
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of computer

Debugging API for semantic pipelines

Miron Grishchenko

Supervisor: Mgr. Miroslav Blaško, Ph.D.
Field of study: Software Engineering and Technology
May 2023

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

480526 Osobní číslo:Miron Jméno:Grishchenko Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Rozhraní pro ladění sémantických datových proudů

Název bakalářské práce anglicky:

Debugging API for semantic pipelines

Pokyny pro vypracování:
SPipes (Semantic data pipelines) [1] is RDF-based scripting language based on SPARQL motion [2]. It defines data
pipelines in the form of an acyclic oriented graph of modules. Concrete modules are constructed in Java or defined
declaratively within RDF.
The goal of this work is to reimplement or extend the functionality of existing debugging REST API of SPipes engine [3,
4]. The API should be discoverable [5] and able to query execution history, analyze performance of modules and pipelines,
and find candidate modules to cache.
Instructions:
1) become familiar with Semantic Web technologies (OWL, RDF, JSON-LD, SPARQL, RDF4J)
2) review existing debugging capabilities of SPipes and similar tools
3) analyze requirements for the debugging API and define scenarios to use it
4) design the API and implement its prototype
5) test implemented prototype and validate it on selected scenarios with at least three users

Seznam doporučené literatury:
[1] Blaško, Miroslav, SPipes (online at https://github.com/kbss-cvut/s-pipes)
[2] TopQuadrant, Inc. "SPARQL motion" (online at http://sparqlmotion.org)
[3] Petr Jordán, Debugging scripts in SPipes editor, 2021. (https://dspace.cvut.cz/handle/10467/97070)
[4] Lanthaler, Markus, and Christian Gütl. "On using JSON-LD to create evolvable RESTful services." Proceedings of the
Third International Workshop on RESTful Design. ACM, 2012.
[5] Fielding, Roy T. "REST APIs must be hypertext-driven." Untangled musings of Roy T. Fielding (2008): 24.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Mgr. Miroslav Blaško, Ph.D. skupina znalostních softwarových systémů

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: _____________Datum zadání bakalářské práce: 30.01.2023

Platnost zadání bakalářské práce: 22.09.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryMgr. Miroslav Blaško, Ph.D.

podpis vedoucí(ho) práce

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 1 z 2 CVUT-CZ-ZBP-2015.1

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC Strana 2 z 2 CVUT-CZ-ZBP-2015.1

Acknowledgements
I would like to thank my supervisor, Mgr.
Miroslav Blaško, Ph.D., for his patient
guidance, encouragement, and advice dur-
ing my studies and while writing my bach-
elor thesis. Completing this work would
have been all the more difficult had it
not been for the support provided by
friends, who are also members of the CTU
Prague student community, including Ro-
man Stepa, Bc. Andrey Bortnikov, Daniil
Simon and Yevhen Chaban. I must also
express my gratitude to my family for
their continued support and encourage-
ment.

Declaration
I hereby declare that the presented the-

sis is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

I acknowledge that my thesis is subject
to the rights and obligations stipulated
by Act No. 121/2000 Coll., the Copyright
Act, as amended, in particular, that the
Czech Technical University in Prague has
the right to conclude a license agreement
on the utilization of this thesis as school
work under the provisions of Article 60(1)
of the Act.

In Prague, May 15, 2023

v

Abstract
This thesis examines the need for debug-
ging tools in SPipes, a language for man-
aging semantic pipelines. Exploring the
current debugging capabilities of SPipes
and similar tools, the research designs pos-
sible debugging scenarios. By analyzing
scenarios and implementing the SPipes de-
bugging API, this work successfully adds
multiple debugging tools to facilitate error
identification and optimization of SPipes
scripts. The thesis concludes with rec-
ommendations for further development of
SPipes debugging API.

Keywords: SPipes, Debugging tools,
Debugging API

Supervisor: Mgr. Miroslav Blaško,
Ph.D.

Abstrakt
Tato práce zkoumá potřebu ladicích ná-
strojů v SPipes, jazyce pro správu séman-
tických datových proudů. Zkoumáním sou-
časných možností ladění SPipes a podob-
ných nástrojů, výzkum navrhuje možné
scénáře ladění. Analýzou scénářů a im-
plementací SPipes debugging API tato
práce úspěšně přidává několik nástrojů
pro ladění, které usnadňují identifikaci
chyb a optimalizaci skriptů SPipes. V zá-
věru práce jsou uvedena doporučení pro
další vývoj SPipes debugging API.

Klíčová slova: SPipes, Nástroje pro
ladění, Rozhraní pro ladění

Překlad názvu: Rozhraní pro ladění
sémantických datových proudů

vi

Contents
1 Introduction 1
1.1 Foreword . 1
1.2 Goals and motivation 1
2 Background 3
2.1 Semantic Web 3
2.2 Linked Data 3
2.3 Ontology . 4
2.4 Ontology components 5
2.5 RDF . 5
2.6 RDFS and OWL 7
2.7 RDF serialization formats 7

2.7.1 JSON-LD 7
2.7.2 Turtle . 8

2.8 SPARQL . 8
2.9 SPARQLMotion 9
2.10 RDF4J and RDF4J repository . 10
2.11 HATEOAS. 11
2.12 SPipes . 11
3 An overview of the debugging
capabilities of SPipes and similar
tools 13
3.1 ETL . 13
3.2 LinkedPipes ETL 14

3.2.1 Debug in LinkedPipes ETL . 14
3.3 OpenRefine 15

3.3.1 Debug in OpenRefine 15
3.4 Debugging capabilities of SPipes 16

3.4.1 Debugging process in SPipes 16
4 Requirements 19
4.1 Debugging scenarios 19
4.2 Analysis of scenarios 22
4.3 MoSCoW method 23
4.4 Functional requirements 24
4.5 Non functional requirements . . . 25
5 System Design 27
5.1 REST API 27
5.2 Three-layer architecture 28
5.3 Modules and components 29
5.4 Entity model 30
6 Implementation 31
6.1 Technology stack 31

6.1.1 Java . 31
6.1.2 Spring framework 31
6.1.3 JOPA . 32
6.1.4 Docker 32

6.2 Execution tree 33
6.2.1 HATEOAS and Linked Data 34

6.3 Three-layer architecture 35
6.4 The result of implementation . . . 35
6.5 Implemented functionality 37
6.6 Dockerization 40
6.7 Difficulties in implementation . . 40
7 Evaluation 43
7.1 User testing 44

7.1.1 Tester 1 44
7.1.2 Tester 2 45
7.1.3 Tester 3 46
7.1.4 Tester 4 47
7.1.5 Tester 5 48

7.2 Test results 49
8 Conclusion 51
8.1 Recommendations for future work 51
References 53
A Code snippets 57
A.1 Dockerfile 57
A.2 Docker RDF4J 58
A.3 Docker-compose 58
B Evaluation of framework for
debugging SPipes 61
B.1 Run SPipes with debug module 61
B.2 URL’s . 62
B.3 Related resources 62
B.4 Questions 62
B.5 Scenarios . 62

B.5.1 Precondition 62
B.5.2 Scenario 1 63
B.5.3 Scenario 2 63
B.5.4 Scenario 3 64
B.5.5 Scenario 4 64

C Endpoints 65

vii

Figures
2.1 lod-cloud.net LOD graph [5] 4
2.2 Triple construction [10] 6
2.3 Graph example[11] 6
2.4 Sparql example query 9
2.5 Sparql Motion flow example [16] 10
2.6 SPipes language terminology . . . 12

3.1 Screenshot of a pipeline in
LinkedPipes ETL [23] 13

3.2 Report with execution list [25] . . 15

4.1 Activity diagram for time
optimization of pipeline 20

4.2 Activity diagram for error findings
part 1 . 21

4.3 Activity diagram for error findings
part 2 . 22

4.4 Use cases diagram of SPipes debug
API . 23

5.1 Rest API client-server architecture
[31] . 27

5.2 The three-layer architecture [32] 28
5.3 Component diagram, showing

interaction of spipes-debug-module
with other modules and components 29

5.4 Model diagram of entities, used in
SPipes debug API 30

6.1 Execution tree 33
6.2 Related resources example 34
6.3 The three-layer architecture in the

s-pipes-debug module 35
6.4 Use case with implemented cases 37
6.5 Swager API 38

Tables
6.1 Table of functional requirements

fulfillment . 39
6.2 Table of Non-functional

requirement fulfillment 40

B.1 Table of services 62

viii

Chapter 1
Introduction

1.1 Foreword

Semantic Data, also known as Linked Data, is a powerful tool for organizing
and integrating data from different sources. They are based on open standards
and protocols, such as RDF and SPARQL, and allow the creation of a global
network of linked data. Using Linked Data, it is possible to integrate data
from different sources, improving the accessibility and understanding of
information.

One language inspired by the Linked Data concept is SPipes, a language
for managing semantic pipelines defined in RDF. SPipes provides the ability
to create and execute scripts based on the SPARQLMotion programming
language to process and analyze semantic data. Unfortunately, SPipes does
not have enough tools for debugging. This can make it difficult to detect and
fix errors in scripts written in SPipes.

1.2 Goals and motivation

The purpose of this thesis is to create tools for debugging scripts written
in SPipes language. These tools will be designed to accelerate the work
of developers who create and maintain SPipes-based pipelines. They will
be designed to facilitate the process of debugging, identifying, and fixing
bugs, and improving developer productivity when creating and maintaining
SPipes-based scripts.

The main motivations and goals of this thesis include:

. Speeding up the debugging process: Developing tools to help developers
efficiently find and fix errors in SPipes scripts. This will reduce the time
spent on debugging and improve the quality of developed pipelines.. Allow users to better optimize SPipes scripts: Creating tools that will
allow you to get statistical information about the operations performed
will allow user to see clearly which parts of the script should be optimized,
for faster operation or for less memory consumption.

1

1. Introduction
In addition, the work will not involve creating a user interface, but instead,

a discoverable API using HATEOAS principles, by which the user can navigate
between endpoints using the links provided directly in the response with a
specific object.

2

Chapter 2
Background

This chapter describes technologies that are related to SPipes, a tool for
processing of semantic pipelines written in RDF language. Here will be
described such technologies and concepts as Semantic Web, RDF, RDFS,
OWL, SPARQL, and SPARQL Motion.

