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Abstract
You might have already heard of the
sorites paradox. We know that a million
grains of sand is a heap of sand. We also
know that if we take away one grain from
a heap, it is still a heap.
However, if we apply mathematical
induction to those two statements enough
times, there will only remain one grain
of sand and logically, we should say that
this grain is also a heap.

Unlike classical logic, where the only
truth values are 0 and 1, fuzzy logic’s
truth values are in interval [0, 1], which
makes them infinitely many. This allows
statements to be partially true and
resolves the sorites paradox. However, it
brings up a question: if both a and b are
partially true, how much true will be their
conjunction? That is why we need fuzzy
conjunctions, in other words, triangular
norms or t-norms.

Many research papers were written on
the topic of triangular norms, which can
be constructed through generators.
Nevertheless, it is still not clear how a lit-
tle change in one affects the other.

We study derivatives of both to clear
this up. We introduce the notion of
a balanced generator that, if defined, is
unique to a given strict t-norm. Then, we
try to widen a discovery that links
a t-norm to its multiplicative generator
to other t-norms.

Afterward, we inspect the interplay of
the derivatives of fuzzy conjunctions and
their generators at the edges of the do-
main. Moreover, we provide some visual
examples of this interplay and of some
other interesting t-norms.

In the end, we look at the interrela-
tionship between the diagonal of a strict
t-norm and its multiplicative generator.

Keywords: fuzzy conjunction,
triangular norm, strict fuzzy conjunction,
additive generator, multiplicative
generator, balanced generator, diagonal

Supervisor: prof. Ing. Mirko Navara,
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Abstrakt
Možná už jste někdy slyšeli o paradoxu
hromady. Víme, že milion zrnek písku je
hromada písku. Také víme, že když z hro-
mady odeberme jedno zrnko, pořád to je
hromada. Když ale na tyto dva výroky
dostatečněkrát použijeme matematickou
indukci, zbude nám už jen jedno zrnko
písku a z pohledu logiky bychom měli říct,
že toto zrnko je také hromada.

Na rozdíl od klasické logiky, ve které
jsou pouze pravdivostní hodnoty 0 a 1,
pravdivostní hodnoty fuzzy logiky jsou
v intervalu [0, 1], takže jich je nekonečně
mnoho. Díky tomu mohou být výroky čás-
tečně pravdivé a paradox hromady je tím
vyřešený. Nicméně se nabízí otázka: po-
kud jsou a i b částečně pravdivé, jak moc
pravdivá bude jejich konjunkce? Proto po-
třebujeme fuzzy konjunkce, jinými slovy
trojúhelníkové normy či t-normy.

Na téma t-norem, které mohou být
vytvořeny skrze generátory, už bylo na-
psáno hodně článků. Pořád však není
jasně známo, jak malá změna generátoru
ovlivní t-normu a naopak.

Abychom to osvětlili, zabýváme se de-
rivacemi generátorů i t-norem. Předsta-
vujeme pojem vyvážený generátor, který,
pokud je definovaný, je pro danou striktní
t-normu jedinečný. Poté se snažíme roz-
šířit objev, který spojuje t-normu s jejím
multiplikativním generátorem pro další
t-normy.

Následně zkoumáme vztah derivací
fuzzy konjunkcí a jejich generátorů na
okrajích definičního oboru. Navíc zajiš-
ťujeme vizuální ukázky tohoto vztahu a i
některých jiných zajímavých t-norem.

Nakonec se podíváme na vztah mezi
diagonálou striktní t-normy a jejím mul-
tiplikativním generátorem.

Klíčová slova: fuzzy konjunkce,
trojúhelníková norma, striktní fuzzy
konjunkce, aditivní generátor,
multiplikativní generátor, vyvážený
generátor, diagonála

Překlad názvu: Vztah trojúhelníkových
norem a jejich generátorů
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Chapter 1
Introduction

What drew me to this topic is undoubtedly fuzzy logic. In computer science,
we often classify data. When we want the computer to help us to solve a task,
we need to lay out the situation at hand first. Usually, we pretend that the
world is just black and white. Is this e-mail spam or not, is this stuffed animal
an animal or not? Sometimes we do not even have the answer ourselves. We
think about which classification could cause more damage and then decide
that the e-mail probably is not spam because we fear the repercussions of not
delivering an important e-mail. Fuzzy logic allows us to be precise and say
that the statement “This teddy bear is an animal” is partially true. Fuzzy
control is a practical use of fuzzy logic in computers. It allows us to introduce
nuanced truth values in computer programs.

The goal of this thesis is to study the relationship between fuzzy conjunction,
which is a function of two inputs, and its generator. Although a generator has
only one input, it fully determines the fuzzy conjunction. If you still hesitate
about how important this topic is, let me emphasize that Hájek proved that
a triangular norm is enough to determine all the other fuzzy operations in
an instance of fuzzy logic [1].

There have been many attempts to approximate a fuzzy conjunction from
data. A fuzzy conjunction can be approximated using the spline function
method to model its corresponding additive generator [2]. Another work
focused on the least squares method [3]. In this paper, we will focus on
the derivatives of a t-norm and its generator and their interplay. We hope it
might encourage someone to study Hermite interpolation in relation to fuzzy
conjunctions.

Let us summarize the structure of this thesis. First of all, we will clear
up the basic terms and definitions. Then we will introduce the notion of
balanced generators with many examples. Afterward, we will take a closer
look at a formula that allows us to find a multiplicative generator for some
known triangular norms [4]. We will attempt to expand on this conclusion.
In the following two chapters, we will explore how the derivative at 1 or at 0
of a multiplicative generator, the corresponding additive generator, and the
triangular norm relate to each other. We will also comment on the effect of
local changes in the derivative of the multiplicative generator on the generated
t-norm. Then we will explore the shape of a t-norm with a derivative equal

1



1. Introduction .....................................
to 0 or ∞ in its domain. Finally, we will highlight some interesting facts
relating to the diagonal of t-norms in the last chapter.

2



Chapter 2
Definitions and basic notions

In this chapter, we offer an overview of generally known definitions related to
the subject of this thesis. We not only define the terms but also explain a little
about how they relate to each other and to fuzzy logic. It should be enough
for a reader, who is unfamiliar with this field, to gain the understanding
needed to understand the next parts of the thesis.

2.1 Fuzzy logic

In mathematics, there is a field called multi-valued logic. It is very similar to
propositional logic with the exception of having more than two truth values.
It is comprised of finite-valued logics, such as the Łukasiewicz Ł3 or Kleene
logic, and infinite-valued logics with examples of fuzzy logic and probability
logic.

Fuzzy logic has only been founded in the 20th century, so it is to an extent
an emerging field of study. There are infinitely many truth values and each
fuzzy set has a membership function χ, which tells us to what extent a point
belongs to the fuzzy set.

