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Abstract
We conducted research in the field of self-
supervised motion flow in 3D point clouds.
Throughout our exploration, we observed
that no existing models had attempted to
leverage the sequential characteristics of
automotive datasets. Taking this into ac-
count, we introduced two self-supervised
losses to regularize the learning process of
the model. The first loss, called Velocity
loss, aims to smooth the derivative of the
flow of points across multiple time frames.
By doing so, we encourage a more smooth
flow across multiple time frames. Addi-
tionally, we proposed the Dynamic loss,
which separates the motion patterns of
dynamic objects from the motion of the
ego and utilizes this knowledge to gener-
ate pseudo labels for improving motion
segmentation. Furthermore, we discov-
ered that the model we were using faced
challenges in segmentation. To address
this issue, we upgraded the Artificial La-
bel loss to incorporate object homogenity,
taking into account the rigid consistency
of objects within the scene. Lastly, we
proposed a similar refinement module, de-
signed specifically for evaluation purposes.
Experimental results demonstrated a sig-
nificant improvement in the model’s per-
formance, with an enhancement of nearly
3 cm on the AEE50−50 metric when the
Dynamic Loss and Refiment Module was
add. This outcome highlights the poten-
tial utilization of sequential data for self-
supervised learning of motion flow.

Keywords: self-supervised learning,
motion flow, motion segmentation, 3D
point cloud data

Supervisor: Ing. Patrik Vacek
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Abstrakt
Provedli jsme průzkum v oblasti učení
pohybů z 3D mračen bodů bez učitele.
Během našeho průzkumu jsme zjistili, že
žádný ze stávajících přístupů se nesnažil
využít sekvenční povahy automobilových
datasetů. S tímto zohledněním jsme před-
stavili dvě ztrátové funkce, které slouží k
regularizaci učícího procesu modelu bez
učitele. První ztrátová funkce nazvaná
ztráta rychlosti se zaměřuje na vyhlazení
derivace rychlosti bodů skrz určitý inter-
val. Tato ztrátová funkce by měla zajistit
plynulejší a tedy stabilnějsí predikci. Dále
jsme navrhli dynamickou ztrátovou funkci,
která se snaží oddělovat pohybové vzorce
dynamických objektů od pohybu sníma-
cího vozidla. Toto rozdělení se následně
využívá ke generování pseudo-značek pro
zlepšení segmentace pohybu. Dále jsme
zjistili, že použitý model má problém s
pohybovou segmentací. Pro vyřešení to-
hoto problému jsme vylepšili ztrátovou
funkci, která se snaží učit segmentaci z mo-
delem vytvořených pseudo-značek. Toto
vytváření nyní zohledňuje kompaktnost
objektů ve scéně. Nakonec jsme navrhli
modul na podobném principu, který je
specificky navržen pro účely evaluace bez
nutnosti učení. Experimentální výsledky
ukázaly významné zlepšení predikce mo-
delu a to zmenšení chyby o téměr 3 cm
na metrice AEE50−50 při přidání Dyna-
mické ztrátové funkce a modulu. Tento
výsledek poukazuje na potenciální vyu-
žití sekvenčních dat pro učení pohybů bez
učitele.

Klíčová slova: učení bez učitele, pohyb
scény, segmentace pohybu, mračna 3D
bodů

Překlad názvu: Učení bez učitele pro
odhad pohybu v mračnu 3D bodů
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Chapter 1
Introduction

The recent advancement in sensor technologies, such as RGB-D cameras
and LiDARs, has opened up new fields of research. These advanced sensors
enabled the acquisition of three-dimensional data, thereby offering researchers
opportunities across diverse disciplines. In the context of this work, our focus
is specifically on the areas of motion flow and motion segmentation on 3D
pointcloud data. Prior to this field, the research of motion features centered
around the analysis of images utilizing optical flow techniques. Optical flow
refers to the analysis of object motion and intensity patterns within images
or image sequences. Its primary goal is to estimate the displacement vectors
of pixels or small image regions between consecutive frames. The estimation
of optical flow commonly relies on the fundamental assumption of brightness
constancy, which posits that the intensity of a pixel or region remains constant
as it moves through consecutive frames. The classical approaches depend
on local Taylor series approximations of the image signal or are formulated
as hand-crafted optimization problems. However, the rise of deep learning
has introduced new possibilities for approaching the optical flow task. A
significant breakthrough came with the introduction of the RAFT (Recurrent
All Pairs Field Transforms) neural network [22]. This innovative neural
network was inspired by conventional optimization-based approaches and
offers a clever and efficient method for computing correlations between pixels
in two images. This capability enables the network to capture fast-moving
objects, occlusions, motion blur, and textureless surfaces [22, 5].

Scene flow (interchangeably used with term Motion flow) is a task closely
related to optical flow as it pertains to the motion of objects within a three-
dimensional scene. The primary goal of scene flow is to determine the
displacement vector between points in three-dimensional space. However, it
is important to note that scene flow exhibits several drawbacks in comparison
to optical flow. One notable challenge arises from the fact that each point
cloud derived from a real-world scene contains a varying number of points.
Consequently, a bijective projection for scene flow does not exist. However,
when the point cloud is projected onto an image plane, the task can be
transformed into an optical flow problem [15].

Since the introduction of the first LiDAR automotive Raw Kitti dataset
[6] in 2013, the use of LiDAR in research has gained in size, leading to
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1. Introduction ..........................................
the development of new approaches for scene flow estimation and motion
segmentation on LiDAR data. However, existing automotive datasets lack
scene flow labels, posing a significant challenge for supervised learning. To
overcome this issue, self-supervised learning approaches have emerged as
promising solutions, leveraging the spatial and time consistency in unlabeled
data to learn meaningful representations. By designing suitable loss functions
that exploit the available information within the data itself, these methods can
effectively learn to extract discriminative motion features without requiring
explicit supervision.

Although automotive datasets generally lack scene flow labels, it is possible
to provide supervision to the models by using artificially generated datasets
with labels such as FlyingThing3D [16]. To evaluate the performance of
self-supervised models trained on automotive datasets, labels can be created
if the dataset contains bounding box annotations and odometry information
within two consecutive frames. These soft ground truth labels can be used as
motion flow labels, enabling the evaluation of the learned representations in
a classical supervised manner.

While the focus of previous research was primarily on the optical flow
analysis using images or RGB-D data, classical alignment algorithms such as
Kabsch [10], ICP [2], or their improved versions were employed for point cloud
alignment, thus for computing the motion flow on the point cloud data. One
of the first attempts to directly predict motion flow on point cloud data by
deep learning model was made by FlowNet3D [11], which initiated research in
this field. The RAFT [22] model had a significant impact on the development
of neural networks in this area. Following its release, many models were
inspired by the RAFT approach and either built their models directly on it or
adopted the idea of incorporating a correlation layer in 3D, such as voxels [24]
or directly on points [11]. These models have proven effective in learning to
extract informative motion features without the need for explicit supervision,
when they are used with appropriate loss functions. Our objective was not to
propose a novel neural network, but rather to leverage existing approaches
and explore different strategies for addressing the self-supervised scene flow
and motion segmentation tasks.

