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Abstract

This thesis deals with Reichenbach’s
principle of common cause. This prin-
ciple was published in 1956 and its au-
thor is Hans Reichenbach. This princi-
ple slightly interferes with the philosophy
of science. In particular, it tries to ex-
plain some macro statistical asymmetries
that arise from the second law of ther-
modynamics. This principle has already
been discussed in depth in a variety of
publications. In this thesis, we provide
and amend some proofs that we did not
find. We also add, modify and correct
some lemmas and conclusions from the
already published literature and answer
some open questions.
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Abstrakt

Tato práce se zabývá Reichenbachovým
principem společné příčiny. Tento princip
byl publikován v roce 1956 a jeho auto-
rem je Hans Reichenbach. Tento princip
mírně zasahuje do filozofie vědy. Zejména
se snaží vysvětlit některé makrostatistické
asymetrie, které vyplývají z druhého zá-
kona termodynamického. Tento princip
byl již do hloubky rozebrán v řadě publi-
kací. V této práci poskytujeme a doplňu-
jeme některé důkazy, které jsme nenalezli.
Dále doplňujeme, upravujeme a opravu-
jeme některá lemmata a závěry z již pu-
blikované literatury a odpovídáme na ně-
které otevřené otázky.

Klíčová slova: Ortomodulární svaz,
Hans Reichenbach, splolečná příčina,
Reichenbachův princip společné příčiny
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Chapter 1

Introduction

1.1 History

This thesis deals with Reichenbach’s common cause principle introduced by
Hans Reichenbach in his book [15]. 1

Hans Reichenbach was a philosopher of science who looked deeper into
correlation and its relation with causation. Reichenbach claimed that if there
is a correlation between two events and there is no direct link between the
events, then there exists a third event which is called the common cause of
the correlation. In his own words [15]:

If an improbable coincidence has occurred, there must exist a com-
mon cause.

He studied it in the context of the second law of thermodynamics, which
states that entropy of a closed system may only increase over time. This fact
implies some macrostatistical asymmetries which are still not fully understood.

However, the common cause principle has also been subject to criticism
and debate. One of the main criticisms is that the principle assumes that
there are no hidden causal factors that could explain the correlation between
two events, which is often different in real-world scenarios. Additionally, the
principle does not provide a way to identify the common cause, and it is
often difficult to distinguish between spurious correlations and genuine causal
relationships.

Despite these criticisms, Reichenbach’s common cause principle remains
an important concept in the philosophy of science and has contributed to our

1respectively by his wife Maria Reichenbach, who published the book since Hans Re-
ichenbach died in 1953
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1. Introduction .....................................
understanding of causation and correlation. We will illustrate an outline of
the common cause in the following example:

Example 1.1 (Common cause). Here we illustrate events A and B having
event C as their common cause.

C

A BTime

Figure 1.1: Illustration of the common cause

We will analyze the following statement2:

People who eat caviar live longer. The common cause is wealth.

In this case, the event A is eating caviar. The event B is longer life, and the
event C is wealth.

Reichenbach’s common cause principle was studied in the context of the
classical probability theory as well as in the context of non-classical probability
theory. This thesis mostly follows up on [10], [7] and [8].

1.2 Introductory definitions

First of all, we will define some basic mathematical concepts used in this text.

Definition 1.2 (Partially ordered set). Let S be a set and let ≤ be a binary
relation on S which ∀a, b, c ∈ S satisfies:..1. Reflexivity: a ≤ a..2. Antisymmetry: If a ≤ b and b ≤ a then a = b..3. Transitivity: If a ≤ b and b ≤ c then a ≤ c

The pair (S, ≤) is then called a partially ordered set.

Partially ordered sets are also called posets. Posets formalize and generalize
the concept of ordering and arrangement of the elements of a set. Note that

2Taken from Ján Markoš: Sila rozumu v bláznivej dobe. N Press, 2019.
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................................ 1.2. Introductory definitions

the order is only partial. This, in contrast to total order, means that not
every pair of elements is comparable.

Definition 1.3 (Lattice). A partially ordered set (L, ≤) is called a lattice if
and only if any pair of elements a, b ∈ L has a unique:..1. Infimum inf(a,b) denoted as a∧ b. The infimum is a greatest lower bound

of a and b. In other words, a ∧ b is the largest element in L such that
a ∧ b ≤ a and a ∧ b ≤ b...2. Supremum sup(a,b) denoted as a ∨ b. The supremum is a least upper
bound of a and b. That is, a ∨ b is the smallest element in L such that
a ≤ a ∨ b and b ≤ a ∨ b.

In a lattice, the infimum and supremum are unique for any pair of elements
a, b ∈ L.