2.1 Semantic Web

The Semantic Web, also known as WEB 3.0, is an extension of the existing
“Web of documents” [1].

In the Semantic Web data are connected to each other not only on one
current website, but it is linked through the entire web. However, to be able
to use all the power of linked information, it’s needed to have a huge amount
of data on WEB available in a standard format so that Semantic Web tools
can access and manage this data [2].

The main goal of the Web of Data is to create a web of machine-understandable
information. With linked data, when a person or machine has some part of
this data, it’s possible to find other data, somehow related to the piece of
information, that was given in the beginning [3].

2.2 Linked Data

Linked Data is a structured data graph, which allows information interlinking
across independent servers. Linked Data helps machines and people to access
data across servers and gives a better understanding of data meaning.

In 2006, Tim Berners-Lee formulated four basic principles of Linked Data
[3]:. Use URIs as names for things.. Use HTTP URIs so that people can look up those names..When someone looks up a URI (Uniform Resource Identifier), provide

useful information, using the standards (RDF, SPARQL). RDF and
SPARQL will be described in the following sections.

3

2. Background
. Include links to other URIs. so that they can discover more things.
LOD - Linked Open Data is a project that differs from Linked Data with

free access for everyone. The aim of the project is to identify datasets
that are available under open licenses, re-publish these in RDF on the Web
and interlink them with each other [4]. Nowadays there are thousands of
datasets published among this project in different fields of knowledge, such
as geography, government, media, publications, and others. And the most
powerful thing about it is that all these data are connected and information
leads to other information. In the picture 2.1 is a graph of datasets from
lod-cloud.net. According to lod-cloud.net, on 20 May 2020, they had 1,255
registered datasets [5]. Each dataset contains from 1 and up to 1.5 billion
triples (simple expressions about some object), as DBpedia has.

Figure 2.1: lod-cloud.net LOD graph [5]

2.3 Ontology

Ontology in computer science is an attempt at a comprehensive and de-
tailed formalization of some domain of knowledge by means of a conceptual
schema. Ontology is a collection of Entity Type and Entity Relationship
Type definitions associated with a realm of discourse. Ontologies are used in
programming as a form of representation of knowledge about the real world
or part of it. Ontologies are built on much the same principle. Ontologies
are usually represented in languages that allow them to move away from
strict data structures and implementation strategies. In practice, ontology
languages are closer in expressive power to first-order logic than languages
used to model databases [6].

4

.................................2.4. Ontology components

2.4 Ontology components

Amount of ontology components differ from source to source, but these are the
most common: Classes, Individuals, Properties, Logical expressions
and rules and Annotations.

Components of ontology usually include the following elements [7] [8]:. Classes - Classes represent entities, objects, or concepts in the subject
area covered by the ontology. Classes can have a hierarchical structure
and include subclasses and superclasses.. Individuals - Individuals represent specific instances of classes in ontology.
Individuals can be individual objects, events, places, and other domain-
specific entities.. Properties - Properties define attributes, characteristics, or relationships
between classes, individuals, or other entities in the ontology. Properties
can be of two types: object properties (leading to other instances) (such
as "has an owner") and attribute properties (such as "has age" or "has
weight").. Logical expressions and rules - Logical expressions and rules define
logical relationships, constraints, and rules in the ontology. They may
include constraints on property values, relations between classes, logical
operators, and other logical expressions that define the rules for inference
and reasoning in the ontology.. Annotations - Annotations are metadata or additional information related
to classes, individuals, properties, or relationships in the ontology. They
may contain descriptions, comments, keywords, authorship, and other
additional information that may be useful for understanding

2.5 RDF

The Resource Description Framework (RDF) is a framework for representing
information on the Web. First, it is important to understand what resources
are. Any IRI (Internationalized Resource Identifier) or literal (simple values,
such as numbers, strings, dates) denotes something in the world (the "universe
of discourse") [9]. These things are called resources. Resources are for example
documents, students, numbers, any kind of animal, scientific phenomenon,
basically anything.

There are multiple concepts that RDF is following [9]:.Graph data model. URI-based vocabulary. Data Types

5

2. Background
. Literals. XML serialization syntax. Expression of simple facts

The expression of simple facts is achieved by the data structure, which is
called triple. One expression is one triple, which represents the relationship
between resources. Triples consist of a subject, predicate, and object. Here
are some examples :

Figure 2.2: Triple construction [10]

<Bob > <is a> <person > .
<Bob > <is a friend of > <Alice > .
<Bob > <is born on > <the 4th of July 1990 > .
<Bob > <is interested in > <the Mona Lisa > .
<the Mona Lisa > <was created by > <Leonardo da Vinci > .
<the video ’La Joconde a Washington ’> <is about > <the

Mona Lisa >

Listing 2.1: Set of triples [11]

Set of triples from example 2.1 generates graph on figure 2.3:

Figure 2.3: Graph example[11]

6

................................... 2.6. RDFS and OWL

2.6 RDFS and OWL

RDFS is an extension of RDF that allows describing taxonomies and mem-
berships in classes to represent domain semantics more [12]. However, RDFS
is not sufficient for modeling complex semantic relations and constraints.
Therefore, OWL, an ontology language that extends the RDFS vocabulary
and provides a logical layer for reasoning about knowledge, was developed.
OWL allows to describe elements such as non-overlapping and symmetric
relations, cardinality, equality and enumerated classes. It also distinguishes
between data and object properties. It is to be noted that OWL ontologies
are primarily exchanged as RDF documents as each OWL document can be
serialized as an RDF document.

2.7 RDF serialization formats

There are multiple ways of encoding RDF data. RDF document uses specific
syntax for representing RDF graphs or RDF datasets. These syntaxes are
Turtle, RDFa, JSON-LD, TriG and others. This part will describe only RDF
syntaxes that are used in the SPipes project.

2.7.1 JSON-LD

JSON-LD (JavaScript Object Notation for Linked Data) is a lightweight
Linked Data format. It is easy for humans to read and write. It is based
on the already successful JSON format and provides a way to help JSON
data interoperate at Web-scale [13]. One of the main benefits of JSON-LD is
that it allows data to be embedded directly into web pages, making it easier
for search engines and other software to understand and process the data.
In addition, this syntax has the clearest and most readable structure for a
person less trained in linked data. This is achieved thanks to JSON, the basis
of this RDF syntax.
{

" @context ": "https :// json -ld.org/ contexts / person . jsonld
",

"@id ": "http :// dbpedia .org/ resource / John_Lennon ",
"name ": "John Lennon ",
"born ": "1940 -10 -09" ,
" spouse ": "http :// dbpedia .org/ resource / Cynthia_Lennon "

}

Listing 2.2: Example of JSON-LD linked data format [13]

The @context keyword is used to associate a context with a JSON-LD
document, allowing the data to be interpreted and processed in a standardized
and interoperable way. It helps to ensure that the meaning of the data
is properly understood by machines, and facilitates data integration and
exchange in a linked data environment.

7

2. Background
2.7.2 Turtle

Turtle is a very human-friendly syntax because it greatly reduces the number
of characters needed to write triples and reduces duplication of information.
Turtle uses the following techniques [14]:

. Prefixes are defined at the beginning of each file, which then replaces
the long IRIs.

. If several expressions are written for the same subject, they are separated
by a semicolon and the next expression doesn’t need to use the subject,
it will be determined automatically from the first one. If you want to
define several objects with the same predicate for the same subject, the
objects are separated by a comma.

. Replacing rdf:Type with a simple a. This way we don’t need to create
an extra prefix and complicate reading the file.

. Each set of expressions that refer to the same subject ends with a dot.

@prefix dbpedia : <http :// dbpedia .org/ resource /> .
@prefix schema : <https :// json -ld.org/ contexts / person .

jsonld #> .

dbpedia : John_Lennon a schema : Person ;
schema :name "John Lennon " ;
schema :born "1940 -10 -09" ;
schema : spouse dbpedia : Cynthia_Lennon .

Listing 2.3: Example of Turtle on same data as on listing 2.2

2.8 SPARQL

SPARQL is a query language for RDF. SPARQL allows users to specify
patterns in the data they want to retrieve and then retrieve any data that
matches those patterns. It has a syntax similar to SQL, but is more expressive
and can be used to query a wide variety of data sources, including databases,
files, and web services [15].

The following example retrieves from the database names and birthdays of
authors that were born between 1900 and 2000 years. The SELECT clause
specifies what variables should be in the output, the same as in SQL languages
and the WHERE clause specifies the pattern that should be matched for the
result:

8

................................... 2.9. SPARQLMotion

Figure 2.4: Sparql example query

Translating this SPARQL query into human language, the result should
match these statements:. Person should have <http://dbpedia.org/ontology/Artist> type.. Name should be taken from <http://xmlns.com/foaf/0.1/name>.. Birth Year should be taken from <http://dbpedia.org/ontology/birthYear>.. Filtering results, by birth year so only results with year more than 1900

and less than 2000 are taken.

2.9 SPARQLMotion

SPARQLMotion is an RDF-based scripting language with a graphical notation
to describe data processing pipelines [16]. SPARQLMotion is designed to
make it easy to create complex data processing pipelines by chaining together
a series of simple SPARQL queries. The main idea of SPARQLMorion is to
make it possible to pass results from one process step to another, creating
a chain. As the name of the language says, behavior in each module is
driven mostly by SPARQL queries. These queries are used for iterating
through result sets, constructing new RDF triples, performing updates to
RDF data sources, and many more ways of interacting with linked data. The
SPARQLMotion language itself is a fairly lightweight collection of classes and
properties used to represent SPARQLMotion scripts in RDF.

For a better understanding of SPARQLMorion, it’s needed to describe
some key concepts. These concepts are 1:. Script: A SPARQLMotion script is a sequence of steps written in RDF

that define the processing and manipulation of data. Each step in the
1The SPARQLMotion system vocabulary is found in the namespace

http://topbraid.org/sparqlmotion, which is typically abbreviated with the prefix
sm.

9

2. Background
workflow is represented by a SPARQLMotion module, which performs a
specific task..Module: Modules can be connected to each other with different rela-
tionships. Each processing step in SPARQLMotion is called a module.
SPARQLMotion provides a range of predefined modules that can be used
to build a workflow, such as modules for querying data, transforming
data, and writing data to a file or database.. Variable: SPARQLMotion allows users to store data in variables, which
can be used to pass data between different modules in a workflow.