2



Chapter 2
Related Work

The domain of scene flow and the motion segmentation is considered to
be in its early stages of development. This chapter aims to outline the
chronological order in which various models were introduced. Since the
introduction of Flownet3D [15] in 2019, there have been relatively few new
models proposed. This self-contained overview assists in comprehending
why certain models outperform the others, while also helps us identifying
areas where improvements can be made. Throughout this thesis, a consistent
notation is utilized for easy and efficient navigation within the equations,
images, text and related elements:. P denotes a point cloud, accompanied by a lower index representing

the time frame of its capture. Additionally, a consistent color scheme is
employed: Pt−2 is yellow, Pt−1 is green, Pt is blue and lastly Pt+1 is red.
We inherit this notacion from previous works such as [17].. p and f represent vectorized form of point coordinates and flow..NNPt+1(p) represent the nearest neighbor function, which find the near-
est neighbors of point p in pointcloud Pt+1

Other functions or varible are not so common is the thesis, thus their
specific definitions will be provided subsequently.

2.1 Classical Pointcloud Aligment

Classical point cloud registration methods, such as ICP [2] and Kabsch [10],
have been widely used for aligning point clouds by estimating the rigid
transformation between them through minimizing the distance between corre-
sponding points. While these methods have a long-standing history and have
shown to be effective in aligning point clouds, they do have limitations. For
example, they are not suitable for autonomous datasets where the movement
in the scene can not be described by a single transformation matrix due to the
presence of multiple moving objects and the data are noisy and non-bijective.

We will shortly describe Kabsch and ICP algorithm, where their goal is to
minimaze the following objective function:

3



2. Related Work..........................................

arg min
R,t

1
|Pt|

∑
i

∥Rpi + t − qi∥2
2, (2.1)

where pi is i-th point from point cloud Pt, R is a rotation matrix and t is
a translation vector. The qi represents the corresponding point from point
cloud Pt+1 to point pi in the context of the Kabsch algorithm. However, for
ICP, it denotes the nearest neighbor point from point cloud Pt+1 for point pi.

2.1.1 Kabsch Algorithm

The older algorithm of the two aforementioned, the Kabsch algorithm is
similar to ICP in its goal of aligning two sets of points in Euclidean space.
Kabsch requires correspondences between the two point clouds, which can
be a significant disadvantage in various applications. Unlike ICP, which can
align point clouds without prior correspondences, the Kabsch algorithm relies
on a known set of corresponding points in both point clouds, which may not
always be available or accurate. The algorithm leverages the singular value
decomposition to calculate the optimal rotation and translation, benefiting
from the correspondence between the points. The algorith is described here
with the following pseudo-code:

Algorithm 1 Kabsch Algorithm
1: procedure Kabsch(Pt, Pt+1)
2: compute center mass of both pointclouds µt, µt+1
3: shift pointclouds as Pt -= µt and Pt+1 -= µt+1
4: compute covariance matrix H as PT

t · Pt+1
5: apply SV D(H) = UΣV T

6: R = V UT

7: t = µt − Rµt+1
8: return T
9: end procedure

where T is transformation matrix composed from R and t. [10]

2.1.2 Iterative Closest Point

ICP is an algorithm commonly used in computer vision and robotics to align
two sets of 3D point clouds without correspondencies. The vanilla version of
the ICP can be desribed in pseudo-code as:

4



............................................ 2.2. Losses

Algorithm 2 Iterative Closest Point (ICP) Algorithm
1: procedure ICP(Pt, Pt+1)
2: Initialization T
3: repeat
4: for all pi ∈ Pt do
5: find the closest point qi in Pt+1
6: end for
7: compute center mass for the correspondencies as µt

8: shift the pointcloud as Pt -= µt

9: compute covariance matrix H as PT
t · Pt+1

10: apply SV D(H) = UΣV T

11: R = V UT

12: t = µt − Rµt+1
13: apply the transformation to Pt

14: until converged or maximum number of iterations reached
15: return T
16: end procedure

Although the ICP algorithm is known for its efficiency in registering point
clouds, its performance heavily relies on the quality of the initialization of the
rigid transformation and point matching. In recent years, self-supervised mod-
els for motion flow have outperformed ICP in terms of scene flow prediction.
[2]

2.2 Losses

In the following section, we will focus on self-supervised models designed to
predict motion flow or motion segmentation. To gain an understanding, why
these models are able to work under self supervised manner, we will define
the self-supervised losses utilized within these models.

2.2.1 Nearest Neightbor Loss/Chamfer Loss

Nearest Neighboir loss is a form of self-supervision signal for flow estimation
process. This approach has been previously used in other studies focusing on
self-supervised scene flow estimation [23, 1, 17].

In a loss implementation, we assume that pointwise flow fi, represents the
flow from Pt to Pt+1. We aim to regularize the predicted flow endpoints
with the corresponding ground truth flow endpoints. However, the ground
truth labels are not available. To overcome this limitation, a nearest neighbor
function is defined as follows

NNPt+1 (pi) = argminpj∈Pt+1 |pj − pi| (2.2)

where pi represents the point in current pointcloud and pj represents
a point from the pointcloud at time t + 1. This equation provides us the

5



2. Related Work..........................................

Figure 2.1: Visualization for the nearest neighbor loss, where on the left is
shown the degenerative solution and on the right, the red errors are optimized.

nearest point in the subsequent point cloud, which we use as a pseudo label
to regularize the flow. To implement the loss function, we need to define an
error function as

ei (pi, fi) =
∣∣NNPt+1 (pi + fi) − (pi + fi)

∣∣ (2.3)

where the ei is the distance between a point with added flow and its nearest
neighbor using the nearest neighbor function as described in equation 2.2 or
depictured in fig 2.1. The final loss is computed as the mean of all the errors
as in equation

Lnn = 1
|Pt|

∑
i

ei (pi, fi) (2.4)

where |Pt| is a number of points in current pointcloud. [1]
As a result of noisy and non-bijective point clouds, errors in flow estimation

may be more significant for distant points. Additionally, the loss function
used for flow estimation can have multiple degenerate minima, as illustrated
in fig 2.1. In extreme cases, all estimated flows may converge towards the
same point, resulting in a loss of zero but an incorrect solution. Therefore,
additional guidance is required beyond this loss to overcome these limitations
in the model.

2.2.2 Smoothness Loss

To further enhance the accuracy of the motion flow estimation, a smoothness
constraint in space can be introduced. This can be applied not only to
predicted flow field in optical flow [26], but also to motion flow on pointclouds
[1]. It is achieved by introducing a smoothness loss term that enforces the
predicted flow to be locally smooth in space. This loss aims to regularize the
flow to be locally homogeneous in space, given the assumption that only rigid
objects are present in the scene. Specifically, the smoothness loss in motion
flow is formulated as the mean of the L2 losses on differencies between flow
from point pi with k nearest points and theirs flows. Loss is defined as

6



............................................ 2.2. Losses

Lsmoothness = 1
|Pt|

∑
i

1
k

k∑
j

∥fi − fj∥2
2 (2.5)

where k is a constant that determines the number of nearest neighbors, and
fj represents the flows corresponding to the closest k points in the current
point cloud.

2.2.3 Laplacian Regularization

According to [21], the Laplacian coordinate vector can be utilized to provide
an estimation of the local shape properties of the surface. Specifically, the
computation of the Laplacian coordinate vector can be used as the approx-
imation of the Laplacian function. Laplacian vector can be carried out as
follows:

δ (pi) = 1
k

k∑
j

(
pj − pi

)
(2.6)

where pj is a point from k-NN neighborhood. The laplacian loss is then
computed as

Llaplacian = 1
Pt

∑
i

1
k

k∑
j

∥∥δ(pi + fi) − δ(pj + fi)
∥∥

1 (2.7)

where fi is predicted flow on point pi and pj is point from k-NN neighbor-
hood of point pi. Using this approach, the optical flow is enforced to preserve
its Laplacian when the source point cloud is warped based on the predicted
flow:

L (S + Fk) ≃ L (S)
⇓

L (F k) −→ 0
(2.8)

where L represent Laplacian operator [11, 25].

