
Bachelor Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Radioelectronics

Implementation of the JESD204B Standard
on an FPGA Enabling the Interfacing of
High-speed A/D Converters with
a Sampling Rate Higher than 250 MSPS

František Boháček

Supervisor: Ing. Radek Sedláček, Ph.D.
Study program: Open Electronic Systems
May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498966 Personal ID number: Boháček František Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Radioelectronics

Open Electronic Systems Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Implementation of the JESD204B Standard on an FPGA Enabling the Interfacing of High-speed A/D
Converters with a Sampling Rate Higher than 250 MSPS

Bachelor’s thesis title in Czech:

Implementace standardu JESD204B na FPGA umožňující připojení vysokorychlostních A/D převodníků
se vzorkovací frekvencí vyšší než 250 MSPS

Guidelines:

1. Study the principle of the receiving part of the JESD204B standard, intended for connecting A/D converters to FPGA
circuits. 2. In VHDL, implement the receiving part of the JESD204B standard for connecting A/D converters with this
interface. 3. Verify the draft of the standard using a suitable simulation tool (e.g. in the ModelSim environment). 4. Choose
an affordable A/D converter with JESD204B interface, design a simple development board for it to connect to the Intel
Cyclone 10 GX development kit. 5. Verify the correct operation of the implementation of the JESD204B standard on real
data obtained from the chosen A/D converter.

Bibliography / sources:

[1] JESD204B Survival Guide: Practical JESD204B Technical Information, Tips, and Advice from the World’s Data Converter
Market Share Leader. In: Analog Devices [online]. [cit. 2023-01-30]. Available from:
https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf
[2] Intel® Cyclone® 10 GX FPGA Development Kit. In: Terasic [online]. [cit. 2023-01-30]. Available from:
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=253&No=1147
[3] PEDRONI, Volnei A. Digital electronics and design with VHDL. Amsterdam ; Boston, c2008. ISBN 978-0123742704.

Name and workplace of bachelor’s thesis supervisor:

Ing. Radek Sedláček, Ph.D. Department of Measurement FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 30.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Stanislav Vítek, Ph.D.

Head of department’s signature
Ing. Radek Sedláček, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my supervisor, Ing.
Radek Sedláček, Ph. D., for helping me
to choose a topic I would be happy with
and for pointing me in the right directions
during the work on the thesis.

I would also like to thank LVR (labora-
toře pro vývoj a realizaci) for mounting
the BGA connector (10 rows, 40 pins each)
on my board and Ing. Stanislav Drozd for
mounting most of the other components
on the board.

Last but not least, I would like to thank
my family for supporting me during my
studies.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

František Boháček,
Prague, May 26, 2023

Prohlašuji, že jsem předloženou
práci vypracoval samostatně a že jsem
uvedl veškeré použité informační zdroje
v souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

František Boháček,
V Praze, 26. května 2023

v

Abstract
The aim of this thesis is to implement
a receiver of the JESD204B protocol that
is used for high-speed ADCs (250 MSPS
and more). The receiver has been im-
plemented in the language VHDL. Test-
ing components, called testbenches, were
made and simulated using ghdl and Mod-
elsim. These testbenches verified that the
components behave as expected. A test-
ing board with two ADCs has been de-
signed. This board is compatible with the
Intel Cyclone 10 GX FPGA development
kit. It was attempted to test the board
connecting it to the development kit using
the custom design. The attempt was not
successful and it was discussed where the
problem could be and how to find out for
sure.

Keywords: JESD204B, ADC, ADC
receiver, VHDL, FPGA

Supervisor: Ing. Radek Sedláček, Ph.D.

Abstrakt
Cílem této práce je vytvoření přijímače
protokolu JESD204B, který se používá
pro vysokorychlostní AČ převodníky (250
milionů vzorků za vteřinu nebo více). Při-
jímač byl implementován v jazyce VHDL.
Byly vytvořeny komponenty pro testování,
tzv. testbenche, které byly odsimulovány
prostřednictvím programu ghdl a Model-
sim. Tyto testy verifikovaly, že kompo-
nenty dělají to, co je očekáváno. Dále
byla navržena testovací deska se dvěma
AČ převodníky. Tato deska je kompati-
bilní s vývojovou sadou pro FPGA Intel
Cyclone 10 GX. Proběhl pokus o otesto-
vání vlastní implementace přijímače připo-
jením k této vývojové sadě. Tento pokus
nebyl úspěšný a bylo diskutováno, kde
by mohla být chyba, případně, jak ji v
budoucnu nalézt.

Klíčová slova: JESD204B, AČP, AČP
přijímač, VHDL, FPGA

Překlad názvu: Implementace
standardu JESD204B na FPGA
umožňující připojení vysokorychlostních
A/D převodníků se vzorkovací frekvencí
vyšší než 250 MSPS

vi

Contents
Acronyms 1
1 Introduction 3
2 Comparison of interfacing methods
for A/D converters 5
3 Description of JESD204B protocol
specification 9
3.1 Clocks . 12
3.2 Physical layer 12
3.3 Data link layer 13

3.3.1 8b/10b encoding 13
3.3.2 Synchronization 14
3.3.3 Code group synchronization
(CGS) . 14

3.4 Scrambling 18
3.5 Transport layer 18
3.6 Deterministic latency 19

3.6.1 Subclass 1 21
3.6.2 Subclass 2 21

3.7 Test modes 23
4 Implementation of the receiver 25
4.1 VHDL introduction 26
4.2 Design . 26

4.2.1 Defined record types 26
4.2.2 Top level entities 27
4.2.3 Helpers 30
4.2.4 Data link layer 33
4.2.5 Transport layer 43

4.3 Testbenches 44
5 Design of the testing (mezzanine)
board 47
5.1 Clock generation 50
5.2 Analog front-end 51
5.3 Supply, voltage levels 52
5.4 High-speed CML lanes 52
5.5 Length matching 54
5.6 Controlled impedance 55
5.7 Final board 55
6 Setup and testing on FPGA
development kit 57
6.1 FPGA setup using Quartus 57
6.2 Board configuration 59
6.3 Results . 61
7 Conclusion 63
7.1 What’s next 64

Bibliography 65
A Contents of the attachment 69
B Exported Gerber files of the
custom printed circuit board 71

vii

Figures
2.1 Comparison of CMOS, LVDS and

CML drivers power consumption. [1] 6

3.1 JESD204B link and multipoint link
demonstrations. 10

3.2 Illustration of JESD204B layers
flow. 11

3.3 The 8b/10b coding scheme. [6] . 14
3.4 Link synchronization sequence
(data link layer function chart), valid
for subclass 0. [3] 15

3.5 Initial lane alignment within
a single link with elastic buffer
demonstration. [5] 16

3.6 Serial scrambling bit order. [3] . 18
3.7 Transport layer samples to lane

octets decomposition. [4] 19
3.8 Deterministic latency definition. 20
3.9 Timing diagram illustration for

deterministic latency equal to
multiple of multiframe period. [3] . 21

3.10 Data release timing using
SYSREF in a subclass 1. [5] 22

4.1 Diagram of JESD204B multipoint
link receive VHDL entity. 29

4.2 Diagram of JESD204B link receive
VHDL entity. 29

4.3 Diagram of synced combination
VHDL entity. 30

4.4 Diagram of LMFC generation
VHDL entity. 31

4.5 Diagram of LMFC counter VHDL
entity. 32

4.6 Block diagram of the data link
layer VHDL entity. 34

4.7 Diagram of data link layer VHDL
entity. 34

4.8 Diagram of ILAS parser VHDL
entity. 35

4.9 Link controller states. 36
4.10 Diagram of link controller VHDL

entity. 37
4.11 Diagram of character alignment

VHDL entity. 38
4.12 Diagram of 8b10b decoder VHDL

entity. 39

4.13 Diagram of lane alignment VHDL
entity. 40

4.14 Diagram of frame alignment
VHDL entity. 41

4.15 Frame alignment states. 42
4.16 Diagram of error handler VHDL

entity. 43
4.17 Diagram of transport layer VHDL

entity. 44
4.18 Signal timing diagram of

JESD204B link rx test bench. 46

5.1 Top side of Intel Cyclone 10 GX
development kit with highlighted
FMC connector. 48

5.2 Testing board high-level
conception. 49

5.3 Differential transformer-coupled
configuration. [12] 51

5.4 Differential input configuration
using the ADA4930. [12] 51

5.5 Some of the guidelines for
high-speed signal routing. [20] 54

5.6 Configuration of differential pair
controlled impedance from Saturn
PCB Toolkit. 55

5.7 Comparison of the final printed
board and Altium Designer 3D view. 56

6.1 Transceiver channel in full duplex
mode. [21] . 57

6.2 Typical I/O PLL architecture.
[22] . 58

6.3 Simplified flowchart of Si5338
configuration. Full flowchart available
in [14] on page 23. 60

6.4 AD9683, SPI Timing, writing data
to a register. [12] 60

6.5 LTC2123, SPI Timing, writing
a byte to a register. [13] 61

B.1 Exported Gerber files of each of
the 4 layers of the custom PCB. . . 73

viii

Tables
3.1 Control characters from 8b/10b

encoding with their aliases used in
the text. 13

3.2 Mapping of configuration fields to
octets in ILAS. [3] 16

3.3 Fields of the link configuration for
individual lanes. [3] 17

4.1 Fields of defined link_character
record type. 27

4.2 Fields of defined frame_state
record type. 27

4.3 Input and output ports of
jesd204b_multipoint_link_rx VHDL
entity. 28

4.4 Generic parameters of
jesd204b_multipoint_link_rx VHDL
entity. 28

4.5 Input and output ports of
jesd204b_link_rx VHDL entity. . . 29

4.6 Generic parameters of
jesd204b_link_rx VHDL entity. . . 30

4.7 Input and output ports of
synced_combination VHDL entity. 31

4.8 Generic parameters of
synced_combination VHDL entity. 31

4.9 Input and output ports of
lmfc_generation VHDL entity. . . . 31

4.10 Generic parameters of
lmfc_generation VHDL entity. . . . 32

4.11 Input and output ports of
lmfc_counter VHDL entity. 32

4.12 Generic parameters of
lmfc_counter VHDL entity. 32

4.13 Input and output ports of
data_link_layer VHDL entity. . . . 33

4.14 Generic parameters of
data_link_layer VHDL entity. . . . 35

4.15 Input and output ports of
ilas_parser VHDL entity. 35

4.16 Generic parameters of ilas_parser
VHDL entity. 36

4.17 Input and output ports of
link_controller VHDL entity. 37

4.18 Generic parameters of
link_controller VHDL entity. 38

4.19 Input and output ports of
char_alignment VHDL entity. 38

4.20 Generic parameters of
char_alignment VHDL entity. 38

4.21 Input and output ports of
an8b10b_decoder VHDL entity. . . 39

4.22 Input and output ports of
lane_alignment VHDL entity. 40

4.23 Generic parameters of
lane_alignment VHDL entity. 40

4.24 Input and output ports of
frame_alignment VHDL entity. . . . 41

4.25 Generic parameters of
frame_alignment VHDL entity. . . . 42

4.26 Input and output ports of
error_handler VHDL entity. 43

4.27 Generic parameters of
error_handler VHDL entity. 44

4.28 Input and output ports of
transport_layer VHDL entity. 44

5.1 Listing of the most important
parameters of LTC2123 and AD9683.
[12][13] . 48

5.2 Individual signals of AD_CTRL
and LTC_CTRL signal groups in
Figure 5.2. 50

5.3 Maximum supply currents needed
from datasheets of the components.
The total row contains the sum for
the given voltage level and the row
with the maximum shows the allowed
limit for the given voltage level,
according to the development kit user
guide. For 5 V, specifications of the
chosen step-down and LDO are
shown. 53

ix

Acronyms

ADC Analog to digital converter. vi, 3, 5, 6, 9, 10, 15, 20, 22, 23, 47–53, 60,
61, 63, 69

ASIC Application specific integrated circuit. 3, 5, 9

BGA Ball grid array. v

CDR Clock/Data Recovery. 7, 12

CGS Code group synchronization. 14

CML Current mode logic. viii, 5–7, 12, 47, 48, 52–56

CMOS Complementary metal oxide semiconductor. viii, 5–7, 50

CSV Comma-separated values. 59

DAC Digital to analog converter. 9, 10, 17, 22, 23

DDR Double data rate. 6

FIFO First in, first out. 11, 15, 33, 39

FMC FPGA mezzanine card. viii, 47–49, 52, 53, 58, 63

FPGA Field programmable gate array. i, vi, 3–5, 9, 25, 26, 47, 49, 50, 52,
57–59, 62, 63

ILAS Initial lane alignment sequence. 14, 15, 20, 22, 23, 39, 45, 61

IP core Intellectual property core. 57, 58, 61

I2C Inter-Integrated Circuit. 5, 6, 47, 49, 50, 59, 63

LMFC Local multiframe clock. viii, 12, 17, 20–23, 28, 30–32

LOL Loss of lock. 60

LVDS Low voltage differential signaling. viii, 5–7, 47, 50, 55

1

..
PCB Printed circuit board. 71

PCS Physical coding sublayer. 57, 58

PMA Physical media attachment. 57, 58

RBD Rx buffer delay. 15, 20

RMS Root mean square. 50

SDR Single data rate. 6

SNR Signal to noise ratio. 48, 51, 52

SPI Serial Peripheral Interface. 5, 6, 47, 48, 50, 52, 59, 63

VCO Voltage controlled oscillator. 58

VHDL VHSIC Hardware Description Language. vi, viii, 3, 4, 25, 26, 29–32,
34, 35, 37–41, 43, 44, 59, 62

2

Chapter 1
Introduction

There is still an upward trend in the needs for performance in data processing
systems, including an upward trend in ADC sampling frequencies. Some of
the applications that require higher sampling frequencies are traffic control
systems or wireless communications.