Let us say that a young couple is looking at buying a flat and their deciding
factors are price and size. They usually need to input discrete boundaries
into the website and they either choose to be very lenient and get a multitude
of offers that do not interest them, or they miss out on a great deal because
they cut it off [5]. With fuzzy logic, it is easy for computers to qualify how
intriguing an option is to you. You just need to create function χ1 that
specifies how satisfied you are with which price and χ2 specifies satisfaction
with size. Then you choose a fuzzy conjunction (or, more likely, the vendor
chooses one that he knows works well for his clients) and you get a great
option of compromise between the price and the size right away!

2.2 Triangular norms

Fuzzy conjunctions determine to which degree is a and b true in fuzzy logic.
It is obvious that in fuzzy logic, we cannot define fuzzy conjunction by a table
of truth values, which would usually be the case. Instead, we defined them

3



2. Definitions and basic notions ..............................
by a few axioms and we allow the user to choose his or her own particular
fuzzy conjunction.

Triangular norms, otherwise known as t-norms, have originated in statistical
metric spaces. They were first mentioned by Karl Menger in 1942 [6]. Over
the years they found their place in multiple other areas of mathematics. With
the rise of machine learning, using triangular norms and by extent fuzzy logic
in deep neural networks is also considered [7].
Definition 2.2.1. Triangular norms are binary functions T : [0, 1]2 → [0, 1]
that for arguments a and b satisfy four axioms - commutativity, associativity,
monotonicity, and boundary condition T (a, 1) = a.

Properties derived directly from those axioms include the fact that
T (0, x) = T (x, 0) = 0 and T (1, x) = x [8].

There have been other ways than Definition 2.2.1 to define continuous fuzzy
conjunctions [9]. In this thesis, we use the terms triangular norm and fuzzy
conjunction synonymously.
Definition 2.2.2. Let us call a continuous fuzzy conjunction T Archimedean
if ∀x ∈ ]0, 1[: T (x, x) < x.
Definition 2.2.3. An Archimedean fuzzy conjunction T is either strict if

∀a ∈ ]0, 1] ∀b, c ∈ [0, 1] : b < c =⇒ T (a, b) < T (a, c)

or nilpotent otherwise [5].
In this thesis, unless stated otherwise, we will deal with strict t-norms.

2.3 Generators

There are many ways to construct a t-norm. One of those is by a generator.
We take a previously known function that fits the definition of a generator
and use it in a specific binary function. There are two types of generators -
multiplicative generators and additive generators.
Definition 2.3.1. A multiplicative generator is an increasing bijection θ :
[0, 1] → [0, 1] [8].

Notice that this implies that θ(0) = 0 and θ(1) = 1. Then a strict t-norm
is constructed using an instance of a multiplicative generator as

T (a, b) = θ−1 (θ (a) · θ (b)) . (2.1)

Definition 2.3.2. An additive generator is a strictly decreasing bijection
t : [0, 1] → [0, ∞] [5].

Notice that this implies t(1) = 0. Then a strict t-norm is constructed using
an additive generator t as

T (a, b) = t−1 (t (a) + t (b)) . (2.2)

More generally, a fuzzy conjunction T1 is constructed using another already
known fuzzy conjunction T2 as T1(a, b) = θ−1 (T2 (θ (a) , θ (b))). However,

4



......................................2.3. Generators

the world of fuzzy conjunctions is split into classes of elements. If you take
the Łukasiewicz conjunction TŁ(a, b) = max(0, a + b − 1), you can only create
another nilpotent conjunction. If you take product conjunction TP (a, b) = a·b,
you can only create other strict conjunction, etc. [5]. Since TP is
the best-known of strict t-norms and we will usually compare other t-norms
to it, we displayed it in Figure 2.1.

Figure 2.1: Product t-norm TP

Multiplicative generators are determined up to a positive finite exponent.
In other words, two multiplicative generators θ1, θ2 generate the same T if
and only if there exists an r ∈ ]0, ∞[ such that [4]

θ1(x) = θr
2(x) . (2.3)

Additive generators are determined up to a positive finite multiple. In
other words, t-norms T1 and T2 are equal if and only if they are generated by

5



2. Definitions and basic notions ..............................
continuous additive generators t1, t2 of the form [10]

t1(x) = c · t2(x) for some c ∈ ]0, ∞[ . (2.4)

We can easily switch between one type of generator and the other. If we
already know the multiplicative generator θ, we define the corresponding
additive generator

t(x) = − ln θ(x). (2.5)

On the other hand, if we know t, we can say

θ(x) = e−t(x) . (2.6)

Every strict t-norm has a multiplicative and an additive generator that can
generate it. However, not all t-norms can be constructed through a generator.
For example the standard conjunction TS(a, b) = min(a, b) and the drastic

conjunction TD(a, b) =


a if b = 1
b if a = 1
0 otherwise

do not have any generator [5].

6



Chapter 3
Balanced generators

For continuous Archimedean triangular norm T , there exists a notion of
normed additive generator [0, 1] → [0, 1]. It is uniquely determined by
t(0) = 1 and we can find it from other additive generators of T via formula
t(x) := t(x)

t(0) [11]. This is only possible for nilpotent t-norms because only
those have t(0) in the interval ]0, ∞[. In this chapter, we introduce a notion
of balanced generators for strict t-norms T . If they exist for a T , then they
are also uniquely determined.

3.1 Characterization

Definition 3.1.1. Let us call a multiplicative generator θ∗ of a strict t-norm T
balanced if it has a nonzero finite right derivative at 0.

According to the definition of a derivative, this means

θ′
∗(0) = lim

x→0+

θ∗(x)
x

is in the interval ]0, ∞[ ,

or, equivalently,

lim
x→0+

x · θ′
∗(0)

θ∗(x) = 1 . (3.1)

We reserve the notation θ∗ for balanced generators. Not all strict t-norms
have balanced generators. We know that a multiplicative generator is strictly
increasing, so it is impossible for its derivative to be negative. However,
the derivative need not exist, it can be 0 or ∞ for all generators. Specific
examples will be discussed in section 3.4.

3.2 Methods of finding balanced generators

Proposition 1. Suppose that a t-norm T has a balanced multiplicative
generator θ∗. We can find it if we know either a t-norm T , or any generator
of T .

The first method is as follows. If θ′(0) ∈ ]0, ∞[, then we can find θ∗ as [4]

θ(b) = lim
a→0+

T (a, b)
a

= θ∗(b) for all b ∈ [0, 1]. (3.2)

7



3. Balanced generators..................................
What was not evident at the time is that this method gives us not just any

generator but a balanced one. It is true because (3.2) works if and only if
θ′(0) ∈ ]0, ∞[, which is also the definition of balanced generator.

