,
6, ...). Let’s now suppose that the edge (9, 10) is the first edge to be evaluated
by CNNP. In that case, the component with boundary edge 11 would be
selected for merging, because 11 is the first element in the journal entry and it
satisfies the CARP constraints. This is depicted in Fig. [5.3a) where required
edge (9, 10) is extended to another required edge (11, 12). Let’s now suppose
the analysis finds out, that elite solutions which connect node 10 with node
5 have on average better fitness than solutions which connect node 10 with
node 11. No other connections than those two mentioned are observed in elite
individuals. This scenario would result in placing node 5 before node 11 in
our journal, even though the physical distance to 11 is shorter than to 5. The
entry for node 10 in the journal derived from such analysis would now look
like this: (5, 11, 4,9, 12, 6, ...). Then, when we want to extend the edge (9,
10), node number 5 is consider prior to node 11, despite being further from
node 10 in terms of physical distance. Node number 5 satisfies the constraints
which leads to a solution depicted in Fig. |5.3b, which is perhaps less costly
than solution depicted by Fig. 5.3al This implies, that journal contains two
types of entries. First subset of its entries is made up by the nodes which are
observed in elite solutions (and ordered by their average fitness). Followed by
the second subset made up from the complement of the first subset. Their
order is derived from original distance table.

B 5.2.2 Analysis Versions

In this work, we implemented two variants of the analysis procedure, which
will be described below. The first version of analysis only considers individual
nodes on the graph G and is referred to as the “node analysis”. As mentioned
above, when analyzing a set of routes of a given individual, the average fitness
of every connection is used as new metric for the nearest neighbor heuristic. A
single connection is understood as a link between two required edges. In this
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5. Proposed method

version, such a connection is defined by a pair of the boundary nodes, which
are linked. This implies that during the CNNP, the nearest neighbor heuristic
used only the boundary node as a key, upon which the journal returns the
sequence of ordered nearest neighbors, ordered based on the new metric.

This version, as shown in Chapter (6| yields better performance, but only
to a limited degree. The reason is that the node analysis only considers the
boundary nodes when assembling the journal and when constructing a new
route in CNNP. It does not consider the corresponding boundary edges at
all. However, by the design of CARP, a single node might be part of multiple
edges. This approach implies that CNNP does not differentiate between two
candidate components, which have the same boundary node, but a different
boundary edge. That inevitably leads to the loss of precision.

The second version, referred to as “edge analysis”, corrects this behaviour
by changing what defines a single connection. In the case of edge analysis,
it is the combination of boundary node and boundary edge, which defines
each of the endpoints of a single connection. This approach aligns more
closely with the specific structure of the CARP. It does not neglect to which
boundary edge does the boundary node belong to, as it is the case with node
analysis.

As a result, the journal captures much more precise information. It contains
far more entries, because now the keys to the table provided by journal, are
the pairs of nodes and edges, instead of solely nodes. This enables the CNNP
to make better decisions when it comes to selecting the nearest neighbor of
a component’s boundary node. Performance of both version of analyses is
displayed in Chapter |6
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5.2. IREANN extensions

: function EXTENDEDIREANN (popSize, mazGenerations, probCross, probMuta-
tion, tournamentl, tournament2, mazDuplicates, M, k, mazEpochSize)
i<« 0
period < 0
journal < deriveFrom(distanceTable)
population < createlnitialPopulation(popSize)
BSF_solution < population[0]
for i = 0 to maxGenerations do
if i> M A jmod k == 0 then
if population[0] is better than BSF then
BSF_solution + population[0]
journal < ANALYSIS(population)
BSF_journal < journal
period < 0
else if period < mazxEpochSize then
period++
journal = ANALYSIS(population)
else
period = 0
journal = BSF_journal
end if
perturb(population)
evaluate(population, journal)
end if
e+
interPop < empty list
while |interPop| < popSize do
parentl, parent2 < tournamentSelection(population, tournamentl, tournament2)
if rand() < probCross then
child1, child2 <+ crossover(parentl, parent2)
if rand() < probMutation then
mutate(child1, child2)
end if
else
child1 <+ parentl.mutate()
child2 <+ parent2.mutate()
end if
evaluate(child1, child2, journal)
localOptimization(child1, child2)
interPop.add(child1, child2)
end while
population = population U interPop
population = sortPopulation(population)
population = betterHalf(population)
population <+ deleteDuplicates(population, mazDuplicates)
end for
: end function