Attempts have been made to make new standards for transmitting data
from Analog to digital converter (ADC) to FPGAs/ASICs while having fast
sampling rates (more than 250 MSPS) and while keeping the number of
connections low. Having a small number of connections allows for easier PCB
designs and keeps the costs lower. JESD204 is a standard from JEDEC that
is made for interfacing high-speed ADCs. There are multiple revisions of
JESD204, it started with JESD204 in 2006, in 2008, revision A was published
(JESD204A). In 2011, JESD204B came out. This thesis is mainly about
this revision. The last revision1 is JESD204C, from 2017. The original
standard supported only one signal to transfer data through, of frequency
up to 3.125 Gbps. In rev. A, support for sending data over multiple lanes
has been added. Revision B added the possibility of speeds of up to 12.5
Gbps over one lane. This revision also introduced a mechanism for ensuring
determined latency. Determined latency may be used for synchronizing data
from multiple ADCs. [1] JESD204C introduced usage of 64b/66b encoding
instead of 8b/10b encoding that had been used in the previous revisions, as
well as some other changes. [2]

The main goal of this thesis is to implement JESD204B receiver in VHDL.
This receiver will be tested in a simulation as well as on an FPGA. To test the
receiver on FPGA, a testing board with an ADC will be developed. Attempt
to synchronize data from two ADC will be made by using subclass 1 with
the support of deterministic latency.

In chapter 2, various digital output standards as well as standards used for
interfacing ADCs will be presented. It will be discussed where the JESD204B
standard comes in.

In chapter 3, the JESD204B standard will be described. It will be shown
what it is used for, its terminology, and how the data being transmitted looks.
This will be presented mainly from the viewpoint of a receiver as a receiver

1as of May 2023, revision D is expected to be published late Q3 2023, see https:
//www.comcores.com/chip-to-chip-solutions/jesd204d/

3

https://www.comcores.com/chip-to-chip-solutions/jesd204d/
https://www.comcores.com/chip-to-chip-solutions/jesd204d/

1. Introduction
will be implemented as part of this thesis.

In chapter 4, an implementation of custom JESD204B receiver in VHDL
will be described. This receiver should contain most of the features of the
standard for subclass 0 and 1. Testbenches for testing the final design will be
discussed here as well.

In chapter 5, the design of the PCB for testing of the receiver, will be
presented. It will be discussed what components were chosen for the PCB
and why, how the board was designed and some challenges that came with
routing the high-speed signals.

And finally, in chapter 6, testing using Intel FPGA will be described and
the results of the testing will be presented.

The appendices contain the main folder structure of the attachment, in
Appendix A, and exported Gerber files, in Appendix B.

4

Chapter 2
Comparison of interfacing methods for A/D
converters

There are several ways to interface data from ADCs to FPGAs/ASICs. What
the right way for a specific application is, may depend on multiple parameters.
Some of the most important parameters may be the sampling frequency or
the number of I/O pins.

When it comes to the format of the data being transmitted, there are
various standards for that. Some of these standards include: parallel CMOS,
parallel LVDS, serial LVDS, I2C, SPI, and JESD204. [1] Some of these are
named after a digital output standard, specifically Complementary metal
oxide semiconductor (CMOS), Low voltage differential signaling (LVDS),
and Current mode logic (CML). Digital output standards prescribe how the
output is driven and thus also tell how to correctly receive the data from
the signal. Power consumption of these digital output standards for dual
channel ADC with 14 bits of resolution is illustrated in Figure 2.1. [1] CMOS
is common among lower-speed (sub 200 MSPS) ADCs as it consumes less
power. One of the motivations to use JESD204 (using CML) for high-speed
ADCs is that it draws less current than both CMOS or LVDS for higher
sampling rates.

CMOS digital output standard draws little current when the output is
not changing. That is because there are transistors that draw little current
when in static state. However, when the signal is changing, the transistors
draw more current. For faster transition higher currents are needed. Another
drawback of parallel CMOS is that N outputs are needed to transfer data
from N-bit converter. That would lead to very complex board layouts as the
number of converters grows. [1] If the data were transmitted serially, that
would mean higher frequencies and consequently more current drawn.

LVDS is a differential standard and thus needs double the number of wires
compared to CMOS for the same number of signals making the routing
more difficult. There are a couple of advantages to LVDS compared to
CMOS though. LVDS is differential and that offers the benefit mutual
noise cancellation. Noise is usually common to both signal paths and is
thus canceled out. LVDS uses lower voltage swings compared to CMOS
and the driver draws a constant current. This offers benefits compared to
CMOS. There could be a situation where all of the CMOS drivers are being

5

2. Comparison of interfacing methods for A/D converters...................

Figure 2.1: Comparison of CMOS, LVDS and CML drivers power consumption.
[1]

simultaneously changed and the power supply voltage may get pulled down
due to that.

Power consumption of LVDS is not that much higher than for CML, but
all of the LVDS lanes must be aligned to a data clock. Because of that, there
is an upper bound for LVDS, whereas CML may go to much higher speeds.
[1] LVDS is limited to 1.9 Gbps for an ideal transmission medium, however
for the real world that limit is usually about 1.0 Gbps. [1]

Serial LVDS usually uses data and frame clocks aligned with the data on
the LVDS pairs. Serial LVDS may be employed instead of parallel LVDS
where the number of pins is more important than interface speed. Parallel
LVDS can be though of as being made from multiple serial LVDS lines. [1]

Both LVDS and CMOS may utilize Double data rate (DDR). In Single
data rate (SDR), data are sent from the transmitter on one clock edge and
sampled at the receiver on the next edge. For DDR the data are sent and
sampled on both edges. [1]

Another possibility to interface ADCs, is to use Inter-Integrated Circuit
(I2C), it uses only two wires - clock an data. A large number of devices may
be present on one I2C bus without any more additional pins. Each of the
devices has an address that is sent at the beginning of the communication.
It is relatively slow, allowing for only up to 1 MHz. If size is an important
parameter, I2C may come in handy. It may also be used as a control interface.
[1].

Serial Peripheral Interface (SPI) is an interface that uses 3 or 4 wires:
clock, data in and data out (or bidirectional data) and a chip select. Multiple
devices may be present on one bus, however, each slave device needs to have
a separate "chip select" signal for selecting which device the master is talking
to. SPI allows for up to 100 MHz speeds. It’s commonly used as a control
interface as well as a data interface. [1]

Converters with higher resolutions and higher speeds may utilize CML.

6

................... 2. Comparison of interfacing methods for A/D converters

CML allows up to 12.5 Gbps speeds. That means it’s possible to use fewer
signals compared to both LVDS and CMOS that do not support such high
speeds. This makes the board design simpler and less expensive. [1]

CML requires very few connections as the speeds may go higher than for the
other standards, and the data are transferred serially. That also means a need
for the introduction of a serialized data interface. One of these interfaces
is JESD204. To correctly recover the clock from the data stream it’s also
needed to make as many changes in the data as possible. This may be done
using encoding schemes such as 8b/10b (see subsection 3.3.1) or 64b/66b,
leading to larger throughput for same frequency. The downside of using these
encoding schemes is that they reduce the effective bandwidth. For 8b/10b
encoding, which is used by JESD204B, the bandwidth is reduced to 80 % of
the theoretical value. [1]

There are also greater requirements for LVDS compared to CML as it
must be ensured that all of the lanes and data clock skews are not too
large. JESD204B has means of aligning multiple lanes and does not require
routing data clock synchronized to the data on CML lanes. The bit clocks
are recovered on the receiver using Clock/Data Recovery (CDR). [1]

JESD204B includes more advanced features such as multidevice synchron-
ization, deterministic latency, and harmonic clocking. Applications requiring
these won’t be able to use LVDS or CMOS standards. [1]

Both LVDS and CML need a controlled differential impedance of 100 Ω
and a termination resistor of 100 Ω to remove any reflections. [1]

It’s important to note that CMOS and LVDS are still being used. CML
offers advantages for higher frequencies, but for lower sampling rates, CMOS
and LVDS may still be employed.

7

8

Chapter 3
Description of JESD204B protocol
specification

JESD204B is a protocol used for either transferring data from high-speed
ADCs to FPGA/ASIC (logic device) or from FPGA/ASIC (logic device)
to DACs. Its aim is to use as few connections as possible and allow for
high sampling frequencies. Synchronizing multiple ADCs is possible using
determined latency.

There is always only one logic device in the design. It may either be
the transmitter, then it sends data to DACs. In the other case where the
logic device is the receiver, ADCs are sending data to it. This is illustrated
on Figure 3.1. The terminology for links, lanes, and multipoint links is
demonstrated in these figures as well. ADCs or DACs may have different
numbers of lanes. The channels of ADC devices are not displayed for simplicity,
but it should be noted that each transmitter may contain multiple channels.

In case there are multiple ADCs, the structure is called a multipoint link.
Between each ADC and FPGA, there is a link. One link may contain multiple
lanes consisting of differential pairs. On these lanes, bits are transmitted
using 8b/10b encoded characters.

Similar to protocols such as TCP/IP, JESD204B consists of multiple layers.
The layer names and the data flow is illustrated on Figure 3.2. JESD204B
has 3 subclasses that define how the data link layer behaves.. Subclass 0 is for backward compatibility with an older version of JESD204,

JESD204A. It does not support deterministic latency. [3]. Subclass 1 supports deterministic latency by adding one more signal
called SYSREF. [3]. Subclass 2 may encode signal used for ensuring deterministic latency using
SYNC∼ signal that is already present in subclass 0 devices. Subclass 2
uses the same number of signals as subclass 0. [3]

Data are sent serially over one or more lanes. The number of lanes is
denoted as L. Data characters are 8b/10b encoded to ensure DC balance.
8b/10b encoding ensures the same number of zeros and ones in longer periods.
Data may be additionally scrambled as well to reduce EMI noise caused by

9

3. Description of JESD204B protocol specification......................

Transmitter Receiver

3 lanes

link

(a) : 1 TX, 1 RX

Transmitter
(ADC)

Transmitter
(ADC)

Transmitter
(ADC)

Receiver
logic device
(FPGA
or ASIC)

multipoint link

(b) : multiple ADC, 1 RX

Receiver
(DAC)

Receiver
(DAC)

Receiver
(DAC)

Transmitter
logic device
(FPGA
or ASIC)

multipoint link

(c) : 1 TX, multiple DAC

Figure 3.1: JESD204B link and multipoint link demonstrations.

repeating patterns. Scrambling may be disabled for applications where it
does not introduce any benefit. [1]

A short introduction to what each layer on the receiver does, follows.
A more thorough explanation is below.

Physical layer consists of transceivers that deserialize serial data from
the transmitter. Bits are coming from differential lanes of up to 12.5 Gbps,
as noted before. There is a separate transceiver for every physical lane. The
output is one or more 10-bit characters going to the data link layer. [3]

JESD204B receiver has to first synchronize with data from transmitters,
that is what the Data link layer is used for. The characters are enclosed
inside frames and frames are enclosed inside multiframes. These are then used
for ensuring and monitoring alignment. The data link layer also processes

10

...................... 3. Description of JESD204B protocol specification

Application
layer

Transport
layer

Scrambler
(optional)

Data link
layer

Physical
layer

Application
layer

Transport
layer

Descrambler
(optional)

Data link
layer

Physical
layer

physicalchannel

Transmitter

Receiver

Figure 3.2: Illustration of JESD204B layers flow.

lane configuration (used to check whether the configuration of the receiver
and transmitter is the same) that is transmitted during synchronization.
For every lane, there is one data link, the data links need a connection
between themselves to ensure alignment between the lanes. In case of multiple
transmitters, another connection between links is needed for subclass 1 and
2. [4]

Lane alignment is done by waiting for a character at a given position on
all the links. Until that character is received on every lane, oncoming data
are stored in a FIFO starting from the same character on every lane. After
every lane receives the given character, the data link is ready to start sending
data. This is done to account for skews between the lanes. Subclass 0 starts
sending data right after all lanes are aligned, subclass 1 and 2 work slightly
differently, waiting for the right moment until releasing the data. The output
of the data link layer is a frame of characters. The data goes to the transport
layer. [5]

Between the data link and transport layer, there may be a (de)scrambler if
the characters are scrambled. This descrambler takes and outputs a whole
frame. Data during synchronization are never scrambled. [4]

Transport layer is used for converting received frames into samples from
the converters. Samples consist of the sampled voltage itself, and may consist
of one or more control bits. Control bits are application specific. Some
common usages may be to use them for indicating overflow or underflow. The
exact layout of the frame depends on the configuration of the link. [4]

Application layer is application specific. It should have control over
lower layers, such as allowing to realign to the lost frame boundary or to
request a synchronization if something goes wrong. The application layer
on the transmitter should support generating test sequences. The receiver
should be able to detect test sequences. [4]

11

3. Description of JESD204B protocol specification......................
3.1 Clocks

It’s recommended that there is one source for the device clock going to each
device on the multipoint link. Each device will need to generate its clocks
from the main device clock. These generated clocks will be called local clocks
as they are local for the given device and may have different phases in each
of the devices. There are means of synchronization of some local clocks as
described below. [3]

Data are transmitted over differential lanes on data/bit rate. As characters
are sent as 10 bits, the character rate is the bit rate divided by 10. [3]

Each device needs to generate a frame clock, that is a clock with the
frequency of a frame. In terms of character rate, it’s character rate divided
by F , the number of characters in a frame. [3]

Each device will need an LMFC as well, its frequency is frame clock divided
by K, the number of frames in a multiframe. [3]

Devices that use subclass 1 and 2 have to have multiframe clocks aligned
to each other. For subclass 1, that happens using a separate signal called
SYSREF. It’s recommended that SYSREF is generated from the same device
that generates the device clock. For subclass 2, SYSREF is not needed and
the data needed for synchronization are encoded inside of SYNC∼ signal. [3]

SYSREF may be either periodic or gapped periodic. Its frequency should
be an integer multiple of multiframe clock period. It’s preferred to generate
SYSREF using one device, but it’s not required. Generating separate SYSREF
for each device is possible. But it must be ensured that there is a deterministic
relationship between each of these to allow for deterministic latency. [3]

3.2 Physical layer

The physical layer uses CML to transmit the data from the transmitter to
the receiver across a transmission line. The physical layer on the transmitter
consists of a parallel to serial converter and differential CML driver. [3]

On the receiver it is made of:. Differential CML Receiver.Optional Equalizer. Clock/Data Recovery (CDR). Character alignment and Serial to Parallel Converter 1:10

The CDR block finds the bit boundary and aligns a bit clock to the bit bound-
ary (recovers the clock). This bit clock may be used to generate a character
clock that is utilized inside the data link layer. The character alignment
should align to /K/ character boundary only upon link synchronization. The
equalizer is not required but may be implemented to support sending the
data across larger distances. [3]

12

.................................... 3.3. Data link layer

3.3 Data link layer

In the following text, symbol aliases will be used for 8b/10b control characters.
Below is a table explaining what characters these aliases map to.