2.2.4 Cycle Consistency Loss

To address the degenerative issues in nearest neighbor loss, the cycle consis-
tency loss was introduced as an additional self-supervised loss in [17]. Another
variant was presented with smooth L1 loss (Huber loss) in [15]. The forward
flow fi is estimated to the next pointcloud frame. Thus, we define the corre-
sponding (anchored) point in the consentitive frame equally as in equation
2.2

pj = NNPt+1 (pi + fi) (2.9)

where pj would be the nearest neirgbor in the next frame after applying
the predicted flow. To predict the backward flow to the current frame, an
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anchored point is used as a reference. This flow is marked as f̂i. If both flow
are accurate, the flows should be similar with oposite direction. The cycle
consistency loss is defined as the mean square error between forward flow and
backward flow from anchored point pj. The equation for loss is as defined as

Lcycle = 1
|Pt|

∑
i

∥∥∥fi + f̂i

∥∥∥2

2
(2.10)

where the loss function have also degenerative solutions wherein the predicted
flows are zero, resulting in a zero loss. To mitigate this issue, it is necessary to
incorporate the nearest neighbor loss in conjunction with the cycle consistency
loss. This is because the nearest neighbor loss is high during such moments
and can guide the network away from respective local minima.

2.3 Models

2.3.1 FlowNet3D (Jun 2019)

This model represents one of the first attempts to directly predict flow on
lidar pointclouds, while most previous methods have focused on using stereo
and RGB-D images as inputs. The proposed model is capable of learning flow
in an end-to-end fashion, which was a significant contribution to the field.

The proposed model consists of three main components: point feature
learning, point mixture, and flow refinement. For feature learning, the authors
employ a recently proposed model at that time, PointNet++ [19], which is
invariant to rigid transformations. This is applied to both pointclouds, and
then they are passed to flow embeddings (point mixture) where a novel flow
embedding layer is proposed. The architecture of the model is depicted in fig
2.2a

To illustrate the design inspiration of the embedding layer pictured in fig
2.2b, consider a point at time t and a corresponding point in time t+1, then
its scene flow is simply the relative displacement between them. However, in
real lidar data, correspondences between point clouds in two frames don’t
exist. Despite this, it is still possible to estimate scene flow by finding multiple
softly corresponding points in frame t+1 and making a "weighted" decision.
This embedding is then passed to the subsequent PointNet++ layers. Finally,
the flow embedding is upsampled with up convolution layer to the same size
as the input pointcloud. [15]

Although this study is one of the first attempts to predict flow directly on
pointclouds without any transformation to 2D, they only proposed supervised
learning mode. They employ a smooth L1 loss (Huber loss) with ground
truth labels, along with the cycle consistency loss for regularization as total
loss

Ltotal = 1
|Pt|

∑
i

{
∥fi − fi

∗∥ + λ
∥∥∥fi + f̂i

∥∥∥} (2.11)

8



............................................2.3. Models

(a) : FlowNet3D architecture [15].

(b) : FlowNet3D flow embedings
layer [15]

Figure 2.2: Overview for FlowNet3D.

where fi
∗ is ground thruth flow, fi is predicted flow and f̂i is reversed flow

from points pi + fi. [15]

2.3.2 Just Go With the Flow (Dec 2019)

This paper presents a self-supervised method for training a scene flow network
using the FlowNet3D architecture. The authors utilize two losses: cycle con-
sistency and nearest neighbor loss, where the nearest point to the predicted
translated points is used as a pseudo-label. They demonstrate that this com-
bination of losses can be used to train a scene flow network over large-scale
unannotated datasets. While the model can operate in a self-supervised
manner, the authors use pre-trained weights on the synthetic dataset Fly-
ingThings3D [16] to initialize the FlowNet3D model. They then fine-tune
it on large-scale automotive datasets such as NuScenes [3] and Raw Kitti
[6]. The authors found that the scanned ground (road) in the pointclouds
degrades the model’s performance when trained in a self-supervised manner.
Lastly, they show that the cycle consistency loss with anchoring works much
better than simple cycle consistency loss [17]

2.3.3 PointPWC-Net (Nov 2019)

It is the first self-supervised model to predict scene flow on the pointclouds.
The authors of this new architecture sugested that the FlowNet3D style
of encoding the motion of two consecutive point clouds through their flow
embedding layer requires encoding and capturing a large neighborhood in
order to record significant motion. The flow embedding layer is calculated in
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Figure 2.3: The cost volume layer from PointPWC-Net [25]

a single layer and is responsible for capturing the correlation between points,
which is then propagated through the network to estimate flow. The paper
proposes a new approach using a learnable point-based cost volume, without
creating a dense 4D tensor. Additionally, the authors proposed a warping
and upsampling layer to estimate flow. [25]

The cost volume layer. The process of optical flow estimation often relies
on the cost volume technique, however, when applied to point cloud data,
the challenge of correlating points becomes an open problem. To address this
challenge, the authors propose a novel learnable cost volume layer. This layer
takes in two consecutive point clouds, Pt ∈ Rn×d and Pt+1 ∈ Rm×d, along
with their corresponding points, pi ∈ Pt and qj ∈ Pt+1. The cost layer for
two points is defined as

c(pi, qj) = MLP (concat(pi, qj, qj − pi)) (2.12)

where pi and qj can either represent raw input points or latent space
variables from some previous layer. The authors hypothesize that a multi-
layer perceptron (MLP) can learn the non-linear relationship between these
points. Furthermore, they extend this idea to neighborhood correlation (NC),
as this approach can be sensitive to outliers or sparse regions in the data.
For a point pi ∈ Pt they create k-NN neighborhood area as NN(pi) ∈ Rk×c.
For each point from NN(pi) denoted as pj they find a k-NN neighborhood
in Pt+1 and same process is repeated for the points from second pointcloud.
The neighborhood correlation is defined as

NC(pi) =
∑

pj∈NN(pi)
MLP (pj − pi)

∑
qi∈NN(pj)

MLP (qi − pj) c(qi, pj) (2.13)

where the MLPs are weighted w.r.t. the direction of the vectors that that
are used to aggregate the costs from the neighborhood in the two pointcloud
[25].

Losses. The authors presents the first self-supervised model designed to
learn scene flow from unannotated data. The model employs three types of
loss functions: Chamfer distance known as Nearest Neighbor loss, Smoothness
loss, and Laplacian Regularization. The authors conducted an analysis to
investigate the interactions between these three loss functions. Results showed
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Figure 2.4: Architecture overview of the RAFT optical flow model [22].

that while the model is capable of learning solely with the Chamfer loss, its
performance in estimating reliable flow is inadequate. By incorporating the
Smoothness loss, the model’s performance improved by 38.2%. Furthermore,
the addition of the Laplacian regularization slightly enhanced the model’s
results. [25]

2.3.4 RAFT (March 2020)

The Recurrent All-Pairs Field Transformations (RAFT) is a state-of-the-art
deep network architecture for solving the optical flow problem in images. In
traditional approaches, optical flow was treated as an optimization problem
over dense displacement fields between a pair of images using hand-crafted
methods, which achieved good results but faced challenges in further im-
provement. With the rise of deep learning, such methods are being replaced
by end-to-end trainable neural networks that reformulate the optimization
problem. RAFT consists of three main components: a feature encoder, a
correlation layer, and a GRU update block. The architecture can be seen at
fig 2.4. We are mentioning this network because the principles are then used
in the followng point clouds models.

