
Czech Technical University in Prague
Faculty of Electrical Engineering
Department of Computer Science

Induction and coinduction
Bachelor thesis

EMA MORVAYOVÁ

Study Programme: Software engineering and technologies
Thesis Supervisor: Ing. Matěj Dostál, Ph.D.

Prague, 2023

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492235Osobní číslo:EmaJméno:MorvayováPříjmení:

Fakulta elektrotechnickáFakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologieStudijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Indukce a koindukce

Název bakalářské práce anglicky:

Induction and coinduction

Pokyny pro vypracování:
Induction and recursion are standard mathematical tools with wide applications in theoretical computer science, e.g. in
the theory of algebraic data types. Coinduction and recursion are concepts dual to induction and recursion; they allow
describing and working with infinite data structures. The goal of this project is to describe the relationship between induction
and coinduction.
The student will study the relevant literature on the topic of induction and coinduction, study the necessary concepts from
algebra and coalgebra theory, and create a mathematical text explaining the relationship between induction and coinduction
in detail. The connection with computer science will be illustrated with appropriate examples from the theory of data types.

Seznam doporučené literatury:
J. Adámek, Introduction to Coalgebra, Theory and Applications of Categories, Vol. 14, No. 8 (2005), 157-199
J. J. M. M. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science, Vol. 249, Issue 1 (2000),
3-80
D. Sangiorgi, J. J. M. M. Rutten, Advanced Topics in Bisimulation and Coinduction, Cambridge University Press 2011

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Matěj Dostál, Ph.D. katedra matematiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 15.08.2022Datum zadání bakalářské práce: 15.02.2022

Platnost zadání bakalářské práce: 19.02.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Matěj Dostál, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VICCVUT-CZ-ZBP-2015.1

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to ethical
principles when elaborating an academic final thesis.

In Prague, 2023

..
Ema Morvayová

v

Acknowledgements

First and foremost, I would like to thank my thesis supervisor, Matěj Dostál.
Without his help and valuable guidance throughout the process, this thesis would
not have been accomplished.

I am very thankful to my friends for their support and understanding. I would
also like to give special thanks to my best friend, Silvia Goldasová, whose words
of encouragement “You can do this!” provided me strength and motivation when I
needed it the most.

Finally, I am extremely grateful to my parents, whose unceasing love and support
are always with me in whatever I pursue.

vii

Abstract

[EN] This thesis focuses on the relationship between induction and coinduction.
Firsty, we explain the the necessary basics of category theory, mainly the notion
of functor witch will play important role in the explanation of 𝐹 -algebras and 𝐹 -
colgebras. The duality of induction and coinduction is then described by showing
the duality between initial 𝐹 -algebras and final 𝐹 -colagebras. We support the ex-
planations of these concepts with appropriate examples from data type theory to
illustrate the connection with computer science.

Keywords: algebra, coalgebra, induction, coinduction, functor, initiality, finality,
data type theory, data structures

[CZ] Tato práce se zabývá vztahem mezi indukcí a koindukcí. Nejprve si představíme
nezbytné základy teorie kategorií, především pojem functor, který bude hrát důleži-
tou roli při výkladu 𝐹 -algeber a 𝐹 -kolgeber. Dualita indukce a koindukce je pak
popsána skrze dualitu mezi počátečními 𝐹 -algebrami a konečnými 𝐹 -kolagebrami.
Vysvětlení těchto pojmů podporujeme vhodnými příklady z teorie datových typů,
abychom ilustrovali spojení s informatikou.

Klíčova slova: algebra, koalgebra, indukce, koindukce, funktor, počátečnost, konečnost,
teorie datových typů, datové struktury

ix

Contents

Introduction 1

1 Algebra 3
1.1 Category Theory . 3

1.1.1 Category . 3
1.1.2 Functor . 5

1.2 𝐹 -algebras . 7
1.3 Initial 𝐹 -algebras and induction . 9

2 Coalgebra 15
2.1 𝐹 -coalgebras . 15
2.2 Final 𝐹 -coalgebras . 17
2.3 Coinduction . 20

3 Relationship between induction and coinduction 23

Conclusion and Future Work 27

Bibliography 29

x

Introduction

In computer science, standard algebraic techniques are used for representation
of various essential data structures. Induction, one of the main algebraic tools, is
used to define constructor-generated inductive data types such as finite lists or finite
trees. These are modeled by initial algebras and they carry an algebraic structure.

While algebraic representation is sufficient for certain data types, it is difficult to
algebraically describe the behavior of (potentially) infinite systems and structures.
Examples of these are streams, infinite trees or classes in OOP. In order to deal with
infinite data types, the final coalgebras (finality being the dual property of initiality
for algebras) were used along with their logical reasoning principle - coinduction.
This dual to induction, a less known or understood concept, is used both as a
definition principle and as a reasoning principle for coinductive data types.

In this thesis we aim to provide a simplified explanation of the duality between
induction and coinduction. The main goal is to explain these notions in understand-
able way and to show how are they connected to initial algebras and final coalgebras
(of a functor). Also, we support our explanations with examples from data type the-
ory in order to make the topic of coalgebra and coinduction better understandable
and to show its usability in the world of computers as well.

We also need to mention that none of the notions defined in this thesis is a
new finding, all the concepts and examples are well known, only put together in
differently structured sections based on the desired outcome of this thesis.

In this thesis we explain the relationship between induction and coinduction and
how the duality between these two notions is representable by the dual categorical
notion of initiality and finality. The structure of the thesis is as follows:

Chapter 1 begins by introducing the notion of a category, functor and algebras
for a functor (or 𝐹 -algebras). We then proceed by explaining the concept of initial
𝐹 -algebras and some of the uses of initiality in computer science. We finish the
chapter by describing the connection of initial 𝐹 -algebras and induction through an
example from data type theory.

Chapter 2 introduces the notion dual to initial algebras (of a functor) - final
𝐹 -coalgebras and its corresponding definition principle – coinduction.

In Chapter 3, we describe the relationship between induction and coinduction
based on definitions from previous two chapters. The duality of these two principles
is explained and shown through the dual categorical notions of initiality and finality.

1

Chapter 1

Algebra

The goal of this chapter is to reformulate the definition of induction in a more
abstract way. Using the initiality of algebras (of functors), we get highly generic
description of induction which can be applied to all kinds of algebraic data types and
can be easily dualized, thus helping us explain the relationship between induction
and coinduction.

In Section 1.1 we will briefly introduce the fundamentals of category theory
which will be used throughout the thesis. We will describe the concept of cate-
gories and functors, by providing both formal definitions and examples. For more
information on concepts from this section we refer the reader to [1] or [2].

Section 1.2 deals with the concept of 𝐹 -algebras and the last Section 1.3 is
dedicated to explanation of initial algebras and induction using examples from data
type theory. More thorough treatment of these concepts can be found in [3] and [4].

1.1 Category Theory

1.1.1 Category
In category theory, a category is a collection of objects and arrows between these

objects, called morphisms. The definition of a category abstract the compositional
properties of sets and mappings between sets.

Example 1.1.1. To illustrate on an example consider the category 𝑆𝑒𝑡 which con-
sists of the collection of all sets together with the collection of all set functions.
Objects of this category are sets and its morphisms are functions between them
represented by arrows.