Let us present the second method of finding a balanced generator from any
known generator. We know from Definition 2.3 that any other multiplicative
generator θ of T is of the form

θ(x) = θr
∗(x) for some r ∈ ]0, ∞[ . (3.3)

We assume that θ and r are as in (3.3) and that x is in an interval ]0, ϵ[
in which the derivative θ′ is defined (for some small ϵ, if such an ϵ exists).
Further, we assume that the derivative θ′ is continuous at 0. Then we can
write the derivative of expression (3.3) as follows

θ′(x) = r θr−1
∗ (x) θ′

∗(x) ,

and from there we can express the derivative θ′
∗ as

θ′
∗(x) = θ′(x)

r θr−1
∗ (x)

= θ′(x) θ∗(x)
r θr

∗(x) = θ′(x) θ∗(x)
r θ(x) .

We know that this expression has a finite limit at 0,

θ′
∗(0) = lim

x→0+
θ′

∗(x) = lim
x→0+

θ′(x) θ∗(x)
r θ(x) .

The rightmost limit can be expanded by a unit limit (3.1):

θ′
∗(0) = lim

x→0+

θ′(x) θ∗(x)
r θ(x) · x θ′

∗(0)
θ∗(x)︸ ︷︷ ︸

→1

= lim
x→0+

x θ′(x) θ′
∗(0)

r θ(x) .

We conclude that
r = lim

x→0+

x θ′(x)
θ(x) (3.4)

and the balanced generator of T (if it exists) can be found from θ(x) as

θ∗(x) = θ1/r(x) for all x ∈ [0, 1]. (3.5)

As a consequence, every t-norm has at most one balanced multiplicative
generator.
Remark 1. We do not need to check all the conditions. It is possible to start
by calculating r. If it leads to r = 0 or r = ∞, the generated t-norm does
not have a balanced generator. Otherwise, we can construct the balanced
generator as previously stated and if the generated t-norm is the same, we
have found the balanced generator.

8



........................... 3.3. T-norms with balanced generators

3.3 T-norms with balanced generators

This section will show some examples of t-norms with balanced generators. In
the first example, we will go through the process very slowly to demonstrate
how to find the balanced generator from its non-balanced counterparts.

Example 1. Let us take a continuous multiplicative generator θ(x) =
cos

(
πx
8
)

− 1
cos

(
π
8
)

− 1

with derivative θ′(x) = −
π sin

(
πx
8
)

8
(
cos

(
π
8
)

− 1
) . When we take θ′(0) it is equal to 0,

so this generator is not a balanced one according to Definition 3.1.1.
We will now use equation (3.4) to find the parameter r that will help us to

find the balanced generator, 1

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+
−

x π sin
(

πx
8
)

8
(
cos

(
πx
8
)

− 1
)

LH= lim
x→0+

−
π sin

(
πx

8

)
+

π2x cos
(

πx
8
)

8

−π sin
(

πx

8

) = lim
x→0+

1 +
π2x cos

(
πx
8
)

8 π sin
(

πx

8

)

LH= 1 + lim
x→0+

π2 cos
(

πx

8

)
−

π3x sin
(

πx
8
)

8

π2 cos
(

πx

8

) = 2.

Figure 3.1: The balanced generator

√
cos
(

πx
8
)

− 1
cos
(

π
8
)

− 1
from Example 1

According to (3.5), the balanced generator is θ∗(x) =
√

cos
(

πx
8
)

− 1
cos

(
π
8
)

− 1 and we

can see it in Figure 3.1. Its inverse function is θ−1
∗ (x) =

8 arccos
(
x2 (cos

(
π
8
)

− 1
)

+ 1
)

π

1We will use the symbol LH= to indicate the use of L’Hôpital’s Rule.
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3. Balanced generators..................................

Figure 3.2: The t-norm (3.6) from Example 1

and the formula of the t-norm that they generate is

T (a, b) =

8 arccos

(cos
(

πa
8
)

− 1
)

·
(
cos

(
πb
8

)
− 1

)
cos

(
π
8
)

− 1
(
cos

(
π
8
)

− 1
)

+ 1


π

=
8 arccos

((
cos

(
πa
8
)

− 1
) (

cos
(

πb
8

)
− 1

)
+ 1

)
π

, (3.6)

as shown in Figure 3.2.
Example 2. Now take a continuous multiplicative generator θ(x) = 2x − 1
shown in Figure 3.3. This generator is balanced according to Definition 3.1.1
because θ′

∗(0) = ln 2 · 20 = ln 2 ∈ ]0, ∞[ .

Figure 3.3: The balanced generator 2x − 1

The triangular norm (3.7) corresponding to the balanced generator θ∗(x) =
2x − 1 is shown in Figure 3.4

T (a, b) =
ln
(
(2a − 1) ·

(
2b − 1

)
+ 1

)
ln 2 . (3.7)

10



........................... 3.3. T-norms with balanced generators

Figure 3.4: T-norm with balanced generator 2x − 1

Example 3. Other examples of t-norms with balanced generators are Frank
t-norms. For parameter λ ∈ (0, ∞) \ {1} they have multiplicative generators

θλ(x) = λx − 1
λ − 1 (3.8)

with derivatives θλ(x)′ = λx ln λ

λ − 1 .

This time, we will show that θλ(x) are balanced by calculating r = 1 using
equation (3.4),

Figure 3.5: Frank multiplicative generators θλ

11



3. Balanced generators..................................

r = lim
x→0+

x θ′
λ(x)

θλ(x) = lim
x→0+

x
λx · ln λ

λ − 1
λx − 1
λ − 1

= ln λ lim
x→0+

x λx

λx − 1

LH= ln λ lim
x→0+

λx · (ln λ · x + 1)
λx ln λ

= 1.

We see that for parameters specified above, the multiplicative generators
of Frank t-norms θλ(x) are balanced.
Example 4. We have also Einstein product E(a, b) = x y

2−(x+y−x y) with mul-

tiplicative generator θ∗(x) = x

2 − x
[12] and θ′

∗(x) = 2
(x − 2)2 . Again, we

calculate parameter r,

r = lim
x→0+

x θ′
∗(x)

θ∗(x) = lim
x→0+

−2
(x − 2) = 1

and conclude that this generator is also balanced.

Example 5. Our last example is θ∗(x) =
sin
(

πx

4

)
cos

(
πx
4
) . In this case, we have

θ′
∗(x) =

π sin2 (πx
4
)

4 cos2 (πx
4
) + π

4 , so θ′
∗(0) = π

4 ∈ ]0, ∞[ . Therefore θ∗ is indeed

balanced.

3.4 T-norms without balanced generators

In some cases, after calculating the parameter r of a multiplicative generator
θ we find out that r = 0 or r = ∞. If we use the formula for finding
a balanced generator (3.5), we get a function that does not satisfy the axioms
of a multiplicative generator. We say that t-norms created by these generators
do not have any balanced generator.

3.4.1 Generator with right derivative at zero equal to 0

Example 6. A t-norm generated by θ(x) = − 1
ln x−1 does not have a balanced

generator and (3.4) will always get r = 0.
We take a multiplicative generator θ(x) = − 1

ln x−1 with derivative θ′(x) =
1

x·(ln x−1)2 and we calculate a parameter r that should help us to find the
balanced generator,

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+

−1
ln x − 1 = 0.

