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Abstract

Object detection in the vehicle’s surround-
ings is a key functionality for autonomous
automobiles. It allows the car to see
and interpret the surrounding environ-
ment and to provide input data for the
systems, such as adaptive cruise control
or emergency braking. Porsche Engi-
neering is dedicated to developing an
autonomous vehicle within the Jupiter
project. The project utilises customised
Porche Cayenne GTS, which is based on
ROS. This thesis aims to extend an ex-
isting RGB architecture by depth data
obtained by LiDAR. The detection net-
work is trained on freely available datasets
to achieve the best possible domain trans-
fer to the Jupiter car. The advantage of
the depth modularity is tested, and the
quality of the model is evaluated on an
available benchmark. The final detection
model is implemented as a ROS node,
which detects objects such as cars and
pedestrians in real-time.

Keywords: Computer Vision,
Autonomous mobility, LiDAR, object
detection, ROS2

Supervisor: Ing. Vojtěch Šalanský,
Ph.D.

Abstrakt

Detekce objektů v okolí vozidla předsta-
vuje klíčovou funkci pro autonomní auto-
mobily. Umožňuje vozidlu sledovat a in-
terpretovat okolní svět a poskytnout tak
vstupní data pro systémy jako například
adaptivní tempomat nebo nouzové brz-
dění. Společnost Porsche Engineering se v
rámci projektu Jupiter věnuje vývoji auto-
nomního vozu. Projekt využívá speciálně
upravené Porsche Cayenne GTS, které je
možné řídit v rámci operačního systému
ROS. Cílem této práce je rozšířit existu-
jící RGB architekturu o hloubková data
získaná z LiDARu. Detekční síť je nau-
čena na volně dostupných datasetech tak,
aby bylo dosaženo co nejlepšího přenosu
na auto z projektu Jupiter. Výhoda pou-
žití hloubkové modularity je otestována
a kvalita detekčního modelu je ověřena
na dostupném benchmarku. Výsledný de-
tekční model je implementován jako ROS
node, který v reálném čase detekuje ob-
jekty zájmu, např. vozidla a chodce.

Klíčová slova: Počítačové vidění,
Autonomní mobilita, LiDAR, detekce
objektů, ROS2

Překlad názvu: Detekce objektů v okolí
autonomního auta pomocí RGBD dat —
Project JUPITER
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Chapter 1

Introduction

A self-driving car has been a fascinating concept for generations, and it
has the potential to revolutionize the automotive industry and transform
transportation as we know it today. Driverless cars promise to improve
mobility in various aspects. As we look ahead, advancements in autonomous
mobility are expected to shape how we travel, work, and live, paving the
way for a future where transportation is safer, more sustainable, and more
accessible to all.

Many companies are taking the initiative to develop an autonomous car.
Porsche Engineering1 is an internationally active premium engineering service
provider for automobile manufacturers, their suppliers, and other industries.
As a Porsches daughter company, Porsche Engineering is developing its
autonomous car. For this purpose, the company has a Porsche Cayenne
GTS specially equipped with sensors such as a camera, lidar and radar and
computing power. The vehicle uses a Robotic Operating System (ROS) to
control the car. All sensors are integrated within the system and can be
easily accessed in various applications - for example, the pursuit of this thesis
- object detection.

Computer vision plays a pivotal role in the functionality of autonomous
cars by enabling them to perceive and understand their environment through
sensor-based information and data processing. It allows the vehicle to detect
objects, recognize traffic signs, and understand road scenes, all that is neces-
sary information regarding making decisions, ensuring safety, and interacting
with humans. Computer vision also forms the foundation of the perception

1Porsche Engineering, https://www.porscheengineering.com/peg/en/
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1. Introduction .....................................
and decision-making capabilities essential for autonomous driving, making it
a fundamental technology for advancing self-driving cars.

As mentioned above, Porsche Engineering is taking the initiative to develop
its autonomous vehicle. To achieve this task, project JUPITER [HSPM22]
was started. This project uses a customised Porsche Cayenne GTS as a
development platform. Because the project is in the early stages, no object
detection is implemented on the car. This thesis aims to implement a code
to detect and classify vehicles and pedestrians. For the detection, data from
the camera and LiDAR are used. As an object detection model, YOLOv5
by Ultralytics [Joc20] is used. The detection algorithm is implemented in a
ROS node, which can be used within a Robotic Operating System 2 ROS)
[MFG+22] system on a JUPITER car. This thesis also compares the results
of the implemented model on an available benchmark.

The Chapter 2 presents and describes state-of-the-art methods in au-
tonomous driving and object detection. Chapter 3 introduces the project
Jupiter and the platform on which this thesis is implemented. Chapter 4
presents the theory needed to comprehend the implementation. The imple-
mentation is described in Chapter 5. Chapter 6 presents the experiments
and results. The implemented model is tested on a free available dataset.
The advantage of using depth modularity over sole RGB data and how the
detector works on the Jupiter car are shown. The last chapter summarises
the thesis and concludes the results.

2



Chapter 2

State-of-the-art

2.1 Race for autonomous car

2.1.1 Introduction

Self-driving cars have been researched and developed by many universities,
research centres, car companies, and companies of other industries worldwide
since the middle 1980s. One of the significant events that catalysed the
race for the autonomous car was the DARPA Grand Challenge1 that took
place in 2004. Since then, autonomous mobility has evolved rapidly. With
Technology Giants and automotive companies joining the initiative, the
research accelerated. In 2009, Google initiated the development of self-driving
vehicles, which in the year 2016 became a standalone company called Waymo2.
In 2015 Tesla3 announced the ’autopilot feature’. It used the fusion of data
from cameras, radar and sonar technology. Another significant milestone
was in the year 2018, when Nvidia launched a car chip called ’Xavier’ with
artificial intelligence (AI) capabilities and partnered with Volkswagen for the
next generation of self-driving cars4. Today autonomous vehicles are being
tested and deployed in various locations worldwide. Even though it may seem

1The Grand Challenge, https://www.darpa.mil/about-us/timeline/
-grand-challenge-for-autonomous-vehicles

2Waymo, https://waymo.com/
3Tesla, https://www.tesla.com/
410 Major Milestones in the History of Self-Driving Cars, https://blog.getmyparking.

com/2019/09/25/10-major-milestones-in-the-history-of-self-driving-cars/

3
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2. State-of-the-art....................................
that the problem of driverless cars is solved, many obstacles are still yet to
be overcome.

There are two main approaches to achieving driverless cars at this moment.
The first one is executed by Tesla, using only camera information to determine
the vehicle’s surroundings. This method can have many drawbacks, including
the disability to measure the distance of obstacles on the road or low-grade
video quality under bad weather conditions. These issues can be solved by
adding extra sensors such as lidar or radar. This approach is enforced by
other companies such as Waymo, Volkswagen, Porsche and others. This
technique uses the fusion of sensor data to make an image of the environment
around the car. It simplifies determining the distance of the objects. It is
also more robust under all conditions, i.e. in the rain or at night. This thesis
uses depth data and images to detect the objects in front of the car. For this
reason, the latter approach will be examined.

2.1.2 Waymo, the state-of-the-art driverless technology

Among many driverless cars, one stands out. Waymo is a company that
makes driverless technology that can be installed on various platforms, such
as Chrysler Pacifica or Jaguar I-PACE5. It started as a Google initiative
in 20096. Since then, significant progress has been made in all aspects of
self-driving cars. Waymo has set the bar by developing its own technologies
from the ground up. One of the most remarkable technologies Waymo has
designed is custom lidar, which makes a 3D image of the car’s surrounding
environment.

To make a complete picture of the vehicle’s surroundings, Waymo does not
use only one camera or lidar. Many sensors are placed in selected positions
around the car to complement each other. There are 19 cameras on Chrysler
Pacifica and 29 on Jaguar I-PACE7. One is a front-facing long-range camera
and a 360 vision system. A high-resolution 360° LIDAR is mounted on the
top of the car.

The technology used by Waymo in developing autonomous vehicles is state-
of-the-art7, utilising a combination of advanced camera, lidar, and radar data
to create a holistic view of the car’s surroundings. What sets Waymo apart is
that they have designed and built its custom sensors and developed various

5Waymo, https://waymo.com/
6Waymo - Our history, https://waymo.com/company/#story
7Waymo - Waymo Driver https://waymo.com/waymo-driver/
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............................ 2.2. State-of-the-art detection model

advanced algorithms to enable its autonomous vehicles to navigate safely and
efficiently. With millions of miles on public roads and billions in simulation
in more than 13 states in the United States7, Waymo has accomplished a
milestone in being the first autonomous ride-hailing service available to the
public. The Waymo Driver stands as a beacon of safety and is leading the
entire industry forward7.

