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Abstract

Abstrakt

Ćılem této práce je automatizovat řešeńı tahové poč́ıtačové hry, Lara Croft GO. Řešeńı
jsou generována pomoćı klasického plánováńı prostřednictv́ım doménově specifických a
doménově nezávislých plánovač̊u. Nejprve se zabýváme klasickým plánováńım a struk-
turou PDDL. Následně navrhneme a sestav́ıme doménově specifický plánovač, který je
reprezentován jako vlastnoručně vytvořený řešitel hry, a doménově nezávislý plánovač,
kde jednotlivé charakteristiky hry vypracujeme jako PDDL doménu a jednotlivé úroveně
znázorńıme jako PDDL problémy. Poté oba plánovače porovnáme na základě několika
hledisek, a to tak, že se oba plánovače pokuśı vyřešit několik herńıch úrovńı. Poté an-
alyzujeme jejich časový rozd́ıl doby řešeńı, správnost plán̊u a počet navrhovaných akćı
vygenerovaný vytvořenými plánovači.

Kĺıčová slova: PDDL, Lara Croft Go, Classical Planning, doménově specifický plánovač,
doménově nezávislý plánovač

Abstract

The objective of this thesis is to automate solving of a turn-based computer game, Lara
Croft GO. The solutions are generated by using classical planning via domain-specific
and domain-independent planners. We first study classical planning and how PDDL
is structured. Then we design and build the domain-specific planner, represented as a
custom solver of the game, and the domain-independent planner, where we develop the
game features as a PDDL domain and each level as a PDDL problem. Afterwards, we
compare the solvers on several grounds by making both solve a few in-game levels. We
analyse the time difference in solving times, the correctness of plans and the number of
suggested actions generated by both planners.

Keywords: PDDL, Lara Croft Go, Classical Planning, domain-independent planner,
domain-specific planner
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Chapter 1

Introduction

The main focus of this thesis is to compare a domain-independent planner (classical
planning) with a domain-specific planner in solving a puzzle video game, Lara Croft Go
[1]. The first objective of this work is to design a domain in PDDL [2], which imitates the
world of the game, and PDDL problems representing different levels of this game. With
the domain, we will create game levels as problems and use already existing planners
to see whether classical planning can solve any modelled in-game levels, thus laying a
foundation for a domain-independent planner of this game.

Another goal, which we aim to reach, is to build a custom Lara Croft Go solver,
which would symbolize a domain-specific planner of the game. To do so, we first need
to design the representation of the game inside the solver and the workflow of the solver.
After a proper design, we implement the solver and the game representation. The correct
behaviour of the game replica is verified by unit tests, and the solver is checked by end-
to-end tests.

After having both domain-independent and domain-specific planners, we will compare
their performance. By selecting a few in-game levels as inputs for both solvers and dis-
playing their results side by side, we expect to find the pros and cons of both planning
approaches.

The structure of this work is divided into several parts. The first two parts focus
on defining classical planning with the use of PDDL, the introduction of the game Lara
Croft Go and the structures of both planners and the game representation. In the fol-
lowing parts, we describe how we have implemented the custom solver and the PDDL for
solving levels of Lara Croft Go as a classical planning problem. And finally, in the last
part, we write about actual in-game levels used in both planners. We validate the gener-
ated sequences of actions from both solvers and compare them to each other on several
grounds.

1



Chapter 2

Background

First of all, we focus on the general background of the fields explored in this thesis. We
start by defining classical planning. Then we describe Planning Domain Definition Lan-
guage, which is used for certain domain-independent planners. And finally, we introduce
the video game Lara Croft GO which we interpret as a problem domain to solve with clas-
sical planning using domain-independent planners and with a custom solver representing
the domain-specific solver.

2.1 Classical planning
Classical planning solves the problem of finding a sequence of actions that maps a fully
known initial state to a goal state, where the environment and the actions are deterministic
[3].

It can be formulated as a path-finding problem over a directed graph whose nodes
represent the states of the system or environment and whose edges capture the state
transitions that the actions make possible [4].

Planning problem can be described as the state model S = ⟨S, s0, SG, A, f⟩ where:

• S is a finite and discrete set of states,

• s0 ∈ S is initial state,

• SG ⊆ S is the non-empty set of goal states,

• As ⊆ A represents the set of actions in A that are applicable in each state s ∈ S,

• and f(a, s) is the deterministic transition function where s′ = f(a, s) is the state
that is created by applying action a ∈ As in state s.

The sequence of applicable actions a0, ..., an can be imagined as a plan that generates a
state sequence s0, s1, ..., sn, sn+1, where sn+1 ∈ SG.

The computational challenge in classical planning results from the number of states, and
hence the size of the graph, which are exponential in the number of problem variables [4].
An effective way of solving classical planning problems is by heuristic search algorithms.

2



2.2. PLANNING DOMAIN DEFINITION LANGUAGE 3

2.1.1 Heuristic Search Algorithms
To solve a classical planning problem, we use a problem-solving algorithm. Such algo-
rithms are often state space search algorithms that can be very slow and inefficient when
they require remembering every visited state. To improve the performance of search
algorithms, we can use heuristic functions to guide the search.

The heuristic function h(s) : s −→ R is a function that maps any state s ∈ S to an
actual value [5]. Heuristic values are meant to be estimates of the remaining distance
from a state to a goal. This information can be exploited by search algorithms to assess
whether one state is more promising than the rest [6]. When function h(s) always maps
to the cost of the shortest possible path, it is called a perfect heuristic function and is
denoted as h∗ [5].

One of the search algorithms that utilise heuristic functions is an A-star search al-
gorithm. This informed search algorithm looks for the shortest path from the initial
state to the goal state in the node graph. It explores a graph by expanding the most
promising node which is determined by a rule. The rule for A* is minimising the function
f(n) = g(n) + h(n) where n is the next node that is reachable from already visited nodes
[7]. Function g(n) is a cost function of the currently explored path and h(n) is a heuristic
estimation of n. In order to find the optimal path, the heuristic function h(n) must be
admissible, which means that the heuristic value does not overestimate the actual cost to
reach the goal node [7].

2.2 Planning Domain Definition Language
Planning Domain Definition Language (PDDL) is a family of languages which allows us
to define any planning problem [2]. The planners that use PDDL or other purpose-similar
language are domain-independent planners. Unlike domain-specific planners which solve
problems from one specific domain, these planners can generate solutions for any given
problem from any domain. Domain independence of the planners is done by defining the
domain of the problem through the planner’s definition language, such as PDDL.

The PDDL language is very similar to the STRIPS language (developed by Fikes and
Nilsson in 1971), which is composed of the following:

• set of facts that can or can not happen in the problem,

• an initial state that is composed of possible facts,

• the goal state specified by facts from the set of facts,

• and a set of actions.

For each action, we define preconditions that must be true in the given state before
applying an action. After the action is performed, the postconditions change the current
state of the domain. PDDL is slightly less restricted than STRIPS because PDDL’s
preconditions and goals can contain negative literals [8].

The idea of PDDL is to standardise the expression of usable actions by describing pre-
and post-conditions that characterise the applicability and effects of those actions. The
syntax is inspired by Lisp.
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The types of PDDL files can be distinguished into a domain file and problem files. The
domain contains a PDDL’s specifications and definition of the ”physics” of the planning
problem world. The specifications of PDD are, for example, negative preconditions, flu-
ents or types used in the domain. The problem file defines the problem instance that we
seek to solve. In other words, the problem specifies the initial state of the problem and
the goal conditions.

2.2.1 Domain description
The domain description consists of

• a domain-name definition,

• a definition of requirements (to declare model elements for the planner that the
PDDL model will work with ),

• a definition of type hierarchy (similar to class-hierarchy in OOP),

• a definition of predicates (for logical facts),

• and a definition of all possible actions with parameters, preconditions and effects.
[2].