Definition 1.4 (Orthomodular lattice). A lattice L is called an orthomodular
lattice when 0, 1 ∈ L where 0 is the least element and 1 is the greatest element
and there is a given mapping ⊥ : L → L, called an orthocomplementation,
with the following properties for all a, b ∈ L..1. a ∨ a⊥ = 1..2. a ≤ b =⇒ a⊥ ≥ b⊥..3. (a⊥)⊥ = a..4. a ≤ b =⇒ b = a ∨ (b ∧ a⊥)

When a ≤ b⊥ we say that a and b are orthogonal.

The symmetric difference of two sets X and Y is defined as the set of
elements that belong to either X or Y , but not to both. Mathematically, the
symmetric difference can be defined as follows:
Definition 1.5 (Symmetric difference in a set). Let X and Y be sets. Then
we define the operation of symmetric difference as follows:

∆(X, Y ) = (X \ Y ) ∪ (Y \ X)

The symmetric difference operation is commutative, meaning that ∆(X, Y ) =
∆(Y, X). It is also associative, so:

∆(∆(X, Y ), Z) = ∆(X, ∆(Y, Z))

An alternative way to define the symmetric difference using set operations is:

∆(X, Y ) = (X ∪ Y ) \ (X ∩ Y )

3



1. Introduction .....................................
This definition highlights that the symmetric difference is the set of elements
in the union of X and Y , excluding the elements in their intersection.

In an orthomodular lattice, the symmetric difference operation can be de-
fined using the join operation, meet operation and the orthocomplementation
operation:
Definition 1.6 (Symmetric difference in an orthomodular lattice). Let L be
an orthomodular lattice. Given elements a, b ∈ L, the symmetric difference
operation, denoted as ∆, can be defined as follows:

∆(a, b) = (a ∧ b⊥) ∨ (a⊥ ∧ b)

Definition 1.7 (Interval in an orthomodular lattice). Let L be an orthomodular
lattice and x, y ∈ L such that x ≤ y. We define an interval, which consists of
all elements z ∈ L such that x ≤ z ≤ y. We denote it by [x, y].

Definition 1.8 (Atom). Let L be an orthomodular lattice. An atom a ∈ L is
a non-zero element of L such that there is no element b satisfying 0 < b < a.

An atom is a minimal element immediately above the zero element, with
no other elements between them. Atoms represent the smallest non-trivial
elements in an orthomodular lattice.

Example 1.9 (Lattice MO2). Let L be an orthomorudular lattice such that
L = {1, 0, a, b, a⊥, b⊥}. Such a lattice is called the lattice MO2. There are
several ways to visualize an orthomodular lattice. In this thesis, we will use
Hasse diagrams and Greechie diagrams...1. Hasse diagram

The most straightforward way to visualize a partially ordered set is using
a Hasse diagram. The diagram consists of nodes, which represent the
elements of the partially ordered set, and edges, which represent the
partial order relation. The edges are drawn only between nodes that have
direct predecessor-successor relation. The omitted connections follow
from the transitivity.

u u u u
u

u���
A
A
A�

�
�
A
A
A�

�
�

��
Q

Q
Q

QQ�
�

�
��
Q
Q

Q
QQ

0

1

b b⊥a a⊥

Figure 1.2: Lattice MO2 displayed using Hasse diagram

4



................................ 1.2. Introductory definitions..2. Greechie diagram
A Greechie diagram is a graphical representation of an orthomodular
lattice, where nodes represent atoms of the orthomodular lattice and
hyperedges connect maximal sets of mutally orthogonal elements.

u

u

u

u

a b

A B

Figure 1.3: Lattice MO2 displayed using Greechie diagram

Definition 1.10 (σ-orthomodular lattice). Let L be an orthomodular lattice.
We call it a σ-orthomodular lattice when it is closed under countable meets
and joins, meaning that for any countable subset {xi}i∈N ⊆ L, the meet∧

i∈N xi and the join
∨

i∈N xi exists.

Definition 1.11 (Probability measure). Let L be a σ-orthomodular lattice.
A mapping µ : L −→ [0, 1] is called a probability measure on L when µ satisfies
the following conditions:..1. µ(1) = 1..2. µ(

∨
n∈N an) =

∑
n∈N µ(an) whenever all an ∈ L and ai ∧ aj = 0 for i ̸= j

5



6



Chapter 2

Reichenbach’s common cause principle

Definition 2.1 (Classical probability space). A classical probability space is a
structure (Ω, A, µ), where Ω denotes a non-empty set, A is a σ-algebra of
subsets of Ω and µ is a probability measure on A.

The complement of an event a ∈ A is denoted as a′.

Definition 2.2 (Random variable). Let (Ω, A, µ) be a classical probability space.
A random variable X is a mapping X : Ω → R measurable with respect to
σ-algebra A.