𝑋 𝑌 𝑍
𝑓

𝑔∘𝑓

1𝑋

𝑔

1𝑌 1𝑍

We can see that for each object 𝑋, there is an identity function 1𝑋 : 𝑋 → 𝑋
called the identity morphism of 𝑋, which sends all elements of 𝑋 to themselves.
We can also observe that functions 𝑓 : 𝑋 → 𝑌 and 𝑔 : 𝑌 → 𝑍 can be composed
creating composite function or composite morphism 𝑔 ∘ 𝑓 : 𝑋 → 𝑍.

By abstracting the above example we get the definition of a categry.

3

4 Chapter 1. Algebra

Definition 1.1.1. A category 𝒞 is a collection of objects denoted by 𝑋, 𝑌, 𝑍, . . . and
morphisms 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑌 → 𝑍, . . . between them. Morphisms relate two objects
with following operations:

• Domain, which assigns to each arrow f an object X = dom(f)

• Codomain, which assigns to each arrow f an object Y = cod(f)

These operations on f can be represented by displaying f as an actual arrow starting
at its domain (or source) and ending at its codomain (or target):

𝑓 : 𝑋 𝑌 or 𝑋 𝑌
𝑓

Objects and morphisms of a category must satisfy the following laws:

• For each object 𝑋, there is a morphism 1𝑋 : 𝑋 → 𝑋, called the identity
morphism of 𝑋.

• For each morphism 𝑓 : 𝑋 → 𝑌 and each morphism 𝑔 : 𝑌 → 𝑍, there is a
morphism 𝑔 ∘ 𝑓 : 𝑋 → 𝑍, called the composite of 𝑓 and 𝑔. In other words, if
codomain of one morphism matches the domain of another morphosm, then
there is a composite morphism.

• For each morphism 𝑓 : 𝑋 → 𝑌 , the following equations hold: 1𝑌 ∘ 𝑓 = 𝑓 ,
𝑓 ∘ 1𝑋 = 𝑓 . This property of identity morphisms can be also observed on the
following diagram:

𝑋

𝑋 𝑌

𝑌

1𝑋
𝑓

𝑓

𝑓 1𝑌

• Each composition is associative, meaning (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓) for each

𝑋 𝑌 𝑌 𝑍
𝑓 𝑔 ℎ

We continue with the definitions of initial and final objects which will be
used later in the thesis when dealing with initial algebras and final coalgebras.

Definition 1.1.2. An object 𝐼 of a category 𝒞 is called initial if, for each object 𝐴
in 𝒞, there exists a unique morphism 𝐼 → 𝐴.

In other words, there is only one structure-preserving mapping from initial
object 𝐼 to any 𝐴 in 𝐶.

1.1. Category Theory 5

Definition 1.1.3. An object 𝑇 of a category 𝒞 is called final (or terminal) if, for
each object 𝐴 in 𝒞, there exists a unique morphism 𝐴 → 𝑇 .

In 𝑆𝑒𝑡, the category of sets, the initial object is the empty set ∅, as for each
set 𝐴 there is unique function ∅ → 𝐴, also called the empty function. On the other
hand, the final object in 𝑆𝑒𝑡 is any one-element set 𝑆 called singleton, as for each
𝐴 in 𝑆𝑒𝑡 there exists exactly one function 𝐴 → 𝑆, which sends every element of 𝐴
to the unique element of set 𝑆.

1.1.2 Functor

A functor is a mapping between categories that preserves categorical structure.
So just like objects in a category are “linked through” arrows or morphisms between
them, categories themselves are “linked through” functors, a morphism of categories.

More precisely, a functor 𝐹 : 𝒞 → 𝒟 between two categories 𝒞 and 𝒟 maps
objects from category 𝒞 to objects in category 𝒟 and morphisms from category 𝒞
to morphisms in 𝒟.

Definition 1.1.4. A functor 𝐹 : 𝒞 → 𝒟 between two categories consists of a
mapping of objects 𝐹 : 𝒞 → 𝒟, which sends each object 𝑋 of 𝒞 to an object
𝐹 (𝑋) of 𝒟, and a mapping of morphisms 𝐹 : 𝒞 → 𝒟, which sends each morphism
𝑓 : 𝑋 → 𝑌 of 𝒞 to a morphism 𝐹 (𝑓) : 𝐹 (𝑋) → 𝐹 (𝑌) of 𝒟, such that the following
conditions are satisfied:

(i) For each object 𝑋 of 𝒞, the morphism 𝐹 (1𝑋) : 𝐹 (𝑋) → 𝐹 (𝑋) is equal to the
identity morphism 1𝐹 (𝑋) of 𝐹 (𝑋).

(ii) For each morphism 𝑓 : 𝑋 → 𝑌 and each morphism 𝑔 : 𝑌 → 𝑍 of 𝒞, the
morphism 𝐹 (𝑔 ∘ 𝑓) : 𝐹 (𝑋) → 𝐹 (𝑍) is equal to the composition 𝐹 (𝑔) ∘ 𝐹 (𝑓).

The following diagram represents these functor laws:

𝑋 𝐹 (𝑋)

𝑌 𝑍 𝐹 (𝑌) 𝐹 (𝑍)

𝑓
𝑔∘𝑓

1𝑋

𝐹 (𝑓)
𝐹 (𝑔∘𝑓)

1𝐹 (𝑋)

𝑔 𝐹 (𝑔)

6 Chapter 1. Algebra

When 𝒞 = 𝒟, we call functor 𝐹 an endofunctor on 𝒞. That is, the endofunctor is
a functor that maps a category to the same category. For example, for any category
𝒞 the identity functor 1𝒳 is an endofunctor because it maps each object of 𝒳 to
itself and each morphism of 𝒳 to itself.

Example 1.1.2. Consider the functor

𝑆𝑒𝑡
𝐿𝑖𝑠𝑡−−→ 𝑆𝑒𝑡

𝑋 ↦−→ 𝐿𝑖𝑠𝑡(𝑋)

𝐿𝑖𝑠𝑡(𝑋) is the set of all finite sequences of elements of the set 𝑋, for a function

𝑋
𝑓−→ 𝑌

𝑥 ↦→ 𝑓(𝑥)

we can define

𝐿𝑖𝑠𝑡(𝑋) 𝐿𝑖𝑠𝑡(𝑓)−−−−→ 𝐿𝑖𝑠𝑡(𝑌)
(𝑥1, ..., 𝑥𝑛) ↦−→ (𝑓(𝑥1), ..., 𝑓(𝑥𝑛))

which sends a finite list (𝑥1, ..., 𝑥𝑛) of elements of 𝑋 to the list (𝑓(𝑥1), ..., 𝑓(𝑥𝑛)) of
elements of 𝑌 by applying 𝑓 element wise.

This obviously constitutes a functor.

Example 1.1.3. Consider the functor

𝑆𝑒𝑡
𝑆𝑡𝑟𝑒𝑎𝑚−−−−→ 𝑆𝑒𝑡

On objects, 𝑆𝑡𝑟𝑒𝑎𝑚 maps a set 𝑋 to the set of all infinite sequences (streams) of
elements of 𝑋 (sequences indexed by natural numbers). On morphisms, 𝑆𝑡𝑟𝑒𝑎𝑚 acts
’point-wise’ as in the 𝐿𝑖𝑠𝑡 example: given a function

𝑋
𝑓−→ 𝑋 ,

the sequence (stream) (𝑥𝑖)∞
𝑖=1 is mapped by

𝑆𝑡𝑟𝑒𝑎𝑚(𝑋) 𝑆𝑡𝑟𝑒𝑎𝑚(𝑓)−−−−−−→ 𝑆𝑡𝑟𝑒𝑎𝑚(𝑌)

to the stream (𝑓(𝑥𝑖))∞
𝑖=1. The requirements for 𝑆𝑡𝑟𝑒𝑎𝑚 to be a functor are again

obviously satisfied.