PDDL’s domain is mainly for the definition of actions, which are used to solve a problem.
Besides the actions, a domain contains requirements that coexist with defined actions,
such as types and predicates. An example of PDDL’s domain, shown in Figure 2.1, could
be setting up a ”world” for a car that drives from one location to another.

Figure 2.1: An example of domain implementation in PDDL
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In type module, there are defined three types: location, vehicle and car that is a child
of vehicle. In predicates module are two logical predicates, one for the description of where
the vehicle is located and the other for connecting various locations to create routes. The
action drive car uses three parameters, the car that will move, the location where the car
currently is and the location where it goes. A precondition outlines what has to be true
in the current state for the action to be applied, and the effect represents changes made
to the state after the action is used.

2.2.2 Problem description
The problem description uses types and actions defined in the domain. It consists of

• a problem-name definition,

• the definition of the related domain-name,

• the definition of all possible objects (atoms in the logical universe),

• the definition of initial condition (the initial state of the planning environment),

• and the definition of goal state (a logical expression over facts that should be
true/false to consider the problem as solved [2]).

PDDL’s problem is used for describing the concrete problem that we want to solve. An
example of a problem, seen in Figure 2.2, that could be used in the example domain
represented earlier, is finding a path from location A to location B.

Figure 2.2: An example of problem definition in PDDL
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Objects module initializes types used in the problem. We create locations existing in
the problem and a car that moves between locations. The init module characterizes the
initial state, so we define a location, where the car starts and how routes connect each
location. The goal module specifies the goal state, so in this example, the problem is
solved when a car is at location C.

Paths that lead the car from A to C are either A-B-C or A-D-E-F-G-C. The optimal
way to reach the goal is through location B. So for this example, the planner should
generate actions, which create a plan that should guide the car through B to C. In Figure
2.3, we see a generated plan that solves the presented problem.

Figure 2.3: A plan for solving example problem generated from online PDDL editor [9].

2.3 Lara Croft Go
An unexplored domain, which we will model as a domain to be solved by classical planning
and by a custom solver, is the game Lara Croft Go. The Lara Croft Go is a single-player
turn-based puzzle video game from the Tomb Raider franchise. The game’s core and
control scheme is composed of nodes interconnected by lines [1]. The player controls the
main protagonist, Lara Croft, in a level map through nodes to achieve a goal by getting
from starting point to the end node of the level. In Figure 2.4, we show an example of
the UI of the game.

As players progress in the game, the levels start to become more complex. Each level
may have a different combination of traps, pits and other game mechanics that make
solving the level harder.

The player and the environment take turns where one side rests while the other side
acts. A player can move between connected nodes, activate levers that shift walls and
platforms to create new paths or pick up single-use items, like spears, scattered on the
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map, and utilize them later to solve the level. After ending the player’s turn, the envi-
ronment responds. Different animals, like snakes, lizards or giant spiders, have different
movements in their turn. Another game mechanics, which makes the game a logical puz-
zle, is cracked tiles, which are basically single-step tiles, or moving circular saws that move
simultaneously with the player’s movement actions.

Figure 2.4: UI example of video game Lara Croft Go.



Chapter 3

Design

Before we start implementing a domain-specific planner for Lara Croft Go or the PDDL
domain of the game for domain-independent planners, we need to design how the struc-
tures. Without the proper design of the solver, the implementation and coding will be
without a guide and could lead to unsolvable implementation problems. This chapter will
focus on this preparation before writing any code.

3.1 Game representation
First, we analyse the game to plan how it could be simulated inside the PDDL domain or
in the solver. The analysis centres around describing the game mechanics and designing
their possible representation.

3.1.1 Game mechanics
Level and movement

An essential mechanic of the game Lara Croft Go is the player’s movement around the
level’s map. The user interface, where the player interacts, is rendered as an isometrical
three-dimension level map. The whole level map is created by nodes, illustrated as circles,
connected by a straight line, as pictured in Figure 3.1. An agent is then placed on one
of these nodes and can only move within the nodes by following the connections. Let us
call these nodes tiles.

Figure 3.1: Example of UI’s isometrical 3D level.

8
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Since tiles are connected to each other from four different directions, the map can
be imagined in two-dimension space. In here, those directions are left, right, up and
down. The whole level can then be illustrated in such scope. For example, Figure 3.2 is
a representation of the level, pictured in Figure 3.1, in such space.

Figure 3.2: Example of game’s level illustration for a domain.

Special types of tiles

An exciting mechanic, provided by the game, is a particular tile which we call a cracked
tile. In a game, these types of tiles are rendered with a crack on top of them, meaning
that the player’s agent can step on them once. After the second step, the player will fall
through the tile and either end the player’s progression or landing on a different tile, as
shown in Figures 3.5b and 3.3a.

Another mechanic that works with tiles is repositioning tiles by pulling levers. The
shifting platforms are displayed in the user’s interface as parts with contrasting colours.

(a) Cracked tile with landing tile. (b) Cracked tile without landing tile.

Figure 3.3: Two possibilities with cracked tile
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When a player finds and pulls a lever with the same colour, the designated tiles transfer.
The platform either arises or disappears. This behaviour is seen in Figures 3.5b and 3.3a,
where there is a tile to drop on at some point in the game, and in another, it is missed.

Traps and spears

A final mechanic, that we explore, is encountering traps. Players can run into various
types of traps, as seen in Figures 3.4a to 3.4d. Some of them can be attacked, and
others must be avoided. In the player’s UI, attack-able traps are represented as in-game
animals. These animals guard tiles in front of them, thus blocking players from reaching
these positions. But when a player can set foot on an animal’s position from a different
angle, the animal is removed from the level, and the guarded tile is freed.

(a) Circular saw (b) Snake

(c) Lizard (d) Spider

Figure 3.4: Trap types

Another way of removing animals from the levels is by throwing a spear. A spear is
an item placed in some position and can be picked up when players get in this position.
After that, the player’s agent carries the spear. When the agent is on the same in-game
z and x/y axes as an animal, he can choose to throw the spear, thus killing the animal.
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(a) Placed spear. (b) Lara throwing a spear at snake.

Figure 3.5: Spears

3.2 Design of solver
Next, we centre our attention around the design of a domain-specific solver. The most
significant part of any domain-specific solver is the representation of the domain. For
us, it would be a representation of Lara Croft Go. Besides the player’s agent, the game
is full of different types of game objects, such as tiles with unique behaviour after the
protagonist’s actions and various traps for blocking the player from reaching the goal.
Because of this reason, we chose to use an Object-oriented programming (OOP) approach
when solving the question about the design of the game representation.

3.2.1 Class diagram
After a brief analysis of the game and its mechanics, we detected several game objects
interacting with each other to make the game as it is. The primary interaction is between
tiles of the level’s map and game objects that are placed on those tiles. Those game
objects can be the player’s character, items that the player can utilize or different types
of traps. Because of this game structure, we have decided to make the tiles and game
objects as objects in the domain representation.

As shown in Figure 3.6, the classes we have detected are AbstractTile and Object,
both abstract representations of actual objects that appear in the game. We have used a
behavioural design pattern called Template Method to create different types of tiles that
players can stumble upon on.
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Figure 3.6: Class diagram of game representation
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Tiles

The design pattern Template Method is for managing classes that are similar but also
have distinctive features. It creates parent and children classes, where the parent is
an abstraction carrying features every child must have. Children are classes that hold
their specific attributes and function implementation. The Template Method defines the
skeleton of an algorithm in the superclass but lets subclasses override specific steps of the
algorithm without changing its structure [10].