Figure 2.5: Sparql Motion flow example [16]

2.10 RDF4J and RDF4J repository

RDF4J is an open-source Java framework for working with RDF data. It
provides a set of APIs and tools for creating, storing, querying and ma-
nipulating RDF data. The framework supports several RDF serialization
formats, including RDF/XML, Turtle, N-Triples, and JSON-LD, and provides
a number of query languages, including SPARQL, SeRQL, and RDF4J’s own
query language [17].

RDF4J includes an implementation of the RDF4J repository, which is
a database system designed to store and query RDF data. The RDF4J
repository can be used with a variety of data sources, including in-memory

10

..................................... 2.11. HATEOAS

databases, file-based databases, and remote databases accessible over a net-
work. The repository supports transactional updates, versioning, and queries
to large datasets, making it suitable for use in a variety of applications [18].

RDF4J is widely used in the Semantic Web community to develop and
deploy applications that work with RDF data. Its flexible APIs and support
for multiple query languages and serialization formats make it a powerful
tool for working with RDF data.

2.11 HATEOAS

HATEOAS is one of the principles of the REST architecture, which provides
a flexible way to build web services [19]. Rather than rigidly defining how
clients can interact with resources, HATEOAS suggests using hyperlinks so
that clients can access resources and manage the application state.

Specifically, HATEOAS defines that each resource must contain links to
other resources that are associated with it. This allows clients to automatically
discover new opportunities to interact with resources without having to know
about them in advance.

The HAL (Hypertext Application Language) protocol is one example of
the use of HATEOAS. It presents resources as JSON or XML documents
that contain links to other resources and additional meta-information. HAL
is a simple format that gives a consistent and easy way to hyperlink between
resources in API [20].

{
"id ": 1,
"name ": " Product 1",
" _links ": {

"self ": { "href ": "/ products /1" },
" category ": { "href ": "/ categories /2" }

}
}

Listing 2.4: Example of JSON-LD linked data format

The example 2.4 shows the use of HAL, where self is the link that was used
to get this data. And the category link leads to the category under which
this product is located.

2.12 SPipes

SPipes is a tool for managing semantic pipelines defined in RDF inspired by
the SPARQLMotion language [21]. Each node or other word module in a
pipeline represents some stateless transformation of data [21]. SPipes allow
not only passing variables from module to module but also declaring global
variables, which can be used in any data transformation step. Modules for

11

2. Background
SPipes pipelines can be generated in two ways: either directly in script or in
Java. The tool supports only scripts written in one RDF syntax Turtle.

In this work, you can often come across the concepts of module execution
and pipeline execution. At the moment when the pipeline is launched, we
can store the data about the pipeline’s execution. This information is saved
in the RDF4J repository and contains such data as when the pipeline was
launched, which modules were executed in the pipeline, where inputs and
outputs of modules are stored, and other useful information.

Semantic pipeline execution data can be stored in the RDF4J repository
within AdvancedLoggingProgressListener, implemented in SPipes. This is a
key aspect for accomplishing the goals of this thesis.

In the work "Debugging scripts in SPipes editor" by Bc. Petr Jordán [22] I
found an excellent diagram describing the concepts used in SPipes. I used
this diagram as a base and extended its contents a bit. The diagram is shown
in figure 2.6

Figure 2.6: SPipes language terminology

12

Chapter 3
An overview of the debugging capabilities
of SPipes and similar tools

In this section, I’ll take a look at other tools similar to SPipes, as well as an
overview of their debugging capabilities. At the end of the chapter, I will
describe how to debug in SPipes.

3.1 ETL

Figure 3.1: Screenshot of a pipeline in LinkedPipes ETL [23]

ETL is an acronym that stands for Extract, Transform, Load (see figure 3.2).
In the context of LOD publishing tools, ETL refers to the process of properly
lifting the source data to RDF as well as covering other operations required
for publishing data [24]. Many of these tools have a narrow focus and only

13

3. An overview of the debugging capabilities of SPipes and similar tools
support data transformation, but ETL involves much more than just data
transformation. It also includes:

.Gathering data from its source.

. Creating metadata.

. Publishing data and metadata on the web.

. Creating appropriate catalog records.

. Loading the data into a triple store.

Therefore, ETL is an essential part of the LOD publishing process, and
a tool that supports the full ETL process is necessary for successful LOD
publication, particularly for public administrations.

3.2 LinkedPipes ETL

LinkedPipes ETL is a tool designed to support the process of publishing
datasets as Linked Open Data [24]. It allows users to create data transfor-
mation pipelines consisting of configurable components that produce and/or
consume files or RDF data. The tool has a library of more than 60 reusable
components, and new components can be easily developed. LinkedPipes ETL
is based on open APIs and is configured based on the Linked Open Data
principles. Its typical workflow includes adding an extractor component to
the source data, adding necessary transformation steps to the pipeline, trans-
forming raw RDF representation to RDF modeled using proper vocabularies,
uploading data to a web server or a triple store, and describing data with
metadata.

3.2.1 Debug in LinkedPipes ETL

When a failure occurs, LinkedPipes ETL displays a graphical view that shows
the point of failure along with an error report [24]. The report contains
an execution list. Clicking on the execution in the list opens a graphical
execution overview that shows what went wrong. You can also click on a
data unit, represented by a circle on a component, to browse its contents and
investigate the source of the error. Clicking on the component itself provides
details about the failed execution. In order to fix the failed component, you
must switch to edit mode and make the necessary changes.

14

..................................... 3.3. OpenRefine

Figure 3.2: Report with execution list [25]

LinkedPipes ETL also offers "debug from" and "debug to" features:. "Debug from" allows designers to run only the part of the pipeline that
failed in the previous execution. This feature saves time and resources
by reusing the data already gathered in the previous execution, thereby
eliminating the need to re-run the entire pipeline.. "Debug to" feature allows designers to run only the necessary parts of the
pipeline to execute a specific component, such as the section leading up
to the failed component. This selective execution ensures that resources
are used efficiently, and the rest of the pipeline remains unexecuted.

3.3 OpenRefine

OpenRefine is an open-source desktop tool for cleaning and converting dirty
data [26]. The application looks like a spreadsheet, but works like a database
in a web browser, providing an easy-to-use interface for novice users, as well
as offering advanced features and capabilities for more experienced users.

OpenRefine allows users to import data from a variety of sources, including
CSV, TXT, JSON, XML, XLS, MARC, and RDF. After importing data, users
can apply various data-cleaning strategies and algorithms using OpenRefine’s
built-in functions or by writing their own expressions in GREL (General
Refine Expression Language), Jython (Python), or Clojure.

OpenRefine also offers a number of extensions, matching services, and client
libraries. One of the extensions is RDF [27]. The RDF extension is a tool for
creating linked data using OpenRefine. It allows users to convert data into
RDF format and define relationships between different data elements.

3.3.1 Debug in OpenRefine

Since the work with OpenRefine is not by running some script, but in such a
mode that gradually applies any changes to certain data, OpenRefine does
not contain many debugging instruments.

OpenRefine has an undo/redo feature that allows users to revert changes
made to their data [28]. The change history is saved with the project’s data,

15

3. An overview of the debugging capabilities of SPipes and similar tools
and users can view and undo changes after restarting OpenRefine. To revert
data back to an earlier state, users click on the last action in the timeline
they want to keep. Users can also reuse operations performed in OpenRefine
by extracting and copying JSON-encoded operations. Not all operations can
be extracted, such as edits to a single cell.

3.4 Debugging capabilities of SPipes

Unfortunately, I could not find any documentation describing the debugging
features of SPipes. The debugging capabilities will be described based on my
personal experience with SPipes and consultations with the supervisor of this
thesis.

If the pipeline has not been completed, the script designer immediately sees
in the logs which module, stopped the work of the pipeline. Further, SPipes
has the ability to provide all necessary data to the module and start only one
module, without continuing in the pipeline. Each executed module can be
executed on the same inputs. This way user can change the configuration of
the module and test it on previous input. It allows users to debug specific
modules fast.

In addition, SPipes has the ability to save the input and output of modules
to files and save execution metadata to the RDF4J repository. Using these
features, the developer could use information about the progress of pipeline
execution to debug the script.

For debugging SPipes scripts, there are several other tools that are enabled
by enabling these tools in the configuration file:. Property audit.enable. When true, then Turtle format files are generated

for each executed module, which contains the inputs and outputs.. Property execution.checkValidationConstraints. When true, then an-
other mechanism available to SPipes comes into effect: Constraints.
Constraints are used to specify rules for the data, thus verifying their
correctness at the output.. Property contextsLoader.data.keepUpdated. When true, all changes
made to the script are instantly applied when the script is launched.

3.4.1 Debugging process in SPipes..1. Set the execution environment to development by setting execution.environment
property to development...2. Create a script and execute it...3. If any validation constraints fail, take the following actions:. Check the output of the pipeline execution.

16

............................ 3.4. Debugging capabilities of SPipes

. If the output is not satisfactory, examine other inputs/outputs along
the module’s path...4. If the problem you solved might occur later or you want to document

how the module works, create a new validation constraint...5. Check the output by either examining the Turtle file (generated by
enabling of property audit.enable) or loading it into RDF4J and querying
it...6. Re-run the module.

17

18

Chapter 4
Requirements

The chapter presents the requirements analysis for the SPipes debug API
project. It covers activity diagrams with debugging scenarios, requirement
categorization using the MoSCoW method and lists the functional and non-
functional requirements for the project.

4.1 Debugging scenarios

In this chapter, I will describe possible scenarios of malfunctioning pipelines
with possible solutions to these problems. Then from these scenarios, we will
derive the requirements for a future solution.

In general, these scenarios can be divided into two categories:

.Optimization scenario, which describes where you can find problems
with the slow execution of the pipeline. Figure 4.1 represents the process
of finding problems related to the slow performance of pipelines.

. Scenario for error detection, which allows the developer to find errors
during the implementation of the SPipes script. Figures 4.2 and 4.3
describe the solution to such problems as the absence of the desired triple
in the output, or, conversely, the presence of an unexpected triple in the
output of the pipeline (please note, that these two figures represent one
schema).