The above example is dealing only with polynomial functor of the sort 𝑆𝑒𝑡 →
𝑆𝑒𝑡, acting on sets and functions between them. And just like in this example,
throughout the thesis we will be dealing with functors acting on the category of
sets and functions. These functors will be built up with identity functors, constants,
products, coproducts and/or powersets.

1.2. 𝐹 -algebras 7

1.2 𝐹 -algebras
The notion of 𝐹 -algebras for an endofunctor 𝐹 allows us to study algebras

more abstractly with categorical methods - it generalizes the usual notion of an
algebra as it is defined in general algebra. This generality of definition of 𝐹 -algebras
is especially useful when dealing with representation of various finite data structures
used in programming, such as lists or trees.

Using the terms and definitions from previous sections, we can now define alge-
bra of functor or 𝐹 -algebra, and show how functors can be used to describe signatures
of operations.

Definition 1.2.1. Let 𝐹 be a functor. An algebra of functor F (or, a 𝐹 -algebra) is
a pair consisting of a set 𝐴 and a function 𝑎 : 𝐹 (𝐴) → 𝐴. The set 𝐴 is called the
carrier of the algebra, and the function 𝑎 the algebra structure, or the operation of
the algebra.

The following are examples of 𝐹 -algebras:

Example 1.2.1. Let us denote by N the set of natural numbers. We can endow this
set with two operations: a nullary operation (choosing the number 0)

0 : 1 −→ N

and a unary operation (the successor function)

𝑆 : N −→ N
𝑛 ↦−→ 𝑛 + 1

These operations can be ’coupled together’ into a single mapping

[0, 𝑆] : 1 + N −→ N

This shows that N endowed with 0 and 𝑆 can be modeled as an 𝐹 -algebra for
the functor 𝐹 : 𝑆𝑒𝑡 → 𝑆𝑒𝑡 defined on objects by the assignment 𝑥 ↦→ 1 + 𝑥.

(Here, by + we mean the disjoint sum operation on sets.)

Example 1.2.2. Let us denote by 𝑃 the parity set consisting of two elements {0, 1}.
We can endow this set with two operations: a nullary operation (choosing the number
0)

0 : 1 −→ 𝑃

and a swaping operation (the successor function)

𝑠𝑤𝑎𝑝 : 𝑃 −→ 𝑃

These operations can be ’coupled together’ into a single mapping

[0, 𝑠𝑤𝑎𝑝] : 1 + 𝑃 −→ 𝑃

.
This shows that 𝑃 endowed with 0 and 𝑠𝑤𝑎𝑝 can be modeled as an 𝐹 -algebra

for the functor 𝐹 : 𝑆𝑒𝑡 → 𝑆𝑒𝑡 defined on objects by the assignment 𝑥 ↦→ 1 + 𝑥.
(Here, by + we mean the disjoint sum operation on sets.)

8 Chapter 1. Algebra

Example 1.2.3. Consider the data type 𝐿𝑖𝑠𝑡(𝐴) of lists whose elements are ele-
ments of set 𝐴, list-forming operations are:

nil : 1 −→ 𝐿𝑖𝑠𝑡(𝐴)
cons : 𝐴 × 𝐿𝑖𝑠𝑡(𝐴) −→ 𝐿𝑖𝑠𝑡(𝐴)

here nil is given by the empty list and cons which maps an element 𝑎 ∈ 𝐴 and a list
𝛼 = (𝑎1, ..., 𝑎𝑛) ∈ 𝐿𝑖𝑠𝑡(𝐴) to the list 𝑐𝑜𝑛𝑠(𝑎, 𝛼) = (𝑎, 𝑎1, ..., 𝑎𝑛) ∈ 𝐿𝑖𝑠𝑡(𝐴), obtained
by prefixing 𝑎 to 𝛼. Combining operations nil and cons we get an algebra structure:

[nil, cons]: (1 + 𝐴 × 𝐿𝑖𝑠𝑡(𝐴)) −→ 𝐿𝑖𝑠𝑡(𝐴),

which represents an algebra of a functor 𝐹 sending 𝑋 to 1 + (𝐴 × 𝑋). (By × we
mean the Cartesian product of sets.)

This representation of list type as one of algebraic data types is also used in
functional programming languages such as Haskell and ML.

Here is a more concrete example of how a list, specifically singly linked list,
would be declared in Haskell:

data List a = Nil | Cons a (List a)

Here, Nil represents an empty list and operation Cons x xs represents combination
of a new element 𝑥 with a list 𝑥𝑠 creating a new list.

This definition of a list differs for many languages. For instance, in Haskell we
can also use [] for Nil, and : or :: for Cons. So Cons 1 (Cons 2 (Cons 3 Nil))
would be written as 1:2:3:[] or [1,2,3].

Example 1.2.4. Consider the functor

𝑇 : 𝑆𝑒𝑡 −→ 𝑆𝑒𝑡
𝑋 ↦−→ 1 + (𝑋 × 𝐴 × 𝑋)

We can form an algebra 1 + (𝑇𝑟𝑒𝑒(𝐴) × 𝐴 × 𝑇𝑟𝑒𝑒(𝐴)) → 𝑇𝑟𝑒𝑒(𝐴), where 𝑇𝑟𝑒𝑒(𝐴)
is set of 𝐴-labeled finite binary trees, by considering two operations:

𝑛𝑖𝑙 : 1 −→ 𝑇𝑟𝑒𝑒(𝐴)

choosing the empty tree, and

𝑇𝑟𝑒𝑒(𝐴) × 𝐴 × 𝑇𝑟𝑒𝑒(𝐴) −→ 𝑇𝑟𝑒𝑒(𝐴)

constructing a tree out of two (sub)trees and a labelled node as the new root.

Binary trees with elements at the leaves is another example of an algebraic data
type. Implementation of this type of algebraic structure would in Haskell look like
this:

data Tree = Empty | Leaf Int | Node Tree Tree

1.3. Initial 𝐹 -algebras and induction 9

Here, Empty represents an empty tree, data constructor Leaf is a function
Int -> Tree, an argument of type integer produces a value of the type Tree. Node
organizes the data into branches by taking two arguments of the type Tree itself -
it is a recursive data type.

On the examples above we can see that there are many different 𝐹 -algebras for the
same functor 𝐹 and that in fact, an 𝐹 -algebra does not have to be unique, unlike
initial 𝐹 -algebras.

Having an idea of what algebras of a functor are and how they look like, we
now define the notion of a homomorphisms of algebras. It is a structure preserving
functions between algebras, that is between the carrier sets of the algebras which
commutes with the operations.

Definition 1.2.2. Let 𝐹 be a functor with algebras 𝑎 : 𝐹 (𝐴) → 𝐴 and 𝑏 : 𝐹 (𝐵) →
𝐵 . A homomorphism of algebras, or an algebra map from (𝐴, 𝑎) to (𝐵, 𝑏) is a
function 𝑓 : 𝐴 → 𝐵 between the carrier sets which commutes with the operations:
𝑓 ∘ 𝑎 = 𝑏 ∘ 𝐹 (𝑓) in

𝐹 (𝐴) 𝐹 (𝐵)

𝐴 𝐵

𝐹 (𝑓)

𝑎 𝑏

𝑓

Using the notion of homomorphism of algebras we can now formulate the con-
cept of “initiality” for algebras (of a functor) and give the formal definition of initial
𝐹 -algebras.

