
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Evolutionary Algorithms for Optimization
Problems with Permutative Representation

David Pažout

Supervisor: Ing. David Woller
Study program: Open Informatics
Specialisation: Artificial Intelligence and Computer Science
May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499201 Personal ID number: Pažout David Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Evolutionary Algorithms for Optimization Problems with Permutative Representation

Bachelor’s thesis title in Czech:

Evoluční algoritmy pro optimalizační problémy s permutativní reprezentací

Guidelines:

1. Get familiar with metaheuristic optimization algorithms, especially population-based. Research state of the art metaheuristic
algorithms for specific problems with solutions representable by permutation or similar sequenced structures.
2. Identify low-level components (parent and survival selection mechanisms, crossover and mutation operators..) and
high-level evolutionary algorithm(s) suitable for the addressed class of problems. Implement them in C++ and incorporate
them in the generic metaheuristic solver permutator.
3. Apply the implemented algorithms to at least two different problems selected by the supervisor. Benchmark the generic
solver against existing problem-specific algorithms.

Bibliography / sources:

[1] Rafael Martí, Panos M. Pardalos, Mauricio G. C. Resende. Handbook of Heuristics, Springer, 2018
[2] Michel Gendreau, Jean-Yves Potvin. Handbook of Metaheuristics, Springer, 2019
[3] David Woller, Jan Hrazdíra, Miroslav Kulich. Metaheuristic Solver for Problems with Permutative Representation,
Intelligent Computing & Optimization 2022, Lecture Notes in Networks and Systems, vol 569. Springer

Name and workplace of bachelor’s thesis supervisor:

Ing. David Woller Intelligent and Mobile Robotics CIIRC

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 03.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. David Woller
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements

I would like to thank my supervisor Ing.
David Woller, for his invaluable assistance,
guidance and feedback throughout this
project.

Declaration

I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prague, date 26. May 2023

v

Abstract

In this work, we extend a general-purpose
metaheuristic solver for combinatorial
problems whose solutions can be rep-
resented as an ordered sequence of po-
tentially recurring nodes with arbitrary
lengths. We implemented and modified an
adaptive penalty evolutionary algorithm
ASCHEA and proposed new crossover op-
erators for use with this specific problem
representation. We tested the new solver
on two real-world problems and com-
pared results with the general-purpose
metaheuristic solver and problem-specific
solvers.

Keywords: combinatorial optimization;
metaheuristics; general-purpose
optimizer; evolutionary algorithms;
ASCHEA

Supervisor: Ing. David Woller
CIIRC
Intelligent and Mobile Robotics Group

Abstrakt

V této práci rozšiřujeme obecný meta-
heuristický řešič pro kombinatorické pro-
blémy, jejichž řešení lze reprezentovat jako
uspořádanou sekvenci potenciálně se opa-
kujících uzlů s libovolnou délkou. Imple-
mentovali a upravili jsme adaptivní pe-
nalizační evoluční algoritmus ASCHEA a
navrhli nové crossover operátory pro pou-
žití s touto konkrétní reprezentací. Nový
řešič jsme testovali na dvou reálných pro-
blémech a porovnali výsledky s obecným
metaheuristickým řešičem a řešiči navrže-
nými na tyto specifické problémy.

Klíčová slova: kombinatorická
optimalizace; metaheuristika; univerzální
optimalizátor; evoluční algoritmy;
ASCHEA

vi

Contents

1 Introduction 1

2 Literature overview 3

2.1 Problem specific metaheuristics . . 4

2.2 Constraint handling metaheuristics 5

3 Theory 9

3.1 Optimization 9

3.1.1 Constrained Optimization 9

3.2 Evolutionary Algorithms 10

3.2.1 EA Pipeline 10

3.3 General Metaheuristic Solver
(GMS) . 11

3.3.1 Problem definition 12

3.3.2 Framework 12

3.4 Implemented problems 13

3.4.1 Electric Vehicle Routing
Problem (EVRP) 14

3.4.2 ROADEF 2020 Challenge: Grid
operation-based outage
maintenance planning 15

4 Implementation 21

4.1 Generic Optimizer 21

4.1.1 Fitness and penalties 22

4.1.2 Initialization 24

4.1.3 Selection 25

4.1.4 Crossover 26

4.1.5 Mutation 38

4.1.6 Replacement 40

4.1.7 Population sizing scheme 42

4.2 Problem implementation 43

4.2.1 ROADEF 45

5 Results 47

5.1 ROADEF . 48

5.1.1 Performance comparison
experiments 48

5.1.2 Operator comparison 52

5.2 EVRP . 53

5.2.1 Performance comparison
experiments 54

vii

5.2.2 Operator comparison 57

6 Conclusion 59

Bibliography 61

A Attachments 67

viii

Figures

3.1 Solver class diagram 13

4.1 ASCHEA flowchart 22

5.1 ROADEF fitness minimization
steps of four different instances. . . 52

5.2 F and GAP of ROADEF instances
by operator with 15-minute timeout 53

5.3 F and GAP of ROADEF instances
by operator with 90-minute timeout 53

5.4 EVRP fitness minimization steps
of four different instances. 56

5.5 F of EVRP instances by operator 57

5.6 GAP of EVRP instances by
operator . 57

Tables

4.1 populations sizing example 43

5.1 parameters of ROADEF instances 48

5.2 ROADEF results with 15 and 90
minute timeouts using GMS-LS . . . 50

5.3 ROADEF results with 15 and 90
minute timeouts using GMS-CO . . 50

5.4 ROADEF results with 15 and 90
minute timeouts using
problem-specific solver 51

5.5 EVRP results using GMS-LS and
GMS-CO . 55

5.6 EVRP results using
problem-specific solver 55

ix

Chapter 1

Introduction

The ability to solve Combinatorial Optimization Problems (COPs) is impor-
tant to many disciplines. The complexity of the COPs ranges from polynomial
time solvable to NP-hard problems. General-purpose COP solvers are mainly
based on Integer Linear Programming (ILP) or Constraint Satisfaction Pro-
gramming such as Gurobi [gur23] and CPLEX [IBM23],. The downside of
these solvers is that they are based on exact methods and as such don’t scale
well for NP-hard problems. Often the only viable way to solve large instances
of NP-hard problems is to use problem-specific solvers whose development is
both time and expertise intensive.

A lot of COPs that are commonly used as testing benchmarks, e.g. Travel-
ing Salesman Problem (TSP), Vehicle Routing Problem (VRP), Quadratic
Assignment Problem (QAP) and Flow-Shop Scheduling Problem (FSSP), are
unconstrained problems with solutions represented as permutations, meaning
any permutation is a valid solution to the problem, even though it isn’t
a particularly good solution. However, many of the real-world COPs are
constrained, e.g. Capacitated VRP (CVRP) and other VRP variants, or
don’t have a permutation as solution representation, e.g. Non-Permutation
Flow-Shop problem (NPFS).

In this thesis, we extend the already implemented General Metaheuristic
Solver (GMS) [WHK22] for solving problems with dynamic permutative
solution representation. Dynamic permutative representation means that the
solution is represented by an ordered sequence of potentially recurring nodes
and that the length of the sequence may change during the optimization.
Unlike the previously mentioned general COP solvers, GMS is a metaheuristic

1

1. Introduction
and as such scales better for NP-hard problems. The first version of GMS
used Local Search (LS) methods with variable local search operators. We
will call this version of the solver the GMS-LS. It was compared with ILP
solver Gurobi on COPs with few to no constraints (CVRP, QAP, NPFS).
The GMS-LS outperformed Gurobi in both the quality and scalability of the
solutions in the limited time frame given to solve the problems.

We implemented a new search method based on Adaptive Segregational
Constrained Handling Evolutionary Algorithm (ASCHEA) and proposed
18 crossover operators for the dynamic permutative representation. This
approach, referred to as Constrained Oriented GMS (GMS-CO), was tested on
two real-world problems with numerous constraints: Electric VRP (EVRP)
[MMT+20] and ROADEF/EURO challenge 2020: maintenance planning
problem (ROADEF) [Roa20]. GMS-CO was compared to the previous GMS-
LS as well as to problem-specific solvers on both problems.

2

Chapter 2

Literature overview

Depending on desired solution quality we can choose from three types of
solvers: exact, approximate and metaheuristic.

Exact solvers are guaranteed to find an optimal solution to the problem.
However, many COPs are NP-hard and as such exact solvers take exponential
time to find the optimal solution. Probably the most widely used representa-
tion for combinatorial problems is ILP used in solvers like Gurobi and CPLEX,
which implement highly optimized versions of simplex and branch-and-bound
algorithms for solving ILP problems.

Approximation solvers are polynomial time solvers that are guaranteed to
find a solution of a certain quality. Found solutions are usually guaranteed
to be within a multiple of the optimal solution. These solvers are however
problem dependent and cannot be generalized. For example Christofides
algorithm [Chr76], a polynomial time approximation algorithm for TSP in
metric space, which is guaranteed to find a solution below 1.5 multiple of the
optimal solution.

Metaheuristic solvers typically do not guarantee anything about the solution
quality. In practice, they are often able to find good-quality solutions in a
short amount of time. The basic concepts of some common metaheuristics
will be introduced in the next section.

3

2. Literature overview
2.1 Problem specific metaheuristics

In this section, we go over metaheuristics used by successful competitors of
ROADEF and EVRP challenges.

Second place in the ROADEF 2020 challenge was awarded to Hue Chi Lam,
Hanyu Gu and Thi Thanh Thu Pham [GLPZ23]. They implemented many
algorithms, their most successful was iterated local search (ILS) [LMS03]
with self-adaptive perturbation. ILS is an extension of local search. When
the local search finds a locally optimal solution a perturbation operator shifts
the solution to a different part of the search space where the local search
begins again. ILS is highly dependent on the strength of the perturbation
operator, if the perturbation is weak it causes the search to fall in the same
local optima it has previously found. If the perturbation is strong, it is no
different from starting the search from a new, entirely random solution. The
self-adaptive perturbation starts as weak and, if no improving solution is
found in a certain number of iterations, the strength of the perturbation is
increased until an improving solution is found.

Third place was awarded to Francisco Parreño, Ramon Alvarez-Valdes and
Consuelo Parreño-Torres [PAVPT]. They first obtain a pool of near-optimal
solutions using ILP on a simplified objective function. Found solutions are
then improved by Variable Neighborhood Descent (VND) [MH97] and the
space near improved solutions is further explored by Path Relinking [Glo97].
VND uses several ranked local search operators, each of which defines its
own neighborhood. Starting from an initial solution, VND finds a locally
optimal solution with regard to the first operator. VND then iteratively
searches the neighborhood of the found solution with the next operator until
all operators were exhausted. If an improving solution was found VND start
the cycle again from the first operator. If no improving solution was found
VND terminates.
Path Relinking takes two good-quality solutions and finds a path of solutions
between them by applying a small perturbation operator. If a solution on
the path is better than both starting solutions, one of them is replaced.

The winners of the ROADEF 2020 challenge, Mirsad Buljubasic and Michel
Vasquez, have not yet published a paper discussing their solution. From their
code [BV23], it seems they used a starting population of feasible solutions
initialized by ILP that were further improved by VND.

The winners of the IEEE WCCI-2020 Competition on Evolutionary Compu-
tation for the Electric Vehicle Routing Problem (EVRP) were David Woller,

4

........................... 2.2. Constraint handling metaheuristics

Václav Vávra and Viktor Kozák [KWV21]. They used Variable Neighborhood
Search (VNS) [RHHM02] initialized by custom solution construction methods.
VNS is an extension of ILS which uses a combination of different perturbation
and local search operators.

The silver medalists of the EVRP 2020 Competition, V. Mak-Hau and B.
Hill, have not yet published a paper discussing their solution. However, the
problem website states that they used Simulated Annealing (SA) [VLAvLA87].
SA is a local search procedure that mimics a physical process of cooling hot
metals. Local search starts with high temperature, meaning it has a higher
probability of accepting a worse solution. As the temperature cools down
during the search, the probability of accepting worse solutions decreases
toward zero.

Third place was awarded to Vu Quoc Hien, Tran Cong Dao and Huynh Thi
Thanh Binh [HDB23]. They used an Evolutionary Algorithm (EA) [BS96]
initialized by locally optimal solutions. EAs create a population of potential
solutions to the problem and then use operators inspired by natural selection
and evolution processes to evolve a better population over time.

2.2 Constraint handling metaheuristics

The aforementioned solvers use problem-specific operators and repair functions
to satisfy all problem constraints. Generic metaheuristic solvers must find a
feasible solution without inner knowledge of the problem. Several constraint-
handling techniques are used in practice, mostly in the population-based
solvers and EAs.

The most common, easiest and earliest way to handle constraints in EAs
is to use penalties [CC02]. The goal of the penalty is to transform the
constrained problem into an unconstrained one by adding penalty p(X) to
the infeasible solution’s fitness based on the degree of its constraint violation.
Some of the commonly used types of penalties are:

.Death penalty
If a solution violates any constraint, it is rejected and generated again.
Because we gain no information on constraint violations it is usually
limited to problems in which the feasible search space is convex and
constitutes a reasonably large portion of the whole search space.

5

2. Literature overview
. Static penalty

Penalty coefficients do not depend on the current generation number.
There are many ways to configure static penalty, three common ways
are:.Number of unsatisfied constraints

When an individual is infeasible, their fitness is not computed and
all the individuals that violate the same number of constraints
receive the same penalty regardless of how close they are to the
feasible region [MQ98].

p(X) = K(p− s), (2.1)

where K is a large constant, p is the number of constraints and s is
the number of unsatisfied constraints..Constraint violation
A constant coefficient is assigned to each constraint.

p(X) =
p∑

i=1
rivi(X), (2.2)

where ri is a penalty coefficient and vi is a constraint violation
function (3.6).. Stepwise constraint violation
Penalty coefficient ri can itself be a function of vi such that ri =
ri(vi(X)) is an increasing stepwise function depending on the level
of the constraint violation [Mic96]..Dynamic penalty

Penalty functions in which the current generation number is involved in
the computation of the corresponding penalty coefficients. Typically, the
penalty coefficients increase over time, pushing the search toward the
feasible region. For example [JH94]

p(X) = (Ct)α
p∑

i=1
vi(X), (2.3)

where C and α are user-defined constants, t is current generation number
and vi is a constraint violation function..Adaptive penalty
The penalty function takes feedback from the search process. For example
[BHAB97]

p(X) = r(t)
p∑

i=1
vi(X), (2.4)

where penalty coefficient r is updated each generation according to the

r(t + 1) =

r(t)
β1

, if case1,

β2r(t), if case2,

r(t), otherwise,

(2.5)

6

........................... 2.2. Constraint handling metaheuristics

where
case1: if the best individuals in the last k generations were always
feasible,
case2: if the best individuals in the last k generations were always
infeasible,
and β1, β2, k > 1 are user defined constants and β1 ≠ β2 (to avoid
cycling)..ASCHEA Adaptive Segregational Constrained Handling Evolutionary
Algorithm (ASCHEA) [SH00] [BHS02] is an adaptive penalty evolu-
tionary algorithm for real-space optimization problems. The main idea
behind ASCHEA is to maintain both feasible and infeasible solutions
in the population and leveraging crossover between the feasible and
infeasible individuals, when it is deemed advantageous, to better explore
the feasible space and its boundary where the optimum usually lies.