The instances of child classes are then used in the solver’s domain representation. The
types of tiles that we have identified are:

• Class Tile is a normal type of tile with no special functions.

• Class CrackedTile, which are single-step type of tiles. These instances are destroyed
after the agent’s second step on them.

• Class MovingTile, used for implementing tiles that are activated or deactivated by
pulling an in-game lever.

• And class DeadEndTile acting as a post-end level tile where the agent will go after
falling through a destroyed cracked tile or being caught by a trap.

All of those instances of tiles hold similar information. Each instance contains attributes
about its neighbour tiles and thus creating a node graph representing the level map.
For the game feature of throwing a spear, tiles hold information about whether a tile is
reachable through the air. This attribute is named as air connect.

The instances of CrackedTile also have attributes about the state of the tile, whether
it has been stepped on or destroyed. They also hold an instance of a tile where an agent
can fall on after destroying it. If no tile is below the cracked tile, the attribute will be
empty, and the agent will get to a dead end.

The MovingTile class represents tiles activated by pulling a lever. By attribute
is active, we check whether an agent is able to move onto the tile or not.

Game objects

A game object is any object that is placed in the game on a tile. Whether it is the
main character or an item, they all are positioned on a tile at the beginning of the level.
For that, the class’s only attribute is a pointer to the tile instance where it is currently
positioned. Any other class, which is or will be in the domain, inherits from the Object
class.

Agent

An Agent class is the presentation of the player’s character, Lara Croft. Because of the
fact that this game object is being manipulated by the player, the actions Agent class
instance will be operated by the solver. The actions which the solver uses are provided
through the enum class Action, where each action responds with a different outcome.
Actions are related to the inputs of the player when playing the game.
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Items

The Item class is for game items scattered in the level, which are picked up by stepping
onto their position. After obtaining them, the player can use them whenever the purpose
needs it. These items are mainly in-game spears, but if the solver is further developed in
the future and new items with similar usage are added to the game, the implementation
of such items will be easily achievable.

The type of an item is done by attribute item type, which is a constant from enumer-
ated class ItemType. When an agent uses an item, their item type decides the proper
effect implementation and thus making diverse outcomes.

Levers

Another class that inherits from Object is class Lever. The purpose of this class’s instance
is to activate or deactivate moving tiles. It is done by keeping the related tiles inside the
lever instance, and after the agent pulls the lever, all of these tiles switch their is active
value. So when a moving tile is active, it becomes deactivated and otherwise.

Traps

The final but as crucial as other child classes of Object is Trap class. The instances of
trap class aim to block the agent from reaching the goal. The Lara Croft game contains
various kinds of traps with unique behaviour. The variety of trap actions is done with
the help of a design pattern Strategy, as shown in Figure 3.6.

The Strategy pattern suggests that we take a class that does something specific in
many different ways and extract all these algorithms into separate classes called strate-
gies. The original class, for us the original class is the Trap class, which must have a field
for storing a reference to one of the strategies. The context delegates the work to a linked
strategy object instead of executing it on its own [10].

Besides a strategy, the trap holds information about which tile it guards and whether
the player can attack the trap or it must be avoided. After every move of an agent, traps
execute their response. We have declared four action strategies for four in-game traps:

1. SnakeStrategy for snakes, motionless traps that guard one position throughout the
level until the player eliminates them.

2. SawStrategy for circular saw. These saws are moving in a prescribed motion pattern,
and they can not be erased from the level. The trap with this strategy also attacks
any attackable animal, which is in their path.

3. SpiderStrategy for giant spiders that move on dedicated routes. Unlike circular saws,
the player can attack them and exclude them from the level.

4. LizardStrategy for dynamicaly moving lizards. Lizards at the beginning are inactive
and motionless. After spotting the agent, they start to follow the player until they
catch them or the player eliminates them.

For the static moves, the strategies contain a list of directions which the trap follows. The
tile where a trap repositions onto is the guarded tile, and the direction from the list is for
replacing the trap’s guarded tile. The dynamic moves also replace the trap’s position for
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the guarded tile and move the guarded tile to the next position, but the next position is
chosen differently. The first next tile is the position of the player when he activates the
trap. Then after every move of the agent, the position of the trap, the guarded tile and
the next tile are changed accordingly to the agent’s new place.

3.2.2 Solver and workflow
The instances of classes from the class diagram are held in a class Game. This class
contains a map of tiles, an agent and a list of traps. It also defines a game state for the
solver, which is expanded by the solver. Another function that Game class provides is
a creation of its instances from the JSON representation of the game. In Figure 3.7, we
give an idea of how the solver’s workflow functions.

Figure 3.7: Sequence diagram of solver’s workflow.

The user uploads a JSON description of a game level as input. The solver will next
parse the JSON file, and the Game instance will be created from it. After that, the created
instance works for the solver as a starting point from where the solver expands and visits
the game states until the goal is reached. The algorithm used for searching state space is
an A* algorithm with a domain-orientated heuristic. When the goal is reached, the list
of actions that lead to the solution is returned to the user.

3.2.3 JSON representation
As mentioned, the input for solving the game is in JSON format. The five keys required
for describing the game are: tiles, traps, items, levers and agent.

The value for key tiles is a list of JSON objects representing the instances of the tile.
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A JSON object of tile contains an id, type of tile, ids of tiles to where a player can throw
a spear and a boolean whether a tile is a goal position. Other key-value pairs in JSON
tiles are direction and an id of a tile connected to such direction. When tiles are a type
of MovingTile or CrackedTile, their JSON object has an additional key-value pair. For
MovingTile, it is a boolean for whether the tile is active at the beginning of a level. The
CrackedTile’s additional key and value is for mapping the landing tile, when present.
Otherwise, the value is null.

The traps holds a list of JSON trap objects. A JSON trap object is built from a
boolean which decides whether an agent can attack the trap, the ids of tiles where the
trap is placed and which tile it’s guarding. Another characteristic of JSON trap is a trap-
type property, which further decides how the object will be parsed. A list of directions
by which the trap moves is added for statically moving traps. And an id of tile, which
activates the dynamically moving trap, is added for the lizard types.

Key items is for a list of placed objects that a player picks up. The items, for now, are
only spears. Therefore the value for type key is mainly spear. The following parameter
for the JSON item object is an id of a tile, indicating a position where the item can be
found.

In-game levers are stored in a list, the value for key levers. A JSON object for a lever
takes two lists of tile ids, one for positioning the tile and the other for assigning moving
tiles for that particular lever.

The final property of input is a JSON representation of an agent, held behind key
agent. This object has only an id of the position where the agent stands at the beginning.

3.3 Design of PDDL
Since the PDDL defines domains and their problems, the only design is regarding how to
represent the Lara Croft Go game in PDDL. We can inspire the PDDL objects from the
class diagram, shown in Figure 3.6. More specifically, we utilise the hierarchy structure
for objects. Because of not implementing any behaviour of objects or data manipulation
between objects, the use of design patterns would be unnecessary in PDDL objects. Thus,
for example, the strategies of traps would be in PDDL a standalone trap object types like
a snake or saw.

The very needed attributes and relationships in classes, we describe by predicates in
PDDL. For example, when two tiles are connected, in an OOP representation is defined
that one tile holds the other tile as an attribute. In PDDL, such a relationship is described
by a predicate with two parameters of a tile object.

The main focus of PDDL’s implementation are game actions, since they are changing
the states. The available actions, present in the domain, should all be parallel to activities
that the player can do in the user interface. From observing the game, the purpose of
actions must involve the agent’s movement and interaction with interactive surroundings.
However, the movement of a trap will not be a PDDL action, since the player is not
directly controlling the traps.