Definition 2.3 (σ-homomorphism). Let (Ω1, A1, µ1) and (Ω2, A2, µ2) be two
classical probability spaces. A mapping h : Ω1 → Ω2 is called a σ-homomorphism
if and only if the following conditions are satisfied:..1. h(a′) = h(a)′..2. h(

∨
i∈N ai) =

∨
i∈N h(ai)

In contrast to the random variable definition, we define an observable.
Definition 2.4 (Observable). Let (Ω, A, µ) be a classical probability space.
Then we say that observable ϕ is a σ-homomorphism ϕ : B(R) → A, where
B(R) denotes the Borel σ-algebra.

One advantage of the observable definition is the fact that the structure (A, µ)
is sufficient as a classical probability space. An observable can be defined
without the set of elementary events.

A random variable X can be identified with an observable ϕ:

ϕ(A) = X−1(A) = {ω ∈ Ω | X(ω) ∈ A}

7



2. Reichenbach’s common cause principle..........................

Definition 2.5 (Dependence of events). Let L be a σ-orthomodular lattice
and suppose to have events a, b ∈ L. These events are called:..1. Independent if and only if µ(a ∧ b) = µ(a)µ(b)..2. Positively correlated if and only if µ(a ∧ b) > µ(a)µ(b)..3. Negatively correlated if and only if µ(a ∧ b) < µ(a)µ(b)

Definition 2.6 (Common cause in classical probability theory). Let (Ω, A, P )
be a classical probability space and let a, b ∈ A be events which are positively
correlated. Then we call c ∈ A a common cause of a and b if the following
conditions hold:

P (a ∩ b|c) = P (a|c)P (b|c) (2.1)

P (a ∩ b|c′) = P (a|c′)P (b|c′) (2.2)

P (a|c) > P (a|c′) (2.3)

P (b|c) > P (b|c′) (2.4)

where we require that 0 < P (c) < 1 and P (x|y) = P (x ∩ y)
P (y) denotes the

conditional probability of x given y.

2.1 The independence of Reichenbach common
cause conditions

It is known1 that the conditions from definition 2.6 are independent, but we
did not find a proof, so we prove it here. Moreover, we add the assumption of
positive correlation, which need not follow from the reduced set of conditions.
Example 2.7. Let A be the Boolean algebra with 8 atoms of the form a∗∧b∗∧c∗,
where a∗ ∈ {a, a⊥}, b∗ ∈ {b, b⊥}, c∗ ∈ {c, c⊥}. We define states s0, s1, s2, s3, s4
by their values at the atoms given in table 2.1 Then a, b are positively
correlated in all of these states...0. In state s0, each of the conditions from definition 2.6 is satisfied...1. In state s1, conditions (2.2), (2.3), (2.4) are satisfied and (2.1) is violated...2. In state s2, conditions (2.1), (2.3), (2.4) are satisfied and (2.2) is violated.

1[8], Definition 2.4

8



............................... 2.2. Illustration and examples..3. In state s3, conditions (2.1), (2.2), (2.4) are satisfied and (2.3) is violated...4. In state s4, conditions (2.1), (2.2), (2.3) are satisfied and (2.4) is violated.

∗ a ∧ b ∧ c a ∧ b′ ∧ c a′ ∧ b ∧ c a′ ∧ b′ ∧ c a ∧ b ∧ c′ a ∧ b′ ∧ c′ a′ ∧ b ∧ c′ a′ ∧ b′ ∧ c′

s0 2/9 1/9 1/9 1/18 1/8 1/8 1/8 1/8

s1 2/9 1/9 1/9 + ϵ 1/18 − ϵ 1/8 1/8 1/8 1/8

s2 2/9 1/9 1/9 1/18 1/8 1/8 1/8 + ϵ 1/8 − ϵ

s3 1/9 1/18 2/9 1/9 1/8 1/8 1/8 1/8

s4 1/9 2/9 1/18 1/9 1/8 1/8 1/8 1/8

Table 2.1: Values of states s0, s1, s2, s3 and s4 on atoms, where ϵ > 0 is
sufficiently small

∗ (2.1) LHS (2.1) RHS (2.2) LHS (2.2) RHS (2.3) LHS (2.3) RHS (2.4) LHS (2.4) RHS
s0 4/9 4/9 1/4 1/4 2/3 1/2 2/3 1/2

s1 4/9 4/9 + 4ϵ/3 1/4 1/4 2/3 1/2 2/3 + 2ϵ 1/2

s2 4/9 4/9 1/4 1/4 + ϵ 2/3 1/2 2/3 1/2 + 2ϵ

s3 2/9 2/9 1/4 1/4 1/3 1/2 2/3 1/2

s4 2/9 2/9 1/4 1/4 2/3 1/2 1/3 1/2

Table 2.2: Specific values computed using equations from definition 2.6 and
values from table 2.1

2.2 Illustration and examples

Definition 2.8 (Types of the common cause). Let (Ω, A, µ) be a probablility
space. Let a, b, c ∈ A such that a, b are positively correlated and c is a common
cause of the correlation. Following Rédei, we distinguish the following types
of a common cause:..1. Deterministic

A common cause c is called deterministic if:

µ(a|c) = µ(b|c) = 1
µ(a|c′) = µ(b|c′) = 0..2. Genuinely probabilistic

If c is a common cause such that c ⊈ a and c ⊈ b, then c is called
a genuinely probabilistic common cause...3. Proper
A common cause c of the correlation between a, b ∈ A is called proper if:

µ(∆(b, c)) ̸= 0
µ(∆(a, c)) ̸= 0

9



2. Reichenbach’s common cause principle............................4. Improper
The common cause c is called improper when it is not proper.

