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Abstrakt

Hybridní pixelové detektory vyvolaly zájem fyziky vysokých energií, medicíny a věd o ves-
míru pro jejich schopnosti registrovat bezpozad’ově jednotlivé ionizující částice a zazna-
menávat jejich stopy či dráhy v detektorovém polovodičovém sensoru. Předložená práce se
zaměřuje jmenovitě na hybridní detektory typu Timepix3, jež umožňují identifikovat částice
ve složitých radiačních polích v širokém rozsahu jejich energií.

V předložené práci byly simulovány neidealizované datové sady popisující dráhy ionizu-
jících částic interagujících v pixelovém senzoru, které byly následně experimentálně ověřeny.
Na základě těchto datových sad byly vyvinuty nové algoritmy pro identifikaci částic, analýzu
jejich drah v senzoru a pro určování jejich toků. Pro sledování drah částic byl vyvinut Ran-
dom Forest Regressor, se kterým byla dosahována průměrná absolutní chyba 8, 65◦, což
představuje zlepšení přesnosti o 38% oproti jinému, dosud užívanému nejvýkonnějšímu algo-
ritmu. Pro klasifikaci částic byly vyvinuty dva nové algoritmy: jeden využívající Bayesián-
skou dekonvoluci a druhý, založený na využití strojového učení v kombinaci s klasifiká-
torem XGBoosted a Random Forest Regressor. Zatímco algoritmus vycházející z Bayesián-
ské dekonvoluce dovolil dosáhnout přesnosti klasifikace elektron/proton 93, 06% a před-
povědi celkové energie protonu s neurčitostí 54,65 MeV , v případě využití strojového učení
byla přesnost/správnost klasifikace elektron/proton rovna 96, 29%, a neurčitost předpovědi
celkové energie protonu 42,15 MeV .

Vyvinuté algoritmy byly poté experimentálně testovány na svazku protonů v Dánském
centru pro částicovou terapii. Experimentální testy přivedly ke konzistentním výsledkům.
Tyto algoritmy byly pak využity k analýze dat naměřených v neznámých radiačních polích,
a to jak v mimozemském prostředí s detektorem SATRAM umístěným na družici Evrop-
ské kosmické agentury Proba-V obíhající Zemi na nízké oběžné dráze, tak z experimentu
MoEDAL na Large Hadron Collider v CERN. V práci předložená analýza dat ze SATRAMu,
na kterém byl použit detektor Timepix v otevřeném prostoru, doplněná o jejich statistické
zpracování, umožnila poprvé úspěšně určit protonové spektrum v podmínkách tzv. radiační
anomálie nad Jižním Atlantikem. Tyto výsledky navíc dokládají možnosti využití detektorů
typu Timepix k vývoji modelových představ o radiačních polích kolem Země. Pokud jde o
experimentální data získaná systémem detektorů Timepix3 v experimentu MoEDAL na LHC,
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algoritmy sledování drah částic v sensoru dovolily určovat úhly θ = 56± 1◦ a φ = 139± 1◦,
které odpovídají 3D-směrům letu částic při vstupu do sensoru. To umožnilo rozpoznat in-
terakční bod, ve kterém se srážejí vstřícné svazky urychlených iontů a jeho rozměry s lep-
ším rozlišením než dosud a registrovat jeho rozšíření při srážkách iontů olova ve srovnání s
velikostí interakčního bodu při srážkách protonových svazků. Sledování úhlů dopadu jed-
notlivých částic dovolilo také odlišit primární částice zrozené v interakčním bodě od částic,
které jsou součástí radiačního pozadí v experimentu. Oddělené využití klasifikačních algo-
ritmů na částice pocházející z interakčního bodu a částice z pozadí umožnilo také určit složení
i spektrální charakteristiky částic tvořících celkové radiační pole v tomto experimentu.

Klíčová slova Medipix, Timepix, Timepix3, hybridní pixelové detektory, smíšená radiační
pole, sledování částic, identifikace částic, tok, fluence, vesmírné počasí, CERN, MoEDAL
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Abstract

Hybrid pixel detectors have gathered interest in the fields of high energy physics, medicine,
and space science for their noiseless single particle processing capabilities. The presented
work concentrates on hybrid detectors of the Timepix3 type, and their capability to identify
and track particles of the entire radiation field.

In the presented work, non-idealised datasets describing traces of ionising particles in-
teracting in a pixel sensor were simulated and subsequently validated through experiment.
Based on these datasets, novel algorithms for particle fluence, identification, and tracking
were developed. For particle tracking, a Random Forest Regressor was developed, produc-
ing a mean absolute error of 8.65◦, and thus a 38% increase in accuracy over the next-best
performing state-of-the-art algorithm. For particle classification, two novel algorithms were
developed: one utilising Bayesian deconvolution and the other utilising machine learning
with a combination of an XGBoosted classifier and Random Forest Regressor. The deconvo-
lution and machine learning algorithms produced an electron/proton classification accuracy
of 93.06% and 96.29%, respectively, and a total proton energy prediction accuracy of 54.65
MeV and 42.15 MeV , respectively.

The developed algorithms were then tested in an experimental environment from proton
beam exposure at the Danish Centre for Particle Therapy, from which consistent results were
obtained. The algorithms were later applied to unknown complex radiation fields in the
extra-terrestrial environment from the SATRAM detector, located on the European Space
Agency satellite Proba-V in low Earth orbit, and at the MoEDAL experiment at the Large
Hadron Collider located in CERN. The South Atlantic Anomaly was successfully isolated by
analysing the data obtained from SATRAM, on which a Timepix detector was used. For the
first time using Timepix detectors, following statistical manipulation, a physically reasonable
proton spectrum was extracted. These results present the possibility of using Timepix-type
detectors to develop models of the space environment in low Earth orbit. Regarding the
experimental data obtained by the Timepix3 detector system in the MoEDAL experiment, the
particle tracking algorithms allowed for the determination of the 3D-orientation of particles
born at the point of collisions of opposing beams at the Large Hadron Collider to be θ =
56 ± 1◦ and φ = 139 ± 1◦ angles. At the same time, the interaction point was determined
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with a better resolution than previously observed. This then allowed for the demonstration
of the increase in the size of the interaction point during lead-lead collisions compared to
the size of the interaction point during proton-proton collisions. Subsequently, the tracking
of the angles of incidence of individual particles made it possible to distinguish primary
particles born at the interaction point from particles that are part of the radiation background
in the experiment. The classification algorithms were then applied to the interaction point
and background separately, producing physically reasonable particle spectrums.

Keywords Medipix, Timepix, Timepix3, hybrid pixel detectors, mixed radiation fields, par-
ticle tracking, particle identification, flux, fluence, space weather, CERN, MoEDAL
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Acronyms and Abbreviations

θ Angle of incidence relative to the normal

φ Azimuthal angle of incidence

CERN European Organization for Nuclear Research

CNN Convolution Neural Network

DCPT Danish Centre for Particle Therapy

fToA fast Time-of-Arrival

IP Interaction Point

Leff effective path length

LHC Large Hadron Collider

LLM Left Lower-most, Right Upper-most

ML Machine Learning

MoEDAL The Monopole and Exotic Detector at the LHC

PbPb Lead-Lead

pp Proton-Proton

SAA South Atlantic Anomaly

SATRAM Space Application of Timepix based Radiation Monitor

sToA slow Time-of-Arrival

THL Threshold Level

ToA Time-of-Arrival

ToT Time-over-Threshold

Veff Effective Volume
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1 | Introduction

Figure 1.1: Picture of a Timepix3 detector with a silicon sensor layer consisting of 256× 256
pixels with an area of 55 × 55 µm. Ionising radiation interacting in the sensor creates
traces whose shapes and energy losses are characteristic of different types of particle in-
teractions [1].

1.1 Hybrid Pixel Detectors
Hybrid pixel detectors are the foundation of the work presented in this paper. First developed
for the particle tracking of the inner vertex of the Large Hadron Collider (LHC), their applica-
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tion in many areas of physics quickly became apparent. In 1997, the Medipix Collaboration
was formed with the goal of bringing pixel detectors to the field of biomedicine [2]. Over the
years, the Medipix Collaboration has overseen the production of many different detectors,
from pure photon counting detectors (Medipix, Medipix2, and Medipix3) to detectors where
collected charge and/or time of interaction in each pixel is recorded (Timepix and Timepix3
- for illustration see Figure 1.1). This paper will concentrate on Timepix and Timepix3,
and their application to experiment. These detectors operate on the same principles as a gas
chamber, but with higher sensitivity and lower dead time. Their high time resolution and
accurate spatial information allow for the separation and visualisation of individual particles
of radiation (Figure 1.2), thus opening the door to the possibility of classifying and tracking
individual particles of radiation within a field.

Figure 1.2: Timepix3 detector track visualisation from experimental acquisition at the Large
Hadron Collider (MoEDAL experiment), showing energy deposition (left) and time of arrival
(right) information of individual particles of radiation.

1.2 Thesis Outline
The goal of this thesis is to develop simulated datasets which compare to experimental results.
This should then allow for novel algorithms in particle tracking, classification, and fluence
measurements to be developed, with the intention of out-performing current state-of-the-art
methods in areas such as accuracy, stability, and/or computational intensity. These algorithms
will then be combined to decompose and analyse complex radiation environments.

The rest of the text is divided into 6 main chapters:
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• Chapter 2 introduces the Timepix detector family and their working principles.

• Chapter 3 reviews the three main aspects of radiation field decomposition: particle
identification, tracking, and fluence measurements. The recent developments in the
field and motivations for this paper are outlined.

• Chapter 4 introduces all tools and techniques used throughout this paper.

• Chapter 5 discusses the development and validation of ground truth data by simulation.

• Chapter 6 describes the development of novel algorithms for the decomposition of
radiation fields.

• Chapter 7 evaluates the performance of the newly-developed algorithms when applied
to real-world experiments (known proton fields at the Danish Centre for Particle Ther-
apy [DCPT] and unknown mixed fields in space and at the LHC).
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2 | Timepix Detectors

2.1 Working Principles
Hybrid pixel detectors are a form of ionising radiation detector, consisting of a highly resistive
sensor layer (typically silicon but can be other semi-conductor materials) bump bonded to a
readout chip. The bump bonding points are referred to as pixels. During operation, a reverse
bias voltage is applied at the bump bonding points and the opposite face, creating a fully
depleted sensor. The main principle of detection is as follows: as ionising radiation passes
through the fully depleted sensor, free charge carriers are created which then begin to drift
due to the applied voltage. Electrons drift towards the common backside contact; holes drift
towards the pixel electrodes. During this drift motion, current signals are induced in the
bump bonding points closest to the charge cloud [3]. The current signal is then converted to a
voltage output. When this voltage output crosses a pre-calibrated threshold level (THL), the
signal is registered in the readout. The method of signal recording in the readout depends on
the individual pixel detector and readout mode used. A basic illustration of this process can
be seen in Figure 2.1.
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Figure 2.1: Cross section of a hybrid pixel detector. Ionising radiation creates free charge
carriers which drift towards the electrodes due to the applied bias voltage. During their
drift, they induce currents at the pixel sites, which are amplified and analysed in the pixel
electronics. See text for details.