To avoid dealing with penalty coefficients Stochastic ranking (SR) [RY00]
separates the fitness function from the fitness violations. SR ranks solutions
in the population with a comparison function. The function compares feasible
solutions based on their fitness and infeasible solutions based on how many
constraints they violate. When comparing feasible and infeasible solutions
the feasible solution is ranked better most of the time, but with a small
probability they are compared based on their fitness, and thus infeasible
solution can rank better than a feasible one. It then selects the best solutions
to continue to the next iteration of the search process.

Another approach is to treat each constraint as a separate objective and try
to minimize all of the objectives with Multiple Objective EA (MOEA). One
of the most popular MOEAs is NSGA-II [DPAM02], which mains a Pareto
front [RK14] of solutions, that is a set of solutions that aren’t worse in any
objective than all other found solutions.

7

8

Chapter 3

Theory

3.1 Optimization

Optimization is a collection of mathematical principles and methods used for
solving quantitative problems in many disciplines [opt23]. Optimization prob-
lems consist of three main parts: set of optimized variables F, fitness function
g, which assigns each variable a real number and demand for minimization or
maximization of said fitness function [KW22]. This can be formally written
as

min
X∈F

g(X), (3.1)

where f : V → R is a fitness function, V is domain of g, and F ⊆ V. Set
V will be called a set of valid solutions, and F will be a set of feasible solutions.
We will focus only on minimization problems since maxX∈F g(X) = minX∈F−g(X).

3.1.1 Constrained Optimization

Constrained optimization is a process of minimizing a fitness function over
some variables where the variables must satisfy a set of constraints. Various
kinds of constrained problems arise depending on whether the value of the
fitness function can be computed even for infeasible individuals, whether the
constraints return only a boolean info (fulfilled/unfulfilled, feasible/infeasible),
or a more informative degree of constraint violation.

9

3. Theory
A general constrained minimization problem may be written as follows

[MN21].
min
X∈V

g(X) s.t. (3.2)

ui(X) ≤ 0, i = [1, .., m], (3.3)

vj(X) = 0, j = [m + 1, .., p], (3.4)

where ui(X) ≤ 0 and vj(X) = 0 are set of p constraint functions that must
be satisfied. The set of feasible solutions F is defined as

F = {x ∈ V|ui(X) ≤ 0 and vj(X) = 0, i = [1, .., m], j = [m+1, .., p]}. (3.5)

It is useful to quantify how much the solution x violates constraint i. For
this purpose, we use a constraint violation function νi, which must satisfy
the following equations,

νi : V→ R, (3.6)

νi(X)
{

= 0, if X ∈ F,

> 0, otherwise.
(3.7)

3.2 Evolutionary Algorithms

Evolutionary algorithms (EAs) are a class of computational methods inspired
by the principles of natural selection and evolution [Dar59]. They are used to
solve optimization and search problems with large search spaces and complex
fitness functions [BS96]. EAs create a population of potential solutions to
the problem and then use selection, reproduction (crossover and mutation)
and replacement operators to evolve a better population over time.

3.2.1 EA Pipeline

The basic structure of evolutionary algorithms can be described as follows:

. Initialization creates a base population of λ solutions and evaluates
their fitness. This can be done either by randomly generating valid
solutions or using some kind of constructive heuristic.

10

.......................... 3.3. General Metaheuristic Solver (GMS)

. Selection determines which individuals will go on to reproduce. The
purpose of selection is to incentivize the reproduction of stronger indi-
viduals. Two of the most popular selection strategies are roulette wheel
selection and tournament selection.

.Crossover is an analog of sexual reproduction, combining genetic in-
formation from parent solutions to hopefully create better offspring.
The operator is applied to individuals in the parent population until µ
children are produced.

.Mutation introduces small genetic variations into the child’s genome.
The intensity and the occurrence of a mutation are often subject to
chance. After this step fitness of all children is computed.

.Replacement combines the old base population and the population
of children, discarding some individuals in the process. As a general
rule replacement should maintain a static population size, although
some exceptions to this rule can be found [SWL+03]. The most popular
replacement schemes are deterministic, where only the fittest individuals
survive, and generational, where the old base population is discarded
and replaced by the population of children.

The process of selection, crossover, mutation and replacement is repeated
until a stopping criterion is met, e.g. a maximum number of generations has
been reached, allocated time has elapsed, or a solution with the desired level
of fitness has been found.

3.3 General Metaheuristic Solver (GMS)

This section is an overview of the General Metaheuristic Solver (GMS) as
described in Jan Hrazdíra’s Master’s Thesis [Hra22] on top of which our solver
is designed. The GMS consists of the Generic Solver component and the
Problem component. Generic Solver is made of three parts: abstract class
Instance, and Solution and Generic Optimizer classes. Implementation of our
Generic Optimizer class and Problem components will be described in the
next chapter.

11

3. Theory
3.3.1 Problem definition

The GMS accepts minimization problems whose solutions can be encoded
as an ordered sequence of potentially recurring nodes with arbitrary lengths.
More formally, the problem and its solution must satisfy the following.

Given a set of nodes:

and bounds:

Minimize fitness function:

where:

A = {1, ..., n}, A ⊂ Z+ (3.8)

LB = [l1, l2, ..., ln], LB ∈ Zn
+, (3.9)

UB = [u1, u2, ..., un], UB ∈ Zn
+. (3.10)

g(X) : Am → R, (3.11)

X = [x1, x2, ..., xm], X ∈ Am, (3.12)

F = [f1, f2, ..., fm], F ∈ Zn
+, (3.13)

fi =
n∑

j=1
Jxk = aiK, ∀i ∈ [1, n], (3.14)

li ≤ fi ≤ ui, ∀i ∈ [1, n]. (3.15)

In other words, given a set of nodes A with two vectors of lower bound
LB and upper bounds UB, find a vector X that minimizes fitness function g
while also enforcing node frequency fi to be between bound li and ui for every
node. Frequency fi represents a number of the nodes ai in the solution X.
The fitness function g can be an arbitrary function Am → R. Solution X can
also have variable length when LB ̸= UB. In the context of the GMS, the
solution X is considered valid, i.e. X ∈ V, if all its nodes lie inside the lower
and upped bounds. The feasibility of solution X, i.e. X ∈ F, is determined
by the fitness function g.

3.3.2 Framework

Generic Solver is made of three parts: abstract class Instance, and Solution
and Generic Optimizer classes.

The Instance is an abstract class that defines mandatory properties that
every Problem instance must have defined in order to follow our formal
problem definition. Those are fitness function g, that returns the fitness and
information on the feasibility of X, i.e. if X ∈ F or X /∈ F. Other properties
are the number of nodes A and the lower and upper bounds, LB and UB,

12

................................ 3.4. Implemented problems

of the node frequency F in the solution. To address a new problem using
the proposed solver, a user has to define a new Problem class, which inherits
from this one. It has to set all the mandatory properties and implement a
corresponding fitness function g.

The Solution class holds the solution vector X and the frequency vector F .
It also contains the fitness g(X) of the solution vector X and the information
about whether this solution is feasible or not. Additionally, it has a function
that exports the solution to JSON.

Generic Optimizer is the optimization engine that works without the
knowledge of the underlying problem with the exception of the information
that is provided through the Instance class, i.e., number of nodes |A| and
vectors LB, UB. For the optimizer to function properly together with the
Instance class it should only compute the fitness g of valid solutions X ∈ V.

Figure 3.1: Solver class diagram

3.4 Implemented problems

We chose to tackle two real-world problems with numerous constraints that
already have their own problem-specific solvers whose performance can be
used as a benchmark. First is the Electric Vehicle Routing Problem (EVRP)
[MMT+20] a version of the Vehicle Routing Problem (VRP). The second

13

3. Theory
problem is a subject of the ROADEF 2020 Challenge [Roa20] and concerns
grid operation-based outage maintenance planning, a type of Transmission
Maintenance Scheduling problem [FGM+16].

3.4.1 Electric Vehicle Routing Problem (EVRP)

EVRP is an extension of Capacitated VRP (CVRP), which itself is an
extension of the VRP. In the VRP, the goal is to minimize the total distance
traveled by a fleet of vehicles, while visiting each customer exactly once. In
the CVRP, the customers are assigned an integer-valued positive demand and
the vehicles have limited carrying capacity. Thus an additional constraint of
satisfying all customers’ demands while respecting the limited vehicle capacity
is added to the VRP. In the EVRP vehicles have a charge capacity that is
depleted with the distance traveled, and vehicles can be recharged at the
depot or charging stations. Thus an additional constraint of not running out
of charge while satisfying all other constraints of CVRP is added.

The next section is a slightly reformulated problem definition and descrip-
tion as given in [MMT+20]. Given a fleet of EVs, a set of customers and
charging stations, and one depot, the goal is to minimize the total distance
traveled by the fleet while the EVs serve all the customers without exceeding
their carrying capacity and no EV runs out of charge during the tour. All
EVs begin and end at the depot, EVs always leave the charging station
fully charged, and the charging stations (including the depot) can be visited
multiple times by any EV.

The EVRP can be mathematically formulated as follows:

min
∑

i∈V,j∈V,i ̸=j

dijxij , s.t. (3.16)

∑
j∈V,i ̸=j

xij = 1, ∀i ∈ I, (3.17)

∑
j∈V,i ̸=j

xij ≤ 1, ∀i ∈ F
′
, (3.18)

∑
j∈V,i ̸=j

xij −
∑

j∈V,i ̸=j

xji = 0, ∀i ∈ V, (3.19)

ui ≤ uj − bixij + C(1− xij), ∀i ∈ V, ∀j ∈ V, i ̸= j, (3.20)

0 ≤ ui ≤ C, ∀i ∈ V, (3.21)

yj ≤ yi − hdijxij + Q(1− xij), ∀i ∈ V, ∀j ∈ V, i ̸= j, (3.22)

14

................................ 3.4. Implemented problems

yj ≤ Q− hdijxij , ∀i ∈ F ′ ∪ {0}, ∀j ∈ V, i ̸= j, (3.23)

0 ≤ yi ≤ Q, ∀i ∈ V, (3.24)

xij ∈ {0, 1}, ∀i ∈ V, ∀j ∈ V, i ̸= j, (3.25)

where G is a fully connected weighted graph G = (V, A), V = {0 ∪ I ∪ F ′}
is a set of nodes and E = {ei,j | i, j ∈ V, i ≠ j} is a set of edges. Nodes
consist of disjoint sets of customers I, charging stations F ′ and a depot 0.
To permit multiple visits to the same charging station, F ′ consist of βi node
copies of each charging station i ∈ F (e.g. |F ′| =

∑
i∈F βi). Each customer

i ∈ I is assigned a positive demand bi. Symbol dij denotes the weight of the
edge ei,j and it is equivalent to the Euclidean distance between its nodes.
Car traversing edge ei,j consumes hdij of the remaining battery charge level
of the EV, where h denotes the charge consumption rate. All cars have
the same maximal carrying capacity C and maximal battery charge level Q.
Variables ui and yi denote the remaining carrying capacity and remaining
battery charge level of an EV on its arrival at node i ∈ V .

3.4.2 ROADEF 2020 Challenge: Grid operation-based outage
maintenance planning

This problem was proposed in 2020 as part of a biannual programming
challenge by the French Society for Operational Research and Decision Support
[Roa23]. It is a type of Transmission Maintenance Scheduling problem where
the goal is to find a maintenance schedule that reduces the probability of
grid failure. Scheduled repairs are performed at predetermined intervals
or according to prescribed criteria. Maintenance in the electricity industry
concerns generating units and transmission lines with either long-term or short-
term horizons [FGM+16]. The proposed problem deals with electrical grid
repairs over a one-year horizon. The next sections are a slightly reformulated
problem description and definition as given in [RTP20].

Introduction

Réseau de Transport d’Électricité (Electricity Transmission Network or RTE
for short) is the electricity transmission system operator of France. It is
responsible for the operation, maintenance and development of the French
high-voltage transmission system. The mission of RTE is to guarantee
electricity delivery to French citizens. To achieve its goal the grid needs to be

15

3. Theory
correctly maintained without interruption to the electricity supply. Factors
such as workforce availability, seasonal and unexpected weather, and the size
of the grid itself make scheduling these repair operations a highly complex
problem.

To solve this planning issue RTE implemented a three-step approach. First,
risk values of different future grid scenarios are computed. Second, obtained
risk values are inputted into an optimization algorithm which returns a
schedule. Third, the proposed schedule is validated. ROADEF challenge
focuses on the second step of this approach: given the risk values and problem
constraints, the goal is to find an optimal planning regarding a risk-based
objective.

Notation, Inputs and Output

This section includes input, output and internal variables used in constraints
and fitness functions.

.Planning horizon H: The schedule has to be established over a one-
year period but the time step of the schedule can vary depending on
the needed precision. The number of time steps in a year is T ∈ N and
the discrete-time horizon is H = {1, ..., T} (e.g. T = 52 is a weekly
schedule)..Resources C: Set of all resources C that may be needed to carry out
the different interventions..Maximum resources uc

t : There is an upper bound on available
resources that varies in time. The highest possible usage of resource
c ∈ C at time t ∈ H is denoted by uc

t ∈ R..Minimum resources lct : For operational reasons, there is also
a lower bound on resource consumption that varies in time. The
lowest possible usage of resource c ∈ C at time t ∈ H is denoted by
lct ∈ R.. Interventions I: Interventions I are tasks that have to be planned in the

coming year. They differ in terms of duration and resource requirements..Time duration ∆i,t: The duration of a given intervention is not
fixed in time and depends on when it starts (because of days off,
weekends, holidays, etc.). Duration of intervention i ∈ I starting at
time t ∈ H is denoted by ∆i,t ∈ N.

16

................................ 3.4. Implemented problems

.Resource workload rc,t

i,t′ : Every intervention requires different
resources all of which also vary in time. Workload required for
resource c ∈ C at time t ∈ H by intervention i ∈ I if i begins at
time t

′ ∈ H is denoted by rc,t

i,t′ ∈ R+..Risk risks,t

i,t′ : When an intervention is being performed the corresponding
lines have to be disconnected causing the electricity network to be
weakened at this time. This implies a financial risk for RTE, because
if another close site was to break down (due to extreme weather for
example) the grid may not be able to operate correctly. Risk is evaluated
according to different scenarios St at time t ∈ H which do not dependent
on interventions but are a result of simulating a certain grid operation.
However, risks,t

i,t′ ∈ R depends on the considered intervention i ∈ I and
its start t

′ ∈ H, the time period t ∈ H (generally summer is safer than
winter) and scenario s ∈ St.. Solution L: A schedule (or solution) is a list L of pairs (i, t) ∈ I ×H,
where t is the starting time of intervention i. Starting time of intervention
i ∈ I is denoted by starti and It ⊆ I is the set of interventions in process
at time t ∈ H.

Constraints

There are three types of constraints. Schedule constraints ensure that all jobs
are completed without interruption and finished before the end of the schedule.
Workforce constraints ensure that total workforce use doesn’t exceed lower
and upper limits of available resources. Disjunctive constraints ensure that
interruptions that are deemed too risky are not executed at the same time.
A planning is said feasible if all constraints presented below hold.