2.2 State-of-the-art detection model

2.2.1 Introduction

The advance in driverless vehicles would not be possible without computer
vision. Computer Vision is a domain of Artificial Intelligence (AI) that uses
computational models to interpret the data from cameras and (or) other
sensors. Thanks to new technologies, more powerful hardware and an immense
quantity of visual data available, Computer Vision has significantly improved
over the past years. In less than a decade, today’s systems have reached 99
per cent accuracy from 50 per cent, making them more accurate than humans
at quickly reacting to visual inputs8.

Since its origins, Computer Vision has reached many milestones. The
progress can be separated into two periods. Before the year 2014, when
traditional object-detecting methods were used, such as image processing.
After 2014 came the Deep Learning period with object detection algorithms.
To name a few: RCNN and SPPNet (2014), FastRCNN (2015), YOLO (2016)
and RetinaNet (2017) [ZSGY19]. The most recent YOLO model is YOLOv89,
released in January 2023.

Diverse computer vision applications include Classification, Object Detec-
tion and Instance Segmentation. Object Classification tells us what type
of object is present in the picture. Object Detection is used to classify and
localise the object in the image. Instance Segmentation determines what
pixels of the image belong to an instance of an object. In this thesis, the
Object Detection approach is used. Thus, the attention in this chapter is
directed towards this approach.

8https://towardsdatascience.com/everything-you-ever-wanted\
-to-know-about-computer-vision-heres-a-look-why-it-s-so-awesome-e8a58dfb641e

9Ultralytics, YOLOv8, https://ultralytics.com/yolov8
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2. State-of-the-art....................................
2.2.2 Real-time object detection

In general,object detectors need to balance speed and accuracy. Two-stage
methods are generally more accurate (R-CNN [GDDM13], Mask R-CNN
[HGDG17]). Faster but less accurate are one-stage detectors (YOLO [RDGF15],
SSD [LAE+16], RetinaNet [LGG+20]). Two-stage architectures compose of
two tasks. First, the object region proposal is followed by object classification
in the proposed region. One-stage detectors skip the first part and predict
the bounding boxes without suggesting the areas of interest. In this thesis,
the focus is on one-stage models.

2.2.3 YOLO - the state-of-the-art detection algorithm

You Only Look Once (YOLO) is an open-source, state-of-the-art, real-time
object detection algorithm that was first released in 2016 by Joseph Redmon
et al. [RDGF15]. The newly presented architecture was significantly faster
than any other object detector at the time. It posed the object detection task
as a regression problem instead of a classification, as it was implemented in
different algorithms.

YOLO was the first to utilise a single neural network to analyse the entire
image in one go, rendering it highly efficient. This network divides the image
into regions and simultaneously predicts bounding boxes and probabilities for
each region[ZSGY19]. Despite its substantial improvement in detection speed,
YOLO suffers from a drop in localisation accuracy compared with two-stage
detectors, especially for some small objects[ZSGY19]. The follow-up YOLO
models focused on this problem achieving better results.

Over the years, YOLO has undergone several versions, each improving
upon its predecessor. The original YOLO algorithm (2016) was followed
by YOLOv2, released in 2017 [RF17]. YOLOv2 improved upon the speed
and accuracy of the original algorithm by introducing a few fundamental
changes, such as multi-scale training and batch normalisation. Following
YOLOv2, YOLOv3 was released in 2018 [RF18], which further improved
object detection accuracy. The YOLOv4 algorithm [BWL20] was released in
2020 and employed more advanced architecture.

The most recent version of YOLO is the YOLOv7 [WBL22] detection
algorithm. The YOLOv7 algorithm, released in 2021, is the fastest and most
accurate version of YOLO yet. It uses a multi-scale approach that allows for

6



............................ 2.2. State-of-the-art detection model

the detection of objects at different scales, improving detection accuracy even
in challenging conditions. Compared to other neural networks, it demands
several times cheaper hardware and can be trained much faster on small
datasets without any pre-trained weights10. Overall, the YOLOv7 detection
algorithm is a significant improvement over the previous versions of YOLO
and is a testament to the continued development and innovation in the field
of computer vision.

2.2.4 R-CNN

The R-CNN model, or Region-based Convolutional Neural Network, is a deep
learning architecture used for object detection in images. It proposes regions
in an image where objects may be located by selective search[ZSGY19]. Then
it uses a convolutional neural network to predict the presence of an object
in each proposed area and to classify them[USGS13]. R-CNN models were
introduced in 2014. They presented significant progress at the time but still
had plodding prediction speed, around 14s with GPU[ZSGY19].

2.2.5 SSD

SSD was proposed in 2015[LAE+16]. It stands for Single Shot MultiBox
Detector and is known for its speed and accuracy in detecting objects in
images and videos. The algorithm works by dividing the image into a grid of
boxes, where each box is responsible for detecting objects within its boundaries.
The SSD detector also uses multiple scales of feature maps to capture objects
of varying dimensions, making it more robust in detecting objects of different
sizes and orientations. SSD has advantages in terms of both detection speed
and accuracy[ZSGY19].

10YOLOv7: The Most Powerful Object Detection Algorithm (2023 Guide), https://
viso.ai/deep-learning/yolov7-guide/
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Chapter 3

Project JUPITER

3.1 Introduction

The project JUPITER (Joint User Personalised Integrated Testing and En-
gineering Resource) is a project by Porsche Engineering. The project uses
modified Porsche cars to develop future ADAS1 systems [HSPM22]. The
project aims to build one unified applied research and collaboration platform
within Porsche Engineering. It is used for fast proof of concepts, for inte-
gration of close-to-series projects and integration of algorithms from partner
locations or customers. The platform is in Fig. 3.1 and 3.2.

3.2 Car specifications

The model of the car used in this thesis is Porsche Cayenne GTS. The car is
equipped with sensors such as a camera, LiDAR and radar. In this thesis,
a camera and LiDAR are used. The camera is a ZED2 stereo camera, and
the LiDAR is the Livox Lidar Horizon, with a range of up to 260 meters.
Only front LiDAR is utilized. The sensors’ arrangement is shown in Fig.
3.3, and the schematic representation of the sensors is in Fig. 3.4. The
development platform uses a powerful Server-CPU with 512 GB of RAM and
a high-performance GPU for AI-applications [HSPM22].

1ADAS stands for Advanced Driver Assistance Systems
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27.10.2022
- 3 -

Jupiter – Platform
PEG

The Vision of Jupiter
The Benefits of Jupiter 

'images: Flaticon.com'

Fully Scalable Rapid Prototyping 
Vehicle 

J U P I T E R

Modular Software Architecture for  
ADAS

Novel and State-of-the-Art  ADAS 
Algorithms  

Collaboration Platform across 
various domains

J.U.P.I.T.E.R
JOINT USER PERSONALISED INTEGRATED TESTING AND ENGINEERING RESSOURCE

Figure 3.1: There are currently 3 JUPITER cars.

Figure 3.2: JUPITER platform used in this thesis. This car is used by Porsche
Engineering CZ.
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...................................3.2. Car specifications

19.05.2023
- 5 -

Jupiter – Collaboration Platform for Future ADAS Systems

Livox Lidar Horizon:
• FOV 81,7° (H) x 25,1° (V)
• Front and Rear
• >240.000 Points/sec (64 lines)
• Up to 260 M (80% reflectivity)
• Low-cost (800$)

Development platform:
• powerful Server-CPU (128 GB RAM)
• 2x high performance GPUs 

(10/48GB VRAM) for AI-applications
• x86 architecture to ensure 3rd Party 

compatibility (OpenCV, Python, …)
• High speed data logging (3 GB/s)

ZED2 Stereo camera:
• FOV (110° (H) x 70° (V))
• various resolution options 

(2K)
• Depth Range (0.2 -20 m)

Figure 3.3: Arrangement of the sensors with description.

19.05.2023
- 7 -

Jupiter – Collaboration Platform for Future ADAS Systems

Sensor-Stack
Jupiter Clones: Sensor set (schematic representation)

Raw Image from the series camera (solid blue sectors) can be accessed via external hardware (currently not available on the
clones)

Figure 3.4: Jupiter sensor set (schematic representation).
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Chapter 4

Theory

4.1 Introduction

This chapter provides the theory needed to understand the problematics
of the implementation of object detection in the JUPITER car. First, I
explain how real-time object detection works and describe the components of
a Convolutional Neural Network (CNN) and how they work. Then I clarify
the model training process. After that, I present the YOLO architecture.
Then I illustrate how the LIDAR is used and explain the approach to using
the provided data. Last but not least, I describe the working principle of
ROS. Lastly, I present the KITTI and Waymo dataset, which are used to
learn the network.

4.2 Neural Networks

A neural network is a type of machine learning model. There are various
types of neural networks used for multiple purposes. The most used ones are
Recurrent Neural Networks (RNN)[She20], Convolutional Neural Networks
(CNN)[ON15], Long Short-Term Memory Networks (LSTM)[She20], and
Generative Adversarial Networks (GAN)[GPAM+14]. In this thesis, the
Convolutional Neural Network is used. This type of network is commonly used
for image recognition tasks, such as image classification or object detection.