Figure 5.2: Pseudocode of the Extended IREANN
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(a) : solution before analysis (b) : solution after analysis

Figure 5.3: Effect of analysis on route construction
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Chapter 6

Experiments

B 6.1 Compared algorithms

The primary goal of this chapter is to validate the effectiveness of proposed
extension to the IREANN algorithm. This will be done by comparing the
performance of the original IREANN and the extended one on standard
CARP datasets. Versions of the algorithms that will be compared in this
experimental study:

1. NODE - version of the extended IREANN that employs the “node” analysis,
introduced in [5.2]

2. EDGE - extended IREANN which uses the “edge” analysis

3. VANILLA - original IREANN version, one which does not incorporate any
analysis functionality, thus its journal relies solely on the information
provided by the distance table

4. BASIC - slighty modified vanilla version, which has the functionality of
population perturbation at the start of each period, just as it is the case
in versions node and edge. The motivation behind the creation of this
basic version is that we wanted to show, that the superiority of solution
quality of versions node and edge over version vanilla was not achieved
just because the vanilla does not implement perturbation functionality.

B 6.2 Configuration of algorithms

The objective of this thesis was to propose an extension to the original
IREANN algorithm and compare its performance with the original IREANN.
Hence, hyperparameter values were not tuned to achieve optimal performance.
Instead, we aimed for a common set of hyperparameters that are consistently
applied across all versions of the algorithm, to ensure a fair comparison.

All the common hyperparameters to every version are displayed in Table
6.1. Most of the hyperparameters are necessary for all four versions, except
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6. Experiments

for N, M, k and mazEpoch, which are specific to versions NODE and EDGE.
BASIC version also uses the parameters M and k. The number of generations
and periods size vary in each experiment, more details are provided in Section
6.4

Different paramater configurations for each version of algorithm are needed
throughout testing. All the used combinations are listed in Table [6.2

Hyperparameter Value
Population Size (popSize) 300
Number of Generations (mazGen) 300, 1000

Number of Duplicate Solutions (duplicates) 1
Probability of Mutation (pMutation) 0.2
Probability of Crossover (pCross) 0.9
Tournament Size for Child 1 (tournament1) 7
Tournament Size for Child 2 (tournament2) 1
Number of Elite Individuals (N) 10

Warm-up Phase Length (M) 100

Period Size (k) 20, 100, 200
Maximum Number of Epochs (mazEpoch) 2

Table 6.1: Hyperparameter Configuration

Version M k | maxGenerations
VANILLA - - 1000
NODE100 | 100 | 100 1000

EDGE 100 | 20 300
BASIC20 | 100 | 20 300
NODE20 100 | 20 300
BASIC200 | 200 | 200 1000
NODE200 | 200 | 200 1000

Table 6.2: Algorithm configurations used in experiments

. 6.3 Datasets

All the experiments were carried out on a single renowned benchmark test
set of CARP instances, called the egl set, introduced in [Egl94]. We chose
this dataset because of its reasonable size and variety of its characteric
properties, which enables us to showcase various aspects of the proposed
extended TIREANN. There are total of 24 instances. These instances are
derived from two graphs, each characterized by unique sets of required edges
and capacity constraints. For our testing purposes, a subset of 8 of these
instance was selected. Properties of each of them are presented in Table |6.3.
It includes the total number of nodes on the graph G, number of required
and unrequired edges and the constrained maximum number of vehicles a the
capacity of single vehicle.

32



6.4. Experiments

Name Nodes Required edges Unrequired edges Vehicles Capacity
egl-el-A 7 51 47 5 305
egl-el-C 7 51 47 10 160
egl-ed-A 7 98 0 9 280
egl-e4-C 7 98 0 19 130
egl-s1-A 140 75 115 7 210
egl-s1-C 140 75 115 14 103
egl-s4-A 140 190 0 19 230
egl-s4-C 140 190 0 35 120

Table 6.3: Dataset Information

| X Experiments

Three experiment settings were created. Every experiment ran on each
of 8 selected data instances. In order to ensure statistical reliability, each
individual experiment for given data instance was executed 30 times with
different seed configuration.

B 6.4.1 Experiment A

In the first experiment setting, we want to validate the effects of the extended
IREANN (represented by NODE100 and EDGE) against the VANILLA, which
implements neither the analysis nor the population perturbances. Parameters
common to all algorithms are listed in Table |6.1.