. Schedule constraints:. Interventions have to start at the beginning of a period.. Once an intervention starts, it cannot be interrupted. If intervention
i ∈ I starts at time t ∈ H, then it has to end at t + ∆i,t..All interventions have to be executed..All interventions must be completed no later than the end of the
horizon. If intervention i ∈ I starts at time t ∈ H, then t + ∆i,t ≤
T + 1.Resource constraints:

17

3. Theory
.Given a solution, the workload due to intervention i for resource c

at time t is rc,t
i,starti

. Then the total resource workload for c at time
t is

rc,t
total =

∑
i∈It

rc,t
i,starti

. (3.26)

.Total resource workload must lie between the limits

lct ≤ rc,t
total ≤ uc

t , ∀c ∈ C, ∀t ∈ H. (3.27).Disjunctive constraints: Some interventions are too close to each
other to be carried out at the same time. The set of exclusions is denoted
by Exc. It is a set of triplets (i1, i2, t), where i1, i2 ∈ I and t ∈ H. The
exclusion constraints can formally be written as

i1 ∈ It =⇒ i2 /∈ It, ∀(i1, i2, t) ∈ Exc. (3.28)

Objective

The score evaluation of a feasible planning only depends on the risk distribu-
tion. The overall mean cost appears quickly as an excellent candidate, but
it is not enough for taking into account specific behaviors of the risk distri-
bution. In the end, RTE found that expected excess, when in combination
with the mean cost, is able to take into account specific behaviors of the risk
distribution.

.Mean cost obj1:.Given a solution, the cumulative planning risk at time t ∈ H for a
scenario s ∈ St is

risks,t =
∑
i∈It

risks,t
i,starti

. (3.29)

.The mean cumulative planning risk at time t ∈ H is

riskt = 1
|St|

∑
s∈St

risks,t. (3.30)

.Then the overall planning risk (or mean cost) is

obj1 = 1
t

∑
t∈H

riskt. (3.31)

. Expected excess obj2:

18

................................ 3.4. Implemented problems

. Let E ⊂ R be a non-empty finite set and τ ∈ [0, 1]. The τ quantile
of E, denoted Qt(E) is:

Qτ (E) = min{q ∈ R : ∃X ⊆ E : |X| ≥ τ × |E| and ∀x ∈ X, x ≤ q}
(3.32). For every time period t ∈ H, we define the quantile value Qt

τ as

Qt
τ = Qτ ({risks,t}s∈St). (3.33).The expected excess at time t ∈ H is then defined as

Excessτ (t) = max(0, Qt
τ − riskt). (3.34).The expected excess of a planning is

obj2(τ) = 1
t

∑
t∈H

Excessτ (t). (3.35)

.Planning ranking obj(τ): The two metrics described above are in
euros. However, they cannot necessarily be compared directly, as they
depend on risk aversion (or risk policies). That is why a scaling factor
α ∈ [0, 1] is provided. The final score of a planning then is

obj(τ) = α obj1 + (1− α) obj2(τ). (3.36)

The goal is to find a feasible planning with the lowest possible score
regarding this objective.

19

20

Chapter 4

Implementation

In the first part of this chapter, we will introduce our changes to the GMS
[WHK22]. Those include modifications to the Solution class, which was
extended to include a penalty vector P = [p0, .., pp], and the implementation
of a new Generic Optimizer class in the form of modified ASCHEA with
population sizing scheme and newly proposed crossover operators. The second
part describes the implementation of the EVRP and ROADEF problems.

4.1 Generic Optimizer

The structure of the Generic Optimizer mimics the structure of ASCHEA.
The operators and other static parameters are the same for all populations. A
single instance of ASCHEA has a similar structure as standard EA described
in EA Pipeline section, and it can be summarized by the flowchart in Figure
4.1.

ASCHEA itself only defines selection, replacement, and penalty initial-
ization and update mechanisms. Population initialization, crossover and
mutation operators were chosen by us. The algorithm terminates after a
user-determined amount of time has elapsed. If parameter stop_on_feasible
is true algorithm can terminate sooner if a feasible solution has been found
first. If the population sizing scheme is active, several instances of ASCHEA,
each with its unique population, are run in parallel. Parameters that depend
on the state of the population are not shared between instances, more on

21

4. Implementation....................................
that later in this chapter.

Figure 4.1: ASCHEA flowchart

4.1.1 Fitness and penalties

Standard ASCHEA operates on problems in Rn space with constraints of two
types, inequality constraints

ui(X) ≤ 0, i = [1, .., m], (4.1)

and equality constraints

vj(X) = 0, j = [m + 1, .., p], (4.2)

which are often relaxed to |vj(X)− ϵ| ≤ 0 for some small ϵ.
From these constraints their constraint violation functions νi, i = [1, .., p] are
defined

νi(X) =
{

max(0, ui(X)), if 1 ≤ i ≤ m,

|vi(X)|, if m < i ≤ p.
(4.3)

Since our problems aren’t in Rn space we cannot use these constraints and
their constraint violation functions. Constraint violations are instead returned
in the penalty vector P = [p0, .., pp] by the user-implemented Compute fitness
function g of the Problem class, which is inherited from the abstract class
Instance. Penalty vector P = [p0, .., pp] consists of un-penalized fitness p0 and
the solutions constraint violations p1, .., pp. To ensure better performance
constraint violations shouldn’t be binary, but should indicate if possible, an
amount of violation.

In the first version of ASCHEA [SH00] single penalty coefficient was used
for all constraint violations. However, it has been shown that constraint

22

.................................. 4.1. Generic Optimizer

satisfaction difficulty differs from one constraint to another. So in the second
version [BHS02] each constraint has its own penalty coefficient. Penalized
fitness gp(X) is computed independently inside our Generic Optimizer as

gp(X) =
p∑

i=0
αipi(X), (4.4)

where α1, .., αp are penalty coefficients and α0 is the fitness coefficient. Term
pi(X) is equal to the ith element of the penalty vector P of the solution X.
By fitness of the solution X, it is from now on meant penalized fitness gp(X)
unless stated otherwise.

Coefficients initialization

At the start of the algorithm penalty coefficients αi(0), i = [1, .., p] are
initialized from the first generation of solutions [X1, .., Xn] as

αi(0) =

1, if

∑n
j=1 pi(Xj) = 0,∑n

j=1 |p0(Xj)|∑n

j=1 |pi(Xj)| × 100, otherwise,
i = [1, .., p]. (4.5)

The initial value of α0 is set to α0(0) = 1.

Coefficients update

All penalty coefficients α1, .., αp are adapted at the end of each generation t
by the following rule:

αi(t + 1) =
{

αi(t)/fact, if τt(i) > τtarget,

αi(t)× fact, otherwise,
for i ∈ [1, .., p], (4.6)

where τtarget is a user-defined parameter that represents the desired proportion
of individuals satisfying a constraint, τt(i) is the proportion of individuals sat-
isfying constraint i at generation t and fact is a penalty scaling factor (usually
fact = 1.1). It holds that τtarget, τt, fact ∈ R and τtarget, τt ∈ [0, 1], fact > 1.

23

4. Implementation....................................
Linear coefficient rescaling scheme

With the introduction of the adaptive penalty coefficients, we encounter two
problems that didn’t arise in the GMS-LS because it used static, user-defined
penalties.
The first problem is less significant of the two and could be avoided by using
floats to store fitness/penalties. We store the penalties as unsigned long
integers, the same as fitness in the previous implementation. The problem
occurs when penalty coefficient αk has easily satisfiable constraints pk. The
penalty coefficient αk is repeatedly divided by fact and after αkpk < 0.5
the product is rounded to 0 and it doesn’t contribute to the final penalty
function.
The second problem is the exact opposite and it occurs when penalty coefficient
αk has a difficult constraint pk. As a result, the penalty coefficient αk is
repeatedly multiplied by fact. For example, if starting with pk = 1, αk = 1
and fact = 1.1, after approximately logfact(4, 294, 967, 295) ≈ 233 generations
the product αkpk will exceed the maximal size of an unsigned long integer
of 4,294,967,295. Since the second problem would persist even with different
choice of data type we decided to implement a linear coefficient rescaling
scheme.

Rescaling is meant to preserve relations between coefficients without them
exceeding the lower limit of 1 and user-defined upper limit αceiling. The upper
limit can also be generated automatically by the program depending on the
problem as

αceiling = max
i=[1,..p]

αi(0). (4.7)

The rescaling scheme is then applied to all coefficients and occurs after
Coefficients update is performed.

αi =
{

1 + αi − αmin, if αmax < αceiling,

1 + (αi − αmin)αceiling

αmax
, otherwise,

(4.8)

where αmin and αmax are the smallest and the biggest coefficient in the
current generation.

4.1.2 Initialization

Users can choose one of the four methods for initializing the population,
all of which create solutions inside the lower and upper bounds. The core
functionality of all initialization operators was already implemented and is

24

.................................. 4.1. Generic Optimizer

described in detail in [Hra22, pg. 24,25]. We modified Greedy and Nearest-
Neighbor operators to begin their process from unique starting points.

.Random starts with an empty solution. It then inserts nodes below the
lower bound to random locations in the solution until all lower bounds
are satisfied. As a result the returned solution always has F = LB.

.Random-replicate generates a random permutation of all nodes. It
then repeatedly appends the permutation to itself until all the lower
bounds are satisfied. If a node reaches its upper bound before all lower
bounds are satisfied it is excluded from the next copies of the permutation.

.Greedy starts with incomplete solution X of k random nodes that are
below upper bound. It then inserts a node a ∈ [1, .., |A|] into the previous
solution thus creating a new solution (node a must be below the upper
bound). After iterating over all possible node and position combinations,
the new solution with the smallest non-penalized fitness g continues
to the next iteration. Insertions are repeated until a valid solution is
obtained. Random starting solution of length k = ⌈ λ

|A|⌉ is used as a seed
for the generation of unique solutions.

.Nearest-Neighbor is similar to greedy construction but instead of
insertion, it appends the node a at the end of the solution.

4.1.3 Selection

To ensure better exploration of the space near the constraints’ boundaries
and to attract infeasible individuals to the feasible region, without restricting
the search too much, a constraint-driven selection/seduction mechanism is
used [Ron95]. It chooses a mate of a feasible individual to be an infeasible
one, but only if the number of feasible individuals in the population is bellow
τtargetλ. It only limits from which solutions the mate can be selected and
not how the mate is chosen. This means that any selection operator can be
used in combination with this mechanism. We used tournament selection
with user-defined tournament_size ∈ N. The size of the parent population
number_of_parents is set to population size λ.

25

4. Implementation....................................
Algorithm 1 Tournament_selection(population)

1: parents← []
2: for i = 0 to number_of_parents do
3: tournament← []
4: for j = 0 to tournament_size do
5: tournament.append(random(population))
6: end for
7: parents.append(fittest_solution(tournament))
8: end for

The algorithm creates number_of_parents tournaments (1-3). All tourna-
ments are filled with tournament_size random solutions from the population
(4-6). The fittest individual from each tournament is then added to the parent
population (7).

4.1.4 Crossover

In this section, we describe 18 binary crossover operators, most of them being
extensions of classical crossovers for problems with permutation representation
(e.g. TSP, VRP, QAP...) [LKM+99], [PM13], [MK05]. We divided them into
two main groups, positional and neighboring crossovers. We also introduce
a concept of alignment and implement 6 alignment operators to be used in
combination with positional crossovers.

All crossover operators accept two parent solutions X,Y and return one
child solution Z. The user can define a set of crossover operators C which
will be used in reproduction.

Algorithm 2 Crossover(parents)
1: children← []
2: for i = 1 to number_of_parents do
3: X ← parents[i]
4: Y ← parents[i + 1]
5: crossover_operator ← random(C)
6: children.append(crossover_operator(X, Y))
7: children.append(crossover_operator(Y, X))
8: i← i + 2
9: end for

26

.................................. 4.1. Generic Optimizer

Crossover selects adjacent parents (3-4) and chooses a random crossover
operator from the user-provided set of operators C (5). Crossover is then
applied to the parents and the resulting child solutions are added to the child
population (6-7). The process is repeated number_of_parents-times with
the next parents (2,8).

Alignment operators

For positional crossovers to work both solutions X, Y have to have the same
length, this is guaranteed only if LB = UB. To enable the crossover of
differently-sized solutions we introduce a concept of alignment. It inserts
copies of a gap node agap into the solutions and thus equalizes their length.
Six alignment operators are described in the next section.

Let the length of the solution X be |X|, |X| ≥ |Y | and agap = |A| + 1
(e.g. one bigger than the biggest node in the solution). The lower and upper
bounds of the gap node are set lagap = 0 and uagap =∞.

. Front-fill one-gap prepends a string of gap nodes of length |X| − |Y |
at the start of the shorter solution..Back-fill one-gap appends a string of gap nodes of length |X| − |Y | at
the end of the shorter solution..Random one-gap inserts a string of gap nodes of length |X| − |Y | at a
random position into the shorter solution..Greedy one-gap inserts a string of gap nodes of length |X| − |Y | into
the shorter solution, thus creating X̂, Ŷ . The string is inserted into the
position k which minimizes

|X|∑
i=1

Jx̂i ̸= ŷiK (4.9)

.Random uniform inserts |X| − |Y | gap nodes at random positions into
the shorter solution..Greedy uniform inserts gap nodes possibly into both solutions thus
creating X̂, Ŷ . Alignment returns X̂, Ŷ that minimize the penalty func-
tion

k∑
i=1

pneqJx̂i ̸= ŷiK + pgap(Jx̂i = agapK + Jŷi = agapK), (4.10)

27

4. Implementation....................................
where pneq, pgap ∈ N, pneq, pgap ≥ 1 are user-defined penalty coefficients.
The number of mismatched pairs between the solution is multiplied by
pneq, and the number of gaps by pgap. Constant k is the length of both
solutions after the insertion of gap nodes. This operator is a version of
the Needleman-Wunsch algorithm [NW70], also knowns as the global
alignment algorithm.

Positional crossovers

Positional crossover works with absolute positions e.g. it knows that in
solution [1 2 3] node 1 is in the first position. Chosen alignment operator
is applied to both parents X and Y before the crossover operator. The gap
node is removed afterward from both parents and child. The frequency of
node a in the child solution Z is further denoted as just fa.

.PBX (Position Based Crossover) [SVG87] is a standard TSP operator.
The child inherits the absolute positions of nodes on random positions
from the first parent. Our variation of PBX is described with an example
below.
The child is initialized as a copy of parent Y . The operator then selects
a random set of positions ({4, 6, 8}).

X : 3 1 4 1 5 9 2 6 5 3

Y : 2 7 1 8 2 8 1 8 2 8

Nodes on the selected positions in the parent X ([1, 9, 6]) are removed
from the child in the same frequencies as they have in the selected set.
(only one of the 1s is removed, all are as likely to be chosen).

Z : 2 7 1 8 2 8 8 2 8

Selected nodes are reinserted back into the child at the same positions
they have in parent X.