2.2 Timepix
Timepix is a type of hybrid pixel detector developed by the Medipix Collaboration at CERN [4].
The radiation-sensitive layer of these detectors is typically made of silicon with dimensions
1.408 × 1.408 × 0.05 cm. The active material is then bump bonded to a readout chip at
256 × 256 points with a pitch of 55 µm. During experimental acquisition, Timepix oper-
ates in a scheme referred to as frame-based readout mode. This mode operates on a similar
concept to that of a photographic camera in which the detector is fully active (the shutter is
open) for a set amount of time (referred to as frame acquisition time), after which the detector
is made inactive (the shutter is closed). The status of each pixel is then read out, resulting
in a dead time of ≈11 ms. Based on the spatial information of each pixel, a 2D “image”
displaying the status of each pixel can constructed. This image is typically referred to as a
frame.
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2.2.1 Readout Modes
In Timepix, each pixel is equipped with a 14-bit pseudo-random counter that registers values
sampled by an externally fed readout clock, which is typically below 50 MHz. The registered
values depend on the readout mode chosen. With this setup, there are three readout modes
available, as illustrated in Figure 2.2 and defined below.

1. Counting mode: each time the voltage output crosses the THL, the pixel counter is
incremented

2. Time-of-Arrival (ToA) mode: when the voltage output crosses the THL, the pixel
counter begins incrementing with each clock cycle until the end of frame acquisition

3. Time-over-Threshold (ToT) mode: the time interval the voltage output remains above
the THL is recorded (Time-over-Threshold [ToT]). If this occurs more than once in a
single frame acquisition, the ToT values accumulate.

.

Figure 2.2: Illustration of behaviour of the counter register in a Timepix pixel in the vari-
ous operational modes [5]. THL, threshold level; ToT, Time-over-Threshold; ToA, Time-of-
Arrival.
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2.3 Timepix3
Timepix3 detectors, the successors to Timepix, are another version of hybrid pixel detector,
also developed by the Medipix Collaboration at CERN [6]. The active layer of these detectors
is also typically made of silicon with dimensions 1.408 × 1.408 × 0.05 cm. Both Timepix
and Timepix3 detectors operate on the same physical principles; therefore, data analysis can
be treated almost identically.

2.3.1 Readout Modes
In Timepix3, each pixel is equipped with an 18-bit (ToA) and 10-bit (ToT) pseudo-random
counter. There is a base clock of 40 MHz (slow ToA [sToA]), which is running continuously
throughout the measurement and a 640 MHz clock from a ring oscillator (fast ToA [fToA])
with time resolutions ≈25 ns and 1.5625 ns, respectively. The precise time measurement
proceeds as follows. In experiment, when the voltage output within a pixel crosses the THL
on its upwards slope, the fToA starts to count until the next rising edge of the continuously
running sToA clock, as illustrated in Figure 2.3. Considering sTOA is measured from the start
of the acquisition time, the final ToA value is given by t[ns] = sToA×25−fToA×1.5625.
The ToT is measured solely with sTOA using the moments of crossing on the upward and
downward slopes of the induced voltage signal.

With these new features, Timepix3 has all the same available readout modes as Timepix,
but with higher accuracy and an additional readout scheme, known as data-driven mode. In
this mode, it is possible to simultaneously measure the ToA and ToT information of each
pixel (quasi-)continuously. Throughout the measurement, only pixels that have seen an event
are inactive for the time that event is being read out; this takes approximately 475 ns.
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Figure 2.3: Illustration of the pulse processing done in each pixel of a Timepix3 detector.
A 40 MHz clock running continuously from the measurement start determines sToA. To
increase time precision, a 640 MHz clock from a local oscillator determines the time between
the actual threshold level crossing and the next rising edge of the sToA clock [5]. THL,
threshold level; t, time; sToA, slow Time-of-Arrival; fToA, fast Time-of-Arrival; ToT, Time-
over-Threshold.

2.4 Time-over-Threshold to Energy Deposition
As mentioned previously,ToT is measured during typical experimental acquisition using Timepix
detectors. This quantity initially seems somewhat abstract; however, ToT has a particular sig-
nificance as it can be directly related to the energy deposition of the particle of radiation
creating the signal [7]. This relation can be summarised using the following equation (also
illustrated in Figure 2.4):

f(x) = ax+ b+
c

x− t
[keV ] (2.1)
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where a, b, c, t ∈ R are obtained for each pixel through calibration using known X-ray fluo-
rescence and γ-photons [8]. The calibration process for Timepix and Timepix3 is identical
as both operate on the same pulse-processing concept.

Figure 2.4: The dependence of the ToT value on energy deposition in a Timepix(3) pixel [7].
The parameters a, b, c and t of the surrogate function are determined by per-pixel calibration.
ToT, Time-over-Threshold.

2.5 Particle Clusters
During typical data acquisition, a large number of pixel hits is generated which can be
grouped together into so-called “particle clusters". In the presented work, it is assumed
that each particle cluster corresponds to an individual particle of radiation [9]. In the case
of Timepix, this is performed solely using the spatial information; however, both spatial and
ToA information are utilised for Timepix3. For example, Figure 2.5 shows a clear separa-
tion of cluster 1 from clusters 2 and 3 based on the spatial information. Clusters 2 and 3 are
separated by ToA information.
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Figure 2.5: Example of the separation of three particle clusters using spatial and ToA infor-
mation of the pixel hits. Cluster 1 is separated by spatial information and clusters 2 and 3 are
separated by ToA information. ToA, Time-of-Arrival.

The reduced separation capabilities in Timepix lead to major problems in analysis if mul-
tiple overlapping particles are merged in a single cluster, ultimately resulting in an underesti-
mation of the particle rate and misclassification of the particles within the cluster.
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3 | Motivations

The aim of this chapter is to outline the current state-of-the-art methods in radiation field
decomposition using Timepix and Timepix3 detectors.

3.1 Particle Classification
Medipix2 silicon detectors were the first hybrid pixel detectors to decompose radiation fields.
For example in [10], particles of radiation were classified based solely on their morphological
features, leading to the development of the classification scheme illustrated in Figure 3.1.

Figure 3.1: Classification scheme first proposed by Holy et al [10].

This classification scheme has continued in popularity even after the introduction of Timepix
detectors with the additional ability of measuring the ToT signals. With this new information,
attempts to further increase accuracy were made [11]. This classification scheme, although
effective, does have its limitations, as it appears somewhat abstract and vague to those not
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in the Medipix community. In recent years, there has been a push to move away from this
form of classification into more physical groups, namely classes based on particle types and
energies. The most recent attempt involved the use of convolution neural networks (CNNs)
to classify particles into electron and several proton energy interval classes [12]. With the
introduction of Timepix3 and its increased time resolution and simultaneous measurement of
energy and time, more information is available. This allows for higher accuracy classifica-
tion and reduction of systematic uncertainties, for example by reducing the chance of track
overlap. To date, there has been little work on this topic related to Timepix3.

3.2 Particle Tracking
Particle tracking in Timepix3 refers to the process of using pixel ToT, ToA, and spatial infor-
mation for the approximate 3D reconstruction of a particle’s trajectory as it passes through
the active silicon layer. The capabilities of Timepix3 for 3D reconstruction of particles is
well-documented [13, 14]. In these papers, Timepix3 is operated in a similar fashion to a
time projection chamber, where it utilises the ToA and spatial information to reconstruct the
particle trajectories within the detector with the aid of approximate drift time equations. This
new information was quickly applied to determine a particle’s initial directionality, and locate
the point of interaction in the LHC [15]. The most recent paper released on this topic [16]
performed an exhaustive search of the best analytical tracking algorithm, with emphasis put
on high energy particles. It will be shown in later sections (6.2) that these algorithms, al-
though effective, have limitations when applied to low energy particles. An accurate particle
tracking algorithm over a wide range of particles has countless applications, such as locali-
sation, size measurement, and isolation of particle sources in complex radiation fields. It is
also worth noting that an accurate and stable particle tracking algorithm is necessary for the
measurement of particle fluence (outlined in the next section).

3.3 Particle Fluence
In simple terms, particle fluence is defined as the number of particles crossing a perpendicular
surface per unit area. Unfortunately, this definition is only sufficient for the case of particle
beams as there is a clear perpendicular area that can be measured. An accurate measurement
of particle fluence that is independent of the directionality of the field will be important to this
paper as the classification and tracking of the radiation field has no real significance unless
quantified, and biases associated with detector orientation are removed. One approach to this
problem was introduced in [15] where the "effective area" method was used. In this method,
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measured particles were weighted with the equation

αweighting =
1

l · l · cos (θ)
(3.1)

where l is the length of the side of the detector (1.408 cm) and θ is the angle of incidence. As
will be seen in Section 6.2, this equation, although effective, is not sufficient for the applica-
tions of this paper as particles that enter/exit along the edges of the detector (edge clusters)
must be removed to ensure accurate tracking and classification algorithms. The development
of an accurate particle fluence measurement that is independent of detector orientation would
allow for unbiased classification and radiation tracking, and increased accuracy of radiation
field monitoring.
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4 | Materials and Methods

In this chapter, the frameworks and algorithms used throughout this paper will be introduced.

4.1 Allpix2

Allpix2 is a general purpose simulation framework for simulating the performance of hybrid
silicon detectors [17]. The software is based on Geant4 libraries [18] and written in C++.
It is the standard simulation software for the simulation of hybrid silicon detectors. This
framework, unless otherwise stated, will be used for all simulations throughout this paper.

4.1.1 Simulation Configuration

Rather than explicitly writing the simulation set-up in C++, when simulating in Allpix2 the
user need only create a configuration file, which provides a large amount of abstraction to the
user. Despite this abstraction, the user still needs a level of understanding of the parameters
they are setting.

DespositionGeant4

In this section of the configuration file, the physics list and the radiation sources are specified.
The physics list used affects the calculation of the cross-sections and associated interactions,
and will vary according to the type of particles being simulated. A guide to all physics
lists available can be found at [19]. The source shape is specified by "source_type". In the
example below, a sphere is defined. By default, this produces particles randomly along the
sphere’s surface with momentum direction determined by cosine distribution. This ultimately
produces an omnidirectional isotropic field within the spherical volume [20].

[ D e p o s i t i o n G e a n t 4 ]
p h y s i c s _ l i s t = FTFP_BERT_LIV
p a r t i c l e _ t y p e = " p r o t o n "
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s o u r c e _ e n e r g y = 100 .00MeV
n u m b e r _ o f _ p a r t i c l e s = 1
s o u r c e _ t y p e = " s p h e r e "
s o u r c e _ p o s i t i o n = 0 0 0
s p h e r e _ r a d i u s = 15cm

If a particular energy distribution aside from mono-energetic or Gaussian distribution is re-
quired, an external macro-file written in standard Geant4 language must be included using
the commands "source_type = "macro"" and "file_name = "SourceMacro.mac"".

ElectricFieldReader

This section of the configuration file specifies the exact model used for the electric field.
In most cases a linear field is sufficient, but more specific models are available [17]. The
bias voltage is adjusted according to the desired detector setup. Provided the silicon is fully
depleted, the depletion voltage has no significant effect on results when simulating Timepix
or Timepix3.

[ E l e c t r i c F i e l d R e a d e r ]
model = " l i n e a r "
b i a s _ v o l t a g e = 230V
d e p l e t i o n _ v o l t a g e = 80V

Charge Propagation

The charge propagation inside the detector is specified using either "GenericPropagation" or
"TransientPropagation". When simulating low ionising particles such as electrons or high
energy protons it is typically sufficient to use "GenericPropagation". However, due to the
higher amount of free charge created in the detector while simulating high ionising particles
such as low energy protons, there is a large amount of diffusion and charge sharing between
pixels. These phenomena cannot be modelled in "GenericPropagation", calling for the need
of "TransientPropagation". In this scheme, propagation is still calculated but at each time-
step the associated diffusion is also accounted for. Both schemes use Runge-Kutta integration
to calculate the charge propagation. Whenever possible the generic propagation is favoured
over transient due to its dramatically lower computational intensity.