19

4. Requirements.....................................

Figure 4.1: Activity diagram for time optimization of pipeline

20

................................. 4.1. Debugging scenarios

Figure 4.2: Activity diagram for error findings part 1

21

4. Requirements.....................................

Figure 4.3: Activity diagram for error findings part 2

4.2 Analysis of scenarios

Based on the above diagrams, it is possible to draw up a certain set of tools
that SPipes scripts developers could use in the future. This set of tools is
presented on figure 4.4 as a Use Case diagram.

22

.................................. 4.3. MoSCoW method

Figure 4.4: Use cases diagram of SPipes debug API

4.3 MoSCoW method

Requirements for this project are made using the MoSCoW method. All
requirements are important, but they bring different values to the final
product, some of them are critical and some of them are just nice to have.
MoSCow method helps us to categorize them into 4 different groups [29]:.Must have (M) - the most critical requirements for the final product.

Even if at least one of them is failed, the whole work can be considered

23

4. Requirements.....................................
as failed.. Should have (S) - the second category of requirements, they are almost
as important as the first category, but there can be other ways to satisfy
the requirement, or they are not that time-dependent, so the requirement
can be satisfied in another time box.. Could have (C) - these requirements are not necessary, they usually
improve user experience. Usually, they are done when there are resources
available after completing the first two categories..Won’t have (W) - Least-critical requirements, they are either dropped
or can be planned in another timebox.

4.4 Functional requirements

Based on the Use Case created and in consultation with the thesis supervisor,
functional and non-functional requirements for the future implementation of
the project were created.. FR1 (M) - The system allows the use of REST API.. FR2 (C) - The system allows the use of simple UI for web API.. FR3 (S) - The system allows displaying the count of output triples of

each module.. FR4 (S) - The system allows displaying the count of input triples of each
module.. FR5 (M) - The system allows displaying the execution time of each
module.. FR6 (S) - The system allows the finding of the module(s) that generated
the given triple pattern.. FR7 (S) - The system allows the finding of the module(s) that filtered
out the given triple pattern.. FR8 (S) - The system allows comparing pipeline executions and finding,
where the first difference occurred.. FR8.1 (S) - The system allows saving data about the comparison of two
pipelines in the RDF4J database, such as if the pipelines are the same
or if not, where the difference was found. So in subsequent requests, the
results of the comparison are not calculated but simply returned to the
user from the database.. FR9 (S) - The system allows the finding of the module, which bounded
variable with the provided name.

24

.............................. 4.5. Non functional requirements

. FR10 (C) - The system allows finding cacheable modules.. FR11 (M) - The system allows to list of possible debugging tools, related
to returned entities after pipeline execution.. FR12 (C) - The system allows getting module execution across all pipeline
executions.. FR13 (C) - The system allows finding variables that were not used during
the pipeline execution.. FR14 (C) - The system allows getting module execution by ID.. FR15 (S) - The system allows detecting the configuration difference of
the pipelines.. FR16 (C) - The system allows the detection of the input difference of
the pipelines.

4.5 Non functional requirements

. NFR1 (C) - Cover functionality with tests.. NFR2 (M) - Dockerization of used technologies.. NFR3 (S) - Test functionality with at least 3 users.. NFR4 (M) - Create Swagger API documentation.. NFR5 (M) - REST endpoints must return JSON-LD format.

25

26

Chapter 5
System Design

This chapter is intended to describe general system design decisions. It
includes information about the selected architecture, system components,
services, modules, and their interaction.

5.1 REST API

REST is an acronym for REpresentational State Transfer and an architectural
style for distributed hypermedia systems. Roy Fielding first presented it in
2000 in his famous dissertation[30].

Figure 5.1: Rest API client-server architecture [31]

The basic REST principles described in the book "RESTful Web Services"
by Leonard Richardson and Sam Ruby include [19]:. Client-server architectural style shown on figure 5.1: The system is

divided into clients, which initiate requests, and servers, which process
requests and provide resources (e.g., data or functionality).. Stateless: Each client request to a server must contain all the information
necessary to process it, without storing state on the server between
requests. The server should not remember previous requests from the
client.. Caching: Server responses can be cached on the client so that repeated
requests for the same resources can be processed faster and reduce the

27

5. System Design
load on the server.. Uniform Interface: The interface between client and server must be simple,
uniform, and limited. It should contain a minimum set of operations (eg,
CRUD - create, read, update, delete) and use standard HTTP methods
(eg, GET, POST, PUT, DELETE) to access resources.. Layered System: The architecture can be composed of multiple layers,
where each layer performs specific functions. Clients do not need to be
aware of the internal structure of the system and servers can be scaled
horizontally by adding additional layers.

All of the above principles should be applied in the development of the
SPipes debug API. These REST principles provide simplicity, scalability,
reliability, and performance in developing web services, making them easily
accessible and interoperable with different clients and platforms.

Figure 5.1 shows the data transfer in JSON format, as SPipes works
primarily with Linked Data, instead of JSON format the data are transferred
to the client side in JSON-LD format, which is described in the section 2.7.1.

5.2 Three-layer architecture

Figure 5.2: The three-layer architecture [32]

A three-layer architecture is one of the common approaches to organizing
program code and application functionality. It consists of three main layers:
the presentation layer, the business logic layer, and the data access layer [32].

The presentation layer is responsible for user interaction and data display.
It includes the user interface, user input/output components, and the logic for
handling user actions. This layer is separate from the business logic and data
access layer, and its purpose is to provide data display and user interaction.

28

............................... 5.3. Modules and components

The business logic layer contains the core application logic. It handles busi-
ness rules, data validation, query processing, and business process decisions.
The business logic layer is the heart of the application and its job is to ensure
that the business logic functions properly and maintains data integrity.

The data access layer is responsible for interacting with databases, external
services, or other data sources. It provides functions for reading, writing, and
updating data, as well as for handling transactions and managing database
connections. Separating the data access layer from the other layers allows
for the separation of responsibility and simplification of system support and
modification.

5.3 Modules and components

Figure 5.3: Component diagram, showing interaction of spipes-debug-module
with other modules and components

The component diagram 5.3 shows part of the SPipes project and the RDF4J
repository. The diagram shows all the important components that the s-pipes-
debug module communicates with, either directly or indirectly.

It starts with the flow, which is used to run the semantic pipelines. One

29

5. System Design
way to run a pipeline is to use the s-pipes-web module, which provides a WEB
API to run a pipeline or some parts of a pipeline. The module then delegates
the work on the execution of the pipelines themselves to the s-pipes-core,
where all the important calculations take place. The s-pipes-core contains
ProgressListeners, which are executed when the pipelines are started before
each module is started, after each module is completed, and after the whole
pipeline is completed. One class that implements the ProgressListener is
the AdvancedLoggingProgressListener, which writes some data about the
execution of a module or a pipeline to the RDF4J repository.

The s-pipes-debug module, which will be implemented as part of the thesis,
should use these data by pulling it from the RDF4J repository, processing it,
and returning it to the user in the desired format.

5.4 Entity model

Figure 5.4 shows the Entity Model used in the SPipes debugging API. Entities
from this model are saved to the RDF4J repository when using JOPA (see
6.1.3).

There are not many entities in the diagram as all the work in the project is
centered around ModuleExecution and PipelineExecution. Both entities are
inherited from the Thing entity. Thing refers to a fundamental concept that
represents any entity or resource that can be identified, described, or referenced
on the web. Also on the diagram, you can see the PipelineComparison entity,
which is a comparison of two PipelineExecution entities.

Figure 5.4: Model diagram of entities, used in SPipes debug API

30

Chapter 6
Implementation

This chapter will describe the technologies I worked with to implement the
solution. Later in the chapter, some details of the solution are described, and
at the end the results of the implementation.

6.1 Technology stack

This section will describe the main technologies used in the implementation
of the solution

6.1.1 Java

SPipes is written in the Java programming language, and since a lot of
functionality will be used from the existing project, it was decided to create
a new Maven module in the SPipes project 1.

Java is an object-oriented programming language developed by Sun Systems
[33]. Its most important features are the unopened language and the so-called
Java Virtual Machine (JVM). The JVM allows to write code once and then
run the program on any operating system as the operations are not performed
directly on the hardware but through JVM. Java compiles the code into what
is called byte code, then the JVM interpreter translates this byte code into
operations that the specific operating system understands.

Java is also known for its extensive class library, which contains many
tools and functions that simplify the development process. Java class library
contains an extensive set of methods and tools that allow developers to reduce
the time and effort required to write applications [34].

6.1.2 Spring framework

Spring is a popular open-source framework for creating Java-based applica-
tions. Thanks to its adaptability and extensive feature set, it has become
very popular among developers since its first release in 2002.

The Inversion of Control (IoC) container, which controls the lifecycle of
objects and their dependencies, is one of the key components of Spring. As

1https://github.com/kbss-cvut/s-pipes

31

6. Implementation....................................
a result, components can communicate freely, making it simple to modify
and test specific application components. In addition, Spring provides a wide
range of modules and tools for various aspects of development. [35]

Spring is the standard of modern Java application development, the frame-
work supports a huge number of technologies. [36] It is also important to
note the development-friendly architecture of spring applications, thanks to
which the application is easy to test and extend.

6.1.3 JOPA

JOPA is a Java OWL persistence framework aimed at efficient programmatic
access to OWL2 ontologies and RDF graphs in Java. The system is based
on integrity constraints in OWL that JOPA uses to establish the contract
between a JOPA-enabled Java application and an OWL ontology. The system
architecture and API are similar to JPA 2.1. [37]

Code snippet of a model java class using JOPA for accessing RDF graph
from JOPA examples repository [38]:
@OWLClass (iri = Vocabulary . Superhero)
public class Superhero implements Serializable {

@Id
private URI uri;

@OWLDataProperty (iri = Vocabulary . p_firstName)
private String firstName ;

}

Iri in the code snippet is String. For example:
public static final String p_firstName = "http :// krizik .felk.

cvut.cz/ ontologies /jopa/ example05 # firstName ";

6.1.4 Docker

Docker is a platform for automating the deployment and management of
applications in a containerized environment. Docker uses containerization
technology that isolates an application and its dependencies from the operating
system on which it runs. This allows developers to package applications and
their dependencies into a single container that can run on any platform that
supports Docker [39].

One of the main benefits of Docker is the ability to create containers based
on different images. A container is a standard unit of software that packages
up code and all its dependencies so the application runs quickly and reliably
from one computing environment to another [40]. Image-based container
creation provides uniformity in application deployment and simplifies the
scaling process.