Z : 2 7 1 1 8 9 2 6 8 8 2 8

.NBX (Node Based Crossover) is our operator inspired by PBX. The
child inherits all absolute positions of random nodes from the first parent.
NBX is described with an example below.
The child is initialized as a copy of parent Y .

X : 3 1 4 1 5 9 2 6 5 3

28

.................................. 4.1. Generic Optimizer

Y : 2 7 1 8 2 8 1 8 2 8

Z : 2 7 1 8 2 8 1 8 2 8

The operator then selects a set of random nodes ({1, 2, 4}), removes all
of their occurrences from the child

Z : 7 8 8 8 8

and then reinserts them back into the child at the positions they have in
parent X.

Z : 7 1 4 1 8 8 2 8 8.OBX (Order Based Crossover) [SVG87] is a TSP operator. The child
inherits the relative positions of nodes on random positions from the
first parent. Our variation of OBX is described with an example below.
The operator starts by selecting a set of random nodes ({3, 5, 8}) whose
sums of frequencies are the same in both parents.

X : 3 1 4 1 5 9 2 6 5 3

Y : 2 7 1 8 2 8 1 8 2 8

The child is then set as a copy of parent Y . The selected nodes in the
child are then replaced by the selected nodes as ordered in X.

Z : 2 7 1 3 2 5 1 5 2 3

.OX (Ordered Crossover) [D+85] is a standard TSP and VRP operator.
It is a mix between the positional and neighboring operators, but since
it needs same-sized solutions we included it in this section. The child
inherits a substring, with its position, from the first parent. The rest of
the child is filled by the second parent. Our variation of OX is described
with an example below.
First, a random substring of X starting at i and ending before j (i =
4, j = 8) is copied to the child.

X : 3 1 4 | 1 5 9 2 | 6 5 3

Y : 2 7 1 | 8 2 8 1 | 8 2 8

Z : * * * | 1 5 9 2 | * * *

A list of nodes L, taken from Y starting at position j, wrapping
around the end of the Y and ending before j, is then copied to Z
(L = [8, 2, 8, 2, 7, 1, 8, 2, 8, 1]). The same number of nodes are inserted
after the substring in Z as are in X and Y . Nodes from the substring
(1, 2, 5, 9) are removed from the list L in the same frequencies as they
have in the substring (L = [8, 2, 8, 7, 8, 2, 8, 1]).

Z : 7 8 2 8 1 | 1 5 9 2 | 8 2 8

29

4. Implementation....................................
.MPX (Maximally Preserving Crossover) [MGSK88] is a TSP operator.

The child inherits a substring S from the first parent. The rest is
appended to the substring from the second parent. If viewed as a
standard TSP operator, it is designed to break at most |S| edges between
the parent solutions. Our variation of MPX is described with an example
below.
The child is initialized as a random substring S of X. The size of the
substring must be between 10 and |X|

2 for solutions |X| > 20.

X : 3 1 4 | 1 5 9 2 | 6 5 3

Y : 2 7 1 8 2 8 1 8 2 8
Z : 1 5 9 2

Nodes in the substring ([1, 2, 5, 9]) are removed from the copy of parent
Y in the same frequencies as they have in the substring.

Ycopy : 2 7 8 8 1 8 2 8

The copy of Y is then appended to the child.

Z : 1 5 9 2 2 7 8 8 1 8 2 8.APX (Alternating Position Crossover) [LKPM97] is a TSP operator.
Our variation of APX is described with an example below.
It zips together the parents X = [x1, ..., x|X|], Y = [y1, ..., y|Y |].

X : 3 1 4 1 5 9 2 6 5 3

Y : 2 7 1 8 2 8 1 8 2 8
The child starts as an empty solution. Nodes are sequentially appended
to the child from list [x1, y1, x2, y2, ..., x|X|, y|Y |] only if fxi < uxi (or
fyi < uyi).

Z : 3 2 1 7 4 1 8 5 2 9 8 2 6 8 5 3 8.CX (Cyclic crossover) [MF99] is a standard TSP and VRP operator.
Every position in the child is assigned a node from one of the parents
with the same position. To achieve this, the operator founds a cycle of
nodes between the parents. Our variation of CX is described with an
example below.
First, a directed graph G = (V, E) of node relations between the two
parents is created. Set of nodes V = A ∪ gap. Edge (i, j) belongs to the
graph if nodes i and j are in the same position in X and Y respectively.
Or formally E = {(i, j) ∈ N2| ∃k ∈ N : xk = i and yk = j}. For parents

X : 3 1 4 1 5 9 2 6 5 3

Y : 2 7 1 3 2 8 1 8 2 8
graph G can be described by the following edge map:

30

.................................. 4.1. Generic Optimizer

node neighbors
1 7,3
2 1
3 2,8
4 1
5 2
6 8
9 8

Breath First Search is then started on the graph beginning with the
edge x1, y1 (3, 2) and ending when we first revisit the starting node x1
(3 → 2 → 1 → 3). If no such cycle exists within this graph crossover
returns X as the child. Otherwise, nodes on the positions corresponding
to the found cycle (positions 1, 4, 7) are copied from X to child

X : 3 * * 1 * * 2 * * *

and the rest of the nodes are copied from Y .

X : 3 7 1 1 2 8 2 8 2 8

.ULX (Uniform Like Crossover) [TS95] is a QAP crossover. It is a
variation of uniform crossover for permutations. Our variation of ULX
is described in the pseudo-code below.

31

4. Implementation....................................
Algorithm 3 ULX(X, Y)

1: Z ← [blank, ..., blank].
2: indexes← [1, ..., |X|]
3: for i ∈ indexes do
4: if xi = yi then
5: zi = xi

6: end if
7: end for
8: for i ∈ indexes do
9: if zi = blank and fxi < lxi and fyi < lyi then

10: zi ← random(xi, yi)
11: else if zi = blank and fxi < lxi then
12: zi ← xi

13: else if zi = blank and fyi < lyi then
14: zi ← yi

15: end if
16: end for
17: for i ∈ indexes do
18: if zi = blank and fxi < uxi and fyi < uyi then
19: zi ← random(xi, yi)
20: else if zi = blank and fxi < uxi then
21: zi ← xi

22: else if zi = blank and fyi < uyi then
23: zi ← yi

24: end if
25: end for
26: for i ∈ indexes do
27: if zi = blank then
28: zi = random(a ∈ A|fa < la)
29: end if
30: end for
31: for a ∈ A if fa < la do
32: Z.append(a)
33: end for
34: Z ← Z\blank

The operator first fills the child Z of size |X| with empty spaces (1). It
then iterates four times over the positions from left to right (2). In the
first iteration, all nodes in the same positions are copied to the child
(3-7). In the second iteration, all nodes below the lower bounds are
copied to the child (8-16). In the third iteration, all nodes below the
upper bounds are copied to the child (17-25). In the fourth iteration, all
the empty spaces in the child are filled with nodes below the lower bound
(26-30). Finally, all nodes still below the lower bound are appended at
the end (31-33) and the empty spaces are removed from the child (34).

32

.................................. 4.1. Generic Optimizer

.RULX (Random Uniform Like Crossover) [MK05] is a QAP crossover
and it is a variation of ULX. The algorithm for RULX is the same as
the algorithm for ULX shown above. Only change occurs on line (2)

2 : indexes← shuffle([1, ..., |X|])

where the indexes are shuffled. As a result, the operator goes thru
positions in random order instead of from left to right.. EULX (Extended Uniform Like Crossover) [MK05] is a QAP crossover
and it is an extension of ULX. The goal of this operator is to improve
the child solution found by ULX with local search. Our variation of ULX
is described in the pseudo-code below.

Algorithm 4 EULX(X, Y)
1: Z ← ULX(X, Y).
2: CL← {}
3: for i ∈ [1, ..., Z] do
4: if xi ̸= zi and yi ̸= zi then
5: CL← CL ∪ i
6: end if
7: end for
8: improved← true
9: while improved do

10: improved← false
11: Z ′ ← Z
12: for i ∈ CL do
13: for j ∈ CL if j > i do
14: Z ′′ ← Z
15: swap(z′′

i , z′′
j)

16: if fitness(Z ′′) < fitness(Z ′) then
17: Z ′ ← Z ′′

18: end if
19: end for
20: end for
21: if fitness(Z ′) < fitness(Z) then
22: CL← CL\{i ∈ N|zi ̸= z′

i}
23: Z ← Z ′

24: improved← true
25: end if
26: end while

First ULX is applied to X and Y producing the child Z (1). Then a
candidate list CL of all positions, where the child doesn’t equal either
of its parents, is created (2-7). A local search, using a swap operator,
is performed until no improving solution is found (8-26). First, the
search founds the most improving swap between the positions from

33

4. Implementation....................................
the candidate list (11-20). If the newly found solution Z ′ has lower
fitness than the previous child Z (21-25) then the swapped positions are
removed from the candidate list (22), and the child is replaced by the
better solution (23).

. ERULX is a QAP crossover and it is a variation of EULX. The algorithm
for ERULX is the same as the algorithm for EULX shown above. The
only change occurs on line (1)

1 : Z ← RULX(X, Y)

where the RULX operator is used, instead of ULX, to obtain the child.

.UPMX (Uniform Partially Mapped Crossover) [MTKT96] is a version
of Partially Mapped Crossover (PMX) for QAP. Since we were unable to
successfully implement a standard PMX, we resorted to adapting UPMX
instead. UPMX uses a similar mapping principle as PMX, but instead
of a continuous mapping segment, UPMX uses several random mapping
positions. Our variation of UPMX is described in the pseudo-code below.

Algorithm 5 UPMX(X, Y)
1: Z ← X
2: for k = 1 to |X|

3 do
3: i← random({1, ..., |X|})
4: S ← {j ∈ N| xi = yj}
5: if |S| > 0 then
6: j ← random(S)
7: swap(zi, zj)
8: end if
9: end for

Child Z is set as a clone of X (1). The following cycle is repeated |X|
3

times (2-9). Random position i in X is chosen (3). Then we find a
position j in Y where xi = yj (4). If at least one such position exists
choose one, j, at random (5-6). Swap zi, zj (7).

. SPX (Swap Path Crossover) [Glo94], sometimes referred to as Path
Relinking Crossover, is a QAP crossover. Our variation of SPX is
described in the pseudo-code below.

34

.................................. 4.1. Generic Optimizer

Algorithm 6 UPMX(X, Y)
1: children← {}
2: start← random({1, ..., |X|})
3: for offset = 0 to |X| − 1 do
4: Zx ← X
5: Zy ← Y
6: i← (start + offset) mod |X|
7: α← zx

i

8: β ← zy
i

9: if fZx

β > 0 then
10: S ← {j ∈ N| zx

j = β}
11: j ← random(S)
12: zx

j ← α
13: zx

i ← β
14: end if
15: if fZy

α > 0 then
16: S ← {j ∈ N| zy

j = α}
17: j ← random(S)
18: zy

j ← β
19: zy

i ← α
20: end if
21: children← children ∪ Zx ∪ Zy

22: if fitness(Zx) < fitness(Zy) then
23: X ← Zx

24: else
25: Y ← Zy

26: end if
27: end for
28: Z ← fittest(children)

First, an empty set of children is created (1) and a random starting
position i = start + offset is chosen (2). The following process is
repeated |X| times until all positions were visited (3-27). The operator
clones the parents X, Y to temporary children Zx and Zy (4-5). The
values of zx

i , zy
i before the swap are α, β (7,8). If Zx has at least one

node of value β (9), take a random node from Zx with the value β and
assign it the value α (10-12), next assign zx

i value β (13). The same swap
is done for Zy (15-20). Both children are added to the set of children
(21). The fitter of the modified temporary children then replaces its
parent, e.g. child Zx replaces X or Zy replaces Y (22-26). The fittest of
all children is returned (29).

35

4. Implementation....................................
Neighboring crossovers

Neighboring crossovers only utilize information about the relative positions of
nodes e.g. it knows that in solution [1 2 3] node 1 is a left neighbor of node 2.

Vector of all neighbors of node x in solution X (with repetitions) is ←→NX(x).
Vector of right-neighbors is −→NX(x). Neighbors wrap around the solution e.g.
right neighbor of the last node is the first node.
For example ←→NX(1) = [3, 4, 4, 5, 4, 3] for X = [3, 1, 4, 1, 5, 9, 2, 6, 5, 4, 1]

. ERX (Edge Recombination Crossover) [WSF89] is a standard TSP and
VRP operator. It treats the solutions as an undirected sequence of
vertexes in a graph. The child should inherit as many edges from the
parents as possible, and edges common to both parents should have
priority. Our variation of ERX is described in the pseudo-code below.

Algorithm 7 ERX(X, Y)
1: Z ← [x1].
2: for a ∈ A do
3: Ma ←

←→
NX(a) +←→NY (a)

4: end for
5: while true do
6: β ← z−1
7: S ← {a ∈Mβ| fa < ua}
8: if S = ∅ then
9: S ← {a ∈ A| fa < la}.

10: end if
11: if S = ∅ then
12: break
13: end if
14: Γ← {γ ∈ S | |Mγ | ≤ |Ma| ∀a ∈ S}
15: γ ← random(Γ)
16: Z ← Z.append(γ)
17: Mβ ←Mβ\γ
18: Mγ ←Mγ\β
19: end while

ERX first initializes the child with the first node of X (1) and then
creates vectors of neighbors from both parents (2-4). Following steps are
repeated until the stopping condition (11-13) is met. At every iteration,
take the last node of the child β = z−1 (5-6). Selects from β’s neighbors
set of nodes S which don’t exceed the upper bound (7). If no neighbors

36

.................................. 4.1. Generic Optimizer

are below the upper bound, fill S with all nodes below the lower bound
(8-10). If S is still empty stop the algorithm (11-13). Append a node
from S with the fewest neighbors to the child. If there is more than one
node in S choose one at random (14-16). Remove the nodes from each
other’s vectors of neighbors (17-18).

.AEX (Alternating Edge Crossover) [GGRVG14] is a standard TSP and
VRP operator. It treats the solutions as a directed sequence of vertexes
in a graph. The child should inherit a mix of edges from both parents,
alternating between edges from the first and second parent. Our variation
of AEX is described in the pseudo-code below.

Algorithm 8 AEX(X, Y)
1: Z ← [x1].
2: while true do
3: β ← z−1
4: S ← {a ∈

−→
NX(β)| fa < ua}

5: if S = ∅ then
6: S ← {a ∈ A| fa < la}.
7: end if
8: if S = ∅ then
9: break

10: end if
11: s← random(S)
12: Z ← Z.append(s)
13:

−→
NX(β)← −→NX(β)\s

14: Swap(X, Y)
15: end while

AEX first initializes the child with the first node of X (1). Following
steps are repeated until the stopping condition (8-10) is met. At every
iteration, take the last node of the child β = z−1 (2-3). In the first parent,
selects from β’s right-neighbors set of nodes S which don’t exceed the
upper bound (4). If no neighbors are below the upper bound, fill S
with all nodes below the lower bound (5-7). If S is still empty stop the
algorithm (8-10). Append a random node from S to the child (11-12).
Remove appended node from the β’s vectors of right-neighbors (13).
Swap the parents (14).