[ G e n e r i c P r o p a g a t i o n ]
name = " d e t e c t o r "
t e m p e r a t u r e = 315K
c h a r g e _ p e r _ s t e p = 25
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i n t e g r a t i o n _ t i m e = 50 ns
p r o p a g a t e _ h o l e s = t r u e
p r o p a g a t e _ e l e c t r o n s = f a l s e

[ T r a n s i e n t P r o p a g a t i o n ]
name = " d e t e c t o r "
t e m p e r a t u r e = 315K
c h a r g e _ p e r _ s t e p = 200
t i m e s t e p = 1 ns
i n t e g r a t i o n _ t i m e = 40 ns
i n d u c t i o n _ m a t r i x = 3 3

CSADigitizer

This section of the configuration file is where the data readout method is specified, i.e.,
how the current is induced at the pixel electrodes and converted into a pixel hit. Most of
these physical parameters can remain the same across a large range of simulations; fine-
tuning is only necessary if simulation errors arise. However, the following parameters must
always be checked and adjusted according to simulation: "integration_time", "threshold",
and "clock_bin". To avoid redundant computations, "integration_time" is typically reduced
for lower energy deposition particles because the voltage output produced in bump bond-
ing points is much shorter than that produced for higher energy deposition particles. The
threshold value must be calibrated for each simulation setup. Appendix A details threshold
calibration along with ToT energy calibration. The clock bin is typically set to 1.525 ns (the
resolution of Timepix3), but must be adjusted according to the detector being simulated.

[ C S A D i g i t i z e r ]
model = " c s a "
k r u m m e n a c h e r _ c u r r e n t = 1e −9C / s
d e t e c t o r _ c a p a c i t a n c e = 50e −15C /V
a m p _ o u t p u t _ c a p a c i t a n c e = 20e −15C /V
t r a n s c o n d u c t a n c e = 50e −6C / s /V
f e e d b a c k _ c a p a c i t a n c e = 10e −15C /V
t e m p e r a t u r e = 315K
i n t e g r a t i o n _ t i m e = 15000 ns
t h r e s h o l d = 15e −3V
s i g m a _ n o i s e = 0 . 1 e −3V
c l o c k _ b i n _ t o a = 1 .5625 ns
c l o c k _ b i n _ t o t = 1 .5625 ns
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4.2 Bayesian Deconvolution
Spectrum deconvolution refers to the decomposition of a complex signal into its contributing
spectrum components. There are many different iterative and statistical schemes that can
be chosen for this process. For this paper, the Bayesian deconvolution scheme was been
chosen [21], which utilises the Bayesian probability formula:

p(A|B) =
p(B|A)p(A)

p(B)
(4.1)

where p represents a generic probability function, | the given operator, and A and B some
arbitrary variables or system states. Despite the simplicity of the Bayesian formula it is quite
powerfully and used in many areas of physics and statistics [22]. The formula conveys the
probability of A having a particular value or state given that B has a particular value or state,
essentially relating two otherwise unrelated states. The states A and B can be assigned some
arbitrary distribution of two variables that will be referred to as the cause vector (xC) and the
effect vector (xE). It can then be assumed there exists an arbitrary probability distribution
p(xE|xC) given by the formula

p(xc|xE) =
p(xE|xC)p(xC)

p(xE)
. (4.2)

The approximate values of p(xE|xC) can be achieved through simulation. The remaining
probability values for a specific experiment can be obtained through the Bayesian iterative
deconvolution algorithm that is implemented using the library [23] written in C++.

4.3 Machine Learning
Machine-learning (ML) algorithms are arbitrary algorithms which are optimised to reduce
a prediction error by "learning" from a given dataset without being explicitly programmed.
The numbers of such algorithms are countless; thus, to reduce the scope of this paper, only a
subset of these algorithms will be considered. The ones of utmost importance to this project
are as follows:

Neural network This is a type of ML algorithm that operates on the same principle as
neurons in the brain. Neurons of the neural network are arranged most commonly in layers
known as dense layers in which each neuron of one layer is fully connected to every neuron
of the previous layer. The output of a neuron is then calculated using a weighted sum of the

17



previous layer with additional biases. The weights and biases associated with each neuron are
determined by learning from training data. On each neuron there is typically an addition of
non-linear activation functions (sigmoid, ReLU, etc.) that switch the corresponding neurons
on and off. This adds an additional non-linear capability of the solution [24].

Convolution neural networks (CNN) This a specific form of neural network that is spe-
cialised for computer vision tasks with an addition of convolution layers. Convolution layers
apply convolution operations using kernel matrices on the input structures (typically 2D/3D
matrices) to compute the output. The elements of the kernel matrices are determined through
learning from training data. Convolution operations have an advantage over total weighted
sum operations in dense layers as they emphasis the relationship between neighbouring neu-
rons. CNNs are typically highly labour intensive, particularly when applied to Timepix3 data,
as they require the construction of fixed size image inputs [24].

Random Forest To construct this algorithm, multiple decision trees are constructed inde-
pendently of one another using unique bootstrapped datasets (reduced dataset by random
sampling) for each tree. A random sample of features at each decision node is used. Once
the trees are constructed, the algorithm makes a decision based on the average of all decision
trees. The use of multiple tree predictions, as opposed to a greedy algorithm, allows for an
optimal solution, thus making it more robust [25].

Gradient boosted algorithms These algorithms once again use an ensemble of decision
trees, but this time the construction of each tree is affected by its predecessors. Each new
tree is built to improve the errors of the previous trees; this concept is known as boosting.
Each construction is affected by its predecessors by calculating weights determined by the
value of their lost contribution for each data point of the training data at the beginning of each
construction. These weights are then used either to make a weighted bootstrapped dataset or
to use weighted loss functions. Gradient boosted algorithms typically outperform Random
Forrest algorithms; however, they are more sensitive to noise in the dataset [26].

XGBoosted algorithm This algorithm follows the same principles as gradient boosted al-
gorithms but with additional L1 and L2 regularisation. This reduces the chance of over-fitting
of the solution to the training set by reducing the complexity of the algorithm if the corre-
sponding gain is not sufficient [26].

Implementation of these algorithms in python with documentation can be found at the
following library websites: Keras [27] and Scikit-learn [28].
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As outlined in Section 3.1, CNNs are the current state-of-the-art method in classification.
However, CNNs require the construction of an individual image for every incident particle
before passing said images through the CNN model. In most cases, there are many redun-
dant variable calculations due to the varying size of particle clusters (anywhere from 1 pixel
to 256 pixels in any dimension) and the requirement for a fixed-sized input into the CNN.
These image constructions and the CNN calculation itself contribute to CNNs being very
computationally intensive algorithms in terms of both memory and time. This computational
intensity thus limits their application to fields of low flux and/or in cases with high compu-
tational resources. The algorithms being developed in the presented work are intended fast
data processing of high flux field, and therefore, the development of a new ML algorithm
with manual feature calculation will be beneficial.

4.4 Cluster Features
As shown in Section 2.5, it is possible to separate individual particles of radiation into particle
clusters that can then be visualised as images. Thus, the next step was to determine if particle
clusters have a characteristic structure dependent upon the particle type and primary energy.
Figures 4.1 and 4.2 depict a basic illustration of the change in characteristic structure with
increasing primary energy for electrons and protons, respectively.

Figure 4.1: Basic illustration of typical electron tracks in Timepix3 and how they change with
increasing primary energy from 0 MeV to 10.0 MeV at a 45◦ angle of incidence.
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Figure 4.2: Basic illustration of typical proton tracks in Timepix3 and how they change with
increasing primary energy from 10 MeV to 500 MeV at a 45◦ angle of incidence.

As shown in Figure 4.1, electrons tend to be thin curly tracks increasing in linearity with
increasing primary energy. On the contrary, Figure 4.2 shows protons are always linear, with
the occasional delta ray. A delta ray is a secondary track resulting from the primary due to
electron scattering and a surrounding electron cloud caused by the diffusion of charge carriers
in the detector. The size of the electron cloud decreases with increasing primary energy. In
this regard, a manual search and calculation of a large number of features which best quantify
these behaviours was performed. The features found to best describe these characteristics
were as follows:

• Height: The energy deposition value of the maximum energy pixel within any one
cluster.

• Size: The number of pixels present in a particle cluster.

• Energy deposition: The sum of the energy deposition from all pixels within a cluster.

• Standard deviation (std) of energy: The standard deviation of energy deposition
recorded in the pixels.

• ∆(ToA): The difference in ToA value between the maximum ToA pixel and the min-
imum ToA pixel.

• Chi: The average perpendicular distance of the pixels from the energy-weighted line
fit of the cluster. This average can be weighted or unweighted.

• Std of chi: The std of the perpendicular distance of the pixels from the energy-weighted
line fit of the cluster. This can be weighted or unweighted.
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• Linearity: The number of pixels within the cluster that the energy-weighted line fit
crosses over.

• Length: The largest distance between pixels in the cluster.

• Stopping power (dE
dx

): The energy deposition per unit distance travelled by the particle
in the sensor layer. Calculated by the equation

dE

dx
=

Edep cos θ

dρ
(4.3)

where Edep is the total energy deposition, θ is the approximate angle of incidence of
the particle, d is the thickness of the detector (typically 0.05 cm), and ρ is the density
of the sensor layer (2.33 g cm−3 for silicon).

• Std along line: The std of the positions of the pixels when projected to the weighted
line fit. This std can be weighted or unweighted.

• Box dimensions: The dimension of the sides of a quadrilateral drawn around the clus-
ter. This can be the maximum or minimum dimension.

• ToA gradient: The slope of the 2D line fit of the reconstructed coordinate based on
ToA and drift time equations [13] against their distance from the energy-weighted av-
erage pixel position. The 3D reconstruction is normalised to the detector thickness to
ensure consistency.

• Average number of nearest neighbours 4-fold: The average number of nearest neigh-
bouring pixels which are directly vertical or horizontal to each pixel in the cluster. Two
pixels are considered nearest neighbours if they are touching.

• Average number of nearest neighbours 8-fold: The average number of nearest neigh-
bouring pixels which are directly vertical, horizontal, and/or diagonal to each pixel in
the cluster.

• Edge to inner ratio: The ratio of the number of pixels along the edge of the cluster to
the number of pixels fully surrounded by neighbouring pixels.

It is worth noting there can be a large discrepancy between experiment and simulation for
some features, for example, ∆ToA. To avoid a large discrepancy in later applications, only
the features that are shown to agree with experiment will be used in the final algorithms.
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4.5 Machine Learning Feature Selection
Aside from the CNN, all other ML algorithms outlined require manual feature selection and
calculation. It is possible calculate all the features discussed in the previous section for every
particle cluster and use that as an input. However, aside from being very computationally
intensive, this method may negatively effect the accuracy of the algorithm resulting from
problems due to high dimensionality [22]. Therefore, at several points throughout this paper,
feature selection will be performed. To determine which features are optimal for a particular
ML algorithm, the following search algorithm was implemented.

1. All possible features for the training and validation set were calculated.

2. Multiple instances of the same ML algorithm were then trained and tested, with one
feature removed from the input data at each instance.

3. The testing accuracies of all models from step 2 were then compared, and the model
with the highest accuracy was selected.