Thus, Docker provides developers with a convenient and easy way to
package applications and their dependencies into a single container, which
greatly simplifies the process of deploying and managing applications. In

32

.................................... 6.2. Execution tree

addition, Docker provides security and stability to the system as a whole
because applications and their dependencies are isolated from the rest of the
processes on the host system.

6.2 Execution tree

Often at the end of the execution, the developer is confronted with the results
that he would like to find the source. For example, we have written a simple
script, and there is a variable in the output. In order to find the module, that
created this variable, we need to know in which order the pipeline modules
were executed. In the RDF4J repository, each module execution has the field
"has_next" (see section 5.4), leading to the next execution of the module.
Using this data, we can build a tree where the modules that ran first are at
the very bottom of the tree and the root is the last module, called the return
module.

To build the tree ExecutionTree class is used. By passing all the module
executions of pipelines into its constructor, the algorithm will wrap each
module into a ModuleExecutionNode which has additional parameters such as
inputExecutions, execution, and the depth at which the node is located. We
need the depth to find the earliest modules. Keeping the depth is necessary in
order to find multiple modules. This can happen if the condition for finding
has been fulfilled for several modules at once at the same depth.

Figure 6.1: Execution tree

In the following example, refer to figure 6.1
Imagine that we are looking for which module first generated the firstName

variable. By passing all pipeline execution modules to the Execution Tree
constructor, we will build a tree. Next, using other s-pipes-debug-module
mechanisms, we will find in which modules the firstName variable appeared.
Suppose these were modules A, C, D, E, and F. Using the findEarliest method

33

6. Implementation....................................
and passing the ModuleExecutions identifiers to it, the method will return
modules A and C to us since they were executed before the others.

6.2.1 HATEOAS and Linked Data

Unfortunately, I could not find ways to apply existing libraries such as Spring-
HATEOAS. Spring required me to inherit from a class that had a field
responsible for resources. Unfortunately, I couldn’t mark this field with the
@OWLObjectProperty annotation from the JOPA (see section 6.1.3) library.
It made it impossible for me to offer JSON-LD format to the user correctly
when the result arrives. I decided to write my implementation using only a
method from Spring-HATEOAS that could access the controller methods and
make the URL.

Related resources are done with the help of ResponseBodyAdvice, according
to official spring documentation, ResponseBodyAdvice allows customizing the
response after the execution of an @ResponseBody or a ResponseEntity con-
troller method but before the body is written with an HttpMessageConverter
[41]. So, when the controller produces PipelineExecution or ModuleExecution
I can capture the object and modify its content e.g. add related resources
based on the returned entity type.

Figure 6.2: Related resources example

34

................................ 6.3. Three-layer architecture

6.3 Three-layer architecture

Figure 6.3: The three-layer architecture in the s-pipes-debug module

The screenshot on figure 6.3 shows that the s-pipes-debug module, written as
part of the thesis, is written according to a three-layer architecture. There is
no logic in the controller package, only controller methods, which delegate all
the work to service methods. The service methods in their turn use the DAO
layer to retrieve data from the RDF4J repository and exchange data with
the database.

6.4 The result of implementation

As a result of the implementation, the s-pipes-debug module was created in
the SPipes project. During the development, 3,899 lines were added.

Changes were also made outside the s-pipes-debug module since some logic
was added or changed in such modules as s-pipes-core, s-pipes-model, and s-
pipes-web. The changes did not critically change the original SPipes processes
in any way. The main change outside the s-pipes-debug module was the
removal of the Transformation class, which represented pipeline executions
and module executions, and replacement it with PipelineExecution and
ModuleExecution, which would allow to better define areas of responsibility
and give an understanding of which object is handled, not based on the object
name alone.

35

6. Implementation....................................
In s-pipes-debug itself, several of the tools shown in diagram 6.4 are

implemented.

No domain objects are returned from controllers, instead, DTOs (Data
Transfer Object) are used. To transform domain objects to DTOs, mapstruct
mappers are used that interface perfectly with Spring and are defined as a
component by adding @Mapper annotations.

To get data from the RDF4J repository in a DAO layer, I used JOPA (see
section 6.1.3), an example of DAO class is shown on code snippet 6.1.

@Repository
public class ModuleExecutionDao extends AbstractDao <

ModuleExecution > {

protected ModuleExecutionDao (EntityManager em) {
super(em);

}

public Boolean askContainOutput (String context , String
graphPattern) {

try {
return (Boolean) em. createNativeQuery (" ASK {"

+ " GRAPH <" + context + "> {"
+ graphPattern +
" }}"). getSingleResult ();

} catch (Exception e) {
return false;

}
}

public Boolean askContainInputAndNotContainOutput (String
inputContext , String outputContext , String graphPattern) {

try {
return (Boolean) em. createNativeQuery (String . format

(" ASK {"
+ " GRAPH <%s> {"
+ " FILTER NOT EXISTS {%s}"
+ " }"
+ " GRAPH <%s> {%s}"
+ "}", outputContext , graphPattern ,

inputContext , graphPattern))
. getSingleResult ();

} catch (Exception e) {
return false;

}
}

}

Listing 6.1: ModuleExecutionDao

The module is built in such a way that adding other tools shouldn’t cause
much of a problem.

36

............................... 6.5. Implemented functionality

6.5 Implemented functionality

This section describes all the features you get with the SPipes debug API.
In the diagram 6.4 implemented features are marked with green color in the
case diagram.

Figure 6.4: Use case with implemented cases

37

6. Implementation....................................
In figure 6.5, you can see endpoints for the implemented features from

diagram 6.4, if you want to see more details about the endpoints, then you
can find them in appendix C. Tables 6.1 and 6.2 show the fulfillment of
requirements.

Figure 6.5: Swager API

38

............................... 6.5. Implemented functionality

Requirement Name Status
FR1 (M) - The system allows the use of web API. Implemented
FR2 (C) - The system allows the use of simple UI for web
API.

Not implemented

FR3 (S) - The system allows displaying the count of output
triples of each module.

Implemented

FR4 (S) - The system allows displaying the count of input
triples of each module.

Implemented

FR5 (M) - The system allows displaying the execution
time of each module.

Implemented

FR6 (S) - The system allows the finding of the module
that generated the given triple pattern.

Implemented

FR7 (S) - The system allows the finding of the module
that filtered out the given triple pattern.

Implemented

FR8 (S) - The system allows comparing pipeline execu-
tions and finding where the first difference occurred.

Implemented

FR8.1 (S) - The system allows you to save data about the
comparison of two pipelines in the RDF4J database so
that in subsequent requests, the results of the comparison
are not calculated but simply returned to the user from
the database.

Implemented

FR9 (S) - The system allows the finding of the module
which bounded a variable with the provided name.

Implemented

FR10 (C) - The system allows finding cacheable modules. Not implemented
FR11 (M) - The system allows listing possible debugging
tools related to returned entities after pipeline execution.

Implemented

FR12 (C) - The system allows getting module execution
across all pipeline executions.

Not implemented

FR13 (C) - The system allows finding variables that were
not used during the pipeline execution.

Not implemented

FR14 (C) - The system allows getting module execution
by ID.

Not implemented

FR15 (S) - The system allows the detection of the config-
uration difference of the pipelines.

Not implemented

FR16 (C) - The system allows the detection of the input
difference of the pipelines.

Not implemented

Table 6.1: Table of functional requirements fulfillment

39

6. Implementation....................................
Requirement Name Status
NFR1 (C) - Cover functionality with tests. Not done
NFR2 (M) - Dockerization of used technologies. Done
NFR3 (S) - Test functionality with at least 3 users. Done
NFR4 (M) - Create Swagger API documentation. Done
NFR5 (M) - REST endpoints must return JSON-LD
format.

Done

Table 6.2: Table of Non-functional requirement fulfillment

6.6 Dockerization

In order to dockerize the SPipes debug API, I extended the existing docker
file so that in addition to deploying s-pipes-web into the docker container,
s-pipes-debug is also deployed. Because of problems with permissions in the
RDF4J container, it was decided to extend the existing RDF4J image to
provide the necessary rights. As a result, two docker containers are created,
which can be run using the following docker-compose file. With the help of
the supervisor, we have set up an automatic docker image publishing after
each commit to the repository using GitHub actions. Thus, the latest image
can be retrieved at ghcr.io/mircheqtm/s-pipes/s-pipes-engine. You can find
code snippets for docker in appendix A.

6.7 Difficulties in implementation

. An unfamiliar topic.
The topic of Linked Data, for me, was almost new and unexplored, I had
heard about Linked Data but never encountered it in practice. Thus, I
did not know many of the principles and technologies that are used in
the semantic web. Before I started to write the paper or to collect the
requirements I read and looked through a lot of sources and even with
the acquired knowledge it was sometimes difficult to understand what
the supervisor of my thesis had in mind. But the more I wrote Debug
API, the more I understood and corrected mistakes made when writing
the first lines of code in Debug API.. Using a mix of DTO and domain objects.
In the original version of SPipes, the RDF4J database stored a Transfor-
mation object, which represented both pipeline execution and module
execution. When I started writing the s-pipes-debug module, I was
afraid to change anything in the original implementation and decided to
map Transformation to pipeline execution and module execution after
getting it from the database, so I also returned this object to the client,
which ended up containing not only dto objects but also domain. With
this approach in the code appeared quite a lot of non general solutions,

40

............................. 6.7. Difficulties in implementation

which I had to fight with when implementing the new functionality. As
a result, I decided to change the code in AdvancedProgressListener and
change the Model so that the separate entities PipelineExecution and
ModuleExecution were stored in the database. Thanks to this the code
became much clearer and readable, there was a solid division into DTO
and Domain objects. The potential scalability of the project was also
improved.

41

42

Chapter 7
Evaluation

SPipes debug API testing will be based on the scenarios from Appendix B.
The test scenarios will cover the use of tools such as:. Finding the module where the variable was created.. Finding the module where the triple was created.. Showing all modules that have been executed in pipeline execution and

sorting them by duration and number of output triples.. Comparing pipeline executions and finding the module where the first
output difference was found.. Using of HATEOAS.

The testers will answer four questions for each scenario, one additional
question for scenario number 4, and one question global for all scenarios.