.HX (Heuristic Crossover) [GGRVG14] is a TSP and VRP operator
similar to the AEX. It treats the solutions as a directed sequence of
vertexes in a graph. The child inherits edges from both parents based
on the fitness of the partial solution. Our variation of HX is described
in the pseudo-code below.

37

4. Implementation....................................
Algorithm 9 HX(X, Y)

1: Z ← [x1].
2: for a ∈ A do
3:

−→
Ma ←

−→
NX(a) +−→NY (a)

4: end for
5: while true do
6: β ← z−1
7: S ← {a ∈

−→
Mβ| fa < ua}

8: if S = ∅ then
9: S ← {a ∈ A| fa < la}.

10: end if
11: if S = ∅ then
12: break
13: end if
14: s← random(S) with probability distribution P
15: Z ← Z.append(s)
16:

−→
Mβ ←

−→
Mβ\s

17: end while

HX first initializes the child with a first node of X (1) and then creates
vectors of right-neighbors from both parents (2-4). Following steps are
repeated until the stopping condition (11-13) is met. At every iteration,
take the last node of the child β = z−1 (5-6). Selects from β’s right-
neighbors set of nodes S which don’t exceed the upper bound (7). If
no neighbors are below the upper bound, fill S with all nodes below
the lower bound (8-10). If S is still empty stop the algorithm (11-13).
Append a random node s ∈ S with probability Ps, given by one of the
probability distributions described below, to the child (14-15). Remove
appended node from the β’s vectors of right-neighbors (16).
Three ways of defining the probability distribution are.HRndX: Probability of choosing s is uniform. Ps = 1

|S| ..HGreX: Node s with the lowest fitness is chosen. Constructs |S|
temporary solutions Ts ← Z.append(s) ∀s ∈ S. Assign Ps = 1 to
s = arg mins∈S gp(Ts), others are assigned 0..HProX: Probability of choosing s is proportional to its fitness.
Construct the same temporary solutions Ts, then Ps = gp(Ts)∑

i∈S
gp(Ti)

4.1.5 Mutation

Every child has the probability of mutation_rate of undergoing random
mutation from a mutation list. The mutation list is provided by the user and

38

.................................. 4.1. Generic Optimizer

must contain at least one mutation operator. Next are listed all mutation
operators. They are repurposed and randomized local search operators taken
from the GMS-LS and are described in more detail at [Hra22, pg. 15-21].
The numerical parameters of the operators are defined by the user if not
mentioned otherwise. By substrings we mean continuous parts of the solution
that don’t wrap around the ends of the solution.

X : 3 1 4 1 5 9 2 6 5 3 3 5 8

. Insert mutation inserts a random node a ∈ A, fa < ua into a random
position. For example, insert node 7 at position 2.

X ′ : 3 7 1 4 1 5 9 2 6 5 3 3 5 8.Append mutation appends a random node a ∈ A, fa < ua to the
solution. For example, append node 7.

X ′ : 3 1 4 1 5 9 2 6 5 3 3 5 8 7.Remove mutation removes a node a ∈ A, fa > la at a random position.
For example, remove node 3 at position 10.

X ′ : 3 1 4 1 5 9 2 6 5 _ 3 5 8.Relocate mutation moves a random substring of length x to a random
position. If parameter reverse is true it also reverses the substring.
For example, move a substring from position 2 of length 3 ([1, 4, 1]) to
position 5.

X ′ : 3 5 9 2 1 4 1 6 5 3 3 5 8. Exchange mutation swaps two random non-overlapping substrings
of length x and y. If parameter reverse is true it also reverses the
substrings. For example, exchange and reverse substrings at positions 2
and 8 of lengths 3 and 4 ([1, 4, 1] and [6, 5, 3, 3])

X ′ : 3 3 3 5 6 5 9 2 1 4 1 5 8.Central exchange mutation reverses a random substring of odd length
x around its center node. For example, reverse string of length 2, centered
at position 5 ([4, 1, 5, 9, 2]).

X ′ : 3 1 2 9 5 1 4 6 5 3 3 5 8.Move all mutation moves all occurrences of a random node by k
positions. Nodes moved beyond the first/last position wrap around back
to the end/beginning. For example, move node 3 by 4 positions to the
right

X ′ : 1 3 3 4 1 5 3 9 2 6 5 5 8

39

4. Implementation....................................
. Exchange nodes mutation swaps all occurrences of two random nodes

if the swap doesn’t break the lower/upper bounds. If parameter N is
provided it swaps the first N occurrences of both nodes. For example,
exchange nodes 1 and 5

X ′ : 3 5 4 5 1 9 2 6 1 3 3 1 8

.Two-opt mutation reverses random substring of random length. For
example, reverse string at position 6 of length 6 ([9, 2, 6, 5, 3, 3]).

X ′ : 3 1 4 1 5 3 3 5 6 2 9 5 8

4.1.6 Replacement

To maintain the same number of solutions in the next generation we need a
way to replace the old solutions with the new child solutions. Deterministic
replacement combines all old and new solutions and then selects λ of the
fittest solutions to continue to the next generation.

ASCHEA uses segregational replacement which is a combination of two
deterministic replacements. First tselectλ fittest solutions from the feasible
solutions are promoted to the next generation, where tselect is a user-defined
proportion. The rest of the next generation is then filled using standard de-
terministic replacement with the remaining individuals based on their current
penalized fitness. Duplicates of solutions are not allowed in the population
with the intent to increase the population’s diversity.

We added a third deterministic replacement between the two original
replacements. It triggers only if the population contains no feasible individuals.
For every problem constraint, the fittest solution that doesn’t violate said
constraint is promoted to the next generation. This should have the effect
of keeping the genetic information, which allows a solution to pass certain
constraint, in the population.

Niching

To better handle multimodal functions (functions with several local optima)
niching [Pet96] has been added to the replacement operator in the second

40

.................................. 4.1. Generic Optimizer

version of ASCHEA. A niche is defined as a ball centered on an individual with
a user-defined radius r. Each niche contains some dominant individuals, called
leaders, that include its center. The maximum number of leaders allowed in
a niche is another user-defined parameter called the niche capacity. When
a niche has reached its full capacity, other individuals that fall within that
niche, called followers, will be discarded from further selections. Levenshtein
distance [L+66] was used to compute the distance between solutions, because
it can calculate the distance between solutions of different sizes.

Once all individuals are classified, the segregational replacement is first
applied to the leaders only. If there are less than tselectλ feasible individuals
or not enough individuals to complete the population it is applied in a second
step to the followers. To avoid manual tuning of the niche radius r, the
adaptive procedure similar to the population-level adaptive penalty is used

r(t + 1) =
{

r/fact, if τleaders > τclear,

r(t)× fact, if τclear > τleaders,
(4.11)

where tclear is the desired proportion of leaders in the population defined
by the user (usually 0.4), τleaders and τfollowers are the proportion of leaders
and followers in the population at generation t and fact is the same as in
the penalty adaptation function.

Since niching adds computational overhead that scales O(n2) with both
the length of the solution and population size, we give the user a choice
of disabling the niching process and using only the standard segregational
replacement.

Niching is described in Algorithm 10. It iterates over all solutions in the
population (3). If the solution X isn’t a follower (4), it is designated as a
leader of a niche (5). If some other solution Y , not belonging to followers
or leaders, is closer to X than distance r it belongs to the X’s niche (7-8).
If the niche has less than niche_capacity leaders Y is classified as a leader,
otherwise as a follower (9-12).

41

4. Implementation....................................
Algorithm 10 Niche(population)

1: sort population by decreasing fitness
2: leaders, followers = {}
3: for i = 0 to µ− 1 do
4: if Xi /∈ followers then
5: leaders← leaders ∪Xi

6: nbLeaders = 1
7: for j = i + 1 to µ− 1 do
8: if Xj /∈ followers and distance(Xi, Xj) < r then
9: if nbLeaders < niche_capacity then

10: nbLeaders← nbLeaders + 1
11: else
12: followers← followers ∪Xj

13: end if
14: end if
15: end for
16: end if
17: end for

4.1.7 Population sizing scheme

One of the most important parameters in EAs is the size of the population λ.
To avoid possible problems with early population conversion or stagnation
we choose to implement a population sizing method from a parameter-less
genetic algorithm [HL+99].

First, we need to define what is an average fitness of a population and a
stagnant population. Average fitness gavg of population Pop = [X1, ..., Xn] is
average fitness of its feasible solutions

gavg(Pop) =

∑

X∈P op
gp(X)JX∈FK∑

X∈P op
JX∈FK , if

∑
X∈P opJX ∈ FK > 0,

∞, otherwise.
(4.12)

The population is stagnant if solutions in generation t are the same as solutions
in generation t− 1.

The sizing scheme maintains a list L = [Pop1, Pop2, ...] of increasingly
larger populations. Population Popi+1 is twice as large as population Popi.
Since it takes a larger population longer to complete one generation, more
evaluations are awarded to smaller populations. We start with a population
Pop1 of size eight (|Pop1| = 8) and a counter in user-defined base n set to
zero. Every cycle the counter is incremented by one and the largest flipped
digit determines which population from the list is run. An example of a run

42

............................... 4.2. Problem implementation

counter population generation
1 1 1
2 1 2
3 1 3
10 2 1
11 1 4
12 1 5
13 1 6
20 2 2
...
33 1 12
100 3 1
101 1 13

Table 4.1: populations sizing example

with the counter in base 4 is given in Table 4.1. If the population hasn’t run
before, it is initialized before being run for one generation. If a population has
higher average fitness than a bigger population or is stagnant, it is removed
from the list of populations.

What this means, is that several instances of ASCHEA are run in parallel,
each with its own population, penalty coefficients etc. The operators and
other static parameters (τtarget, τselect) are the same for all populations. The
best solution from all populations is returned as a result of the search.

The sizing scheme can be turned off by the user by setting parameter
populatiton_type = ”static” and setting population_size to desired integer
value. In this mode, if the population stagnates, the p fittest individuals
are kept and the rest is discarded. The remaining empty space is filled with
solutions initialized by the user’s chosen operator.

4.2 Problem implementation

In this section, we outline the implementation of EVRP and ROADEF
problems in the context of GMS. Mainly the lower and upper bounds LB and
UB, a conversion between the solver’s representation X and problem-specific
solution, fitness function g and penalty vector P . Fitness function g consists
of actual fitness p0, penalized sum of constraint violations p1, ..., pp. Fitness g
is used in Greedy and Nearest-Neighbor initializations and for compatibility

43

4. Implementation....................................
with the GMS-LS.

Electric Vehicle Routing Problem

Let us assume that we are given distance matrix C = (cij) ∈ Rn×n, number
of vehicles k, depot node D, a set of charging stations S of size s, list of
customer demands B of size l (1 + l + s = n must hold) and maximal carrying
capacity and charge C and Q. Permutation with repetition X = [x1, ..., xm]
used in the solver is directly translated to a sequence of visited customers,
chargers and depot. The problem class is initialized by the following

A = {1, ..., n} (4.13)

LB = [k + 1, 1..., 1, 0, ..., 0] (4.14)

UB = [k + 1, 1..., 1, 2l, ..., 2l] (4.15)

D = 1 (4.16)

B = [b2, ..., bl+1] (4.17)

S = {n− s + 1, ..., n} (4.18)

p0 =
m−1∑
i=1

cxi,xi+1 (4.19)

p1 =
∑

a∈A\(S∪{D})
|1− fa| (4.20)

p2 = Jx1 ̸= DK + Jxm ̸= DK (4.21)

p3 = |k − (fD − 1)| (4.22)

p4 =
∑
a∈A

baJba > uaK (4.23)

p5 =
m−1∑
i=1

max(0, cxi,xi+1 −
yi

h
) (4.24)

g(X) = p0 +
5∑

i=1
Mipi (4.25)

where A is the set of nodes including depot a1, customers a2, ..., al+1, and
charging stations al+2, ..., an. Upper and lower bounds li = 1 and ui = 1 for
i ∈ {2, .., l + 1} and lj = 0 and uj = 2l for j ∈ {l + 2, .., n}. Pure fitness
p0 is a sum of the total traveled distance. The first constraint p1 ensures
that all customers are visited exactly once. Second constraint p2 checks if
the solution starts and ends at the depot. Third constraint p3 counts the

44

............................... 4.2. Problem implementation

number of tours starting and ending at the depot. Fourth constraint p4 sums
unsatisfied customers’ demand, where ba is the demand of customer a and ua

is the maximal demand the vehicle is able to satisfy when it arrives at node
a. Fifth constraint p5 sums distance traveled on an empty battery. From
available charge ya at node a, we are able to determine vehicles range yi

h . If
the range doesn’t exceed the distance between the nodes then the distance
traveled on an empty battery is added to the penalty. In fitness function g
symbols M1, ..., M5 are large constants defined by the programmer.

4.2.1 ROADEF

Let us assume we are given all values as described in ROADEF input section,
which include planning horizon H = {1, ...T}, set of resources C and their
bounds lct , uc

t , set of interventions I and their time duration ∆i,t and workload
rc,t

i,t′ . Next, we are given risk assessment of different scenarios risks,t
i,t , a set of

exclusions Exc from disjunctive constraints and constants α, τ ∈ [0, 1] needed
in the final objective. The problem class is initialized by the following

A = {1, ..., |I|+ 1} (4.26)

LB = [1, ..., 1, 0] (4.27)

UB = [1..., 1, T] (4.28)

p0 = αobj1 + (1− α)obj2(τ) (4.29)

p1 =
∑

c ∈C

∑
t∈H

max(0, lct − rtot(c, t)) (4.30)

p2 =
∑

c ∈C

∑
t∈H

max(0, rtot(c, t)− uc
t) (4.31)

p3 =
∑
t∈H

∑
i1∈I

∑
i2∈I
i1<i2

J(i1, i2, t) ∈ ExcK (4.32)

g(X) = p0 +
3∑

i=1
Mipi (4.33)

where A is the set of nodes representing interventions i1, ..., i|I| and a fill
node |I|+ 1. Lower and upper bounds of interventions are set to one. Fill
node may be present up to T times. Pure fitness p0 is derived directly from
(3.36). The first constraint p1 is the resource underuse. Function rtot(c, t)
defined in (3.26) returns a total use of a resource c at a time t. If the total
use of a resource at certain time is below its lower bound, the difference is

45

4. Implementation....................................
added to the resource underuse p1. The second constraint p2 is the resource
underuse and functions the same as resource underuse. Third constraint
p3 counts the number of unmet exclusions. In fitness function g symbols
M1, ..., M3 are large constants defined by the programmer.

Before fitness and constraint violations are computed we need to convert
the solution X to a schedule list L of pairs (i, t) ∈ I ×H. Before solving the
problem, interventions I are assigned nodes a1, ...a|I|, node a|I|+1 is reserved
as a filler node.

Algorithm 11 Permutation_to_schedule(X)
1: t← 1.
2: L← []
3: for i ∈ X do
4: if i = |I|+ 1 then
5: t← t + 1
6: else
7: L.append((i, t))
8: end if
9: end for

First we set time t = 1 (1) and empty the schedule L = [] (2). We iterate
over the solution X. (3) If node i is a filler node then time t is increased by 1
(4-5), otherwise its corresponding intervention i staring at time t is appended
to L (6-7).