Chapter 4

Solver Implementation

Since we have covered the design of a domain-specific solver, the implementation of such
a solver can begin. In this chapter, we concentrate on building the solver for the game
Lara Croft Go.

The chosen programming language for writing the planner is Python because of its
versatility and easy-to-use traits.

4.1 Domain representation
The first part of a solver to implement is the domain. We utilise the class diagram from
Figure 3.6 to build the classes for the domain. The core of the game representation lies
on tiles, so naturally, their classes are the first to focus on.

4.1.1 Tile classes
As the class diagram indicates, the AbstractTile stores the majority of attributes. The
qualities like type and id are for recognizing an instance of a tile. A type tells the concrete
type of a tile, and an id is for identifying the tile in the level’s map. For positioning, we
use attributes left, right, up and down for pointing tile’s neighbours, and integers x, y, z,
which act as coordinates of a tile and help with the valuation of the heuristic function
in the solver’s search algorithm. Next, we add traits for representing objects placed on a
tile. For this purpose, we set attributes agent, item, lever and trap on tile since we have
four varieties of objects: an agent, an item, a lever and traps. The last attributes, which
every tile holds, are air connection, a list of tile ids that are in a spear-throwing range,
and booleans for determining whether a tile is a goal tile and whether a tile is guarded
by a trap, a is goal and is guarded attributes.

Special tile classes, CrackedTile and MovingTile, also contain their specific proper-
ties. The CrackedTile incorporates drop on tile as a tile where a player can drop on and
booleans is cracked and is destroyed for determination of its instance’s state. Instances of
class MovingTile, on the other hand, only hold additional boolean is active, which allows
an agent to move on them when true.

In concrete classes is implemented a method agent move on(agent), where is decided
how a step on the tile is handled. From the game, the basic tiles that are instances of
class Tile, let the agent move on them without any restrictions. With moving tiles, the
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agent’s step on the tile is limited by the activeness of the tile. The CrackedTile instances
have their own decision tree on how to manage the player, as seen in Figure 4.1.

Figure 4.1: A decision tree diagram when agent steps on cracked tile.

4.1.2 Objects on tiles
A player’s agent, traps or items are placed on tiles. In the game representation, these
objects inherit from class Object with property current position that points to an instance
of a tile, where the object is. The concrete classes then append methods and attributes
for their individual usage.

Lever and items

The purpose of the Lever class is straightforward, it changes property is active in Mov-
ingTile instances that are assigned to the instance of Lever. It does that by keeping the
assigned tiles in a set, stored in an attribute of Lever class, named as activates. When
a certain lever is used by calling method use lever(), the lever goes through the set of
moving tiles and reverses the value of their activeness.

Class Item contains attributes is carried, a boolean for a determination of whether the
item is carried by an agent, and type to choose the behaviour of an item when used.
The value of type is from an enumerated class ItemType. In this version of a solver,
the only item type is a spear, but when a new type of item is added to the game, the
implementation into the planner is facilitated.

If the agent’s action is to use an item, the logic of utilizing the item is propagated into
its instance. The agent’s class simply calls method self.item.use(agent) without knowing
an item’s type and the actual effect is done by the item.
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Trap and trap strategies

The in-game traps are all represented by a single class Trap. Their specific behaviour is
executed by concrete classes of an abstract class TrapStrategy. This structure allows for
looping through instances of various traps, using the same method trap.trap action() and
getting different outcomes when the in-game environment reacts to the player’s activity.

A Trap class includes three major properties. First is guarded tile, an instance of
AbstractTile, which is guarded by the trap. Second, is a boolean attack able for deciding
whether an agent can attack the trap or not. The value of this attribute is used in method
trap.kill() as a checker for the removal of the trap instance. And finally, the Trap holds
an instance of TrapStrategy for the implementation of its actions.

The method trap.trap action() executes a method from class TrapStrategy. Its task
differs from the type of trap. An in-game snake only attacks the player when positioned
on the guarded tile, so the execute method of SnakeStrategy, seen in Figure 4.2, simply
checks the guarded tile for agents and attacks them when present.

Figure 4.2: Execute method of SnakeStrategy.

Circular saws are much more complex than snakes. The first to do is the movement
of saws. Since they are repositioning in a pattern, the SawStrategy has a list of directions
where to move as the pattern. Each time the saw trap moves, the position of the trap
is changed into the position of the previous guarded tile and the new guarded tile is a
neighbour of the previous guarded tile selected according to the direction from the pattern
list. The direction is picked by the index of the previously chosen direction. When the
next index is greater than the length of the directions list, it restarts by setting the value
to 0, the beginning of the list. Other signatures of circular saws are that they attack agents
when they are in the same position as them and that they also attack other attackable
traps. The code of execute method is in Figure 4.3.

Figure 4.3: Execute method of SawStrategy.
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The behaviour of in-game spiders is similar to circular saws. They move in a pattern
like the saws, so the SpiderStrategy copies the movement part in execute() method. The
unlikeness is when attacking the player, spiders strike players already when the agent is
in the spider’s guarded tile. Another ability that spiders possess, is that they break the
cracked tile like a player’s agent. Figure 4.4 samples the execute method from Spider-
Strategy.

Figure 4.4: Execute method of SpiderStrategy.

The final trap implemented in the domain-specific planner is the lizard. The sample
code of lizard’s execute() method is seen in Figure 4.5. The lizard’s behaviour must be
activated. Until then, they guard tiles like in-game snakes. To trigger the moving activity
of lizards, the agent must step on the activating tile. The LizardStrategy class stores
activating tile under attribute next tile, which is used as a next guarded tile when the
lizard actively moves. The instance of the next tile for the guarded tile depends on the
agent’s position. After the agent steps on the activation tile, the lizard starts to follow
the agent by using the player’s position as a value for next tile. This continues until an
agent is cornered or the lizard is tricked and killed by the player.
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Figure 4.5: Execute method of LizardStrategy.

Agent class

The class, which would be manipulated by players, is the Agent class. Since the instance
of this class is a planner’s gateway for changing game states, the structure is built like
that. Not only that, the Agent class possess attributes needed for the game, but it also
offers a method agent.apply action(Action), which requires a value from the enumerated
class Action. Each value of the enum Action results in a different game state when applied
in this method, thus allowing the planner to search for the goal state. Observed actions
as enum constants are:

• MOVE LEFT, for moving agent left from the current position.

• MOVE RIGHT, for moving agent right from the current position.

• MOVE UP, for moving agent up from the current position.

• MOVE DOWN, for moving agent down from the current position.

• USE LEVER, for activating or deactivating certain platforms.

• And USE ITEM, for using an item picked up earlier. This action is successful only
if the agent carries a suchlike item.
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Each action corresponds with actions that a player can do in an actual game. That
includes movement actions, pulling levers and throwing spears. Actions such as picking
up spears, falling through cracked tiles or attacking animals in close range are basically
outcomes of movement actions. Because of that, the domain implementation of those
in-game features is included in the move action and not a standalone action. The result
of that is visible in Figure 4.6.

Figure 4.6: Method for movement in Agent class.

4.1.3 Game class
The classes for representing the Lara Croft Go are held in class Game. The Game class
is comprised of:

• a goal, a tile which is desired for the agent to reach as a current position,

• an agent as an instance of class Agent,

• a list of traps, to access them when their in-game turn comes,

• and a dictionary tiles, where the key is an id of a tile, and the value is the instance.