Table 3.1 : Control characters from 8b/10b encoding with their aliases used in the
text.

Character bits Symbol Alias
101 11100 /K28.5/ /K/
011 11100 /K28.3/ /A/
111 11100 /K28.7/ /F/
000 11100 /K28.0/ /R/
100 11100 /K28.4/ /Q/

The data link may receive one or more 10-bit characters at a time. Its
responsibility is to decode 8b/10b characters, align all lanes, align with the
frame, and output the frame. [3]

3.3.1 8b/10b encoding

As the name suggests, 8b/10b encoding encodes 8-bit data into 10-bit symbols.
It’s used mainly for high-speed systems that need to have the same number
of 0’s and 1’s in the channels. That is to prevent a charge from being built
up in the media and allows for easier clock data recovery as well. It’s used in
protocols such as PCI Express or HDMI as well. [6]

Every character is encoded either with five 1’s and five 0’s, or four 1’s and
six 0’s or six 1’s and four 0’s. The encoder must keep track of the last symbol
difference in 1’s and 0’s to make sure that in a long time, the data will be
balanced. The difference between the number of 1’s and 0’s is called running
disparity. It may be either +1 or -1. Every character that has an unbalanced
number of 1’s and 0’s, has a counterpart representing the same character, but
with swapped number of 1’s and 0’s. The transmitter will swap between the
counterparts according to the current running disparity. It must keep the
disparity either +1 or -1 at all times. The receiver may check whether the
current character has the expected running disparity. That may be useful for
detecting errors. [6]

The 8-bit data words are split into two smaller words, 3-bit and 5-bit words.
3-bit words are then encoded into 4 bits, and 5-bit words are encoded into 6
bits. This effectively means that 8b/10b encoding is decomposed into two
simpler encodings, 5b/6b encoding, and 3b/4b encoding. Coded words are
then joined. 5b/6b code at the top half and 3b/4b at the bottom half. [6]
The decomposition of 8-bit characters and composition of 10-bit characters
can be seen in Figure 3.3. The symbols are usually denoted as /D.x.y/, where
x stands for a 5-bit number (0 - 31) whereas y stands for a 3-bit number (0 -
7).

13

3. Description of JESD204B protocol specification......................

Figure 3.3: The 8b/10b coding scheme. [6]

Apart from standard data symbols, 8b/10b encoding contains control
symbols. These may be used to notify the receiver about a special event.
JESD204B uses control characters when synchronizing and later for alignment
monitoring. Control symbols are denoted using K instead of D, ie. /K.28.y/.
[6]

There are three special control symbols called comma symbols. These
symbols contain a unique sequence that may allow recognizing the boundary
of a character. Alignment with character boundary may take place when
synchronizing the link. [6]

For JESD204B, this is done in the code group synchronization stage. The
character boundary should not be changed after synchronization is established.
That’s to ensure that the link is not desynchronized because the data may
contain an error that would be confused for a comma symbol. [3]

3.3.2 Synchronization

Synchronization of the link has two stages, code group synchronization and
initial lane alignment synchronization. CGS and ILAS are never scrambled.
[3] The whole process is illustrated on Figure 3.4.

3.3.3 Code group synchronization (CGS)

After losing synchronization, SYNC∼ going to the transmitter should be set
to notify the transmitter about lost synchronization. The synchronization
may be requested from the transmitter as well, by sending /K/ symbols. The
SYNC∼ may be used for reporting errors after synchronization, too. That
may be done by deasserting it for shorter periods of time. The transmitter
will acknowledge code group synchronization on all lanes by sending /K/
characters. [3]

The receiver may get aligned with the start of a character when in CGS.
That’s done by special properties of /K/ comma character. After 4 consequent
/K/ characters are successfully received, the receiver should deassign SYNC∼.
Full synchronization is assumed after receiving 4 more correct 8b/10b symbols
(the character is in the encoding table and with correct disparity). Until then,
any symbol error will result in the need for resynchronization. [3]

14

.................................... 3.3. Data link layer

Figure 3.4: Link synchronization sequence (data link layer function chart),
valid for subclass 0. [3]

Initial lane synchronization (ILS)

Initial lane synchronization will begin after the first non-/K/ character is
received. That character will be at a start of a multiframe. [3]

ILAS consists of 4 multiframes. Each of the multiframes starts with /R/
and ends with /A/. The second multiframe contains link configuration data.
See Table 3.3 for configuration options. The mapping of link configuration
may be seen in Table 3.2. The configuration should be the same for the whole
link, except for lane identification. It should match the configuration of the
receiver. The configuration will follow right after /Q/ character which should
be at the second position of the second multiframe. [3] From the mapping,
it’s obvious that there are 14 bytes needed for the configuration. Adding 1
for /Q/, 1 for /R/ (beginning of multiframe), and /A/ (end of multiframe),
that makes 17 bytes the minimum number of bytes needed in one multiframe.
That effectively means that F · K must be ≥ 17.

During ILAS the lanes in one link should get aligned to each other. That
allows for the correct function of the transport layer. Right after the ILAS
starts with /R/ character, data should get saved to an elastic FIFO buffer.
The buffer may be released only after all lanes received the first /R/. It’s
possible that due to differences in the delay of the links, every lane will receive
/R/ at a different time. [3] Lane alignment with FIFO buffers is demonstrated
on Figure 3.5.

In subclass 0, the data will start going out of the buffers right after all
lanes receive /R/. In subclass 1 or 2, data should be released 1 to K frames
after multiframe clock pulse, this delay is called Rx buffer delay (RBD) (see
section 3.6). [3]

Right after ILAS, the data from ADCs will follow. [3]

15

3. Description of JESD204B protocol specification......................
Table 3.2 : Mapping of configuration fields to octets in ILAS. [3]

Configuration
octet no.

Bits
MSB 6 5 4 3 2 1 LSB

0 DID<7:0>
1 ADJCNT<3:0> BID<3:0>

2 X ADJDIR
<0>

PHADJ
<0> LID<4:0>

3 SCR<0> X X L<4:0>
4 F<7:0>
5 X X X K<4:0>
6 M<7:0>
7 CS<1:0> X N<4:0>
8 SUBCLASSV<2:0> N’<4:0>
9 JESDV<2:0> S<4:0>
10 HD<0> X X CF<4:0>
11 RES1<7:0> - Set to all X
12 RES2<7:0> - Set to all X
13 FCHK<7:0>

Figure 3.5: Initial lane alignment within a single link with elastic buffer
demonstration. [5]

Alignment monitoring, realignment

During data transmission, there will be alignment characters inserted in special
scenarios to verify the link is still aligned. If the alignment is lost, it may
sometimes be restored. In cases where that’s not possible, resynchronization
must be requested. [3]

For non-scrambled data, if two consequent frames end with the same
character, /F/ will be sent instead. The receiver has to replace that /F/
with the character from the last frame. /F/ may be only on the last position
in a frame. Thus its position may be compared with the previous frame
alignment character. [3]

In case two consequent multiframes end with the same character, it’s similar
to the case above. /A/ will be sent instead. That may be used to check lane
alignment. [3]

For scrambled data, if /D28.7/ is at an end of a frame, it will get replaced
by /F/ = /K28.7/. At the end of a multiframe the same is true for /D28.4/.

16

.................................... 3.3. Data link layer

It will get replaced by /A/ = /K28.4/. The receiver should replace /F/ with
/D28.7/ and /A/ with /D28.4/. [3]

If alignment characters (/A/, /F/) are at the wrong location, the receiver
may realign. At least two alignment characters should be at the same position
before realignment. If one alignment character right after realignment is
detected at the previous location, the receiver should realign back to the
previous position. Since data are stored in a buffer for ensuring lane alignment,
the position in the buffer may be changed to restore alignment over the lanes.
[3]

Table 3.3 : Fields of the link configuration for individual lanes. [3]

Parameter Description
ADJCNT Number of adjustment resolution steps to adjust DAC

LMFC. Applies to subclass 2 operation only.
ADJDIR Direction to adjust DAC LMFC, 0 - Advance, 1 - Delay.

Applies to subclass 2 operation only.
BID Bank ID - Extension to DID.
CF Number of control words per frame clock period per link.
CS Number of control bits per sample.
DID Device (= link) identification number.
F Number of octets per frame.
HD High Density format.
JESDV JESD204 version, 000 - JESD204A, 001 - JESD204B.
K Number of frames per multiframe.
L Number of lanes per converter device (link).
LID Lane identification number (within link).
M Number of converters per device.
N Converter resolution.
N’ Total number of bits per sample.
PHADJ phase adjustment request to DAC, subclass 2 only.
S Number of samples per converter per frame cycle.
SCR Scrambling enabled.
SUBCLASSV Device subclass version.
RES1 Reserved field 1.
RES2 Reserved field 2.
CHKSUM Checksum Σ(all above fields) mod 256.

17

3. Description of JESD204B protocol specification......................
3.4 Scrambling

Scrambling may prevent spectral peaks caused by repeating the same data.
Every device should support scrambling. Scrambling must be enabled for the
whole device, it may not be used only for some of the lanes. [3]

There is one scrambler per lane. The scrambler word size is equal to F . The
bit order to a serial scrambler is illustrated in Figure 3.6. The polynomial of
the self-synchronous scrambler is 1 + x14 + x15. The scrambler or descrambler
should be situated between the data link layer and the transport layer. It’s
possible to implement the scrambler as either serial or parallel. [3]

Some of the scrambled data will be lost when the descrambler initially
doesn’t have state registers synchronized. This loss may be prevented by
allowing unscrambled octets to flow through the state register as well. [3]

Initial lane alignment sequence as well as code group synchronization
sequence are never scrambled. [3]

Figure 3.6: Serial scrambling bit order. [3]

3.5 Transport layer

The transport layer operates on frame clock frequency. Its responsibility is
to map octets from all of the lanes to raw samples. Each sample may have
associated control bits. [3]

Every frame contains samples from all of the converters. One frame may
contain more than one sample for every converter, that is called oversampling.
[3]

For one lane, samples are mapped to a linear axis starting with the first
converter. If oversampling is enabled, all of the samples from the first
converter are added as first. Then samples from the rest of the converters
follow. Sample words are padded to multiples of 4 bits. 4 bits create a nibble
group. There is a possibility to enable a high-density mode that will work
without inserting tail bits. Samples may be directly followed by control bits.

18

................................. 3.6. Deterministic latency

Another possibility is to send control bits at the end of a frame as control
words. The control bits in a control word are mapped the same way as
samples. [3]

For multiple lanes, the process is the same. At the end, the data is split
into multiple lanes. Every lane will contain F characters per frame. There
will be a total of L ·F characters in one frame. See Figure 3.7 for visualization
of the mapping. [3]

To prevent the tail bits from reducing the generation of frame synchroniza-
tion symbols, they should meet one of the requirements:.The sequence is the same for all frames. [3].The sequence is generated pseudo-randomly based on a polynomial that

has a degree of at least 9. [3]

Figure 3.7: Transport layer samples to lane octets decomposition. [4]

3.6 Deterministic latency

There are means defined in the JESD204B standard to allow for synchroniz-
ation of some of the local clocks between the devices and also to allow for
ensuring a deterministic latency between sampling and receiving the data.
Ultimately leading to synchronization between multiple transmitter device
samples. [3]

According to JEDEC standard description, the definition of the determin-
istic latency is: “The deterministic latency across the link is defined from the
parallel frame-based data input on the TX device to the parallel frame-based

19

3. Description of JESD204B protocol specification......................
data output on the RX device, all measured within the frame clock domain.”
[3] This definition is illustrated on Figure 3.8

Figure 3.8: Deterministic latency definition.

The deterministic latency is a sum of fixed and variable delays. Fixed
delays are a result of circuit design and are constant from one power cycle to
another. Variable delays may be caused by various factors and are dependent
on the power cycle. [5]

To achieve deterministic latency, there are two requirements:.The transmitters should begin sending ILAS at a well-defined moment
in time. [3].The receiver should buffer the incoming data to allow data from all lanes
to be received. As each lane may have different skew, the data won’t
arrive simultaneously. The buffers should be released at a well-defined
time. [3]

A well-defined moment in time at which transmitters should begin initial
lane alignment, is the first LMFC tick after SYNC∼ is deassigned. A well-
defined moment in time at which the receiver should release the buffers is
a whole number of frame cycles after an LMFC tick. The number of frame
cycles should be programmable and is called Rx buffer delay (RBD). [3] The
timing diagram for achieving deterministic latency is illustrated on Figure 3.9.