13



4. Theory .......................................
CNN compose of various layers, each serving a distinct purpose. These layers
form a Hidden Layer, typically consisting of convolutional, pooling, fully
connected, and normalisation layers with an activation function.

4.2.1 Convolutional Layers

Convolution is a foundational concept in computer vision. It extracts or
creates a feature map from the input image. Inputs to convolution are two
matrices. The first one, the input matrix, consists of pixels with constant
values. It could be either an output from another layer or the input image
itself. The second input is called the kernel. It is a smaller matrix with
variable values used to help to extract essential features from the input matrix.
It also contextualises the pixel within its location, which allows the network
to learn the fundamental components such as edges, corners, and textures.

The convolution creates a feature map. The feature map values are calcu-
lated according to the equation (4.1)1, where the input image is denoted by f
and our kernel by h. The indexes of rows and columns of the result matrix
are marked with m and n, respectively.

G[m, n] = (f ∗ h)[m, n] =
∑

j

∑
k

h[j, k]f [m − j, n − k]. (4.1)

4.2.2 Pooling Layers

As convolutional layers, the pooling layers [GK20] are one of the essential
building blocks of convolutional neural networks. Convolutional layers produce
a location-dependent feature map, and pooling layers provide translational
invariance, so the CNN will detect the object even if the input of the CNN
is translated. Commonly used are Max Pooling see Fig. 4.1 and Average
Pooling see Fig. 4.2.

1Gentle Dive into Math Behind Convolutional Neural Networks, https:
//towardsdatascience.com/gentle-dive-into-math-behind-convolutional\
-neural-networks-79a07dd44cf9
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where 𝑁 ∈ {1, … , 𝑅}  is a pooling shift allowing for overlap between pooling regions when 𝑁 <  𝑅. The 

pooling layer decreases the output dimensionality from 𝐾 convolutional bands to 𝑀 =  (𝐾 − 𝑅)/𝑁 + 1 

pooled bands and the resulting layer is 𝑝 =  [𝑝1, … , 𝑝𝑀]  ∈ 𝑅𝑀.𝐽 . 

An example of the Max-Pooling operation is shown in Fig. 2. 

 

Fig. 2. Example of Max-Pooling operation. 

2.3. Mixed Pooling 

Max pooling extracts only the maximum activation whereas average pooling down-weighs the activation 

by combining the non-maximal activations. To overcome this problem, Yu et al. [13] proposed a hybrid 

approach by combining the average pooling and max pooling. This approach is highly inspired by dropout [14] 

and Drop connect [15]. Mixed pooling can be represented as Eq. 2: 

𝑠𝑗 = 𝜆 max
𝑖∈𝑅𝑗

𝑎𝑖 + (1 − 𝜆)
1

|𝑅𝑗|
∑ 𝑎𝑖

𝑖∈𝑅𝑗

                   (2) 

where 𝜆 decides the choice of either using max pooling or average pooling. The value of 𝜆 is selected randomly 

either 0 or 1. When 𝜆 = 0, it behaves like average pooling, and when 𝜆 = 1, it works like max pooling. The 

value of 𝜆 is recorded for forward-propagation order and it is used during the backpropagation process. Yu 

et al. showed its superiority over max and average pooling by performing image classification on three 

different datasets. 

2.4. 𝑳𝑷 Pooling 

Sermanet et al. [16] proposed the concept of 𝐿𝑃 pooling and claimed that its generalization ability is better 

than max pooling. In this pooling, a weighted average of inputs is taken in pooling region. It is represented as 

given in Eq. 3: 

𝑠𝑗 = (
1

|𝑅𝑗|
∑ 𝑎𝑖

𝑝

𝑖∈𝑅𝑗

)

1
𝑝⁄

                                   (3) 

 where 𝑠𝑗 represents the output of the pooling operator at location 𝑗, 𝑎𝑖 is the feature value at location 𝑖 within 

the pooling region 𝑅𝑗. The value of 𝑝 varies between 1 and ∞. When 𝑝 =  1, 𝐿𝑃 operator behaves as average 

pooling and at 𝑝 =  ∞ it leads to max-pooling. For 𝐿𝑃  pooling, 𝑝 >  1 is examined as a trade-off between 

average and max pooling. 

Figure 4.1: Example of Max-Pooling operation [GK20].

 

Pooling is a key-step in convolutional based systems that reduces the dimensionality of the feature maps. It 

combines a set of values into a smaller number of values, i.e., the reduction in the dimensionality of the feature 

map. It transforms the joint feature representation into valuable information by keeping useful information and 

eliminating irrelevant information. Pooling operators provide a form of spatial transformation invariance as 

well as reducing the computational complexity for upper layers by eliminating some connections between 

convolutional layers. This layer executes the down-sampling on the feature maps coming from the previous 

layer and produces the new feature maps with a condensed resolution. This layer serves two main purposes: 

the first is to reduce the number of parameters or weights, thus lessening the computational cost and the second 

is to control overfitting. An ideal pooling method is expected to extract only useful information and discard 

irrelevant details.  

In this article, we studied some of the pooling methods used in CNNs. We divided pooling methods into 

two categories: popular methods and novel methods. In popular methods, Average Pooling, Max Pooling, 

Mixed pooling, 𝐿𝑃 Pooling, Stochastic Pooling, Spatial Pyramid Pooling, and Region of Interest Pooling are 

discussed. Multi-scale order-less pooling, Super-Pixel Pooling, PCA networks, Compact Bilinear Pooling, 

Lead Asymmetric Pooling, Edge-aware Pyramid Pooling, Mixed Pooling, Spectral Pooling, Row-wise Max 

Pooling,  Inter-map Pooling, Rank-based Average Pooling, Per Pixel Pyramid Pooling, Weighted pooling, and 

Genetic-based Pooling methods are discussed in novel methods. The rest of this paper is organized as follows: 

Section 2 presents popular pooling methods.  are discussed in Section 2.   

2. Popular Pooling Methods 

2.1. Average Pooling 

The idea of average or mean for pooling and extracting the features, firstly introduced in [10] and used in 

[11] that is the first convolution-based deep neural network. As shown in Fig. 1, an average pooling layer 

performs down-sampling by dividing the input into rectangular pooling regions and computing the average 

values of each region. 

 

Fig. 1. Example of Average Pooling operation. 

2.2. Max-Pooling 

A max-pooling operator [12] can be applied to down-sample the convolutional output bands, thus reducing 

variability. The max-pooling operator passes forward the maximum value within a group of 𝑅 activations. The 

𝑚-th max-pooled band is composed of 𝐽 related filters 𝑝𝑚 = [𝑝1,𝑚, … , 𝑝𝑗,𝑚, … , 𝑝𝐽,𝑚] ∈ 𝑅𝐽:  

𝑝𝑗,𝑚 = max(ℎ𝑗,(𝑚−1)𝑁+𝑟)                                    (1) 

Figure 4.2: Example of Average Pooling operation [GK20].

4.2.3 Activation Functions

In the real world, many correlations and patterns are complex. In other
words, many of the patterns are non-linear. To model the patterns, non-linear
activation functions are used. Activation functions must be differentiable, zero-
centred and easy to compute. Popular functions are, for example, sigmoid,
Tanh or Leaky ReLU [DSC22].

Sigmoid

The equation (4.2) defines the sigmoid activation function. Because the
output of this function is between 0 and 1, this function is used for the models
that predict the probability.

σ(x) = 1
1 + e−x

. (4.2)
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4. Theory .......................................
Hyperbolic Tangent

The Tanh activation function is suitable for classification tasks because it can
generate output values within the range of -1 and 1. It is a scaled and shifted
version of the sigmoid function, which makes it symmetric around the origin.
However, when used in deep neural networks, it can suffer from the vanishing
gradient problem. The equation (4.3) describes the Tanh activation function.

f(x) = tanh(x) = 2
1 + e−2x

− 1. (4.3)

Rectified Linear Unit - ReLU

ReLU is a popular activation function for neural networks. It is described by
the equation (4.4). It helps mitigate the vanishing gradient problem in deep
networks and enhances performance. The drawback of this function is that
all negative values output zero, which decreases the model’s ability to fit the
data correctly.

f(x) = max(0, x). (4.4)

Leaky ReLu

Leaky ReLU is an activation function used in neural networks to address
the "dying ReLU" problem mentioned before by introducing a small negative-
value slope. This feature helps prevent the gradient of the activation function
from becoming zero and improves the learning capability of the model. The
equation (4.5) defines the leaky ReLU, where a is a real number determining
the slope.

f(x) = max(ax, x). (4.5)

4.2.4 Fully Connected Layers

Fully Connected Layers form the last few layers in the network. The input is
vectorised output of the convolutional or pooling layer. It is a linear layer
that represents the function y = Wx + b, where W represents the weights
and b is the bias. The output of the final layer is then used to determine the
probability of individual object classes being present in the input data.