1.3 Initial 𝐹 -algebras and induction
The notion of initial algebras captures algebraic structures which are generated

by constructor operations, and gives rise to the familiar principles of definition by
induction and proof by induction. Using the notion of homomorphism of algebras
explained in previous section, we can now formulate the concept of “initiality” for
algebras (of a functor) and give the formal definition of initial 𝐹 -algebras.

An algebra of a functor 𝐹 is initial if for an arbitrary algebra of the same
functor there is a unique homomorphism of algebras.

[3]

10 Chapter 1. Algebra

Initiality requires unique existence which has two aspects:

• existence of an algebra map out of the initial algebra to another algebra, and

• uniqueness in the form of equality of any two algebra maps going out of the
initial algebra to some other algebra.

Existence corresponds to ordinary definition by induction, meanwhile unique-
ness will be used as an inductive proof principle. Uniqueness proofs are done by show-
ing that two functions acting on an initial algebra are the same by showing that they
are both homomorphisms (to the same algebra). [5]

Definition 1.3.1. An algebra 𝑎 : 𝐹 (𝐴) → 𝐴 of a functor 𝐹 is initial if for each
algebra 𝑏 : 𝐹 (𝐵) → 𝐵 there is a unique homomorphism of algebras 𝑓 : 𝐴 → 𝐵 from
(𝐴, 𝑎) to (𝐵, 𝑏), such that 𝑓 ∘ 𝑎 = 𝑏 ∘ 𝐹 (𝑓). In other words, an initial 𝐹 -algebra is
an 𝐹 -algebra (𝐴, 𝑎) such that 𝐴 is the initial object in the category of 𝐹 -algebras.
Following is the diagram of initial algebra, its uniqueness is expressed by a dashed
arrow:

𝐹 (𝐴) 𝐹 (𝐵)

𝐴 𝐵

𝐹 (𝑓)

𝑎 𝑏

𝑓

The above definition of initial algebras also captures algebraic structures which
are generated by constructor operations. Constructors contain instructions on how
to generate (algebraic) data elements. An example being empty list constructor
nil and the prefix operation cons. Data types obtained through these constructor
operations, that is they are defined by initial 𝐹 -algebras, are known as algebraic
data types.

Recall examples 1.2.1 and 1.2.2 from the previous section. The algebra from
example 1.2.1 is an initial F-algebra for the functor 𝐹 (𝑋) = 1 + 𝑋. We will now
illustrate this on the following example of homomorphisms of algebras.

Example 1.3.1. The mapping [0, 𝑆] : 1+N → N is an initial algebra of this functor
𝐹 . We will show how initiality of [0, 𝑆] corresponds to the principle of definition by
induction using Example 1.2.2. Recall that in this example we defined the 𝐹 -algebra
[0, 𝑠𝑤𝑎𝑝] : 1 + 𝑃 → 𝑃 . Specifying such algebra corresponds precisely to a definition
of a function 𝑝 : N → 𝑃 ,

𝑝(0) = 0 (1.1)

and

1.3. Initial 𝐹 -algebras and induction 11

𝑝(𝑛 + 1) =
⎧⎨⎩0, 𝑝(𝑛) = 1

1, 𝑝(𝑛) = 0
(1.2)

by induction. In fact, recall that initiality of [0, 𝑆] : 𝑎 +N → N implies that there is
a unique map 𝑝 : N → 𝑃 such that the diagram

1 + N 1 + 𝑃

N 𝑃

1+𝑝

[0,𝑆] [0,𝑠𝑤𝑎𝑝]

𝑝

commutes. In elementary terms, 𝑝 ∘ [0, 𝑆] = [0, 𝑠𝑤𝑎𝑝] ∘ (1 + 𝑝) must hold for every
element 𝑥 ∈ 1 +N. We will show this requirement entails for the two possible cases:
𝑥 ∈ 1 and 𝑥 ∈ N.

Starting in the upper-left corner of the commuting diagram with the first case
𝑥 = {*} ∪ N and applying 𝑝 ∘ [0, 𝑆] we get

𝑝([0, 𝑆]({*} ∪ N)) = 𝑝(0) = 0,

and for [0, 𝑠𝑤𝑎𝑝] ∘ (1 + 𝑝) we get

[0, 𝑠𝑤𝑎𝑝]((1 + 𝑝)({*} ∪ N)) = [0, 𝑠𝑤𝑎𝑝]({*} ∪ 0, 1) = 𝑝(0) = 0.

For the second case 𝑥 = 𝑛 we do the same:

𝑝(𝑆(𝑛)) = 𝑝(𝑛 + 1) = 𝑠𝑤𝑎𝑝(𝑝(𝑛)) = 𝑠𝑤𝑎𝑝((1 + 𝑝)(𝑛)).

The existence of a homomorphism 𝑝 : (N, [0, 𝑆]) → (𝑃, [0, 𝑠𝑤𝑎𝑝]) thus states
that there exists a function 𝑝 : N → 𝑃 satisfying 1.1 and 1.2.

The uniqueness of this homomorphism corresponds to the fact that the re-
quirements 1.1 and 1.2 on 𝑝 specify the function 𝑝 uniquely.

We have seen an example of an initial algebra from general algebra. Next,
we will show an example of how an algebraic data type can be represented as an
initial algebra, and we will show how initiality can be used to define functions by
induction. It requires that one puts an appropriate algebra structure on the codomain
of the intended function, corresponding to the induction clauses that determine the
function. As an example we will take the length function which is taking as an
argument a list and returns its length.

Example 1.3.2. Consider a fixed set 𝐴 and the earlier-mentioned list-functor
𝐹 (𝑋) = 1 + (𝐴 × 𝑋). The initial algebra of this functor 𝐹 is the set 𝐿𝑖𝑠𝑡(𝐴) =
∪𝑛=𝑁𝐴𝑛 of finite sequences of elements of 𝐴, together with the following functions:

• 1 → 𝐿𝑖𝑠𝑡(𝐴) given by the empty list 𝑛𝑖𝑙 = ()

12 Chapter 1. Algebra

• 𝐴 × 𝐿𝑖𝑠𝑡(𝐴) → 𝐿𝑖𝑠𝑡(𝐴) which maps an element 𝑎 ∈ 𝐴 and a list 𝛼 =
(𝑎1, ..., 𝑎𝑛) ∈ 𝐿𝑖𝑠𝑡(𝐴) to the list 𝑐𝑜𝑛𝑠(𝑎, 𝛼) = (𝑎, 𝑎1, ..., 𝑎𝑛) ∈ 𝐿𝑖𝑠𝑡(𝐴), ob-
tained by prefixing 𝑎 to 𝛼.

These two functions can be combined into a single function:

[𝑛𝑖𝑙, 𝑐𝑜𝑛𝑠] : 1 + (𝐴 × 𝐿𝑖𝑠𝑡(𝐴)) → 𝐿𝑖𝑠𝑡(𝐴) .