For proper performance of the deterministic latency, some requirements
must be followed:.The period of a multiframe must be larger than the maximum delay

between transmit and receive devices. [3].The value of RBD multiplied by the frame period must be larger than
the maximum delay. [3].The RBD must fit into a multiframe. [3]

Subclass 0 does not support deterministic latency. The variable delays
cannot be accounted for as there are no means for that present. [3] It still may
be possible to synchronize multiple ADCs in the application layer though.
JESD204B allows for control bits to be added to the sample bits. If there
is a SYSREF-like signal distributed to all of the devices and the ADCs are
sending a control bit along the samples that indicates the SYSREF edge has
been encountered, it’s possible to align multiple ADCs by aligning samples
with the indication. [5]

20

................................. 3.6. Deterministic latency

Figure 3.9: Timing diagram illustration for deterministic latency equal to
multiple of multiframe period. [3]

3.6.1 Subclass 1

Subclass 1 allows for deterministic latency by utilizing the SYSREF signal.
LMFC and frame clock realignment are necessary only when the link is being
synchronized. [3]

All devices should be able to issue a request for SYSREF generation. That
may be usable if the SYSREF is a gapped periodic or one-shot signal. The
request should be issued upon link synchronization. The devices should
adjust LMFC and frame clock boundary on some of the SYSREF rising edges.
The exact alignment moment is left to the implementer. For example, the
device may be instructed to use the next detected SYSREF pulse to force
the alignments through a configuration interface. This idea is illustrated on
Figure 3.10 [3]

The delay between SYSREF being sampled and LMFC rising edge should
be specified for each device. [3]

3.6.2 Subclass 2

In subclass 1 the deterministic latency is achieved by aligning LMFC between
the devices. It is achieved the same way in subclass 2, but the alignment
part is different. Whereas in subclass 1 another external signal, SYSREF, is
needed, in subclass 2 the data needed for LMFC alignment are inside of the

21

3. Description of JESD204B protocol specification......................

Figure 3.10: Data release timing using SYSREF in a subclass 1. [5]

SYNC∼ signal. [5]
The SYNC∼ signal generated by the receiver must be generated based on

the receiver’s LMFC. That will mean it will carry LMFC information to the
transmitter. This information may then be used for aligning LMFC on all of
the devices. [5]

This means that the master reference is generated from a different source,
in subclass 1 the master is the clock source, whereas in subclass 2, it’s the
master logic device. The implementation is different for both ADCs and
DACs. [5]

ADC subclass 2 deterministic latency

The SYNC∼ is de-asserted by the logic device (receiver in this case) and
sampled by the ADC. When the ADC detects the deassignment of SYNC∼,
it resets its LMFC. The transmitter will begin sending /K/ characters until
the clock is settled. After the clocks have settled, the ADC will begin
sending ILAS. It’s possible to utilize a periodic SYNC∼ to monitor the phase
alignment of the ADC’s LMFC. [5]

DAC subclass 2 deterministic latency

For DACs, the logic device is the transmitter. It’s not possible to align
the transmitter to all of the DACs, as the clock phase may be different for
each of them. This presents a challenge as there is not a separate indication
signal going from the transmitter to the DACs. The DACs will deassign
the SYNC∼ on their LMFC edge. The logic device may detect the phase
difference between its LMFC and the DAC LMFC. It may issue a command
to the DAC to adjust the phase during ILAS. The relevant parts of the link
configuration are PHADJ (phase adjust), ADJCNT (adjustment count), and
ADJDIR (adjustment direction). [5]. PHADJ indicates whether an adjustment is needed.

22

..................................... 3.7. Test modes

.ADJCNT indicates the number of adjustment steps needed..ADJDIR indicates what direction to adjust the LMFC to.

It’s possible that the adjustment will have to be repeated mutliple times.
After each adjustment, the DAC issues an error report by deasserting the
SYNC∼. (again aligned with LMFC) If misalignment is detected, the ILAS
will be issued with PHADJ request again and the process will be repeated.
In other case, ILAS will be issued without PHADJ. Data may be sent after
the ILAS. [5]

The deterministic latency is achieved the same way as in subclass 1 after
the LMFCs are aligned.

3.7 Test modes

To test the link, the JESD204B specification includes a predetermined se-
quences of characters that every transmitter should be able to send. Some
ADCs allow for specifying a user test pattern. The sequences that every
transmitter should be able to send are:. Continuous sequence of /D21.5/ characters (1010101010). [3]. Continuous sequence of /K/ characters. [3]. Repeated transmission of lane alignment sequence. The transmitter

should be able to initiate code group synchronization upon receiving
a synchronization request. [3]. Continuous sequence of a modified random pattern or scrambled jitter
pattern. [3]

All receivers should be able to verify some of these sequences. Namely
a continuous /K/ sequence and a repeated lane alignment sequence. [3]

23

24

Chapter 4
Implementation of the receiver

The implementation was done in VHDL. The code has been tested using
testbenches for each component itself and for the whole receiver connecting
all of the components. It’s possible to start these testbenches using ghdl and
view the result inside gtkwave using make, Makefile is located in the root
folder. Another possibility is to use the Quartus project that is also in the
root folder and all testbenches are present there, it’s possible to run these in
Modelsim.

A short introduction to each of the programs or tools mentioned, follows.
GHDL is an open-source compiler that may simulate VHDL code. It

directly translates/compiles VHDL code to machine code, so an executable
program is created. [7]

Gtkwave is an open-source wave viewer for Unix and Win32. GHDL
program may produce a standard Verilog VCD file that may be explored
using Gtkwave. [8]

Modelsim is a simulation tool from Siemens, it can simulate some of the
hardware description languages. Among other languages, it supports VHDL
or Verilog.

Quartus Prime is a software bundle developed by Intel. It supports
everything for designing on Intel FPGAs, such as synthesizing. It is able to
simulate VHDL code as well. [9]

The root folder of the custom implementation contains src/ folder contain-
ing all the sources. The sources are grouped into folders by layer. Testbench
folder testbench/ has the same structure. Testbenches are named the same
way as sources with added _tb at the end. When there is need to test mul-
tiple configurations of one entity, the file names may be different. The files
are located on attachment for this thesis and the file tree structure of the
attachment is located in Appendix A.

Care was taken to make all of the entities modular using generics. Every
entity may be used with different configurations to accommodate for any
possible usage of the JESD204B protocol. The design is split into smaller
entities to make it possible to use only smaller parts of the design, if there
was need to replace some of the entities.

25

4. Implementation of the receiver
4.1 VHDL introduction

VHDL is a hardware description language. VHDL code specifies a structure
of a digital circuit. The code may be synthesized to a digital circuit and
put on an Field programmable gate array (FPGA). The resulting circuits
may as well be simulated using specialized software. There are some spin-offs
of VHDL language by different vendors. [10] VHDL derives syntax from
a language called Ada.

VHDL is similar to programming languages. Any algorithm may be written
using VHDL, but its main purpose is to describe hardware. VHDL may be
executed, similar to other programs. But it’s common to call the process
of execution simulation for VHDL. That is because VHDL is mainly for
modeling designs. [7]

To use VHDL on real hardware, it must be synthesized. Synthesis tool
transforms a program into a gate-level description. [7]

4.2 Design

The following section should act as a sort of a documentation of the VHDL
implementation. It mainly shows the conception of the code and describes the
inner workings of some of the more complex components. The design contains
top level entities that may be used as a standalone entity representing the
whole JESD204B receiver, even for a multipoint link consisting of multiple
transmitters. The structure of these components is discussed to show how to
compose an entity like that from the individual components.

4.2.1 Defined record types

VHDL allows to make user defined record types that store multiple fields
of specified types. There are some records in the implementation to ease
transferring data between entities.

One of these is a link config, fields of the link config are specified in the
table below. Link config contains JESD204B configuration fields of a link
that can be seen in Table 3.3.

Another custom record type is a link character containing 8-bit character
information, the 8-bit character itself, whether it’s a control character and
whether there was a disparity or not in table error.

For the transport layer, there is a record called frame state, it contains
information about errors in a frame, whether the frame contains user data
(data from the converters), whether there were some errors for the 8-bit
decoder or later. It also tells whether the last frame was repeated, the frame
gets repeated in case there is an error.

Every testbench contains a custom record type as well, containing inputs
to the unit under test and usually expected output as well.

26

....................................... 4.2. Design

Table 4.1 : Fields of defined link_character record type.

Name Type Description
kout std_logic Whether the character is a control character
disparity_error std_logic Disparity does not match
missing_error std_logic Not in 8b10b encoding table
d8b std_logic 8-bit character
user_data std_logic Whether the character is from data state or

is from synchronization

Table 4.2 : Fields of defined frame_state record type.

Name Type Description
user_data std_logic Whether the frame consists only of

samples
invalid_characters std_logic Whether there are any characters that

shouldn’t be in the frame
not_enough_data std_logic An error stating there isn’t enough

data to output a whole frame
ring_buffer_overflow std_logic An error stating that there isn’t

enough data to output a whole frame
disparity_error std_logic An error stating that there was a dis-

parity mismatch in the frame
not_in_table_error std_logic An error stating that some of the char-

acters weren’t present in 8b/10b en-
coding table

wrong_alignment std_logic An error stating alignment characters
were found on unexpected position

last_frame_repeated std_logic Whether a frame has been repeated,
due to errors

4.2.2 Top level entities

Top level entities are just wrappers of other entities without a lot of logic
added. They allow for easier implementation of JESD204B standard to new
design as well as show how to link the lower level components correctly.

JESD204B multipoint receive link

Multipoint receive link is a component that connects multiple JESD204B link
receive components (see subsubsection 4.2.2). It may generate multiframe
clock and align it with the SYSREF signal. Subclasses 0 and 1 are supported.
It should be possible to use this component as a top level entity for data
link and transport layers in any design with one or more JESD204B links.
It expects 10-bit characters from the lanes directly on its input, as di_data
input, shown on Figure 4.1. Samples from the converters are on the output
of this component.

27

4. Implementation of the receiver
The inside of this component is quite simple, as it just connects jesd204b_link_rx,

synced_combination and lmfc_generation.

Table 4.3 : Input and output ports of jesd204b_multipoint_link_rx VHDL entity.

Name Description
ci_device_clk Device clock
ci_char_clk Character clock
ci_frame_clk Frame clock
ci_sysref Sysref signal
ci_reset Asynchronous reset (active low)
ci_request_sync Externally request synchronization
co_nsynced Indicates correct synchronization (active low)
co_error Indicates any kind of error
di_data Input data from transceivers, 10-bits for every lane
do_samples Output samples, valid if frame_state is okay
do_ctrl_bits Output control bits, valid if frame_state is okay
co_frame_state Combined state of all of the links and lanes
co_correct_data Indication coming from co_frame_state, indicating

whether the data are okay

Table 4.4 : Generic parameters of jesd204b_multipoint_link_rx VHDL entity.

Name Description
K_CHAR The 8-bit /K/ character
R_CHAR The 8-bit /R/ character
A_CHAR The 8-bit /A/ character
Q_CHAR The 8-bit /Q/ character
DATA_RATE Multiple of device clock to get data rate
MULTIFRAME_RATE F · K
ALIGN_BUFFER_SIZE Size of the buffer for aligning lanes
RX_BUFFER_DELAY Number of frames to wait before releasing buf-

fer (for subclass 1)
LINKS Number of links on the multipoint link
LANES Total number of lanes
CONVERTERS Total number of converters
CONFIG The configuration for each link
ERROR_CONFIG The configuration for error_handler

JESD204B link receive

This entity encapsulates multiple data_link_layer entities, a descrambler
and a transport_layer for one JESD204B link. It receives a local multiframe
clock as an input, seen on Figure 4.2, and thus may not generate multiframe
clock by itself. For generating LMFC, lmfc_generation should be used. Or
alternatively, the multipoint top level entity may be used instead.

28

....................................... 4.2. Design

jesd204b_multipoint_link_rx

ci_device_clk

ci_frame_clk

ci_sysref

ci_request_sync

co_nsynced

co_error

di_data
LANES

do_samples
CONVERTERS

do_ctrl_bits
CONVERTERS

co_frame_state
LINKS

co_correct_data

ci_reset

ci_char_clk

Figure 4.1: Diagram of JESD204B multipoint link receive VHDL entity.

jesd204b_link_rx

ci_frame_clk

ci_multiframe_clk

ci_request_sync

co_nsynced

co_error

di_data
L-1

do_samples
M

co_frame_state

co_correct_data

ci_reset

ci_char_clk

Figure 4.2: Diagram of JESD204B link receive VHDL entity.

Table 4.5 : Input and output ports of jesd204b_link_rx VHDL entity.

Name Description
ci_char_clk Character clock
ci_frame_clk Frame clock
ci_multiframe_clk Multiframe clock
ci_reset Asynchronous reset (active low)
ci_request_sync Externally request synchronization
co_nsynced Whether the link is synchronized (active low)
co_error Whether the output data are errorful
di_data 10 bit characters for each lane
do_samples Samples in a frame
do_ctrl_bits Samples control bits in a frame
co_frame_state State of the frame
co_correct_data Whether samples are without an error

29

4. Implementation of the receiver
Table 4.6 : Generic parameters of jesd204b_link_rx VHDL entity.

Name Description
K_CHAR The 8-bit /K/ character
R_CHAR The 8-bit /R/ character
A_CHAR The 8-bit /A/ character
Q_CHAR The 8-bit /Q/ character
Link config See Table 3.2
ALIGN_BUFFER_SIZE lane alignment FIFO buffer size
RX_BUFFER_DELAY Number of frames to wait until releasing lanes

(used for subclass 1)
ERROR_CONFIG Configuration for error handler
SCRAMBLING Whether data are scrambled

4.2.3 Helpers

There are some entities used inside of top level entities to split logic that does
not go into any of the layers directly.

Sync combination

Sync combination component is used in top level entities for the link and
multipoint link. Its function is to take multiple sync signals, as may be
observed on Figure 4.3, and combine them into one sync output signal.

It respects JESD204B specification timing requirements for different sub-
classes. For subclass 0, sync combination will set sync signal only on frame
clock, for subclass 1, sync combination will set sync signal only on multiframe
clock and only in case the LMFC is aligned.

synced_combination

ci_frame_clk

ci_multiframe_clk

ci_lmfc_aligned

ci_synced_array
N

co_nsynced

ci_reset

Figure 4.3: Diagram of synced combination VHDL entity.

30

....................................... 4.2. Design

Table 4.7 : Input and output ports of synced_combination VHDL entity.

Name Description
ci_frame_clk Frame clock
ci_multiframe_clk Multiframe clock
ci_reset Asynchonous reset (active low)
ci_lmfc_aligned Whether multiframe clock is aligned

Table 4.8 : Generic parameters of synced_combination VHDL entity.

Name Description
SUBCLASSV What subclass version to use
N Number of outputs (usually number of links)
INVERT Whether synced input is inverted (1 = active low sync is

on input)

LMFC generation

This component manages LMFC generation. It uses LMFC counter entity
for generating the local clock itself. LMFC generation tells the counter to
resynchronize in case the link is not synchronized. It outputs whether LMFC
was aligned after synchronization was lost. Sync generation takes that input
to tell the transmitter the link is synchronized only after LMFC is aligned.
This component has a SYSREF signal as its input, see that on Figure 4.4,
that works as a reset of the counter, to align the multiframe to the SYSREF.

lmfc_generation

ci_device_clk

ci_sysref

ci_nsynced

co_multiframe_clk

co_lmfc_aligned

ci_reset

Figure 4.4: Diagram of LMFC generation VHDL entity.

Table 4.9 : Input and output ports of lmfc_generation VHDL entity.