Number of generations was set to 1000 for VANILLA and NODE100, EDGE
only runs for 300. M is the same for node and edge versions, but different &
was selected. Parameter k for NODE100 is at 100, while it is only 20 for the
EDGE. Reason behind opting for £ of only 20 and maxGenerations of only 300,
is the empirical observation, that the EDGE converges much faster than other
versions and does not need large period size.

We want show, that the result obtained by EDGE are superior to other
versions even if it is given less number of generations and a smaller period
size, which puts EDGEinto a disadvantage.

Bl 6.4.2 Experiment B

The objective of the second experiment setting is to find out whether the
BASIC20 (VANILLA version with population perturbation) is able to reach
similar results as NODE20 and EDGE. If true, it would imply that the information
obtained by analyses does not play crucial role and that the improvements
are achieved just be perturbing the whole population.

All three versions share the same parameters, they run for 300 generations,
M is set to 100 and k is 20.
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6. Experiments

B 6.43 Experiment C

In this experiment, versions BASIC200, NODE200 and EDGE are compared.
Greater values of parameters M and k for BASIC200 and NODE200 have
been choosed than in experiment [6.4.2,. 'We set both M and k of versions
BASIC200 and NODE200 to 200. Raising the values of these parameters has
two implications. Firstly, the warm-up phase is longer. Secondly, more
generations within a single period are provided to the computation. We want
to find out, if providing the algorithm with more generations within single
period, could potentially lead to discovering new better solutions, which
would not be discovered otherwise.

. 6.5 Results

Results of all experiments are included in individual tables under each exper-
iment’s section. Detailed description of the algorithm versions used for each
experiment is provided in Section 6.4\

Non-parametric statistical Wilcoxon rank-sum test was used to compare
distributions of results between algorithm versions of each experiment. In each
experiment, the algorithm in first column was tested against the remaining
two, which hold the resulting p-values in their columns.

Thirty independent runs were executed for each instance. Presented quality
measures in each table are:

® median - The median value of the cost of the best solution over 30 runs
B best - The overall best solution over 30 runs

® vehicles/v - The median value of the vehicles used for the best solution
over 30 runs. This found value is the same for each data instance over
all algorithm version, that is why it is shown in only single column. This
constraint was for every instance and for every version of algorithm
satisfied in the very first generation of computation. Except for instances
egl-e4-C and egl-s4-C, where a satisfactory solution was not found at all
during any run of any version of algorithm.

® (p-value) - p-values returned by the Wilcoxon rank-sum test when testing
BSF solution of 30 results

The last column of each result table includes the best known solution to
each data instance taken from literature. The data was obtained from
https://logistik.bwl.uni-mainz.de/forschung/benchmarks/}

Further, the convergence of all the algorithm versions for every instance is
captured in graphs, available in appendix of this thesis. Only a few notable
ones are displayed separately in this chapter.

Data captured in graphs are the convergences of values:
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6.5. Results

® BSF solution - median value of the cost of best-so-far solution over 30
runs, drawn by full lines

® BOP_ solution - median value of the cost of best solution in current
population over 30 lines, drawn by thinner dashed lines

Bl 6.5.1 Experiment A

Dataset VANILLA NODE100 EDGE Best
v | median  best median best median best

(p-value) (p-value)

egl-el-A | 5 3561 3548 3548 3548 3548 3548 | 3548
(7.48e-6) (7.32e-7)

egl-el-C | 10 | 5760 5668 5687 5603 5680 5613 | 5595
(2.23e-6) (1.38e-5)

egl-ed-A | 9 6726 6578 6721 6617 6611 6507 | 6395
(0.657) (2.40e-6)

egl-ed-C | 20 | 11956 11764 11966 11790 11853 11649 | 11529
(0.473) (1.77e-8)

egl-s1-A | 7 5143 5035 5019 5018 5018 5018 | 5018
(4.29e-11) (6.37e-11)

egl-s1-C | 14 | 8690 8545 8605 8519 8593 8518 | 8518
(2.01e-4) (1.01e-4)

egl-s4-A | 19 | 13192 12951 13272 12982 12678 12561 | 12140
(0.196) (2.87e-11)

egl-s4-C | 36 | 21720 21245 21909 21626 21210 21071 | 20380
(0.01) (2.05e-10)

Table 6.4: Result of Experiment A, p-values of test between NODE100 and
VANILLA, between EDGE and VANILLA are shown, in bold if less than 0.01

egl-el-C egl-s4-C

— vanilla BSF_solution — vanilla BSF_solution
6000 vanilla BOP_solution - vanilla BOP_solution
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(a) : Convergence of egl-el-C (b) : Convergence of egl-s4-C
Figure 6.1: Experiment A convergence comparison

Results of this experiment are presented in Table |6.4. We see, that EDGE
always achieves better results than the VANILLA. EDGE reaches the best knows
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values for 3 of the data instances, while the VANILLA does so only for the
first instance. Furthermore, on all instances EDGE is significantly better than
VANILLA (at the o = 1 % level), depicted under (p-value) column).