Feature encoder. has shared weights for both images. It consists of 6
residual blocks that extract per-pixel features from the images. The output
of the encoder is at 1/8th of the resolution of the original image. In addition
to the Feature Encoder, there is a Context Encoder, which is only applied to
the first image. The architecture of the Context Encoder is similar to that of
the Feature Encoder. The features extracted from the Context Encoder are
directly injected into the update block. The authors suggest that this helps
improve the aggregation of spatial information within motion boundaries.

Correlation Layer. Compution the visual similarity as a correlation volume
between all pairs. The correlation field represents the relationship between
two pixels from two images. The correlation volume is done as dot product
between all pairs from the two features image, this results in tensor in shape
H × W × H × W defined by
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Figure 2.5: Building a correlation volumes. Here we depict 2D slices of a full
4D volume. [22]

Cijkl =
∑

h

gθ (I1 )ijh · gθ (I2 )klh (2.14)

where I1 , I2 ∈ RH×W ×D are the first and second image and gθ(−) is a
function of the feature encoder. The principle is depictured in fig 2.5.

The approach involves constructing a pyramid of correlation volumes
{C1, C2, C3, C4} with 4 layers by pooling the last two dimensions of the
correlation volume with kernel sizes 1,2,4, and 8 and equivalent stride, where
C2 represents the correlation between 2x2 patches of the images By using this
pyramid, the method is able to capture both large and small displacements,
which is important for accurately estimating optical flow for fast moving
objects.

For usability the correlation pyramid in update block, they proposed the
correlation lookup operator to generate a feature map by indexing from a
multi-level correlation pyramid. The operator maps each pixel in the first
image to its estimated correspondence in the second image, and defines a local
grid around it to index from the correlation volume using bilinear sampling.
The lookup is performed on all levels of the pyramid with a 1

2k of the first
width, where k is index of correlation volume and the resulting values are
concatenated into a single feature map. [22]

Update Block. is a computational unit that estimates a sequence of flow,
denoted as {f1, f2...fN}, based on a predetermined number of iterations,
given an initial flow of zero. As depicted in fig 2.6, the block takes in
context features, correlation features obtained from correlation lookup, and
the previous flow. The inputs are then processed through convolutional layers
and concatenated before being passed into a gated recurrent unit (GRU) cell.
The GRU produces the next hidden state and △fi, which is added to the
previous flow. This process is repeated for a total of six iterations before the
final flow is upsampled to match the original image dimensions [22].

Supervision. They proposed the architecture as supervised model for optical
flow, where the use L1 distance between the predicted and ground truth flow
over the full sequence of predictions from update block with exponentially
increasing weights. The final loss is defined as

Ltotal =
∑

i

γN−i ∥fgt − fi∥1 (2.15)
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Figure 2.6: Update block of the RAFT architecture

where they set γ = 0.8 to penalize more the final prediction then the
sub-results. Although the model in question was not originally designed for
motion flow and was only supervised, its outstanding performance has served
as a source of inspiration for the development of a subsequent self-supervised
model aimed at motion flow prediction. [22]

2.3.5 Non-Rigid Residual Flow and Ego-Motion (Sep 2020)

This paper presents a novel approach for estimating motion flow on point-
clouds. The proposed method decomposes the flow into two components: ego
motion flow and residual flow, which captures the motion of dynamic rigid
objects in the scene. This approach differs from previous works that aimed
to learn a single flow for static points and dynamic objects.

The proposed method employs a network that learns the rigid motion be-
tween two pointclouds and is subsequently followed by an iterative refinement
process. The authors demonstrate that their model can be trained in both
supervised and self-supervised manners. While their model outperformed
state-of-the-art supervised models, their self-supervised approach did not
yield comparable results. [23]

Once their model (relative pose regresor) produce a rough estimate of
odometry, the authors synchronize the two pointclouds and begin to estimate
the non-rigid flow of dynamic objects. Their rationale is that when the
pointclouds are synchronized, the learning of non-rigid flow should be easier
for the model. For this part, they employ HPLFlowNet [8], a state-of-the-art
supervised total flow learning approach in that time. In the self-supervised
model, the authors utilize two loss functions: the nearest neighbor loss and
the cycle consistency loss. These two losses are combined to form the total
loss:

Ltotal = Lnn + Lcc (2.16)

where Lnn is nearest neighbor loss and the Lcc is cycle consistency loss. [23]
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Figure 2.7: FlowStep3D architecture

2.3.6 FlowStep3D (Nov 2020)

FlowStep3D is a novel model that draws inspiration from the RAFT and
extends this idea to scene flow. They changed the correlation layer from
RAFT to operatare directly on 3D points. The authors also propose to enrich
the pipeline with a mechanism that computes new features of the warped
point cloud at each iteration of the update block. This addition is considered
crucial due to the inherent lack of invariance to rotation exhibited by existing
point cloud convolution methods, which results in changing features as the
cloud is rotated towards the target point cloud. They also compute the global
correlation once to initialize the flow in the recurrent pipeline. [11]

In addition, the authors propose to train the aforementioned model in
a self-supervised manner using two loss functions. The first loss function
employed is the nearest neighbor loss. The second loss function utilized is the
Laplacian loss, which serves as a regularization technique for the flow in the
surrounding area of the corresponding point. The overall loss is the linear
combination of this two losses:

Ltotal = αLnn + Llaplacian (2.17)

where Lnn and Lsmooth are nearest neighbor loss and laplacian loss. [11]

2.3.7 PV-RAFT (Dec 2020)

This model extends the concept of RAFT to Point-Voxel Correlation. Due
to the unordered nature of point clouds, efficiently identifying neighboring
points is challenging. Prior methods such as FlowNet3D and PointPWC
[15, 25] only considered nearby neighborhoods, which proved inadequate for
fast movement. To address this issue, the authors combined point neigh-
borhood information obtained through k-nearest neighbor search with voxel
neighborhood information obtained through a correlation pyramid on voxels,
enabling the capture of larger portions of the scene [24].

Model employs the Pointnet++ [19] architecture as the feature extractor,
while also the Pointnet++ was used for the context encoder of the first
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Figure 2.8: Pipeline of the PV-RAFT

point cloud. The correlation pyramid was constructed in a similar fashion
as in RAFT, except that it was 3D-volumed due to the use of voxels. The
update block was initialized with zero flow, and all key components of the
architecture were retained. The architecture is depictured in fig 2.8. However,
the correlation features were obtained by combining the voxel-based and
point-based pyramids. The flow was refined to be smooth in 3D space using
two convolutional layers and one fully connected layer. The training process
was divided into two phases. First, the feature extractor and backbone were
trained, followed by the training of the refinement module. Notably, the
authors did not explore the extension of the model to self-supervised learning
[24].

2.3.8 Weakly Supervised Learning of Rigid 3D Scene Flow
(Feb 2021)

This weakly supervised model requires ground truth odometry and labels
for foreground and background point segmentation. Although this model is
only weakly supervised, it introduces an interesting idea: after dividing the
pointclouds into foreground (all moving objects in the scene) and background,
they cluster the foreground into N different homogeneous rigid objects and
try to find rigid transformations for them independently, as shown in fig 2.9.
The model uses Minkowski Net as the backbone followed by U-Net with skip
connections with shared weights for both pointclouds. Then, three heads are
incorporated: Background segmentation head, ego motion head, and scene
flow head.