Description of respondents..1. Tester 1: Backend Java developer. Has very little idea about Linked
Data, and does not know anything about SPipes at all...2. Tester 2: Backend Java developer. Has very little idea about Linked
Data, and does not know anything about SPipes at all...3. Tester 3: Developer. Knows semantic web technologies, and had a little
knowledge of SPipes..4. Tester 4: Supervisor of the thesis. Knows semantic web technologies and
knows SPipes very well...5. Tester 5: SPipes Developer. Knows semantic web technologies and knows
SPipes very well.

43

7. Evaluation
Questions..1. Was the scenario completed successfully?..2. How much did it take to complete the whole scenario?..3. Did you have any problems during scenario completion? If yes, what

went wrong?..4. Is there anything you want to improve?

7.1 User testing

In this section, the answers of the 5 respondents to each of the scenarios will
be presented.

7.1.1 Tester 1

Scenario 1..1. Yes...2. 2 min...3. Testing information does not contain information about JSON-LD struc-
ture, so it was a little confusing at the beginning...4. -

Scenario 2..1. Yes...2. 11 min...3. Swagger UI did not offer any examples for comparing pipeline executions,
so it was confusing and I had to use HATEOAS...4. Add examples to swagger UI.

Scenario 3..1. Yes...2. 8 min...3. Swagger UI has no comments and examples, so the only option to execute
the scenario is to look at HATEOAS links (in this case orderBy parameter
names)...4. Add examples to swagger UI.

44

..................................... 7.1. User testing

Scenario 4..1. Yes...2. 10 min...3. First time I’ve chosen the wrong execution and got 404, I needed to use
the first execution...4. -

7.1.2 Tester 2

Scenario 1..1. Yes...2. 5 min...3. -..4. -

Scenario 2..1. Yes...2. 10 min...3. I did not get any information, that differences in the pipeline executions
should be found through some endpoint...4. Add information in the testing scenario, that task should be done through
debug API.

Scenario 3..1. Yes...2. 6 min...3. -..4. Rename "Module execution" related resources to something that makes
more sense, for example, "Get module executions executed in the pipeline
execution".

Scenario 4..1. Yes...2. 8 min...3. -..4. -

45

7. Evaluation
7.1.3 Tester 3

Scenario 1..1. Yes..2. 1 min..3. No..4. -

Scenario 2..1. No...2. 5 min...3. Yes, I was unable to complete the scenario...4. I don’t know. has_related_resources seems to return an unordered array,
in one execution, the first object name is "Find triple origin", and in the
other, it is "Get all module executions in the pipeline execution". Also,
as I couldn’t finish the scenario, improve the scenario description.

Scenario 3..1. Yes...2. 2min 35s...3. No...4. The SwaggerDoc does not contain info about which parameters can be
used as orderBy values. It also does not say that executionId is just the
last part of the IRI of the execution.

Scenario 4..1. Yes...2. 4 min...3. I used the wrong execution ID originally...4. -

46

..................................... 7.1. User testing

7.1.4 Tester 4

Scenario 1..1. Yes...2. 45 sec...3. No...4. Order of elements in JSON-LD, see my later comments.

Scenario 2..1. Yes...2. 1 min 15 sec..3. Yes, it was a little misleading that the output was the actual module
execution in which the difference occurred. The documentation does
not say if the module execution is from the first pipeline or the second.
I believe that it returns the module from the first pipeline based on
executionId, but that should be noted in the Swagger documentation...4. Yes, the output of the service to compare pipelines should be more
informative

Scenario 3..1. Yes...2. 1 min 10 sec...3. No...4. No.

Scenario 4..1. Yes...2. 1 min...3. No...4. No.

Other notes. It would be nice if comparing pipelines would lead to the actual diff in
the module outputs. I mean I do not only want to see that the same
module returns different output for two pipelines, but I also want to
know what is the diff. There should be at least some sample of different
triples returned in the output. Moreover, I would like to see the same
comparison with respect to triple count.

47

7. Evaluation
. Ordering of the JSON-LD output of services should be done more care-

fully. It seems like it was done in a random way, but I would prefer to
have a direct output of the service at the beginning (i.e. for endpoint
/executions I would like to have returned executions at the beginning)
and e.g. related-resources at the end of the JSON-LD output. In related resources there is a missing id of a link, why there is null?

7.1.5 Tester 5

Scenario 1..1. Yes...2. 10 min (I had to change the docker-compose volumes- because I’m on
MacOs)..3. No...4. -

Scenario 2..1. Yes...2. 2 min..3. I was confused about what to do, but I guess I found it correctly...4. I would like to have examples for execution comparison.

Scenario 3..1. Yes...2. 2 min...3. No...4. No, seems good.

Scenario 4..1. Yes...2. 10 minutes...3. I put in the wrong pipeline ID...4. No.

48

..................................... 7.2. Test results

7.2 Test results

. Scenario Completion: the majority of scenarios were completed success-
fully, proving that functionality of SPipes debug API works as expected.. Scenario Duration: the completion time varied among the testers, ranging
from a few seconds to around 11 minutes. The difference is mainly due
to the fact that some testers knew nothing at all about Linked Data and
SPipes or encountered unforeseen problems, such as entering the wrong
ID or setting up a MacOS startup.. Suggestions for improvement:. Enhancing the testing documentation by providing more detailed ex-

amples and explanations, particularly related to JSON-LD structure
and usage of HATEOAS.. Improving the Swagger UI by adding relevant examples, comments,
and clarifications for parameters and endpoints, making it easier
for testers to navigate in API.. Providing more informative output when comparing pipeline exe-
cutions, including details about the differences in module outputs
and triple counts.. Ensuring consistent and logical ordering of related resources in the
JSON-LD output.. Resolving null ID’s in the related resources field.

49

50

Chapter 8
Conclusion

The main goal of the thesis was to create debugging API for scripts written
in SPipes. To achieve this goal, I studied Semantic Web related technologies
such as RDF, SPARQL, SPARQL Motion, and others and described them in
the thesis. I also learned how SPipes and similar tools work and explored
their debugging capabilities. Based on this knowledge I was able to create
scenarios of using the debugging tools and start designing and implementing
SPipes debug API.

The result is a new module, s-pipes-debug, created in the SPipes project.
It is an independent web module that can be run independently of the SPipes
engine. The module provides a REST API that the user can work with
without using the UI because the module uses the principles of HATEOAS
and allows easy navigation between the endpoints.

The module handles data stored in the RDF4J repository. Based on this
data, useful functions have been implemented, such as finding the module
where the triple was created or filtered out, comparing pipeline exectuions,
finding the module where the variable was created, getting information about
how long specific modules were executed and how many input and output
triples they have. Implemented tools will help SPipes script developers find
bugs faster and help them optimize their scripts.

I hope that in the future my work will be useful for the Faculty of Electrical
Engineering at CTU Prague and that it will be a good source of information
or software basis for future developments in the area of debugging scripts
written in SPipes. I am very grateful to CTU and the Faculty of Electrical
Engineering for all the experience and knowledge that I gained during my
studies and was able to apply to my bachelor’s thesis.

8.1 Recommendations for future work

In my work, I think I have provided a good base for further work with the
Debug API, where developers can add more and more new functionality
based on the already written logic and architecture. In further work, I would
recommend the following:.Debug API contains endpoint PUT /repository/repositoryName, add

51

8. Conclusion......................................
logic, so that it creates a new repository if the repository does not exist.. Improve logging :. The module generates a lot of DEBUG-level logs and does not react

on adding of logback.xml file.. There is no logging of errors or program progress, which may make
it difficult to find errors.. Cover functionality with tests.. Implement other debugging tools from activity diagrams from section

4.1.. Improve the Swagger UI by adding relevant examples, comments, and
clarifications for parameters and endpoints, making it easier for testers
to navigate in API.. Providing more informative output when comparing pipeline executions,
including details about the differences in module outputs and triple
counts.. Ensuring consistent and logical ordering of related resources in the
JSON-LD output.. Resolving null ID’s in the related resources field.

52

References

1. AGARWAL, Parth R. Semantic Web in Comparison to Web 2.0. In:
2012 Third International Conference on Intelligent Systems Modelling
and Simulation. 2012, pp. 558–563. Available from doi: 10.1109/ISMS.
2012.49.

2. W3C. What is Linked Data? [W3C]. 2023-02-22. Available also from:
https://www.w3.org/standards/semanticweb/data.

3. TIM BERNERS-LEE. Linked Data. 2023-02-22. Available also from:
https://www.w3.org/DesignIssues/LinkedData.html.

4. BIZER, Christian; HEATH, Tom; IDEHEN, Kingsley; BERNERS-LEE,
Tim. Linked Data on the Web (LDOW2008). In: Proceedings of the 17th
International Conference on World Wide Web. New York, NY, USA:
Association for Computing Machinery, 2008, pp. 1265–1266. WWW
’08. isbn 978-1-60558-085-2. Available from doi: 10.1145/1367497.
1367760. event-place: Beijing, China.

5. Linked Open Data Cloud. [N.d.]. Available also from: https://lod-
cloud.net/. Accessed on February 2, 2023.

6. TOM GRUBER. Ontology. 2008. Editors: Ling Liu and M. Tamer Özsu
Publisher: Springer-Verlag.

7. NOY, Natalya F.; MCGUINNESS, Deborah L. Ontology Development
101: A Guide to Creating Your First Ontology. 2001.

8. GRUBER, Thomas R. A translation approach to portable ontology
specifications. Knowledge Acquisition [online]. 1993, vol. 5, no. 2, pp. 199–
220 [visited on 2023-05-06]. issn 1042-8143. Available from doi: 10.1006/
knac.1993.1008.

9. W3C. RDF 1.1 Concepts. 2014. Available also from: https://www.w3.
org/TR/rdf11-concepts/.

10. W3C. RDF 1.1 Concepts and Abstract Syntax. 2014. Available also from:
https://www.w3.org/TR/rdf-concepts/.

11. W3C. RDF 1.1 Primer. 2014. Available also from: https://www.w3.
org/TR/rdf11-primer/.

53

https://doi.org/10.1109/ISMS.2012.49
https://doi.org/10.1109/ISMS.2012.49
https://www.w3.org/standards/semanticweb/data
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1145/1367497.1367760
https://doi.org/10.1145/1367497.1367760
https://lod-cloud.net/
https://lod-cloud.net/
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1006/knac.1993.1008
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf-concepts/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/

8. Conclusion......................................
12. EL IDRISSI, Bouchra; BAÏNA, Salah; MAMOUNY, Anass; ELMAAL-

LAM, Mina. RDF/OWL storage and management in relational database
management systems: A comparative study. Journal of King Saud Uni-
versity - Computer and Information Sciences. 2022, vol. 34, no. 9,
pp. 7604–7620. issn 1319-1578. Available from doi: https://doi.org/
10.1016/j.jksuci.2021.08.018.