We will use the inverse function θ−1(x) =
{

e
x−1

x for x ̸= 0
0 for x = 0.

12



.......................... 3.4. T-norms without balanced generators

T (a, b) = e

1
(ln a−1) (ln b−1) −1

1
(ln a−1) (ln b−1) = e

((ln a−1) (ln b−1)) ((ln a−1) (ln b−1)−1)
(ln a−1) (ln b−1)

= e((ln a−1) (ln b−1)−1) = e(ln a)(ln b)

ab
for a, b ̸= 0, otherwise 0.

You can see this t-norm in Figure 3.6 and its generator in Figure 3.7.

Figure 3.6: T-norm generated by − 1
ln x−1

3.4.2 Generator with right derivative at zero equal to infinity

Hamacher product T (a, b) = a b
a+b−a b does not have a balanced generator and

(3.4) will always get r = ∞.
Example 7. We will take a multiplicative generator of the Hamacher product,
which you can see in Figure 3.7, θ(x) = e

x−1
x and its derivative θ′(x) = e

x−1
x

x2 .
We try to calculate the parameter r to show that it will be equal to ∞,

r = lim
x→0+

x θ′(0)
θ(x) = lim

x→0+

x e
x−1

x

x2

e
x−1

x

= lim
x→0+

x

x2 = lim
x→0+

1
x

= ∞.

Now we can just take the inverse function θ−1(x) = − 1
ln x−1 and Hamacher

product in Figures 3.9 with the formula

T (a, b) = − 1
ln(e

a−1
a · e

b−1
b ) − 1

= − 1
a−1

a + b−1
b − 1

= − 1
a b−a−b

a b

= a b

a + b − a b
for a, b ̸= 0, otherwise 0.

The following generators have all been taken from [12], where they are
featured in the form of additive generators. We have turned them into

13



3. Balanced generators..................................

Figure 3.7: Multiplicative generator of Hamacher product e x−1
x and its inverse

1
ln x−1 , the generator of Example 6

multiplicative generators via (2.6). We will calculate their derivative and
show that when we try to calculate parameter r using (3.4) that normally
tells us which exponent we should use to find the balanced generator, we will
get r = ∞. Therefore, triangular norms generated by those generators do not
have any balanced generator.
Example 8. Dombi’s t-norms,

Dλ(a, b) = 1

1 +
((

1
a − 1

)λ
+
(

1
b − 1

)λ
) 1

λ

,

with parameter λ > 0, generator θ(x) = e−( 1−x
x )λ

and θ′(x) = −
λ ·
(

1−x
x

)λ
e−( 1−x

x )λ

(x − 1) x
,

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+
−

λ ·
(

1−x
x

)λ

x − 1 = ∞.

Example 9. Schweizer’s second family of t-norms parameter λ > 0,

S2
λ(a, b) = 1(

1
aλ + 1

bλ − 1
) 1

λ

,

θ(x) = e1− 1
xλ and θ′(x) = λx−λ−1e1− 1

xλ ,

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+
x λx−λ−1 = lim

x→0+

λ

xλ
= ∞.

Example 10. Mizumoto’s first t-norm,

M1(a, b) =
2 arccot

(
cot

(
πa
2
)

+ cot
(

πb
2

))
π

, (3.9)
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.......................... 3.4. T-norms without balanced generators

Figure 3.9: Hamacher product

has θ(x) = e− cot( πx
2 ) and θ′(x) =

πe− cot( πx
2 ) csc2 (πx

2
)

2 ,

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+
x ·

π csc2 (πx
2
)

2 = ∞.

Example 11. Mizumoto’s eighth family of t-norms,

M8
λ(a, b) = 1

logλ

(
λ

1
a + λ

1
b − λ

) , (3.10)

with parameter λ > 1, θ(x) = eλ−λ
1
x and θ′(x) = λ

1
x ln λ · eλ−λ

1
x

x2 ,

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+

λ
1
x ln λ

x
= ∞ for ln λ > 0.
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3. Balanced generators..................................
Example 12. Mizumoto’s ninth family of t-norms,

M9
λ(a, b) = λ

ln
(
e

λ
b + e

λ
a − eλ

) , (3.11)

has parameter λ > 0, θ(x) = eeλ−e
λ
x with derivative θ′(x) = λe−e

λ
x + λ

x
+eλ

x2 ,

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+

λe
λ
x

x
= ∞ for λ > 0.

Example 13. Mizumoto’s tenth family of t-norms,

M10
λ (a, b) = 1

ln
1
λ

(
e

1
aλ + e

1
bλ − e

) , (3.12)

has parameter λ > 0, θ(x) = ee−e
1

λx . In this case, we have θ′(x) =
e−e

1
λx + 1

λx
+e

λx2 ,

r = lim
x→0+

x θ′(x)
θ(x) = lim

x→0+

e
1

λx

λ x
= ∞ for λ > 0.
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Chapter 4
Derivatives of t-norm

We were looking for a specific t-norm T . It would have a first-order partial
derivative at zero with respect to the first argument going to zero or to
infinity. It should also have a second-order partial derivative in the interval
]0, ∞[. From the commutativity of t-norms, we assume that those derivatives
would have the same properties with respect to the second argument. From
(2.1), we see that those derivatives will be in fact symmetrical. Therefore, we
may only consider derivatives with respect to one argument without loss of
generality.

Once we find such a t-norm, we hope to be able to widen the discovery
of the possibility of finding a generator θ of a known strict t-norm T (3.2),
given that the generator’s second derivative approaching zero from the right
exists and is in ]0, ∞[. Ideally, we would find a formula similar to (3.2) using
second derivatives of T for t-norms with no balanced generator.

4.1 First derivative

∂T (a, b)
∂a

= 1
θ′ (θ−1 (θ(a) θ(b))) · θ′(a) · θ(b) (4.1)

We can only use this form of the derivative if we have the closed-form
expression of the inverse function of the generator. Otherwise, it could be
very hard to find the value of θ′ (θ−1 (θ(a) θ(b))

)
. To guarantee (4.1) equals

zero, one of the multipliers needs to equal zero. The last one will change
depending on where we are in the interval and will only equal zero for b = 0.