They introduced three losses to regularize the training of the model. For
background segmentation, which is the first step in the pipeline, they use
binary cross-entropy loss for both pointclouds. The back ground segmentation
loss is defined as

Lbg = 1
|Pt|

∑
i

BCE (lcls,i, lgt,i) (2.18)

where lcls,i is prediction for background label and lgt,i is a ground truth
class for following class. Segmentation loss is then defined as

Lseg = 1
2 (Lbg(Pt) + Lbg(Pt+1)) (2.19)

15



2. Related Work..........................................

Figure 2.9: Overview of the pipeline of Weakly Supervised Learning of Rigid
3D Scene Flow

where Lseg is final loss. For ego motion learning they are using weighed
Kabsch algorithm [10], which results in loss

Lego = 1
|Pt|

∑
i

∥(Rpi + t) − (Rgtpi + tgt)∥1 (2.20)

where R, t is rotation matrix and translation vector from odometry.
The authors also proposed an instance-level rigidity error, which computes

the per-instance rigid loss. To achieve this, they employed the DBSCAN
clustering algorithm [4] to divide the points from foreground into instances.
For each instance, the transformation matrix is computed using the Kabsch
algorithm. This results in a loss per cluster that is defined as the difference
between the transformed instance and its corresponding flow. The loss per
instance is defined as

Linstance = 1
|Ct,i|

∑
k

∥(Rpk + t) − (pk + fk)∥ (2.21)

where fk is predicted flow, R, t is a rigid transformation from Kabsch and
Ct,i represent the cluster i from time t. This weakly supervised approach has
been demonstrated to outperform the state-of-the-art motion flow networks
at that time. [7]

2.3.9 SLIM (Oct 2021)

In this model, the authors were motivated by the potential benefits derived
from the disparity between ego motion and raw flow predicted by neural
network and also get inspiration from the RAFT [22], which is also part of
the model. To address the disparity, they propose a novel model capable of
predicting motion flow and motion segmentation. Notably, this represents
the first instance of a self-supervised model with the ability to predict motion
segmentation. [1]

The model is utilized in the experiments, thus it is described in detail in
section 3.3.

16



............................................2.3. Models

2.3.10 RigidFlow (Jun 2022)

The authors of RigidFlow proposed an alternative method to previously
mentioned, which posits that a real-world scene can be effectively represented
as an aggregation of rigidly moving regions. Drawing inspiration from this
notion, they developed a technique for generating pseudo labels through
piecewise estimation of rigid motion. This technique involves breaking down
the current pointcloud into invidual regions, with each region being treated
as an independent rigid component. Their proposed pipeline involves the
generation of pseudo labels for self-supervised learning, which are then used
to train the model using traditional supervised losses. [14]

The authors claims that conventional self-supervised learning techniques
rely on pointwise similarity measures, which are prone to inconsistency in
capturing potential motion flow. To address this issue, the authors propose
an oversegmentation approach, where the current pointcloud Pt is divided
into supervoxels, which are treated as rigid components. By analyzing
the movement of each supervoxel, the authors attempt to determine the
corresponding rigid transformation. From the rigid transformation they are
able to find the flow for current supervoxel as

fi = (Tt→t+1 − I4)pi (2.22)

where Tt→t+1 is a found rigid transformation. By combinating of flows from
all supervoxels, they obtain the flow for all points in the current pointcloud
Pt. [14]

To determine the rigid transformation, the authors employ the iterative
closest point (ICP) algorithm [2]. Nevertheless, the success of ICP relies on
good initialization, which the authors tackle by leveraging a trained neural
network. Subsequently, the authors obtain the final rigid transformation after
a few iterations of the ICP algorithm. Once the pseudo labels are generated,
the authors train a neural network using a loss function defined as follows

Lsup = 1
|Pt|

∑
i

∥fi − fi,ps∥1 (2.23)

where the fi,ps is a pseudo label for the corresponding flow. For their
experiments they choosed a neraul network FLOT [18] a they were able to
achieve the state-of-the-art performance among self-supervised predictors of
motion flow. [14]

2.3.11 OGC (Oct 2022)

OGC represents a new approach to 3D instance segmentation that is distinct
from prior models in that it is the first self-supervised method. Although
it is not explicitly designed to improve motion flow, the authors utilize the
dynamic motion of objects over sequential data to enhance object segmenta-
tion. However, the motion flow can also benefit from the object segmentation.
The approach involves a pipeline composed of three main components: an
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Figure 2.10: Overall view on pipeline incorporated in OGC [20]

object segmentation network that estimates multi-object masks from a sin-
gle point cloud frame, a self-supervised motion flow model, and an object
geometry consistency component, where the all optimization is done. By
combining these components, OGC can achieve state-of-the-art performance
in self-supervised 3D object segmentation. [20]

In the fig 2.10, can be seen, that the object segmentation module employs
PointNet++ [19] for the extraction of per-point features. These features
are subsequently utilized in conjunction with the Transformer decoder to
generate an object mask. We denote the object mask for point cloud Pt as
Ot. The pipeline involves the generation of flow between two consecutive
point clouds Pt, Pt+1. The resulting flow, denoted as Mt to followed the
same notatin as in fig 2.10. The authors employ the FlowStep3D model [11]
for flow prediction. To train the flow predictor and object segmentator, the
autors proposed three losses to work together. [20]

Geometry Consistency over Dynamic Object Transformations. The initial
predictions for mask Mt have meaningless information and requires optimiza-
tion. The proposed principle follow the loss presented in 2.3.8. Assuming the
rigidity of all objects, the motion of each instance (based on the segmenta-
tion mask) can be characterized by a rigid transformation. To compute the
transformation matrix for each object, the authors employ a differentiable
weighted Kabsch algorithm. This algorithm determines the transformation
between Pt and Pt + Mt, considering the weights Ot. The loss function is
then defined as

Ldynamic = 1
|Pt|

∑
i

∥∥∥∥∥
(∑

k

oik(Tik · pi)
)

− (pi + fi)
∥∥∥∥∥

2

(2.24)

where oik and Tik represents the object mask and rigid trasnformation of the
kth cluster. This loss function must be employed in conjunction with another
loss function, because one of the solutions may result in the oversegmentation
of the pointclouds, which is an undesiarable local minima [20].

Geometry Smoothness Regularization. To address the issue of oversegmen-
tation, the authors implemented a smoothing technique by employing KNN
spherical queries instead of the classical KNN approach. By performing these
queries, they were able to select all points within a given neighborhood. The
goal of this loss function is not to smooth the flow, but rather to ensure the
consistency of the mask Ot in the space. [20]
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Geometry Invariance over Scene Transformation. Lastly, they proposed a
loss function aimed at enhancing the generalization of predictions. While the
aforementioned two loss functions can effectively segment dynamic objects
independently, they will have difficulties with similar objects exhibiting zero
motion.