16
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4.2.5 Dropout Layers

Dropout layers are used to avoid model overfitting. Overfitting occurs when
the model learns the statistical noise of the data used for training. This
phenomenon causes problems when the model is used for detection because
the model fails to generalise. Dropout Layers are introduced to solve this
problem as they randomly zeros out the value of some of the layer’s neurons
in every iteration.

4.2.6 Batch Normalisation Layers

The Batch Normalisation layer is typically placed between hidden layers. It
normalises the output from a hidden layer and passes it as an input to the next
hidden layer. Normalising the input data to a deep learning model is standard
practice. The batch normalisation layer normalises the mean and variance
of the input batch along each feature dimension and then scales and shifts
the normalised values using learnable parameters, making it less sensitive
to changes in the input data distribution. This technique can significantly
improve the training process and the model’s performance on the validation
and test data [IS15].

4.2.7 Loss functions

Loss functions are one of the core aspects of neural networks directly respon-
sible for the model fitting to the given data. They measure the deviation
between the model’s output and the ground truth training data. Based on
this deviation, the weights in each layer are updated to minimise the value of
the loss function. The loss function must be continuous, convex, differentiable,
and appropriate for the specific task. The typically used functions in CNNs
are as follows.

Cross-entropy loss

Cross-entropy loss is a common loss function used for classification tasks
in CNNs. It measures the difference between the predicted probability
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distribution and the actual probability distribution of the classes in the
training data. The cross-entropy loss function is defined as

LCE = −
n∑

i=0
tilog(pi), (4.6)

for n classes, where ti is the truth label and pi is the Softmax probability for
ith class2.

Mean Squared Error (MSE)

MSE is a standard loss function used for regression tasks in CNNs. It measures
the difference between the predicted output and the true output, squared
and averaged over all samples in the training data. The MSE is defined as

MSE = 1
N

N∑
i=0

(yi − ŷi)2, (4.7)

where N is the number of data points, yi is the output value of the model
and ŷi is the true value for data point i.

Focal loss

The Focal loss function [ZS18] is designed to address the problem of class
imbalance in classification tasks, where the number of samples in one class is
much higher than in the other classes. It introduces a weighting factor to the
cross-entropy loss to give higher importance to the samples in the minority
class. For binary case, Focal loss is defined by the equation

Focal loss(pt) = −(1 − pt)γlog(pt), (4.8)

where γ is a tunable parameter γ ≥ 0 [ZS18] and pi is the model’s estimated
probability for the class defined as

pt =
{

p if y = 1,
1 − p otherwise.

(4.9)

2Cross-Entropy Loss Function, https://towardsdatascience.com/
cross-entropy-loss-function-f38c4ec8643e
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BCE loss

The BCE loss function, short for Binary Cross-Entropy loss, is a commonly
used loss function in machine learning for binary classification problems. It
measures the difference between predicted probabilities and actual binary
labels and penalises the model for incorrect predictions. The model learns
to make more accurate predictions and improve its overall performance by
minimising BCE loss. The formula3 for BCE loss is

BCE = − 1
N

N∑
i=0

yilog(ŷi) + (1 − yi)log(1 − ŷi), (4.10)

where N denotes the number of samples, yi the true value and ŷi the predicted
value.

4.2.8 Optimiser

Optimisers are another essential component of neural networks. They are
used during the model’s training to find the optimal model weights. The
most common optimisation technique is gradient descent [Rud16]. Many
optimisers, such as Stochastic Gradient Descent (SGD), Adagrad4, and Adam
[KB14], are based on this approach.

4.3 Learning

Learning is a process during which the computer vision model is presented
with annotated data. During this process model learns the internal parameters
and adjusts the weights to make better and more correct detections of desired
objects in given data.

3Understanding PyTorch Loss Functions: The Maths
and Algorithms (Part 2) https://towardsdatascience.com/
understanding-pytorch-loss-functions-the-maths-and-algorithms-part-2-104f19346425

4AdaGrad https://optimization.cbe.cornell.edu/index.php?title=AdaGrad
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4.3.1 Updating model weights - backpropagation

The objective of the detection model is to make the best possible detections.
To achieve this, the model has to go through the learning process. During each
learning iteration - epoch, the loss function is calculated. The backpropagation
aims to minimise the loss function by modifying the model weights. This
algorithm computes the gradient with respect to all parameters and changes
the parameters to minimise the loss function. The amount of the parameter
change is determined by the gradient, which is multiplied by the learning
rate. The learning rate is a hyperparameter set at the beginning and can be
modified during the training.

4.3.2 Validation

At the end of every learning epoch, model performance is measured. This part
of learning is called validation. The model is validated on a set of data that has
not been presented while learning the weights to ensure that it can generalise
well to new data. The model’s ability to generalise to new data can be
assessed by using a separate validation set, and any overfitting or underfitting
can be detected early in the training process, allowing adjustments to be
made to improve the model’s performance.

4.3.3 Dataset

The dataset is an integral part of the learning process. It consists of labelled
data, meaning there is a file describing the objects in the image for every
image in the dataset. The optimal dataset contains all possible scenarios
and objects in different conditions. The dataset used for learning the object
detection model in an autonomous car should include various environments,
objects, and light and weather conditions. The size of the dataset can vary
on the task. Some datasets may contain only a few hundred images, while
others may contain millions. For the learning process, datasets are split into
three parts. The first part is the training part, used for training the model’s
weights. The second is used for validating the model. The validation set is a
smaller subset of the dataset. It is essential to present the model data that
has not been used while setting the weights to avoid overfitting and other
undesired phenomena. The last subset of the dataset is used for testing to
evaluate the final detection model. It assesses the model’s performance on
a representative data sample not used in the training phase. The dataset is
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usually split in a ratio where 80% of images are used for training, 10% for
validation and 10% for testing. Alternative ratios can also be used, i.e. 70%
for testing and 15% for validating and testing, respectively.

4.3.4 Augmentation

The quality of the detection model is determined by how well the model
can generalise. The better the model is, the better it can detect the objects
under all conditions. The conditions are not just outer elements, such as
the difference between day and night, clear sky and rain or fog. Different
cameras will have slightly different parameters, which can cause a slight
difference in image quality, colour accuracy, and other aspects of the picture.
Data augmentation is used to make the model more robust and to increase
the model’s ability to withstand these conditions [PW17]. There are many
techniques to augment the data, such as flipping the image, changing the
colours of the image, resizing and skewing the image, and other more complex
techniques, such as mosaic, which merges more pictures into one.

4.4 YOLO architecture

YOLO (You Only Look Once) [RDGF15] is a popular one-stage object detec-
tion algorithm that uses a single neural network to simultaneously predict
object bounding boxes and class probabilities in an input image. YOLO
divides the image into a grid and applies convolutional neural networks to
each grid cell to generate a set of candidate bounding boxes, along with
confidence scores and class probabilities. Non-maximum suppression is then
used to remove duplicate boxes and select the most likely detections. This
approach allows YOLO to achieve real-time performance while maintaining
high accuracy, making it a popular choice for applications such as self-driving
cars, robotics, and surveillance systems. The architecture scheme of the
YOLO model is shown in Fig. 4.3.

4.4.1 YOLOv5

YOLOv5 [Joc20] is an advanced object detection algorithm introduced in
2020 by Ultralytics. It is a neural network-based approach that can detect
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Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1× 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224× 224 input image) and then double the resolution for detection.

The final output of our network is the 7× 7× 30 tensor
of predictions.

2.2. Training

We pretrain our convolutional layers on the ImageNet
1000-class competition dataset [30]. For pretraining we use
the first 20 convolutional layers from Figure 3 followed by a
average-pooling layer and a fully connected layer. We train
this network for approximately a week and achieve a single
crop top-5 accuracy of 88% on the ImageNet 2012 valida-
tion set, comparable to the GoogLeNet models in Caffe’s
Model Zoo [24]. We use the Darknet framework for all
training and inference [26].

We then convert the model to perform detection. Ren et
al. show that adding both convolutional and connected lay-
ers to pretrained networks can improve performance [29].
Following their example, we add four convolutional lay-
ers and two fully connected layers with randomly initialized
weights. Detection often requires fine-grained visual infor-
mation so we increase the input resolution of the network
from 224× 224 to 448× 448.

Our final layer predicts both class probabilities and
bounding box coordinates. We normalize the bounding box
width and height by the image width and height so that they
fall between 0 and 1. We parametrize the bounding box x
and y coordinates to be offsets of a particular grid cell loca-
tion so they are also bounded between 0 and 1.

We use a linear activation function for the final layer and
all other layers use the following leaky rectified linear acti-
vation:

φ(x) =

{
x, if x > 0

0.1x, otherwise
(2)

We optimize for sum-squared error in the output of our

model. We use sum-squared error because it is easy to op-
timize, however it does not perfectly align with our goal of
maximizing average precision. It weights localization er-
ror equally with classification error which may not be ideal.
Also, in every image many grid cells do not contain any
object. This pushes the “confidence” scores of those cells
towards zero, often overpowering the gradient from cells
that do contain objects. This can lead to model instability,
causing training to diverge early on.