10



Chapter 3

Reichenbach’s common cause principle in
non-classical probability theory

In this chapter, we will examine the common cause in non-classical probability
theory and its existence. We will extend the definition of the common cause
in classical probability space to the non-classical probability space.

First of all, we define the non-classical probability space:
Definition 3.1 (Non-classical probability space). A non-classical probability
space is a pair (L, µ), where L is a σ-orthomodular lattice of events and µ is
a probability measure on L.

Definition 3.2 (Covariance). Let (L, µ) be a non-classical probability space
and let a, b ∈ L. Then we define a covariance of a and b as:

Cov(a, b) = µ(a ∧ b) − µ(a)µ(b)

Definition 3.3 (Atomless orthomodular lattice). An orthomodular lattice is
called atomless when it has no atoms.

Definition 3.4 (Commutator of elements on an orthomodular lattice). Let L be
an orthomodular lattice and a, b ∈ L. We define mapping C : L × L → L as
C(a, b) = (a ∧ b) ∨ (a ∧ b⊥) ∨ (a⊥ ∧ b) ∨ (a⊥ ∧ b⊥).

Furthermore, we define the relation of commutation C. We say that a C b if
and only if C(a, b) = 1. This is equivalent to a = (a ∧ b) ∨ (a ∧ b⊥). It is easy
to see that the relation of commutation is symmetric.

Note that if a, b ∈ B, where B denotes the Boolean algebra, the condition
C(a, b) = 1 is always satisfied.

Now we can rewrite conditions from definition 2.6 using the lattice opera-
tions instead of the set operations. The conditional probabilities can also be
rewritten:

11



3. Reichenbach’s common cause principle in non-classical probability theory...........
Definition 3.5 (Common cause in non-classical probability theory). Let L be an
orthomodular lattice, let µ be a probability measure on L and let a, b, c ∈ L
such that c C a, c C b and 0 < µ(c) < 1. Then we say that c is the common
cause of a and b when the following conditions are met:

µ(a ∧ b ∧ c)
µ(c) = µ(a ∧ c)

µ(c)
µ(b ∧ c)

µ(c) (3.1)

µ(a ∧ b ∧ c⊥)
µ(c⊥) = µ(a ∧ c⊥)

µ(c⊥)
µ(b ∧ c⊥)

µ(c⊥) (3.2)

µ(a ∧ c)
µ(c) >

µ(a ∧ c⊥)
µ(c⊥) (3.3)

µ(b ∧ c)
µ(c) >

µ(b ∧ c⊥)
µ(c⊥) (3.4)

u u
u

u

u

u

$

%

&' u u u u u u
u

u

u

u

%$

'

&

d

e

f

g

h i j k l m n o

p

q

r

s

c
Figure 3.1: Three elements a, b and c, such that a C c and b C c, generate a sub-
orthomodular lattice, which in the most general case is the one we display. There
are no other variables involved. All conditions of the common cause can be
tested on this orthomodular lattice.

We can express a, b and c in the following way:

a = g ∨ h ∨ i ∨ n ∨ o ∨ p

b = f ∨ i ∨ j ∨ m ∨ n ∨ q

c = d ∨ f ∨ h ∨ i ∨ j ∨ k

= e ∨ g ∨ h ∨ i ∨ j ∨ k

12



.................. 3.1. Existence of common cause in an orthomodular lattice

3.1 Existence of common cause in an
orthomodular lattice

In this chapter, we will examine the common cause in non-classical probability
theory. We will provide a proof of the existence of the common cause in
a σ-orthomodular lattice.

Then, we will discuss some conclusions taken from [10]. We will reformulate,
amend and prove some lemmas which we found incomplete. Those lemmas
were used to prove the existence of the common cause in an atomless and
complete orthomodular lattice. We will show a proof based on more general
assumptions. We will also answer the question from the conclusion of [10].

3.1.1 Enhanced proof of the existence of a common cause

Proposition 3.6. In classical probability,

Cov(a, b) = −Cov(a⊥, b) = −Cov(a, b⊥) = Cov(a⊥, b⊥) (3.5)

Note that in quantum probability, equalities (3.5) need not hold, even the
signs might be different.