Two distinct rigid transformations are applied to the point clouds Pt in
order to generate two augmented point clouds Pt,v1 and Pt,v2 . Subsequently,
these augmented point clouds serve as an input into an object segmentation
network, resulting in masks Ot,v1 and Ot,v2 . The utilization of the Hungarian
algorithm [12] creates a one-to-one matching of individual masks within
Ot, v1 and Ot, v2. As a consequence, the masks are reordered to Ôt, v1 and
Ôt,v2 to have same points in the same indexes. These reordered masks are
subsequently employed in the calculation of an invariant loss function as

Linvariant = 1
|Pt|

∑
i

d(ôt,i,v1 , ôt,i,v2) (2.25)

where the functions d(−) represents L1, L2 or cross entropy loss. This loss
motivates the estimation of an object mask that the prediction should be
invariant with different views on the point cloud Pt [20].
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Chapter 3
Methods

3.1 Datasets

We mainly focused on predicting motion flow in real-world scenarios, specifi-
cally targeting the automotive domain. Therefore, we selected the Waymo
Open Dataset [9], NuScenes [3], and Raw Kitti [6] as our primary datasets.
Notably, we intentionally refrained from utilizing commonly employed arti-
ficial datasets such as FlyingThings3D [16], as our focus was on addressing
challenges associated with automotive applications of motion flow prediction.

However, the automotive datasets are large scale established dataset, they
do not have in majority a scene flow label, therefore the label needs to be
created artificially. Additionly, most of the approaches to predict motion flow
from real scenes suffers from scanned ground. We followed the commonly
used trick to remove the ground from the scene by naivelly cropping the scene
in z coordinates over threshold.

3.1.1 Motion Flow label creation

The process of label creation involved utilizing 3D bounding boxes equipped
with unique identifiers for every individual point within the point cloud. This
approach relied on the presence of existing labeled and tracked objects within
the LiDAR data sequences. Initially, the static flow, resulting from the ego’s
movement is computed as

fi = (Tt→t+1 − I4)pi (3.1)

for each point from Pt.
By assuming that labeled objects are rigid, we can leverage the 3D bounding

boxes to circumvent the pointwise correspondence problem between the two
consesituve frames for the dynamic object in the scene. We synchronize the
two consecutive pointclouds and the flow for the dynamic objects is computed
as a displacement of the corresponding bounding box over the time duration.
The approach have drawbacks as that we assumed that each object is rigid or
it is captured in the previous frame. Also, some rare moving objects do not
have bounding boxes and are belonging to the "background" class without
movement. [9]
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(a) : Original pointcloud

(b) : Cropped pointcloud in z coordinate

Figure 3.1: Visualization of the Waymo dataset with and without the ground

3.1.2 Waymo Open Dataset

Waymo Open Dataset for motion flow is a large-scale dataset containing
high-resolution LiDAR pointclouds captured in diverse urban and suburban
environments. The dataset contains 130,272 train samples and 6368 validation
frames, which were used as test samples.

The data were captured with five LiDAR sensors at 10 frames per second
with 360-degree view. The scanning vehicle was equiped with one mid-range
sensor on the top and four short range on the front, left side, right side, and
rear of the vehicle. The original pointcloud and the cropped pointcloud used
for train are pictured in fig 3.1.
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3.1.3 Kitty Raw Dataset

The KITTI raw dataset is a well-known dataset for autonomous driving re-
search, which comprises a large number of synchronized sensor measurements,
including high-resolution images, 3D point clouds, and GPS/IMU data. The
dataset was collected in and around the city of Karlsruhe in Germany, where
the sequnces were captured at various times of the day and under different
weather conditions, which provide a diverse set of driving scenarios. Neverthe-
less, the raw dataset used in our study lacks bounding box annotations. As
a result, we restricted the usage of this dataset only for training phase. We
are aiming to assess the domain transfer performance between two distinct
datasets captured using different lidar sensors. This shows the model’s ability
to generalize across varying sensor characteristics. [6]

3.1.4 NuScenes

NuScenes dataset is a highly comprehensive dataset aimed at autonomous
driving research. It provides a diverse range of real-world traffic scenarios
recorded from various sensors, such as cameras, lidars, and radars. The autors
collected of total 1000 driving scenes in Boston and Singapure, which are
well-known for their dense traffic and challenging driving situations.

The pointclouds were scanned using a 32 beam LiDAR sensor at 20 Hz.
This lead to domain shift in sparsity of the data and distribution shift with
comparison with KITTI or Waymo Open Dataset.

Despite providing high-quality sensor data the original NuScenes dataset
does not include point-level motion flow labels. Nevertheless, we followed
the same principle as for Waymo Open dataset, where we used approach
described in section 3.1.1. [3]

3.2 Metrics

We used the established evaluation metrics in order to compare performance.
In the itemized list of the metrics, we used the eei as a endpoint error in
cartesian space for corresponding flow fi..AEE - The endpoint error (EE) is calculated across all points. It is used

as the primary metric and the calculation is

AEE = 1
N

N∑
i=0

∥fi − fgti∥2 = 1
N

N∑
i=0

eei (3.2)

.AccS - measures the ratio of points where the EE is less than 0.05 or
the relative error is less than 0.05 m

AeeS = 1
N

N∑
i=0

(
[eei < 0.05] ∨

[
eei

∥fgti∥2
< 0.05

])
(3.3)
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.AccR - measures the ratio of points where the EE is less than 0.1 or

the relative error is less than 0.1.

AeeR = 1
N

N∑
i=0

(
[eei < 0.1] ∨

[
eei

∥fgti∥2
< 0.1

])
(3.4)

.Outl - measures the ratio of points where the EE is greater than 0.3 or
the relative error is greater than 0.1

Outl = 1
N

N∑
i=0

(
[eei > 0.3] ∨

[
eei

∥fgti∥2
> 0.1

])
(3.5)

.ROutl - measures the the ratio of points where the EE is greater than
0.3 and the relative error is greater than 0.3

ROutl = 1
N

N∑
i=0

(
[eei > 0.3] ∧

[
eei

∥fgti∥2
> 0.3

])
(3.6)

We also adopted a similar approach as presented in SLIM [1], wherein
the performance evaluation was conducted separately for static and dynamic
points. This division was motivated by the substantial imbalance observed
between the static and dynamic components within each dataset. To mitigate
this issue, they introduce a threshold, denoted as mthresh, to divide the
ground truth flow for static and dynamic. More precisely, ground truth flow
is subtracted with flow from odometry as

fstat/dyn = fgt − (Tt→t+1 − I4) pi (3.7)

fstat/dyn =
{

dynamic fstat/dyn > 0.05
static, otherwise

(3.8)

where values fstat/dyn exceeding mthresh = 5cm are labeled as dynamic and
conversely. The threshold corresponds to a velocity of 1.8km

h . Furthermore,
they introduced a metric AEE50−50, which represents the mean of AEE
computed for static and dynamic flow.

3.3 Model

For our experiments we choose the SLIM framework [1] which shows good
results and incredible generezability across the dataset. Furthermore, the
model has the capability to simultaneously predict flow and perform motion
segmentation within a single forward pass and effectively integrating these
two components.
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3.3.1 Architectucture

The network is compose from three components: Point Cloud Encoder, Flow
backbone and final output Decoder.

Point Cloud Encoder. Initially, the input pointclouds Pt and Pt+1 are
cropped to a square of |x, y| ≤ 35m, where x and y represent the horizontal
axes. This cropping step removes the farthest part of the scene, where
reasoning becomes challenging due to sparse data.

