
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Cybernetics

Multi-robot Systems

Reinforcement Learning for Swarm
Control of Unmanned Aerial

Vehicles

Bachelor’s Thesis

Karel Poncar

Prague, May 2023

Study programme: Open Informatics
Specialization: Artificial Intelligence and Computer Science

Supervisor: Ing. Robert Pěnička, Ph.D.

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498833 Personal ID number: Poncar Karel Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Open Informatics Study program:

Artificial Intelligence and Computer Science Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Reinforcement Learning for Swarm Control of Unmanned Aerial Vehicles

Bachelor’s thesis title in Czech:

Posilované učení pro řízení letu roje bezpilotních vzdušných robotů

Guidelines:

1. Analyze existing approaches for swarm control of unmanned aerial vehicles and the use of reinforcement learning for
single UAV flight control.
2. Create a simulator of an unmanned aerial vehicle swarm. Connect the simulator with the selected reinforcement learning
library and use a suitable learning method to teach swarming policy in known environments cluttered with obstacles using
known robots’ states.
3. Provide the agents in simulation with observations that simulate real-world sensors, like 2D LiDAR and relative localization,
and try to learn policy with such vision-based observation.
4. Evaluate the success rate of policies with known robots’ states and with the vision-based observation. Compare the
proposed reinforcement learning method with existing methods for swarming.
5. (Optional) Try to learn a generalizing policy that would enable a swarm of quadrotors to fly without collisions through
an unknown virtual environment.

Bibliography / sources:

[1] A. Raffin, A. Hill, M. Ernestus, A. Gleave, A. Kanervisto, N. Dormann. "Stable baselines3." 2019.
[2] R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza. "Learning Minimum-Time Flight in Cluttered Environments."
IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7209-7216, July 2022
[3] Zhou, Xin, Jiangchao Zhu, Hongyu Zhou, Chao Xu, and Fei Gao. "Ego-swarm: A fully autonomous and decentralized
quadrotor swarm system in cluttered environments." IEEE international conference on robotics and automation, 2021.
[4] Zhou, Xin, Xiangyong Wen, Zhepei Wang, Yuman Gao, Haojia Li, Qianhao Wang, Tiankai Yang et al. "Swarm of micro
flying robots in the wild." Science Robotics 7, no. 66 (2022): eabm5954.

Name and workplace of bachelor’s thesis supervisor:

Ing. Robert Pěnička, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 27.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Robert Pěnička, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

v

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Karel Poncar

May 26, 2023 in Prague

vi

vii

Acknowledgments

I would like to express my gratitude to my bachelor thesis supervisor, Ing. Robert
Pěnička, Ph.D., for his support and enthusiasm and for dedicating vast amounts of time to
guide me in the development of this thesis. I would also like to thank Vı́t Knobloch for his
cooperation in the development of the quadrotor simulator. And last but not least, I would
like to thank my family for supporting me.

viii

ix

Abstract

This thesis focuses on the application of reinforcement learning (RL) techniques
for the flight control of Unmanned Aerial Vehicle (UAV) swarms. The objective
is to learn policies that provide control inputs separately to each individual UAV
in the swarm to fly through multiple waypoints in a cluttered environment while
keeping the swarm coherent. For this reason, we create a quadrotor simulator, that
has the ability to emulate the dynamics of quadrotors and the environment with
obstacles. This simulator is integrated with a standardized interface for RL, allowing
interaction with an RL library. A suitable RL algorithm is chosen to train policy
on individual UAVs in the swarm to navigate through the cluttered environments.
To simulate difficult scenarios, the quadrotors in the swarm are deprived of their
absolute position in the environment and they are provided with observations that
simulate 2D Light Detection and Ranging (LiDAR). The success rate of the trained
policies is evaluated in a scenario where the RL algorithm is provided with known
robots’ states (including the absolute position) and where the algorithm is provided
with vision-based observations. Then, the performance of the proposed RL method
is compared with another existing method for swarm control. Metrics such as success
rate, the velocity of individual UAVs, and swarm cohesion are used to measure the
effectiveness of the trained policies. Overall, this thesis contributes to the field of
control of UAV swarms by exploring the RL techniques for this task. It provides
insights into the challenges and opportunities of this approach for this problem.

Keywords Unmanned Aerial Vehicles, Reinforcement Learning, Swarming

x

xi

Abstrakt

Tato práce se zaměřuje na aplikaci technik posilového učeńı (RL) pro ř́ızeńı letu
skupiny bezpilotńıch leteckých prostředk̊u (UAV). Jej́ım ćılem je naučit se strategii,
která umožńı každému UAV ve skupině samostatně ovládat sv̊uj let, proletět v́ıce
ćılových bod̊u v prostřed́ı s překážkami a současně udržovat skupinu pohromadě. Pro
tento účel byl vytvořen simulátor kvadrokoptér, který dokáže emulovat prostřed́ı s
překážkami a dynamikou těchto robot̊u. Simulátor je vybaven s standardizovaným
rozhrańım pro RL, které umožňuje komunikaci s RL knihovnami. V této bakalářkské
práci zkouš́ıme učit strategie i na obt́ıžněǰśıch scénář́ıch, kde jsou kvadrokoptéry
zbaveny informace o své absolutńı pozici v prostřed́ı a jsou jim poskytována po-
zorováńı simuluj́ıćı 2D LiDAR. Úspěšnost naučených strategíı je potom vyhodno-
cena ve scénáři, kdy kvadrokoptéry znaj́ı svoji absolutńı pozici, a ve scénáři, kdy
kvadrokoptéry maj́ı mı́sto polohy informace z LiDARu. Jsou zde také porovnávány
naučené strategie s jiným projektem pro ř́ızeńı skupiny UAV. K porovnáváńı jsou
použity metriky jako rychlost kvadrokoptér a soudržnost skupiny. Celkově tato práce
přisṕıvá do oblasti ř́ızeńı skupiny UAV pomoćı RL a nab́ıźı poznatky o problémech
a př́ıležitostech RL pro řešeńı tohoto problému.

Kĺıčová slova Bezpilotńı Prostředky, Posilované Učeńı, Rojové Chováńı

xii

xiii

Abbreviations

GNSS Global Navigation Satellite System

LiDAR Light Detection and Ranging

RL Reinforcement Learning

UAV Unmanned Aerial Vehicle

MDP Markov Decision Process

PPO Proximal Policy Optimization

POMDP Partially Observable Markov Decision Process

Dec-POMDP Decentralized Partially Observable Markov Decision Process

ESDF Euclidean Signed Distance Field

SB3 Stable Baselines 3

xiv

xv

Contents

1 Introduction 1

2 Related works 3
2.1 Traditional methods for UAV swarming . 3
2.2 RL for flight control of individual UAVs . 4
2.3 The use of RL in multi-agent tasks . 4

3 Problem Description 7
3.1 Description of a general task for RL . 7

3.1.1 Markov decision process . 7
3.1.2 Connection between MDP and RL . 9

3.2 Defining flight control task as a problem suitable for RL 10
3.3 Quadrotor dynamics . 11
3.4 Formulation of the problem . 13

4 Methodology 15
4.1 Simulator . 15

4.1.1 Environment . 15
4.2 Interaction with reinforcement learning library 17

4.2.1 Proximal Policy Optimization . 17
4.2.2 Action space . 19
4.2.3 Observation space . 20
4.2.4 Reward components . 21
4.2.5 Checkpoints . 24

5 Results 25
5.1 Comparison of vision-based policies and policies with known state 25
5.2 Comparison with PACNav . 28

6 Conclusion 33

7 References 35

A Appendix 37

xvi

1. INTRODUCTION 1/37

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) have become increasingly popular and important in
recent years, due to their versatility and potential for use in a wide range of applications.
They are used for a variety of purposes, including search and rescue [20], product delivery
[14], agriculture [4], surveillance [23], mapping [24], military [11], and more. They have the
ability to reach areas that are difficult or dangerous for humans to access and can be used to
collect data and perform various tasks more efficiently than traditional methods.

In particular, Unmanned Aerial Vehicle (UAV) swarms (groups of coordinated UAVs
working together to achieve a common goal) have been gaining more and more attention
in recent years. UAV swarms can provide many advantages over individual UAVs, such as
providing multiple views of a single target from different perspectives and covering larger
areas than a single drone. Also, the presence of multiple UAVs allows the swarm to continue
its mission even if one or more UAVs crash or malfunction.

With the increasing popularity of UAVs, there has been more and more focus on de-
veloping autonomous drones. To achieve autonomy, UAVs need extra capabilities in vision,
self-localization, environment mapping, path planning, control, and more. One algorithm that
can be used for flight control is Reinforcement Learning (RL).

RL is a type of machine learning that allows agents to learn how to behave in an
environment by executing actions and receiving rewards. In the context of UAVs, RL can be
used to control the flight of the UAVs in order to achieve the goal of a specific task.

Recent works (such as [16], or [3]) show, that the RL can be used for tackling flight
control task of an individual UAV. Inspired by the recent works in the field, this thesis tries
to extend the scope of RL use to control the flight of multiple UAVs. The objective is to train
a policy, that would provide each agent in the swarm the necessary control inputs based on
the observations from the surrounding environment. Moreover, this policy needs to control
the agents in a way that they would not collide with each other or with the surrounding
obstacles, and would fly in a coherent swarm through multiple waypoints in the environment.
For this reason, we develop a high-performance simulator of 3D environments with stationary
obstacles and we provide it with OpenAI Gym [18] interface for interaction with RL libraries.
This simulator is used together with algorithm Proximal Policy Optimization (PPO) [17] from
RL library Stable Baselines 3 (SB3) [6] to train policies suitable for our problem. In this thesis,
we show that policies created by RL techniques are capable of controlling the flight of multiple
UAVs through a cluttered environment.