4. The feature missing from this model was permanently removed from the dataset.

5. Steps 2-3 were repeated until no more features were present.

6. The accuracy of every selected model in step 3 was graphed.

7. The position before a rapid drop in accuracy was selected and the features at this point
were assumed to be optimal.

This is clearly a very labour-intensive algorithm but it is worth noting that it only needs
to be performed once to determine the optimal algorithm.
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5 | Dataset Creation

5.1 Simulation of Omnidirectional Fields
A basic diagram of the simulation setup used for data generation can be seen in Figure 5.1. A
Timepix3 detector is placed in the centre of a 10 cm radius spherical source. This spherical
source produces particles randomly along its surface with the initial momentum direction
chosen according to a cosine probability which produces an omnidirectional isotropic field
within the spherical volume [20].

Figure 5.1: Basic illustration of the simulation setup used for dataset simulation and algo-
rithm testing. The dimensions of the detector are omitted as the standard Timepix3 dimen-
sions were used.
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5.1.1 Variable Distributions
It might be thought that, because the simulation is performed in an omnidirectional field, all
variables affecting the detector would be uniformly distributed, however, this would only be
the case if Timepix3 was spherical. In reality, there are many variables which are biased
due to the planar shape of Timepix3; only those relevant to this paper will be outlined and
analysed. Specifically, this paper will cover the distributions of the following variables: angle
of incidence to the normal (θ), azimuthal angle (φ), and path length within the active volume
(Leff ). This analysis was performed using the simulation framework outlined in Section 5.1
using arbitrary high energy particles, and by recording the relevant variables of each particle
incident on the detector directly from the simulation information. These results were then
graphed into histograms as seen in Figure 5.2, which shows the variable φ was uniformly
distributed whilst θ and Leff show quite a large bias.

Figure 5.2: Graphs of the distributions of the angle of incidence to the normal (θ), azimuthal
angle (φ), and effective path length within the active volume (Leff ), as measured from parti-
cles incident on a Timepix3 detector in an omnidirectional field simulation.
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5.2 Construction

All training, validation, and testing datasets present in this paper were simulated in Allpix2

using a similar omnidirectional field simulation setup as mentioned in Section 5.1. For each
dataset, only the particle type and primary energy was changed. The training and validation
datasets were constructed using two separate simulations of electrons and protons with flat
primary energy spectrums from 0 to 10 MeV and 0 to 500 MeV , respectively. The datasets
were constructed at equal sizes of approximately 250,000 particles to reduce training biases
in later sections. Approximately 30% of both datasets was reserved for testing algorithms.
Similarly, multiple mono-energetic fields were simulated for testing. Table 5.1 outlines an
overview of the simulated datasets used for the comparison of algorithms and determination
of the algorithm response to different particle types and energies.

Particle type Primary energy (MeV ) Fluence (cm−2)

Protons
10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100,

31,831
130, 150, 200, 300, 400, 450, 500, 730, 850, 10000

Electrons
0.10, 0.25, 0.50, 0.75, 1.00, 1.50,

31,831
2.00, 3.00, 4.00, 5.00, 10.00, 100.00

Pions 10, 15, 25, 30, 40, 50, 75, 100, 150, 200 31,831
Muons 10, 15, 25, 30, 40, 50, 75, 100, 150, 200 31,831

Gammas
0.05, 0.10, 0.15, 0.20, 0.25, 0.50, 1.00, 1.5, 2.00,

318,000,000
2.50, 5.0, 10.0, 25.0, 50.0, 100.0, 200.0, 350.0

Table 5.1: Table of the mono-energetic fields that were simulated for model development.
All energies were simulated separately.

5.3 Flat Incident Angle Distribution
As shown in Section 5.1.1, when simulating particles in an omnidirectional field environment
a flat θ distribution is not produced. This will later cause issues when determining the optimal
particle tracking algorithm in Section 6.2 and training bias when developing an ML particle
tracking algorithm [24]. To counteract this problem, a reduced dataset with an approximately
flat θ must be constructed. To achieve this, a weighted random sampling given by the formula

α(θ) =
1

Veff (θ)
· 1

sin (θ)
(5.1)

25



was used. The value of Veff (θ) and its underlining theory will be outlined in Section 6.1. The
sampled datasets were then made sufficiently small such that an approximately flat spectrum
was achieved. In Figure 5.3 it can be seen that a sample size of 30% is sufficient to achieve an
approximately flat θ distribution. Such a distribution gives approximately 150,000 particles
for development of particle tracking algorithms.

Figure 5.3: Demonstration of the affect of fluence weighted sampling on θ distribution of a
simulated omnidirectional field dataset.

5.4 Simulation Consistency Tests
All training, validation, and testing steps of the methods developed throughout this paper use
simulated datasets; therefore, it is important to ensure that the simulations are consistent with
experimental data. For this part of the analysis only stopping power, energy deposition, clus-
ter height, and ∆(ToA) checks were performed. An approximation of the experimental setup
during a 125.51 MeV proton beam exposure at the DCPT in Aarhus, Denmark was chosen
for simulation. Results can be seen in Figure 5.4, which illustrates there was reasonable
agreement between experiment and simulation.
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Figure 5.4: Demonstration of simulation consistency by comparing major cluster features
with experimental results from the 125.51 MeV proton beam exposure at the Danish Centre
for Particle Therapy in Aarhus, Denmark.
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6 | Algorithm Development

In this chapter, novel algorithms will be developed and their performance will be compared
with the state-of-the-art algorithms outlined in the previous section.

6.1 Particle Fluence
The naive approach to calculating particle fluence using Timepix3 would be to sum the ap-
proximate track lengths (outlined in Section 6.2) and divide this by the active silicon volume
of Timepix3 (1.408 x 1.408 x 0.05 cm). Although the full volume of the detector is exposed
to the radiation field, a portion of this volume is unable to detect particles between some given
interval of incidence angles. This is due to the removal of edge clusters; however, removal
is required for accurate calculation of a particle’s impact angle and energy deposition. This
point is made more clear in Figure 6.1.

Figure 6.1: Schematic illustration of the effective volume (green) able to detect particles at an
angle of incidence θ. Red-colour traces indicate particles which are lost when edge clusters
are removed.
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At an arbitrary angle of incidence θ, the effective volume of the detector (the volume
capable of detecting radiation) was calculated as given by a parallelepiped of volume:

Veff = l · d · (l − d · tan(θ)) (6.1)

where l denotes the length of the face of the detector (1.408 cm), and d denotes the thickness
of the detector (0.05 cm). It can then be presumed that the particle follows a straight trajectory
through the active layer of the detector - a fair approximation in most cases - giving the final
approximate fluence contribution of a particle of radiation incident on the detector as follows:

αfluence =
1

l · d · (l − d · tan(θ))
· d

cos(θ)
. (6.2)

This fluence approximation was then tested in an omnidirectional field simulation of known
fluence of arbitrary high energy particles (see Section 5.1). The fluence contribution of each
incident particle on the detector that did not enter along the edge of the detector was calcu-
lated from the simulation information and summed to give the total fluence prediction. This
simulation was done multiple times with varying particle fluence; the result is depicted in
Figure 6.2.

Figure 6.2: Histogram of the ratio of measured particle fluence (determined using the ef-
fective volume approximation for a planar geometry detector) to the known simulated field
fluence obtained through simulation information. The fluence was calculated by dividing the
approximate track length by effective volume approximation (Equation 6.2).

Figure 6.2 illustrates that this fluence approximation method underestimates the field flu-
ence by a mean value of 97%. This discrepancy is due to the formula neglecting the effect
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of the dependence of φ on the effective volume. The full formula for the effective volume is
actually given by

Veff = d · (l − |d · tan(θ) · sin(φ)|) · (l − |d · tan(θ) · cos(φ)|) (6.3)

where l is the length of the edge of the Timepix3 detector (1.408 cm), d is the thickness of
the detector (typically 0.05 cm), θ is the angle of incidence, and φ is the azimuthal angle (this
approximation is illustrated in Figure 6.3).

Figure 6.3: Histogram of the ratio of measured particle fluence (determined using the ef-
fective volume approximation for a planar geometry detector) to the known simulated field
fluence obtained through simulation information. The fluence was calculated by dividing the
approximate track length (d/cos(θi)) by the effective volume approximation with inclusion
of φ (Equation 6.3).

This formula is not considered in this paper due to the relatively large error which is asso-
ciated with the approximation of φ [16]. For all results present in this project, equation 6.1
is used. Thus, the particle fluence contribution of each individual particle is given by its
approximate track length divided by its corresponding effective volume.

6.1.1 Weighted Particle Tracking
The main advantage of having a unique particle fluence contribution at every angle of in-
cidence is that it removes any angular bias from the dataset. This is especially prevalent
when the goal is to track the majority direction of particles within a field. To demonstrate
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the importance of particle fluence weighting on particle tracking, the simulation in Section
6.1 with arbitrary high energy particles was performed. Each time a particle was incident on
the detector, the θ angle was recorded in two separate histograms: one with effective volume
weighting, and one without. Figure 6.4 depicts the results of this simulation, illustrating that
all bias associated with the angle of incidence has been effectively removed and a flat spec-
trum is achieved when the particle hits are weighted with particle fluence. It is for this reason
that all histograms present throughout this paper will be weighted with their approximate
particle fluence value.

Figure 6.4: Demonstration of the effect of particle fluence weighting on the recorded θ dis-
tribution in an omnidirectional field simulation.

6.2 Analytical Particle Tracking
There are many algorithms that can be used for particle tracking in Timepix3 [16], including,
but not limited to, the following:

• Left Lower-most, Right Upper-most (LLM): This method assumes the particle fol-
lows a straight trajectory. The left lower-most and right upper-most represent the entry
and exit points. The θ value is then calculated using trigonometric functions.

• LLM-improved: This method is an improved version of the LLM algorithm, as it
prioritises horizontal or vertical position when searching for end points depending on
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the cluster’s majority orientation. The majority orientation of the cluster is determined
through a weighted line fit.

• Time Min-Max: This method once again assumes a straight trajectory but also as-
sumes that the min and max ToA pixels represent the entry and exit points of the parti-
cle.

• Line-fit: This method reconstructs the particle’s 3D trajectory using ToA and approx-
imate drift time equations [13]. Subsequently, the particle’s path is determined by
finding the major axis using eigenvalue operations.

• Time gradient descent: Once again, the particle’s 3D trajectory is reconstructed using
ToA and approximate drift time equation [13]. However, the track is normalised to
the detector thickness which increases robustness of the algorithm. The particle’s path
is then approximated using a basic 2D line fit of the distance from mean position and
reconstructed drift time position.

In the paper by Manek et al. [16], a somewhat idealised dataset of majority 1 GeV pions
was used in testing. Thus, provided all particle clusters from the studied dataset that do
not obey certain criteria are removed, the results in the paper can be presumed valid. The
algorithms developed in the present work are intended for study of entire radiation fields
without applying radiation cuts (aside from edge cluster removal); therefore, the accuracy
of the results in [16] can no longer be assumed. The algorithms developed in [16] were
then applied to the proton-electron dataset developed in this paper (results seen in Figure
6.5). This figure shows that the best-performing algorithm for this dataset was the LLM-
improved algorithm, with a mean absolute error of 14.02◦. It is worth noting that although
this algorithm achieves the best results of all the tested algorithms, it still performs very
poorly on low energy particles, indicating the need for further development.

32



Figure 6.5: Mean absolute error of analytic algorithms for the approximation of θ as seen in
[16] as a function of particle primary energy for electrons and protons. LLM, Left Lower-
most, Right Upper-most; ToA, Time-of-Arrival.

To ensure there are no significant systematic errors associated with different angles of
incidence, a 2D histogram of predicted angles of incidence versus the true angle of incidence
of the testing dataset was constructed (Figure 6.6). A clear binning issue at low angles of
incidence is visible in Figure 6.6, due to the pixel pitch of 55 µm creating a limitation in
accuracy.