We create a pseudo image with dimensions of 640 pixels by 640 pixels, this
transformation represents the discretization of pointclouds into the pillars,
as introduced in the PointPillars [13]. This discretization corresponds to a
pillar size of approximately 11 centimeters. The centers of each pillar are
then computed. Subsequently, each cropped pointcloud is encoded into 6D
embeddings to pseudo image, consisting of {PCx, PCy, PCz, OFx, OFy, OFz},
where PC denotes the coordinates of the center of the pillar where the points
correspond, while OF represents the offset from this center in each coordinate.
An alternative approach involving a 8-dimensional embedding, where the
additional features are an intensity and elongation, this embedings was also
explored. [1]

The resulting pseudo images are processed by the Pillar Feature Net-
work, resulting in Pillar Embedings denoted as It, It+1 ∈ R64×640×640. The
Pillar Feature Network consists of a simple linear layer followed by batch
normalization and rectified linear unit (ReLU) activation. [1]

Figure 3.2: Oveview of the SLIM architecture

Flow Backbone. By transforming the point cloud data into pillar embeddings,
the authors were able to directly apply the RAFT [22] architecture to the
It, It+1 pillars embeddings.

Firstly, each pillar embedding is processed by a Feature Encoder, resulting in
a latent space representation of the embeddings denoted as At and At+1, both
of which have dimensions of R128×80×80. The Feature Encoder is constructed
by composing three residual blocks followed by a convolutional layer. Instance
normalization is used as the normalization layer. It is important to note that
both It and It+1 (the pseudo images) are processed by the same encoder,
meaning that the encoder shares its weights between the two inputs.
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Figure 3.3: SLIM update block

The Context Encoder, in contrast to the Feature Encoder, takes only the
It pillar embeddings as input. The architecture of the Context Encoder is
identical to that of the Feature Encoder, with the only difference being the
exclusion of a normalization layer.

The correlation function and its implementation follow a same approach as
described in Section 2.3.4. A crucial component of the backbone architecture
is the update block, which is similar to the one depicted in fig 2.6 of the
RAFT architecture.

To handle motion segmentation and generate weights for weighted Kabsch,
two new signals are incorporated into the update block depicted in fig 3.3.
The input to the Kabsch algorithm can be weighted based solely on the
static class probabilities obtained from the softmax operation. However, the
accuracy of predicted flow can vary significantly in a scene, particularly when
dealing with featureless surfaces that are not suitable for flow estimation. To
address this issue, the authors introduce the weights logits. They show that
this improve the performance of predicting the odometry in their experiments.
All logits and flow are initialized to zero at the beginning of the new input
passed to the model. [1]

Output Decoder. After six iterations of the update block, the resulting
tensor has a shape of [batch size, 7, 80, 80], where the last two dimensions
correspond to the dimensions of the pillars. In order to achieve a consistent
shape for the output, RAFT applies bilinear upsampling to upscale the tensor
into the shape [batch size, 7, 640, 640]. The tensor consists of seven channels,
which are interpreted as follows: two channels for motion segmentation logits
(static and dynamic), four channels for the two flow components (static and
dynamic), and one channel for the weights.

The segmentation logits are passed into softmax layer to normalize the
prediction of each class. We reffered these normalized logits as staticness and
dynamicness. To prepare the weights for Kabsch algorithm, the staticness is
masked based on whether the pillar in staticness was occupied by any point
or not. Next, the sigmoid activation function is applied to the weights, to
maps it into a range between 0 and 1. These weights are then multiplied
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element-wise with the masked staticness and the tensor is normalized to sum
up to 1. This tensor results in the final weights passed into Kabsch algorithm
[1].

The Kabsch algorithm operates in a manner similar to the description
provided in Section 2.1.1, but with the key difference that each point in the
calculation is weighted, so as an input the algorithm takes the point-wise
static flow, pointcloud Pt, along with the corresponding point-wise weights.
By incorporating the weights during the Kabsch transformation, the algorithm
effectively takes into account the importance or significance of each point in
the static flow, resulting into a single static aggregated flow that represents
the vehicle’s odometry and minimizes the objective as

Tt→t+1 = argminT ∈R4×4
∑

i

wi ∥(T − I4)pi − fi∥2 (3.9)

where wi is computed weight and fi corresponding static flow. It should
be noted that the objective function employed in the minimization process
specifically focuses on minimizing the static flow, while excluding the current
point cloud Pt+1 from consideration. Consequently, there is a potential risk
of obtaining a static flow value of zero, which in turn would result in a zero
odometry estimate.

All outputs are transformed into point-wise representation. The final flow
denoted as aggregated flow is composed from static aggregated (flow from
computed estimated odometry) and the raw flow (dynamic flow from raft).
We decide which flow to take based on the comparison the dynamic logits
after softmax campared to classification threshold. The aggregated flow is

faggri =
{

(Tt→t+1 − I4)pi if clsdyn ≥ pstat

frawi if clsdyn < pstat

(3.10)

where clsdyn is dynamic logits after softmax and pstat is classification
threshold. The classification threshold is an online mechanism for iteratively
adjusting the threshold during training. This is achieved by tracking a moving
average of the global classification threshold. [1]

3.3.2 Losses

The network’s capability to predict motion segmentation allows the intro-
duction of novel self-supervised losses to enhance the regularization of the
training phase.

Nearest Neighbor Loss. In particular, the authors utilize a well-established
self-supervised loss called the nearest neighbor loss, described in section 2.2.1.
This loss is applied to both flows, the raw flow (generated by RAFT) and the
static aggregated flow (from the Kabsch algorithm).

The final NN loss is as

Lnn = 1
∥Pt∥

∑
i

ei(fraw) + ei(fstataggr) (3.11)
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where ei() is an error function defined in equation 2.3.

Rigid Cycle Loss. Authors of SLIM proposed Rigid Cycle Loss. This
approach was motivated by the successful use of cycle consistency losses in
recent applications [23, 17]. The network is applied not only to the original
pair of point clouds (Pt, Pt+1) to predict transformation matrix, but also in
the reversed order (Pt+1, Pt) to predict the inverse rigid motion Tt+1→t. The
expected outcome of applying these transformations to the previous frame
is to ensure that the frame is in the same position as before, because these
two rigid transformation should be inverses of each other. To evaluate the
error, both transforms are applied to the input point cloud and the resulting
position is compared to original one. [1]

The rigid cycle loss is defined as

Lrcc = 1
|Pt|

∑
pi∈Pt

|(Tt+1→tTt→t+1 − I4) pi| (3.12)

where Pt is the original pointcloud and Tt→t+1 and Tt+1→t are transforma-
tion matrices produces by Kabsch algorithm.

The rigid cycle loss exhibits numerous local minima, such as zero matrices,
thus necessitating the regularization of networks through the incorporation
of additional losses.

Artificial Label Loss. Lastly, they proposed the Artificial Label Loss, which
is used to train motion segmentation for static and dynamic classes. Its
purpose is to guide the network in predicting the correct class for each point
and also to decide whether to use static flow or dynamic flow. The loss is
closely related to the nearest neighbor loss, as the decision for pseudo-labels
is based on errors from static and dynamic flow. If the error from static flow
is smaller, it is assumed that the semantic label of this point is static, and
vice versa. The standard binary cross-entropy loss is used, which relies on
artificially assigned labels depending on the relative magnitudes of the NN
errors. The loss is defined as

Lal = −
∑

pi∈Pt

[edyni
< estati ] log σ (lcls,i)

+ [ei ≥ er,i] log (1 − σ (lcls,i))
(3.13)

where estati is an error from nearest neighbor loss for static flow and lcls,i

is semantic class produced by the model. [1]

3.3.3 Baseline

We aimed to integrate the model into a larger self-supervised pipeline that is
currently being developed. The authors of the original work provided Tensor-
Flow code, but our requirement necessitated the model to be implemented
using the PyTorch framework. Consequently, we decided to implement the
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type AEEDyn ↓ AEEStat ↓ AEE50−50 ↓
official 0.1050 0.0925 0.0988
ours 0.2207 0.0799 0.1503

Table 3.1: Comparing our implementation with the official on Nusncenes dataset.

model from the scratch based on the details provided in the paper1. As a
result, there may exist minor variations in the implementation from the oficial
version.