The implementation part of the thesis is focused primarily on quadrotors. A quadrotor
is a type UAV that is propelled by four propellers. It falls into the cathegory of rotary-wing
UAVs. This cathegory also includes other types, such as tricopters or hexacopters. Outside of
the rotary-wing cathegory, there are also fixed-wing UAVs [25] and hybrid UAVs. However,
the RL methods for these types of vehicles is beyond the scope of this thesis and we focus on
the quadrotors only.

CTU in Prague Department of Cybernetics

2/37

CTU in Prague Department of Cybernetics

2. RELATED WORKS 3/37

Chapter 2

Related works

There is not much research done on the use of RL for controlling a swarm of UAVs.
However, there are a few closely related topics: traditional methods for UAV swarming, the
use of RL for flight control of individual UAV, and the use of RL for the cooperation of
multiple agents. This chapter mentions the most relevant work on both of these topics.

2.1 Traditional methods for UAV swarming

For UAVs, the state-of-the-art methods generally break down autonomous navigation
into two parts: trajectory planning and control [3]. First, a computation for a collision-free
trajectory is needed and then a highly accurate controller is important so that the UAV
will safely fly through the environment according to the planned trajectory. This approach is
widely used for flight control of both individual UAV and UAV swarms.

Focusing on UAV swarms, the state of the art is primarily classified by the structural
architecture of the swarm. According to this attribute, swarm architectures break down into
two categories: centralized and decentralized.

The centralized-control approach of drone swarming involves using a central computa-
tion unit to compute the trajectories of individual UAVs in the swarm in order to achieve
a specific formation. This approach is often used in large-scale aerial shows, where drones
are used for artistic displays or entertainment purposes [8]. In these light shows, each drone
typically follows a pre-computed trajectory and relies on Global Navigation Satellite Sys-
tem (GNSS) for localization.

On the contrary, the decentralized-control approach of drone swarming means that each
drone in the swarm makes trajectory planning autonomously, according to the sensory inputs
and information shared among agents. Decentralized swarming is generally more difficult to
design since each individual robot has typically limited information about its surroundings.
However, this system tends to be more robust to failures and communication disruptions.

Focusing on decentralized swarming, one of the state-of-art approaches is described in
[5]. The authors of this article develop fully autonomous miniature quadrotors and provide
them with a trajectory planner that can function adequately based on the limited information
from onboard sensors. The planner satisfies various task requirements, including flight effi-
ciency, obstacle avoidance, and swarm coordination. In this article, the authors also compare
their planner with a few other state-of-art planners – MADER [1] and their previous work
EGO-Swarm planner [7] – showing that the approach proposed in [5] outperforms other two
planners in several benchmark comparisons. On top of that, they show the success of their
approaches in various real-world tests, like multi-drone tracking with target occlusion or a
flight through a dense forest 1.

1https://youtu.be/L0fJ0EHHfOA (accessed 16.5.2023)

CTU in Prague Department of Cybernetics

https://youtu.be/L0fJ0EHHfOA

4/37 2.2. RL FOR FLIGHT CONTROL OF INDIVIDUAL UAVS

Another successful work in the field of decentralized swarming is PACNav [2]. It presents
an approach for navigating a swarm of UAVs to a desired goal as a compact group. Unlike
other methods, PACNav does not require communication among the members or a global
localization system. It relies only on observations from local sensors and the relative position
of the other quadrotors, making it beneficial in demanding real-world conditions where global
localization is unavailable or has high uncertainty and the swarm size makes communication
unfeasible. The [2] is important for our work since we compare the achieved results with it.

2.2 RL for flight control of individual UAVs

In learning-based flight control, the drone is treated as an agent that interacts with its
environment. In this scenario, the agent executes actions and receives observations from the
environment and rewards. The goal is to find a control policy that maximizes the expected
reward. Using this policy, the agent can predict the control commands directly from environ-
ment observation. In recent years, the learning-based approach has been experimentally used
on UAVs and there are works that demonstrate effectiveness in using RL for the flight control
task of an individual UAV.

The article [16] focuses on the use of RL for the flight control of an individual quadrotor.
The authors trained a policy in the form of a neural network that was able to successfully
perform point tracking with the quadrotor and quadrotor stabilization. The article also pro-
poses a new RL algorithm, which had for their task better results than other state-of-art RL
algorithms, that are aimed for general use. This RL algorithm was not used in our work,
however, the rest of this article provides valuable insights into the use of RL techniques for
controlling aerial vehicles like quadrotors.

One of the more recent works [3] proposes a successful approach to the minimum flight
control task of a quadrotor through a sequence of waypoints in the presence of obstacles. This
approach combines deep RL and topological path planning to train neural network controllers
for minimum-time quadrotor flight in cluttered environments. The article [3] shows that in
terms of speed and success rate, the proposed method outperforms existing state-of-the-art
approaches in a majority of test cases. Moreover, their method is validated in a real-world
experiment, showing, that the method is applicable to real hardware as well. This paper is
closely related since in our work the same quadrotor dynamics model is used (the quadrotor
dynamics is described in Section 3.3). We have also used one of the testing environments (the
random columns environment, Fig. 4.1a) in our work.

2.3 The use of RL in multi-agent tasks

Although RL has focused primarily on single agents, it can be extended straightfor-
wardly to multiple independent agents. In such cases, the environment can be set in a way
that invokes competition (typically when a positive reward for one agent means a negative
reward for another agent) or cooperation (typically when the collective reward is maximized).

The first approach is widely used in two-player board games where the goal is to win
against the opponent. Here, the state-of-the-art approaches typically train a policy in the form
of a neural network by supervised learning from human expert games and then the policy is
further improved by RL from games of self-play. Using this approach, learning-based policies
were able to achieve superhuman performance in games like Go or chess [13].

CTU in Prague Department of Cybernetics

2. RELATED WORKS 5/37

The other approach (cooperation of the agents) is also documented in the literature. For
example, in the work [27] the author experiments with RL for the cooperation of two agents,
that are trying to capture a prey and compares their success rate with a single agent trying
to accomplish the same task. This work is related to ours since we also use learning-based
methods to achieve the cooperation of the agents in order to complete a certain task.

Inspired by the success of works in learning-based flight control and learning-based
cooperation, we apply RL techniques to achieve a coherent swarm of quadrotors that flies
through multiple waypoints in an environment with the presence of obstacles.

CTU in Prague Department of Cybernetics

6/37 2.3. THE USE OF RL IN MULTI-AGENT TASKS

CTU in Prague Department of Cybernetics

3. PROBLEM DESCRIPTION 7/37

Chapter 3

Problem Description

The project aims to use RL methods for controlling a swarm of UAVs in cluttered
environments. Since there are many types of UAVs and all these types have different dynamics,
we worked in the implementation part with quadrotors as representatives of UAVs. From now
on, this work will focus on quadrotors only (instead of UAVs in general).

The first section briefly describes the concepts of RL necessary for explaining the RL
algorithm we used. The second section defines the flight control task of a swarm of quadrotors
as a problem suitable for RL methods. After that, the work will focus on the dynamics of
quadrotors. The last section of this chapter explains the goal we are trying to achieve with
the proposed method.

To ensure clarity, the mathematical notation is summarized in Table 3.1. This notation
will be used in this chapter as well as in the Methodology and Results chapters.

Table 3.1: Mathematical notation, nomenclature, and notable symbols.

x, α vector, pseudo-vector, or tuple
x = a⊺b inner product of a, b ∈ R3

x = a× b cross product of a, b ∈ R3

x = a⊙ b quaternion multiplication of a, b ∈ R4

ẋ 1st time derivative of x
SO(3) 3D special orthogonal group of rotations

3.1 Description of a general task for RL

This section is focused on the characteristics of the tasks, on which the RL methods
could be applied. This will give us the necessary foundation to describe the algorithm (PPO,
4.2.1) that we used to tackle this problem. Firstly, the Markov Decision Process (MDP) is
explained, and then how the concept of MDP is used in RL.

3.1.1 Markov decision process

MDP is a mathematical concept used to model decision-making in processes that are
working in discrete steps. In every step k ∈ N, the process is in a definite state sk. The state
of the process can be changed by applying action ak, which will move the process to the next
state sk+1 determined by the transition probability function. Moreover, an immediate reward
is generated by transition sk → sk+1 while taking action ak. Specifically, MDP is a tuple
(S,A, p(·), r(·)), where S is a set of states, A is a set of all actions, p : (s′|s, a)→ [0, 1] is the
transition probability function of moving to state s′ ∈ S when taking action a ∈ A in state

CTU in Prague Department of Cybernetics

8/37 3.1. DESCRIPTION OF A GENERAL TASK FOR RL

Figure 3.1: An example of an MDP with 3 states (denoted in green), 2 actions (in red color),
and 2 rewards (red arrows). Black arrows describe transitions and the numbers next to them
are transition probabilities. 1

s ∈ S, r : (s, a, s′) → R is the reward function, which determines the immediate reward for
moving from s to s′ while taking action a. An example of MDP is shown in Fig. 3.1.

In MDP, the transition probability of moving from state sk to state sk+1 is dependent
only on the state sk and on the action ak. The reward is also definite for each tuple (s, a, s′).
In other words, MDP does not ”remember” the sequence of previous states, it only considers
the current state and the action taken in the current state.

Note, that the reward r(sk, ak, sk+1) is possible to know at step k only if the transition
probability function p and the reward function r are known. If these functions are unknown,
we find out the reward for the transition and the action after the action was made, at the
step k + 1. In this case, we will use notation rk+1.

A policy determines which actions to consider in a given state. More specifically, a policy
is a function π : (S,A) → [0, 1] taking a state s ∈ S and an action a ∈ A and returning the
probability of taking the action a in the state s.

For a given MDP (S,A, p(·), r(·)) and a given policy π we are often interested in the
reward the MDP generates when we take actions given by the policy π. For this reason, we
define value function vπ : S → R, which assigns each state s in the MDP a value representing
the expected reward.