Proof. We will prove that:

Cov(a, b) = −Cov(a⊥, b)

First of all, we realize:

Cov(a, b) = µ(a ∧ b) − µ(a)µ(b)

Because we are in classical probability, we can use the fact that a C b, which
means µ(b) − µ(a⊥ ∧ b) = µ(a ∧ b):

µ(b) − µ(a⊥ ∧ b) − µ(a)µ(b) = −(µ(a⊥ ∧ b) − µ(b) + µ(a)µ(b))
= −(µ(a⊥ ∧ b) − µ(b)(1 − µ(a)))
= −(µ(a⊥ ∧ b) − µ(a⊥)µ(b))
= −Cov(a⊥, b)

We can use the commutativity to prove the other two equalities, too.

13



3. Reichenbach’s common cause principle in non-classical probability theory...........
Definition 3.7 (Logically independent events [8, Definition 2.1]). Events a, b ∈ L
are called logically independent when the following conditions are satisfied:..1. a ∧ b ̸= 0..2. a⊥ ∧ b ̸= 0..3. a ∧ b⊥ ̸= 0..4. a⊥ ∧ b⊥ ̸= 0

Definition 3.8 (Faithful measure). Let µ be a probability measure on a σ-
orthomodular lattice L. We call µ a faithful measure when µ(x) ̸= 0 for any
non-zero element of L.

Definition 3.9 (Darboux property1). We say that a probability measure µ
defined on a σ-orthomodular lattice L has the Darboux property when ∀x, y ∈ L
such that x ≤ y it holds:

∀r ∈ [µ(x), µ(y)] ∃z ∈ [x, y] : µ(z) = r

In other words, a function with the Darboux property assumes every in-
termediate value between any two points in its domain. This means that
the function cannot have any discontinuities that prevent it from taking on
intermediate values between any two of its points.

Theorem 3.10 (Existence of a common cause). Let (L, µ) be a non-classical
probability space. Let a, b ∈ L such that a C c, b C c and Cov(a, b) > 0 i.e.
positively correlated. Let the measure µ be faithful and satisfy the Darboux
property. Then there exists a common cause c ∈ L.

Proof. We will look for a common cause c ≤ a ∧ b of a and b, provided
µ(a ∧ b) − µ(a)µ(b) > 0. We will show that conditions (3.5) hold under
assumptions mentioned above:..1. First of all, we multiply both sides of equation (3.1) by µ(c)2:

µ(c)µ(a ∧ b ∧ c) = µ(a ∧ c)µ(b ∧ c)

Then we separate the term µ(c):

µ(c) = µ(a ∧ c)µ(b ∧ c)
µ(a ∧ b ∧ c)

This equation holds because we know that µ(a ∧ b ∧ c) ̸= 0.
1Also called denseness property according to [8]
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.................. 3.1. Existence of common cause in an orthomodular lattice..2. We can rewrite equation (3.2) as follows:

µ(a ∧ b) − µ(c)
1 − µ(c) = (µ(a) − µ(c))(µ(b) − µ(c))

(1 − µ(c))2

µ(a ∧ b) − µ(c) = (µ(a) − µ(c))(µ(b) − µ(c))
1 − µ(c) (3.6)

We know that µ(a∧b) > µ(c) > 0 so µ(c) ∈ [0, µ(a∧b)]. We can consider
the left-hand side of equality (3.6) as a function:

F(µ(c)) = µ(a ∧ b) − µ(c)

and the right-hand side of equality (3.6) as a function:

G(µ(c)) = (µ(a) − µ(c))(µ(b) − µ(c))
1 − µ(c)

Those functions are continuous on [0, 1] but we are interested only in the
interval [0, µ(a ∧ b)]:

F(0) = µ(a ∧ b) > G(0) = µ(a)µ(b)

F(µ(a ∧ b)) = 0 < G(µ(a ∧ b))

By our assumption, the measure µ has the Darboux property, so we can
say, that there exists µ(c) ∈ (0, µ(a ∧ b)) such that F(µ(c)) = G(µ(c))...3. After multiplying both sides by denominators of (3.3), we obtain an
inequality:

µ(a ∧ c) − µ(c)µ(a ∧ c) > µ(c)µ(a ∧ c⊥)

By rearranging and using the commutation of a and c we get:

µ(a ∧ c) > µ(c)µ(a) > µ(a ∧ c)µ(a)
µ(a ∧ c) > µ(a ∧ c)µ(a)

1 > µ(a)

Every operation done on the inequality is equivalent. The proof is done...4. Condition (3.4) is in the same form as condition (3.3). We use commu-
tation of b and c instead of commutation of a and c and the rest of the
proof is the same as above.