To remedy this, we increase the loss from bounding box
coordinate predictions and decrease the loss from confi-
dence predictions for boxes that don’t contain objects. We
use two parameters, λcoord and λnoobj to accomplish this. We
set λcoord = 5 and λnoobj = .5.

Sum-squared error also equally weights errors in large
boxes and small boxes. Our error metric should reflect that
small deviations in large boxes matter less than in small
boxes. To partially address this we predict the square root
of the bounding box width and height instead of the width
and height directly.

YOLO predicts multiple bounding boxes per grid cell.
At training time we only want one bounding box predictor
to be responsible for each object. We assign one predictor
to be “responsible” for predicting an object based on which
prediction has the highest current IOU with the ground
truth. This leads to specialization between the bounding box
predictors. Each predictor gets better at predicting certain
sizes, aspect ratios, or classes of object, improving overall
recall.

During training we optimize the following, multi-part

Figure 4.3: The YOLO detection network has 24 convolutional layers followed
by 2 fully connected layers. Alternating 1 × 1 convolutional layers reduce the
features space from preceding layers. [RDGF15].

and classify multiple objects in an image with high accuracy and speed. At its
release, YOLOv5 achieved top performances on two object detection datasets:
Pascal VOC [EEG+14] and Microsoft COCO [LMB+14]. With its high accu-
racy and speed, YOLOv5 is being used in a variety of applications, including
autonomous vehicles, surveillance systems, and robotics. Its ability to detect
and classify objects in real-time makes it a valuable tool for many industries
and this thesis. The network architecture (Fig. 4.4) incorporates cross-stage
partial network (CSPNet) [WLY+19] into Darknet, creating CSP-Darknet53
as its backbone. CSPNet tackles the issue of duplicate gradient data in exten-
sive backbones. It incorporates the changes in gradient into the feature map,
decreasing the model’s parameters and FLOPS (floating-point operations per
second). This feature efficiently enhances the inference speed and accuracy
while reducing the model size. YOLOv5 also involves a path aggregation
network (PANet) [WLZ+19] as its neck to increase information flow. The
PANet system includes a new feature pyramid network (FPN) structure that
enhances the low-level features’ propagation through an improved bottom-up
path. Further, adaptive feature pooling links the feature grid and all levels to
ensure that valuable information propagates directly to the following subnet-
work. By improving the utilisation of accurate localisation signals in lower
layers, PANet significantly enhances object location accuracy. Finally, the
Yolo layer of YOLOv5 generates three different feature map sizes (18 x 18,
36 x 36, 72 x 72) to enable multi-scale [RF18] prediction and handle small,
medium, and large objects.

The YOLOv5 loss consists of three parts. Class loss (BCE loss), objectness
loss (BCE loss) and location loss (CIoU loss) [Joc23]. The final loss [Joc23]
is computed as

Loss = λ1Lcls + λ2Lobj + λ3Lloc. (4.11)
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Figure 4. The network architecture of Yolov5. It consists of three parts: (1) Backbone: CSPDarknet, (2) Neck: PANet, and 
(3) Head: Yolo Layer. The data are first input to CSPDarknet for feature extraction, and then fed to PANet for feature 
fusion. Finally, Yolo Layer outputs detection results (class, score, location, size). 

2.3. EfficientDet 
EfficientDet is a new family of object detectors developed by Google, and it consist-

ently achieves better efficiency than prior art across a wide spectrum of resource con-
straints. Similar to Yolov5, EfficientDet has also achieved remarkable performances in 
Pascal VOC and Microsoft COCO tasks, and is widely used in real-world applications. 

The network architecture of EfficientDet is shown in Figure 5. There are three reasons 
why we choose EfficientDet as our second learner. Firstly, EfficientDet employed state-of-
the-art network EfficientNet [27] as its backbone, making that the model has sufficient 
ability to learn the complex feature of diverse forest fires. Secondly, it applied an im-
proved PANet, named bi-directional feature pyramid network (Bi-FPN) as its neck, to al-
low easy and fast multi-scale feature fusion. Bi-FPN introduces learnable weights, ena-
bling network to learn the importance of different input features, and repeatedly applies 
top-down and bottom-up multi-scale feature fusion. Compared with Yolov5′s neck 
PANet, Bi-FPN has better performances with less parameters and FLOPS. Meanwhile, 
different feature fusion strategy brings different semantic information, thereby bringing 
different detection results. Thirdly, similar to EfficientNet, it integrates a compound scal-
ing method that uniformly scales the resolution, depth, and width for all backbone, fea-
ture network, and box/class prediction networks at the same time, which ensures the max-
imum accuracy and efficiency under the limited computing resources. With more availa-
ble resources, accuracy will be consistently improved. Our second learner, EfficientDet, 
with different backbone, neck, and head, can learn different information that Yolov5 can-
not. 

Figure 4.4: The network architecture of Yolov5. It consists of three parts: (1)
Backbone: CSPDarknet, (2) Neck: PANet, and (3) Head: Yolo Layer. The data
are first input to CSPDarknet for feature extraction, and then fed to PANet
for feature fusion. Finally, Yolo Layer outputs detection results (class, score,
location, size) [XLL+21].

4.5 LiDAR

LiDAR, which stands for Light Detection and Ranging, is a technology that
uses laser light to create highly detailed 3D maps or point clouds of objects
and surfaces from a distance. It does this by emitting short pulses of laser
light and measuring the time it takes for the light to bounce back after hitting
an object. By repeating this process many times per second and combining
the measurements, LiDAR can create a comprehensive 3D representation
of the environment. In autonomous vehicles, LiDAR is a critical obstacle
detection and localisation component, providing accurate and real-time 3D
measurements of the surrounding environment.
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4.6 Camera-LiDAR transformation

Converting 3D points from LiDAR into a camera frame is essential in this
thesis. This process involves adjusting the position, orientation, and scale of a
set of points in 3D space. To transform the points from one coordinate system
to another, various types of transformations, such as translation, rotation,
and scaling, are applied. These transformations can be performed individually
or combined to create more complex transformations. One efficient method
of transforming 3D points from LiDAR is by using matrices. A matrix
can represent each transformation, and when multiplied together, they can
be used to apply the entire transformation to a set of points [Sri16]. The
intrinsic camera matrix5 represents a camera’s internal parameters, such as
focal length, image sensor size, and principal point. This process converts 3D
world points into 2D image points, projecting the points on the image plane.

4.7 Robotic Operating System 2

ROS 26 [MFG+22] is a collection of open-source software libraries and tools
for robotic application development. It provides a comprehensive range of
tools for building complex and sophisticated robot systems. ROS 2 represents
a significant upgrade from its predecessor, the Robotic Operating System
1, and offers several new features, such as improved modularity, enhanced
security, and better real-time performance.

The communication between ROS nodes is based on topics7. Nodes, called
publishers, publish specific messages that contain data. These messages are
published on a particular topic. A subscriber node must be created to access
the data in a code. This node subscribes to the topic and can receive the
messages and access the data.

5Camera matrix , https://www.cs.cmu.edu/~16385/s17/Slides/11.1_Camera_matrix.
pdf

6ROS 2 Huble, https://docs.ros.org/en/humble/index.html
7ROS 2, Understanding topics, https://docs.ros.org/en/humble/Tutorials/

Beginner-CLI-Tools/Understanding-ROS2-Topics/Understanding-ROS2-Topics.html
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4.8 Dataset specification

4.8.1 Kitti dataset

The KITTI raw dataset [GLSU13] is a popular computer vision benchmark
dataset for object detection, tracking, scene understanding, and other tasks.
It was created in 2012 by the Karlsruhe Institute of Technology and the
Toyota Technological Institute in Chicago. The dataset has been recorded in
and around Karlsruhe in Germany. It includes camera images, laser scans,
high-precision GPS measurements and IMU accelerations from a combined
GPS/IMU system.

Car specification

The dataset was recorded from a moving platform, Volkswagen Passat,
equipped with four video cameras, a rotating 3D laser scanner and a combined
GPS/IMU inertial navigation system. The recording platform is in Fig. 4.5.
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Vision meets Robotics: The KITTI Dataset
Andreas Geiger, Philip Lenz, Christoph Stiller and Raquel Urtasun

Abstract—We present a novel dataset captured from a VW
station wagon for use in mobile robotics and autonomous driving
research. In total, we recorded 6 hours of traffic scenarios at
10-100 Hz using a variety of sensor modalities such as high-
resolution color and grayscale stereo cameras, a Velodyne 3D
laser scanner and a high-precision GPS/IMU inertial navigation
system. The scenarios are diverse, capturing real-world traffic
situations and range from freeways over rural areas to inner-
city scenes with many static and dynamic objects. Our data is
calibrated, synchronized and timestamped, and we provide the
rectified and raw image sequences. Our dataset also contains
object labels in the form of 3D tracklets and we provide online
benchmarks for stereo, optical flow, object detection and other
tasks. This paper describes our recording platform, the data
format and the utilities that we provide.