Another purpose of this class is to initialize a Game instance from a JSON file. The
class implements method load game(path), which takes the path to a JSON file and parses
it into the instance of Game class. When building the tile instances, the x,y and z axes
values are set for each tile. Since we imagine the game representation in two dimensions,
setting the x and y axis is simple. We start at the beginning tile, a tile where the agent
is positioned, and we set the axis values to zeros. Then we check the surroundings to set
the neighbour’s axes values according to the axis values of the current tile. For example,
when a tile with axes (x, y, z) has a neighbour on the right side, the right neighbour is
going to have axes values as (x+1, y, z). The z-axis is special for landing tiles of a cracked
tile. When a cracked tile has a drop tile that has not had its axes values set yet, the values
are set to the values of the cracked tile, but the z-axis is changed to z − 1. After invoking
the method load game(path), the created Game instance acts as a starting state for the
solver’s algorithm.
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4.2 Solver
The actual solver is hidden in the class Solver. The solver uses the A* search algorithm
to solve the game. The solver’s method solver.solve(state) accepts in parameters a Game
instance as a starting state from where the search begins. The given state is a game state
that we represent in the input’s JSON format. More specifically, the illustrated state is
the beginning of any game level when started. Lara Croft is on the first tile and traps,
levers and items are placed in their designated positions as the level designers intended.

4.2.1 The heuristic
Before implementing the solving algorithm, we need additional functions and methods
implemented. One such function is the method for evaluating a heuristic value of a game
state. A heuristic function h(n) where n is the current game state is used for estimation
of how far from the goal state is the current state.

Since the goal of the game is to transport an agent from one tile to the other, we
calculate the Manhattan distance from the current position to the end as a heuristic
value. The Manhattan distance is the distance between two points measured along axes
at right angles. In a plane with p1 at (x1, y1) and p2 at (x2, y2), it is |x1 − x2| + |y1 − y2|
[11]. The cost function g(n) is calculated as a number of actions that led to the n state.
The A* algorithm then chooses the next state to expand by minimizing the function
f(n) = g(n) + h(n) [7].

4.2.2 The method for generating states
Another method needed for the solving algorithm is a method for generating states from
the currently given state, the solver.get neighbour state(state, prev action). The new
states are generated by applying actions to the game’s agent.

Because traps can block the agent’s advance, not every action is possible. To further
optimize the solving process, we utilize knowledge of the domain. Before generating new
states, we create a list of positions that are either guarded by a trap or are a cracked tile
that sends the agent to a dead-end when stepped on. When action is used on the current
state to create a new one, the action is first checked to see whether it does not lead to
a forbidden position and only after the inspection is the action applied. This way, the
solving algorithm does not explore states that definitely are not goal states.

4.2.3 The solving algorithm
The algorithm of method solver.solve(state) uses a queue for putting in and getting out
a tuple of values when searching for the goal state. The loop continues until no states to
explore are available. The queue is a priority queue, meaning that the values are sorted
in ascending order, and the first to pop out are the lowest values. Since individual states
are hard to evaluate for sorting and values in the priority queue need to be ordered, the
instances of expanded states are stored in a Python dictionary, and we use the assigned
key instead of the state in the queue value. The values in the queue are tuples containing
a value of function f(n), a value of heuristic function h(n), the key to the current state
and a list of actions that led to the state.

In each iteration of the while-loop, a state is retrieved from the dictionary. The state
is checked to determine whether it is a goal state. If so, the loop is ended, and the
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corresponding list of actions is returned from the method. Otherwise, the state is further
expanded with approved actions. The new states are then added to the map of states
and checked if they have been visited already before. When it’s a state that never has
been visited before, the values of functions f(n) and h(n), where n is the new state, are
created and a new tuple of values is put in the queue. Since f(n) = g(n) + h(n), we first
calculate value of h(n). For the value g(n), which represents the cost of getting to the
state n from the initial state, we take the previous state n′ with its f(n′) and h(n′) values
and we get previous cost-value by g(n′) = f(n′) − h(n′). The new value g(n) = g(n′) + 1,
and the f(n) value is evaluated.

This mechanism is repeated until the goal state is found or no more states are available,
meaning that the solver did not manage to solve the given level. The implemented code
of the search algorithm is seen in Figure 4.7.

Figure 4.7: Code of the search method.
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4.3 Testing
Since the solver is more of a small software than an extensive enterprise application,
the testing involves unit testing and end-to-end testing. The unit tests are used for the
validation of methods in the domain representation and the solver. On the other hand,
the end-to-end tests verify the solver’s correctness of short, made-up and easy-to-solve
levels.

Unit tests are typically automated tests written and run by software developers to
ensure that a section of an application (known as the ”unit”) meets its design and behaves
as intended [12]. With unit testing, we have tested the behaviour of traps, applying actions
on agents and functionality of supporting methods of Solver class.

End-to-End (E2E) testing is a Software testing methodology to test an application flow
from start to end. It uses actual production like data and test environment to simulate
real-time settings [13]. For end-to-end tests, we have created seven custom levels, and we
have passed them to the solver as actual levels. After the solver’s evaluation, we inspected
the actions of the generated plan and verified whether they led to the goal state.

After passing the tests, we are ready to use the solver with actual in-game levels.



Chapter 5

PDDL Implementation

Now that we have discussed classical planning, Planning Domain Definition Language
and brief design of domain structure, we can focus on the next topic of this thesis. In
this chapter, we focus on modelling the video game Lara Croft Go in PDDL so that we
can use classical planning to solve its levels. First, we must implement the domain and
its actions to copy the game’s mechanics. Then we model out levels as PDDL’s problem
files.

5.1 Tools
Before we start with the process of modelling in PDDL, we need tools and planners to
validate our implementation of the PDDL domain and problems. The first and most
convenient off-the-shelf planner is an online PDDL editor with a built-in planner [9].
This planner supports PDDL contents up to version 2, which will be used in the early
stages of building the PDDl model. But for advanced features, such as numeric fluents
and numeric functions, we will need a different planner. We will use the online PDDL
editor at times when we model the core game mechanics and actions that solely affect the
agent. To implement the behaviour of the environment (for moving animals and traps),
we need numerical contents of PDDL 2.1. Therefore we use open source PDDL planner
and evaluator SymbolicPlanners.jl [14] and PDDL.jl [15] implemented in Julia language.

For implementing PDDL code, we use VS Code with available PDDL extension.

5.2 Implementation of domain
First, we focus on modelling the essential parts of the game in the domain. With that,
we start with basic movement around a map.

5.2.1 Basic movement of an agent
As mentioned in the previous chapter, the game’s core are interconnected nodes. These
nodes are placed not only in two dimension space on the x and y axes but are in three
dimension space by utilizing the z axis. The game is also isometrically oriented. Therefore
we did not choose to model each node by their position coordinates, but by creating each
node as an instance of type tile derived from type location that are interconnected by
predicate path, which together, when correctly used, create a whole level map.

26



5.2. IMPLEMENTATION OF DOMAIN 27

Another core type are objects that lie on tiles. For that, we define hierarchy root as
type object from which we create other types that inherit a predicate at. This way, we can
formulate the fact about some objects being in a specific location. One of the children of
type object is type agent, representing the in-game Lara, who is controlled by the player.

The next step is creating a move action. To differentiate the final move from the
standard move, we make type goal derived from location, same as type tile. Then we
implement two actions move to non goal and move to goal, both having three parameters:
agent, current location and target location. The target could be either goal when using
move to goal, or tile when using move to non goal. Both then move the agent from the
current location to the target location. The distinction to our domain-specific solver is
that the generated PDDL movement actions do not show a direction of where to move the
agent, but specifically indicate on which tile instance the agent is and where the actions
suggest to go.

5.2.2 Movement on single-use tiles
A movement of an agent between tiles can be targeted on single-use tiles. These tiles are
rendered with a small crack which enlarges after one step on it by an agent or an animal.
After the second step on this type of tile, it will get destroyed, and the agent or animal
will fall through. The agent will fall off the broken cracked tile onto another tile when
the other tile below exists. Otherwise, the agent will die, and the player will fail to solve
the currently given level.