This is an initial algebra as there is a unique homomorphism 𝑓 : 𝐿𝑖𝑠𝑡(𝐴) → 𝑋 of
algebras making the following diagram commute:

1 + (𝐴 × 𝐿𝑖𝑠𝑡(𝐴)) 1 + (𝐴 × 𝑋)

𝐿𝑖𝑠𝑡(𝐴) 𝑋

[𝑛𝑖𝑙,𝑐𝑜𝑛𝑠]

𝑖𝑑+(𝑖𝑑×𝑓)

[𝑥,𝑦]

𝑓

for an arbitrary algebra [𝑥, 𝑦] : 1 + (𝐴 × 𝑋) → 𝑋 of the list-functor 𝐹 . In the above
diagram, where 𝑓 can be specified as follows:

𝑓(𝛼) =
⎧⎨⎩𝑥 if 𝛼 = 𝑛𝑖𝑙

𝑦(𝑎, 𝑓(𝛽)) if 𝛼 = 𝑐𝑜𝑛𝑠(𝑎, 𝛽)
(1.3)

Example 1.3.3. Now that we seen how initiality can be used to define general
function by induction, we will show on the specific example of the length function
𝑙𝑒𝑛 : 𝐿𝑖𝑠𝑡(𝐴) → N, which can be inductively defined as

𝑙𝑒𝑛(𝛼) =
⎧⎨⎩0 if 𝛼 = 𝑛𝑖𝑙

𝑙𝑒𝑛(𝛼′) + 1 if 𝛼 = 𝑐𝑜𝑛𝑠(𝑎, 𝛼′)
(1.4)

for all 𝑎 ∈ 𝐴 and 𝛼 ∈ 𝐴, which returns length of finite list 𝛼. In other words, for
every empty list (also called 𝑛𝑖𝑙) the function returns value 0, and for every list of
form 𝑐𝑜𝑛𝑠(𝑎, 𝛼′), that is a list created from list 𝛼′ by prefixing 𝑎, it returns 𝑙𝑒𝑛(𝛼′)+1.

For this function we consider two operations: nullary operation

𝑥 : 1 −→ N
∅ ↦−→ 𝑛 + 1

and the successor function

𝑦 : 𝐴 × N −→ N
(𝑎, 𝑛) ↦−→ 𝑛 + 1

These operations can be ’coupled together’ into a single mapping

[𝑥, 𝑦] : 1 + (𝐴 × N) −→ N

1.3. Initial 𝐹 -algebras and induction 13

This is an initial algebra as there is a unique homomorphism 𝑙𝑒𝑛 : 𝐿𝑖𝑠𝑡(𝐴) → N
making the following diagram commute:

1 + (𝐴 × 𝐿𝑖𝑠𝑡(𝐴)) 1 + (𝐴 × N)

𝐿𝑖𝑠𝑡(𝐴) N

[𝑛𝑖𝑙,𝑐𝑜𝑛𝑠]

𝑖𝑑+(𝑖𝑑×𝑙𝑒𝑛)

[𝑥,𝑦]

𝑙𝑒𝑛

Specification of operations align with the definition for 𝐿𝑖𝑠𝑡(𝐴) 𝑙𝑒𝑛−→ N by in-
duction.

Chapter 2

Coalgebra

In this chapter we introduces the notion of (final) 𝐹 -coalgebra, which is cate-
gorical dual to the initial algebra (of a functor). Within the theory of coalgebras,
the corresponding proof and definition principle coinduction will also be explained
providing the necessary definitions and appropriate examples. For more detailed
treatment, see source [3], [4] and [6], listed in Reference section. For the related
topic to coalgebra theory we refer the reader to see also [7].

2.1 𝐹 -coalgebras
To better understand the duality between algebras and coalgebras, we can think

of the difference between an inductively defined data type in a functional program-
ming language (an algebra) and a class in an object-oriented programming language
(a coalgebra).

The algebraic data type is determined by its constructors: algebraic operations
of the form 𝐹 (𝑋) → 𝑋 going into the data type. The class on the other hand
contains an internal state, given by the values of all the public and private fields of
the class. Using pubic fields and methods, one can observe and modify this state.
Operations of a class act on a state (or object) and are naturally described as
destructors pointing out of the class: they are of the coalgebraic form 𝑋 → 𝐹 (𝑋).

Definition 2.1.1. A coalgebra of a functor F (or a F-coalgebra) is a pair (𝐴, 𝑎)
consisting of a set 𝐴 and a function 𝑎 : 𝐴 → 𝐹 (𝐴). Similarly as for algebras, the
set 𝐴 is called the carrier or the state space and the function 𝑎 the structure or
operation of the coalgebra (𝐴, 𝑎).

Essentially, the difference betweenan algebra 𝐹 (𝑋) → 𝑋 and a coalgebra 𝑋 →
𝐹 (𝑋) is the difference between construction and observation:

• An algebra tells us how to construct elements in 𝑋 with a function 𝐹 (𝑋) → 𝑋
going into this carrier set 𝑋.

• A coalgebra does not tell us how to form elements of 𝑋, it only gives us some
information about 𝑋 with a function 𝑋 → 𝐹 (𝑋) going out of carier set 𝑋.

15

16 Chapter 2. Coalgebra

Both coalgebras and algebras can be seen as models of a signature of opera-
tions, but while algebras model signatures of constructor operations, coalgebras of
destructor/observer operations.

In other words, while an algebra have constructor functions that build mem-
bers of the carrier set, a coalgebra has destructor functions that split members of
the carrier set into the components they are built from.
So the carrier of a coalgebra is the domain of its destructors (or observers) which tell
us what we can observe about its data elements. An example being, the head and
tail operations which tell us all about infinite lists: head gives a direct observation,
and tail returns a next state.

In computer science, the first systematic approach to data types relied on ini-
tiality of algebras. These algebraic structures generate finite objects, while many
data types of interest consist of infinite objects, such as streams or infinite trees.
The need for such infinite structures brought to use the (final) coalgebras, which
can be mainly represented in functional programming languages (such as Haskell)
or in logical programming languages. [2]

For a better initial understanding of coalgebras, we start with some examples
of a coalgebra.

Example 2.1.1. Consider a machine with two buttons: value and next. Pressing
the value-button gives an observation related to the current state of the machine,
an element of a fixed set 𝐴. Meanwhile by pressing the next-button the machine
transitions into a new internal state. This machine can be represented as an 𝐹 -
coalgebra:

⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩ : 𝑋 → 𝐴 × 𝑋

We may imagine the carrier set 𝑋 of this coalgebra as a black box. By doing
so, the observable behaviour of the machine consists only of the sequence of values
that can be seen after consecutively presses of the ’next’ button.

Let 𝐹 be the functor from 𝑆𝑒𝑡 to 𝑆𝑒𝑡 defined by 𝐹 (𝑋) = 𝐴 × 𝑋. For each state
𝑥 ∈ 𝑋 we may associate its observable behaviour:
the infinite sequence

(𝑎0, 𝑎1, 𝑎2, ...) ∈ 𝐴N

where each 𝑎𝑖 corresponds to the value that can be seen after pressing the next
button 𝑖 times.

Let us take the set 𝐴 = {𝑎, 𝑏}, meaning that the possible value of 𝑎𝑖 is either 𝑎
or 𝑏; and set 𝑋 = {0, 1}. From this we can form an coalgebra

𝑋
⟨𝑣𝑎𝑙,𝑛𝑒𝑥𝑡⟩−−−−−→ 𝐴 × 𝑋.