The overall perfomance of the NODE100 is not as convincing as the EDGE.
To a great extent, the NODE100’s perfomance is influenced by the nature of
data instances is solves. It performs reasonably well on instances, which have
larger number of unrequired edges. On the other hand, its performance is
very poor on instances which have little to no unrequired edges. On half of
the data instance, the performance of NODE10O is either worse than VANILLA,
or difference is not statistically significant.

The absence of unrequired edges in a data instance does not seem to be a
problem for the EDGE.

Two data instances egl-e1-C and egl-s4-C have been picked as an illustrative
example in figure 6.1. In graph in Fig. 6.1a, NODE100 performs almost as well
as the EDGE, because this instance has lot of unrequired edges, as shown in
Table 6.3. Data instance in Fig. [6.1b| does not have any unrequired edges,
which results in the NODE100 performing worse than the vanilla.

From the two figures, we observe the superiority of convergence speed of
the EDGE, despite having only 300 generations and k of 20.

B 6.5.2 Experiment B

Dataset BASIC20 NODE20 EDGE Best
v | median  best median best median best

(p-value) (p-value)

egl-el-A | 5 3610 3548 3561 3548 3548 3548 | 3548
(4.64e-5) (3.06e-9)

egl-el-C | 10 5791 5703 5719 5639 5680 5613 | 5595
(2.03e-7) (5.00e-9)

egl-ed-A | 9 6793 6644 6808 6644 6611 6507 | 6395
(0.107) (2.05e-10)

egl-e4-C | 20 | 12008 11841 12022 11841 11853 11649 | 11529
(0.438) (2.26e-10)

egl-sl1-A | 7 5183 5066 5074 5038 5018 5018 | 5018
(4.44e-7) (3.51e-11)

egl-s1-C | 14 8766 8634 8748 8562 8593 8518 | 8518
(0.246) (2.79e-9)

egl-s4-A | 19 | 13354 13221 13336 13221 12678 12561 | 12140
(0.684) (2.87e-11)

egl-s4-C | 36 | 22000 21646 22000 21646 21210 21071 | 20380
(0.511) (2.87e-11)

Table 6.5: Result of Experiment B, p-values of test between NODE20 and BASIC20,
between EDGE and BASIC20 are shown, in bold if less than 0.01

In the second experiment B, from the values of Table [6.5, we observe
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similar pattern as in the previous experiment. EDGE dominates both of the
two remaining versions on every data instance. EDGEis also significantly better
(at the @« = 1 % level) on all of the runs. BASIC20 performs even worse than
VANILLA from previous experiment with given parameter configuration.

Examining the convergence graphs for each data instance in this experiment
reveals that the EDGE effectively utilizes the information from the analysis.
This results in continuous improvement of solution cost throughout the
computation. This is the most fair comparison out of all experiments between
all versions, because all the parameters M, k and mazGenerations are the set
same.

As illustrated in figure 6.2, EDGE performs well even on instances, at which
NODE20 fails. As discussed in previous experiment 6.5.1}

By looking at convergence graphs of the BASIC20’s BOP__solution (red
dashed line), we also hypothesize, that the computation is not given enough
generation in a single period to be able to yield progressively better results.
Effect of raising the value of parameters k are examined in the next experiment.
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6050 { — basic BSF_solution —— basic BSF_solution

basic BOP_solution | } i 25000 basic BOP_solution

6000 { — node BSF_solution i | — node BSF_solution [}
node BOP_solution | - ‘ ) - 24500 { - node BOP_solution | |

5950 { —— edge BSF_solution i oo ! i —— edge BSF_solution | |

edge BOP_solution f i 24000 edge BOP_solution

5900

23500
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5850 23000

b i i e A oy
22500 | 3
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generation generation
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soluti

5800

5750

5700

(a) : Convergence of egl-el-C (b) : Convergence of egl-s4-C

Figure 6.2: Experiment B convergence comparison

B 6.5.3 Experiment C

By raising the parameters M and k of BASIC200 and NODE200, a minor
improvement of the in terms of median values was achieved. Both versions were
able to benefit from longer periods, which results in BASIC200 outperforming
the VANILLA from Experiment A by a little margin, as the differences in
median cost between these version suggest. NODE200 notices a slight boost in
performance too, however its results on instances with no unrequired edges
are still very poor.