Figure 6.6: Two-dimensional histogram of predicted angle of incidence vs. true angle of
incidence as predicted by the Left Lower-most, Right Upper-most-Improved algorithm [16]
for electrons and protons.
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6.3 Deconvolution based Particle Classification
As outlined in Section 4.2, in order to use the Bayesian deconvolution algorithm, a true
spectrum (xC) and an observed spectrum (xE) must be defined. For the true spectrum, Ne

electron primary energy bins and Np proton primary energy bins from 0 to 10 MeV and 0 to
500 MeV , respectively, are first defined. These two vectors are then concatenated together
to form the xC vector. The observed spectrum xE is then defined as the stopping power his-
togram weighted with particle fluence. The LLM-improved algorithm was chosen for the
calculation of the θ value required for particle fluence as the errors associated with this algo-
rithm should be modelled effectively by the deconvolution step using corresponding detection
efficiencies. Stopping power was chosen for this algorithm as it is a well-researched feature
for many different materials and particles [29]. In using such a well-documented feature it
becomes easier to detect errors during development and application. From the newly defined
xC and xE , each row of the response matrix p(xC |xE) can be obtained from simulation. As
an example, to obtain the i-th row of the matrix, the stopping power histogram for all data in
the dataset with primary energy and particle type corresponding to the values defined by bin i
are calculated and the is histogram normalised to sum up to 1. By converting the values of the
histogram into a vector, the i-th row is then obtained. The results of such a calculation when
applied to the particle type and energy bins defined in the dataset developed in Section 5.2 is
illustrated in Figure 6.7. From this figure, it is worth noting that all electrons ≥ 1 MeV are
degenerate and protons are asymptotically electron-like with increasing energy.

Figure 6.7: Graphical visualisation of the response matrix (p(xC |xE)) used for the deconvo-
lution classification algorithm obtained through simulation.

Using the probability distribution p(xC |xE) and the measured xE curve for some arbitrary
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experiment, the Bayesian deconvolution algorithm can then be applied to approximate xC

for any Timepix3 experiment. xC provides an approximation of the classified particle flu-
ence [21]. The effectiveness of this classification method was tested using the simulated
mono-energetic omnidirectional proton and electron fields from Section 5.2. First, the de-
convolution algorithm was applied to the datasets. The accuracy of this method in terms of
reconstructing the particle type and energy distribution was observed, as illustrated in Figures
6.8 and 6.9.

Figure 6.8: Predicted particle spectrum obtained using the deconvolution algorithm for dif-
ferent mono-energetic omnidirectional electron fields.

Figure 6.9: Predicted particle spectrum obtained using the deconvolution algorithm for dif-
ferent mono-energetic omnidirectional proton fields.
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Second, to approximate the accuracy of the algorithm in terms of classifying the electrons
and protons, the sum of the measured fluence response associated with the true particle class
divided by the sum of the total recorded fluence is calculated, giving the percentage classifica-
tion accuracy. The results of this can be seen in Figure 6.10. The figure shows electrons with
primary energy between 0.5-1.0 MeV are significantly miss-classified. The average of clas-
sification across the spectrums was found to be 99.11% for protons and 88.00% for electrons.

Figure 6.10: Proton/electron classification accuracy of the deconvolution algorithm for om-
nidirectional protons and electrons as a function of primary energy.

Third, to approximate the algorithm’s proton energy prediction (spectroscope) accuracy, where
applicable, a Gaussian curve was fitted to the proton response. The deviation of the mean of
the Gaussian fit from the true energy mean can then be taken as the systematic error and the
standard deviation of the fit as the statistical error (shown in Figure 6.11). The mean system-
atic and statistical errors calculated for a flat spectrum from 0 to 500 MeV protons are given
by 8.85 MeV and 45.80 MeV respectively.
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Figure 6.11: Graph of the deviation of the predicted mean from the true mean (left) and stan-
dard deviation of the predicted distribution (right) when applied to multiple mono-energetic
omnidirectional proton fields as a function of the mono-energetic field energy using the de-
veloped deconvolution algorithm, illustrating the systematic error and statistical errors re-
spectively. Predicted mean and standard deviation were obtained via Gaussian fitting.

6.4 Machine Learning-Based Particle Tracking
In Section 6.2, it was shown that, although the optimal analytical particle tracking algorithm
was found to be the LLM-improved algorithm, this algorithm is not without its faults. When
applied to the datasets used in this paper, issues such as the low accuracy for electrons with
primary energy ≤1 MeV and binning issues when predicting low angles of incidence were
observed with the LLM-improved algorithm. This called for the need for an alternate algo-
rithm. As an exhaustive investigation into analytical approaches has already been performed
in Section 6.2, an investigation into more advanced ML approaches was needed. Initially, it
was impossible to predict which ML algorithm or particle features would be optimal. There-
fore, all models with a large number of calculable features as input, excluding the CNNs
discussed in Section 4.3, were tested. Figure 6.12 depicts the results when applied to the
validation, showing a Random Forest regressor to be the optimal model.
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Figure 6.12: Mean absolute error of the predictions of θ using various machine learning
algorithms as a function of particle primary energy for electrons and protons when applied to
the validation dataset.

An optimal feature search, as discussed in Section 4.5, was then performed (see Figure
6.13). The features found to be most distinguishing were energy deposition, maximum box
dimension, minimum box dimension, and weighted std along line (see Section 4.4).

Figure 6.13: Graph of mean absolute error of the predictions of θ using a Random Forest
regressor as the least distinguishing features are iteratively removed.

The final algorithm was constructed based on the extensive optimal model search. The fi-
nalised algorithm was then applied to the testing dataset (Figure 6.14), showing a significant
increase in accuracy at all energies. When applied to the testing dataset, the mean absolute
error of the final algorithm was found to be 8.65◦.
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Figure 6.14: Graph of mean absolute error of the predictions of θ using the Random Forest
regressor compared with the LLM-improved algorithm as a function of primary energy for
electrons and protons. LLM, Left Lower-most, Right Upper-most.

Two-dimensional histograms of the true θ value versus the predicted θ value for electrons
and protons can be seen in Figure 6.15. In the figure, it can be seen that the binning issue at
low angles of incidences has been solved.

Figure 6.15: Two-dimensional histogram of predicted angle of incidence versus real angle of
incidence as predicted by the Random Forest algorithm for electrons and protons.

6.5 Machine Learning-Based Particle Classification
As outlined in Section 4.3, the current state-of-the-art in ML classification (CNN) is unsuit-
able for the scope of this paper and hence the production of a new ML algorithm is favourable.
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To avoid large training bias or a dramatic reduction in the amount of training data due to the
unequal particle classes, a slightly different approach to that used in [12] is implemented.
The problem will be split into two separate parts: (1) the initial classification of protons and
electron and (2) the approximation of proton primary energy. Similarly to Section 6.4, an op-
timal model and feature search for both algorithms was then performed. For the classification
optimal algorithm search (seen in Figures 6.16 and 6.17) the optimal setup was found to be
an XGBoosted classifier with input features: energy deposition, average number of nearest
neighbours 8-fold, height, weighted maximum std chi, and std along line (see Section 4.4).

Figure 6.16: Electron/proton classification accuracy using various machine learning algo-
rithms as a function of particle primary energy for the electron and proton dataset.

Figure 6.17: Graph of electron/proton classification accuracy using a XGBoosted classifier
with the least distinguishing features iteratively removed.

The aforementioned optimal algorithm search was then applied for the proton spectroscope
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model, illustrated in Figures 6.18 and 6.19. The optimal model was found to be a Random
Forest regressor with input features: energy deposition, std of energy, weighted minimum std
chi, weighted std along line, and average number of nearest neighbours 8-fold.

Figure 6.18: Mean absolute error of predicted proton primary energy using various machine
learning algorithms as a function of true proton primary energy.

Figure 6.19: Graph of mean absolute error of proton energy prediction using a Random Forest
regressor with the least distinguishing features iteratively removed.

After both particle identification algorithms had been developed, the algorithms were com-
bined such that any particle intended for classification was initially classified into proton-like
or electron-like; if classified as proton-like its proton-like energy was approximated. This
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combined algorithm was then tested. For consistent comparison the same mono-energetic
proton and electron datasets as used in Section 6.3 were used. First, the combined algo-
rithm was applied to the mono-energetic fields individually to determine the accuracy of the
algorithms in terms of radiation field reconstruction (see in Figures 6.20 and 6.21).

Figure 6.20: Predicted particle spectrum using the deconvolution algorithm for different
mono-energetic omnidirectional electron fields to demonstrate statistical errors.

Figure 6.21: Predicted particle spectrum using the deconvolution algorithm for different
mono-energetic omnidirectional proton fields to demonstrate statistical errors.

Second, the classification accuracy was calculated and compared with the deconvolution
algorithm, as displayed in Figure 6.22. It should be noted from this figure that neither al-
gorithm proved superior over the other in all cases of classification. Electrons were more

42



effectively classified using the XGBoosted classifier whilst protons were more effectively
classified using the deconvolution algorithm. The average classification accuracy of the XG-
Boosted classifier across the flat spectrums was found to be 96.7% for electrons and 96.6%
for protons.

Figure 6.22: The electron/proton classification accuracy of the developed XGBoosted classi-
fier as function of primary energy compared with the results of the deconvolution algorithm.

Third, the effectiveness of the developed ML algorithm as a proton spectroscope was deter-
mined by fitting a Gaussian curve to the predicted energy spectrum in each case. Once again,
the systematic error was determined to be the deviation of the fitted mean from the true mean;
statistical error was determined by the predicted standard deviation of the fit. The results of
this can be seen in Figure 6.23. The average systematic and statistical errors across the flat
spectrum were found to be 11.54 MeV and 30.24 MeV , respectively. It is worth noting from
these results that the Random Forest algorithm has a lower statistical but higher systematic
error than that of the deconvolution algorithm. A common problem of ML algorithms is hav-
ing high variance but low bias when applied to testing sets [24]. The results in Figure 6.23
were achieved post regularisation by reducing the complexity of the trees.
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Figure 6.23: Graph of the deviation of the prediction mean from the true mean (left) and stan-
dard deviation of the predicted distribution (right) when applied to multiple mono-energetic
proton fields as a function of mono-energetic field energy using the developed Random Forest
and deconvolution algorithms, illustrating the systematic and statistical errors, respectively.
Predicted mean and standard deviation were obtained through Gaussian fitting.

As final note, it can be observed that the developed ML and deconvolution field classi-
fication algorithms used different approaches regarding the classification of radiation fields,
thus presenting differing behaviour during testing. This will allow for the detection of sys-
tematic errors when applied to unknown fields via measurement of the deviation of the two
algorithms.

6.6 Classification Outside of Electrons and Protons
In terms of classification, it may seem somewhat naive to classify all particles as either proton
or electron. However, there is an upper limit of classification due to the finite information
provided by the Timepix3 detectors. This limitation in classification can lead to instability
of the algorithms due to degeneracy of solutions in complex radiation fields. Regardless,
the reduction of all particles into protons and electrons remains a valid approach provided
that, when applied to all other particle types and energies under investigation, the results vary
smoothly and predictably. There is a countless number of particles and energies that could
be tested; therefore, to reduce the search space, only the most probable radiation types to
be found in the radiation environments intended for analysis will be tested. To determine
the algorithm’s response to a particular particle type, multiple different mono-energetic fields
of the chosen type were initially simulated. These mono-energetic fields were then passed
through the algorithms and a response matrix was constructed. Subsequently, where possible,
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a Gaussian curve was fitted to predicted proton fluence. An example of using this method
for pions can be seen in Figure 6.24, showing that all pions above approximately 60 MeV
appear as electron-like.