The expected reward could be the cumulative sum of all rewards obtained from the
MDP. However, for an infinite process, the cumulative sum of the rewards could converge to
infinity (or negative infinity) and its maximization would not be possible. In such a scenario,
we use discounted reward. The discounted reward in step t is calculated as:

Gt =

T∑
k=0

γk · rt+k+1, (3.1)

where T represents the remaining length of the process from step t and γ ∈ [0, 1] is a discount
rate. If γ ̸= 1 the discounted reward could be approximated even for infinite processes T =∞
since the sum converges to a certain value.

1Image source: https://en.wikipedia.org/wiki/Markov decision process (accessed 5.5.2023)

CTU in Prague Department of Cybernetics

https://en.wikipedia.org/wiki/Markov_decision_process

3. PROBLEM DESCRIPTION 9/37

The MDP defines the standard model for RL problems. The formulation of the problem
as an MDP allows using the above-mentioned concepts and building algorithms to improve
the policy. It is worth mentioning, that there are also other important concepts that MDP
provides, such as Q-function. However, this section primarily focuses on the concepts that will
be used later in when describing PPO (Section 4.2.1), which is the RL algorithm we use.

3.1.2 Connection between MDP and RL

RL focuses on learning optimal decision-making policies by trial and error through
interactions with an environment. It includes algorithms for learning the optimal policy, such
as policy iteration or policy gradient methods.

The structure of RL problems always contains an agent and an environment. The agent
refers to the decision maker – it chooses an action based on the information it gets from its
surroundings. The agent’s task is to learn from past experience to create a policy maximizing
the expected reward. The environment is the world that the agent interacts with. Based on the
given action and the given state of the agent, it provides a reward and an observation about
the new state. The agent’s goal is to get the most reward in the long run. This interaction is
depicted in Figure 3.2.

Figure 3.2: Interaction of agent and environment. The agent interacts with the environment
in discrete time steps by executing actions and receiving observations and rewards. The agent
behaves according to a policy, that is updated over time by a RL algorithm.

As mentioned in Section 3.1.1, MDP represents a standard model for RL problems.
Therefore, it is common to consider the interaction between the agent and the environment
in discrete time steps. There is some research on interaction in continuous time [22], however,
most of the research in RL is focused on the methods applicable in discrete time steps only.

To proceed further, we will describe terms, that are not commonly used in MDPs.
However, these terms will be useful to us in the future.

A sequence of interactions between the agent and the environment of length k, where
k denotes the number of time steps, is a sequence:

s0, a0, r1, s1, a1, r2, s2, ..., sk; (3.2)

where si ∈ S, aj ∈ A, rl ∈ R for each i ∈ {0, . . . , k}, j ∈ {0, . . . , k − 1}, l ∈ {1, . . . , k}.
The set of terminal states T ⊂ S refers to a subset of all states where the agent can no

longer take any action. For example, in a game where the objective is to reach a certain score,
a terminal state would be reached when the score is achieved or when the game is lost.

CTU in Prague Department of Cybernetics

10/373.2. DEFINING FLIGHT CONTROL TASK AS A PROBLEM SUITABLE FOR RL

In the presence of terminal states, the interactions with the environment naturally break
to episodes. The episode could be described as a sequence of interactions between the agent
and the environment where the last state sk is terminal. If the task naturally beaks to episodes,
it is called episodic task. Otherwise, we call it continuous task.

These terms will make it easier for us to define the flight control task of a quadrotor in
the next section.

3.2 Defining flight control task as a problem suitable for RL

In the context of the flight control task problem of a swarm of quadrotors, the agent
is a quadrotor. The environment is a three-dimensional space W ⊆ R3 with a set of agents,
a set of obstacles, and a set of waypoints in it. The obstacle geometry O ⊂ W is a subspace
in W . Quadrotor’s geometry is a function A(x) ⊂ W taking the state x of the agent and
returning the space that makes the agent’s body in a given state (the exact representation of
the agent’s state is described later in the Section 3.3).

C is configuration space (space of all agent’s states), Cobs = {x ∈ C|A(x)∩O ̸= ∅} is a
set of configurations where the agent is in a collision and Cfree = {x ∈ C|A(x)∩O = ∅} as a
set of states where the agent is not in collision.

The goal of the agent is to pass a sequence of waypoints in the environment. A waypoint
G ⊂ Cfree is a circle. It is described with its position pwp ∈ W , orientation qwp ∈ SO(3) and
radius (tolerance) αwp ∈ R+. We define passing of the waypoint G as a situation when the
waypoint is between two consequent agent’s positions:

g = (1− u) · pi + u · pi+1 for any g ∈ G, u ∈ [0, 1]. (3.3)

Now that the terms Cobs and waypoint passing have been described, we can define the
set of terminal states. For a single agent, the state of the agent x is terminal if x ∈ Cobs or if
the agent passed the given sequence of waypoints in the correct order.

In general, a swarm of quadrotors is a group of quadrotors that works together in a
coordinated manner to accomplish a specific task or objective. Here, the objective is that
each quadrotor must pass a (non-empty) sequence of waypoints in the environment while
keeping the swarm coherent. Generally, the sequence of waypoints can be different, but in our
work, it is the same for each quadrotor in the swarm. We do not impose hard limits on the
swarm cohesion, but individual quadrotors are encouraged with rewards to stay close to the
rest of the group.

Note, that we defined the RL task as a single agent interacting with the environment,
and yet here multiple agents interacting with the same environment have been introduced.
One way to tackle this problem is to have a fully centralized method to learn and act in
a centralized fashion. This can be considered a big single-agent problem – the policy takes
the observations from all agents as one joint observation and returns the joint action for all
agents in the environment. The other approach to this problem is by applying single-agent RL
techniques for each agent and treating other agents as part of the environment so that each
agent learns its own policy. The third approach is in the middle of the two: a single policy is
trained by the experience of all agents, but the policy takes a single agent’s observation and
returns that agent’s action. This approach is used in our work.

CTU in Prague Department of Cybernetics

3. PROBLEM DESCRIPTION 11/37

For multiple agents, the set of terminal states needs to be redefined, since the bodies
of other agents in the environment must be taken into account. Let’s have a swarm of n
quadrotors and for a given time step k ∈ N, let’s denote xi as the state of the i-th quadrotor
in the environment. This state xi in the time step k is terminal if any of the following three
conditions are satisfied:

• agent is in a collision with an obstacle: xi ∈ Cobs,
• agent is in a collision with another agent:

A(xi) ∩ (
⋃
j,j ̸=i

A(xj)) ̸= ∅, (3.4)

• all agents passed the given sequence of waypoints,
• any other agent has been terminated.

The last condition (termination of one agent results in termination of all agents) is not
necessary. Generally, this condition is unwanted, since termination of one quadrotor should
not automatically result in termination of all quadrotors. However, we impose this condition,
because deem the mission to be successful only if all agents passed the given sequence of
waypoints. Moreover, the RL algorithm is built in a way that it iteratively improves a policy
to maximize the reward. It would not satisfy us if the algorithm converged to a local reward
maximum with a policy, that would consistently crash one or more agents during the flight.

It might be worth mentioning, that the environment, as described here, is well beyond
what can be modeled with MDP. First of all, the policy is based on observations of the agents,
not the full states of the agents. Second of all, multiple agents are interacting with the same
environment. According to the related literature (such as [21]), this type of problem can be
modeled with a Decentralized Partially Observable Markov Decision Process (Dec-POMDP),
which is an extension of MDP and Partially Observable Markov Decision Process (POMDP).
An n-agent Dec-POMDP is a tuple (I, S, {Ai}i, P,R, {Ωi}i, O, T, b0), where I is a finite set
of agents, S is a finite set of states, Ai is a finite set of actions for agent i, P : (s, a) → s′ is
the transition probability function, R : (s, a)→ R is reward function, Ωi defines a finite set of
observations available for agent i, O(o|s, a) ∈ [0, 1] is a function of observation probabilities, T
is a finite horizon and b0 is initial belief. However, this work is not focused on the theoretical
background and methods in Dec-POMDP, and our approach to the task is via RL with neural
network function approximators, so Dec-POMDP will not be further discussed.

The observations from the environment are typically information collected by the sensors
of the agent. The actions that the agent performs, are the control inputs. The control inputs
are typically single rotor thrusts or other physical properties from which the rotor thrusts can
be calculated or controlled. Since we work with discrete time steps, the action (eg. the single
rotor thrusts) is executed by the agent for the whole duration of the time step. The way that
the actions affect the state of the quadrotor in the environment is described by quadrotor
dynamics.

3.3 Quadrotor dynamics

Before we dive into details about the quadrotor dynamics, we first need to clarify the
terms world frame and UAV’s body frame, since these terms are important for this section.
The world frame is a fixed reference coordinate system that is stationary relative to a specific
reference point. It is independent of the motion of the UAV. The position and orientation of

CTU in Prague Department of Cybernetics

12/37 3.3. QUADROTOR DYNAMICS

objects are described relative to a set of fixed axes. The axes of the world frame are repre-
sented as the x-, y-, and z-axes, corresponding to forward, leftward, and upward directions,
respectively. In the real world, the world frame typically corresponds to GNSS. On the other
hand, the body frame is a frame fixed to the UAV itself, so it moves and rotates with the
motion of the UAV. The axes of the body frame are also represented as the front (x-axis), left
(y-axis), and upward (z-axis) directions of the UAV.