Index Terms—dataset, autonomous driving, mobile robotics,
field robotics, computer vision, cameras, laser, GPS, benchmarks,
stereo, optical flow, SLAM, object detection, tracking, KITTI

I. INTRODUCTION

The KITTI dataset has been recorded from a moving plat-
form (Fig. 1) while driving in and around Karlsruhe, Germany
(Fig. 2). It includes camera images, laser scans, high-precision
GPS measurements and IMU accelerations from a combined
GPS/IMU system. The main purpose of this dataset is to
push forward the development of computer vision and robotic
algorithms targeted to autonomous driving [1]–[7]. While our
introductory paper [8] mainly focuses on the benchmarks,
their creation and use for evaluating state-of-the-art computer
vision methods, here we complement this information by
providing technical details on the raw data itself. We give
precise instructions on how to access the data and comment
on sensor limitations and common pitfalls. The dataset can
be downloaded from http://www.cvlibs.net/datasets/kitti. For
a review on related work, we refer the reader to [8].

II. SENSOR SETUP

Our sensor setup is illustrated in Fig. 3:
• 2 × PointGray Flea2 grayscale cameras (FL2-14S3M-C),

1.4 Megapixels, 1/2” Sony ICX267 CCD, global shutter
• 2 × PointGray Flea2 color cameras (FL2-14S3C-C), 1.4

Megapixels, 1/2” Sony ICX267 CCD, global shutter
• 4 × Edmund Optics lenses, 4mm, opening angle ∼ 90◦,

vertical opening angle of region of interest (ROI) ∼ 35◦

• 1 × Velodyne HDL-64E rotating 3D laser scanner, 10 Hz,
64 beams, 0.09 degree angular resolution, 2 cm distance
accuracy, collecting ∼ 1.3 million points/second, field of
view: 360◦ horizontal, 26.8◦ vertical, range: 120 m

A. Geiger, P. Lenz and C. Stiller are with the Department of Measurement
and Control Systems, Karlsruhe Institute of Technology, Germany. Email:
{geiger,lenz,stiller}@kit.edu

R. Urtasun is with the Toyota Technological Institute at Chicago, USA.
Email: rurtasun@ttic.edu
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Fig. 1. Recording Platform. Our VW Passat station wagon is equipped
with four video cameras (two color and two grayscale cameras), a rotating
3D laser scanner and a combined GPS/IMU inertial navigation system.

• 1 × OXTS RT3003 inertial and GPS navigation system,
6 axis, 100 Hz, L1/L2 RTK, resolution: 0.02m / 0.1◦

Note that the color cameras lack in terms of resolution due
to the Bayer pattern interpolation process and are less sensitive
to light. This is the reason why we use two stereo camera
rigs, one for grayscale and one for color. The baseline of
both stereo camera rigs is approximately 54 cm. The trunk
of our vehicle houses a PC with two six-core Intel XEON
X5650 processors and a shock-absorbed RAID 5 hard disk
storage with a capacity of 4 Terabytes. Our computer runs
Ubuntu Linux (64 bit) and a real-time database [9] to store
the incoming data streams.

III. DATASET

The raw data described in this paper can be accessed from
http://www.cvlibs.net/datasets/kitti and contains ∼ 25% of our
overall recordings. The reason for this is that primarily data
with 3D tracklet annotations has been put online, though we
will make more data available upon request. Furthermore, we
have removed all sequences which are part of our benchmark
test sets. The raw data set is divided into the categories ’Road’,
’City’, ’Residential’, ’Campus’ and ’Person’. Example frames
are illustrated in Fig. 5. For each sequence, we provide the raw
data, object annotations in form of 3D bounding box tracklets
and a calibration file, as illustrated in Fig. 4. Our recordings
have taken place on the 26th, 28th, 29th, 30th of September
and on the 3rd of October 2011 during daytime. The total size
of the provided data is 180 GB.

Figure 4.5: Recording Platform. The VW Passat station wagon is equipped
with four video cameras (two colour and two grayscale cameras), a rotating 3D
laser scanner and a combined GPS/IMU inertial navigation system [GLSU13].
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In this thesis, I used only the following sensors. The RGB data are recorded

with the PointGray Flea2 colour camera (FL2-14S3C-C), 1.4 Megapixels, 1/2”
Sony ICX267 CCD, global shutter. Only the data from the left camera were
used. The lidar data were obtained from a Velodyne HDL-64E rotating 3D
laser scanner, 10 Hz, 64 beams, 0.09-degree angular resolution with 2 cm
distance accuracy, collecting approximately 1.3 million points/second, field of
view: 360° horizontal, 26.8° vertical and range: 120 m [GLSU13].

Dataset specification

The KITTI dataset contains recordings from various environments, such as
roads, cities and residential areas. The dataset was recorded on the 26th,
28th, 28th, and 30th of September and on the 3rd of October 2011 during the
daytime. The dataset consists of camera images, Velodyne scans and OXTS
(GPS/IMU), which are not used in this thesis. For each sequence, a calibration
file is provided. For a subset of the dataset, 3D tracklet annotations are
provided. The annotations had to be modified for this thesis purpose to
produce 2D bounding boxes and labels for the images [GLSU13].

4.8.2 Waymo open dataset

The Waymo Open Dataset [SKD+19] is composed of two datasets - the
perception dataset with high-resolution sensor data and labels for 2,030
segments and the motion dataset with object trajectories and corresponding
3D maps for 103,354 segments. It was collected by Waymo’s autonomous
vehicles. The segments are recorded in a variety of driving conditions, such
as daytime and nighttime, urban and suburban areas, and different weather
conditions.

Sensor specifications

The dataset was captured with five LiDAR sensors and five high-resolution
pinhole cameras. The layout of the dataset relevant sensors is in Figure 4.6.
The range of the LiDAR data is restricted to 75 meters (TOP sensor) and 20
meters (other sensors). The images from all cameras are downsampled and
cropped from the raw images to the resolution of 1920x1280.
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F FL,FR SL,SR

Size 1920x1280 1920x1280 1920x1040
HFOV ±25.2◦ ±25.2◦ ±25.2◦

Table 3. Camera Specifications for Front (F), Front-Left (FL), Front-
Right (FR), Side-Left (SL), Side-Right (SR) cameras. The image
sizes reflect the results of both cropping and downsampling the
original sensor data. The camera horizontal field of view (HFOV) is
provided as an angle range in the x-axis in the x-y plane of camera
sensor frame (Figure 1).

Laser: FRONTLaser: REAR
Vehicle

Laser: SIDE_LEFT

Laser: SIDE_RIGHT

Laser: TOP

SIDE_LEFT

FRONT_RIGHT

Cameras FRONT

FRONT_LEFT

SIDE_RIGHT

x-axis
y-axis
z-axis is positive upwards

Figure 1. Sensor layout and coordinate systems.

ning mode can vary from scene to scene. All camera images
are downsampled and cropped from the raw images; Table 3
provides specifications of the camera images. See Figure 1
for the layout of sensors relevant to the dataset.

3.2. Coordinate Systems

This section describes the coordinate systems used in
the dataset. All of the coordinate systems follow the right
hand rule, and the dataset contains all information needed to
transform data between any two frames within a run segment.

The Global frame is set prior to vehicle motion. It is an
East-North-Up coordinate system: Up (z) is aligned with the
gravity vector, positive upwards; East (x) points directly east
along the line of latitude; North (y) points towards the north
pole.

The Vehicle frame moves with the vehicle. Its x-axis
is positive forwards, y-axis is positive to the left, z-axis
is positive upwards. A vehicle pose is defined as a 4x4
transform matrix from the vehicle frame to the global frame.
Global frame can be used as the proxy to transform between
different vehicle frames. Transform among close frames is
very accurate in this dataset.

A Sensor frame is defined for each sensor. It is denoted
as a 4x4 transformation matrix that maps data from sensor
frame to vehicle frame. This is also known as the ”extrinsics”
matrix.

The LiDAR sensor frame has z pointing upward. The x-y

Figure 2. LiDAR label example. Yellow = vehicle. Red = pedes-
trian. Blue = sign. Pink = cyclist.

axes depends on the LiDAR.
The camera sensor frame is placed at the center of the

lens. The x axis points down the lens barrel out of the lens.
The z axis points up. The y/z plane is parallel to the image
plane.

The Image frame is a 2D coordinate system defined for
each camera image, where +x is along the image width (i.e.
column index starting from the left), and +y is along the
image height (i.e. row index starting from the top). The
origin is the top-left corner.