Name Description
ci_device_clk Device clock
ci_reset Asynchronous reset (active low)
ci_sysref Sysref signal
ci_nsynced Whether synchronization is established (active low)
co_multiframe_clk Aligned mutliframe clock
co_lmfc_aligned Whether clock is aligned

31

4. Implementation of the receiver
Table 4.10 : Generic parameters of lmfc_generation VHDL entity.

Name Description
MULTIFRAME_RATE Number of device clocks in a multiframe, F · K
DATA_RATE Multiplication factor of serial data speed relative

to device clock

LMFC counter

LMFC counter entity is a simple counter with the possibility to reset its count
so multiframe clock may be synchronized to SYSREF signal rising edge. See
the input and output ports on Figure 4.5.

lmfc_counter

ci_device_clk

ci_sysref

ci_enable_sync

co_aligned

co_multiframe_clk

ci_reset

Figure 4.5: Diagram of LMFC counter VHDL entity.

Table 4.11 : Input and output ports of lmfc_counter VHDL entity.

Name Description
ci_device_clk Device clock
ci_reset Asynchronous reset (active low)
ci_sysref Sysref signal
ci_enable_sync Whether to align clock to next sysref
co_aligned Whether clock is aligned to sysref
co_multiframe_clk Aligned multiframe clock

Table 4.12 : Generic parameters of lmfc_counter VHDL entity.

Name Description
DATA_RATE Multiple of device clock to get data rate
PHASE_ADJUST How many device clock ticks to wait after SYS-

REF
MULTIFRAME_RATE F · K

32

....................................... 4.2. Design

4.2.4 Data link layer

A description of entities that compose the data link layer will be introduced
now.

The data link layer receives 10-bit character for every lane on its input, as
may be observed on Figure 4.7, and outputs a frame along with its state.

The Data link layer entity is a composite entity that contains entities that
together form a data link. It receives 10-bit characters and outputs aligned
frames of 8-bit characters combined with a frame state that may report any
errors encountered. It deals with the synchronization of the link. It detects
errors and acts according to configuration, requesting another synchronization
in some cases.

Data flow inside of a data link layer is illustrated on the diagram on
Figure 4.6. First, the data goes into a character alignment that finds the
boundary of /K/ character upon synchronization. After that, the data are
decoded using 8b/10b decoder. From that, the data go to the link controller
and lane alignment. Lane alignment stores the data in FIFO buffer to align
all of the lanes on the link. At last, after the data go through lane alignment,
they will go to frame alignment. Frame alignment finds the frame boundary
and outputs whole frames, aligned with that boundary.

Table 4.13 : Input and output ports of data_link_layer VHDL entity.

Name Description
ci_char_clk Character clock
ci_frame_clk Frame clock
ci_reset Asynchronous reset (active low)
do_lane_config The configuration parsed from ILAS
co_lane_ready Whether ILAS has started (/R/ received)
ci_lane_start Set to release lane alignment FIFO buffers
ci_request_sync Externally request synchronization of the link
co_synced Whether synchronization is established
di_10b 10-bit character input from transceivers
do_aligned_chars Aligned frame characters
co_frame_state State of the frame being outputted (disparity errors,

not in table errors, not aligned)

ILAS parser

ILAS parser detects the start of an ILAS sequence, reports errors in the
sequence, and parses configuration from the sequence. The parser is used
inside of the link controller entity. The parser must know that the current
state is CGS in order to know when to look for /R/ character that denotes
the start of the ILAS sequence. Skipping the ILAS sequence is currently not
supported. See Figure 4.8 for input and output ports.

33

4. Implementation of the receiver

Character
alignment

8b10b
decoder

Lane
alignment

Frame
alignment

Link
controller

Error
handling

lan
e
read

y

sy
n
ced

req
u
est

sy
n
c

la
n
e
sta

rt

character aligned, link synced

character data link state, lane ready, start

link state, frame aligned

10b char 10b char

8b char

kout
disp err

miss err

8b char

kout
disp err

miss err

missing, disparity errors
lane aligned

frame aligned

frame data

frame state

Figure 4.6: Block diagram of the data link layer VHDL entity.

data_link_layer

ci_frame_clk do_lane_config

co_lane_readyci_lane_start

ci_request_sync co_synced

di_10b
10

do_aligned_chars
1

co_frame_state

ci_reset

ci_char_clk

Figure 4.7: Diagram of data link layer VHDL entity.

34

....................................... 4.2. Design

Table 4.14 : Generic parameters of data_link_layer VHDL entity.

Name Description
K_CHAR The 8-bit /K/ character
R_CHAR The 8-bit /R/ characterr
A_CHAR The 8-bit /A/ character
Q_CHAR The 8-bit /Q/ character
ALIGN_BUFFER_SIZE Size of the FIFO lane alignment buffer
ERROR_CONFIG Configuration for error handler
SCRAMBLING Whether scrambling is enabled
SUBCLASSV What subclass version to use
F Number of characters in a frame
K Number of frames in a multiframe

ilas_parser

ci_state

di_char

do_config

co_finished

co_error

co_wrong_chksum

co_unexpected_char

ci_reset

ci_char_clk

Figure 4.8: Diagram of ILAS parser VHDL entity.

Table 4.15 : Input and output ports of ilas_parser VHDL entity.

Name Description
ci_char_clk Character clock
ci_reset Asynchronous reset (active low)
ci_state State of the link
di_char 8-bit decoded character
do_config Config that found in the ILAS sequence
co_finished Whether sequence has been successfully finished
co_error Whether there was an error in the sequence

35

4. Implementation of the receiver
Table 4.16 : Generic parameters of ilas_parser VHDL entity.

Name Description
F Number of characters in a frame
K Number of frames in a multiframe
K_CHAR The 8-bit /K/ character
R_CHAR The 8-bit /R/ character
A_CHAR The 8-bit /A/ character
Q_CHAR The 8-bit /Q/ character

Link controller

This entity is responsible for controlling the synchronization process. It
outputs SYNC∼ signal according to JESD204B specification. The state of
the link is outputted as well, as co_state (seen on Figure 4.10), so it may be
used in other data link layer components as well. It parses ILAS with the
help of the ILAS parser entity.

The link controller has multiple states that represent the state of the whole
data link layer, changing behavior in most of the entities. The state diagram
is illustrated on Figure 4.9 Upon initialization, the component is in INIT
state and it will go to CGS state after at least one /K/ character is received.
The state will be set to CGS upon receiving /K/ in any state. After receiving
at least 4 /K/ characters correctly, SYNC∼ will be assigned. The ILS state
will be set according to the ilas_parser component. After the ilas_parser
component outputs that the sequence was correct, the state will be set to
DATA, indicating that the synchronization was successful and user data are
being sent.

initstart CGS

ILASdata

received /K/

at
least

4
/K

/
&

/R
/

Sequence finished successfully

received
/K

/

sequence does not match

received
/K

/,
too

m
any

errors

Figure 4.9: Link controller states.

36

....................................... 4.2. Design

link_controller

ci_frame_clk

di_char

do_config

ci_lane_alignment_error

ci_lane_alignment_aligned

ci_lane_alignment_ready

ci_frame_alignment_error

ci_frame_alignment_aligned

ci_resync

co_synced

co_state

co_uncorrectable_error

co_error

ci_reset

ci_char_clk

Figure 4.10: Diagram of link controller VHDL entity.

Table 4.17 : Input and output ports of link_controller VHDL entity.

Name Description
ci_frame_clk Frame clock
ci_char_clk Character clock
ci_reset Asynchronous reset (active low)
di_char 8-bit decoded character
do_config Configuration parsed from ILAS sequence
ci_lane_alignment_error Whether lane alignment detected /A/

character
on wrong position
ci_lane_alignment_aligned Whether alignment to multiframe is ac-

quired
ci_lane_alignment_ready
ci_frame_alignment_error Whether frame alignment detected /F/

character
on wrong position
ci_frame_alignment_aligned Whether alignment to frame is acquired
ci_resync Externally request synchronization
co_synced Whether the link is synchronized
co_state State of the link
co_uncorrectable_error Indicates an uncorrectable error
co_error Indicates any error

37

4. Implementation of the receiver
Table 4.18 : Generic parameters of link_controller VHDL entity.

Name Description
SUBCLASSV What subclass version to use
F Number of characters in a frame
K Number of frames in a multiframe
K_CHAR The 8-bit /K/ character

Character alignment

Character alignment entity is especially important in the code group syn-
chronization stage. It aligns with the beginning of /K/ character. Aligning
with the start of a character is possible to be done in the physical layer
instead. As /K/ is a comma character, it contains a unique sequence (1111101
or 0000010) that is not encountered anywhere else. This sequence may be
used for quick detection of the boundary of a character. After the character
is found, co_aligned, that may be seen on Figure 4.11, will indicate that.
Characters going to 8b/10b decoder should be aligned correctly then.

char_alignment

di_10b
10

ci_synced

do_10b
10

co_aligned

ci_reset

ci_char_clk

Figure 4.11: Diagram of character alignment VHDL entity.

Table 4.19 : Input and output ports of char_alignment VHDL entity.

Name Description
ci_char_clk Character clock
ci_reset Reset (active low)
di_10b 10-bit data to align to a character
ci_synced Indicates that the link is synchronized
do_10b 10-bit aligned character
co_aligned Character alignment status, was /K/ found?

Table 4.20 : Generic parameters of char_alignment VHDL entity.

Name Description
K_CHAR The character to align to (/K/)

38

....................................... 4.2. Design

8b10b decoder

This entity takes 10-bit characters, as seen on Figure 4.12, and decodes them
according to the 8b/10b decoding table. It checks whether the disparity of the
current character is the expected one. In case it isn’t, an error is outputted,
using do_char (of link_character type), but the data are decoded correctly.
In case the input character is not found in the decoding table, the error is
outputted and the data are incorrect.

an8b10b_decoder

di_10b
10

do_char

co_error

ci_reset

ci_char_clk

Figure 4.12: Diagram of 8b10b decoder VHDL entity.

Table 4.21 : Input and output ports of an8b10b_decoder VHDL entity.

Name Description
ci_char_clk Character clock
ci_reset Reset (active low)
di_10b 10-bit character
do_char 8-bit character with errors (disparity, not in table)

Lane alignment

The lane alignment entity has a FIFO buffer inside of it. This buffer is
used when the link is being synchronized. The entity waits for the first /R/
character and from that character starts storing oncoming characters until
a release signal is set. Detection of the /R/ character is indicated by co_ready,
an output seen on Figure 4.13. After that, buffers are released from the first
/R/ character. That ensures all lanes may start at a well-defined position,
the first /R/ character in ILAS sequence.

According to the JESD204B standard, the lane alignment should be mon-
itored after synchronization is established using /A/ characters. Unfortu-
nately, this behavior was not implemented completely as of the date of
submission. Part of that behavior is replaced by frame_alignment entity.

Frame alignment. Upon synchronization, it finds /A/ or /F/ in the data to align to a frame.
It stores incoming characters in a ring buffer and releases them when
the frame clock ticks. The component releases whole frames. It aligns to
the correct beginning and end of the frame using /A/ or /F/ characters.

39

4. Implementation of the receiver
Table 4.22 : Input and output ports of lane_alignment VHDL entity.

Name Description
ci_char_clk Character clock
ci_reset Asynchronous reset (active low)
ci_start Tells to release the lane buffer
ci_state State of the link
di_char 8-bit decoded character
co_ready Whether /R/ (start of ILAS) was detected
do_char 8-bit character released from the buffer or DUMMY_CHAR

until the buffer is released

Table 4.23 : Generic parameters of lane_alignment VHDL entity.

Name Description
F Number of characters in a frame
K Number of frames in a multiframe
BUFFER_SIZE Size of the FIFO buffer
R_CHAR The 8-bit /R/ character
DUMMY_CHAR Character to send until buffer is released

lane_alignment

ci_start

ci_state

ci_realign

di_char

co_ready

co_aligned

co_correct_sync_chars

co_error

do_char

ci_reset

ci_char_clk

Figure 4.13: Diagram of lane alignment VHDL entity.

.After synchronization, it monitors whether /F/ and /A/ characters are
at expected positions, that means the end of a frame (or multiframe).. It outputs information about how many characters are at the wrong
position and allows realigning to a new frame beginning.. It replaces /F/ and /A/ characters according to the JESD204B standard
rules. For non-scrambled data, /F/ is replaced with the last character
from the last frame whereas /A/ is changed for the last character from
the last multiframe. For scrambled data, /F/ is replaced with /D28.3/
and /A/ is replaced with /D28.0/.. It combines errors of the characters into a frame state. If any of the

40

....................................... 4.2. Design

characters has an error, that error will be propagated into the frame
state.

In case there is an error, it will be reported to the link controller as well,
using co_error, that may be observed on Figure 4.14.

Inside, this entity uses another entity, called ring_buffer. There is no
separate documentation for this entity, it’s quite simple. It receives one
character at a time, at a character rate. It outputs frames on frame rate. For
aligning to frame correctly, it allows for adjusting position by a minimum of
one character. The frame alignment will instruct this entity to adjust the
position when needed.

frame_alignment

ci_frame_clk

ci_request_sync

ci_realign

di_char

co_aligned

co_error

co_correct_sync_chars

do_aligned_chars
1

co_frame_state

ci_reset

ci_char_clk

Figure 4.14: Diagram of frame alignment VHDL entity.

Table 4.24 : Input and output ports of frame_alignment VHDL entity.

Name Description
ci_char_clk Character clock
ci_frame_clk Frame clock
ci_reset Asynchronous reset (active low)
ci_request_sync External synchronization request
ci_realign Realign to newly found frame position
di_char 8-bit character data
co_aligned Tells that the frame position was found and

aligned to
co_error Tells whether there was found an alignment char-

acter on wrong position
co_correct_sync_chars Number of correct alignment characters found

on same position
do_aligned_chars Aligned characters in a frame
co_frame_state State of the output frame

41

4. Implementation of the receiver
Table 4.25 : Generic parameters of frame_alignment VHDL entity.

Name Description
SCRAMBLING Whether data are scrambled
F Number of characters in a frame
K Number of frames in a multiframe
K_CHAR The 8-bit /K/ character
A_CHAR The 8-bit /A/ character
F_CHAR The 8-bit /F/ character
F_REPLACE_CHAR What to replace /F/ with for scrambled data
A_REPLACE_CHAR What to replace /A/ with for scrambled data

States of the entity are illustrated on the Figure 4.15. After receiving the
first /A/ or /F/ character, the entity will assume the end of a frame on that
position. It will then be assumed that every /A/ or /F/ characters should
be on the end of the frame and if that is not the case, the state will be set
to MISALIGNED and the frame alignment may realign upon an external
request. The realignment will set the state back to ALIGNED afterward.

initstart aligned

misaligned

/F/ or /A/ found

/K/ found A
lignm

ent
character

on
unexpected

position

R
ealignm

ent
authorized

/K/ found

Figure 4.15: Frame alignment states.