46

Chapter 5

Results

The GMS and both problem-specific solvers are implemented in C++. All
experiments mentioned below ran on a single thread. We performed two
kinds of experiments. First, performance comparison experiments, comparing
our GMS-CO to the GMS-LS and a problem-specific solver. Second, oper-
ator comparison experiments, comparing proposed crossovers against each
other. All GMS parameters were selected by the Irace parameter tuning
tool [LIDLC+16]. Operator comparison experiments used the same parame-
ters as the performance comparison experiment, but instead of a mixture of
crossovers only a single fixed crossover operator was used.

All experiments were run on MetaCentrum’s [met] distributed computing
clusters. The operator comparison experiments and tuning of parameters
were run across all available clusters due to the volume of computation needed.
All performance comparison experiments were run on a Nympha cluster to
guarantee better consistency. The cluster runs the Linux Debian 11 operating
system, 16 GB of RAM and per-core performance in SPECfp2017 benchmark
[SPE] of SPECfp2017=3.7 or SPECfp2017=3.8. Since our solver is stochastic
all experiments were run R = 50 times, each with a random seed. Statistics
were calculated only from feasible solutions X. They include a percentage
F of feasible solutions found, mean g, standard deviation σ and percentage
difference GAP of the proposed solver’s average fitness w.r.t. best-known
solution BKS.

F = 100 |X|
R

(5.1)

47

5. Results

g =
∑

X∈X g(X)
|X|

(5.2)

σ =
√∑

X∈X(g − g(X))2

|X| − 1 (5.3)

GAP = 100 g −BKS

BKS
(5.4)

The values of BKS were taken from the relevant literature. The timeout
for the experiments, t(min) in minutes, is specified in the following sections.

5.1 ROADEF

The dataset used in the experiment is dataset ’A’, which was used for the
qualification round of the ROADEF competition. The timeouts were set at 15
and 90 minutes, the same as in the ROADEF competition. The best-known
solutions were taken from the results of the qualification round.

instance A01 A02 A03 A04 A05 A06 A07 A08
T 90 90 90 365 182 182 17 17
|I| 181 89 91 706 180 180 34 18
|Exc| 81 32 12 1377 87 87 4 4

instance A09 A10 A11 A12 A13 A14 A15
T 17 52 52 52 90 52 52
|I| 18 108 54 54 179 108 108
|Exc| 0 40 4 0 136 22 22

Table 5.1: parameters of ROADEF instances

5.1.1 Performance comparison experiments

After some technical difficulties with most of the problem-specific solvers,
we choose the solver by David Woller and Jakub Rada [RW22], which is
based on the Adaptive Large Neighborhood Search (ALNS) [MNJ+22]. The

48

...................................... 5.1. ROADEF

parameters for GMS-CO and GMS-LS found by the Irace tuning tool, with a
tuning budget of 10000 problem runs, are listed below.

.GMS-CO parameters:

.Population:

. Type: dynamic. Parameters: τselect = 0.2943, τtarget = 0.6861, counterbase =
26, tournamentsize = 18.Construction: random.Crossover:

. Alignment: randomUniform. Operators: ERX, OBX, ULX, RULX, UPMX, MPX.Mutation:

. Rate: 0.9355. Operators: insert, exchangeNIds, centralExchange(1), cen-
tralExchange(2), centralExchange(4), relocate(1),.Replacement: segregational

.GMA-LS parameters:

.Metaheuristic: BVNS (kmin = 7, kmax = 11). Local search: PVND.Construction: randomReplicate.Perturbation: randomMove.Operators: insert, two-opt, exchangeIds, exchangeNIds, exchange(1,1),
exchange(2,4), exchange(3,3), exchange(4,4), reverseExchange(2,3),
reverseExchange(3,3), reverseExchange(4,4), centralExchange(3),
centralExchange(4), centralExchange(5), relocate(5), moveAll(1),
moveAll(2)

49

5. Results
GMS-LS

t(min) = 15 t(min) = 90
Instance g σ GAP F g σ GAP F

A01 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
A02 ∅ ∅ ∅ 0% 2758495.1 15809901 58955.8% 80%
A03 ∅ ∅ ∅ 0% 915.8 26.1 8% 96%
A04 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
A05 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
A06 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
A07 2274 0.3 0.04% 100% 2273.7 0.5 0.02% 100%
A08 745 0 0.1% 100% 745 0.2 0.1% 100%
A09 1508 0 0.1% 100% 1507.7 0.5 0.04% 100%
A10 3490.6 873.7 16.5% 100% 3060.7 17 2.2% 100%
A11 7739.2 6662.6 1463.5% 100% 524.1 20 5.9% 100%
A12 1151.4 44.2 45.8% 100% 957 100.1 21.1% 100%
A13 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
A14 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
A15 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%

mean ∅ ∅ 254.3% 40% ∅ ∅ 7374,15% 52%

Table 5.2: ROADEF results with 15 and 90 minute timeouts using GMS-LS

GMS-CO
t(min) = 15 t(min) = 90

Instance g σ GAP F g σ GAP F

A01 1920 54.4 8.6% 100% 1808.5 12.9 2.3% 100%
A02 4704.7 11.6 0.7% 100% 4704.4 12.3 0.7% 100%
A03 879.4 13.4 3.7% 100% 859.6 5.4 1.4% 100%
A04 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
A05 759.3 32.2 19.6% 100% 683.8 14.4 7.7% 100%
A06 775.7 25.9 31.2% 96% 693.1 19.3 17.3% 100%
A07 2274.8 1.3 0.1% 100% 2274 0.5 0.04% 100%
A08 745.6 0.5 0.2% 100% 745.4 0.5 0.2% 100%
A09 1507 0.1 0% 100% 1507 0 0% 100%
A10 3022.9 11.7 0.9% 100% 3014.1 10.3 0.6% 100%
A11 497.7 1 0.5% 100% 497.5 0.8 0.5% 100%
A12 869 107.4 10% 100% 833.1 95.6 5.5% 100%
A13 2428.6 970.5 21.5% 100% 2040.3 57.1 2.1% 100%
A14 2452.3 96.6 8.3% 50% 2336.6 32.6 3.2% 94%
A15 2498.8 125.5 10.1% 40% 2351.3 45.8 3.6% 88%

mean ∅ ∅ 8.14% 86% ∅ ∅ 3.21% 92%

Table 5.3: ROADEF results with 15 and 90 minute timeouts using GMS-CO

50

...................................... 5.1. ROADEF

problem-specific solver
t(min) = 15 t(min) = 90

Instance g σ GAP F g σ GAP F

A01 1769.5 0.6 0.09% 100% 1768.6 0.3 0.04% 100%
A02 4671.5 0.4 0.0% 100% 4671.4 0.2 0.0% 100%
A03 848.2 0.0 0.0% 100% 848.2 0.0 0.0% 100%
A04 2105.8 6.4 0.95% 100% 2094.3 1.5 0.4% 100%
A05 636 0.2 0.1% 100% 635.7 0.2 0.1% 100%
A06 593.7 1.3 0.5% 100% 592.1 0.8 0.2% 100%
A07 2272.8 0.0 0.0% 100% 2272.8 0.0 0.0% 100%
A08 744.3 0.0 0.0% 100% 744.3 0.0 0.0% 100%
A09 1507.3 0.0 0.0% 100% 1507.3 0.0 0.0% 100%
A10 2994.9 0.0 0.0% 100% 2994.9 0.0 0.0% 100%
A11 495.3 0.1 0.0% 100% 495.3 0.0 0.0% 100%
A12 789.6 0.0 0.0% 100% 789.6 0.0 0.0% 100%
A13 1999.3 0.2 0.03% 100% 1999.1 0.2 0.02% 100%
A14 2286.2 12.5 0.97% 100% 2274.2 10.3 0.4% 100%
A15 2297.4 14.4 1.2% 100% 2286.4 14.4 0.8% 100%

mean ∅ ∅ 0.26% 100% ∅ ∅ 0.13% 100%

Table 5.4: ROADEF results with 15 and 90 minute timeouts using problem-
specific solver

As seen in Table 5.2, the GMS-LS managed to find feasible solutions in
under 15 minutes to instances A07,..., A12 whose time horizon is T ≤ 52 and
the number of exclusions is generally low. With 90 minute timeout, it also
found a feasible solution to instances A02 and A03 with T = 90.

The problem-specific solver unsurprisingly performed best on all instances
across all metrics, which can be seen in Table 5.4. It is also the only solver
that found a feasible solution to instance A04, which is also the instance that
occupied most memory while being solved. Both are probably caused by the
large time horizon T = 365, the number of interruptions |I| = 706 and the
number of exclusions |Exc| = 1377 of this instance, as can be seen in Table
5.1.

The instances A05 and A06 have the second largest time horizon T = 182,
and those are also instances in which the proposed solver performed the worst.
For harder instances with longer time horizons T ≥ 90 the GMS-CO’s GAP
improved significantly with the increased 90-minute timeout as seen in Table
5.3, suggesting that the solver’s performance could improve further with an
even longer timeout. This is supported by Figure 5.1 where the average last
improvements occur towards the end of the timeout. In the graph of instance

51

5. Results
A15 we can see that the average first feasible solution found is around the
25-minute mark. This would corelate with low feasibility F = 0.4 for 15
minute timeout and F = 0.88 for 90 minute timeout. The spikes in the graph
of instance A15 correspond to times when the first feasible solutions were
frequently found.

0s 1000s 2000s 3000s 4000s 5000s
time

1.0%

10.0%

100.0%

1000.0%

10000.0%

GA
P

GMS-CO: A01
average GAP
(GAP)

average feasiblity achieved
average last improvement

0s 1000s 2000s 3000s 4000s 5000s
time

100.0%

1000.0%

GA
P

GMS-CO: A06
average GAP
(GAP)

average feasiblity achieved
average last improvement

0s 1000s 2000s 3000s 4000s 5000s
time

0.1%

1.0%

10.0%

100.0%

1000.0%

GA
P

GMS-CO: A13
average GAP
(GAP)

average feasiblity achieved
average last improvement

0s 1000s 2000s 3000s 4000s 5000s
time

1.0%

10.0%

100.0%

GA
P

GMS-CO: A15
average GAP
(GAP)

average feasiblity achieved
average last improvement

Figure 5.1: ROADEF fitness minimization steps of four different instances.

5.1.2 Operator comparison

If we disregard the A04 instance, we can see in Figures 5.2 and 5.3 that
half of the operators found at least some valid solutions to all instances
in the 15-minute timeout and 10 found feasible solutions in the 90-minute
timeout. Best performing operators were APX, CX, NBX, OBX, RULX,
ULX and UPMX, finding at least 90% of all feasible solutions in 90 minutes.
From those ULX seems as the best single operator for solving this problem.
However, all of them performed sub-optimally in the A02, A05, A06 and
A13 instances. GMS-CO performed at most 200 times better than the best-
performing individual operators depending on the instance. This suggests
that the interplay between different crossovers is crucial for effectively solving
this problem.

52

..5.2. EVRP

t(min)=15
feasibility GAP

15m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg 15m 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg
AEX 0 74 96 0 2 0 100 100 100 100 100 100 0 26 10 53,87 AEX 642 98 554 0 0 2 4 9 29 205 295 167,09
APX 98 100 100 0 100 100 100 100 100 100 100 100 100 54 38 86,00 APX 4 1824 4 526 68 0 0 0 1 2 30 81 4 6 182,14
CX 100 100 100 0 98 100 100 100 100 100 100 100 100 54 38 86,00 CX 4 1932 4 694 31 0 0 0 1 3 30 76 6 7 199,14
ERULX 0 2 0 0 0 0 100 100 100 94 100 100 0 0 0 39,73 ERULX 5310 1 0 0 41 1211 37 942,86
ERX 0 0 0 0 0 0 100 100 100 100 100 100 0 0 0 40,00 ERX 10 13 6 10 210 47 49,33
EULX 0 52 74 0 0 0 100 100 100 100 100 100 0 0 0 48,40 EULX 4028 914 0 0 0 4 170 27 642,88
HGrX 0 0 0 0 0 0 100 100 100 44 100 100 0 0 0 36,27 HGrX 10 8 6 106 2228 47 400,83
HPrX 0 0 0 0 0 0 100 100 100 86 100 100 0 0 0 39,07 HPrX 3 0 3 49 1669 44 294,67
HRnX 0 100 100 0 38 0 100 100 100 100 100 100 0 0 0 55,87 HRnX 52 20 351 0 0 0 3 3 19 49,78
MPX 0 0 0 0 0 0 100 100 100 100 100 100 0 0 0 40,00 MPX 1 0 1 3 532 46 97,17
NBX 100 100 100 0 98 98 100 100 100 100 100 100 100 38 22 83,73 NBX 4 2420 4 553 127 0 0 0 1 3 28 106 91 3 238,57
OBX 100 100 100 0 94 96 100 100 100 100 100 100 98 44 24 83,73 OBX 4 2303 4 755 46 0 0 0 1 3 25 136 6 5 234,86
OX 0 88 98 0 0 0 100 100 100 100 100 100 0 8 8 53,47 OX 3277 10 0 0 0 1 7 43 18 21 337,70
PBX 0 100 100 0 0 0 100 100 100 100 100 100 0 4 2 53,73 PBX 2998 7 0 0 0 1 4 39 19 9 307,70
RULX 100 100 100 0 92 96 100 100 100 100 100 100 100 32 16 82,40 RULX 17 2653 4 652 84 0 0 0 1 2 30 89 8 6 253,29
SPX 8 96 98 0 0 4 100 100 100 100 100 100 6 6 16 55,60 SPX 863 3183 8 1175 0 0 0 2 62 30 3765 21 18 702,08
ULX 100 100 100 0 100 92 100 100 100 100 100 100 100 84 80 90,40 ULX 4 702 2 349 28 0 0 0 1 1 21 26 4 4 81,57
UPMX 100 100 100 0 94 96 100 100 100 100 100 100 100 28 22 82,67 UPMX 5 2184 4 588 31 0 0 0 1 2 32 90 7 50 213,86