The LiDAR Spherical coordinate system is based on
the Cartesian coordinate system in the LiDAR sensor frame.
A point (x, y, z) in the LiDAR Cartesian coordinate system
can be uniquely transformed to a (range, azimuth, inclina-
tion) tuple in the LiDAR Spherical coordinate system by the
following equations:

range =
√
x2 + y2 + z2 (1)

azimuth = atan2(y, x) (2)

inclination = atan2(z,
√
x2 + y2). (3)

3.3. Ground Truth Labels

We provide high-quality ground truth annotations, both
for the LiDAR sensor readings as well as the camera images.
Separate annotations in LiDAR and camera data opens up
exciting research avenues in sensor fusion. For any label,
we define length, width, height to be the sizes along x-axis,
y-axis and z-axis respectively.

We exhaustively annotated vehicles, pedestrians, signs
and cyclists in the LiDAR sensor readings. We labeled each
object as a 7-DOF 3D upright bounding box (cx, cy, cz, l, w,
h, θ) with a unique tracking ID, where cx, cy, cz represent
the center coordinates, l, w, h are the length, width, height,
and α denotes the heading angle in radians of the bounding
box. Figure 2 illustrates an annotated scene as an example.

In addition to the LiDAR labels, we separately exhaus-
tively annotated vehicles, pedestrians and cyclists in all cam-
era images. We annotated each object with a tightly fitting
4-DOF image axis-aligned 2D bounding box which is com-
plementary to the 3D boxes and their amodal 2D projections.
The label is encoded as (cx, cy, l, w) with a unique tracking
ID, where cx and cy represent the center pixel of the box, l

Figure 4.6: Sensor layout and coordinate systems [SKD+19].

KITTI Waymo

Scenes 22 1150
Ann. Lidar Fr. 15K 230K

Hours 1.5 6.4
2D Boxes 80K 9.9M

Table 4.1: Dataset comparison [SKD+19].

Dataset specification

The Waymo open dataset is the largest and most diverse multimodal au-
tonomous driving dataset. It contains images recorded by multiple high-
resolution cameras and sensor readings from high-quality LiDAR scanners
mounted on a fleet of self-driving vehicles [SKD+19]. The recordings were
captured in many cities in the United States and various conditions, such as
daylight, night, rain, fog and others. The dataset contains around 12 million
camera box annotations, which were manually labelled and reviewed.

4.8.3 Dataset comparison

The Scalability in Perception for Autonomous Driving: Waymo Open Dataset
[SKD+19] article provides a comparison of the abovementioned datasets.
Table 4.1 provides a shortened version of this comparison. The Waymo open
dataset is significantly larger in all mentioned aspects. The Waymo dataset
also contains images with different weather and lighting conditions. Example
of selected images from the datasets is in Fig. 4.7.
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Figure 4.7: Example of images in the datasets.

28



Chapter 5

Implementation

5.1 Introduction

In this chapter, an insight on implementation will be provided. The imple-
mentation is divided into two separate parts. The first part is the object
detection model, which inputs RGBD data and outputs an image with de-
tected bounding boxes and object classes. The second part implements a
ROS node structure to execute the task within the robotic operating system.
This node subscribes to a camera image and lidar point cloud, pre-processes
them for the detection model, and after the detection is done, it publishes
the image with detections.

5.2 Datasets

For this thesis, the used datasets had to be modified. The final structure of
the dataset used for training the model consisted of four folders. The first
one contains images. Original images from the datasets were used without
further modification. The second folder contains lidar files. Lidar points from
the files were transformed using provided matrices from calibration files. The
transformation was from a lidar coordinate system to a camera image. Then
the lidar points were linearly interpolated to fill in missing measurements and
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5. Implementation....................................
saved as a numpy1 array. The third folder contains mask files. The mask is a
numpy array representing the positions of the measured distances by lidar
before interpolation. The files were saved as a numpy array. The last folder
contains the label files. The labels were defined in different formats in both
KITTI and Waymo datasets. The labels had to be processed to correspond
with the format required by the YOLOv5 model by Ultralytics. The labels
were stored as .txt files.

5.2.1 Domain transfer

Domain transfer is a crucial aspect of this thesis. The model that has been
learned must be able to function with the Jupiter car’s different camera and
lidar. The transfer to Jupiter data was tested after the model was trained
on the KITTI dataset. Upon reviewing the results, I was not satisfied with
the outcome. To improve the model, I decided to search for alternative
datasets. The one that stood out was the Waymo open dataset. This dataset
is described in chapter 4.8.2. The final model was learned on the Waymo
dataset, as it achieved better results on the data from the Jupiter car. The
results are discussed in chapter 6.2.

5.3 Object detection

Object detection is the core of this thesis. In order to detect objects, a model
must first be trained. In this thesis, a YOLOv5 model [Joc20] implemented
by Ultralytics2 was used. This model was released in June 2020 and outper-
formed other detection models such as Faster-RCNN, SSD and YOLO models
[TNJ+21]. The model was trained to detect two classes - Car and Pedestrian.

5.3.1 Used model

Ultralytics provide various sizes of the YOLOv5 model. A comparison of
models’ parameters is in Table 5.13. For this thesis, the YOLOv5l model was

1Numpy, https://numpy.org/doc/stable/index.html
2Ultralytics, https://ultralytics.com/
3Ultralytics YOLOv5, https://github.com/ultralytics/yolov5#

pretrained-checkpoints
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trained.

Model params (M) FLOPs (B)

YOLOv5n 1.9 4.5
YOLOv5s 7.2 16.5
YOLOv5m 21.2 49.0
YOLOv5l 46.5 109.1
YOLOv5x 86.7 205.7
YOLOv5x6 140.7 209.8

Table 5.1: Selected YOLOv5 models with selected specifications [Joc20].

5.3.2 Model modifications

The YOLOv5 model by Ultralytics is implemented to work with RGB images.
To implement RGBD detection, certain modifications in the code had to
be made. The model was changed to work with five-channel data. Three
channels are the image, the fourth channel is the interpolated depth, and the
last channel is the mask, which contains information about the locations of
lidar measurements.

First, I created new functions to load the lidar files and the masks. I took
the existing function that loaded the images and modified it for a different
data type. The modifications were done to the files train.py, val.py and
utils/dataloaders.py.

Another modification had to be done to data augmentations (utils/augmentations.py).
The functions that altered the image had to be modified to separate it from
the lidar and mask, as the input data is a 5-dimensional array. However,
there was no need to alter other functions, such as random perspective.

5.3.3 Model training

The models were trained using 4 GPUs, NVIDIA A100 40 GB4. The final
models were trained for 30 epochs. The batch size for the models trained on
the KITTI dataset was 16, while the model trained on the Waymo dataset
had a batch size of 8. These batch sizes were chosen due to the GPU
memory limitations. The selected hyperparameters are presented in Table

4NVIDIA A100, https://www.nvidia.com/en-us/data-center/a100/

31

https://www.nvidia.com/en-us/data-center/a100/


5. Implementation....................................
5.2. Following augmentations were used. HSV, Flip, random perspective and
from Albumentations5 functions RandomResizedCrop, Blur, MedianBlur,
ToGray, CLAHE, RandomBrightnessContrast and RandomGamma were
employed.

During the training, the loss functions and the mAP on the validation
set were observed to determine the best model’s weights. The plot of these
parameters is in Fig. 5.1.

Hyperparameter Value

Learning rate 0.01
Momentum 0.937

Weight decay 0.0005
Warmup epochs 3

Warmup momentum 0.8

Table 5.2: Selected hyperparameters and their value.

Figure 5.1: Training overview. The first row shows in the first three graphs the
training loss and in the following two the training mAP. The second row shows
the same information for validation.

5.4 Camera-LiDAR calibration

The transformation matrix from the LiDAR frame to the camera frame was
obtained by manually measuring the distances on the car. This method
provided a rough estimation of the matrix values. To this translation matrix,

5Albumentations, https://albumentations.ai/
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a rotation matrix was added. The camera’s tilt angle was measured, and
based on this information, a rotation matrix around the y axis was computed
and then experimentally adjusted. Another rotation was needed because the
lidar slightly offsets the z axis. The results of this calibration are presented
in Fig. 5.2 and Fig. 5.3.

Figure 5.2: Projection of points before camera-LiDAR calibration.

Figure 5.3: Projection of points after camera-LiDAR calibration.

5.5 ROS Node

This thesis aims to implement an object detector as a ROS node for the
Jupiter car. The node is implemented for ROS 2 in Python 3.
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Message type Description

Image RGB image from camera
PointCloud2 Lidar points in lidar coordinate system

tf2_msgs Transformation from lidar to camera frame
sensor_msgs/CameraInfo Intrinsic camera matrix

Table 5.3: Used message types with description.