42

....................................... 4.2. Design

Error handler

Error handler receives alignment information given from frame and lane
alignment components, as well as errors from the 8b/10b decoder component.

It counts how many errors there are in a multiframe, if it reaches a certain
number of errors (configured using generics), it may request realignment
from the frame or lane alignment entities. That maximum number of errors
has been reached is indicated by setting an output called co_request_sync,
the rest of the outputs may be seen Figure 4.16. The other outputs are for
requesting lane or frame realignment.

error_handler

ci_state

di_char

ci_lane_alignment_error

ci_lane_alignment_correct_count

ci_frame_alignment_error

ci_frame_alignment_correct_count

co_frame_alignment_realign

co_lane_alignment_realign

co_request_sync

ci_reset

ci_char_clk

Figure 4.16: Diagram of error handler VHDL entity.

Table 4.26 : Input and output ports of error_handler VHDL entity.

Name Description
ci_char_clk Character clock
ci_reset Asynchronous reset (active low)
ci_state State of the link
di_char 8-bit character information
ci_error Whether lane alignment detected /A/ character on

wrong position
ci_correct_count Number of /A/ or /F/ characters located on the

same relative position
ci_alignment_error Whether frame alignment detected /F/ character on

wrong position
co_request_sync Indicates a need to resynchronize the link

4.2.5 Transport layer

The transport layer entity is used for decomposing frames into samples. It
receives a whole (aligned) frame of characters and outputs: frame state,

43

4. Implementation of the receiver
Table 4.27 : Generic parameters of error_handler VHDL entity.

Name Description
CONFIG Configuration to specify number of tolerated errors
F Number of characters in a frame
K Number of frames in a multiframe

samples, and control bits. As the data link layer outputs aligned frames, it is
easy to connect a data link layer to the transport layer directly.

Any possible JESD204B configuration is supported by this entity, by
utilizing generics and VHDL generate statements.

This entity combines frame states from each lane. If there is an error in
any of these lanes, it will be reported in the frame state. The last frame will
be repeated upon an error as well.

The inputs and outputs of this entity may be seen on Figure 4.17.

transport_layer

ci_frame_clk

di_lanes_data
L-1

ci_frame_states
L-1

co_frame_state

do_samples
M

ci_reset

Figure 4.17: Diagram of transport layer VHDL entity.

Table 4.28 : Input and output ports of transport_layer VHDL entity.

Name Description
ci_frame_clk Frame clock
ci_reset Asynchronous reset (active low)
di_lanes_data (Descrambled) aligned frames from data link
ci_frame_states States of the aligned frames
co_frame_state Combined state of the frame
do_samples Samples in the frame
do_ctrl_bits Control bits of the samples in the frame

4.3 Testbenches

There is a standalone test for almost all of the entities to make sure each of
the entities behaves as expected. There are also testbenches testing entities
that connect other entities together.

44

..................................... 4.3. Testbenches

The most important testbench is probably the one that tests the whole
link, simulating a possible synchronization sequence and a short possible
data sequence. This test allows us to check for the capability of the design
to recognize the synchronization sequence, parse config out of the ILAS, to
recognize the start of the frame and parse the samples that were sent as data.
The result of the testbench may be seen on Figure 4.18. It is split into two
subfigures. It may be observed that the state of the link is progressing from
initialization to user data. The data are shown as hexadecimal.

First, /K/ characters are being sent and the link controller is waiting for
detecting at least 4 consequent /K/ before deassigning co_nsynced (SYNC∼).
After a short while, ILAS is being transmitted and detected by the receiver.
The waveform shows a test configured to using two lanes. Data going to
the first lane are marked with [0] at the end. The 8-bit data going in are
shown in the waveform. These are encoded and sent as 10-bit data to the
design. Notice that the 10-bit data are not always the same for the same
8-bit data, that is because running disparity must be kept +1 or -1 and that
is done by switching some of the bits. On the figure, markers are present.
These markers mark starts of multiframes in ILAS sequence, when at the
input of the link controller (data at controller, not 8-bit data in), there is
a delay between the data going in and the data at the link controller due to
character alignment and 8b/10b decoder entities. A multiframe always starts
with /R/ = 0x1C and ends with /A/ = 0x7C. The last marker marks start
of the data, indicated by co_correct_data. These are the samples with the
control bits that were sent.

Multiple configurations and sequences were tested, mainly configurations
that are similar to the board that will be designed for this thesis. Other
testbench results may be generated using Modelsim or ghdl with the help of
the attached files. Some of the testbenches contain expected sequences that
are validated programmatically and any mismatches are reported back.

45

4. Implementation of the receiver

(a
)

:
Fi

rs
t

pa
rt

of
th

e
w

av
ef

or
m

.

(b
)

:
Se

co
nd

pa
rt

of
th

e
w

av
ef

or
m

.

Fi
gu

re
4.

18
:

Si
gn

al
tim

in
g

di
ag

ra
m

of
JE

SD
20

4B
lin

k
rx

te
st

be
nc

h.

46

Chapter 5
Design of the testing (mezzanine) board

Apart from testing the implementation using testbenches, a test on hardware
using FPGA and ADCs will be performed as well. An FPGA that is capable of
high-speed CML signals will be needed for the test. To test the implementation
thoroughly, ADCs should be chosen carefully. The ADC should allow using
multiple lanes, it should have multiple analog input channels. Its speed
should be as high as possible. But there are some cost constraints as well.
ADCs capable of 12.5 Gbps data rate speeds are too expensive for these
price constraints. Testing Subclass 1 synchronization between multiple ADCs
would be appropriate, too. For that, at least two ADCs are needed, both
with the support of subclass 1.

From all of the available FPGA development boards, Intel Cyclone 10 GX
development kit was the most suitable carrier board. It has an FPGA mezzan-
ine card (FMC), the PCB board that will be designed, will be compatible
with that connector. This connector is highlighted on the development kit on
Figure 5.1. The FMC contains 10 rows, 40 pins each. It is connected to a lot
of LVDS pairs that may be used as single-ended if needed. There are also 5
transceiver channels available, with a receiver and a transmitter each. That
means that the board may have ADCs with a total of 5 JESD204B lanes.
These transceivers are capable of up to 12.5 Gbps speeds, the maximum
rating of JESD204B. [11] It’s not possible to drive 3.3 V logic from Cyclone
10 GX FPGA that is needed for I2C support. However, the development kit
contains a buffer converter from 1.8 V logic to 3.3 V logic, connected to the
FMC, making support of I2C through the FMC possible without any external
components.

Various ADCs were considered, and LTC2123 and AD9683 were chosen in
the end. LTC2123 supports 250 MSPS and may transfer data with up to 5
Gbps speeds. The chosen variant of AD9683 supports 170 MSPS. [12][13]
Both of these are not so much expensive and offer a lot of features that may
be tested. The most important parameters are listed in Table 5.1.

Both of the ADCs have a lot of parameters that may be configured using
SPI. CML output current may be adjusted. Control bits may be set to include
valid sample indications, over-range or under-range indications. It’s possible
to enable test patterns on both of the ADCs. AD9683 has a configurable user
pattern whereas LTC2123 has pre-configured patterns that are compliant

47

5. Design of the testing (mezzanine) board

Figure 5.1: Top side of Intel Cyclone 10 GX development kit with highlighted
FMC connector.

Table 5.1 : Listing of the most important parameters of LTC2123 and AD9683.
[12][13]

Parameter LTC2123 AD9683
Maximum sampling frequency 250 MSPS 170 MSPS
Supported JESD subclasses 0, 1, 2 0, 1
Configuration interface SPI SPI
No. of analog channels 2 1
SNR 70 dbFS 70.6 dBFS

CML lanes 2 or 4
(configurable) 1

Supply voltages 1.8 V 1.8 V
Power consumption 864 mW 434 mW

with the JESD204B standard. Some of the JESD204B parameters may
be changed as well. Whether scrambling is enabled, device ID, number of
frames in a multiframe, etc. Initial lane alignment sequence, frame, and lane
monitoring may be disabled. [13][12]

It should be possible to test simple as well as more advanced features on
the board to be designed. For testing the simple features such as initial
synchronization and that correct data have been received, test modes may
be used. To test more advanced features such as deterministic latency, at
least two ADCs supporting subclass 1 or 2 are needed. The conception of the
board to be designed is illustrated on Figure 5.2

48

......................... 5. Design of the testing (mezzanine) board

FPGA
Intel Cyclone 10 GX

FMC connector

Clock buffer
Si53340

Clock generator
Si5338

ADC 1
AD9683

Analog frontend

ADC 2
LTC2123

Analog frontend

LTC_CTRLaAD_CTRLa

SYSREF

SYSREFSYSREF

SY
SR

EF

DEVCLKDEVCLK

D
EV

C
LKI2C

differential
analog input

differential
analog input

a Represents a group of signals. See Table 5.2 for individual signals from the group.

Figure 5.2: Testing board high-level conception.

49

5. Design of the testing (mezzanine) board
Table 5.2 : Individual signals of AD_CTRL and LTC_CTRL signal groups in
Figure 5.2.

Signal / Group Signal description
CML lanes Lanes going to the transceivers, using JESD204B pro-

tocol
SPI Interface for configuration (3 signals, clock, data i/o,

chip select)
OF∼ Indicates overflow or underflow on input
SYNC∼ JESD204B SYNC∼ signal
PWDN Powerdown ADC (applies only to AD_CTRL)
RESET∼ Reset of the ADC, active-low (applies only to

AD_CTRL)

5.1 Clock generation

It’s needed to choose a clock generator that will supply DEVCLK to all of
the devices. This clock generator should generate SYSREF as well.

As both ADCs support various clock division factors, a device that allows for
generating clock signals of multiple different frequencies would be appreciated.
To test multiple frequencies, a configurable device would come in handy.

Si5338 clock generator suits all of these needs. It has 4 outputs, each
individually configurable. It may be configured using I2C. Any frequency
from 160 kHz to 350 MHz may be chosen and a selected frequencies up to
710 MHz may be used as well. Various output standards such as LVDS,
LVPECL, HCSL, CMOS, SSTL, HSTL may be driven. [14]

Si530 has been chosen as an oscillator with differential output that will
drive the Si5338 clock generator. Si530 comes in many variants with different
frequencies and digital output standards. [15] The generator supports any
differential input frequency from 5 MHz to 710 MHz. [14]

As there are only four outputs on the clock generator, three are needed for
device clocks, only one may be used for SYSREF. Because SYSREF has to
go to all three devices (FPGA, LTC2123, AD9683), a clock buffer must be
used to distribute one SYSREF to three devices. Si53340 has been chosen.
It has ultra-low additive jitter of 50 fs RMS and supports a wide range of
frequencies from dc to 1250 MHz. [16]

Si5338 supports two clock signals and it’s possible to configure what input
clock signal to use. To make it possible to test with better or worse accuracy
of the clock, an external clock signal will be added as well. This signal has
to be differential on the input of the Si5338, but it’s more convenient to use
a single-ended external clock for the needs of this thesis as only single-ended
clock generators are on hand. High-speed differential LVDS drivers may
drive LVDS signals from TTL logic. One of those is DS90LV011A, it has
a maximum of 700 ps skew and 1.5 ns maximum propagation delay. [17]

50

................................... 5.2. Analog front-end

5.2 Analog front-end

Both of the ADCs have differential analog inputs. The differential input should
get the common mode voltage from VCM pin that is present on both ADCs.
There are several ways to drive differential analog inputs from single-ended
signals. The circuit driving the ADC may be called an analog front-end.

One way is using a differential transformer-coupled configuration, illustrated
on Figure 5.3. This configuration may come in handy in applications that
need to optimize for SNR. [12] From the nature of transformers, only baseband
applications may be realized.

Figure 5.3: Differential transformer-coupled configuration. [12]

Another possibility is to use a differential amplifier, such as ADA4930
recommended by Analog Devices for AD9683. [12] Using an amplifier gives
the benefit of allowing a dc signal to the ADC as well. To make the design
easier, ADA4930 has been chosen to drive LTC2123, too. ADA4930 comes in
two packages, one for a single channel and another for a dual channel. As
LTC2123 has two analog inputs, it’s convenient to use the variant for dual
channels for the LTC2123.

One of the possible wirings is illustrated on Figure 5.4. The driver is an
operational amplifier with differential output. The output has a common
mode voltage that is specified using the VCM input. This wiring is directly
from the datasheet of AD9683 and has a gain of 1. Very similar wiring was
used for LTC2123 driving as well.

Figure 5.4: Differential input configuration using the ADA4930. [12]

51

5. Design of the testing (mezzanine) board
5.3 Supply, voltage levels

The development kit outputs three distinct voltages through the FMC. These
are: 1.8 V (adjustable, default is 1.8 V), 3.3 V and 12 V. 1.8 V may power up
to 4 A, 3.3 V may power up to 12 A.

Both of the ADCs require 1.8 V voltage only, but it’s recommended to
isolate some of the voltages from each other. AD9683 datasheet recommends
isolating digital and analog voltages. It also recommends adding an inductor
between digital and CML drivers voltages. The supported SPI voltage level
is 1.8 V as well. LTC2123 does not have separate voltages for digital and
analog parts, only for digital and CML output drivers. These should have
a ferrite bead between them.

As the main objective of this thesis is to receive data from the ADCs
using JESD204B and not to achieve optimal values of some of the parameters
(such as SNR or THD), isolating voltages is unnecessary. Only ferrite beads
with a combination of capacitors will be used to get rid of some of the
higher-frequency noise.