Now we will focus on quadrotor dynamics itself. We use the same dynamics model as
in the research paper [3]. The state (also referred to as configuration) of the quadrotor is
defined as x = [p,v, q,ω,Ω]T , where p ∈ W is the position of the quadrotor, v ∈ R3 is
quadrotor’s velocity, q ∈ SO(3) is quadrotor’s rotation (around pivot point p) represented in
quaternions, ω ∈ R3 is quadrotor’s angular velocity in quadrotor’s body frame, and Ω ∈ R4

is the rotational speed of each rotor. The dynamics equations are:

ṗ = v, (3.5)

v̇ =
R(q)(fT + fD)

m
+ g, (3.6)

q̇ =
1

2
q ⊙

[
0
ω

]
, (3.7)

ω̇ = J−1(τ − ω × Jω), (3.8)

Ω̇ =
Ωc −Ω

kmot
, (3.9)

where:

• R(q) ∈ SO(3) is the rotation matrix given by quaternion q,
• fT ∈ R3 is the collective thrust,
• fD ∈ R3 is the drag force,
• m ∈ R+ is the mass of the quadrotor,
• J ∈ R3×3 is diagonal inertia matrix,

• g =
[
0 0 −9.81

]T ∈ R3 denotes Earth’s gravity,
• Ω is the speed of the propellers, Ωc is the commanded speed of the propellers and kmot
is the time constant.

The individual motor thrusts are calculated as functions of rotors’ angular velocities:

fi(Ωi) = [cf · Ω2
i] for i ∈ {1, . . . , 4}, (3.10)

where cf is a thrust coefficient. The thrust of individual rotors is then limited to range
[fmin, fmax]. Collective thrust is calculated as:

fT =

 0
0∑4
i=1 fi

 , (3.11)

CTU in Prague Department of Cybernetics

3. PROBLEM DESCRIPTION 13/37

and the torque τ is calculated as:

τ =

l√
2
(f1 − f2 − f3 + f4)

l√
2
(−f1 − f2 + f3 + f4)

κ(f1 − f2 + f3 − f4)

 , (3.12)

where l is arm length of the quadrotor and κ is the torque constant. The velocity in the body
frame vB [15] is calculated as:

vB = R(q)−1 · v. (3.13)

The drag force fD is modelled as linear function of velocity in body frame vB [15] with drag
coefficients (kx, ky, kz):

fD = −

kxvB,xkyvB,y
kzvB,z

 . (3.14)

The exact values of the coefficients are mentioned in Chapter 5.

3.4 Formulation of the problem

Suppose we have an environment as described in 3.2. We denote the set of obstacles O,
a non-empty set of quadrotors A, and a sequence of waypoints (G1, . . . , Gn). Let’s suppose
that all quadrotors behave according to a policy π. The goal for this environment is to find
a specific policy π, according to which all quadrotors will have a non-collisional flight in the
environment and all quadrotors would pass all waypoints in the given sequence (G1, . . . , Gn),
while keeping the swarm coherent. According to this policy, each quadrotor behaves in a way
to create a specific sequence of interactions: s0, a0, r1, s1, a1, r2, s2, ..., sk where a0, . . . , ak−1 are
the actions of the quadrotor, s0, . . . , sk−1 are non-terminal states and sk is the state where
all quadrotors passed the given sequence of waypoints, and r1, . . . , rk−1 are the rewards from
the environment.

CTU in Prague Department of Cybernetics

14/37 3.4. FORMULATION OF THE PROBLEM

CTU in Prague Department of Cybernetics

4. METHODOLOGY 15/37

Chapter 4

Methodology

This chapter describes our approach to solving the flight control task of a swarm of
quadrotors. The first section describes the simulator, environment modeling, and detection
of collisions in the simulator. The second section describes communication with chosen RL
library. Note, that in the implementation part, we worked with quadrotors only as the repre-
sentatives of the UAVs.

4.1 Simulator

In order to solve our problem, I in cooperation with Vı́t Knobloch have developed a
quadrotor mechanics simulator (written primarily in C++) and integrated it with a stan-
dardized OpenAI Gym [18] interface for interaction with existing RL libraries. We both used
this simulator for experiments: while Vı́t focused on using RL for agile single quadrotor flight
control, I focused on quadrotor swarming.

The simulator has the ability to simulate multiple environments simultaneously and
also multiple quadrotors in a single environment. Thanks to the multi-environment simulation
ability, the learning could be parallelized across multiple threads (the OpenMP library 1 has
been used for this purpose). It was important to ensure that the simulator runs at high
speeds to enable fast training. To achieve this, the rendering was not part of the simulator
and instead, we used Blender 2 for the final flight visualizations.

4.1.1 Environment

This section focuses on obstacle and quadrotor modeling in the environment. The
quadrotor-obstacle or quadrotor-quadrotor collision detection are also discussed here.

In the environment, all obstacles are represented by triangulated mesh, which enabled us
to model complex environments. Examples of complex environments are depicted in Fig. 4.1.
The quadrotors were also modeled by triangulated mesh, but for the implementation simplicity
and computation speed, they were replaced with spheres (Fig. 4.2) in the simulator.

Because of the spherical representation of quadrotors, the collision of any two quadrotors
in the swarm can be checked by:

∥pi − pj∥ < 2 · r for any i, j ∈ {1, . . . , N}, i ̸= j, (4.1)

where pi,pj ∈ R3 are positions of i-th and j-th quadrotor in the swarm, N is the number of
quadrotors in the swarm and r is the radius of the quadrotor’s sphere (Fig. 4.2b).

1https://www.openmp.org/ (accessed 1.5.2023)
2https://www.blender.org/ (accessed 1.5.2023)

CTU in Prague Department of Cybernetics

https://www.openmp.org/
https://www.blender.org/

16/37 4.1. SIMULATOR

(a) Random columns (b) Replica of forest presented in [2]

Figure 4.1: Examples of complex environments used in this work.

(a) Quadrotor mesh (b) Sphere representation of the mesh in the simulator

Figure 4.2: Quadrotor mesh and the simulator representation of the quadrotor as the smallest
sphere that envelopes the whole quadrotor mesh.

CTU in Prague Department of Cybernetics

4. METHODOLOGY 17/37

For quadrotor-obstacle collision detection, we used Euclidean Signed Distance Field
(ESDF) [19] . ESDF represents the environment as a 3D matrix of scalar values. Each element
in the matrix represents a point in the environment and the value represents the distance from
the point to the nearest obstacle. The sign of the scalar value indicates whether the point is
inside or outside of an obstacle. Since creating the ESDF from the environment with meshes is
a computationally demanding action, the ESDF is precomputed before the learning. During
the flight, the ESDF serves as a look-up table representing the distance from the closest
obstacle.

One of the main advantages is that ESDF allows for very fast collision detection, as it
only requires a simple look-up in the matrix. Hence, it detects a collision in constant time
and no extra computation is required. On the other hand, the limitation of this approach
is that the method requires pre-computing the ESDF matrix. That makes it impractical for
simulations where the environment changes over time since dynamic obstacles are not taken
into account during the pre-computation. For that reason, we lose the ability to simulate
environments with moving obstacles. However, we need fast simulations because the policy
learning process takes typically several hunderds milions of time steps. It is therefore a suitable
method for us.

4.2 Interaction with reinforcement learning library

For interaction with the RL library, our simulator has been provided with a standardized
OpenAI Gym [18] interface. The Stable Baselines 3 (SB3) [6] was used as the RL library. The
SB3 is an open-source library of RL algorithms built on top of the machine-learning platform
PyTorch [12]. It is designed to use state-of-the-art RL algorithms by providing a common
interface and implementation for RL algorithms. From the variety of RL algorithms that SB3
provides, we chose the Proximal policy optimization (PPO) [17] method.

4.2.1 Proximal Policy Optimization

PPO [17] is a type of RL algorithm that uses neural network function approximators.
PPO is a policy gradient method. In policy gradient methods, the policy πθ is a neural network
(sometimes referred to as the actor) parametrized by a set of weights θ. The algorithms use
gradient ascent to iteratively update the policy parameters to improve the policy. Instead
of using a buffer to store all past experiences, the neural network is updated based on the
last batch of experience only. The batch of experience is discarded after the policy gradient
update.

In PPO, there is also a second neural network (called the critic). This neural network
works as a value function. It tries to predict the discounted reward from the current state on-
ward. During the learning, this neural network is also frequently updated using the experience
that the agent collects in the environment.

The PPO algorithm consists of the following steps:

1. Collect experience: the agent interacts with the environment by executing the current
policy.

2. Compute advantages Ât = rt − b(st) for each run. For a given run, the advantage Ât
at a given time step t is the difference between the discounted sum of rewards rt and
the value function estimate b(st) (sometimes, the value function estimate is called the

CTU in Prague Department of Cybernetics

18/37 4.2. INTERACTION WITH REINFORCEMENT LEARNING LIBRARY

baseline estimate, that is why we use the symbol b for that function). Basically, if the
advantage Ât > 0, then the action the agent took in the state st was better than
expected, and if Ât < 0, then the action was worse.

3. Compute clipped surrogate objective (explained later).
4. Optimize policy: the policy parameters are updated by taking gradient steps to maximize

the surrogate objective.
5. Repeat steps 1-4 until convergence.

In PPO, the clipped surrogate objective is used to update the policy parameters. It
is designed to prevent the policy from changing too much in a single update step, which in
some cases has negative effects on the stability of the learning process. The clipped surrogate
objective is computed as follows: first, the ratio of probabilities rso : θ → R+

0 of taking an
action under the new policy and the old policy is calculated:

rso(θ) =
πθ(at|st)
πθold(at|st)

. (4.2)

Here, πθ(at|st) is the probability of taking action at in state st under the new policy parame-
terized by θ, and πθold(at|st) is the probability of taking the same action under the old policy
parameterized by θold.

Next, the clipped surrogate objective is computed:

LCLIP (θ) = Êt
[
min(rso(θ)Ât, clip(rso(θ), 1− ϵ, 1 + ϵ)Ât)

]
, (4.3)

where the Êt indicates the empirical average over a batch of samples, and the parameter
ϵ ∈ [0, 1] is a hyperparameter that controls the amount of clipping. The rso(θ)Ât is the default
objective for policy gradient methods. It ”pushes” the policy towards the actions, that have
a positive advantage Ât over the baseline. The term clip(rso(θ), 1− ϵ, 1 + ϵ)Ât is the clipped
version of the default objective. In this way, the algorithm prevents the updates of the policy
from being too large. The objective function is then maximized using gradient ascent to update
the policy parameters θ.