Note that since a C c and b C c, we can use the result of proposition 3.6

Cov(a, b) = Cov(a⊥, b⊥)

So when a and b are positively correlated, then a⊥ and b⊥ must be positively
correlated. Additionally, we notice using a⊥ and b⊥ instead of a and b in

15



3. Reichenbach’s common cause principle in non-classical probability theory...........
conditions (3.5) results in the same set of conditions. Therefore, the proof of
the common cause existence would be the same as above. In other words, if
we do not insist on c ≤ a ∧ b, another common cause d ≤ a⊥ ∧ b⊥ could be
found assuming the measure µ satisfies the Darboux property on the interval
[0, a⊥ ∧ b⊥].

As mentioned in [8, pp.72-73], what is really needed in [10] is the Darboux
property of µ. Moreover, we need it only for the restriction of µ to the interval
[0, a ∧ b] and even less, we need that for each r ∈ [0, µ(a ∧ b)], there is a
c ≤ a ∧ b such that µ(c) = r.

Thus we may formulate our result as follows:
Corollary 3.11. For the existence of a common cause c ∈ L, the measure µ
from theorem 3.10 has to be faithful and satisfy the Darboux property on
the interval [0, a ∧ b].

3.1.2 Comparison to previous results

In [10] there is examined the existence of a common cause of two positively
correlated elements in an atomless and complete orthomodular lattice. The
key tool in [10] to prove the existence of a non-trivial common cause are [10,
Lemma 3.4] and [10, Lemma 3.8].

We will look closer at those lemmas, we will find simpler proofs and for
[10, Lemma 3.4], we will amend a missing assumption.

The [10, Lemma 3.4] is formulated as follows:
Lemma 3.12 ([10, Lemma 3.4]). Let µ be a completely additive, faithful
probability measure on a σ-orthomodular lattice L and let a and b be elements
in L such that µ(a ∧ b) > µ(a)µ(b). Then 1 − µ(a) − µ(b) + µ(a ∧ b) > 0 and
the following facts hold:..1. If µ(a) > µ(a ∧ b), then

µ(a ∧ b) − µ(a)µ(b)
1 − µ(a) − µ(b) + µ(a ∧ b) < µ(a ∧ b) (3.7)..2. If µ(a) = µ(a ∧ b), then

µ(a ∧ b) − µ(a)µ(b)
1 − µ(a) − µ(b) + µ(a ∧ b) = µ(a ∧ b). (3.8)

Example 3.13. Assumption µ(a) > µ(a ∧ b) is too weak. Inequality (3.7) is
for example violated when we say that µ(b) = µ(a ∧ b), so:

µ(b) − µ(a)µ(b)
1 − µ(a) − µ(b) + µ(b) = µ(b)
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.................. 3.1. Existence of common cause in an orthomodular lattice

Let’s rephrase [10, Lemma 3.4]:
Lemma 3.14. Let µ be a completely additive probability measure on a com-
plete orthomodular lattice L and let a, b ∈ L such that µ(a ∧ b) > µ(a)µ(b).
Then the following facts hold:

1 − µ(a) − µ(b) + µ(a ∧ b) > 0 (3.9)

If µ(a) > µ(a ∧ b) and µ(b) > µ(a ∧ b), then:

µ(a ∧ b) − µ(a)µ(b)
1 − µ(a) − µ(b) + µ(a ∧ b) < µ(a ∧ b) (3.10)

If µ(a) = µ(a ∧ b) or µ(b) = µ(a ∧ b), then:

µ(a ∧ b) − µ(a)µ(b)
1 − µ(a) − µ(b) + µ(a ∧ b) = µ(a ∧ b) (3.11)

Proof. Let’s first prove (3.9):
We assume that µ(a ∧ b) > µ(a)µ(b), which results in 0 < µ(a) < 1 and
0 < µ(b) < 1. It can then be rewritten as follows:

1−µ(a)−µ(b)+µ(a∧b) > 1−µ(a)−µ(b)+µ(a)µ(b) = (1−µ(a))(1−µ(b)) > 0

Now let’s rewrite assumptions µ(a) > µ(a ∧ b) and µ(b) > µ(a ∧ b) as follows:

µ(a) = µ(a ∧ b) + εa (3.12)

µ(b) = µ(a ∧ b) + εb (3.13)

where εa and εb are greater than zero.
Note that multiplying (3.12) with µ(b) results in:

µ(a)µ(b) = µ(b)µ(a ∧ b) + µ(b)εa (3.14)

Let’s start with inequality:

µ(b) > µ(a ∧ b)

then we multiply both sides by εa and we add µ(b)µ(a ∧ b) to both sides
getting:

µ(b)µ(a ∧ b) + εaµ(b) > µ(b)µ(a ∧ b) + εaµ(a ∧ b)

which can be rewritten as:

µ(b)µ(a ∧ b) + εaµ(b) > µ(a ∧ b)(µ(b) + µ(a) − µ(a) + εa)
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3. Reichenbach’s common cause principle in non-classical probability theory...........
We use (3.14) on the left-hand side and (3.12) on the right-hand side resulting
in:

µ(a)µ(b) > µ(a ∧ b)(µ(a) + µ(b) − µ(a ∧ b))

We multiply both sides of the inequality by −1 and we add µ(a ∧ b) to both
sides:

µ(a ∧ b) − µ(a)µ(b) < µ(a ∧ b) − µ(a ∧ b)(µ(a) + µ(b) − µ(a ∧ b))

µ(a ∧ b) − µ(a)µ(b) < µ(a ∧ b)(1 − µ(a) − µ(b) + µ(a ∧ b))

which results in

µ(a ∧ b) − µ(a)µ(b)
1 − µ(a) − µ(b) + µ(a ∧ b) < µ(a ∧ b)

The following two lemmas are used in [10] to prove the existence of a
common cause on an atomless complete orthomodular lattice. However, the
lemmas show, that a faithful meaure µ on an atomless complete orthomodular
lattice L has the Darboux property, which, together with the faithfulness of µ,
is the only required assumption.

Therefore, we omit proofs of 3.15 and 3.16. We have already shown that the
Darboux property is the sufficient assumption for the existence of a common
cause on an orthomodular lattice. Moreover, proofs of those lemmas in [10]
are rather complex.
Lemma 3.15 ([10, Lemma 3.6]). Let µ be a completely additive probabil-
ity measure on an atomless and complete orthomodular lattice L and let r
be an element in L such that µ(r) = 0. For any real number α such that
0 < α < µ(r) there exists c ∈ L such that c < r and µ(c) = α.

Lemma 3.16 ([10, Lemma 3.7]). Let µ be a faithful completely additive prob-
ability measure on an atomless and complete orthomodular lattice L, let r be
a nonzero element in L and let α be a real number such that 0 < α < µ(r).
Then the set {c ∈ L|c < r, µ(c) = α} is an uncountably infinite set.

The following lemma is mentioned and proved in [15]. It is also stated in
[8] as a fact. Here we present a proof:
Lemma 3.17 ([10, Lemma 3.8]). Let µ be a probability measure on a σ-
orthomodular lattice L and let a, b, c ∈ L. If c is a common cause of a and b,
then

µ(a ∧ b) > µ(a)µ(b)

18



.................. 3.1. Existence of common cause in an orthomodular lattice

Proof. First of all, we will look closer at inequality (3.3):

µ(a ∧ c)
µ(c) >

µ(a ∧ c⊥)
µ(c⊥)

µ(a ∧ c) − µ(c)µ(a ∧ c) > µ(c)µ(a ∧ c⊥)
µ(a ∧ c) > µ(c)(µ(a ∧ c) + µ(a ∧ c⊥))
µ(a ∧ c) > µ(a)µ(c)

We used the fact that a C c in the last step. The same transformations could
be applied to (3.4):

µ(b ∧ c) > µ(b)µ(c)

Every nontrivial convex combination of µ(a∧c)
µ(c) and µ(a∧c⊥)

µ(c⊥) must be between
them. We will be interested in the following convex combination:

µ(a ∧ c)
µ(c) > µ(c)µ(a ∧ c)

µ(c) + µ(c⊥)µ(a ∧ c⊥)
µ(c⊥) >

µ(a ∧ c⊥)
µ(c⊥)

because

µ(c)µ(a ∧ c)
µ(c) + µ(c⊥)µ(a ∧ c⊥)

µ(c⊥) = µ(a ∧ c) + µ(a ∧ c⊥) = µ(a)

Using this fact we obtain:

µ(a)µ(c⊥) > µ(a ∧ c⊥) (3.15)

Similarly, we could have obtained:

µ(b)µ(c⊥) > µ(b ∧ c⊥) (3.16)

Now we take equation (3.1) and we multiply its both sides by the right-hand
side denominator:

µ(c)µ(a ∧ b ∧ c) = µ(a ∧ c)µ(b ∧ c)

Then we use inequalities µ(a ∧ c) > µ(a)µ(c) and µ(b ∧ c) > µ(b)µ(c):

µ(c)µ(a ∧ b ∧ c) = µ(a ∧ c)µ(b ∧ c) > µ(a)µ(b)µ(c)2

resulting in:
µ(a ∧ b ∧ c) > µ(a)µ(b)µ(c) (3.17)

From equation (3.2) we can obtain:

µ(a ∧ b ∧ c⊥) = µ(a ∧ c⊥)µ(b ∧ c⊥)
µ(c⊥) (3.18)

Now we realize:

µ(a ∧ b ∧ c) + µ(a ∧ b ∧ c⊥) = µ(a ∧ b)
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3. Reichenbach’s common cause principle in non-classical probability theory...........
Adding equalities (3.17),(3.18) and using inequalities (3.15),(3.16) results in:

µ(a ∧ b) > µ(a)µ(b)µ(c) + µ(a ∧ c⊥)µ(b ∧ c⊥)
µ(c⊥) > µ(a)µ(b)µ(c) + µ(a)µ(b)µ(c⊥)2

µ(c⊥)

which can be further simplified:

µ(a ∧ b) > µ(a)µ(b)(µ(c) + µ(c⊥))
µ(a ∧ b) > µ(a)µ(b)

In the conclusion of [10], Kitajima says without proof:
Proposition 3.18. If a C b and µ(a ∧ b) − µ(a)µ(b) > 0, then:

1 − µ(a)µ(b)
µ(a ∧ b) < µ(a⊥ ∧ b⊥)

We will reformulate the proposition and show proof:
Lemma 3.19 (Reformulation of the conclusion of [10]). Let L be a σ-orthomodular
lattice. Let µ be a probability measure on L, let a, b ∈ L such that a C b and
µ(a ∧ b) ̸= 0. Then:..1.

1 − µ(a)µ(b)
µ(a ∧ b) ≤ µ(a⊥ ∧ b⊥) (3.19)..2. Additionally, when the measure µ is faithful, then:

1 − µ(a)µ(b)
µ(a ∧ b) < µ(a⊥ ∧ b⊥) (3.20)

Proof...1. First of all, we multiply both sides of inequality (3.19) by µ(a∧b):

µ(a ∧ b) − µ(a)µ(b) ≤ µ(a⊥ ∧ b⊥)µ(a ∧ b)

Then we subtract the left-hand side of the inequality so we get:

0 ≤ µ(a⊥ ∧ b⊥)µ(a ∧ b) + µ(a)µ(b) − µ(a ∧ b)

Now we rearrange the terms in the inequality:

0 ≤ µ(a)µ(b) − µ(a ∧ b)(1 − µ(a⊥ ∧ b⊥))

Now we realize that:

1 − µ(a⊥ ∧ b⊥) = µ((a⊥ ∧ b⊥)⊥) = µ(a ∨ b) = µ(a) + µ(b) − µ(a ∧ b)
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.................. 3.1. Existence of common cause in an orthomodular lattice

And we use it in the inequality we want to prove:

0 ≤ µ(a)µ(b) − µ(a)µ(a ∧ b) − µ(b)µ(a ∧ b) + µ(a ∧ b)µ(a ∧ b)

This allows us to use the formula xy − xc − yc + c2 = (x − c)(y − c) for
x = µ(a), y = µ(b), c = µ(a ∧ b):

0 ≤ (µ(a) − µ(a ∧ b))(µ(b) − µ(a ∧ b))

Now using commutation of a and b we get:

0 ≤ µ(a⊥ ∧ b)µ(b⊥ ∧ a)

Every operation that we have applied to the inequality is equivalent...2. The measure µ is faithful, so we know that µ(a⊥∧b) ̸= 0 and µ(a∧b⊥) ̸= 0,
which means:

0 < µ(a⊥ ∧ b)µ(a ∧ b⊥)

The proof is done.

The following question is posed in [10]:

Question 3.1.1. Does 3.19 hold when a does not commute with b?
Answer 3.1.1. The answer to this question is negative. We can find a coun-
terexample:

Let us consider the product MO2 × B2, where B2 denotes a two-element
Boolean algebra. The Greechie diagram of such a structure is displayed in
figure 3.2.

u u
u u

u

�
�
�
�
�
�
�
�
��

T
T

T
T

T
T

T
T

TT

d

a b

BA

Figure 3.2: Lattice MO2 × B2

Then we choose measure:

µ(a ∧ b) = 1
2 = µ(b⊥ ∧ (a ∧ b⊥)⊥ ∧ (a⊥ ∧ b⊥)⊥)
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3. Reichenbach’s common cause principle in non-classical probability theory...........
µ(a) = µ(b) = 1

2

Then:
1 − µ(a)µ(b)

µ(a ∧ b) = 1 −
1/4
1/2

= 1
2

But when we look at the right-hand side of the inequality from lemma 3.19:

µ(a⊥ ∧ b⊥) = 0

So the inequality does not hold in this case. The counterexample is done.
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Chapter 4

Conclusions

We have shown in theorem 3.10 that if (L, µ) is a non-classical probability
space, where L is an atomless orthomodular lattice, and a, b ∈ L are such that
a C c and b C c, then there exists a common cause c ∈ L. The condition that
the measure µ is faithful and satisfies the Darboux property is crucial for the
proof.

We have also provided a counterexample to the claim in [10] that the
inequality in Lemma 3.19 holds when a and b do not commute with c.
This demonstrates that the commutation is an essential requirement for the
existence of a common cause in a non-classical probability space.

In summary, we have reformulated, amended, and proved some lemmas
related to the existence of a common cause in the non-classical probability
theory. We showed that under certain conditions, a common cause does
indeed exist.
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