Let us now consider a concrete example of such a machine, which consist of two
functions val: 𝑋 → 𝐴 and next: 𝑋 → 𝑋. With these two operations, given an
element 𝑥 ∈ 𝑋 we can produce an element in 𝐴 with 𝑣𝑎𝑙(𝑥), and we can produce
next element in 𝑈 with 𝑛𝑒𝑥𝑡(𝑥). The functions are defined as follows:

2.2. Final 𝐹 -coalgebras 17

𝑣𝑎𝑙(0) = 𝑎 𝑛𝑒𝑥𝑡(0) = 1
𝑣𝑎𝑙(1) = 𝑏 𝑛𝑒𝑥𝑡(1) = 0

Definition 2.1.2. A homomorphism of coalgebras (or coalgebra map) from a 𝐹 -
coalgebra 𝐴 → 𝐹 (𝐴) to another 𝐹 -coalgebra 𝐵 → 𝐹 (𝐵) consists of a function 𝑓 :
𝐴 → 𝐵 between the carrier sets which commutes with the operations: 𝑏∘𝑓 = 𝐹 (𝑓)∘𝑎
as expressed by the following diagram.

𝐴 𝐵

𝐹 (𝐴) 𝐹 (𝐵)

𝑓

𝑎 𝑏

𝐹 (𝑓)

Similarly as we did in previous chapter, using the notion of homomorphism
of coalgebras we can now formulate the concept of “finality” for coalgebras (of a
functor) and give the formal definition of final (or terminal) 𝐹 -coalgebras.

2.2 Final 𝐹 -coalgebras
The notion of a final coalgebra can be used to characterize infinite data types

in a way that is similar to how algebraic data types are characterized.
A coalgebra (of a functor) is final if for an arbitrary coalgebra (of the same

functor), there is a unique homomorphism of coalgebras.

[3]

Definition 2.2.1. A coalgebra 𝑎 : 𝐴 → 𝐹 (𝐴) of a functor 𝐹 is final if for each
coalgebra 𝑏 : 𝐵 → 𝐹 (𝐵) there is a unique homomorphism of coalgebras 𝑓 : 𝐵 → 𝐴
from (𝐵, 𝑏) to (𝐴, 𝑎), such that 𝑎∘𝑓 = 𝐹 (𝑓)∘𝑏. In other words, a final 𝐹 -coalgebra is
an 𝐹 -coalgebra (𝐴, 𝑎) such that 𝐴 is the final object in the category of 𝐹 -coalgebras.
Following is the diagram of final coalgebra with uniqueness expressed by a dashed
arrow:

𝐵 𝐴

𝐹 (𝐵) 𝐹 (𝐴)

𝑓

𝑏 𝑎

𝐹 (𝑓)

18 Chapter 2. Coalgebra

If we compare the above definition to the definition of initial algebras we see that
while the initiality defines function out of an initial algerba, the property of finality
for coalgebras allow us to define function into a final coalgebra

Now let’s see how final 𝐹 -coalgebras can be used to represent data types. Let
us consider the data type of natural numbers. We can represent this data type as a
final 𝐹 -coalgebra as follows:

Example 2.2.1. Consider the set 𝐴𝑁 of infinite sequences over 𝐴, or streams, which
can be represented as a coalgebra structure by declaring

ℎ𝑒𝑎𝑑(𝛼) = 𝑎0
and

𝑡𝑎𝑖𝑙(𝛼) = (𝑎1, 𝑎2, 𝑎3, ...)

for 𝛼 = (𝑎0, 𝑎1, 𝑎2, ...) ∈ 𝐴𝑁 , so we get

〈head, tail〉 : 𝐴𝑁 → 𝐴 × 𝐴𝑁

forming an final 𝐹 -coalgebra of the functor 𝐹 (𝑋) = 𝐴 × 𝑋. We will show that
this is in fact final coalgenra through homomorphisms of coalgebras by using an
example 2.1.1 of an 𝐹 -coalgebra ⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩ : 𝑋 → 𝐴×𝑋 . The coalgebra map from
⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩ to ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩ is a function 𝑏 : 𝑋 → 𝐴N defined by following operations:

𝑏(0) = (𝑎, 𝑏, 𝑎, 𝑏, 𝑎, ...)
𝑏(1) = (𝑏, 𝑎, 𝑏, 𝑎, 𝑏, ...)

The commuting diagram of the function 𝑏 is following:

𝑋 𝐴N

𝐴 × 𝑋 𝐴 × 𝐴N

𝑏

⟨𝑣𝑎𝑙,𝑛𝑒𝑥𝑡⟩ ⟨ℎ𝑒𝑎𝑑,𝑡𝑎𝑖𝑙⟩

𝐴×𝑏

Now we have to show that ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩ ∘ 𝑏 = (𝐴 × 𝑏) ∘ ⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩ must hold for
every element 𝑥 ∈ 𝑋. Because 𝑋 = {0, 1} we will show this for two possible cases
of such 𝑥 which are 𝑥 = 0 and 𝑥 = 1.

Starting in the upper-left corner of the commuting diagram with the first case
𝑥 = 0 and applying (𝐴 × 𝑏) ∘ ⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩ we get

(𝐴 × 𝑏)(⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩(0)) = (𝐴 × 𝑏)(𝑎, 1) = (𝑎, 𝑏𝑎𝑏𝑎𝑏...),

and for ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩ ∘ 𝑏 we get

⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩(𝑏(0)) = ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩(𝑎𝑏𝑎𝑏𝑎𝑏...) = (𝑎, 𝑏𝑎𝑏𝑎𝑏...).

For the second case 𝑥 = 1 we do the same:

(𝐴 × 𝑏)(⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩(1)) = (𝐴 × 𝑏)(𝑏, 0) = (𝑏, 𝑎𝑏𝑎𝑏𝑎...)
⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩(𝑏(1)) = ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩(𝑏𝑎𝑏𝑎𝑏𝑎...) = (𝑏, 𝑎𝑏𝑎𝑏𝑎...)

2.2. Final 𝐹 -coalgebras 19

Hence we can see that (𝐴 × 𝑏) ∘ ⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩, for all 𝑥 ∈ 𝑋, which proves one aspect
of final coalgebras - an existence of an coalgebra map out of the arbitrary coalgebra
to a final coalgebra.

The uniqueness of 𝑏 means that 𝑏 is the only map making the above dia-
gram commute. This can be shown by proving that any other coalgebra map 𝑓 :
(𝑋, ⟨𝑣𝑎𝑙, 𝑛𝑒𝑥𝑡⟩) → (𝐴N, ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩) is equal to 𝑏. Explicitly, we need to show that
𝑓(0) = (𝑎, 𝑏, 𝑎, 𝑏, 𝑎, ...) and 𝑓(1) = (𝑏, 𝑎, 𝑏, 𝑎, 𝑏, ...). This can be proved by a straight-
forward induction.

We can also represent other infinite data types using final 𝐹 -coalgebras.

Example 2.2.2. Consider the 𝑆𝑒𝑡-endofunctor

𝐹 (𝑋) = 𝑋 × 𝐴 × 𝑋.

An 𝐹 -algebra for this functor is a mapping

𝑓 : 𝑋 −→ 𝑋 × 𝐴 × 𝑋

which can be thought of as a ’branching machine’ with an output of type 𝐴. Any
such mapping 𝑓 can be described as a triple ⟨𝑙𝑒𝑓𝑡, 𝑣𝑎𝑙, 𝑟𝑖𝑔ℎ𝑡⟩ of mappings, where
𝑣𝑎𝑙 : 𝑋 → 𝐴 represents the output of the machine at a given interval state, whereas
the maps 𝑙𝑒𝑓𝑡 : 𝑋 → 𝑋 and 𝑟𝑖𝑔ℎ𝑡 : 𝑋 → 𝑋 give the ’left and right’ successor states,
respectively.