The whole algorithm, as proposed in [17] is described in pseudocode here:

Algorithm 1 PPO, Actor-Critic Style

for iteration=1,2,. . . do
for actor=1,2,. . . , N do

Run policy πθold in environment for T timesteps.
Compute advantage estimates Â1, . . . , ÂT

end for
Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ N · T
θold ← θ

end for

The algorithm PPO requires a couple of hyperparameters. For most of these hyperpa-
rameters, SB3 provides a default value. To better suit our task, some of the hyperparameters
have been tweaked from their default values provided by SB3.

We set the neural network of both the actor and the critic to consist of 3 fully connected
hidden layers, where the first and the second hidden layer has 512 nodes and the third hidden
layer has 256 nodes. Initially, we tried using tanh activation function, but this activation

CTU in Prague Department of Cybernetics

4. METHODOLOGY 19/37

function worked poorly in some cases, arguably due to the vanishing gradient, so ReLU was
used as the activation function instead. We set the upper limit of the episode length to 1500
time steps (where each time step is set to ∆t = 0.02s in the default setting), although even
the longer episodes typically did not surpass the length of 600 time steps (note: the maximal
episode length and the length of the time step are not hyperparameters of PPO). To prevent
the agents from overfitting to just a section of a track, the batch size for the neural network
is set to 25000, which corresponds to multiple episodes of samples. The discount factor is set
to γ = 0.98 and the learning rate is set to linearly decrease throughout the learning process
from 3 · 10−4 to 3 · 10−5. The other hyperparameters were left at their default values.

To know more about the training progress, we use periodical plots of the quadrotors’
paths (Fig. 4.3). We also used Tensorboard 3, which is a web-based tool used to track and vi-
sualize important metrics during learning (such as mean episode length, mean episode reward,
and particularly the reward components, described later in Section 4.2.4).

Figure 4.3: An example of a periodical plot, where four quadrotors fly through four waypoints.

4.2.2 Action space

In the context of RL, action refers to the decision made by the agent’s policy at each
time step. In our model, the action space SA = [f,ωc]

T ⊂ R4, representing total thrust f ,
and commanded body rates ωc. Note, that fT from Section 3.3 directly corresponds to the

total thrust from the policy’s action: fT =
[
0 0 f

]T
. We use body rate PID to produce the

single rotor thrusts from the commanded ωc. The 4th order Runge-Kutta scheme [26] is used
for the forward integration of the dynamics 3.5 – 3.14. The action is performed for a fixed
time step (our simulation used a default time step of ∆t = 0.02s).

3https://www.tensorflow.org/tensorboard/ (accessed 12.5.2023)

CTU in Prague Department of Cybernetics

https://www.tensorflow.org/tensorboard/

20/37 4.2. INTERACTION WITH REINFORCEMENT LEARNING LIBRARY

4.2.3 Observation space

Observation refers to the information that the agent receives about its state in the
environment. Two approaches have been tried based on the different structures of the obser-
vation. The success rate of these two approaches is then compared on the random columns
environment (Fig. 4.1a).

The observation in one approach contains all the necessary information about the agent’s
state as well as the perfect knowledge about surrounding obstacles. It has the following form:
SO = [p,v, R(q),pwp,p1, . . . ,pn−1, r1, . . . , rm]

T ⊂ R18+3·(n−1)+2·m, where

• p ∈ R3 is the position of the quadrotor,
• v ∈ R3 is quadrotor’s velocity,
• R(q) ∈ SO(3) is quadrotor’s rotation in form of rotation matrix,
• pwp is the relative position of the waypoint,
• p1, . . . ,pn−1 ∈ R3 denotes relative position of other quadrotors in the swarm (n denotes
number of quadrotors in the swarm),

• rj ∈ R2 denotes the relative position of the j-th nearest column to the quadrotor. We
considered only relative position in the x-axis and y-axis of the world frame because the
columns in this environment are modeled to be vertical. We worked with m = 5 nearest
columns in the observation.

Note, that in Section 3.3, we defined the angular velocity ω ∈ R3 and the rotational speeds
of each rotor Ω ∈ R4 as a part of the agent’s state. However, ω is a part of the action of the
quadrotor (as described in Section 4.2.2). The Ω is not a part of the action, but it is controlled
by PID body rate controller using the supplied policy action. Therefore, we deemed ω, and
Ω to be unnecessary for the observation of the agent.

The observation in the other approach is similar to the one mentioned above, however,
it lacks the absolute position of the quadrotor and it contains vision-based information from
2D Light Detection and Ranging (LiDAR) instead of the relative position of the columns:
SO = [v, R(q),pwp,p1, . . . ,pn−1, d1, . . . , dm]

T ⊂ R18+3·(n−1)+m, where dj ∈ R+ denotes the
distance of the closest point in the j-th partition of point cloud recorded by the LiDAR
(partitioning of LiDAR’s point cloud is explained later).

For implementation simplicity, the LiDAR was set to make a full revolution in every
time step, resulting in a spinning frequency of 50 Hz (default time step length in our simulation
was ∆t = 0.02s). We experimented with the number of steps per revolution – LiDAR was
the most computationally demanding part of the simulation, so too many steps would slow
down simulations significantly, and too few steps per revolution might result in a quadrotor
”overseeing” a close obstacle. In the end, 60 steps per revolution proved to be sufficient, which
resulted in a sampling frequency of 3000 samples/second.

Neural networks often learn better with smaller observation dimensions because having
fewer input features reduces the complexity of the learning problem. We deemed 60 points
from LiDAR too much information for the neural network, from which most of the data is
irrelevant. For this problem, only the closest points in the recorded point cloud are relevant.
Therefore, the number of points passed to observation from the point cloud has been reduced
in the following way: the space around the quadrotor has been partitioned into m partitions
(as depicted on Fig. 4.4, we used default value m = 6) and only the closest point recorded by
the LiDAR in each partition has been considered. Then, the distance of the closest point was
passed into the observation. This allowed us to reduce the dimension of the observation space
significantly.

CTU in Prague Department of Cybernetics

4. METHODOLOGY 21/37

Figure 4.4: Visualization of observation from LiDAR. The quadrotor is depicted in blue, the
obstacles are dark gray, the point cloud from LiDAR is green and the reduced observation set
is red. Black lines denote the partitioning of the surrounding environment into 6 partitions. 4

Note, that we used the matrix from ESDF to cast the LiDAR rays. Because of this
approach, LiDAR was not implemented to detect other quadrotors. Instead, the agent was
provided with the relative position of other agents in the swarm as part of the observation.

4.2.4 Reward components

The reward is an important part of RL as it guides the agent’s learning process by
providing a measure of how well the agent is performing its task. The goal of the agent is to
learn a policy that maximizes the cumulative reward over time. To achieve desired behavior
of the policy, the reward consists of several components: pass goal, progress, collide, obstacle
avoidance, velocity, angular velocity, separation, cohesion, and velocity alignment.

The pass goal reward is a reward for passing each waypoint in the course. This reward
component is dependent on the distance of the passing point from the center of the waypoint
and on the tolerance of the waypoint (radius of the circle that represents the waypoint):

rg = rψg · exp
−∥p− pg∥

α
, (4.4)

where rψg is a reward hyperparameter for passing the goal, p ∈ R3 is the position of the
quadrotor, pg ∈ R3 is the position of the center of the waypoint, and α ∈ R+ is tolerance of
the waypoint.

The progress reward encourages the agent to fly towards its next waypoint. It is positive
if the agent moves toward the waypoint and negative if the agent moves away:

r∆dist = (∥p1 − pg∥ − ∥p2 − pg∥) · rψ∆dist, (4.5)

where p1 ∈ R3 is the position of the agent in the previous step, p2 ∈ R3 is the position of the
agent in the current step, pg ∈ R3 is the position of the next waypoint to fly through, and
rψ∆dist ∈ R+ is a reward hyperparameter for progress.

4A render of a flight of a single quadrotor with visualization of the point cloud from LiDAR is available on
YouTube: https://youtu.be/gmHftUmAdtE.

CTU in Prague Department of Cybernetics

https://youtu.be/gmHftUmAdtE

22/37 4.2. INTERACTION WITH REINFORCEMENT LEARNING LIBRARY

The collide reward is a reward to penalize collision with an obstacle or with another
quadrotor:

rc = rψc, (4.6)

where rψc ∈ R− is a reward hyperparameter for collision.

The obstacle avoidance reward component is a negative reward for flying too close
to obstacles. The formula for this reward varied based on what type of observation was used.
When using observation with the agent’s position and the relative position of the nearest
columns, the reward was calculated as follows:

roa = max (0, dobst sep − dobst) · rψoa, (4.7)

where dobst ∈ R+ is the distance to the nearest obstacle (this value is obtained from the ESDF
matrix), dobst sep ∈ R+ is a hyperparameter, that determines the maximum distance from
an obstacle when the negative reward for obstacle avoidance starts to apply, and rψoa ∈ R−

is reward hyperparameter for obstacle avoidance. When using vision-based observation, the
reward for obstacle avoidance is:

roa =
m∑
i=1

max

(
0,

pTi · v
1 + ∥pi∥2

)
· rψoa, (4.8)

where pi ∈ R3 is the relative position of the closest point in the i-th partition of the point
cloud recorded by the LiDAR, v ∈ R3 is the velocity of the quadrotor, and rψoa ∈ R− is
reward hyperparameter for obstacle avoidance.