Figure 5.2: F and GAP of ROADEF instances by operator with 15-minute
timeout

t(min)=90
feasibility GAP

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 avg
AEX 0 96 98 0 2 0 100 100 100 100 100 100 0 70 50 61,07 AEX 156 10 67 0 0 0 3 6 25 97 23 35,18
APX 100 100 100 0 100 100 100 100 100 100 100 100 100 100 98 93,20 APX 1 546 0 38 20 0 0 0 1 1 29 23 1 1 47,21
CX 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 93,33 CX 1 233 0 54 20 0 0 0 1 4 26 15 1 1 25,43
ERULX 0 12 40 0 0 100 100 100 100 100 100 0 0 0 0 43,47 ERULX 3618 237 287 0 102 121 0 109 559,25
ERX 0 0 0 0 0 0 100 100 100 100 100 100 0 2 4 40,40 ERX 6 10 5 6 16 46 198 1598 235,63
EULX 0 96 100 0 0 0 100 100 100 100 100 100 0 2 2 53,33 EULX 3236 57 0 0 0 2 3 19 25 14 335,60
HGrX 0 0 0 0 0 0 100 100 100 100 100 100 0 0 0 40,00 HGrX 2 4 1 17 395 44 77,17
HPrX 0 4 2 0 0 0 100 100 100 100 100 100 0 0 0 40,40 HPrX 1924 48 1 0 1 6 260 34 284,25
HRnX 0 100 100 0 100 0 100 100 100 100 100 100 0 0 0 60,00 HRnX 17 17 105 0 0 0 2 1 12 17,11
MPX 0 10 32 0 0 0 100 100 100 100 100 100 0 4 4 43,33 MPX 3353 1308 0 0 0 2 8 47 20 19 475,70
NBX 100 100 100 0 100 100 100 100 100 100 100 100 100 98 94 92,80 NBX 1 933 1 39 21 0 0 0 1 2 30 27 1 2 75,57
OBX 100 100 100 0 98 100 100 100 100 100 100 100 100 92 96 92,40 OBX 1 291 1 41 20 0 0 0 1 2 28 20 1 1 29,07
OX 32 100 100 0 2 12 100 100 100 100 100 100 20 66 50 65,47 OX 1377 2815 5 3761 350 0 0 0 1 8 42 1744 15 11 723,50
PBX 70 100 100 0 30 48 100 100 100 100 100 100 62 50 32 72,80 PBX 676 2933 4 839 148 0 0 0 1 5 40 912 7 9 398,14
RULX 100 100 100 0 100 100 100 100 100 100 100 100 100 92 96 92,53 RULX 1 716 1 58 21 0 0 0 1 2 28 38 1 2 62,07
SPX 86 100 100 0 50 44 100 100 100 100 100 100 84 34 34 75,47 SPX 522 2932 4 1517 309 0 0 0 2 4 27 315 6 6 403,14
ULX 100 100 100 0 100 100 100 100 100 100 100 100 100 100 100 93,33 ULX 1 116 1 32 20 0 0 0 1 1 22 2 1 1 14,14
UPMX 100 100 100 0 100 100 100 100 100 100 100 100 100 92 96 92,53 UPMX 1 642 1 39 21 0 0 0 1 3 28 20 1 1 54,14

Figure 5.3: F and GAP of ROADEF instances by operator with 90-minute
timeout

5.2 EVRP

The dataset used in the experiment is the same as in the EVRP competition.
The number after the letter ’n’ in the names of the instances refers to the
number of customers and the number after the letter ’k’ to the number of
vehicles available. The best-known solutions were taken from the best results
found in the competition. The competition timeout was set at a number of
fitness function evaluations. To obtain a real-time timeout t in minutes we
used an equation from a previously proposed EVRP solver [JMZ21],

t(min) = β
|I|+ |F |

100 60, (5.5)

53

5. Results
where I is a set of customers, F is a set of charging stations and β is a scaling
factor. For ’E’ instances β = 1, for bigger ’X’ instances β = 2.

5.2.1 Performance comparison experiments

The winning solution from the EVRP competition [KWV21] was used as the
problem-specific solver. Due to technical difficulties with the tuning software,
we were only able to run 5000 problems for each GMS, half of the tuning
budget that was used on the ROADEF problem. The GMS-CO and GMS-LS
configurations are listed below.

.GMS-CO parameters:.Population:. Type: dynamic. Parameters: τselect = 0, 3, τtarget = 0, 5, counterbase = 18.Construction: nearestNeighbor.Crossover:. Alignment: greedyOneGap. Operators: NBX, PBX, ERX, AEX, OX, OBX, CX, HGreX,
HRndX, HProX.Mutation:. Rate: 0.4410. Operators: insert, remove, twoOpt, exchangeIds, exchangeNIds.Replacement: segregational.GMS-LS parameters:.Metaheuristic: ILS (k = 8). Local search: PVND.Construction: greedy.Perturbation: randomMoveAll.Operators: insert, two-opt, exchangeIds, exchange(1,1), exchange(2,3),

exchange(2,4), exchange(3,4), exchange(4,4), reverseExchange(3,3),
reverseExchange(3,4), centralExchange(1), centralExchange(2), cen-
tralExchange(3), relocate(1), reverseRelocate(2), moveAll(2), mod-
eAll(3), modeAll(4), modeAll(10),

54

..5.2. EVRP

GMS-LS GMS-CO
Instance t(min) g σ GAP F g σ GAP F
E-n22-k4 17 385 0 0% 100% 385.2 1 0.1% 100%
E-n23-k3 18 572 0 0% 100% 572 0 0% 100%
E-n30-k3 21 509 0 0% 100% 509 0 0% 100%
E-n33-k4 23 840 0 0% 100% 844.06 5.7 0.5% 100%
E-n51-k5 33 530.2 0.9 0.04% 100% 549.6 13.6 3.7% 100%
E-n76-k7 49 695 1.4 0.3% 100% 719.8 13.2 3.9% 100%
E-n101-k8 65 843.3 6.3 0.5% 100% 913.8 125 8.9% 100%
X-n143-k7 175 16312 119.3 1.8% 100% 17444.2 373.9 8.8% 100%
X-n214-k11 266 11802.1 240.8 4.2% 100% 19268.6 1189.5 70.2% 96%
X-n351-k40 462 29222.8 474.1 8% 100% ∅ ∅ ∅ 0%
X-n459-k26 573 26062.4 140.2 2.7% 100% 53925.6 2508.3 112.5% 16%
X-n573-k30 694 52875.8 185.7 1.3% 100% 73719.1 1799.8 41.2% 92%
X-n685-k75 851 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
X-n749-k98 934 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
X-n819-k171 1011 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
X-n916-k207 1109 ∅ ∅ ∅ 0% ∅ ∅ ∅ 0%
X-n1001-k43 1253 185730 10653.3 139.7% 76.4% 203294.5 12208 162.4% 8%

mean ∅ ∅ ∅ 12% 75.1% ∅ ∅ 22.7% 59.6%

Table 5.5: EVRP results using GMS-LS and GMS-CO

problem-specific solver
Instance t(min) g σ GAP F
E-n22-k4 17 385 0.0 0.0% 100%
E-n23-k3 18 572 0.0 0.0% 100%
E-n30-k3 21 509 0.0 0.0% 100%
E-n33-k4 23 840 0.0 0.0% 100%
E-n51-k5 33 530 0.0 0.0% 100%
E-n76-k7 49 693 0.0 0.0% 100%
E-n101-k8 65 834.7 0.7 -0.5% 100%
X-n143-k7 175 15888.7 4.2 -0.9% 100%
X-n214-k11 266 11133.2 18.6 -1.7% 100%
X-n351-k40 462 26582.8 330.4 -1.8% 100%
X-n459-k26 573 24763.6 48.3 -2.4% 100%
X-n573-k30 694 51496.6 69 -1.3% 100%
X-n685-k75 851 69624.3 1266.9 -2.4% 100%
X-n749-k98 934 79220.1 1707.6 -2.2% 100%
X-n819-k171 1011 160657.3 5796 -2.2% 100%
X-n916-k207 1109 336108.2 447.9 -1.6% 100%
X-n1001-k43 1253 75499.3 208.9 -2.5% 100%

mean ∅ ∅ ∅ -1.15% 100%

Table 5.6: EVRP results using problem-specific solver

55

5. Results
As seen in Table 5.6, the problem-specific solver unsurprisingly performed

best on all instances across all metrics. It also found new best-known solutions
to instances E-n101-k8,..., X-n1001-k43. This is probably because it was able
to run for a longer time than in the EVRP competition. As seen in Table
5.5, the GMS-LS performed well on instances with less than 600 customers,
finding a feasible solution with good fitness on average. For larger instances
with more than 50 vehicles, it failed to find any feasible solutions, but it
managed to find feasible solutions for the largest instance, X-n1001-k43, with
large GAP over 100%.

In Table 5.5 we can see that in the smaller instances (E-n22-k4,..., X-n143-
k7) the proposed solver achieved feasibility F of 100% and GAP bellow 10%.
It found feasible solutions with large GAP for medium instances (X-n214-
k11,..., X-n573-k30) except for instance X-n351-k40, where it failed to find any
solutions. GMS-CO failed to find any feasible solutions for larger instances
(X-n685-k75,...) except for instance X-n1001-k43, for which it found 8% of
feasible solutions. The poor results may be a result of not using a high enough
tuning budget. Although, the GMS-LS had the same tuning budget and
it performed significantly better. Another reason for the poor performance
might be that none of the implemented crossover operators are suitable for
this kind of problem. A solution might also be to let the solver run longer.
As we see in figure 5.4 the GMS-CO was improving on the solutions in the
X-n214-k11 and X-n459-k26 instances until the very end of its run. This slow
conversion could be caused by poor scalability with the increased number of
vehicles.

0s 200s 400s 600s 800s 1000s 1200s
time

0.0%

0.1%

1.0%

10.0%

100.0%

GA
P

GMS-CO: E-n33-k4
average GAP
(GAP)

average feasiblity achieved
average last improvement

0s 500s 1000s 1500s 2000s 2500s 3000s 3500s
time

0.0%

0.1%

1.0%

10.0%

100.0%

GA
P

GMS-CO: E-n101-k8
average GAP
(GAP)

average feasiblity achieved
average last improvement

0s 2000s 4000s 6000s 8000s 10000s 12000s 14000s
time

100.0%

6 × 101

7 × 101

8 × 101

9 × 101

GA
P

GMS-CO: X-n214-k11
average GAP
(GAP)

average feasiblity achieved
average last improvement

0s 5000s 10000s 15000s 20000s 25000s 30000s
time

100.0%

1.1 × 102

1.2 × 102

1.3 × 102

1.4 × 102

1.5 × 102

1.6 × 102

1.7 × 102

1.8 × 102

GA
P

GMS-CO: X-n459-k26
average GAP
(GAP)

average feasiblity achieved
average last improvement

Figure 5.4: EVRP fitness minimization steps of four different instances.

56

..5.2. EVRP

5.2.2 Operator comparison

We can see in Figure 5.5 that seven operators found at least some valid
solutions to instances under 750 customers and 100 vehicles, but they failed to
find any solutions for instances with more vehicles. Best performing operators
were APX, CX, NBX, OBX, RULX, SPX, ULX and UPMX with above 70%
of feasible solutions found on average. From those APX seems as the best
single operator for solving this problem with 77% of feasible solutions found
on average and a 38% average GAP . However, all of the operators struggled
with X-n351-k40 and X-n685-k75,..., X-n916-k207 instances. This is probably
caused by the larger amount of vehicles compared to other instances. Good
performance on instance X-n1001-k43 is probably caused by a relatively small
number of vehicles. Strangely, when using one of the seven well-performing
operators independently, the solver performed the same or even better than
when using a combination of the tuned operators.

feasibility
22 23 30 33 51 76 101 143 214 351 459 573 685 749 819 916 1001 avg

AEX 100 100 100 100 62 16 0 12 0 0 0 0 0 0 0 0 0 28,82
APX 100 100 100 100 100 100 100 100 100 32 100 100 42 44 0 0 100 77,53
CX 100 100 100 100 100 100 100 100 98 12 96 100 34 16 0 0 100 73,88
ERULX 100 100 100 100 100 100 100 100 38 0 0 0 0 0 0 0 0 49,29
ERX 96 100 100 98 2 0 0 0 0 0 0 0 0 0 0 0 0 23,29
EULX 100 100 100 100 100 100 100 100 96 0 4 0 0 0 0 0 0 52,94
HGrX 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0,24
HPrX 0 6 18 2 0 0 0 0 0 0 0 0 0 0 0 0 0 1,53
HRnX 0 48 46 22 0 0 0 0 0 0 0 0 0 0 0 0 0 6,82
MPX 100 100 100 100 100 94 6 2 0 0 0 0 0 0 0 0 0 35,41
NBX 100 100 100 100 100 100 100 100 94 2 70 100 4 0 0 0 88 68,12
OBX 100 100 100 100 100 100 100 100 100 10 94 100 32 6 0 0 100 73,06
OX 100 100 100 100 100 100 100 100 36 0 0 0 0 0 0 0 0 49,18
PBX 100 100 100 100 100 100 100 100 28 0 0 0 0 0 0 0 0 48,71
RULX 100 100 100 100 100 100 98 100 96 14 96 100 14 10 0 0 100 72,24
SPX 100 100 100 100 100 100 100 100 100 0 100 100 10 2 0 0 100 71,29
ULX 100 100 100 100 100 100 100 100 98 12 90 100 24 6 0 0 98 72,24
UPMX 100 100 100 100 100 100 100 100 86 4 88 100 10 0 0 0 94 69,53

Figure 5.5: F of EVRP instances by operator
GAP

22 23 30 33 51 76 101 143 214 351 459 573 685 749 819 916 1001 avg
AEX 8 2 2 14 149 247 816 176,86
APX 0 0 0 1 8 8 10 16 53 69 70 41 164 78 49 37,80
CX 0 0 0 2 8 8 12 17 58 76 82 44 196 85 69 43,80
ERULX 0 0 0 0 8 13 27 33 63 16,00
ERX 18 1 1 13 86 23,80
EULX 0 0 0 1 9 8 12 18 46 79 17,30
HGrX 45 111 78,00
HPrX 98 112 80 96,67
HRnX 111 112 70 97,67
MPX 1 0 0 3 20 87 150 303 70,50
NBX 0 0 0 1 9 11 13 19 63 92 115 57 216 128 51,71
OBX 0 0 0 1 9 9 12 17 56 71 77 46 184 82 70 42,27
OX 0 0 0 1 14 14 23 24 111 20,78
PBX 0 0 0 2 15 16 28 27 123 23,44
RULX 0 0 0 2 9 10 13 18 59 74 90 46 193 84 77 45,00
SPX 0 0 0 1 8 9 11 18 56 81 52 169 79 103 41,93
ULX 0 0 0 1 9 10 12 19 53 79 67 45 203 81 67 43,07
UPMX 0 0 0 1 10 10 14 19 62 84 98 51 202 107 47,00

Figure 5.6: GAP of EVRP instances by operator

57

58

Chapter 6

Conclusion

We extended the General Metaheuristic Solver (GMS) for optimization prob-
lems with the dynamic permutative representation with a new Constrained
Oriented search method (GMS-CO) inspired by ASCHEA and we proposed
18 new crossover operators that work with the dynamic permutative repre-
sentation.

We compared the GMS-CO with previously proposed GMS based on
Local Search (GMS-LS) and with problem-specific solvers on two real-world
problems, EVRP and ROADEF, both having more constraints than previously
tested problems. Problem-specific solvers unsurprisingly performed better
than both GMSs on both problems. Our GMS-CO performed better than
GMS-LS on the ROADEF problem, which has more constraints than the
EVRP. In the given 90-minute timeout, GMS-CO found 90% of all feasible
solutions with average fitness within 5.5% of best-known solutions. GMS-LS
found only 50% of all feasible solutions in the same time period with average
fitness within 20% of best-known solutions for all but one successfully solved
instance.
Results of GMS-CO and GMS-LS were more even in the EVRP problem.
GMS-LS failed to find 25% of all feasible solutions and GMS-CO didn’t find
40% of all feasible solutions. They both solved instances having up to 1001
customers and 50 vehicles. GMS-LS found solutions with fitness within 10%
of best-known solutions for all instances smaller than 600 customers. The
average fitness of GMS-CO for instances with less than 200 customers was
within 10% of best-known solutions, for larger instances it was much higher,
between 41% and 160% of best-known solutions. The underperformance of
GMS-CO in the EVRP might be caused by the inability of ASCHEA to
properly exploit the constraints with the increased vehicle count, or by the

59

6. Conclusion......................................
use of unsuitable crossover operators.

A possible way to increase the performance of GMS-LS on ROADEF,
and both GMSs on EVRP, would be to use a hybrid approach, combining
GMS with problem-specific repair mechanisms. However, we feel this would
go against the main idea of the generality of GMS. New population-based
constrained handling strategies that might be better suited for EVRP, such
as Stochastic Ranking or MOEAs, could also be added to the GMS utilizing
proposed crossover operators.