Another way to ensure that ∂T (a,b)
∂a = 0 is if θ′ (θ−1 (θ(a) θ(b))

)
= ±∞ for

a, b approaching 0. The final possibility of insuring nullity is θ′(a) = 0.
To guarantee (4.1) approaches infinity, one of the multipliers needs to

approach infinity. The θ(b)’s range is [0, 1], so that is not a candidate. The
second multiplier, θ′(a) cannot approach infinity throughout the whole domain
because the multiplicative generator θ is defined as an increasing bijection.
The only way to ensure that ∂T (a,b)

∂a = ∞ is if θ′ (θ−1 (θ(a) θ(b))
)

= 0 for
a and b approaching 0.
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4. Derivatives of t-norm .................................
4.2 Second derivative

∂2T (a, b)
∂2a

= θ(b)
θ′ (θ−1 (θ(a) θ(b))) ·

(
θ′′(a) − θ′(a)2 θ(b)

θ′ (θ−1(θ(a) θ(b)))

)
(4.2)

We know from our assumption that ∂T (a,b)
∂a = 0, so we can simplify the last

expression and we get

∂2T (a, b)
∂2a

= θ(b)
θ′(θ−1(θ(a) θ(b))) · θ′′(a) (4.3)

Straight away, we notice two things in (4.3). The first is that
the denominator remains the same as in the last section, so we cannot use it
to ensure ∂T (a,b)

∂a ̸= ∞ and we will not be able to find a t-norm with first-order
partial derivative at zero with respect to the first argument that would be
equal to infinity. Furthermore, we cannot use it to ensure the nullity of (4.1)
either because the second-order partial derivative would then also equal zero.
The multiplier θ(b) will still equal 0 for b = 0 because T is strict. This still
leaves the possibility of θ′(x) = 0 ensuring the nullity. However, we know
from Definition 2.3.1 that a multiplicative generator is an increasing bijection
[0, 1] → [0, 1]. This means that θ′(x) = 0 cannot ensure the nullity of (4.1)
throughout the whole interval.

The next thing we noticed is that the only difference between (4.3) and
(4.1) is that θ′(x) becomes θ′′(x). We could say that we also need θ′′(x) ̸= 0.
If we continue and differentiate this expression, we will get a similar result to
(4.2). Then after simplification due to the first and second derivatives being
equal to zero, we will probably get the same expression as in (4.1) and (4.3)
with θ(n) for an nth derivative.

We conclude that the desired triangular norm does not exist. Moreover,
higher-order derivatives will probably not be helpful in finding a formula that
specifies θ for a given strict T with no balanced generator (3.2).

18



Chapter 5
Derivatives at 1

5.1 Interrelationship between additive and
multiplicative generator’s derivatives at 1

Let T be a strict t-norm, t its additive generator, and θ its multiplicative
generator. Let us take a derivative of θ at 1. We can rewrite it using t as

lim
x→1−

θ′(x) = lim
x→1−

(
e−t(x)

)′
= lim

x→1−
− e−t(x) t′(x) = lim

x→1−
−t′(x) (5.1)

Notice that limx→1− e−t(x) = 1 because t(1) = 0 from Definition 2.3.2.
The other direction is similar, we used θ(1) = 1 from Definition 2.3.1.

lim
x→1−

t(x)′ = lim
x→1−

(− ln θ(x))′ = lim
x→1−

−θ′(x)/θ(x) = lim
x→1−

−θ′(x) (5.2)

We clearly see that the following two are equivalent...1. 0 < θ′(1) < ∞..2. 0 < −t′(1) < ∞

Remark 2. Since t is strictly decreasing, the negation of its derivative, −t′(1),
will never be less than 0. Therefore θ′(1) will never be less than 0.

Now let us explore whether this bears an influence on the total differential
of the generated triangular norm T .

We took the formula of the first derivative of T from (4.1).

∂T (a, b)
∂a

∣∣∣∣
a,b=1

= θ′(a) · θ(b)
θ′ (θ−1 (θ(a) θ(b)))

∣∣∣∣
a,b=1

= θ′(a) · θ(b)
θ′ (θ−1(1)))

∣∣∣∣
a,b=1

= θ′(a) · θ(b)
θ′ (1)

∣∣∣∣
a,b=1

= 1 for 0 < θ′(1) < ∞ , otherwise undefined. (5.3)

Since the function T is commutative,

∂T (a, b)
∂b

∣∣∣∣
a,b=1

= 1 for 0 < θ′(1) < ∞ , otherwise undefined.
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5. Derivatives at 1....................................
The total differential d of T with △ signifying a small difference is

d(△a, △b) = ∂T (a, b)
∂a

(a0, b0) · △a + ∂T (a, b)
∂b

(a0, b0) · △b. (5.4)

At (a0, b0) = (1, 1), (5.4) is equal to △a + △b if and only if 0 < θ′(1) < ∞.
Otherwise, the total differential does not exist there.

Now let us take the Taylor polynomial f of degree 1 at (a0, b0) = (1, 1). It
will also be defined if and only if 0 < θ′(1) < ∞ and its value is

f(a, b) = f(a0, b0) + ∂T (a, b)
∂a

(a0, b0) · (a − a0) + ∂T (a, b)
∂b

(a0, b0) · (b − b0)

= 1+(a−1)+(b−1) = a+ b−1 for 0 < θ′(1) < ∞ , otherwise undefined.
(5.5)

We summarize as follows.
Theorem 1. The following three statements are equivalent. Notice also that
this holds for either all the generators or none [13]...1. 0 < θ′(1) < ∞..2. 0 < −t′(1) < ∞..3. T is differentiable at (1, 1). It has there a total differential (a, b) 7→ a + b

and a Taylor polynomial of degree 1: (a, b) 7→ a + b − 1

Remark 3. The famous nilpotent Łukasiewicz t-norm is defined as T (a, b) =
max(a + b − 1, 0). At (1, 1), this locally approaches all triangular norms that
have 0 < θ′(1) < ∞, which includes some strict t-norms, e.g., all strict Frank
t-norms.

This is not easy to see in Figure 5.2 from [8], where they use additive
counterparts to the multiplicative generators with formula (3.8). That is why
we created our own depiction with additive generators that generate the same
Frank t-norms and all have derivatives at one equal to minus one. Using (2.5)
we got the additive counterparts of (3.8). Finally, we divided the generators
by the absolute value of their derivatives at one. We could do this because in
Example 3 we showed that point 1 from Theorem 1 holds, therefore point
2 also holds and the derivative at one is between zero and minus infinity.
See equation (2.4) for reassurance that our generators generate the same
triangular norms.

In our Figure 5.1, we see that when we get closer to one, the generators of
Frank t-norms start to resemble the generator of Łukasiewicz t-norm, t∞.

At the same time, any continuous t-norm can be approximated by a strict
t-norm with arbitrary precision [14]. For example, the minimum t-norm
is the limit case of Frank t-norms for parameter λ → 0, although it is not
differentiable at (1, 1) and does not have any generator.
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....... 5.1. Interrelationship between additive and multiplicative generator’s derivatives at 1

Figure 5.1: Additive generators of Frank t-norms with the first derivative at one
equal to minus one

Figure 5.2: Additive generators of some Frank t-norms
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5. Derivatives at 1....................................
5.2 Illustrating examples

In this section, we will be looking for multiplicative generators that we
could easily compare to each other. We will make generators θn, 1 that only
differ in the derivative near the right edge of their domain, meaning around
x = 1. Other than that they will be modeled by the product t-norm, which
is generated by θP (x) = x. Then we will plot their corresponding t-norms T
and talk about how the difference in the derivative at 1 of a generator affects
the resulting T .