Figure 6.24: Plot of the response of the deconvolution algorithm to different mono-energetic
pion fields. Where possible, Gaussian fits were applied to the proton-like response. The
mean and standard deviation of the Gaussian fits are indicated with white points and error
bars, respectively.

This method of response analysis was then performed for pion, muon, and gamma fields.
The percentage of the field measured as electron-like was recorded, and where applicable a
Gaussian curve was fitted to the proton spectrum, with the mean and standard deviation of
the Gaussian fit recorded. The results of this analysis were then graphed in Figures 6.25 and
6.26 for the deconvolution and ML algorithms, respectively.

45



Figure 6.25: Response of the deconvolution algorithm to multiple mono-energetic particle
types showing the percentage of the field detected as electron-like (left) and where applicable
(proton-like fluence > 50%) mean detected proton-like energy of the field (right).

Figure 6.26: Response of the machine learning algorithm to multiple mono-energetic types
showing the percentage of the field detected as electron-like (left) and where applicable
(proton-like fluence > 50%) mean detected proton-like energy of the field (right).

These results clearly show that muon and pion primary energies are directly correlated
to their predicted proton-like primary energy suggesting a valid classification. However, this
was not the case for gamma rays. Gamma rays do not vary smoothly with proton-like energy,
indicating that introducing a gamma ray class may be beneficial. Yet, the introduction of said
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class would present new obstacles. For example, there is a very large error associated with
approximating a gamma ray’s angle of incidence. Furthermore, the detection efficiency and
cluster features of gamma rays are strongly correlated to their angle of incidence. One pos-
sible solution would be to consider gammas rays at different angles of incidence as separate
particle classes, but this introduces yet more obstacles, such large degeneracy of solutions. It
is for this reason that the rest of this paper concentrates on the proton-electron classification
only, but these possible sources of error should be noted.
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7 | Applications

In this chapter, the algorithms developed throughout this paper will be applied to real-world
datasets. The algorithms will be initially tested with mono-energetic proton beams of known
directionality. Following successful application of the algorithms, they will be applied to
complex unknown radiation environments, such as those found in low Earth orbit and at the
LHC at CERN, Switzerland.

7.1 The Danish Centre for Particle Therapy
Before moving to unknown fields, the developed algorithms must first be tested in a known
radiation field. Thus, the experimental data from the DCPT in Aarhus, Denmark was utilised.
A Timepix3 detector was placed on a rotating platform, at approximately a 1 m distance
from a proton beam of known primary energy. The experimental setup used can be seen in
Figure 7.1.

Figure 7.1: Picture of the experimental setup used during the proton beam exposure exper-
iment at the Danish Centre for Particle Therapy. The location of the detector and the beam
direction are indicated.
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In this experiment, three primary energies were tested at four different incident angles.
These are given in Table 7.1.

Primary Energy [MeV ] Incident Angles [◦]
125.51 ± 1.66 0, 41, 71, 85
170.94 ± 1.50 0, 41, 71, 85
218.51 ± 0.95 0, 41, 71, 85

Table 7.1: Values used for the Danish Centre for Particle Therapy proton beam experiment.

Before application of the developed algorithms, data cleaning must be performed to en-
sure there are no noisy pixels and the operation parameters (bias voltage, etc.) are correctly
set. To achieve this, it is enough to visualise several acquisition frames, and then inspect
these for any pixels that are continuously activated and/or to ensure clusters are of the correct
size and shape (see Figure 7.2).

Figure 7.2: Timepix3 detector track visualisation from proton beam exposure for three pri-
mary energies(125.51 MeV , 170.94 MeV , and 218.51 MeV ) obtained at the Danish Centre
for Particle Theory.

7.1.1 Particle Tracking
The ML particle tracking algorithm developed in this paper was then tested on the DCPT
dataset (results in Figure 7.3). The ML algorithm was found to have similar predictions to
that of the original LLM-improved algorithm.
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Figure 7.3: Predicted angles as determined by the analytical LLM-improved algorithm and
the ML algorithm for a 170.94 MeV proton beam exposure with varying angles of incidence
at the Danish Centre for Particle Therapy. The true angle of incidence is indicated by dashed
lines of the same colour. LLM, Left Lower-most, Right Upper-most; ML, machine learning.

Figure 7.3 also illustrates the LLM-improved algorithm produces a non-negligible portion
of particle fluence estimated to have θ ≤ 20◦. The hypothesis for this was that low energy
electrons were emitted from either the proton source or from the general background; these
outliers are not present in the ML algorithm as it was trained on these particle types. To
further investigate this further, a visualisation of the tracks that have a predicted angle of
incidence θ ≤ 20◦ was created (Figure 7.4). From this visualisation, it can be observed that
these tracks are very similar in shape and energy deposition to that of low energy electrons
(see Figure 4.1).

Figure 7.4: Visualisation of some tracks with an outlier predicted θ ≤ 20◦ for a 170.94 MeV
proton beam exposure at the Danish Centre for Particle Therapy.
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These outliers may account for the slightly wider peak from the ML algorithm, as it is
predicting these values to be closer to the correct angle of incidence with larger spread. It
should be noted that the detector angle alignment was performed manually, and considering
the particle beam is not visible, angle alignment errors due to precision of the human eye
of up to 3◦ can be expected. Similarly, a spread of around 1 − 2◦ is expected based on the
distance from the source and the finite size of the detector.

7.1.2 Particle Classification
The deconvolution and ML algorithms for classification of the radiation fields were then ap-
plied to the DCPT data to determine if they produce consistent results, as shown in Figures 7.5
and 7.6.

Figure 7.5: Predicted primary energy distribution using the deconvolution algorithm applied
to the proton beam data obtained at the Danish Centre for Particle Therapy. The expected
true primary energy is indicated by dashed lines of the same colour.

Figure 7.6: Predicted primary energy distribution using the machine learning algorithm ap-
plied to proton beam data obtained at the Danish Centre for Particle Therapy. The expected
true primary energy is indicated by dashed lines of the same colour.
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Figures 7.5 and 7.6 clearly show that the predictions are consistent, giving similar energy
distributions around the expected mean primary energy values. Both algorithms detected an
electron background within the beam which is consistent with the observed tracks in Fig-
ure 7.4. Once the shape of the predicted primary energy distribution was shown to be con-
sistent for both algorithms and approximately Gaussian, the systematic and statistical errors
can be directly analysed. A Gaussian curve was fitted to the predicted primary energy dis-
tributions in all cases. The deviation of the mean of the fit from the expected true mean can
be considered as the systematic error and standard deviation of the fit as the systematic er-
ror. The results of these calculations are seen in Figure 7.7. Both algorithms are in excellent
agreement with each other, showing very low systematic error.

Figure 7.7: Graph of the deviation of the predicted mean from the true mean (left) and stan-
dard deviation of the predicted distribution (right) as a function of the true mean by applica-
tion of the developed ML and deconvolution algorithms to proton data obtained at the Danish
Centre for Proton Therapy. Predicted mean and standard deviation were obtained through
Gaussian fitting. ML, machine learning.

7.2 Space Application of Timepix based Radiation Monitor
(SATRAM)

The Space Application of Timepix based Radiation Monitor (SATRAM) is a radiation mon-
itoring detector consisting of a Timepix detector with a 300 µm-thick silicon sensor placed
on board the European Space Agency satellite Proba-V, which was launched into 820 km
altitude (low Earth orbit) in 2013. The main goal of SATRAM was to demonstrate the capa-
bilities of Timepix detectors in space [30]. However, since its launch, the capabilities of the
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Timepix in areas such as ionising dose monitoring [31] and simulation bench-marking [12]
have become quickly apparent. Due to the low weight, low power consumption, and radiation
hardness of Timepix, it is an ideal candidate for the aforementioned applications. Arbitrarily,
data from the first half of 2016 was chosen for this analysis.

7.2.1 SATRAM Environment
The majority of particles present in the radiation environment in low Earth orbit are protons
and electrons that are trapped by the Earth’s magnetic field. These particles are expected to
have a primary energy much lower than those studied throughout this paper, with electrons
having energies between 0 and 7 MeV and protons between 0 and 100 MeV [32]. Protons
above 100 MeV and electrons above 7 MeV are present in the data, but their fluxes are
orders of magnitude lower; thus, they can be considered negligible.

7.2.2 Low Orbit Field Structure
Initially, as a demonstration of the structure present in low Earth orbit, the total energy de-
position recorded by the Timepix detector as a function of satellite position was produced, as
shown in Figure 7.8. Three clear structures are visible: the northern polar horn, the southern
polar horn, and the South Atlantic Anomaly (SAA). This observation is in agreement with
the current expectations and previous measurements [32].

Figure 7.8: The average dose rate as measured by the Space Application of Timepix based
Radiation Monitor at 820 km altitude in a low Earth orbit.
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The northern and southern polar horns correspond to the points at which the satellite
passes through the Earth’s outer radiation belt, where electrons are trapped. The SAA is
present due to the satellite crossing the Earth’s inner radiation belt, which contains a mixed
field of electrons and protons. This crossing is possible due to the incline of the Earth’s mag-
netic dipole combined with the deviation of the Earth’s magnetic centre with respect to the
Earth’s centre of mass. Figure 7.9 illustrates this magnetic field structure.

Figure 7.9: Basic illustration of the Earth’s magnetic field structure [33].

It should be noted that the SAA is the only position in SATRAM’s orbit that a non-
negligible flux of protons should be present [32].

7.2.3 Preliminary Results
Once the position of the SAA in Figure 7.8 was identified, it was then possible to separate
the radiation into two categories: radiation inside and radiation outside of the SAA based on
the satellite position. As the SATRAM experiment uses Timepix in frame-based mode, there
is a problem of overlapping tracks. As discussed in Section 2.5, Timepix allows only the
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measurement of either ToA or ToT; therefore, ToA can no longer be used to distinguish par-
ticle clusters. To avoid detrimental amounts of overlapping clusters, only frames with ≤20%
occupancy were used. Henceforth, occupancy will be defined as the number of activated
pixels in a frame divided by the number of available pixels. This data was then divided into
two separate sets: data accumulated inside and data accumulated outside of the SAA. The
deconvolution and ML algorithms were then applied to both datasets (see Figures 7.10 and
7.11).

Figure 7.10: Classified particle fluence into the classes electron-like and proton-like (see Fig-
ure 6.25 for other particles) for inside and outside the SAA using the developed deconvolution
algorithm. SAA, South Atlantic Anomaly.

Figure 7.11: Classified particle fluence into the classes electron-like and proton-like (see
Figure 6.26 for other particles) for inside and outside the SAA using the developed machine
learning algorithm. SAA, South Atlantic Anomaly.

The algorithms were shown to be in good agreement; however, both predict a large
amount of proton fluence outside of the SAA and a large amount of fluence of protons above
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100 MeV , which is known to be incorrect [32]. The origin of this error is discernible when
a simulated Timepix frame of 10% occupancy is plotted (Figure 7.12). Even in a low oc-
cupancy frame, overlapping tracks are still prevalent, causing multiple particles of radiation
to be recorded in one particle cluster, thus ultimately leading to misclassification. This is a
problem in Timepix and was later solved in its successor Timepix3 (See Section 2.5).

Figure 7.12: Example of a Timepix frame with a 10% occupancy, demonstrating a high
percentage of overlapping tracks. Some overlap points are circled in white. The overlap is
expected to lead to a confusion of electrons with protons.