The ADC drivers need 3.3 V or 5 V supply voltage. As the required common
mode voltage of analog input for LTC2123 is roughly 783 mV and the drivers
may output minimum of 800 mV common mode for 3.3 V supply voltage, it
will be necessary to provide 5 V to the drivers. The development kit does
not provide 5 V directly, a step-down and a voltage regulator will be needed.
A step-down from 12 V to 6.5 V, specifically TSR 1-2465[18], has been chosen.
LD29150PT50R will be used as a voltage regulator, it outputs 5 V. [19]

Clock generation-related circuits all accept a 3.3 V voltage level that is
provided directly from the development kit, making it the option that is
easiest to provide.

Every component requires some decoupling capacitors that reduce the effect
of noise caused by other circuit elements. Datasheets of the components
provide information about the position of these capacitors as well as the
recommended values.

It has to be made sure that the maximum current of the power supplies
won’t be reached. Information about maximum current ratings for each of the
components is provided in Table 5.3, all of these were obtained from relevant
datasheets. As can be observed, all of the values are well below the maximum
possible current supplied, there should thus be no issues with power supply.

5.4 High-speed CML lanes

CML is used for transmitting samples from the ADCs to the FPGA. As the
lanes may work on up to 5 Gbps speeds, that makes these signals high-speed.
It’s important to take some precautions when working with high-speed signals.

High-speed differential pairs should have the same distance between the
traces. The area where the traces do not have the same distance should be
minimal. There shouldn’t be any components in between the traces. Coupling

52

................................ 5.4. High-speed CML lanes

Table 5.3 : Maximum supply currents needed from datasheets of the components.
The total row contains the sum for the given voltage level and the row with the
maximum shows the allowed limit for the given voltage level, according to the
development kit user guide. For 5 V, specifications of the chosen step-down and
LDO are shown.

- Component Max supply current (mA)
5 V voltage level

ADA4930-2 76.8a

ADA4930-1 38.4a

Total 115.2
Maximum 1500
3.3 V voltage level

Si5338 92
Si53340 140b

Si530 98
DS90LV011A 10

Total 340
Maximum 12000
1.8 V voltage level

AD9683 260
LTC2123 533.8

Total 793.8
Maximum 4000

a Quiescent current specified, current under operation not specified.
b Typical value, maximum is not specified.

capacitors or vias should be placed symmetrically. The number of vias should
be as low as possible as they introduce a discontinuity in impedance. All of
these are demonstrated on Figure 5.5. [20]

In this design, it’s possible to route the high-speed CML lanes on the same,
top, layer. It was made sure that the ADCs are on the same side of the
board as the FMC connector. That way, it’s not necessary to route the CML
signals into other layers of the board. The signals are routed to other layers
on the development kit side, though, but that does not make any difference
in designing the mezzanine board.

High-speed traces should not be routed over a split plane. It may lead to
the trace acting as a loop antenna. That is because, for high-speed signals,
the return path tends to follow the trace and by routing over a split plane,
the return path won’t be able to follow the signal trace. When it’s needed
to route the trace over a split plane, there should be a stitching capacitor
placed over the split plane, as illustrated on Figure 5.5d. [20]

53

5. Design of the testing (mezzanine) board

(a) : Constant distance between traces.

(b) : No components in between.

(c) : Components placed symmetrically.

(d) : Routing over a split plane.

Figure 5.5: Some of the guidelines for high-speed signal routing. [20]

5.5 Length matching

As pairs are bent one way more than the other, one of the traces becomes
shorter than the other. It’s important to make sure that both of the traces
in one pair have the same length to minimize the skew. It’s also important
to match these lengths close to the bends. [20]

There may be additional requirements for skews between different signals,
ie. to make sure that multiple signals arrive within one clock cycle and meet
the setup and hold time requirements. [20]

JESD204B standard specifies maximum skews between some of the signals.
SYSREF should arrive at each device within the same device clock cycle.
SYNC∼ signals should arrive at each device within the same device clock
cycle (for subclass 2). CML lanes or device clocks have a maximum defined

54

.................................5.6. Controlled impedance

skew between them. It was important to match all of these signals on the
PCB. A maximum of 2 mils of difference between relevant trace lengths was
achieved among all of the signals.

5.6 Controlled impedance

All of the differential pairs have to have a controlled impedance. Both LVDS
and CML should have a differential impedance of 100 Ω. When designing the
PCB, that must be taken into account. To make sure the impedance matches,
the distance between the differential pairs and the width of one trace has to
be carefully chosen.

One of the ways to compute the necessary widths and distances is to use
Saturn PCB Design Toolkit, a screenshot from the PCB design toolkit may
be seen on Figure 5.6. On this screenshot, the final spacing and width chosen,
may be seen. From the screenshot, this leads to roughly 100 Ω differential
impedance.

Figure 5.6: Configuration of differential pair controlled impedance from Saturn
PCB Toolkit.

5.7 Final board

To make sure all requirements of differential pairs are met, at least 4 layer
PCB is required.

55

5. Design of the testing (mezzanine) board
The board has been designed in Altium Designer. Altium Designer is

a software package for designing PCBs. It was developed by Altium Ltd.
Gerber files of the board are attached to the thesis in Appendix B. The final
board, compared with Altium Designer 3D view, is shown on Figure 5.7.

Unfortunately, not all of the needs for high-speed signals were met when
designing the PCB. As the board was designed with only 4 layers and it was
not discovered until too late that there should not be any split planes when
routing high-speed signals. Some of the high-speed CML signals go through
a split plane.

(a) : Altium Designer 3D view, bot-
tom side.

(b) : Altium Designer 3D view, top side.

(c) : Photo of the board, bottom side. (d) : Photo of the board, top side.

Figure 5.7: Comparison of the final printed board and Altium Designer 3D view.

56

Chapter 6
Setup and testing on FPGA development
kit

Intel FPGAs may be accessed using Quartus Prime software. To work with
Intel Cyclone 10 GX, the Quartus Prime Pro version is required. Although
the Pro version normally requires a paid license, work with Intel Cyclone 10
GX is possible without any license, for free.

6.1 FPGA setup using Quartus

To make the test possible, a transceiver (SERDES) must be utilized to receive
the data. Intel provides an IP core for accessing the transceivers directly. It’s
called the Transceiver PHY IP core. To use this IP core as a receiver, it’s
necessary to create and configure at least two blocks, one for the transceiver
itself and the other as a reset controller. A custom reset controller may be
designed with custom functionality, but a default reset controller meeting
requirements to correctly reset the transceiver is provided in Quartus Prime.
[21]

Figure 6.1: Transceiver channel in full duplex mode. [21]

It may be observed from Figure 6.1 that the transceiver consists of Physical
media attachment (PMA) and Physical coding sublayer (PCS) parts. The

57

6. Setup and testing on FPGA development kit
PMA is the interface to the physical medium. The interface width between
PMA and PCS is configurable. It’s possible to bypass the function of PCS
by utilizing PCS Direct mode. By using the Standard or Extended PCS, it’s
possible to configure the transceiver to use features of a specific protocol.
The Standard PCS supports features such as aligning to a word (denoted by
a pattern) or decoding 8b/10b words. The IP core supports 1.0 Gbps to 12.5
Gbps speeds. For lower frequencies, oversampling is required. [21]

For a transmitter, an external PLL must be provided as well. Intel provides
a block for creating a PLL as well. The transmitter supports various clock
frequencies so PLL may not be needed. The receiver has a channel PLL
directly inside of it. This PLL is responsible for clock and data recovery. [21]

For purposes of this thesis, it should be fine to use the PCS Direct mode.
Although the character alignment of Standard PCS could be utilized, there
is a character alignment already implemented in the VHDL design as well.
Thus it’s not a requirement to align on the physical layer. Decoding is done
in the VHDL as well, so there is no need in performing it in the transceiver.
[21]

As the design requires both a character clock and a frame clock, a PLL
may be employed to obtain these from the device clock going in from the
clock generator. Intel provides IOPLL IP core for implementing a PLL on the
FPGA. It may be shown on the typical architecture, present on, Figure 6.2
that the PLL may produce multiple outputs by dividing the VCO output.

Figure 6.2: Typical I/O PLL architecture. [22]

If the tests of the implementation were done using the custom-designed
board right away and there were problems, it would be hard to track down
where the problem is exactly. It could be better to test in such a way as
to rule out as many problems as possible. The development kit comes with
an FMC loopback card that connects transceiver channel TX to RX. Intel
Quartus includes JESD204B Intellectual property core (IP core) that includes
physical and data link layers. One of the possible ways to test, would be to use
this JESD204B IP core as a transmitter and connect it to the implemented
receiver. After this works, it should be possible to rule out many of the
problems coming from the FPGA design itself.

But there is a problem with this approach as well. The Intel implementation

58

..................................6.2. Board configuration

of JESD204B is complex. The block does not contain the JESD204B interface
only. It’s also possible to access the JESD204B in Nios II using an Avalon
memory-mapped interface. The user guide for JESD204B doesn’t seem to
contain all of the information needed for the correct operation, it has to be
combined with other user guides such as the user guide for Transceiver PHY.
It is thus possible that I have missed something in the user guides and that
would mean the test would not work as expected. This still leaves a possibility
for an error outside of the custom VHDL design.

6.2 Board configuration

Before the board may be tested, the components on it have to be properly
configured. The configuration may be done from the FPGA directly. A con-
venient way to use the FPGA as a master of I2C or SPI bus is to utilize the
Nios II along with peripherals.

Nios II is a soft processor designed specifically for FPGAs of the Altera
family. Using a soft processor such as Nios provides cost flexibility as no
external processor is needed and peripherals may be reconfigured at any time.
It’s possible to meet many different demands with soft processors.

For purposes of this thesis, a Nios processor with I2C and two SPI interfaces
will be used.

The clock generator is configured using I2C protocol. To figure out the
values of registers of the clock generator for specific input and output clock
frequencies, Skyworks provides a ClockBuilder Pro software. This software
may export the registers to be programmed to a CSV or a C header as an array.
The datasheet also specifies the order in which to program the generator.
A simplified version of the configuration is illustrated on Figure 6.3. All of
the configurations may be uploaded through the use of I2C. The relevant
alarms to check input clock validity and PLL locking, are stored inside some
of the registers of the device. It’s not necessary to use any other pins of the
Si5338. [14]

AD9683 uses SPI for configuration. It has just one SDIO pin for both data
in and data out. There is a pull-down on that signal inside of the AD9683.
AD9683 uses 16-bit instructions. This instruction contains a read indication,
the number of bytes to read or write and the address to write to. The bits
labeled W1 and W0 represent the number of registers, to be read or written
to, minus one. If W1W0 = 0, one register will be accessed. Instruction and
data read or write is illustrated on Figure 6.4. AD9683 uses a flag in a register
for committing changes. The changes to some of the registers are not written
immediately but wait for a flag in a register to be set to one. This allows for
multiple configuration fields to be reprogrammed at once.

Same as AD9683, LTC2123 uses SPI for configuration. LTC2123 requires
an external 2 kΩ pull-up on SDO so it is able to send data back. Contrary
to AD9683, LTC2123 exposes two wires for data, SDI (input), and SDO
(output). However, it does not allow for a full-duplex operation. Only one
direction at a time is supported. During the design of the board, it was

59

6. Setup and testing on FPGA development kit
Disable outputs

and LOL

Write con-
figuration

Check
input clock

Lock PLL

Check PLL
locked

Copy (specified)
registers,

Enable outputs

correct

locked

Figure 6.3: Simplified flowchart of Si5338 configuration. Full flowchart available
in [14] on page 23.

Figure 6.4: AD9683, SPI Timing, writing data to a register. [12]

decided to make a connection between SDI and SDO, making one signal,
SDIO. This makes the interface of AD9683 and LTC2123 the same, except
for one detail. LTC2123 has a pull-up whereas AD9683 has a pull-down. As
there is enough signals on the FPGA available, the SPI channels of both
ADCs were separated. The instruction for LTC2123 has 8 bits. It contains
read flag and an address. Then the data follows. Reading or writing only one
register at a time is supported. Writing data to a register is illustrated on
Figure 6.5. [13]

For testing purposes, it may be useful to set up a test mode on both of the
ADCs. Thanks to a test mode, it may be observed whether the high-speed

60

....................................... 6.3. Results

Figure 6.5: LTC2123, SPI Timing, writing a byte to a register. [13]

signal is received correctly. Both of the ADCs support test modes as specified
by the JESD204B standard. Moreover, AD9683 supports specifying a custom
user pattern. This user pattern may be used as either: input to scrambler,
output of 8b/10b encoder or even replace the samples directly, while still
keeping the JESD204B interface working regularly.

6.3 Results

A Quartus project with the Nios II platform was created. A C code for
configuring the clock generator and the ADCs was written. Both of the
ADCs as well as the clock generator were successfully configured using these
programs.

Then, transceivers IP cores were added to the project as well and the
output was observed directly using the Signal Tap logic analyzer. When
configuring the ADCs to use test modes, to send specific characters, the
received sequence was the expected one. For example, characters consisting
of ’1010101010’ (D21.5) or ’1111100000’ (K28.7) bits, were received correctly.

It was attempted to connect the outputs of the transceivers to the custom
implementation of JESD204B receiver. The first important thing is to check
whether /K/ character is observed when not synchronized and whether the
character boundary is found and correctly aligned to. This was exactly the
behavior of the design.

However, after notifying the transmitter of the correct alignment, effectively
requesting ILAS, problems arose. The receiver started reporting errors in
character decoding, both disparity and not in table errors. The ILAS was
thus not detected at all, not even the first character was correct.

61

6. Setup and testing on FPGA development kit
This behavior was observed multiple times and on both of the ADCs.

Unfortunately, the origin of the error, was not found exactly, in time. The
possible causes of the problem may origin somewhere from all of there parts:.ADCs are sending wrong data. (improbable). PCB routing does not allow for high-speed signals to propagate without

errors.. Development kit PCB or FPGA transceivers..Transceivers configuration.. Custom VHDL JESD204B receiver design.

One part that is possible to be ruled out, is the transceivers of the FPGA.
The development kit comes with a loopback board connecting transceiver
channel transmitters to receivers. There is also a test program that tests
whether a sequence that is being sent is also correctly received back. This
program was not reporting any errors, thus effectively ruling out errors directly
on the transceivers. But other than that, it’s not possible to tell. There were
not enough tests done due to time constraints. (more on this in chapter 7)

The tests were done using a data rate of 2 Gbps (100 MHz sampling
frequency). It’s possible that some of the parts did not work well with
200 MHz speeds. Test for lower frequencies could be done to check for that.
LTC2123 supports a minimum of 50 MSPS and AD9683 supports a minimum
of 40 MSPS.