5.2.1 Choosing illustrating multiplicative generators

We will want this set of generators θn, 1 to be identical to the generator of
product t-norm θP on a significant portion of the domain, they will only differ
in interval ]0.9, 1[. We want to model this part of the domain by a function
that has a value at 0.9 equal to 0.9 and a value at one equal to one. This is
because we want the multiplicative generator to be continuous so that the
additive generator would be continuous and most importantly the T would
also be continuous [10]. We decided we would use polynomial functions to
get different derivatives at 1.

θn, 1(x) =
{

x x ∈ [0, 0.9[
0.9 + (x − 0.9)n · 10n−1 x ∈ [0.9, 1], n > 0.

(5.6)

To speak about the generators, we will split them into two groups. The
first group of four generators θn, 1 is for an exponent n > 1. Concretely, we
will show generators with n ∈ {2, 3, 4, 5}. In other words, the generators with
all values bigger than or equal to θP .

The second group of four generators has an exponent 1 > n > 0. We will
plot only generators with values n ∈ {1

2 , 1
3 , 1

4 , 1
5} with values that are all less

than or equal to θP . The argument of the root function will be positive on
our interval, so the function is defined there.

The generators from the first group are inverse to those from the second.
For example, θ2, 1 is the inverse of θ 1

2 , 1. The two inverse counterparts are
plotted in the same color in Figure 5.3 so that you can visually link them to
one another. Notice that they are all balanced.

5.2.2 Resulting triangular norms

When we change the generator’s values in the interval ]0.9, 1[ the resulting
t-norm T is impacted in two intersecting strips. One strip has values x in
]0.9, 1[, y in ]0, 1[ and the other x in ]0, 1[, y in ]0.0, 1[. In the area outside
these two strips, [0, 0.9] × [0, 0.9], the newly generated t-norms will have
identical values as TP . This all is evident from (2.1) and shown in Figure 5.4.

Sadly, we cannot fully trust 3D-generated images in this thesis. They are
better at instantly giving a general idea of the situation. Nonetheless, we
discovered a flaw that we just could not fix in the context of this thesis.
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................................. 5.2. Illustrating examples

Figure 5.3: Generators edited near one

Although the boundary condition T (a, 1) = a is necessary for t-norm to be
a t-norm as we know from Definition 2.2.1, in Figures 5.7 it is evidently
violated around (1, 1). We could get rid of this flaw by using fewer points to
generate the image but then we would also lose a lot of other information.
By extent, in Figure 5.4, if either of the variables is equal to 1, the difference
between a generated triangular norm and the product norm has to be zero
because all those values are common to all the existing t-norms. Thankfully,
this time we can give the Figures the benefit of the doubt. For 5.4a the one
value may have gotten lost in the sea of all the others and for 5.4b we might
simply be oblivious to the drop because of the chosen angle.

(a) : The area that has changed
(b) : The concrete difference for the t-
norm generated by θ8, 1, 3D

Figure 5.4: Change in t-norm generated by θn, 1 in relation to TP

We can clearly see the twists along the edges of these two strips. For the
first four generators shown in Figures 5.5 and 5.7a, we see that the values
in the area outside these two strips seem to get lower than the values inside.
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5. Derivatives at 1....................................
In other words, in the same way that values of generators with n > 1 are
always greater than or equal to θP , the values of t-norms generated by those
generators are also always greater than or equal to those of TP .

There is even a little semicircle in the intersection of the two dips, facing
away from the tip of the t-norm. These changes start smoother and they get
more pronounced as we get to the last generator of this group θ5, 1 because
the change in generator gets more pronounced with each generator, too.

Figure 5.5: T-norms with generator changing around one, θ2, 1, θ3, 1, θ4, 1, θ5, 1,

On the other hand, for the second four generated t-norms, shown in Figures
5.6 and 5.7b, we see that the values outside the two strips seem to get higher
than those inside. We can say that the values of t-norms generated by n that
is in between 0 and 1 are always less than or equal to those of TP . Just as it
was for the generators.

Once more, there is a little semicircle in the intersection of the two dips.
This time it is leaning towards the tip of the t-norm. The changes start out
smooth and they get more prominent as we get to the last generator θ 1

5 , 1.
To make the changes even more visible, we plotted the two t-norms with
the most distinct generator in 3D in Figure 5.7.

It seems that the more pronounced a change of a generator is, the more
pronounced the change in T . However, this is only valid for changes in the
form of polynomials or root functions if we only change a part of the interval
at a time. If we changed the whole interval as in (2.3), the T would stay
the same.
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................................. 5.2. Illustrating examples

Figure 5.6: T-norms with generator changing around one, θ 1
2 , 1, θ 1

3 , 1, θ 1
4 , 1, θ 1

5 , 1
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5. Derivatives at 1....................................

(a) : T-norm generated by θ5, 1, 3D

(b) : T-norm generated by θ 1
5 , 1, 3D

Figure 5.7: 3D t-norms with generators altered around 1
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Chapter 6
Derivatives at 0

6.1 Underlying theory

It is not as useful to study derivatives of additive generators as it was in
section 5.1. We could look at its convergence to − log x, but that is too
abstract. The derivative of a multiplicative generator at 0 is more interesting
since it enables us to define a balanced generator [13].

Let us calculate the total differential at (a0, b0) = (0, 0) for strict t-norms
T with 0 < θ′(0) < ∞, in other words, for t-norms with balanced generators.
Let us start by identifying partial derivatives. We again used the formula of
the first derivative of T from (4.1).

∂T (a, b)
∂a

∣∣∣∣
a,b=0

= θ′(a) · θ(b)
θ′ (θ−1 (θ(a) θ(b)))

∣∣∣∣
a,b=0

= θ′(a) · θ(b)
θ′ (θ−1(0))

∣∣∣∣
a,b=0

= θ′(a) · θ(b)
θ′ (0)

∣∣∣∣
a,b=0

= 0 for 0 < θ′(0) < ∞ , otherwise undefined. (6.1)

At (a0, b0) = (0, 0), the total differential of T (5.4) is equal to 0 if and only
if 0 < θ′(0) < ∞. Otherwise, T is not differentiable and the total differential
does not exist. We can say even more:
Theorem 2. Let T be a strict t-norm with a balanced generator θ∗ such that
θ′

∗(0) = c ∈ ]0, ∞[. Then [13]

lim
(a,b)→(0,0)

T (a, b)
c a b

= 1 .

Proof. If the T has a balanced generator with θ′
∗(0) = c ∈ ]0, ∞[, then we

can approximate θ∗ by a linear function θa as θa(x) = c · x. The inverse of θa

is θ−1
a (x) = x

c . Therefore,

lim
(a,b)→(0,0)

T (a, b) = lim
(a,b)→(0,0)

θ−1
a (θa (a) · θa (b)) (6.2)

= lim
(a,b)→(0,0)

c a · c b

c
= lim

(a,b)→(0,0)
c a b

When we divide both sides of (6.2) by c a b, we get the equation from
Theorem 2.
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6. Derivatives at 0....................................
Remark 4. We noticed in the last chapter that strict t-norms with 0 < θ′(1) <
∞ approach Łukasiewicz t-norm at (1, 1), see Remark 3. This time we see
that t-norms with 0 < θ′(0) < ∞ approach a multiple of the product t-norm
at (0, 0).