13. THE JSON-LD COMMUNITY GROUP. JSON-LD [online] [visited on
2023-03-16]. Available from: https://json-ld.org/.

14. WIKITRAVEL. Wikitravel: Turtle RDF [online] [visited on 2023-03-06].
Available from: https://wikitravel.org/en/Wikitravel:Turtle_
RDF.

15. PRUD’HOMMEAUX, Eric; SEABORNE, Andy. SPARQL query lan-
guage for RDF. 2007.

16. SPARQLMOTION TEAM. SPARQLMotion [online] [visited on 2023-
03-09]. Available from: https://sparqlmotion.org/.

17. ECLIPSE FOUNDATION, INC. RDF4J [online] [visited on 2023-02-15].
Available from: https://rdf4j.org/.

18. ECLIPSE FOUNDATION, INC. RDF4J Documentation [online] [visited
on 2023-02-15]. Available from: https://rdf4j.org/documentation/.

19. FIELDING, Roy T.; TAYLOR, Richard. RESTful Web Services. O’Reilly
Media, 2008. isbn 0596529260, isbn 9780596529260. Available also from:
https://books.google.cz/books?id=RQVu5YN59loC.

20. KELLY, Mike. HAL - Hypertext Application Language [online] [visited
on 2023-04-30]. Available from: https : / / stateless . group / hal _
specification.html.

21. KNOWLEDGE-BASED SOFTWARE SYSTEMS GROUP. S-Pipes
[online] [visited on 2023-03-09]. Available from: https://github.com/
kbss-cvut/s-pipes.

22. JORDAN, Petr. Title of the Thesis. 2021. Available also from: https:
//dspace.cvut.cz/handle/10467/97070. MA thesis. Czech Technical
University in Prague.

23. JAKUB KLÍMEK, Petr Škoda. LinkedPipes ETL. Available also from:
https://goo.gl/zfcbhg.

24. KLÍMEK, Jakub; ŠKODA, Petr. LinkedPipes ETL in use: practical
publication and consumption of linked data. In: 2017, pp. 441–445.
Available from doi: 10.1145/3151759.3151809.

25. TEAM, LinkedPipes. LinkedPipes documentation [online] [visited on
2023-05-13]. Available from: https://etl.linkedpipes.com/documentation/.

26. MILLER, Meg; VIELFAURE, Natalie. OpenRefine: An Approachable
Open Tool to Clean Research Data. Geospatial Data and Software
Reviews. 2021. issn 2561-2263.

54

https://doi.org/https://doi.org/10.1016/j.jksuci.2021.08.018
https://doi.org/https://doi.org/10.1016/j.jksuci.2021.08.018
https://json-ld.org/
https://wikitravel.org/en/Wikitravel:Turtle_RDF
https://wikitravel.org/en/Wikitravel:Turtle_RDF
https://sparqlmotion.org/
https://rdf4j.org/
https://rdf4j.org/documentation/
https://books.google.cz/books?id=RQVu5YN59loC
https://stateless.group/hal_specification.html
https://stateless.group/hal_specification.html
https://github.com/kbss-cvut/s-pipes
https://github.com/kbss-cvut/s-pipes
https://dspace.cvut.cz/handle/10467/97070
https://dspace.cvut.cz/handle/10467/97070
https://goo.gl/zfcbhg
https://doi.org/10.1145/3151759.3151809
https://etl.linkedpipes.com/documentation/

........................... 8.1. Recommendations for future work

27. WALLSCOPE. Creating Linked Data [online]. 2018-05 [visited on 2023-
05-14]. Available from: https://medium.com/wallscope/creating-
linked-data-31c7dd479a9e.

28. OpenRefine documentation [online]. 2023 [visited on 2023-05-14]. Avail-
able from: https://openrefine.org/docs/manual/running.

29. BUSINESS ANALYSIS, International Institute of. A Guide to the Busi-
ness Analysis Body of Knowledge. 2nd ed. 2009. isbn 978-0-9811292-1-1.

30. GUPTA, Lokesh. What is REST [online] [visited on 2023-04-15]. Avail-
able from: https://restfulapi.net/.

31. What is REST, API and REST API? [Online]. 2023 [visited on 2023-
04-14]. Available from: https://phpenthusiast.com/blog/what-is-
rest-api.

32. FADATARE, Ramesh. Rest API client-server architecture [online]. Jav-
aGuides, 2020 [visited on 2023-04-13]. Available from: https://www.
javaguides.net/2020/07/three-tier-three-layer-architecture-
in-spring-mvc-web-application.html.

33. FARRELL, Joyce. Java Programming. 9th. Cengage Learning, 2022.
isbn 9780357673428.

34. SCHILDT, Herbert. Java: A Beginner’s Guide. 8th. McGraw-Hill Edu-
cation, 2020. isbn 9781260440217.

35. MANE, Dashrath; CHITNIS, Ketaki; OJHA, Namrata. The Spring
Framework: An Open Source Java Platform for Developing Robust Java
Applications. International Journal of Innovative Technology and Ex-
ploring Engineering (IJITEE). 2013, vol. 3, no. 2, pp. 128–131. issn 2278-
3075. Available also from: https://www.ijitee.org/wp-content/
uploads/papers/v3i2/B2123083213.pdf.

36. Why Spring? [Online] [visited on 2023-02-10]. Available from: https:
//spring.io/why-spring.

37. GROUP, KBS Software Solutions. JOPA: Java Object Persistence API
[online] [visited on 2023-02-15]. Available from: https://github.com/
kbss-cvut/jopa.

38. GROUP, KBS Software Solutions. JOPA example [online] [visited on
2023-02-15]. Available from: https://github.com/kbss-cvut/jopa.

39. NICKOLOFF, Jeffrey; KUENZLI, Stephen. Docker in Action. Manning
Publications, 2016.

40. What is a container? [Online] [visited on 2023-04-28]. Available from:
https://www.docker.com/resources/what-container/.

41. SPRING FRAMEWORK DOCUMENTATION. Spring Framework -
ResponseBodyAdvice Interface [online] [visited on 2023-05-17]. Available
from: https://docs.spring.io/spring-framework/docs/current/
javadoc- api/org/springframework/web/servlet/mvc/method/
annotation/ResponseBodyAdvice.html.

55

https://medium.com/wallscope/creating-linked-data-31c7dd479a9e
https://medium.com/wallscope/creating-linked-data-31c7dd479a9e
https://openrefine.org/docs/manual/running
https://restfulapi.net/
https://phpenthusiast.com/blog/what-is-rest-api
https://phpenthusiast.com/blog/what-is-rest-api
https://www.javaguides.net/2020/07/three-tier-three-layer-architecture-in-spring-mvc-web-application.html
https://www.javaguides.net/2020/07/three-tier-three-layer-architecture-in-spring-mvc-web-application.html
https://www.javaguides.net/2020/07/three-tier-three-layer-architecture-in-spring-mvc-web-application.html
https://www.ijitee.org/wp-content/uploads/papers/v3i2/B2123083213.pdf
https://www.ijitee.org/wp-content/uploads/papers/v3i2/B2123083213.pdf
https://spring.io/why-spring
https://spring.io/why-spring
https://github.com/kbss-cvut/jopa
https://github.com/kbss-cvut/jopa
https://github.com/kbss-cvut/jopa
https://www.docker.com/resources/what-container/
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyAdvice.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyAdvice.html
https://docs.spring.io/spring-framework/docs/current/javadoc-api/org/springframework/web/servlet/mvc/method/annotation/ResponseBodyAdvice.html

56

Appendix A
Code snippets

A.1 Dockerfile

STAGE MAVEN_BUILD
FROM maven :3.8.6 - openjdk -11 AS MAVEN_BUILD

COPY ./ ./

RUN mvn clean package -T 2C -DskipTests -q

STAGE MODULES_CHECKOUT
FROM alpine /git:v2 .32.0 AS MODULES_CHECKOUT

WORKDIR /
RUN git clone --depth 1 https :// kbss.felk.cvut.cz/ gitblit

/r/s-pipes - modules .git

FINAL STAGE
FROM tomcat :9.0 - jdk11 - corretto

EXPOSE 8080

RUN rm -rf /usr/local/ tomcat / webapps /*

COPY --from= MODULES_CHECKOUT ./s-pipes - modules / scripts /s
-pipes - modules

COPY --from= MAVEN_BUILD /s-pipes -web/ target /s-pipes -web
-*[0 -9] /usr/local/ tomcat / webapps /s-pipes

COPY --from= MAVEN_BUILD /s-pipes -debug/ target /s-pipes -
debug -*[0 -9] /usr/local/ tomcat / webapps /s-pipes -debug

CMD [" catalina .sh"," run "]

Listing A.1: Docker file

57

A. Code snippets
A.2 Docker RDF4J

FROM eclipse /rdf4j - workbench :3.7.7
USER root
RUN chown -R _apt:root /var/rdf4j/

Listing A.2: Docker rdfj4 file

A.3 Docker-compose

version : ’3.7’

services :
s-pipes - engine :

image: ghcr.io/ mircheqtm /s-pipes/s-pipes -engine -debug
: latest

container_name : s-pipes - engine
ports:

- "8081:8080"
expose :

- "8080"
networks :

- overlay
depends_on :

- rdf4j
environment :

- CONTEXTS_SCRIPTPATHS =
- STORAGE_URL =http :// rdf4j :8080/ rdf4j - server /

repositories
volumes :

- /tmp :/ tmp
- /home :/ home
- /usr/local/ tomcat /temp /:/ usr/local/ tomcat /temp/

rdf4j:
build:

context : .
dockerfile : Dockerfile_rdfj4

container_name : rdf4j
ports:

- "8080:8080"
expose :

- "8080"
networks :

- overlay
environment :

- JAVA_OPTS =-Xms1g -Xmx4g
volumes :

- data :/ var/rdf4j
- logs :/ usr/local/ tomcat /logs

58

................................... A.3. Docker-compose

volumes :
data:
logs:

networks :
overlay :

Listing A.3: Docker compose file

59

60

Appendix B
Evaluation of framework for debugging
SPipes

The goal of this evaluation is to test the user experience with the new SPipes
debug API which allows you to use new debugging tools in the SPipes semantic
pipelines.