The velocity reward is a negative reward for flying either too fast or too slow. If the
lower end of the speed is not awarded negatively, the agent can become stuck in a local mini-
mum. That would result in the agent hovering in one position, which is an undesired behavior.
By punishing high speeds with negative rewards, we encourage the agent to stay within a spe-
cific speed range, which reduces the search space for the RL algorithm and therefore makes
the learning problem easier. The velocity reward component is calculated as follows:

rv =

rψv · 20vmin−∥v∥ − 1 for ∥v∥ < vmin,

0 for vmin ≤ ∥v∥ ≤ vmax,

rψv · 10∥v∥−vmax − 1 otherwise,

(4.9)

where vmin, vmax ∈ R+ are hyperparameters that denote the minimal and maximal desired
speed of the agent (we used vmin = 0.2m ·s−1, vmax = 1.5m ·s−1), v ∈ R3 is the agent’s speed,
and rψv ∈ R− represents velocity reward hyperparameter.

The angular velocity reward is a negative reward that discourages quick changes in
the quadrotor’s orientation. If angular velocity is not awarded negatively, it might lead to the
agent exploiting the simulated quadrotor dynamics by changing orientation very quickly. This
behavior is not reproducible in the real world. The angular velocity reward is:

rw = rψw · ∥w∥, (4.10)

where w ∈ R3 represents angular velocity of the agent and rψw ∈ R− is angular velocity
reward hyperparameter.

To explain reward components separation, cohesion, and velocity alignment we first
describe the Boids model.

CTU in Prague Department of Cybernetics

4. METHODOLOGY 23/37

Boids model

The Boids model [28] is a simplified model of flocking behavior used to simulate the
coordinated movement of a group of animals (like birds or fish). The model is based on
three simple rules: separation, velocity alignment, and cohesion. These rules describe how
individual agents in a swarm should interact with the environment and with each other to
achieve coordinated behavior. In our work, the agents were encouraged to maintain these rules
with reward.

The separation (Fig. 4.5a) rule states that each agent should avoid colliding with other
agents by maintaining a minimum distance from them. This helps to prevent congestion and
ensures that each agent has enough space to move freely. In our work, the separation reward
is negative. For j-th agent in the swarm, the separation reward is calculated as follows:

rs =
n∑
i=1

{
(d(pi − pj)− dψs) ·

rψs
c−dψs for i ̸= j, d(pi − pj) < dψs,

0 otherwise,
(4.11)

where pi,pj ∈ R3 denote the position of i-th and j-th quadrotor in the swarm, rψs ∈ R− is
the reward hyperparameter for separation, c ∈ R+ is the clearance radius of the quadrotor
(depicted in Fig. 4.2b), dψs > c is hyperparameter representing the maximum distance when

the negative reward starts to apply and d(pi − pj) =
√[

1 1 1
4

]
· (pi − pj) denotes a norm

partially neglected in the z-axis of the world frame.

Note the obscure norm we use for the calculation of the distance between i-th and j-th
quadrotor. When running the experiments, we noticed that the quadrotors exploited the fact
that they could fly above one another. In the real world, this behavior might result in a fatal
crash, as the wind from the rotors of the upper agent could cause instability of the lower one.
The simulator is not implemented to consider this wind effect. For that reason, we adjust the
separation reward calculation by partially disregarding the distance between the quadrotors
in the z-axis, which incentivizes the agents not to fly above one another.

The cohesion (Fig. 4.5b) rule states that each agent should move towards the center
of mass of its neighbors. This helps to keep the group together and ensures that the agents
maintain a consistent spatial configuration. The formula for cohesion reward of j-th agent in
the swarm is:

rc =

∥∥∥∥∥pj − 1

n− 1

n∑
i=1

{
pi for i ̸= j,

0 otherwise,

∥∥∥∥∥ · rψcoh, (4.12)

where pj ,pi ∈ R3 are positions of the j-th and i-th agent in the swarm, n ∈ N is the number
of the agents in the swarm, and rψcoh ∈ R− is the cohesion reward hyperparameter.

The velocity alignment (Fig. 4.5c) rule states that each agent should align its velocity
with the average velocity of its neighbors. This helps to ensure that the agents move in roughly
the same direction and maintain a consistent velocity. The velocity alignment for j-th agent
is calculated using the equation:

rva =

∥∥∥∥∥vj − 1

n− 1

n∑
i=1

{
vi for i ̸= j,

0 otherwise,

∥∥∥∥∥ · rψva, (4.13)

where vj ,vi ∈ R3 are velocities of j-th and i-th agents in the swarm, n ∈ N is the number of
agents in the swarm and rψva ∈ R− is reward hyperparameter for velocity alignment.

We used Tensorboard [10] for monitoring the training progress and visualization of the
reward components (Fig. 4.6).

CTU in Prague Department of Cybernetics

24/37 4.2. INTERACTION WITH REINFORCEMENT LEARNING LIBRARY

(a) Separation (b) Cohesion (c) Alignment

Figure 4.5: The rules in the Boids model. 5

Figure 4.6: Tracking of rewards components throughout the learning using Tensorboard. The
reward named coeff goal distance in the Tensorboard refers to the progress reward.

4.2.5 Checkpoints

To speed up the learning process, we used checkpoints. Whenever any quadrotor in the
swarm passes a waypoint, the swarm state (the full state of each agent in the swarm) is saved
with a given probability psave ∈ [0, 1] (this probability is a hyperparameter, we set psave = 0.2).
We call these saved swarm states checkpoints. Each waypoint on the track holds an array of
checkpoints. Whenever the agents are terminated and a new episode begins, the simulator
either sets the state of all agents to their initial state or to a random checkpoint with a given
probability preset (we used preset = 0.5). In this way, the agents have a higher probability to
encounter the situations in the later stages of the track, which gives them more experience to
learn from these situations. For that reason, the checkpoints speed up the learning process.

It is also worth mentioning, that each waypoint could hold only a limited amount of
checkpoints (in our simulator, this amount was set to 8). When the array of checkpoints for
a given waypoint is full and a new swarm state needs to be saved, it just replaces the oldest
record.

5Image source: https://www.red3d.com/cwr/boids/ (accessed 13.4.2023)

CTU in Prague Department of Cybernetics

https://www.red3d.com/cwr/boids/

5. RESULTS 25/37

Chapter 5

Results

This chapter contains two sections. In the first section, we evaluate the success rates
of two types of policies based on different observations (as described in 4.2.3). In the second
section, the vision-based policies are compared with PACNav [2], which is a method for UAV
swarming.

The hyperparameters of the reward components (described in Section 4.2.4) were tuned
in a way that collective rewards from the individual components were ordered by the par-
ticular priority of the component: rprogress ≫ −rcollide ≫ rpass goal ≈ −robstacle avoidance ≈
−rseparation ≈ −rcohesion ≫ −rvelocity ≈ −rvelocity alignment ≈ −rcoeff angular velocity. We deemed
the 5 reward components (progress, collide, pass goal, obstacle avoidance, and separation) to
be the most important because that is the main objective of the swarm - to fly through mul-
tiple goals and not collide with obstacles or with each other. The other 4 reward components
(cohesion, velocity, velocity alignment, and angular velocity) were not as important to us, be-
cause they were not directly linked to the main objective. Instead, these components reduced
of the search space for the RL algorithm, because they discouraged an undesired behavior of
the agents (like flying too far apart or flying too fast).

The parameters of quadrotor dynamics (Section 3.3) are described in Table 5.1.
The linear drag coefficients (kvx, kvy, kvz) are randomized with normal distributions
N(0, kvx), N(0, kvy), N(0, kvz) after each restart of the episode.

Table 5.1: Parameters of the quadrotor.

Variable Value Variable Value

Quadrotor

m [kg] 0.73 l [m] 0.34
fmin [N] 0 fmax [N] 3.4

diag(J) [Nm2] [0.008, 0.008, 0.012] κ [−] 0.016
ωmax [rad · s−1] 1000.0 cf [−] 1.56× 10−6

kvx [N · s ·m−1] 0.13 kvy [N · s ·m−1] 0.14
kvz [N · s ·m−1] 0.21

5.1 Comparison of vision-based policies and policies with
known state

In our work, two approaches have been tried based on the structure of the observation
(as described in Section 4.2.3). Both of these approaches have been tested on 4 different tracks
1 in the random columns environment (Fig. 4.1a): one track with a single waypoint, two tracks

1The flight renders of the agents with vision-based observations through these tracks are available on
YouTube: https://youtu.be/Lr4l4pmz-zk.

CTU in Prague Department of Cybernetics

https://youtu.be/Lr4l4pmz-zk

26/37
5.1. COMPARISON OF VISION-BASED POLICIES AND POLICIES WITH KNOWN

STATE

with two waypoints, and one track with three waypoints.

These two approaches are compared in the following aspects: success rate, distance trav-
eled toward the goal, and learning time. Since the upper limit on the velocity of the quadrotors
has been imposed (as discussed in Section 4.2.4), we do not compare these two approaches in
terms of the speed of individual quadrotors. Similarly, most of the hyperparameters of the re-
ward components are the same for both types of policies, it is, therefore, irrelevant to compare
these two approaches in any metrics that are directly dependent on reward hyperparameter
settings (like the distance between the quadrotors). These properties are compared later in
Section 5.2.

The swarm was trained in a maximum of 1 billion steps. A powerful PC with a graphics
card NVIDIA GeForce RTX 3090 and with a processor AMD Ryzen 7 5800X 8-Core with
a core frequency of 3.8 GHz was used for the training. The speed of our simulator varied
depending on the observation type. Typically, it had around 65000 fps on the learning with
the observation, which contained information about the nearest columns and the position of
the agent. With this observation, the learning took up to 4 hours 30 minutes. The learning with
observations that simulate real-world sensors was significantly slower since the simulation of
LiDAR was computationally expensive. With this type of observation, the simulation achieved
speeds of around 42000 fps, which resulted in learning time of up to 7 hours.

We consider success to be when all four quadrotors fly from the starting position through
all waypoints (meaning that a crash of just a single quadrotor in the swarm would result in a
failure). In Table 5.2, we show the comparison of the success rates of both types of policies.