Finally, we managed to link the generators to each other in an interesting
way,

lim
x→0+

t′(x) θ(x) = lim
x→0+

(− ln θ(x))′ θ(x) = lim
x→0+

−θ′(x) θ(x)
θ(x) = lim

x→0+
−θ′(x).

(6.3)
If we take a balanced generator, limx→0+ −θ′

∗(x) ∈ ] − ∞, 0[ . This is
the right-hand side of equation (6.3), therefore the left-hand side limx→0+ t′(x) θ(x)
will also be in interval ] − ∞, 0[ . Therefore we can multiply both sides of
the equation by −1 and get (6.4).

lim
x→0+

−t′(x) θ∗(x) = lim
x→0+

θ′
∗(x) (6.4)

6.2 Illustrating examples

As in the last chapter, we are going to investigate the effect of changing deriva-
tive on the resulting t-norm T . This time, we will be changing the derivative
of generators θn, 0 around x = 0. The rest of the domain of the multiplicative
generators will be determined by the generator of product t-norm θP . To get
them, we will need to create polynomials, which will only differ in our desired
interval ]0, 0.1[. They also need to have θn, 0(0) = 0 and θn, 0(0.1) = 0.1 to
ensure continuity of θn, 0 and of the t-norm T generated by θn, 0 [10]. There
will also be two groups of generators split by the values of the exponents.

The first one will create four generators that are less then or equal to θP

on the whole domain, the second one will be greater then or equal to θP on
the whole domain.

6.2.1 Making multiplicative generators

We will multiply exponents of x in such way that instead of being [0, 1] → [0, 1]
they will be defined on [0, 0.1] → [0, 0.1]. This will guarantee that θn, 0(0) = 0
and θn, 0(0.1) = 0.1. We do not even have to move this part of the generator
as we did in section 5.2.1.

θn, 0(x) =
{

xn · 10n−1 x ∈ [0, 0.1[
x x ∈ [0.1, 1].

(6.5)

We will use equation (6.5) for n ∈ {2, 3, 4, 5} to generate the first groups of
generators. The inside of the root function is defined for x ∈ [0, 0.1[, so θn, 0
is a defined generator for n > 0. The second group of generators is generated
by n ∈ {1

2 , 1
3 , 1

4 , 1
5}. We could again say more generally that the first group

has an exponent 1 < n and the second one has an exponent 0 < n < 1.
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................................. 6.2. Illustrating examples

The first four generators are inverses of the second four, as you can see in
Figure 6.1. The inverse functions are plotted in the same color. This time,
none of the generators we created is balanced. Nevertheless, they should all
have some balanced counterparts.

Figure 6.1: Generators edited near zero

6.2.2 Generated triangular norms

In addition to changes in the strips similar to what we noticed in subsection
5.2.2, we will also be dealing with a change resulting from the inversion in
(2.1) as we can see in Figure 6.2. The first strip has values x ∈ ]0, 0.1[, y ∈ ]0, 1[
and the second strip has values x ∈ ]0, 1[, y ∈ ]0, 0.1[. However, the biggest
change seems to be a result of inversion from (2.1). Another interesting thing
is that whilst in the last chapter the difference in values of θ 1

5 , 0 was in Figure
5.4b up to 0.1, here the difference is only a little over 0.08 as shown in 6.2.

We will plot more contours than we did in Figure 2.1, so that we have
a better understanding of what is going on in the areas of the strips.

When looking at the first four generated t-norms in Figures 6.3 and 6.5a,
we notice that values in the affected area are all bigger than in the product
t-norm. In the contours, we see that as the n gets bigger, the contours from
affected areas approach axes x = 0 and y = 0. When it comes to the t-norm
generated by θ5, 0, there are two contours that both seemingly merge with
the axes. The first has the value 0.03 and the second one has the value 0.059.

The second thing we notice is that there are some wave-like twists in
the third contour with a value of 0.089 in all the Figures. It is not particularly
prominent in the first Figure and resembles the shift that was present in
Figures 5.5. In the next ones we can see little twists as if the contour was
drawn to the axes with a magnet and the force was the greatest at points
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6. Derivatives at 0....................................

Figure 6.2: Change in t-norm generated by θ0, 8 in relation to TP

(0, 1) and (1, 0).
As for the second four functions in Figures 6.4 and 6.5b, it is as if someone

switched the poles of the magnet. All contours from the affected area move
away from the axes, so the values stay lower for a longer time. This corresponds
with the t-norms generated by θn, 1 with 0 < n < 1, which also stay below
or equal to the values of product t-norm. And again, the change is more
pronounced in the area of the corners (0, 1) and (1, 0).

We plotted in 3D two t-norms generated by generators that are the most
unlike the product t-norm in Figure 6.5 to get a good visual interpretation
of what is going on. We did not want to plot all the t-norms in 3D and
compare them like this because the differences are subtler and would be harder
to spot. Furthermore, the problem of 3D-generated images not respecting
the definition of t-norm reappears in both subfigures of Figure 6.5. Neither
of the t-norms respects the boundary condition in the images.
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................................. 6.2. Illustrating examples

Figure 6.3: T-norms with generator changing around zero; θ2, 0, θ3, 0, θ4, 0, θ5, 0

Figure 6.4: T-norms with generator changing around zero; θ 1
2 , 0, θ 1

3 , 0, θ 1
4 , 0, θ 1

5 , 0
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6. Derivatives at 0....................................

(a) : T-norm generated by θ5, 0, 3D

(b) : T-norm generated by θ 1
5 , 0, 3D

Figure 6.5: 3D t-norms with generators altered around 0
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Chapter 7
Derivatives zero or infinity

In this chapter, we will be exploring the effect of a derivative equal to 0 or ∞
inside the domain of a generator on the corresponding t-norm. We will plot
and compare the generators and t-norms as we did in the last two chapters.
Nonetheless, this time we will not focus on only changing a generator locally.

7.1 Illustrations

In this section, we will take functions with interesting derivatives in the middle
of the interval. There will be only 4 generators. Again, the first two will be
the inversions of the second two and vice-versa.

7.1.1 Generators with derivative at 0.5 equal to 0 or infinity

To build the first group of generators, we will use monomials with an exponent
that is odd and bigger than 1. Odd because they have both positive and
negative values, with a nice curve in the middle. We will move the curve
up to the middle of the interval and then adjust the function so that it has
θ(0) = 0 and θ(1) = 1.

θn(x) = (0.5n + (x − 0.5)n) · 2n−1. (7.1)
We will only plot two functions to represent the first group. Those functions

will be generated by (7.1) with parameter n ∈ {3, 5}. Their derivatives at
x = 0.5 equal 0.