This document contains the basic information the tester should know before
starting the testing process and 4 simple testing scenarios. Please, study the
information for testing, go through the scenarios, and answer the questions
for each scenario. Leave your answers at the end of the document, use the
answer template that is located under the last testing scenario.

B.1 Run SPipes with debug module

. Clone the repository from https://github.com/mircheqtm/s-pipes. This
fork contains changes with SPipes debugging tools.

.Go to s-pipes/s-pipes-debug/doc/hands-on-tutorial/ and run command
docker-compose up –build.

. Strictly recommend to download some json formatter for your browser,
as it will be hard to orient with lots of data. (Personal recommendation
is JsonDiscovery 1)

1JsonDiscovery extension URL -
https://chrome.google.com/webstore/detail/jsondiscovery/pamhglogfolfbmlpnenhpeholpnlcclo

61

B. Evaluation of framework for debugging SPipes
B.2 URL’s

Name of service Address
Spipes core engine localhost:8081/s-pipes
Sipes debug engine localhost:8081/s-pipes-debug
RDF4J server localhost:8080/rdf4j-server
RDF4J workbench localhost:8080/rdf4j-workbench

Table B.1: Table of services

For list of SPipes Debug API endpoints, check out swagger API, available on
http://localhost:8081/s-pipes-debug/swagger-ui.html#

B.3 Related resources

The SPipes debug API implements HATEOAS technology. HATEOAS allows
you to find other endpoints associated with the entity that was returned to
the user.

When using the SPipes debug API, pay attention to the has_related_resources
field, which describes all possible endpoints related to the returned entity,
their purpose and sometimes possible parameters that can be used in the
request.

B.4 Questions

For every scenario please answer the following questions:. Did you finish the scenario?. How much did it take to complete the whole scenario?.Did you have any problems during scenario completion? If yes, what
went wrong?. Is there anything you want to improve?

B.5 Scenarios

B.5.1 Precondition. Scenario will be based on the hello world example, directly from the
SPipes project. You can find all information about the script here2.

2https://github.com/kbss-cvut/s-pipes/blob/main/doc/examples/hello-world/
hello-world.md

62

http://localhost:8081/s-pipes-debug/swagger-ui.html#
https://github.com/kbss-cvut/s-pipes/blob/main/doc/examples/hello-world/hello-world.md
https://github.com/kbss-cvut/s-pipes/blob/main/doc/examples/hello-world/hello-world.md

...................................... B.5. Scenarios

Please make sure that you have a basic understanding of how the hello
world example works.. SPipes debug API interacts mostly with two main entities ModuleEx-
ecution and PipelineExecution. In main README.md 3 there is a
description of what are Pipelines and Modules. So basically Module-
Execution and PipelineExecution are entities representing data about
executed Module or Pipeline. It can contain such data as, where are
stored output of modules, time, when execution happened, and a lot of
different useful information.. Read Swagger API 4.

B.5.2 Scenario 1. Run the hello world example script with the following URL: http://
localhost:8081/s-pipes/service?_pId=execute-greeting&firstName=
TestName&lastName=TestSurname You should be able to see the greeting
message "Hello TestName TestSurname." as part of the output JSON-LD.. Check following link to RDF4J workbench: http://localhost:8080/
rdf4j-workbench/repositories/s-pipes-hello-world/summary Num-
ber of statements should not be 0. If it’s so, we can continue. Otherwise,
you messed something up at step 1.. Using the debug API 5, try to look through all pipeline executions that
were executed.. If you see one execution, then the scenario is successfully passed.

B.5.3 Scenario 2. Let’s change a bit our script: open /s-pipes/doc/examples/hello-world/hello-
world.sms.ttl and change

BIND(concat("Hello ", ?personName, ".") as ?greetingMessage)

to

BIND(concat("Hello ", ?personName, "!") as ?greetingMessage). Run the script one more time in the same way as scenario 1 (Step 1)
B.5.2.. Using the debug API, try to look through all pipeline executions that
were executed.

3https://github.com/mircheqtm/s-pipes/blob/main/README.md
4http://localhost:8081/s-pipes-debug/swagger-ui.html#
5http://localhost:8081/s-pipes-debug/swagger-ui.html#

63

http://localhost:8081/s-pipes/service?_pId=execute-greeting&firstName=TestName&lastName=TestSurname
http://localhost:8081/s-pipes/service?_pId=execute-greeting&firstName=TestName&lastName=TestSurname
http://localhost:8081/s-pipes/service?_pId=execute-greeting&firstName=TestName&lastName=TestSurname
http://localhost:8080/rdf4j-workbench/repositories/s-pipes-hello-world/summary
http://localhost:8080/rdf4j-workbench/repositories/s-pipes-hello-world/summary
https://github.com/mircheqtm/s-pipes/blob/main/README.md
http://localhost:8081/s-pipes-debug/swagger-ui.html##
http://localhost:8081/s-pipes-debug/swagger-ui.html##

B. Evaluation of framework for debugging SPipes
. Now from the response you should get 2 pipeline executions..We changed our script, let’s see, what is the difference between two

pipeline executions. Try to find, in which module, the first difference
between pipeline executions was found.

B.5.4 Scenario 3.We already have some pipeline executions, so we don’t need to run
anything else.. Using the debug API, try to display all executed modules in any of your
pipeline executions.. Sort modules by duration and find which module was the slowest.. Sort modules by a count of output triple and find which module produced
the biggest amount of tiples.

B.5.5 Scenario 4.When we executed the first execution, the response looked similar to
this B.1:
{
@id: "http :// onto.fel.cvut.cz/ ontologies /s-pipes/hello

-world -example -0.1/ testname - testsurname ",
is -greeted -by - message : "Hello TestName TestSurname .",
@context : {
is -greeted -by - message : { @id :" http :// onto.fel.cvut.cz/

ontologies /s-pipes/hello -world -example -0.1/is -
greeted -by - message "

Listing B.1: Response from pipeline execution.

Its RDF representation looks like this: <http://onto.fel.cvut.cz/ontologies/s-
pipes/hello-world-example-0.1/testname-testsurname> <http://onto.fel.cvut.cz/ontologies/s-
pipes/hello-world-example-0.1/is-greeted-by-message> "Hello TestName
TestSurname.. Using the debug API, try to find which module produced the tiple from
the previous step.. Using the debug API, find out which module first produced the variable
lastName.

64

Appendix C
Endpoints

.Change repository
PUT /repository/{repositoryName}
Changes the repository of RDF4J database.. Examples. /repository/s-pipes-hello-world. /repository/s-pipes-skosify.Get all pipeline executions in the repository
GET /executions
Returns brief info about the most recent executions in the repository.
Latest on top..Get pipeline execution by ID
GET /executions/{executionId}
Returns info about execution and short information about modules,
executed in this pipeline execution..Get module executions, executed in the pipeline execution
GET /executions/{executionId}/modules
Optional parameters. Parameter orderBy:. duration. start-time. output-triples. input-triples. Parameter orderType:. ASC. DESC

Returns modules, for given pipeline execution and complete information
about the modules. Possible to sort them by duration, count of output
triples, count of input triples or start time in given order ASC or DESC.

65

C. Endpoints
.Compare pipeline executions and find first difference

GET /executions/{executionId}/compare/{executionToCompareId}
Compare the result of two pipeline executions. If they are not the same
field, are_same will return false, and the module, where the first differ-
ence was found will be returned. The result is saved to RDF4J db, so it
will not recompute everything and just return the result from DB.. Find module execution, where triple was created
GET /triple-origin/{executionId}
Mandatory parameters:. graphPattern=<http://some.subject> <http://some.predicate>

<http://some.object>

The browser will transfer all symbols like " or whitespaces to the encoded
version and translate them back on the back end. Returns module, where
the triple was first produced as the output of the module. In case more
modules have it as the output on the same depth of the execution tree,
multiple modules will be returned.. Find module execution, where triple was filtered out
GET /triple-elimination/{executionId}
Mandatory parameters:. graphPattern=<http://some.object> <http://some.predicate> <http://some.object>

The browser will transfer all symbols like " or whitespaces to the encoded
version and translate them back on the back end. Returns module, where
the triple was first passed as input, but was eliminated on output. In
case more modules have it as input, but don’t have an output on the
same depth of the execution tree, multiple modules will be returned.. Find module execution, where the variable was created
GET /variable-origin/{executionId}
Mandatory parameters:. variable=variableName

The browser will transfer all symbols like " or whitespaces to the encoded
version and translate them back on the back end. Returns module,
where the variable was created. In case more modules created the same
variable on the same depth of the execution tree, multiple modules will
be returned.

66

	Introduction
	Foreword
	Goals and motivation

	Background
	Semantic Web
	Linked Data
	Ontology
	Ontology components
	RDF
	RDFS and OWL
	RDF serialization formats
	JSON-LD
	Turtle

	SPARQL
	SPARQLMotion
	RDF4J and RDF4J repository
	HATEOAS
	SPipes

	An overview of the debugging capabilities of SPipes and similar tools
	ETL
	LinkedPipes ETL
	Debug in LinkedPipes ETL

	OpenRefine
	Debug in OpenRefine

	Debugging capabilities of SPipes
	Debugging process in SPipes

	Requirements
	Debugging scenarios
	Analysis of scenarios
	MoSCoW method
	Functional requirements
	Non functional requirements

	System Design
	REST API
	Three-layer architecture
	Modules and components
	Entity model

	Implementation
	Technology stack
	Java
	Spring framework
	JOPA
	Docker

	Execution tree
	HATEOAS and Linked Data

	Three-layer architecture
	The result of implementation
	Implemented functionality
	Dockerization
	Difficulties in implementation

	Evaluation
	User testing
	Tester 1
	Tester 2
	Tester 3
	Tester 4
	Tester 5

	Test results

	Conclusion
	Recommendations for future work

	References
	Code snippets
	Dockerfile
	Docker RDF4J
	Docker-compose

	Evaluation of framework for debugging SPipes
	Run SPipes with debug module
	URL's
	Related resources
	Questions
	Scenarios
	Precondition
	Scenario 1
	Scenario 2
	Scenario 3
	Scenario 4

	Endpoints