Example 2.2.3. Consider a 𝐹 -coalgebra from the previous example. The behaviour
of every such 𝐹 -coalgebra at a given state can be modeled by an infinite binary tree
with nodes labelled by elements of set 𝐴. Considering all such trees, we obtain a
set 𝐼𝑛𝑓𝑇𝑟𝑒𝑒(𝐴) which itself can be endowed with coalgebraic structure. We have a
mapping

⟨𝑙, 𝑜, 𝑟⟩ : 𝐼𝑛𝑓𝑇𝑟𝑒𝑒(𝐴) −→ 𝐼𝑛𝑓𝑇𝑟𝑒𝑒(𝐴) × 𝐴 × 𝐼𝑛𝑓𝑇𝑟𝑒𝑒(𝐴)

which, given an infinite binary tree 𝑡, outputs its left subtree 𝑙(𝑡), right subtree 𝑟(𝑡),
and the label 𝑜(𝑡) of its root, respectively.

It is possible (but out of the scope of this text) to show that the coalgebra
⟨𝑙, 𝑜, 𝑟⟩ is final for 𝐹 .

Final 𝐹 -coalgebras have a number of useful properties. For example, they are
unique up to isomorphism. This means that if (𝑋, 𝑓) and (𝑌, 𝑔) are both final 𝐹 -
coalgebras on the same set 𝐴, then there is an isomorphism of 𝐹 -coalgebras (𝑋, 𝑓) →
(𝑌, 𝑔).

20 Chapter 2. Coalgebra

2.3 Coinduction
Coinduction is the dual principle to induction and is used to prove properties of

coinductively-defined data types such as infinite streams, infinite trees, and coterms.
These data types are typically final coalgebras of a functor.

In this section we introduce the concept of coinduction. We will give the def-
inition of coinduction. In the previous section, we have shown how finality can be
used to define elements of infinite data types. In this section we show what role final
coalgebras play in the notion of coinduction. Coinduction is a way of defining func-
tions on infinite objects, such as infinite lists. The key idea is to define a function
on an infinite object by recursion on a final coalgebra.

Definition 2.3.1. Let 𝐴 be a set and (𝐵, 𝑏) a final 𝐹 -coalgebra. To give a coinductive
definition of a function 𝑓 : 𝐴 −→ 𝐵 is to specify an 𝐹 -coalgebra (𝐴, 𝑎) (with the
carrier set 𝐴).

Example 2.3.1. In this example we will show how the finality of the coalgebra

⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩ : 𝐴N → 𝐴 × 𝐴N

can be used to give a coinductive definition of a function

𝑒𝑣𝑒𝑛 : 𝐴N → 𝐴N

which, for every stream 𝑎 = (𝑎0, 𝑎1, 𝑎2, ...), return the stream 𝑒𝑣𝑒𝑛(𝑎) = (𝑎0, 𝑎2, 𝑎4, ...)
of all the elements of 𝑎 with even indices. (In other words, 𝑒𝑣𝑒𝑛(𝑎𝑖)∞

𝑖=0 = (𝑎2𝑖)∞
𝑖=0 .)

First, let us write down a specification of the even function. The heads of the
stream 𝑎 and of the stream 𝑒𝑣𝑒𝑛(𝑎) should be the same:

ℎ𝑒𝑎𝑑(𝑒𝑣𝑒𝑛(𝑎)) = ℎ𝑒𝑎𝑑(𝑎).

Second, to compute the rest of the stream (i.e., the stream 𝑡𝑎𝑖𝑙(𝑒𝑣𝑒𝑛(𝑎))), is the
same thing as removing the first two elements of 𝑎 and applying to the resulting
stream:

𝑡𝑎𝑖𝑙(𝑒𝑣𝑒𝑛(𝑎)) = 𝑒𝑣𝑒𝑛(𝑡𝑎𝑖𝑙(𝑡𝑎𝑖𝑙(𝑎))).

To show that these two requrements indeed define uniquely a function 𝑒𝑣𝑒𝑛 :
𝐴N → 𝐴N, we will show that there is a suitable coalgebra

⟨𝑥, 𝑦⟩ : 𝐴N → 𝐴 × 𝐴N

such that the unique homomorphism from ⟨𝑥, 𝑦⟩ to ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩ satisfies the require-
ments for even.

Indeed, choose the mappings

𝑥 : 𝐴N → 𝐴 and 𝑦 : 𝐴N → 𝐴N

as follows:

𝑥 = ℎ𝑒𝑎𝑑 and 𝑦 = 𝑡𝑎𝑖𝑙 ∘ 𝑡𝑎𝑖𝑙.

If we call the resulting homomorphism even, we see that it makes the diagram

2.3. Coinduction 21

𝐴N 𝐴N

𝐴 × 𝐴N 𝐴 × 𝐴N

𝑒𝑣𝑒𝑛

⟨ℎ𝑒𝑎𝑑,𝑡𝑎𝑖𝑙∘𝑡𝑎𝑖𝑙⟩ ⟨ℎ𝑒𝑎𝑑,𝑡𝑎𝑖𝑙⟩

𝑖𝑑×𝑒𝑣𝑒𝑛

commute. Now taking an arbitrary stream 𝑎 and following it through the commu-
tative diagram yields

⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩(𝑒𝑣𝑒𝑛(𝑎)) = (𝑖𝑑 × 𝑒𝑣𝑒𝑛) ∘ (⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙 ∘ 𝑡𝑎𝑖𝑙⟩)(𝑎)

This equality can be rewritten as two equalities:

ℎ𝑒𝑎𝑑(𝑒𝑣𝑒𝑛(𝑎)) = 𝑖𝑑(ℎ𝑒𝑎𝑑(𝑎)) = ℎ𝑒𝑎𝑑(𝑎) and 𝑡𝑎𝑖𝑙(𝑒𝑣𝑒𝑛(𝑎)) = 𝑒𝑣𝑒𝑛(𝑡𝑎𝑖𝑙(𝑡𝑎𝑖𝑙((𝑎))).

However, these are precisely the equations given by the requirements for the function
even.

We have thus used finality of ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩ to coinductively define even.

Chapter 3

Relationship between induction and
coinduction

In this thesis, we have explored the relationship between induction and coin-
duction, and how they are dual due to them being representable by dual categorical
notions of initiality and finality.

Informally, the key difference between induction and coinduction is well ex-
pressed by the following remark: “A property holds by induction if there is good
reason for it to hold; whereas a property holds by coinduction if there is no good
reason for it not to hold” [5]. This can be also seen as a consequence of the duality
between initial algebras and final coalgebras. Because if a property 𝑝 holds for the
constructors of an initial algebra, then it also holds for all data elements generated
by these constructors. Meanwhile, if a property 𝑝 holds for the destructors of a final
coalgebra, then it also holds for all data elements that can be observed by these
destructors.

The duality between induction and coinduction can be also described/under-
stood as the duality between least and greatest fixed points (of a monotone function).
These notions generalise to least and greatest fixed points of a functor, which are
suitably described as initial algebras and final coalgebras, see [7] for more details in
this direction.

In this thesis we firstly introduced the fundamentals of category theory by
providing definitions of category and functor. Examples of functors were provided
for both finite and infinite data types:

𝑆𝑒𝑡
𝐿𝑖𝑠𝑡−−→ 𝑆𝑒𝑡 and 𝑆𝑒𝑡

𝑆𝑡𝑟𝑒𝑎𝑚−−−−→ 𝑆𝑒𝑡

The notion of functor plays important role throughout this thesis as it describes
signatures of operations of algebras and colagebras of a functor. 𝐹 -algebras and 𝐹 -
coalgebras generalize the notion of general algebras and coalgebras, which we used
for representation of finite and infinite data structures.