For the second group of functions, we will reuse the formula (7.1) to make
generators that are inverse to the first group’s generators. This time, we will
use an exponent that is 0 < n < 1 and that can always be written as n = 1

m
for a parameter m that is odd. Concretely, we will use parameters n ∈ {1

3 , 1
5}

Their derivative at x = 0.5 equals ∞.
We need to use the odd roots because there will be negative numbers inside

the root function. If we wanted to use even roots, we would need to rewrite
the function and use the absolute value and signum function as follows

θn(x) = (0.5n + sign (x − 0.5) · (|x − 0.5|)n) · 2n−1. (7.2)

We can see them all in Figure 7.1.
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7. Derivatives zero or infinity ...............................

Figure 7.1: Generators with derivative at 0.5 equal to 0 or ∞

7.1.2 Corresponding t-norms

This group of t-norms is the most different from all those plotted previously
in this thesis. Their generators have only three points in common with
the standard product’s generator: (0, 0), (0.5, 0.5) and (1, 1). In the resulting
t-norms, we see that the contours near the middle of the t-norm curl into
a semicircle facing away from the middle.

For the group with a derivative at 0.5 equal to zero, we see in Figure 7.2
that most of the contours are crowded near the edges, where either x = 1 or
y = 1.

Figure 7.2: T-norms with generators with derivative at 0.5 equal to zero θ3, θ5

For the other group with a derivative at 0.5 equal to infinity, we have
a similar situation, as we can see in Figure 7.3. Most of the contours are
crowded near the edges where x = 0 or y = 0. However, we have more
contours nearing point (1, 1) than we had contours nearing point (0, 0) in
the last case.

34



..................................... 7.1. Illustrations

Another interesting thing regarding the second group is that it sometimes
seems as if the contours did not start at the right points. As we recall from
the definition of t-norm, ∀a ∈ [0, 1] : T (a, 1) = a. Some of the contours get
away from those original points so quickly that the graphical tool does not
even draw the connecting line.

Figure 7.3: T-norms with generators with derivative at 0.5 equal to infinity θ 1
3
, θ 1

5
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Chapter 8
Diagonals of t-norms

This chapter will be about diagonals of t-norms T with regard to
the multiplicative generator θ.
Definition 8.0.1. A diagonal ∆ of a t-norm T , also known as the second
power of T , is the unary function ∆(x) = T (x, x).

A t-norm is not uniquely defined by its diagonal [11]. We can construct
a multiplicative generator θ of a t-norm with diagonal ∆ as follows: [13]..1. Choose a point of the graph

(
x, θ(x)

)
∈ ]0, 1[2...2. The diagonal determines θ on a countable infinite set M ⊂ ]0, 1[...3. The set M is not dense. Therefore, choose two subsequent elements

a, b ∈ M such that a < b and ]a, b[ ∩ M = ∅. The restriction θ|]a,b[ can
be any function such that θ|[a,b] is strictly increasing and continuous...4. The remaining values of θ are uniquely determined by ∆ and the preceding
steps.

Proposition 2. The range of possible values of the multiplicative generator is
limited by the difference x − ∆(x) > 0.
Proof. We know from the definition of Archimedean t-norm T that x > T (x, x)
for all x ∈ ]0, 1[. Let us rewrite that as x > ∆(x), from which we get
x − ∆(x) > 0 by subtracting ∆(x) from both sides.

Notice that this is the same as x−θ−1 (θ(x) θ(x)) > 0 or as x > θ−1 (θ(x) θ(x)).
The closer the diagonal is to the identity, the closer must be all t-norms

with this diagonal. This restriction may be helpful if the diagonal is close
to the identity [13]. For example, Frank t-norms’ diagonals ∆F

λ get closer
and closer to the function x as the parameter λ gets smaller, as we can see
in Figure 8.1. In fact, the diagonal that is the closest to the function x
has parameter λ = 10−6, which is the smallest one displayed there. Then
according to Proposition 2, if we construct multiplicative generators of Frank
t-norms knowing only their diagonal, the smaller λ we would try to do it for,
the smaller approximated error we would get.
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8. Diagonals of t-norms .................................

Figure 8.1: Diagonals of some strict Frank t-norms
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Chapter 9
Conclusions

Let us start this chapter with a summary of how we met the goal presented
in the assignment of this thesis. Throughout this thesis, we studied
the relationship between fuzzy conjunction and its generator. As for the first
point of our goal, we summarized contemporary results about the relationship
in chapters 2, 4, and 8. In chapter 4, we showed why our efforts to extend
(3.5) by using higher-level derivatives failed. In chapter 8, we managed to
describe a relationship between the multiplicative generator of a strict t-norm
and its diagonal.

As for the second point, we demonstrated the effect of local properties and
changes of generators on the corresponding t-norms. In chapters 5 and 6, we
only changed the generators in certain intervals. In chapter 7, we focused on
the derivative of a generator at 0.5. In all these chapters, we first described
how we chose the generators and some of their qualities. Then we moved on
and discussed the t-norms they generated and how they relate to each other.

The third and last point of the goal was treated mainly in chapters 3 and
in the theoretical part of chapters 5 and 6. In chapter 3, we proved that
a balanced generator is unique. Only t-norms with no balanced generator
have generators with derivatives that are either always equal to 0 or always
equal to ∞. In chapter 6, we found that a differential of a t-norm at (0, 0)
only exists for those that have a balanced generator. In chapter 5, we showed
how the differential of t-norm at (1, 1) and the derivatives of its generators at
1 are intertwined.

We encountered an interesting issue when plotting a triangular norm using
its generator. There is no graphic library for fuzzy operations that we know
of, so we had to make our own tools. It turned out that plotting t-norms was
harder than imagined and we had to take the generated images with a grain
of salt. To remind the reader of the spotted flaw, the values of lines x = 1
and y = 1 should be equal to y and x respectively. Nevertheless, Figures 5.7a,
5.7b, 6.5a and 6.5b do not meet this requirement, even though the t-norms
that are displayed there do.

We did not have enough time to correct this problem in this thesis.
Nevertheless, we do think it would be useful if someone really looked into
the causes and possible solutions to this problem.

Afterward, we took a closer look at formula (3.2). We tried to extend
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9. Conclusions .....................................
it to other t-norms. However, we found that taking higher derivatives of
t-norms with the first derivative at 0 equal to 0 or ∞ is not the way. We still
believe this result is worth trying to extend because it might enable us to
extend the notion of the balanced generator to other strict t-norms. Moreover,
we hope that new ways of using balanced generators will be discovered.
For example, it would be interesting to take more balanced generators and
compare them and their corresponding t-norms to each other as we did in
section 5.2.

Finally, we also noticed that if a generator has a derivative of 0 or ∞, it
usually has a very unusual corresponding t-norm. It would be interesting to
get a deeper understanding of this effect.
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