The resulting testing Quartus project described here is attached to this
thesis. For the list of some of the most important contents of this attachment,
see Appendix A.

62

Chapter 7
Conclusion

The aim of this thesis was to first study the principles of the JESD204B
receiver. As a result of this first point, a short description of the protocol
has been made. This description aims to show most of the aspects of the
protocol in a simplified way. The description of the JESD204B protocol thus
does not contain everything there is to know about the protocol. It misses
mainly the physical properties that are recommended or must be met, such
as the maximum skews or interface standards in use.

Next, an implementation of the JESD204B receiver in VHDL should have
been made. This implementation should have been verified in a simulation
environment. The protocol’s subclass 0 and subclass 1 were implemented
except for some advanced features such as the detection of test modes or
error reporting through SYNC∼ signal. The implementation also misses the
detection of test modes or a correct descrambler. These features are not
critical for the design, they are needed only for some configurations and the
design may correctly run without these. Testbenches were written for most
of the entities and verified the expected behavior.

At last, a testing board should have been designed and a test of the
implementation should have been performed using this board. The board
has been designed using Altium Designer. It contains two ADCs that are
highly configurable. Making it convenient to test as many aspects of the
implementation including all of the subclasses and deterministic latency.
Many different sampling frequencies could be tested as well thanks to a clock
generator that is configurable through I2C. One of the ADCs may go up to
250 MSPS, leading up to 5 Gbps bit rates between the ADC and FPGA.

There were some time delays before the custom board was ready, leaving
little time for testing. The board had to be made abroad and that meant
more time for shipping and it got stuck at customs for quite some time as
well. After the board got on our hands, it had been discovered that a stencil
mask had to be made to mount the FMC, leading to another delay. These
problems were not foreseen and led to a few weeks of delay, and because
of that, the last point to test the implementation using the board was not
fulfilled completely. A simple program for configuring the clock generator
(using I2C), as well as both of the ADCs (using SPI), has been made. It was
attempted to look at the data coming out of the ADCs and connect this

63

7. Conclusion......................................
output to the custom implementation, but the output was not correct, the
first synchronization character was found, but the rest of the sequence was
not processed correctly. The possible causes of the problem were discussed
in section 6.3. It should also be noted that it was one of the first times the
author designed a board and the first time designing a board with high-speed
signals. That also led to the board being designed for a longer period than it
could have been, had the author had the necessary requirements.

7.1 What’s next

It was noticed that Intel JESD204B IP Core has wider channel width going
to the data link layer. It receives four characters at a time instead of just one.
A similar feature could be implemented in the custom design in the future.
The data link layer could receive an arbitrary number of symbols configured
through generics. That would mean that the logic would have to be changed
to ensure the correct processing of multiple characters at a time. Thanks to
these changes, the clock going to the data link layer could be slowed down.
Implementing the advanced features and support for subclass 2 could be the
next step, as well.

More thorough testing using the board could be done to discover where an
error is and how it could be fixed. Currently, there were not enough tests
done to pinpoint where the problem is exactly.

64

Bibliography

[1] Analog Devices. JESD204B Survival Guide. [online]. 2014. Available at:
https://www.analog.com/media/en/technical-documentation/
technical- articles/JESD204B- Survival- Guide.pdf (visited on
21/05/2023).

[2] Del Jones. JESD204C Primer: What’s New and in It for You—Part
1. [online]. Available at: https : / / www . analog . com / en / analog -
dialogue / articles / jesd204c - primer - part1 . html (visited on
22/05/2023).

[3] JEDEC SOLID STATE TECHNOLOGY ASSOCIATION. JESD204B -
Serial Interface for Data Converters. [online]. 2011. Available at: https:
/ / www . jedec . org / sites / default / files / docs / JESD204B . pdf
(visited on 21/05/2023).

[4] Jonathan Harris. Understanding Layers in the JESD204B Specification
- A High Speed ADC Perspective. [online]. 2017. Available at: https://
www.analog.com/en/technical-articles/understanding-layers-
in-jesd204b-specification.html (visited on 21/05/2023).

[5] Del Jones. JESD204B Subclasses—Part 1: An Introduction to
JESD204B Subclasses and Deterministic Latency. [online]. 2019. Avail-
able at: https : / / www . analog . com / en / technical - articles /
jesd204b - subclasses - part1 - an - introduction - to - jesd204b -
subclasses - and - deterministic - latency . html (visited on
21/05/2023).

[6] Lattice Semiconductor. 8b/10b Encoder/Decoder. [online]. 2015. Avail-
able at: https://www.latticesemi.com/- /media/LatticeSemi/
Documents / ReferenceDesigns / 1D / 8b10bEncoderDecoder -
Documentation.ashx?la=en (visited on 21/05/2023).

[7] Tristan Gingold. GHDL guide. [online]. Available at: http://ghdl.
free.fr/ghdl/index.html (visited on 22/05/2023).

[8] Gtkwave. [online]. Available at: https://gtkwave.sourceforge.net/
(visited on 22/05/2023).

65

https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf
https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf
https://www.analog.com/en/analog-dialogue/articles/jesd204c-primer-part1.html
https://www.analog.com/en/analog-dialogue/articles/jesd204c-primer-part1.html
https://www.jedec.org/sites/default/files/docs/JESD204B.pdf
https://www.jedec.org/sites/default/files/docs/JESD204B.pdf
https://www.analog.com/en/technical-articles/understanding-layers-in-jesd204b-specification.html
https://www.analog.com/en/technical-articles/understanding-layers-in-jesd204b-specification.html
https://www.analog.com/en/technical-articles/understanding-layers-in-jesd204b-specification.html
https://www.analog.com/en/technical-articles/jesd204b-subclasses-part1-an-introduction-to-jesd204b-subclasses-and-deterministic-latency.html
https://www.analog.com/en/technical-articles/jesd204b-subclasses-part1-an-introduction-to-jesd204b-subclasses-and-deterministic-latency.html
https://www.analog.com/en/technical-articles/jesd204b-subclasses-part1-an-introduction-to-jesd204b-subclasses-and-deterministic-latency.html
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/1D/8b10bEncoderDecoder-Documentation.ashx?la=en
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/1D/8b10bEncoderDecoder-Documentation.ashx?la=en
https://www.latticesemi.com/-/media/LatticeSemi/Documents/ReferenceDesigns/1D/8b10bEncoderDecoder-Documentation.ashx?la=en
http://ghdl.free.fr/ghdl/index.html
http://ghdl.free.fr/ghdl/index.html
https://gtkwave.sourceforge.net/

7. Conclusion......................................
[9] Intel. Intel® Quartus® Prime Software. Available at: https://www.

intel . com / content / www / us / en / products / details / fpga /
development - tools / quartus - prime / article . html (visited on
22/05/2023).

[10] Volnei A Pedroni. Digital Electronics and Design with VHDL. Oxford,
England: Morgan Kaufmann, Jan. 2008. isbn: 978-0123742704.

[11] Intel. Intel® Cyclone® 10 GX Device Overview. [online]. Available at:
https://www.intel.com/content/www/us/en/docs/programmable/
683485/current/device-overview.html (visited on 21/05/2023).

[12] Analog Devices. AD9683 - 14-Bit, 170 MSPS/250 MSPS, JESD204B,
Analog-to-Digital Converter. [online]. Available at: https : / / www .
analog.com/media/en/technical-documentation/data-sheets/
AD9683.pdf (visited on 21/05/2023).

[13] Linear Technology. LTC2123 - Dual 14-Bit 250 MSPS ADC with
JESD204B Serial Outputs. [online]. Available at: https://www.analog.
com/media/en/technical- documentation/data- sheets/2123fc.
pdf (visited on 21/05/2023).

[14] Skyworks. Si5338 - I2C-Programmable Any-Frequency, Any-Output
Quad Clock Generator. [online]. Available at: https : / / www .
skyworksinc.com/-/media/Skyworks/SL/documents/public/data-
sheets/Si5338.pdf (visited on 21/05/2023).

[15] Skyworks. Si530/531 - Crystal Oscillator (XO) (10 MHz to 1.4 GHz).
[online]. Available at: https : / / www . skyworksinc . com/ - /media /
skyworks/sl/documents/public/data-sheets/si530-31.pdf (vis-
ited on 21/05/2023).

[16] Skyworks. Si53340-45 - Data Sheet. [online]. Available at: https://www.
skyworksinc.com/-/media/SkyWorks/SL/documents/public/data-
sheets/Si5334x-datasheet.pdf (visited on 21/05/2023).

[17] Texas Instruments. DS90LV011A 3V LVDS Single High Speed Differ-
ential Driver. [online]. Available at: https://www.ti.com/lit/ds/
snls140c/snls140c.pdf?ts=1684658522480 (visited on 21/05/2023).

[18] Traco Power. TSR 1 Series, Non-Isolated DC/DC Converter (POL)
- Datasheet. [online]. Available at: https://www.tracopower.com/
sites/default/files/products/datasheets/tsr1_datasheet.pdf
(visited on 21/05/2023).

[19] STMicroelectronics. LD29150 - 1.5 A, very low drop voltage regulators
- Datasheet. [online]. Available at: https://www.st.com/resource/
en/datasheet/ld29150.pdf (visited on 21/05/2023).

[20] Sierra Circuits. High-Speed PCB Design Guide.
[21] Intel. Intel® Cyclone® 10 GX Transceiver PHY User Guide. [online].

Available at: https://www.intel.com/content/www/us/en/docs/
programmable/683054/20-1/transceiver-phy-overview.html.

66

https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
https://www.intel.com/content/www/us/en/products/details/fpga/development-tools/quartus-prime/article.html
https://www.intel.com/content/www/us/en/docs/programmable/683485/current/device-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683485/current/device-overview.html
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9683.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9683.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/AD9683.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/2123fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/2123fc.pdf
https://www.analog.com/media/en/technical-documentation/data-sheets/2123fc.pdf
https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si5338.pdf
https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si5338.pdf
https://www.skyworksinc.com/-/media/Skyworks/SL/documents/public/data-sheets/Si5338.pdf
https://www.skyworksinc.com/-/media/skyworks/sl/documents/public/data-sheets/si530-31.pdf
https://www.skyworksinc.com/-/media/skyworks/sl/documents/public/data-sheets/si530-31.pdf
https://www.skyworksinc.com/-/media/SkyWorks/SL/documents/public/data-sheets/Si5334x-datasheet.pdf
https://www.skyworksinc.com/-/media/SkyWorks/SL/documents/public/data-sheets/Si5334x-datasheet.pdf
https://www.skyworksinc.com/-/media/SkyWorks/SL/documents/public/data-sheets/Si5334x-datasheet.pdf
https://www.ti.com/lit/ds/snls140c/snls140c.pdf?ts=1684658522480
https://www.ti.com/lit/ds/snls140c/snls140c.pdf?ts=1684658522480
https://www.tracopower.com/sites/default/files/products/datasheets/tsr1_datasheet.pdf
https://www.tracopower.com/sites/default/files/products/datasheets/tsr1_datasheet.pdf
https://www.st.com/resource/en/datasheet/ld29150.pdf
https://www.st.com/resource/en/datasheet/ld29150.pdf
https://www.intel.com/content/www/us/en/docs/programmable/683054/20-1/transceiver-phy-overview.html
https://www.intel.com/content/www/us/en/docs/programmable/683054/20-1/transceiver-phy-overview.html

..................................... 7.1. What’s next

[22] Intel. IOPLL Intel® FPGA IP Core User Guide. [online]. Available at:
https://www.intel.com/content/www/us/en/docs/programmable/
683285/18-1/core-user-guide.html (visited on 21/05/2023).

67

https://www.intel.com/content/www/us/en/docs/programmable/683285/18-1/core-user-guide.html
https://www.intel.com/content/www/us/en/docs/programmable/683285/18-1/core-user-guide.html

68

Appendix A
Contents of the attachment

The attachment contains:..1. VHDL code of the JESD204B receiver in VHDL...2. Altium project containing the schematics and PCB design of the custom
board...3. Quartus project for testing the design using the board along with Nios
software for configuring the clock generator and ADCs.

Some of the most important folders and files from the attachment (not
everything is listed here):

bohacek_bp_sources
fpga_testing_quartus

jesd_rx
nios_platform

software
ad9683_configuration
ad9683_configuration_bsp
clock_gen_configuration
clock_gen_configuration_bsp
ltc2123_configuration
ltc2123_configuration_bsp

bohacek_jesd_board.qpf
pcb_altium_project

Project Outputs for BOHACEK_BP_ADC_board
BOHACEK_BP_ADC_board.PrjPcb

vhdl_jesd204b_rx
src

data_link
transport
jesd204b_link_rx.vhd
jesd204b_multipoint_link_rx.vhd

testbench
data_link
transport

69

70

Appendix B
Exported Gerber files of the custom

printed circuit board

Exported gerber files of the custom 4-layer PCB follow.

(a) : Top side.

71

B. Exported Gerber files of the custom printed circuit board

(b) : Inner layer 1, plane, GND.

(c) : Inner layer 2, plane, power (12 V, 5 V, 3.3 V, 1.8 V voltage levels).

72

..................B. Exported Gerber files of the custom printed circuit board

(d) : Bottom side.

Figure B.1: Exported Gerber files of each of the 4 layers of the custom PCB.

73

	Acronyms
	Introduction
	Comparison of interfacing methods for A/D converters
	Description of JESD204B protocol specification
	Clocks
	Physical layer
	Data link layer
	8b/10b encoding
	Synchronization
	Code group synchronization (CGS)

	Scrambling
	Transport layer
	Deterministic latency
	Subclass 1
	Subclass 2

	Test modes

	Implementation of the receiver
	VHDL introduction
	Design
	Defined record types
	Top level entities
	Helpers
	Data link layer
	Transport layer

	Testbenches

	Design of the testing (mezzanine) board
	Clock generation
	Analog front-end
	Supply, voltage levels
	High-speed CML lanes
	Length matching
	Controlled impedance
	Final board

	Setup and testing on FPGA development kit
	FPGA setup using Quartus
	Board configuration
	Results

	Conclusion
	What's next

	Bibliography
	 Contents of the attachment
	 Exported Gerber files of the custom printed circuit board