Another possible contribution to this misclassification error is that, despite the expected
classification accuracy of ≈ 98% between electrons and protons within the energy ranges of
0 to 10 MeV and 0 to 200 MeV , there is a large flux of electrons relative to protons - a ratio
of approximately 104. Thus, an error of only 2% will have a non-negligible effect on the
predicted proton energy spectrum.

7.2.4 Proton Spectrum in the South Atlantic Anomaly
As discussed in the previous section, there are clear errors in the predicted proton spectrum.
To combat this, it is presumed that there are a negligible number of protons above 100 MeV
in either field. The fluence in this range can then be assumed to be solely due to “noise” and
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the amount of fluence predicted in this range is therefore approximately proportional to the
total noise in the field. Initially, both the curves outside and inside the SAA are multiplied
by a normalisation factor such that the fluence of protons above 100 MeV sums up to 1. The
overlay of the resulting spectra is displayed in Figures 7.13 and 7.14 for the deconvolution and
ML algorithms, respectively. For both algorithms, the predicted proton spectrums >100 MeV
have very similar structures outside and inside the SAA, which is indicative of the same
phenomena causing this error.

Figure 7.13: Particle fluence classified into electron-like and proton-like categories (see Fig-
ure 6.25 for other particles) for inside and outside of the SAA using the developed deconvolu-
tion algorithm after normalisation of protons with fluence >100 MeV . SAA, South Atlantic
Anomaly.

Figure 7.14: Particle fluence classified into electron-like and proton-like categories (see Fig-
ure 6.26 for other particles) for inside and outside of the SAA using the developed machine
learning algorithm after normalisation of protons with fluence >100 MeV . SAA, South At-
lantic Anomaly.
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The curves inside and outside the SAA are then subtracted from each other and re-normalised.
The resulting spectrum can then be presumed to be the true proton energy distribution. The
results from this process for the deconvolution and ML algorithms can be seen in Figure 7.15.
The error for these curves was calculated using the subtracted fluence at each point with an
additional Poisson error for weighted histograms calculated by the square root of the sum of
squares of all the weights [34]. Both algorithms are in reasonable agreement.

Figure 7.15: Comparison of the predicted proton energy spectra for the South Atlantic
Anomaly obtained with the deconvolution and ML algorithms. The statistical uncertainty
was determined via Poissonian statistics. ML, machine learning.

To obtain the final result, the average of both algorithms was taken (Figure 7.16). Protons
below 10 MeV cannot be detected due to the casing around the detector. The flux quickly
decreases with increasing energy. It is worth noting that this result is of particular significance
as it is the first time a physically reasonable proton energy spectrum inside the SAA has been
measured using Timepix detectors, opening the door to potential work in this field.
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Figure 7.16: Predicted proton fluence distribution for the South Atlantic Anomaly using the
average of the deconvolution and machine learning algorithms. Systematic errors were cal-
culated using the difference between the two algorithms while statistical uncertainty was
determined using Poissonian statistics.

7.3 Monopole and Exotic Detector at the LHC (MoEDAL)
The Monopole and Exotic Detector at the LHC (MoEDAL) is the seventh detector system
located at the LHC in CERN, Switzerland, coordinated by the European Organisation for
Nuclear Research. The primary objective of this experiment is the detection of magnetic
monopoles and other exotic highly ionising stable particles [35].

7.3.1 Experimental Setup
During Run-2, Timepix3 was the only active detector system present in this experiment -all
others were passive - giving it an important role for real-time monitoring of the radiation
field. For this specific analysis two collision periods during 2018 were chosen: a lead-lead
(PbPb) collision period on the 25th of November, and a proton-proton (pp) collision period
on the 24th of September. During these periods, two Timepix3 detectors were actively mea-
suring the radiation field. A visual representation of the experimental setup can be seen in
Figure 7.17. The Timepix3 detectors are within an aluminium casing at the positions labelled
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"MIDDLE1" and "MIDDLE2" in the figure. Within the scope of this work, data was analysed
from the detector located at "MIDDLE2".

Figure 7.17: Visual representation of the experimental set up of the Timepix3 detectors
present at the MoEDAL experiment. The detectors are located at a distance of ∼ 1m from
the interaction point (IP8).

7.3.2 Particle Tracking
To ensure the algorithms developed agree with current results [16, 36], polar histograms of the
particle fluence were created for both periods. To create these histograms, the ML algorithm
developed in this paper was used to calculate θ; the line phi algorithm as mentioned in [16]
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was used to calculate the φ. The results can be seen in Figures 7.18 and 7.19 for PbPb
and pp collision periods, respectively. A clear interaction point (the point of collisions of
the opposing beams [IP]) is visible, the position of which is consistent with current results,
θ = 56 ± 1◦, φ = 139 ± 1◦. In Figure 7.18, a clear background can also be seen around
φ = 300◦, θ = 60◦. As this background is not present in the pp-collision polar histogram
shown in Figure 7.19, the current hypothesis is that these structures are due to a larger halo
around the Pb beams, which can interact or scatter off collimators.

Figure 7.18: Polar histogram of the measured impact angles θ, using the developed machine
learning algorithm and φ using the line fit algorithm described in [16]. Particle clusters of
sizes greater than 5 pixels were selected. The detector was located at a distance of 1 m from
IP8 within the MoEDAL experiment. Data was acquired during the lead-lead collision period
on the 25th of November 2018.
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Figure 7.19: Polar histogram of the impact angles θ determined with the developed machine
learning algorithm and φ using the line fit algorithm from [16]. Particle clusters of size
greater than 5 pixels were selected. Data was acquired during proton-proton collision periods
at a distance of 1 m from IP8 within the MoEDAL experiment on the 24th of September
2018.

Due to the increased accuracy of the θ predictions, the structure of the IP can now be
resolved. A deeper investigation into the structure of the IPs was performed by zooming in
on the two IPs to determine how they differ from each other (Figure 7.20). The PbPb point
of interaction is slightly wider than that of its pp counterpart. This is expected, because, due
to the higher electronic charge of Pb versus protons there is higher Coulomb repulsion of
the particles within the beam, resulting in a wider beam and a larger IP. Nonetheless, it is
surprising that this difference in IP size is measurable by the Timepix3 detector at such a
large distance (≈ 1m).
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Figure 7.20: Magnification of the region of interest corresponding to the interaction points in
the polar histograms from Figures 7.18 and 7.19.

7.3.3 Particle Fluence Monitoring
Once the IP position for both PbPb and pp collision periods was successfully identified based
on the measured incidence angles of the particles, it was possible to split the measured field
into contributions from the IP and background. Radiation from the IP was defined as all parti-
cles with measured angles of incidence, φ ∈ [135◦, 144◦], and θ ∈ [50◦, 64◦]; the background
was defined as all radiation with θ or φ values outside of these intervals. This allows for the
measurement of the flux from the interaction and background separately. Flux measurements
were performed for both collision periods (see Figures 7.21 and 7.22). During PbPb colli-
sions, data was available throughout the entire run duration, starting with the beam tuning.
This is resembled in the graph by the ramping up of intensity: the initially low flux is fol-
lowed by a step-wise and steep increase as the particle beams are being brought to collide.
Interestingly, the background signal was already appearing before the actual start of the col-
lision period. This indicates that the background had already been created when the beams
were injected. This hints at its cause being related to a beam-halo effect. Moreover, a delay of
the background flux with respect to the IP-flux increase is observed, the origin of which will
be subject of further study. For the pp collisions, data was only taken after stable collisions
were achieved and only for a short period of time. Thus, the measured fluxes remain stable
throughout the full measurement period.
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Figure 7.21: Flux recorded by a Timepix3 detector at MoEDAL during a lead-lead collision
period using the developed machine learning algorithm for calculation of incident angle as
input into the effective volume algorithm for flux measurement. Particles from the interaction
point are separated by their angle of incidences within the intervals φ ∈ [135◦, 144◦] and
θ ∈ [50◦, 64◦].

Figure 7.22: Flux recorded by a Timepix3 detector at MoEDAL during a proton-proton colli-
sion period using the developed machine learning algorithm for calculation of incident angle
as input into the effective volume algorithm for flux measurement. Particles from the inter-
action point are separated by their angle of incidences within the intervals φ ∈ [135◦, 144◦]
and θ ∈ [50◦, 64◦].

7.3.4 Radiation Field Classification
For brevity, only the analysis of the PbPb collision period is outlined in full in this section, as
the analyses for the two periods are identical. Before classification is performed, it was first
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necessary to plot the stopping power distribution for both the IP and background. Results of
this can be seen in Figure 7.23.

Figure 7.23: Stopping power distribution by Left Lower-most, Right Upper-most-improved
algorithm [16] for a lead-lead collision period. The interaction point is defined by angle of
incidence φ ∈ [135◦, 144◦] and θ ∈ [50◦, 64◦]).

Figure 7.23 shows a peak position at 1.25 ± 0.25 MeV cm2g−1 for both regions which is
in good agreement with previous results [16, 36]. Furthermore, there is a lower amount of
particle fluence at higher stopping powers from the IP when compared with the background.
This is to be expected, as the particles coming from the IP would be of much higher energy,
and hence be less ionising in the detector. Showing that this distribution agrees with previous
results further increases the confidence of the deconvolution algorithm which will use this
curve to classify the field. The classification algorithms were then applied to the background
and IP radiation, separately for the PbPb collision period. The obtained results are shown
in Figures 7.24 and 7.25, respectively. In both figures, a peak in the fluence of proton-like
particles at 500 MeV for the deconvolution and 440 MeV for the ML algorithms can be
seen. This is due to the error in the misclassification of electron-like particles as proton-like.
These particles are then pushed to the high end of the energy spectrum, as proton particles be-
come increasingly electron-like with increasing energy. The peak is slightly lower in the ML
algorithm, as Random Forest algorithms have difficulties in the prediction of edge values.
As expected, the flux of electron-like particles is much higher than that of the proton-like
particles. Most particles in the field have very high energies, causing them to be typically
electron-like (see Section 6.6). Figure 7.24 illustrates that the ML predictions show a sec-
ond peak at approximately 400 MeV , which is not present in the deconvolution predictions.
This second peak can be explained by referring to Figure 6.20, which demonstrates that elec-
trons with primary energy between 0.15-0.5 MeV typically produce a peak at approximately
400 MeV . This is indicative of the need for further development of ML algorithms to offset
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this problem. This peak is not expected to appear in the deconvolution predictions as it did
not appear during testing (see Section 6.8).

Figure 7.24: Results of the particle classification into the classes electron-like and proton-
like for the background radiation (φ /∈ [135◦, 144◦] and θ /∈ [50◦, 64◦]) at MoEDAL during
the lead-lead collision period using the developed deconvolution and ML algorithms. ML,
machine learning.

Figure 7.25: Results of the particle classification into the classes electron-like and proton-like
for radiation from the interaction point (φ ∈ [135◦, 144◦] and θ ∈ [50◦, 64◦]) at MoEDAL dur-
ing the lead-lead collision periods using the developed deconvolution and machine learning
algorithms. ML, machine learning.
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For the final prediction of the radiation field decomposition and systematic error assess-
ment, the average of the predictions of the deconvolution and ML algorithms was taken.
The systematic error was determined to be the absolute difference between the two predic-
tions. The statistical uncertainty was calculated using Poissonian errors for the weighted
histograms, calculated by the square root of the sum of squares of all the weights [34]. The
obtained results are shown in Figures 7.26 and 7.27

Figure 7.26: Results of particle classification into the classes electron-like and proton-like
for the background radiation (φ /∈ [135◦, 144◦] and θ /∈ [50◦, 64◦]) at MoEDAL during the
lead-lead collision period. Results are represented by the average of the deconvolution and
machine learning algorithm predictions. The systematic errors were calculated using the
difference between the two algorithms, while the statistical uncertainty was determined by
Poissonian statistics.
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Figure 7.27: Results of particle classification into the classes electron-like and proton-like for
radiation from the interaction point (φ ∈ [135◦, 144◦] and θ ∈ [50◦, 64◦]) at MoEDAL during
the lead-lead collision period. Results are represented by the average of the deconvolution
and machine learning algorithm predictions. The systematic errors were calculated using the
difference between the two algorithms, while the statistical uncertainty was determined by
Poissonian statistics.