We implement this game mechanic into the PDDL’s domain by creating a child of
type tile, the crack tile, and four new actions:

• crack tile as an action of the first step on cracked tile,

• destroy tile as an action of the second step cracked tile,

• fall through as an action of falling on a tile beneath the destroyed tile,

• and fall to death as an action for killing the agent and ending the level.

With these actions, we must also define predicates to distinguish when a planner should
use specific actions since their effects are similar to move actions. We define predicates
is cracked and is crack tile for type crack tile and is destroyed tile for type tile. Predi-
cate is crack tile works as a type checker, which is used in movement actions. Predicate
is cracked represents information about tiles of type crack tile that have been stepped on
and can be destroyed if stepped again. If stepped on, the truth about destruction is rep-
resented by predicate is destroyed tile. Both these predicates or their negation are added
into preconditions of actions move to non goal, move to goal, crack tile and destroy tile,
to restrict the use of these actions, as seen in Figure 5.1.

After the second step onto the cracked tile and destroying it, the agent is now standing
on the destroyed tile. For choosing whether a player failed solving the level or can continue,
we create predicate fall path connecting the destroyed tile with another tile. When this
predicate exists between the destroyed tile and some other tile, the agent moves on to the
other tile, similarly as in the game, when Lara drops down on such a location. Otherwise,
action fall to death is called, meaning that the agent disappears from the level and it can
no longer be solved. This situation corresponds to a dead-end state, a state from where
is no return and the problem has no solution.
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Figure 5.1: Example of predicates in movement actions (move to non goal).

5.2.3 Levers and shifting platforms
After defining the basic movement actions, we can focus on other in-game actions available
for the player. One key game mechanic is using a lever and shifting platforms, defined as
a group of tiles, to create new paths.

First, we define a type item, derived from type object, to give their instances a predi-
cate at, to lay the item on a tile. Another newly defined type is type lever, a child of type
item, which can be placed onto a tile and is used by an agent when he needs to.

Then we create a predicate forbidden tile for type tile that represents the unavailability
of tiles and forbids the agent to step on such tiles. This predicate is then added to
preconditions of movement actions, to prevent the use of these actions by the planners.

The shifting of platforms has two versions. One is that the platform arises from
nowhere and fills an empty place to create a path to the goal. The second is that two
platforms with the same colour, where one is available for agent and the other is not,
swap their places, thus changing the usability of platforms.

To differentiate the switching tiles from the single arising platforms, we set up a
predicate flip tile that determines whether a tile will be switching or not. We also define
predicate lever activates connecting certain levers to certain tiles, thus selecting which
lever affects which platform. With these predicates, we can implement two actions for
activating the lever. The idea of the effect of both actions is the same: change the
predicate forbidden tile of affected tiles. The difference, shown in Figure 5.2, is how they
approach the implementation of this consequence.

The action use lever uses a conditional effect with forall statement. It loops through
all instances of type tile and decides whether a tile can be used.

The other action, use lever flip, sets the effect by having the usable and unusable tile
as a parameter. Then, in the effect definition, the action changes the value of predicate
forbidden tile in affected tiles. The action is then called multiple times, depending on how
many tiles are in platforms, but in the game, it is a one action move.
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Figure 5.2: Different implementation of effect in use lever action.

5.2.4 Usable items and in-game animals
Other useful in-game items are carriable items like spears. Spears can be used to kill
animals that stand on some tile and guard the tile in front of them, thus preventing an
agent from moving on those needed tiles.

To implement this game mechanic, we first need to create type trap and from that
derived type animal as an enemy. We also define type careable derived from the item to
define carriable items and their child, type spear, for selective behaviour in actions that
use a spear as a carriable item.

In the predicates module, we introduce a new predicate has that takes the agent
and the carriable item as parameters. The defined predicate will carry information on
whether the agent has already picked up the item or not. Next predicates that we set up
are animal dead, trap guards tile and spear throw line. Predicate animal dead takes as a
parameter an animal type and refers to whether an animal is dead or not. Trap guards tile
connects animal, as a trap type, with a tile that is not available to step on. Finally,
predicate spear throw line creates a ”path” where the spear flies through the air into an
enemy.

In order to utilize these predicates, we create two actions, one for picking up the spear
and the other for using it. We set action pickup spear, which sets the predicate has as
true for instances of spear and agent. The second action throw spear is allowed to use
only when has predicate for spear instance is true. When the agent stands on a tile that is
connected to a tile, where a hostile animal stands, by having a predicate spear throw line,
the planner can use the throw action to eliminate the animal. This is similar to the in-
game mechanic, where Lara throws the spear across the map in a straight line. This action
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results in creating a new possibly available path and solving of the level can continue.
The action throw spear is seen in Figure 5.3

Figure 5.3: Implementation of action for throwing a spear.

5.2.5 In-game close combat
Another way of how to get rid of an animal, is by attacking at close range, from different
angles than through the guarded tile. After such attacks, the agent takes place on the
tile where the animal was. In this action, there’s no need for an extra item, meaning that
the agent can do this from the beginning of the game.

To model this mechanic into a PDDL action, we can imagine it as a move action. We
create an action move and kill animal close, as seen in Figure 5.4, with a very similar
precondition and effect as in movement actions. The added value to this action is an
instance of an animal, given through parameters, that stands on the tile where an agent
moves on. In the effect part of this action, the animal is proclaimed dead through predicate
animal dead and disappears from level with its guarded tile.

Figure 5.4: Implementation of action for close combat.
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5.2.6 Moving traps and animals
A big feature in the game is that some animals (for example, spiders and lizards) or traps
like circular saw blades move between tiles according to their designed movement path
and make moves only after an agent makes a move. The moving enemies and traps are
difficult to model in PDDL because the trap’s movement work as an activity that must
be done after an agent does certain actions. Thus it can not be a standalone action used
by planners.

The solution for this modelling problem is adding the environment action of moving
traps into the effects of movement actions without adding the traps and animals into the
parameters of those actions. Let us create a new type that will differentiate moving traps
from not moving traps, a type move trap. The idea of deciding where the instance of
move trap is and where it should move, is by selecting tiles included in the trap’s move-
ment path through the new type assigned location. By counting agent’s move actions,
which were invoked, we calculate the tile where the moving trap should be. In Figure 5.5
we see all the numeric functions that we have implemented for the described behaviour.

We create a numeric constant function move trap location with tile and moving trap
as parameters, so the assigned value of the function will work as a parameter for finding
the correct tile, where the trap should be. Another numeric function, that we need, is for
counting a value after the agent’s movement. Rather than having an increasing function
with an agent as a parameter, we have a function move trap step count, that takes trap as
a parameter. When the value of this function is equal to the value of move trap location
function with the same trap instance in parameters, the tile (also given as a parameter
in move trap location function) is the current place where a trap should be. Because the
value of move trap location is constant for each combination of parameters, the assigned
values must be different. This way, the function move trap step count can not be solely an
increasing function, but it is also decreasing a value according to a predicate do increase,
which is created for this purpose. The switch for changing the value of do increase value
is another two constant functions working as an upper and lower bound, the constant
functions move trap step upper limit and move trap step lower limit. When the value of
move trap count is equal to the value of one of the functions that work as a border, the
predicate do increase changes depending on whether it hits a lower or upper extreme.

Figure 5.5: Defined numeric functions.

The actual use of these numeric functions to move the traps and animals are in effect
of action move to non goal. Here we add a conditional effect done by when statement.
This statement works as an if statement in programming languages, meaning that some
predicates are true only if certain condition is true. To change the positions of all mov-
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ing traps and animals in one action effect, we use forall statement that is a for-loop of
instances of a given type initialized in the problem. First, we loop through instances
of move trap, then we change the move trap step count value according to the predicate
do increase and limit bounds. After that, we add another forall loop, but this time for
type assigned location to find the correct location where a moving object should be placed.
The searching is done by comparing and finding the equality of move trap step count value
and value of move trap location with current instances of move trap and assigned location
as parameters. The final implementation is seen in Figure 5.6.