60

Bibliography

[BHAB97] Atidel Ben Hadj-Alouane and James C Bean, A genetic al-
gorithm for the multiple-choice integer program, Operations
research 45 (1997), no. 1, 92–101.

[BHS02] S. Ben Hamida and M. Schoenauer, Aschea: New results using
adaptive segregational constraint handling, Proceedings of the
2002 Congress on Evolutionary Computation. CEC’02 (Cat.
No.02TH8600) (2002).

[BS96] T. Back and H.-P. Schwefel, Evolutionary computation: an
overview, Proceedings of IEEE International Conference on
Evolutionary Computation, 1996, pp. 20–29.

[BV23] Mirsad Buljubasic and Michel Vasquez, mbmv7/rc roadef solver;
https://github.com/mbmv7/rc, 2023.

[CC02] Carlos A Coello Coello, Theoretical and numerical constraint-
handling techniques used with evolutionary algorithms: A suther-
vey of state of the art, Computer Methods in Applied Mechanics
and Engineering 191 (2002), no. 11-12, 1245–1287.

[Chr76] Nicos Christofides, Worst-case analysis of a new heuristic for
the travelling salesman problem, Tech. report, Carnegie-Mellon
Univ Pittsburgh Pa Management Sciences Research Group,
1976.

[D+85] Lawrence Davis et al., Applying adaptive algorithms to epistatic
domains., IJCAI, vol. 85, Citeseer, 1985, pp. 162–164.

61

6. Conclusion......................................
[Dar59] Charles Darwin, On the origin of species by means of natural

selection, Murray, London, 1859, or the Preservation of Favored
Races in the Struggle for Life.

[DPAM02] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT
Meyarivan, A fast and elitist multiobjective genetic algorithm:
Nsga-ii, IEEE transactions on evolutionary computation 6
(2002), no. 2, 182–197.

[FGM+16] Aurélien Froger, Michel Gendreau, Jorge E. Mendoza, Éric
Pinson, and Louis-Martin Rousseau, Maintenance scheduling in
the electricity industry: A literature review, European Journal
of Operational Research 251 (2016), no. 3, 695–706.

[GGRVG14] John Grefenstette, Rajeev Gopal, Brian Rosmaita, and Dirk
Van Gucht, Genetic algorithms for the traveling salesman prob-
lem, Proceedings of the first International Conference on Ge-
netic Algorithms and their Applications, Psychology Press,
2014, pp. 160–168.

[Glo94] Fred Glover, Genetic algorithms and scatter search: unsuspected
potentials, Statistics and Computing 4 (1994), 131–140.

[Glo97] , Tabu search and adaptive memory program-
ming—advances, applications and challenges, Interfaces in com-
puter science and operations research: Advances in metaheuris-
tics, optimization, and stochastic modeling technologies (1997),
1–75.

[GLPZ23] Hanyu Gu, Hue Chi Lam, Thi Thanh Thu Pham, and Yakov Zin-
der, Heuristics and meta-heuristic to solve the roadef/euro chal-
lenge 2020 maintenance planning problem, Journal of Heuristics
(2023), 1–37.

[gur23] Gurobi, https://www.gurobi.com, GUROBI (2023).

[HDB23] Vu Quoc Hien, Tran Cong Dao, and Huynh Thi Thanh Binh,
A greedy search based evolutionary algorithm for electric vehicle
routing problem, Applied Intelligence 53 (2023), no. 3, 2908–
2922.

[HL+99] Georges R Harik, Fernando G Lobo, et al., A parameter-less
genetic algorithm., GECCO, vol. 99, 1999, pp. 258–267.

[Hra22] Jan Hrazdíra, Metaheuristic algorithms for optimiza-
tion problems sharing representation; diploma thesis;
https://dspace.cvut.cz/handle/10467/102112.

[IBM23] IBM, Cplex,https://www.ibm.com/products/ilog-cplex-
optimization-studio/cplex-optimizer, IBM (2023).

62

...................................... 6. Conclusion

[JH94] Jeffrey A Joines and Christopher R Houck, On the use of
non-stationary penalty functions to solve nonlinear constrained
optimization problems with ga’s, Proceedings of the first IEEE
conference on evolutionary computation. IEEE world congress
on computational intelligence, IEEE, 1994, pp. 579–584.

[JMZ21] Ya-Hui Jia, Yi Mei, and Mengjie Zhang, A bilevel ant colony
optimization algorithm for capacitated electric vehicle routing
problem, IEEE Transactions on Cybernetics 52 (2021), no. 10,
10855–10868.

[KW22] Tomas Kroupa and Tomas Werner, Op-
timalizační úlohy a jejich formulace;
https://cw.fel.cvut.cz/b212/_media/courses/b0b33opt/01uvod.pdf,
2022.

[KWV21] Viktor Kozák, David Woller, and Václav Vávra, Vns evrp 2020
solver; https://github.com/wolledav/vns-evrp-2020, 2021.

[L+66] Vladimir I Levenshtein et al., Binary codes capable of correcting
deletions, insertions, and reversals, Soviet physics doklady,
vol. 10, Soviet Union, 1966, pp. 707–710.

[LIDLC+16] Manuel López-Ibáñez, Jérémie Dubois-Lacoste, Leslie Pérez
Cáceres, Mauro Birattari, and Thomas Stützle, The irace pack-
age: Iterated racing for automatic algorithm configuration, Op-
erations Research Perspectives 3 (2016), 43–58.

[LKM+99] Pedro Larranaga, Cindy M. H. Kuijpers, Roberto H. Murga,
Inaki Inza, and Sejla Dizdarevic, Genetic algorithms for the
travelling salesman problem: A review of representations and
operators, Artificial intelligence review 13 (1999), 129–170.

[LKPM97] Pedro Larranaga, Cindy MH Kuijpers, Mikel Poza, and
Roberto H Murga, Decomposing bayesian networks: triangula-
tion of the moral graph with genetic algorithms, Statistics and
Computing 7 (1997), 19–34.

[LMS03] Helena R Lourenço, Olivier C Martin, and Thomas Stützle,
Iterated local search, Springer, 2003.

[met] Metacentrum; https://metavo.metacentrum.cz/.

[MF99] Peter Merz and Bernd Freisleben, A comparison of memetic
algorithms, tabu search, and ant colonies for the quadratic
assignment problem, Proceedings of the 1999 Congress on Evo-
lutionary Computation-CEC99 (Cat. No. 99TH8406), vol. 3,
IEEE, 1999, pp. 2063–2070.

63

6. Conclusion......................................
[MGSK88] Heinz Mühlenbein, Martina Gorges-Schleuter, and Ottmar

Krämer, Evolution algorithms in combinatorial optimization,
Parallel computing 7 (1988), no. 1, 65–85.

[MH97] Nenad Mladenović and Pierre Hansen, Variable neighborhood
search, Computers & operations research 24 (1997), no. 11,
1097–1100.

[Mic96] Zbigniew Michalewicz, Genetic algorithms + data structures =
evolution programs, Springer-Verlag, 1996.

[MK05] Alfonsas Misevičius and Bronislovas Kilda, Comparison of
crossover operators for the quadratic assignment problem, Infor-
mation Technology and Control 34 (2005), no. 2.

[MMT+20] Michalis Mavrovouniotis, Charalambos Menelaou, Stelios Tim-
otheou, Christos Panayiotou, Georgios Ellinas, and Marios
Polycarpou, Benchmark set for the ieee wcci-2020 competition
on evolutionary computation for the electric vehicle routing
problem, March 2020.

[MN21] Joaquim Martins and Andrew Ning, Engineering design opti-
mization, October 2021.

[MNJ+22] Setyo Tri Windras Mara, Rachmadi Norcahyo, Panca Jodiawan,
Luluk Lusiantoro, and Achmad Pratama Rifai, A survey of
adaptive large neighborhood search algorithms and applications,
Computers & Operations Research (2022), 105903.

[MQ98] Angel Kuri Morales and Carlos Villegas Quezada, A universal
eclectic genetic algorithm for constrained optimization, Proceed-
ings of the 6th European congress on intelligent techniques and
soft computing, vol. 1, 1998, pp. 518–522.

[MTKT96] Victor V Migkikh, AA Topchy, Victor M Kureichik, and Alexan-
der Y Tetelbaum, Combined genetic and local search algorithm
for the quadratic assignment problem, Proceedings of IC on evo-
lutionary computation and its applications, EvCA 96 (1996),
335–341.

[NW70] Saul B. Needleman and Christian D. Wunsch, A general method
applicable to the search for similarities in the amino acid se-
quence of two proteins, Journal of Molecular Biology 48 (1970),
no. 3, 443–453.

[opt23] Encyclopedia britannica: ’optimization’ definition;
https://www.britannica.com/science/optimization, 2023.

[PAVPT] Francisco Parreño, Ramon Alvarez-Valdes, and Consuelo
Parreño-Torres, A matheuristic algorithm for the maintenance

64

...................................... 6. Conclusion

planning problem at an electricity transmission system operator,
Available at SSRN 4263885.

[Pet96] A. Petrowski, A clearing procedure as a niching method for ge-
netic algorithms, Proceedings of IEEE International Conference
on Evolutionary Computation, 1996, pp. 798–803.

[PM13] Krunoslav Puljić and Robert Manger, Comparison of eight
evolutionary crossover operators for the vehicle routing problem,
Mathematical Communications 18 (2013), no. 2, 359–375.

[RHHM02] Celso C Ribeiro, Pierre Hansen, Pierre Hansen, and Nenad
Mladenović, Developments of variable neighborhood search,
Springer, 2002.

[RK14] Julia Roberts and Mykel Kochender-
fer, Pareto optimality presentation;
https://web.stanford.edu/group/sisl/k12/optimization/mo-
unit5-pdfs/5.8pareto.pdf, 2014.

[Roa20] Roadef, Roadef problem website;
https://www.roadef.org/challenge/2020/en/index.php, 2020.

[Roa23] , Societe francaise recherche operationnelle aide decision;
https://roadef.org/societe-francaise-recherche-operationnelle-
aide-decision, 2023.

[Ron95] Edmund MA Ronald, When selection meets seduction, Proceed-
ings of the 6th International Conference on Genetic Algorithms,
1995, pp. 167–173.

[RTP20] Manuel Ruiz, Pascal Tournebise, and Patrick Panciatici,
Roadef/euro hallenge 2020: Maintenance planning problem!ů
problem description, March 2020.

[RW22] Jakub Rada and David Woller, Roadef 2020 solver;
https://github.com/wolledav/roadef_2020.

[RY00] T.P. Runarsson and Xin Yao, Stochastic ranking for constrained
evolutionary optimization, IEEE Transactions on Evolutionary
Computation 4 (2000), no. 3, 284–294.

[SH00] Marc Schoenauer and Sana Ben Hamida, An adaptive algorithm
for constrained optimization problems, Proceedings of the 6th
Conference on Parallel Problems Solving from Nature (2000),
529–538.

[SPE] Standard performance evaluation corporation;
https://www.spec.org/cpu2017/.

65

6. Conclusion......................................
[SVG87] JY Suh and D Van Gucht, Incorporating heuristic information

into genetic search. genetic algorithms and their applications:
Proceedings of the second international conference on genetic
algorithms, 1987.

[SWL+03] X.H. Shi, L.M. Wan, H.P. Lee, X.W. Yang, L.M. Wang, and Y.C.
Liang, An improved genetic algorithm with variable population-
size and a pso-ga based hybrid evolutionary algorithm, Proceed-
ings of the 2003 International Conference on Machine Learn-
ing and Cybernetics (IEEE Cat. No.03EX693), vol. 3, 2003,
pp. 1735–1740 Vol.3.

[TS95] David M Tate and Alice E Smith, A genetic approach to the
quadratic assignment problem, Computers & Operations Re-
search 22 (1995), no. 1, 73–83.

[VLAvLA87] Peter JM Van Laarhoven, Emile HL Aarts, Peter JM van
Laarhoven, and Emile HL Aarts, Simulated annealing, Springer,
1987.

[WHK22] David Woller, Jan Hrazdíra, and Miroslav Kulich, Metaheuristic
solver for problems with permutative representation, Intelligent
Computing & Optimization: Proceedings of the 5th Interna-
tional Conference on Intelligent Computing and Optimization
2022 (ICO2022), Springer, 2022, pp. 42–54.

[WSF89] L Darrell Whitley, Timothy Starkweather, and D’Ann Fuquay,
Scheduling problems and traveling salesmen: The genetic edge
recombination operator, ICGA, vol. 89, 1989, pp. 133–40.

66

Appendix A

Attachments

. allStats.zip - all of the collected results, used in creating graphs, figures
and tables, allStats contains the following folders:. EVRP-EA: results of GMS-CO’s Performance comparison experi-

ments on EVRP. EVRP-LS: results of GMS-LS’s Performance comparison experi-
ments on EVRP. EVRP-solver: results of problem-specific solver’s Performance com-
parison experiments on EVRP. EVRP-op: results of Operator comparison experiments on EVRP. ROADEF-EA: results of GMS-CO’s Performance comparison ex-
periment ROADEF. ROADEF-LS: results of GMS-LS’s Performance comparison experi-
ment ROADEF. ROADEF-solver: results of problem-specific solver’s Performance
comparison experiments on ROADEF. ROADEF-op: results of Operator comparison experiments on
ROADEF. permutator-light.zip - project containing GMS without some of the

ROADEF instances to save memory. The whole project can be found in
this git-repository https://github.com/wolledav/permutator under the
’evolutionary-algorithm’ branch.. solvers.zip - contains slightly modified EVRP and ROADEF specific
solvers. Links to their respective git-repositories:
EVRP: https://github.com/wolledav/VNS-EVRP-2020,
ROADEF: https://github.com/wolledav/ROADEF_2020

67

	Introduction
	Literature overview
	Problem specific metaheuristics
	Constraint handling metaheuristics

	Theory
	Optimization
	Constrained Optimization

	Evolutionary Algorithms
	EA Pipeline

	General Metaheuristic Solver (GMS)
	Problem definition
	Framework

	Implemented problems
	Electric Vehicle Routing Problem (EVRP)
	ROADEF 2020 Challenge: Grid operation-based outage maintenance planning

	Implementation
	Generic Optimizer
	Fitness and penalties
	Initialization
	Selection
	Crossover
	Mutation
	Replacement
	Population sizing scheme

	Problem implementation
	ROADEF

	Results
	ROADEF
	Performance comparison experiments
	Operator comparison

	EVRP
	Performance comparison experiments
	Operator comparison

	Conclusion
	Bibliography
	Attachments