5.5.1 Node overview

The ROS node works as follows. The node subscribes to four topics. The first
topic is the camera image. This topic contains the image captured by the
camera on the Jupiter car. The second topic includes a PointCloud2 message.
This message contains the lidar-measured points in a lidar coordinate system.
To be able to convert these points and produce a camera projection, the node
subscribes to a topic with a transformation matrix from the lidar coordinate
system to the camera coordinate system and a topic containing the intrinsic
camera matrix. The topics used are summarised in Table 5.3.

After the necessary transformations, the depth data are pre-processed to
correspond with the data format used during the model’s learning. This
means that the lidar points are masked and linearly interpolated. At the
end of this process, the lidar data are concatenated to the RGB image as a
five-dimensional array.

After the pre-processing, the five-dimensional data are input to the trained
detection model. The model makes the predictions, which are then processed
and visualized as bounding boxes in the camera image. The image with
detections is then published and can be displayed in RViz6.

6ROS.org, Rviz, http://wiki.ros.org/rviz
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Chapter 6

Experiments and Results

6.1 Introduction

In this chapter, the experiments and results will be discussed. Firstly, the
domain transfer will be explained. Secondly, the benefits of depth modularity
and mask utilization will be highlighted. Then, the results on the KITTI
benchmark will be presented and compared with multiple models. Lastly,
the detections of the ROS node will be demonstrated. For evaluation, the
precision-recall curves for object detection are computed.

6.2 Domain transfer

As was mentioned before, domain transfer is a critical part of this thesis. This
experiment uses two RGB models. The models were trained using different
datasets: first on the KITTI raw dataset and the second on the Waymo open
dataset. The testing dataset containing 42 images containing 146 objects from
the Jupiter car was created for this experiment. The images were labelled
using Robflow1. The results of this experiment are in Fig. 6.1. Only the
results of detecting the car are presented. The model trained on the KITTI
dataset achieved an mAP of 0.558, and the model trained on the Waymo

1Robflow, https://app.roboflow.com/
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6. Experiments and Results................................
dataset acquired an mAP of 0.947, significantly outperforming the first model.
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Figure 6.1: Comparison of models on Jupiter car data. KITTI-learned model
achieved mAP of 0.558 and Waymo-learned model achieved mAP of 0.947.

6.3 Advantage of depth modularity

This experiment compares the results of the RGB and RGBD models. Both
models were trained on the KITTI raw dataset. RGB model used only the
images and RGBD both images and Velodyne points. Both models used
the same augmentation methods as described in 5.3.3, batch size 16, and
were trained for 30 epochs. The models were tested on the KITTI object
detection evaluation2 (2012), which was not presented to the models during
the learning or validation. The results for detecting a car are in Fig. 6.2. The
RGB model achieved an mAP of 0.814, and the RGBD model achieved an
mAP of 0.915. The results are assessed in Table 6.1.

2Object Detection Evaluation 2012 https://www.cvlibs.net/datasets/kitti/eval_
object.php?obj_benchmark=2d
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........................................ 6.4. Mask

Model mAP (Car)

RGB 0.814
RGBD 0.915

Table 6.1: Results of the RGB and RGBD models of detecting a car.
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Figure 6.2: Results on the KITTI 2d object benchmark dataset of the RGB
(mAP 0.814) and RGBD (mAP 0.915) models on car detection.

6.4 Mask

During the model training, I observed that lower mask values lead to better
model performance. This remark resulted in this experiment. The experiment
shows the results of two models learned on the KITTI raw dataset and tested
on the 2d object detection benchmark dataset. The results of this experiment
are in Fig. 6.3. The first model uses values of 0.1 on the position of measured
lidar distances, and the second model was trained without the mask. The
model with the mask performed an mAP of 0.874, and the model without the
mask accomplished an mAP of 0.915. The results are assessed in Table 6.2.
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6. Experiments and Results................................
Model mAP (Car)

with mask 0.874
without mask 0.915

Table 6.2: Results of the models with and without the mask of detecting a car.
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Figure 6.3: Comparison of model with and without the mask. The mAP of the
model with mask is 0.874 and without the mask is 0.915.

6.5 KITTI Benchmark

This section compares the model implemented and trained in this thesis with
selected models from the KITTI benchmark results table3. The chosen models
are VirConv-S [WWSW23], SE-SSD [ZTJF21], YOLOv5x6_1920 [Jeo22] and
Complexer-YOLO [SAK+19]. The VirConv-S model was selected because it
has the best results out of the documented models4. The SE-SSD model is
the top-performing model that utilizes point clouds obtained from a Velodyne
laser scanner. The YOLOv5x6_1920 model was picked as a YOLO-based
model with the best performance. Lastly, the Complexer-YOLO is the best-
performing YOLO model with a published paper. It is important to note that

3KITTI Object Detection Evaluation 2012, https://www.cvlibs.net/datasets/kitti/
eval_object.php?obj_benchmark=2d

4This model is currently (May 2023) ranked 2nd in the benchmark.
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.................................. 6.5. KITTI Benchmark

Difficulity min. bounding box height max. occlusion level max. truncation

Easy 40 Px Fully visible 15%
Moderate 25 Px Partly occluded 30%

Hard 25 Px Difficult to see 50%

Table 6.3: Definition of detection difficulties.

KITTI does not provide the dataset used for the benchmark of the models in
the results table. The provided benchmark dataset is only a similar subset of
the benchmark dataset. The results of the model trained in this thesis are
thus only approximate.

The KITTI benchmark splits the dataset by the difficulty of object detection.
The criteria that specify the difficulty are presented in Table 6.3. The
comparison presented in this thesis is made with the results containing hard
detections. The results are shown in Figure 6.4 and Table 6.4.
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Figure 6.4: Results of the selected detection models. The model implemented
in this thesis is highlighted.
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6. Experiments and Results................................
Model mAP (Car)

VirConv-S 0.945
Jupiter YOLOv5 0.915

SE-SSD 0.905
YOLOv5x6_1920 0.815
Complexer-YOLO 0.796

Table 6.4: Results of selected models on the hard part of the KITTI 2d object
detection dataset. The models are ranked by the mAP.

6.6 ROS node detections

The final section of this chapter shows two situations selected from a drive
of the Jupiter car. Figures 6.5 and 6.6 display the images with detected
bounding boxes. The attached video (ros_node_demo.webm) shows the
functionality of the ROS node in real time. In the experiment, the model
runs on the GPU NVIDIA GEFORCE RTX 3060. The detection time is also
affected by the used hardware.

Figure 6.5: Example of ROS Node detections.
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................................. 6.6. ROS node detections

Figure 6.6: Example of ROS Node detections.
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Chapter 7

Conclusion

This thesis aimed to implement object detection on a real car. The state-of-the-
art detection methods were described in Chapter 2, and the necessary theory
was presented in Chapter 4. The object detection model, YOLOv5 [Joc20],
was utilized due to its optimal balance between quality and user-friendliness.
The detection algorithm is implemented within a Robotic Operating System
2 [MFG+22], and the implementation is discussed in Chapter 5. The final
results of this thesis are presented in Chapter 6.

From the results, the following can be concluded. The model achieved
better detection results on the JUPITER car (section 6.2) when the model
was trained on a more versatile and complex dataset containing images taken
in different weather and light conditions. It was also shown that the depth
modularity increases the model’s performance on the testing dataset (section
6.3) as it adds additional information. The results also show the comparison
of the trained model in this thesis and selected models on the KITTI 2d
object benchmark (section 6.5).

Further work can be done in implementing more complex data augmentation
methods for the detector with depth modularity, as it can increase the model’s
performance. Another possibility is to merge various datasets to create a
larger dataset for the model’s training. An interesting experiment would be
to analyse how the model’s size affects results on the JUPITER car. Smaller
models may lead to quicker detection times.

The advantage of the implemented detector is that it is implemented as
a ROS node. In this thesis, the node publishes the detections as an image
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7. Conclusion......................................
with bounding boxes representing the detections. It is a convenient way
to demonstrate the functionality. However, the output of the node can be
easily changed. This way, the node can serve as an information input for a
higher-level application, which can then utilise the detections. In conclusion,
the node can demonstrate the ability to detect objects to customers and can
be further used in other projects within Porsche Engineering.
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Appendix A

A.1 Used codes

.YOLOv5 Ultralytics - https://github.com/ultralytics/yolov5.KITTI raw data development kit - https://s3.eu-central-1.
amazonaws.com/avg-kitti/devkit_raw_data.zip.KITTI Object data transformation and visualization - https:
//github.com/kuixu/kitti_object_vis. Lidar-Camera Projection - https://github.com/darylclimb/cvml_
project/tree/master/projections/lidar_camera_projection.Waymo Open Dataset - https://github.com/waymo-research/waymo-open-dataset.ROS2 Node that subscribes to PointCloud2 messages and visual-
izes them using Open3D. - https://gist.github.com/SebastianGrans/
6ae5cab66e453a14a859b66cd9579239

A.2 Attached files

. ros-node-demo.webm. RGBDdetectnode.py
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