Figure 5.6: Forall statement implemented in movement action.

For the predicate that models whether a tile is guarded by a moving trap, is used
a similar approach as in moving traps. We prepare a function that maps a value of
move trap step count to a tile that must be guarded. Because a tile that is guarded is dif-
ferent when increasing or decreasing a move trap step count value, although the position of
a moving trap is the same, we need to have two constant functions: guarded tile location increase
and guarded tile location decrease. These functions are then used in the same way and in
the exact place as when finding the position of moving traps.
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The final hierarchy of created types is visualised in Figure 5.7.

Figure 5.7: Final type hierarchy.

With that, a great portion of the game and everything that could be done with PDDL
is modelled out in the domain. There are still missing some in-game features, such as a
dynamic movement that changes accordingly to the agent’s move, but they are almost
impossible to model in PDDL.
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5.3 Implementation of problems
To model a level as a PDDL problem, there must be a certain degree of detail. All objects
present in the level must be initialized in objects module, and every important predicate
must be in init module to illustrate a starting point of the game as an initial state. An
exceptionally detailed PDDL problem is when a level contains moving traps and the initial
values of all functions must be set, as seen in Figure 5.8. An effect in actions is evaluated
simultaneously and not continuously line by line, so the value of move trap step count
must be one step in the future for the effect to work correctly. Also, for all instances of a
type with a defined function, there must be an assigned value in the initial state. However,
in the ”corners” of movement paths of moving traps or with instances of assigned location
with different moving traps, the values are unnecessary. For this reason, we set the values
as random values that the function move trap step count will never reach.

Figure 5.8: Example of function values in an initial state. The highlighted values are the
mentioned special occasions.
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PDDL Validation

Another part of this thesis, which is closely connected with the modelling of the game
Lara Croft Go as a PDDL domain, is to actually use it with existing planners and see
whether they can solve any designed in-game levels. But before creating PDDL problems
that simulate actual game levels, we need to validate whether the PDDL domain has been
implemented correctly. For that, we have modelled several made-up levels, which test the
in-game mechanics represented in the PDDL domain. For generating plans for solving
the PDDL problems using our PDDL domain, we utilize PDDL.jl [15], as a PDDL reader,
and SymbolicPlanners.jl [14] to use its planner that requires PDDL domain and problems
as input.

6.1 Testing levels
Modelled-out PDDL problems that each test a certain game mechanic are designed very
similarly. Each made-up level is designed as a straight path where an agent must go from
tile A to tile B in order to solve the level. In between the starting and ending points are
tested various game mechanics.

Problem 1 - move and pickup spear

In the first designed problem, we are verifying a few things at once. The first and most
important action, which is tested, is moving an agent between tiles. Next, we test a simple
lever used to activate a tile that connects two platforms. And finally, we test picking up
an item and carrying it to the end. The layout of the problem is illustrated in Figure 6.1.

A goal in this problem is to get the agent on the goal tile and to have an agent carry
a spear. The generated plan, seen in Figure 6.2, is not an optimal plan, because an agent
is pulling the lever first, and after that, it is returning back for the spear, which is not
efficient. But the planner chooses to activate the lever to use the shortcut and not go
around the pit.
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Figure 6.1: Initial and goal state of dummy problem 1.

Figure 6.2: Generated plan for problem 1.
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Problem 2 - cracked tile

In the second problem, we validate whether a cracked tile cracks after stepping on it.
In other words, we test if a planner uses actions designed for cracking and destroying a
cracked tile. In Figure 6.3 that displays the dummy problem, we represent the crack on
the tile as the ”strange” cross in the square and the fall path as the arrow to the landing
tile.

In this problem, we set a goal to get an agent to the end. In an optimal plan, the agent
only cracks the cracked tile. But by adding to the goal module a predicate for destroying
the cracked tile and using the fall path, the agent intentionally falls onto a different tile.
The generated plan is displayed in Figure 6.4.

Figure 6.3: Initial and goal state of dummy problem 2.

Figure 6.4: Generated plan for problem 2.
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Problem 3 - multiple levers and multiple tiles activated by a lever

The third problem focuses on the use of multiple levers and multiple moving tiles, which
are activated by a single lever. In the problem described in Figure 6.5, we try to determine
whether the planner is activating only the levers that the agent needs. As seen in Figure
6.6, the plan suggests activating only the green lever (lever1), which must be used for
solving the problem.

Figure 6.5: Initial and goal state of dummy problem 3.

Figure 6.6: Generated plan for problem 3.
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Problem 4 - throwing a spear

Now that we can pick up and carry a spear, we can test whether a planner can throw
it. Another game mechanic, which is tested, is a restriction that animals are created as
traps. Otherwise, it would be possible for planners to ignore animals, and the weapon
would be useless. In Figure 6.7, we illustrate a red cross as a guarded tile by a snake and
a blue line as a trajectory for a spear, described in PDDL as a predicate spear throw line.
In Figure 6.8 is a sequence of actions for solving the problem.

Figure 6.7: Initial and goal state of dummy problem 4.

Figure 6.8: Generated plan for problem 4.
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Problem 5 - moving traps

In the fifth problem, we validate whether a moving trap is moving. In order to solve the
level portrayed in Figure 6.9, an agent must take a step back to calculate the optimal
position of the trap to get across its moving path. As seen in Figure 6.10, the generated
plan contains the assumed actions of stepping back.

Figure 6.9: Initial and goal state of dummy problem 5.

Figure 6.10: Generated plan for problem 5.
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Problem 6 - close range combat

In the final made-up problem, we look at the close-range combat of an agent against an
animal. As illustrated in Figure 6.11, the hostile snake is blocking the path of the agent,
thus forcing the agent to eliminate the snake without a spear. The generated sequence of
actions in Figure 6.12 shows that an action of a close-range attack is used.

Figure 6.11: Initial and goal state of dummy problem 6.

Figure 6.12: Generated plan for problem 6.

After running the above-described problems, we conclude that the PDDL domain can
indeed generate some valid sequences of actions. Now that we have a working PDDL
domain, we can create PDDL problems that correspond with the actual in-game levels
and compare their solving results with our custom solver.
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Planner comparison

In the final part of this thesis, we compare the domain-specific planner with the domain-
independent planner, which uses PDDL. We select actual in-game levels as evaluation
problems, which planners will solve. For each of these levels, we transform them into
formats that planners need (JSON format and PDDL problem).

7.1 Measuring levels
In order to compare the two different solvers, we first need a set of problems to solve
that will be issued for both solvers. The problem set is a set of Lara Croft Go levels
represented in JSON format, for our custom-made solver, and the PDDL problem, for the
domain-independent planner. We have selected 10 in-game levels that are possible to be
recreated with the PDDL domain and in the format for custom solver.