Table 5.2: Comparison of policies in success rate

id no. of waypoints length success rate full state success rate LiDAR

1 1 19.47 m 79% 86%
2 2 13.06 m 100% 100%
3 2 20.94 m 100% 95%
4 3 22.51 m 99% 97%

To find out more about the learning, the success rates and the average distance traveled
toward the goal have been monitored throughout the learning. The results are shown in Fig. 5.1
– Fig. 5.4. From these figures, we can notice that the vision-based policy was typically more
difficult to learn. In the first 200 million time steps, the policy that had the information
about the agent’s position and about the relative position of the nearest columns always
outperformed the vision-based policy in the matter of distance traveled toward the goal.
However, at the end of the learning, both policies were able to control the swarm throughout
the environment with a relatively high success rate.

To fully describe the figures, we also need to address the instability of the learning
approach, which can be seen in every graph. In some of our experiments, the success rate of
the resulting policy was low, although the policy had a high success rate in some stages of the
learning process. We tried to eliminate this instability by tuning the reward hyperparameters,
increasing the batch size, and tuning the learning rate of the PPO algorithm. However, none
of these adjustments fixed the stability of the learning algorithm and we were not able to fix
this issue. The problem might be in the nature of our approach. When controlling multiple
quadrotors, even a slight change of policy might result in a fatal crash and termination of
the whole swarm. As mentioned in Section 4.2.1, PPO does not remember all its previous

CTU in Prague Department of Cybernetics

5. RESULTS 27/37

experiences. Instead, it discards the batch of experience after the policy update. The gradient
ascend step in PPO should improve the policy, however, sometimes, this update might lead
to a fatal crash and termination of all agents in the swarm.

0 200 400 600 800
0

20

40

60

80

100

Number of steps [mil.]

S
u
cc
es
s
ra
te

[%
]

Success rate

full known state
visual observation

0 200 400 600 800
0

5

10

15

20

Number of steps [mil.]

T
ra
ve
le
d
d
is
ta
n
ce

[m
]

Distance traveled toward the goal

full known state
visual observation

Figure 5.1: Track 1 (single waypoint)

0 100 200 300 400 500 600
0

20

40

60

80

100

Number of steps [mil.]

S
u
cc
es
s
ra
te

[%
]

Success rate

full known state
visual observation

0 100 200 300 400 500 600
0

5

10

15

Number of steps [mil.]

T
ra
ve
le
d
d
is
ta
n
ce

[m
]

Distance traveled toward the goal

full known state
visual observation

Figure 5.2: Track 2 (two waypoints)

CTU in Prague Department of Cybernetics

28/37 5.2. COMPARISON WITH PACNAV

0 200 400 600 800 1,000
0

20

40

60

80

100

Number of steps [mil.]

S
u
cc
es
s
ra
te

[%
]

Success rate

full known state
visual observation

0 200 400 600 800 1,000
0

5

10

15

20

25

Number of steps [mil.]
T
ra
ve
le
d
d
is
ta
n
ce

[m
]

Distance traveled toward the goal

full known state
visual observation

Figure 5.3: Track 3 (two waypoints)

0 200 400 600 800
0

20

40

60

80

100

Number of steps [mil.]

S
u
cc
es
s
ra
te

[%
]

Success rate

full known state
visual observation

0 200 400 600 800
0

5

10

15

20

25

Number of steps [mil.]

T
ra
ve
le
d
d
is
ta
n
ce

[m
]

Distance traveled toward the goal

full known state
visual observation

Figure 5.4: Track 4 (3 waypoints)

5.2 Comparison with PACNav

This section compares the proposed RL method with PACNav [2], which is a method
for UAV swarming. We test our approach on 10 experiments with 3 UAVs 2 and then compare
it to the results presented in [2]. The comparison has the following attributes: the time to fly
through the track, the smallest, average, and largest distance between the quadrotors during
the flight, and the order of the swarm.

The order metric [9] captures the correlation of agents’ movements and gives an indica-
tion of how ordered the flock is. For a given time step k, it is expressed by

Ω[k] =
1

N(N − 1)

∑
i,j ̸=i

vi[k]
T · vj [k]

∥vi[k]∥∥vj [k]∥
∈ [−1, 1], (5.1)

2A render of the flight on one of these tracks is available on YouTube: https://youtu.be/zRP6rhlPVjo.

CTU in Prague Department of Cybernetics

https://youtu.be/zRP6rhlPVjo

5. RESULTS 29/37

where N is the number of UAVs in the swarm, vi[k], vj [k] ∈ R3 denote instantaneous velocities
of i-th and j-th UAV in the swarm in the given time step k. In other words, if Ω = 1, then all
agents in the swarm are moving in the same direction, and Ω < 1 implies a misalignment of
the agents in the swarm. Fig. 5.5 shows the order metrics in a swarm of two agents.

Figure 5.5: Three illustrative scenarios of the order metrics for two quadrotors. The arrows
represent the movement directions of the quadrotors.

To compare our methods, we need to introduce the term uninformed UAV. This is a
type of UAV that does not have information about the position of the goal. Instead, it follows
other informed UAVs and tries to maintain a coherent swarm. The concept of the uninformed
UAVs is used in every experiment in the PACNav paper and we compare our methods to their
experiment consisting of a swarm of three UAVs, where one is uninformed.

In the article [2], the authors evaluate their approach using 10 forest environments
with an area 50m × 50m. Unfortunately, their forests are randomly generated – the number
of trees is fixed to 104 and the tree size is fixed too, however, the tree distribution in the
environment is randomized. The paper includes an image of only one forest and the source
code in their repository provides only the exact measurements of a tree model. To make the
comparison fair, we create a similar replica of the forest shown in [2] in our simulator (4.1b).
Since this environment is large, we run 10 independent experiments on this forest (instead
of creating 10 different environments). These experiments involve varying the starting points
of the UAVs and their goal points, allowing a comprehensive evaluation of the proposed
approach. The distance between the start and the goal point in our experiments is 40m,
which is approximately the same as in [2].

Surprisingly, our methodology did not work in the forest environment, as the learning
algorithm failed to converge entirely. One potential factor contributing to this failure is the
fact that the forest from the article is sparse and large in comparison to the random columns
environment (Fig. 4.1a), which we used in the previous section. The forest has 104 trees in
an area of 2500m2 and the random columns environment has 100 columns in 400m2. For this
reason, the search space for the agents is larger, so the agents spend a substantial amount of
the time flying in places where they should not be. As a result, the RL algorithm is learning
from these misguided locations.

Another factor in the poor convergence rate of our methodology is that the episode
always started from the beginning of the track and the track was long. For this reason, the

CTU in Prague Department of Cybernetics

30/37 5.2. COMPARISON WITH PACNAV

information present in the batch for updating the neural network predominantly consisted of
data from the beginning of the track. Hence, the policy was unable to control the quadrotors
in the later stages of the track at all.

To overcome these issues, we put 7 waypoints in between the starting position and the
goal position. Each track in the experiment was approximately 40m long, which resulted in
one waypoint every 5m. This approach reduced the search space for the agents because of the
structure of progress reward and also the positive reward for passing a waypoint incentivized
the agents to stay on the course. Moreover, each time an agent flew through a waypoint, a
checkpoint was saved and the agents had a certain probability to start a new episode in this
saved state (as described in Section 4.2.5). For that reason, the experience of the agents was
distributed more equally throughout the whole track. Also, to simplify the learning problem,
we keep all quadrotors in the swarm informed, meaning, that each quadrotor has information
about the relative position of the waypoint.

It can be seen from Fig. 5.6 and Fig. 5.7 that the quadrotors in our methodology
tend to fly closer to each other than in [2]. In all test cases, the average distance between
the quadrotors was between 1.59m and 2.05m in the proposed method, whereas according to
Fig. 5.6a, the average distance between the UAVs was 5m or more in all their experiments. The
trade-off for keeping our swarm tightly coherent was the fact that the order of the swarm in
our methodology was higher than in the compared method, which also partially influenced the
completion time. The average completion time of the proposed method was 26.6s, whereas, in
PACNav, it took the swarm anywhere between 100s and 500s to complete the track. Overall,
our methodology is focused more on agile swarming, whereas the compared article values the
safety of the quadrotors more.

It is also important to mention, that in our approach, the policy that is controlling the
quadrotors, learns by overfitting on a single track. For that reason, our methodology would
probably fail if a different track would be used for testing purposes. Despite the overfitting,
our work shows the potential of using the RL for flight control of a swarm of quadrotors.

(a) Relative distance between UAVs. (b) Order of the swarm.

Figure 5.6: Results of a swarm of 3 quadrotors from [2]. The R0 = 2.5m in their work is
a design parameter. If an obstacle (e.g., tree, another UAV) is closer to the quadrotor than
R0, then it is considered an immediate threat and the UAV reacts to it according to the
collision avoidance methods proposed in the paper. The Rf = 4m is also a design parameter
for the uninformed UAVs. Only UAVs farther than Rf are considered as potential targets by
uninformed UAVs. The design parameters R0, Rf are not used in our work.

CTU in Prague Department of Cybernetics

5. RESULTS 31/37

(a) Relative distance between UAVs. (b) Order of the swarm.

Figure 5.7: Results of a swarm of 3 quadrotors from the proposed method. For us, the im-
portant design parameter is the separation zone. Two quadrotors get a negative reward if
the distance between them is smaller than this parameter. Another important value is the
death zone. The situation, when two agents are this close to each other, means immediate
termination of the agents, which results in the termination of the whole swarm.

CTU in Prague Department of Cybernetics

32/37 5.2. COMPARISON WITH PACNAV

CTU in Prague Department of Cybernetics

6. CONCLUSION 33/37

Chapter 6

Conclusion

This thesis focused on utilizing reinforcement learning techniques for controlling the
flight of a swarm of quadrotors. To achieve this goal, we developed a simulator of quadrotor
physics and integrated it with an interface for reinforcement learning libraries. This simula-
tor was used together with the reinforcement learning method proximal policy optimization
provided by Stable Baselines 3 to train a policy that would control the flight of individual
quadrotors in a swarm.