This implies, that by having too small size of period, as it was the case
in experiment B, we potentially lose out on discoveries of good solutions.
Raising the parameters M and k of EDGE would most likely have little no
effect, because the convergence is so fast even with low values of k.

During this experiment, EDGE again dominates over both BASIC200 and
NODE200. Summarized, the EDGE constantly provides the best performance
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over all data instances out of all algorithm versions compared, while having
significantly better solution (on the o = 1 % level) all the time. Raising the &k
of NODE improves this version, but it still can not compete against EDGE over
all the data instances. EDGE is more robust against different characteristics of
individual data instances.
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Figure 6.3: Experiment C convergence comparison

Dataset BASIC200 NODE200 EDGE Best
v | median  best median best median best

(p-value) (p-value)

egl-el-A | 5 3561 3548 3548 3548 3548 3548 | 3548
(1.49e-6) (6.28e-7)

egl-el-C | 10 5728 5677 5687 5634 5680 5613 | 5595
(3.26e-5) (5.72e-4)

egl-ed-A | 9 6689 6598 6732 6594 6611 6507 | 6395
(0.174) (3.09e-6)

egl-e4-C | 20 | 11941 11783 11960 11783 11853 11649 | 11529
(0.074) (3.13e-7)

egl-s1-A | 7 5128 5054 5027 5018 5018 5018 | 5018
(5.84e-10) (6.37e-11)

egl-s1-C | 14 8660 8587 8652 8518 8593 8518 | 8518
(0.079) (4.58e-4)

egl-s4-A | 19 | 13123 12924 13232 12989 12678 12561 | 12140
(0.0031) (2.87e-11)

egl-s4-C | 36 | 21712 21334 21752 21549 21210 21071 | 20380
(0.0042) (8.56e-11)

Table 6.6: Result of Experiment C, p-values of test between NODE200 and
BASIC200, between EDGE and BASIC200 are shown, in bold if less than 0.01
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Chapter 7

Conclusion

This thesis proposes an extended version of the IREANN algorithm specifically
adapted for the Capacitated Arc Routing Problem (CARP). The extension
builds upon the established IREANN algorithm, mainly utilizing its indirect
representation and nearest neighbor heuristic functionality. It incorporates a
mechanism that identifies high-quality features during the calculation and
makes use of this information when evaluating individuals in subsequent
generations.

This mechanism is called the “analysis”. It periodically computes character-
istics contributing to high-quality solutions. This mechanism, combined with
the original distance table, gives rise to a modified data structure, named
as the “journal.” This journal, which maintains an ordered list of nearest
neighbors for each node, uses a composite measure incorporating both spa-
tial proximity and solution-quality information to enhance the process of
constructing routes of the final solutions.

Two variants of this analysis procedure were developed: node analysis and
edge analysis, with the latter demonstrating improved precision in the context
of CARP. By taking into consideration both boundary nodes and edges, the
edge analysis approach effectively utilized the problem’s structure, leading to
better decision-making during the route construction process.

The goal of this thesis was not to reach state-of-the-art performance
or to perfectly fine-tune the algorithm’s hyperparameters. Instead, the
primary focus was to investigate and demonstrate the impact of the proposed
analysis. Series of experiments were carried out on standard CARP benchmark
datasets to evaluate the potential benefits and limitations of the extended
algorithm. The results of experiments show that the extended TREANN
consistently outperforms the original IREANN algorithm. In general, it
generates better solutions and converges to them faster. However, for some
data instances neither of the algorithm versions was able to generate valid
solutions, which could be solved by designing custom heuristics. Statistical
tests were conducted to evaluate the significance of these results, confirming
the superiority of the extended IREANN algorithm over the original version
in the studied scenarios.

The proposed extended IREANN is not limited to the domain of CARP. It
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7. Conclusion

can be applied in similar fashion to other routing problems. Or any other
permutation-based combinatorial optimization problem in general, which is
able leverage the information about distance between solution’s components.

Potential for further improvements of the proposed extension lies in fine-
tuning the hyperparameters of both the underlying original IREANN al-
gorithm, as well as those introduced by the extension itself. The overall
effectiveness could be significantly boosted by incorporating more sophisti-
cated local search techniques and by tweaking the exact order of existing
ones.
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