Using definitions and examples of different data structures we explained the
main difference between 𝐹 -algebras and 𝐹 -coalgebras through the difference between
construction and observation.

23

24 Chapter 3. Relationship between induction and coinduction

An algebra 𝐹 (𝑋) → 𝑋 can be seen as model of a signature of constructor op-
erations and it tells us how to construct elements in 𝑋 with a function 𝐹 (𝑋) → 𝑋
going into this carrier set 𝑋. In other words, constructors of 𝐹 -algebras contain
instructions on how to generate (algebraic) data elements. As an example of such
constructor operations we introduced empty list constructor nil and the prefix op-
eration cons (Example 1.2.3).

A coalgebra 𝑋 → 𝐹 (𝑋) can be seen as model of signature of destructor (or ob-
server) operations while it gives us information about 𝑋 with a function 𝑋 → 𝐹 (𝑋)
going out of carrier set 𝑋, but it does not give us instructions on how to form ele-
ments of 𝑋. That is, the carrier of a coalgebra is the domain of its destructors which
tell us what we can observe about its data elements. An example of such destructor
operations of infinite lists were head and tail, head gives a direct observation and
tail returns a next state (Example 2.3.1).

After understanding the duality of 𝐹 -algebras and 𝐹 -coalgebras, we then de-
fined the notion of homomorphism between such algebras (and coalgebras) of a
functor which allowed us to define initial algebras (and final coalgebras).

The initiality of 𝐹 -algebras provided us more abstract definition of induction
which can be applied to all kinds of algebraic data types. We showed this on an
example (1.3.2) of list-functor 𝐹 (𝑋) = 1+(𝐴×𝑋) by showing that there is a unique
homomorphism 𝑓 : 𝐿𝑖𝑠𝑡(𝐴) → 𝑋 from initial algebra [𝑛𝑖𝑙, 𝑐𝑜𝑛𝑠] : 1+(𝐴×𝐿𝑖𝑠𝑡(𝐴)) →
𝐿𝑖𝑠𝑡(𝐴) to an arbitrary algebra [𝑥, 𝑦] : 1 + (𝐴 × 𝑋) → 𝑋 making the following
diagram commute:

1 + (𝐴 × 𝐿𝑖𝑠𝑡(𝐴)) 1 + (𝐴 × 𝑋)

𝐿𝑖𝑠𝑡(𝐴) 𝑋

[𝑛𝑖𝑙,𝑐𝑜𝑛𝑠]

𝑖𝑑+(𝑖𝑑×𝑓)

[𝑥,𝑦]

𝑓

On the other hand, the finality of 𝐹 -coalgebras, which are categorical duals to
the initial algebras (of a functor), can be used to characterize infinite data types in a
way that is similar to how algebraic data types are characterized. As we mentioned
before, coalgebras have no construction operations for constructing elements in state
space of a coalgebra. However, we can form elements in state space of a certain
coalgebra if we know that this coalgebra is final. As we explained in the previous
chapter, coidunction is the dual principle to induction and is used to define functions
on infinite objects by recursion on a final coalgebra. We showed this in the example
(2.3.1) of final coalgebra ⟨ℎ𝑒𝑎𝑑, 𝑡𝑎𝑖𝑙⟩ : 𝐴N → 𝐴 × 𝐴N. By using the finality of this
coalgebra we gave a coinductive definition of a function 𝑒𝑣𝑒𝑛 : 𝐴N → 𝐴N which
makes the following diagram commute:

𝐴N 𝐴N

𝐴 × 𝐴N 𝐴 × 𝐴N

𝑒𝑣𝑒𝑛

⟨ℎ𝑒𝑎𝑑,𝑡𝑎𝑖𝑙∘𝑡𝑎𝑖𝑙⟩ ⟨ℎ𝑒𝑎𝑑,𝑡𝑎𝑖𝑙⟩

𝑖𝑑×𝑒𝑣𝑒𝑛

25

This duality between constructing and observing contributes to understanding
the difference between inductive and coinductive definition of a function. An induc-
tive definition of a function 𝑓 defines its value of 𝑓 on all constructors, while the
coinductive definition defines its value of 𝑓 of all destructors on each outcome 𝑓(𝑥).
In other words, it determines the observable behavior of each 𝑓(𝑥). Therefore, by
understanding the duality of notions of initiality and finality, and how they can be
used to define functions, we can understand the relationship between induction and
coinduction.

Conclusion and Future Work

In this thesis we dealt with the notions of induction and coinduction with the
aim to provide the explanation of the relationship between these two concepts. The
main observation was that duality of these two concepts can be shown through the
dual categorical notion of initiality and finality. More specifically, we explored how
are they connected to initial algebras and final coalgebras (of a functor). We sup-
ported our explanations of these concepts by illustrating on examples from computer
science - we shown how different finite and infinite data types and functions can be
represented as initial 𝐹 -algebras and final 𝐹 -coalgebras, respectively.

We also mentioned that the notion of coinduction can be used not only only
as a definition principle (that is to define possibly infinite data types) but also as
a proof principle. However, such theoretical concepts would require more detailed
explanations than those presented in this thesis. Moreover, an interesting point of
view on relationship between induction and coinduction worth exploring is through
least and greatest fixed point of a monotone function, which is well explained in
some of the sources cited in this work. We therefore defer these topics to future
work.

27

Bibliography

1. MACLANE, Saunders. Categories for the Working Mathematician. Springer-
Verlag, 1971. Graduate Texts in Mathematics, Vol. 5.

2. JACOBS, Bart. Introduction to coalgebra : towards mathematics of states and
observation. 2017. Cambridge tracts in theoretical computer science. Available
from doi: 10.1017/cbo9781316823187.

3. JACOBS, Bart; RUTTEN, Jan. An introduction to (co)algebra and (co)induction.
In: SANGIORGI, Davide; RUTTEN, Jan J. M. M. (ed.). Advanced Topics in Bi-
simulation and Coinduction. Cambridge University Press, 2012, sv. 52, pp. 38–
99. Cambridge tracts in theoretical computer science.

4. ADÁMEK, Jiří. Introduction to coalgebra. Theory and Applications of Cate-
gories [electronic only]. 2005, roč. 14, pp. 157–199. Available also from: http:
//eudml.org/doc/125538.

5. KOZEN, DEXTER; SILVA, ALEXANDRA. Practical coinduction. [B.r.]. Avail-
able from doi: 10.1017/s0960129515000493.

6. RUTTEN, J.J.M.M. Universal coalgebra: a theory of systems. [B.r.]. Available
from doi: 10.1016/s0304-3975(00)00056-6.

7. SANGIORGI, Davide. Origins of bisimulation and coinduction. In: Advanced
Topics in Bisimulation and Coinduction. Cambridge University Press, 2012,
sv. 52, pp. 1–37. Cambridge tracts in theoretical computer science.

29

https://doi.org/10.1017/cbo9781316823187
http://eudml.org/doc/125538
http://eudml.org/doc/125538
https://doi.org/10.1017/s0960129515000493
https://doi.org/10.1016/s0304-3975(00)00056-6

	Introduction
	Algebra
	Category Theory
	Category
	Functor

	F-algebras
	Initial F-algebras and induction

	Coalgebra
	F-coalgebras
	Final F-coalgebras
	Coinduction

	Relationship between induction and coinduction
	Conclusion and Future Work
	Bibliography