The classification algorithms were then applied to the pp collision period, as seen in
Figures 7.28 and 7.29. The prepossessing associated with these final results can be seen in
Appendix B.
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Figure 7.28: Results of particle classification into the classes electron-like and proton-like
for the background radiation (φ /∈ [135◦, 144◦] and θ /∈ [50◦, 64◦] at MoEDAL during the
proton-proton collision period. Results are represented by the average of the deconvolution
and machine learning algorithm predictions. The systematic errors were calculated using the
difference between the two algorithms, while the statistical uncertainty was determined by
Poissonian statistics.

Figure 7.29: Results of particle classification into the classes electron-like and proton-like
for radiation from the interaction point (φ ∈ [135◦, 144◦] and θ ∈ [50◦, 64◦]) at MoEDAL
during the proton-proton collision period. Results are represented by the average of the de-
convolution and machine algorithm predictions. The systematic errors were calculated using
the difference between the two algorithms, while the statistical uncertainty was determined
by Poissonian statistics.
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8 | Conclusions

The goal of this thesis was to demonstrate the capabilities of Timepix and Timepix3 detectors
for radiation field decomposition, particularly in areas such as particle tracking, classification,
and fluence measurement. These goals were successfully accomplished.

Ground truth data was created using Allpix2 simulations; the simulation response was
later validated through comparison with available measurements. The properties of planar
detectors were then analysed.

State-of-the-art algorithms for particle tracking were reproduced and applied to the cre-
ated dataset. These algorithms were proven to be insufficient when applied to the diverse
datasets. The most optimal algorithm was found to be the LLM-improved algorithm with a
mean absolute error of 14.02◦, indicating more advanced algorithms were required. A Ran-
dom Forest Regressor was shown to be the best model, solving previous issues with a mean
absolute error of 8.65◦.

Novel methods for particle classification were then investigated, leading to the creation
of two novel methods - the deconvolution and ML methods. The newly developed methods
were analysed in two aspects: proton/electron classification accuracy and mean proton energy
prediction error calculated by the sum of statistical and systematic errors. The deconvolution
had a mean classification accuracy of 93.06%, and a proton spectroscope systematic error
of 8.85 MeV and a statistical error of 45.80 MeV . Following an extensive optimal model
search, the ML algorithm achieved a mean classification accuracy of 96.29% and a proton
spectroscope systematic error of 11.54 MeV and a statistical error of 30.24 MeV .

The newly developed algorithms were then tested in an experimental environment at
DCPT where three different proton energies were tested at three angles of incidence. The
particle tracking algorithm agreed with the predictions of the LLM-improved algorithm, with
no outliers. The particle classification algorithms were also tested - both the ML and de-
convolution algorithms successfully separated the background low energy electrons from the
primary beam. Both algorithms displayed the expected Gaussian distributions with means
around the predicted energy values.

Next, the algorithms were applied to two separate complex unknown radiation fields:
SATRAM and MoEDAL. First, analysis of the SATRAM data was performed. The analysis
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of this dataset proved problematic and showed clear limitations of Timepix when compared
with Timepix3. Despite this difficulty, following statistical manipulation, a physically rea-
sonable proton spectrum was extracted. This is the first time a proton spectrum as measured
by SATRAM has been achieved, so comparison with previously produced results was not
possible.

Second, analysis of the Timepix3 data at MoEDAL was performed. The following time
periods during 2018 were chosen for this analysis: the 25th of November at which PbPb col-
lisions were being performed and the 24th of September during a pp collision period. The IP
structure for both periods were analysed demonstrating an increase in accuracy from previous
measurements. The IP was successfully isolated and from the increase in accuracy its size
could now be resolved, showing a larger IP during PbPb collision periods when compared
with the IP during pp collision periods. Clear back-scattering in the PbPb period was ob-
tained, which was consistent with current results but whose origin remains unclear. Once the
IP and background had been isolated, particle flux monitoring was performed. The results
exhibited a very stable flux during pp collision periods; however, for PbPb collision peri-
ods, a sharp increase in flux was obtained which is consistent with PbPb bunch collisions.
Interestingly, an initial plateau in the background flux was observed, which was ultimately
discovered to be due to the delay in the back-scattering relative to the IP which could be
indicative of its origin. Finally, using the previously developed deconvolution and ML al-
gorithms, the field was fully classified for both background and IP. An excellent agreement
between both algorithms and a physically reasonable spectrum was obtained, indicating no
major systematic errors.

8.1 Future Work
The presented work has an expansive scope, and as such there are numerable potential areas
of future work. In relation to the development of classification, classes outside of electron-like
and proton-like could be introduced, for example, gamma rays. However, algorithms would
need to be adjusted to offset new errors associated with this class. If more experimental data
was obtained, there would be the possibility of training the deconvolution algorithm entirely
on experimental data; this would dramatically increase the confidence of the results produced.
It is unrealistic to suggest a fully ML algorithm for this purpose as a much more diverse
dataset would be needed with a wider range of angles and energies, otherwise the developed
algorithms would be inherently biased. Similarly, using the distinguishing cluster features
discovered in this paper, algorithms could be developed to pursue exotic particles which is
the goal in experiments such as MoEDAL [35]. In relation to particle tracking, a similar
ML algorithm could be developed for approximating φ values which would further benefit
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the tracking of particles within the field. Both the deconvolution and ML algorithms could
be extended to account for two Timepix3 detectors in coincidence, which could significantly
increase the confidence of tracking. Using this in combination with particle converters could
aid in classification and extension of more particle classes [37].

Regarding SATRAM, the comparison of the produced proton spectrum with that of other
detectors on the satellite could bestow higher confidence in the results. Following this com-
parison, considering an approximate proton spectrum has been produced, the bench marking
of simulations of low Earth radiation models, such as the AP-9 and the AE-9 models [38], is
now possible.

The MoEDAL data analysis has the most possibilities for further development. In relation
to the IP, by comparing PbPb and pp IP sizes, an increase in size of the IP was shown. This
indicates there is a potential to resolve the size of the IP which previously has only been
known approximately [39]. Possible simulation of omnidirectional point sources along the
length beam pipe could allow for unfolding of the polar histogram and thus give an accurate
determination of the size of the IP. Similarly, following an in-depth investigation into the
experimental setup and using the developed deconvolution and ML algorithms, the exact
source of back-scattering may be identified.
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9 | Contributions to Publications

Some of the methodological work performed within the scope of this thesis has already been
disseminated in publications.

9.1 Timepix3 as Solid-State Time Projection Chamber in
Particle and Nuclear Physics

The following work was published as Benedikt Bergmann et al. “Timepix3 as solid-state
time-projection chamber in particle and nuclear physics”. In: PoS ICHEP2020 (2021), p. 720.
DOI: 10.22323/1.390.0720. URL: https://cds.cern.ch/record/2784918

The capabilities of Timepix3 as a time projection chamber are presented. The 3D trajec-
tory reconstruction algorithms were validated through simulation. For the first time, data
taken with Timepix3 in the MoEDAL experiment is presented. The position of the IP relative
to the orientation of the detector was approximated using developed algorithms and simulated
omnidirectional field response.

My contributions to this work were:

• Processing of Timepix3 data

• Contributions to development of analysis methodology

• Preparation of graphs and figures
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9.2 Improved Algorithms for Determination of Particle Di-
rections with Timepix3

The following work was published as P. Mánek et al. “Improved algorithms for determi-
nation of particle directions with Timepix3”. In: Journal of Instrumentation 17.01 (Jan.
2022), p. C01062. DOI: 10.1088/1748-0221/17/01/C01062. URL: https:
//dx.doi.org/10.1088/1748-0221/17/01/C01062

The capabilities of Timepix3 to accurately measure the directionality of individual particles
of radiation was demonstrated by the development of a large number of analytical, statistical,
and machine learning methods. An exhaustive search of the optimal algorithm in areas such
as speed, accuracy, and stability was performed. These algorithms were developed and tested
using simulated datasets with later application to experiments of known and unknown results.

My contributions to this work were:

• Preparation of the simulated datasets

• Significant contributions to the methodology development of the algorithms used for
particle tracking

• Creation of graphs and figures

• Contribution to the writing of the publication
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A | Simulation Calibration

Simulation calibration must be performed each time an aspect of the detector setup is changed.
To perform simulation calibration, the entire setup intended for calibration is simulated but
the "[DespositionGeant4]" section of the configuration file is replaced with the following
configuration:

[ D e p o s i t i o n P o i n t C h a r g e ]
s o u r c e _ t y p e = " p o i n t "
model = " s p o t "
p o s i t i o n = 110um 110um 200um # p o s i t i o n s h o u l d c o r r e s p o n d

# t o t h e d e t e c t o r l a y e r
s p o t _ s i z e = 1um
nu mb er _o f_ cha rg es = 2000 # / 2 5 0 0 / 2 8 0 0 / . . .

This produces a number of free electrons at the point specified. Then, considering the
energy of pair production in silicon is known to be 3.6 eV , the amount of charge simulated
can be directly related to the energy deposition of a typical simulation with this setup. From
these results, a graph of the ToT versus energy deposition is created to calibrate the ToT
to energy deposition variables. A linear graph of voltage output versus energy deposition
is then made to calibrate the threshold of the experiment. The THL is set to correspond to
4 keV (the typical threshold of detectability in a Timepix3 detector). Calibration curves for
the simulation setup used throughout this paper can be seen in Figure A.1. The figure shows
clear smooth curves, giving calibration variables as follows,

Edep = exp((ToT) × 1.22736 + 0.000613675) (A.1)
THLCSA = 15 mV (A.2)
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Figure A.1: ToT (left) and threshold (right) calibration curves for simulation of 500 µm sili-
con detector set to 230 V bias voltage and 80 V depletion voltage. The associated calibration
quantities are shown in Equations A.1 and A.2. ToT, Time-over-Threshold.
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B | MoEDAL pp Collisional Period Pre-
liminary Analysis

Figures B.1, B.2, and B.3 are the results associated with the prepossessing of the pp colli-
sional period. These results were identical to the analysis of the PbPb collisional period in
Section 7.3.4, giving the final results as seen in Figures 7.28 and 7.29.

Figure B.1: Stopping power distribution by Left Lower-most, Right Upper-most-improved
algorithm [16] for a proton-proton collision period. The interaction point is defined by angle
of incidence φ ∈ [135◦, 144◦] and θ ∈ [50◦, 64◦]).
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Figure B.2: Results of the particle classification into the classes electron-like and proton-
like for the background radiation (φ /∈ [135◦, 144◦] and θ /∈ [50◦, 64◦]) at MoEDAL during
the proton-proton collision period using the developed deconvolution and machine learning
algorithms.

Figure B.3: Classified particle fluence into the classes electron-like and proton-like for inter-
action point radiation (φ ∈ [135◦, 144◦] and θ ∈ [50◦, 64◦]) at MoEDAL during the proton-
proton collisional period using developed deconvolution and machine learning algorithms.
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