In our experiments, we compared two different approaches based on distinct observa-
tions. We compared these approaches on a swarm of four quadrotors in an environment with
column obstacles. In one scenario, the observation contained all the important information
about the agent’s state as well as the exact relative position of the nearest columns from the
agent. In the other scenario, the information about the absolute position of the agent was
not available in the observation and instead of the relative position of the nearest columns,
the agent was provided with the observation from 2D LiDAR. The success rate of these ap-
proaches was evaluated on four different tracks, showing, that policies provided with known
robots’ states learned slightly faster, however after the learning, both policies showed a high
success rate.

The reinforcement learning approach to swarm control has been compared with an-
other method of swarming, PACNav [2]. This comparison showed that the quadrotors in the
proposed method tend to fly closer to each other and keep the swarm tightly coherent. Ad-
ditionally, the proposed method showed higher agility and speed compared to the method
presented in [2].

In this work, we also acknowledged some of the limitations of our approach, particu-
larly the instability of our learning algorithm and overfitting of the reinforcement learning
to one track. Despite these limitations, we have shown that reinforcement learning might be
a promising approach to swarm control in the future and this work can serve as a basis for
future research in the field of drone swarms controlled by reinforcement learning.

CTU in Prague Department of Cybernetics

34/37

CTU in Prague Department of Cybernetics

7. REFERENCES 35/37

Chapter 7

References

[1] K. Kondo, R. Figueroa, J. Rached, J. Tordesillas, P. C. Lusk, and J. P. How, “Robust mader:
Decentralized multiagent trajectory planner robust to communication delay in dynamic environ-
ments,” arXiv preprint arXiv:2303.06222, 2023.

[2] A. Ahmad, D. Bonilla Licea, G. Silano, T. Baca, and M. Saska, PACNav: A collective navigation
approach for UAV swarms deprived of communication and external localization, IOP Science,
Oct. 2022. doi: 10.1088/1748-3190/ac98e6.

[3] R. Penicka, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learning minimum-time flight in
cluttered environments,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7209–7216,
2022.

[4] K. Spanaki, E. Karafili, U. Sivarajah, S. Despoudi, and Z. Irani, “Artificial intelligence and
food security: Swarm intelligence of agritech drones for smart agrifood operations,” Production
Planning & Control, vol. 33, no. 16, pp. 1498–1516, 2022.

[5] X. Zhou, X. Wen, Z. Wang, et al., “Swarm of micro flying robots in the wild,” Science Robotics,
vol. 7, no. 66, eabm5954, 2022.

[6] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann, “Stable-baselines3:
Reliable reinforcement learning implementations,” Journal of Machine Learning Research, 2021.

[7] X. Zhou, J. Zhu, H. Zhou, C. Xu, and F. Gao, “Ego-swarm: A fully autonomous and decentralized
quadrotor swarm system in cluttered environments,” in 2021 IEEE International Conference on
Robotics and Automation (ICRA), IEEE, 2021, pp. 4101–4107.

[8] M. Schranz, M. Umlauft, M. Sende, and W. Elmenreich, “Swarm robotic behaviors and current
applications,” Frontiers in Robotics and AI, vol. 7, p. 36, 2020.

[9] E. Soria, F. Schiano, and D. Floreano, “Swarmlab: A matlab drone swarm simulator,” in 2020
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), IEEE, 2020,
pp. 8005–8011.

[10] D. C. Vogelsang and B. J. Erickson, “Magician’s corner: 6. tensorflow and tensorboard,” Radi-
ology: Artificial Intelligence, vol. 2, no. 3, 2020.

[11] M. Mozaffari, W. Saad, M. Bennis, Y.-H. Nam, and M. Debbah, “A tutorial on uavs for wire-
less networks: Applications, challenges, and open problems,” IEEE communications surveys &
tutorials, vol. 21, no. 3, pp. 2334–2360, 2019.

[12] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-performance deep
learning library,” Advances in neural information processing systems, vol. 32, 2019.

[13] D. Silver, T. Hubert, J. Schrittwieser, et al., “A general reinforcement learning algorithm that
masters chess, shogi, and go through self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[14] B. D. Song, K. Park, and J. Kim, “Persistent uav delivery logistics: Milp formulation and efficient
heuristic,” Computers & Industrial Engineering, vol. 120, pp. 418–428, 2018.

[15] M. Faessler, A. Franchi, and D. Scaramuzza, “Differential flatness of quadrotor dynamics subject
to rotor drag for accurate tracking of high-speed trajectories,” IEEE Robotics and Automation
Letters, vol. 3, no. 2, pp. 620–626, 2017.

CTU in Prague Department of Cybernetics

https://doi.org/10.1088/1748-3190/ac98e6

36/37

[16] J. Hwangbo, I. Sa, R. Siegwart, and M. Hutter, “Control of a quadrotor with reinforcement
learning,” IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 2096–2103, 2017. doi: 10.
1109/LRA.2017.2720851.

[17] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy optimization
algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[18] G. Brockman, V. Cheung, L. Pettersson, et al., “Openai gym,” arXiv preprint arXiv:1606.01540,
2016.

[19] H. Oleynikova, A. Millane, Z. Taylor, E. Galceran, J. Nieto, and R. Siegwart, “Signed distance
fields: A natural representation for both mapping and planning,” in RSS 2016 Workshop: Ge-
ometry and Beyond-Representations, Physics, and Scene Understanding for Robotics, University
of Michigan, 2016.

[20] G. Bevacqua, J. Cacace, A. Finzi, and V. Lippiello, “Mixed-initiative planning and execution for
multiple drones in search and rescue missions,” in Proceedings of the International Conference
on Automated Planning and Scheduling, vol. 25, 2015, pp. 315–323.

[21] J. S. Dibangoye, A.-I. Mouaddib, and B. Chai-draa, “Point-based incremental pruning heuristic
for solving finite-horizon dec-pomdps,” in Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 1, 2009, pp. 569–576.

[22] F. Lewis and D. Vrabie, “Reinforcement learning and adaptive dynamic programming for feed-
back control,” Circuits and Systems Magazine, IEEE, vol. 9, pp. 32 –50, Jan. 2009. doi: 10.
1109/MCAS.2009.933854.

[23] E. Semsch, M. Jakob, D. Pavlicek, and M. Pechoucek, “Autonomous uav surveillance in com-
plex urban environments,” in 2009 IEEE/WIC/ACM International Joint Conference on Web
Intelligence and Intelligent Agent Technology, IEEE, vol. 2, 2009, pp. 82–85.

[24] J. Everaerts et al., “The use of unmanned aerial vehicles (uavs) for remote sensing and mapping,”
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information
Sciences, vol. 37, no. 2008, pp. 1187–1192, 2008.

[25] R. Beard, D. Kingston, M. Quigley, et al., “Autonomous vehicle technologies for small fixed-
wing uavs,” Journal of Aerospace Computing, Information, and Communication, vol. 2, no. 1,
pp. 92–108, 2005.

[26] J. C. Butcher, “A history of runge-kutta methods,” Applied numerical mathematics, vol. 20,
no. 3, pp. 247–260, 1996.

[27] M. Tan, “Multi-agent reinforcement learning: Independent vs. cooperative agents,” in Proceedings
of the tenth international conference on machine learning, 1993, pp. 330–337.

[28] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model,” in Proceedings of
the 14th annual conference on Computer graphics and interactive techniques, 1987, pp. 25–34.

CTU in Prague Department of Cybernetics

https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/LRA.2017.2720851
https://doi.org/10.1109/MCAS.2009.933854
https://doi.org/10.1109/MCAS.2009.933854

A. APPENDIX 37/37

Chapter A

Appendix

There are rendered videos and the source code of the project in the appended DVD.
The DVD has the following structure:

/
videos

track 1.mp4
track 2.mp4
track 3.mp4
track 4.mp4
pacnav comparison track example.mp4

flightsim
examples

multi quadrotor
config
include
learning

train.py
test policy.py

scripts
src

include
lib
src
README.md
. . .

In the videos section there are renders of some of our experiments in the random
columns environment (Fig. 4.1a) as well as a render of a chosen track from the comparison
with PACNav [2], that was described in the Chapter 5 1.

The other folder flightsim is the source code of our simulator. It is a copy of the content
on our Git repository. The flightsim/include and flightsim/src directories contain neces-
sary base classes for the flightsim/examples. The flightsim/examples/multi quadrotor is
the directory with the implementation of the learning environment for the swarm of quadro-
tors. In this directory, the config folder contains the meshes of the quadrotor and of the
environments and configuration files for the simulator. The learning/train.py is the main
script for the learning and it uses other Python scripts from the scrits directory. To find
out more, check out README.md, which contains all the necessary information to set up the
environment and start the learning.

1These renders are also available on YouTube: https://youtu.be/Lr4l4pmz-zk and https://youtu.be/
zRP6rhlPVjo.

CTU in Prague Department of Cybernetics

https://youtu.be/Lr4l4pmz-zk
https://youtu.be/zRP6rhlPVjo
https://youtu.be/zRP6rhlPVjo

	Introduction
	Related works
	Traditional methods for UAV swarming
	RL for flight control of individual UAVs
	The use of RL in multi-agent tasks

	Problem Description
	Description of a general task for RL
	Markov decision process
	Connection between MDP and RL

	Defining flight control task as a problem suitable for RL
	Quadrotor dynamics
	Formulation of the problem

	Methodology
	Simulator
	Environment

	Interaction with reinforcement learning library
	Proximal Policy Optimization
	Action space
	Observation space
	Reward components
	Checkpoints

	Results
	Comparison of vision-based policies and policies with known state
	Comparison with PACNav

	Conclusion
	References
	Appendix