The game Lara Croft Go has its levels separated into chapters in various books. Each
book is composed of x-amount of chapters, which contain one or more in-game levels.
Since the PDDL and the solver implement game mechanics only from the first two books,
we’ve picked the measuring levels from those books, The Entrance and The Maze of
Snakes. The finally selected levels are:

1. The Entrance, chapter 1 (Figure A.1),

2. The Entrance, chapter 2 (Figure A.2),

3. The Entrance, chapter 3 (Figure A.3),

4. The Entrance, chapter 4 (Figure A.4),

5. The Maze of Snakes, chapter 1, a first level (Figure A.5),

6. The Maze of Snakes, chapter 4 (Figure A.6),

7. The Maze of Snakes, chapter 6, a first level (Figure A.7),

8. The Maze of Snakes, chapter 6, a second level (Figure A.8),

9. The Maze of Snakes, chapter 6, a third level (Figure A.9),

10. The Maze of Snakes, chapter 6, a fourth level (Figure A.10).
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7.2 Measurements
Now that we have selected the set of levels, the comparison of the planner’s suggested
solutions can begin. But before we start, we need to establish the PDDL’s planner. As
a PDDL evaluator, we use the combination of PDDL.jl [15], as a PDDL reader, and
planner from SymbolicPlanners.jl [14], which we have introduced in the previous Chapter
6. We work with this planner and not with any other well-known planners because the
SymbolicPlanners are the only planners that handle the complexity of our PDDL domain
with the used PDDL features which we know of. The SymbolicPlanners offers a variety
of planners to utilise, we have chosen an A* planner with a HAdd heuristic. A HAdd is
a heuristic where an action’s cost is the sum of costs of the conditions it depends upon
[14].

The PDDL planner uses Julia programming language, and the custom solver is written
in Python. The custom solver offers a command to run the solving, but the run of the
PDDL planner was done inside the interactive command-line, which Julia offers, because
the planner from SymbolicPlanners.jl is faster when it is precompile.

7.2.1 Results
After running the levels on both planners, we can compare the resulting plans with each
other. We evaluate the generated plans on three grounds: the correctness of the sequence
of actions, the time that solvers spend while solving the levels and the number of steps
which the plans suggest.

The evaluation of correctness is done by playing the concrete in-game level and doing
the actions from the generated plan. The plan is successful when the actions bring the
game level to a winning state. Since the game does not offer a different interface, such as
an API, the process of correctness evaluation is not automatized, and each of the selected
levels is played through the provided UI. We show the success rate of both planners in
Figures 7.1a and 7.1b.

(a) Success rate of custom solver. (b) Success rate of PDDL.

Figure 7.1: Success rates of selected levels.
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The solving times of each level for both planners are seen in Table 7.1. Each time was
measured within the code of the solving script to reach the most accurate time duration.
The measured times of PDDL are times where the planner from SymbolicPlanners.jl was
precompile.

Level PDDL Solver
The entrance, chapter 1 0.0604 s 0.028 s
The entrance, chapter 2 0.2557 s 0.095 s
The entrance, chapter 3 0.1294 s 0.192 s
The entrance, chapter 4 0.2819 s 0.257 s

The Maze of Snakes, chapter 1 (level 1) 7.3563 s 0.082 s
The Maze of Snakes, chapter 4 2.6299 s 0.778 s

The Maze of Snakes, chapter 6 (level 1) 1.2171 s 0.280 s
The Maze of Snakes, chapter 6 (level 2) 1.1529 s 0.158 s
The Maze of Snakes, chapter 6 (level 3) 0.760 s 0.036 s
The Maze of Snakes, chapter 6 (level 4) 1.2591 s 0.124 s

Table 7.1: The time spent on solving each level

The time difference is illustrated in the graph seen in Figure 7.2. The solver, which
represents the domain-specific planner, is five times faster than the PDDL planner. The
average solving time for the PDDL planner is 1.15 seconds, whereas the time of the solver
is 0.203 seconds on average.

Figure 7.2: Solving times of each level in a graph.

The numbers of actions in generated plans from both planners are more or less similar,
as indicated in the graph in Figure 7.3. The number of steps in action sequences produced
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by the PDDL planner is slightly higher compared to the quantity of actions from the
custom solver. This is due to the action redundancies that can occur in PDDL’s plans.
Action redundancy happens during the use of levers, where the one in-game action of
pulling a lever is represented by multiple PDDL actions, when the lever affects multiple
tiles. Another redundancy takes place when an in-game activity results in a slightly
complex after-effect. Such activities are destroying a cracked tile and falling on a different
tile below or picking up spears. The actions that lead to these effects are implemented
in the game, and also in the solver, as one action, whereas the PDDL domain needs it as
two or more actions.

Nevertheless, when we ignore the action redundancies, the number of actions, from
the PDDL planner, is very much the same as the size of the sequence of actions generated
by the solver.

Figure 7.3: Number of actions included in each level plan.
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Conclusion

The goal of this thesis was to compare a domain-specific planner with domain-independent
planners in solving a puzzle video game, Lara Croft Go.

Our first task was to design and model the game in PDDL. The result of this task is
a working PDDL domain that replicates fundamental features of the game. The PDDL
domain can be used for describing the game world, and the in-game levels are represented
as PDDL problems. The fundamental game mechanics are represented as PDDL actions
and are ready to be used by PDDL planners. The domain is still lacking advanced in-game
features, which is a problem when solving late-game levels. However, the late-game levels
can be partly modelled-out, and a PDDL planner that solves sub-parts of the levels leads
to generating partially useful plans, thus providing an idea of how to solve the given level
problem.

A second task, which we have reached, is a development of a custom game solver.
This solver prototype, which represents the domain-specific planner, finds solutions for
several in-game levels. The custom solver is more adaptable to the Lara Croft game
because the domain representation easily implements the game features, compared to the
PDDL domain, where some late-game features are impossible to represent, as mentioned
in Section 5.2.

Nevertheless, we consider the creation of a domain-specific planner and the PDDL
domain for domain-independent planners as successful. With that, it is possible to auto-
matically solve the game’s levels when given to a planner in their specified format.

In the final task, both solvers were put to the test by solving several in-game prob-
lems. Their generated outcomes were compared to each other to find the pros and cons of
domain-independent and domain-specific planners. The experiment demonstrated promis-
ing results for both solvers when actual in-game levels were being solved. From the com-
parison of the results, we conclude that the domain-specific solver can be faster than the
PDDL-centric planner, but the overall time difference is determined by the type of PDDL
planner used. The correctness of generated plans was slightly better for the domain-
specific planner, but that is due to the less complex implementation of game features,
such as moving traps. In terms of the number of generated actions in plans, the results
are very similar, meaning that both are finding a similar or exact solution.

The presented PDDL domain showed us the potential of the usage of classical planning as
an automatic solver or an AI player of this game. The custom solver also possesses such
prospects but additionally offers the opportunity of building a game planner that solves
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not only basic levels of the game but generates solutions for every level released for the
game.

Future work could be designing a PDDL problem generator, which is built on top of
the custom solver. With such generator of problems, it would be possible to benchmark
the PDDL domain introduced in this thesis and use it as an official automated planning
benchmark, for example, in the International Planning Competition (IPC) [16].



Appendix A

In-game levels representation

Figure A.1: The Entrance - chapter one.
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Figure A.2: The Entrance - chapter two.

Figure A.3: The Entrance - chapter three.
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Figure A.4: The Entrance - chapter four.

Figure A.5: The Maze of Snakes - chapter one (first level).



51

Figure A.6: The Maze of Snakes - chapter four.
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Figure A.7: The Maze of Snakes - chapter six (first level).

Figure A.8: The Maze of Snakes - chapter six (second level).
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Figure A.9: The Maze of Snakes - chapter six (third level).

Figure A.10: The Maze of Snakes - chapter six (fourth level).



Appendix B

Attachments

A compressed folder with source codes and testing levels is attached to this thesis. In the
folder can also be found a text file, git link.txt, which contains links to git repositories to
source codes. The structure of the folder is:

• lara croft go planner

– In here are found source codes for the custom solver of the game.
– In directory levels are found dummy levels and actual levels of the game, rep-

resented in .json format

• laracroftgo pddl

– In here are PDDL representations of the game for domain-independent plan-
ners.

– In directory game levels are found PDDL problem representations of actual
levels of the game.
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