We used the subsampled pointclouds, for faster training and inference of
the model. We reduced each input pointcloud to 8192 points. The authors
themselves experimented with this subsampling approach and observed that
the model was capable of learning relevant features even when applied to these
subsampled point clouds. However, it was noted that there was a decrease in
performance, but employing the complete point cloud results into significantly
longer training time.

We also followed the same optimization process, which is consisted of two
steps: firstly, the prediction of flow from time t to t + 1, followed by the
reverse mode prediction. This two-step approach facilitated the acquisition of
forward-backward odometry, which was subsequently employed for the rigid
cycle loss computation.

For the purpose of comparing the different implementations, the authors
conducted their study also using a Nuscenes dataset, but excluding the uti-
lization of the Waymo dataset. They achieved an average endpoint error of
0.0925 on static points, whereas our approach yielded an average endpoint
error of 0.0799. While these results appear promising, the author’s imple-
mentation resulted in an AEE of 0.1050 on dynamic points, compared to our
implementation which get an average endpoint error of 0.2207. The results
are depicted in table 3.1.

Our training process involved utilizing subsampled point clouds consisting
of 8192 points. Unfortunately, the authors did not provide information
regarding the number of points used in their training process. However, we
think that they employed the full point cloud, as a bigger number of points has
been shown to enhance scene understanding and consequently get improved
results. Despite knowing the fact, the computional requirements dramatically
increase with increased number of points in point cloud, thus we did not used
bigger amount number in the pointclouds.

We have also observed that our model encounters problems in correct
segmentation, resulting in incorrect flow assignments. Consequently, this
leads to wrong outcomes for dynamic objects. In an attempt to enhance
the segmentation process, we implemented several upgrades, which will be
discussed in subsequent sections.

1Codes are available on https://github.com/simonpokorny/MotionFeatureLearning
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(a) : Histogram of discretized endpoint
error for the our Baseline (blue) and Of-
ficial setup (red).

(b) : Differences between the histograms
by subtracting the histogram of of the
official setup from the our baseline.

Figure 3.4: Analysis of endpoint error: Official setup vs. our baseline on Waymo
Open Dataset

type AEE ↓ AccR ↑ AccS ↑ Outl ↓ OutlR ↓
official 0.0701 0.8673 0.7513 0.3012 0.0354

baseline 0.0644 0.8629 0.6918 0.3008 0.0267

Table 3.2: Comparing the models with default and added losses, where we add
smoothnes and static point loss; both are trained and tested on the waymo
dataset

The original architecture only incorporates three mentioned losses: the
Artificial Label Loss, Rigid Cycle Loss, and Nearest Neighbor Loss. These
losses are assigned weights of 2, 1, and 0.1, respectively. This choice of
weights is motivated by the observation that the most reliable pseudo labels
are obtained through the nearest neighbor approach, which effectively work
alongside with the rigid cycle loss. In cases where one loss reaches a degener-
ative minimum and is zero, the other loss is very high. The pseudo labels
generated by the artificial label loss is improving during the training process;
however, it remains challenging to determine with high probability the correct
labels based on the conditions utilized within this particular loss function.

However, in order to enhance the original model, we incorporate two
additional losses: the Smoothness Loss (see 2.2.2) and the Static Point Loss,
which will be described in the next section. We posited that the integration
of these losses would improve the performance. Table 3.2 demonstrates that
these losses yielded to imporoved results in AEE metrics. Thus, we established
the configuration as the baseline for subsequent experiments, resulting in
total loss as

Ltotal = Lnn(Fraw) + Lnn(Frigid) + Lrcc + 0.1 · Lal + Lspl + Lsmooth (3.14)

where first two losses are Nearest Neighbor losses on raw flow from RAFT
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and on rigid flow from Kabsch algorith, then Rigid Cycle loss, Artificial label
loss, Static point loss and Smoothness loss.

As depicted in fig 3.4, we have observed an increase in the count of data
points exhibiting endpoint error ranging from 0 to 0.01 m. However, we have
also noted a decrease in the number of points with endpoint error in range
from 0.03 to 0.1 m. Moreover, a significant portion of these points falls within
the previously mentioned interval of 0 to 0.01 m.

We also conducted a study how the adding additional channels as inten-
zity on the imput influence the performance. We used the Waymo official
pointclouds, where are 5 features [x, y, z, elongation, intensity].

inputs AEE ↓ AccR ↑ AccS ↑ Outl ↓ OutlR ↓
3 features 0.0644 0.8629 0.6918 0.3008 0.0267
5 features 0.0939 0.7937 0.6218 0.3462 0.0494

Table 3.3: Comparing models trained and tested on Waymo: xyz-only versus
xyz with elongation and intensity.

The results depicted in table 3.3 demonstrate that only utilizing the input
feature ’xyz’ yields better performance. However, the underlying reasons for
this outcome remain uncertain, as the necessitating further investigation and
analysis. We suspect that intensity values change based on frame-to-frame
view point and obeservation angles and therefore unexpectedly change the
estimates for flow.

Lastly, we evaluate the analysis of the domain transfer, wherein the model
was trained on the Raw Kitti dataset [6] and then evaluated on the Nuscenes
[3] and Waymo [9] dataset.

tested on AEE ↓ AccR ↑ AccS ↑ Outl ↓ OutlR ↓
Waymo 0.0676 0.8784 0.7734 0.2563 0.0332

Nuscenes 0.0903 0.8105 0.6651 0.3235 0.0669

Table 3.4: Results of the models trained on the raw kitti train dataset and
tested on Waymo

The numbers from table 3.4, demonstrate that the model is able generalize
across the multiple datasets, despite the fact, they were captured with different
LiDAR sensors or even with different frequency. Furthermore, it is apparent
that the model trained on the Kitti dataset exhibits comparable performance
to the model trained on the Waymo dataset, as their evaluation was done on
the Waymo dataset.

3.3.4 Static Point Loss

This loss is used in our baseline implementation for the SLIM architecture.
The model utilize RAFT for obtaining the raw static motion flow and a
Kabsch algorithm for computing the static aggregation flow based on semantic
segmentation and the static flow. The goal of this loss is to improve the
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accuracy of the static flow by encouraging the RAFT to produce a more
homogeneous and smooth static flow. The loss is computed as a weighted
mean square error, where the weights wi correspond to the semantic class of
each point indicating how much static is it. The static aggregation flow is
compared to the raw static flow as follows

Lspl = 1
|Pt|

∑
pi∈Pt

wi ∥fstataggi − fstati∥
2 (3.15)

where fstataggi is the static aggregation flow for point pi and fstati is the
raw static flow for the same point. The optimization of this loss results in
improved static flow estimation and consequently better odometry. [1]

3.4 Leveraging the Temporal Structure of the Data

To enhance the performance of the model, novel loss functions for self-
supervised learning on point cloud data are introduced. These losses are
specifically designed to leverage the sequential nature of the data, thereby
providing additional signals for improved self-supervision.

3.4.1 Velocity Loss (VC)

To the best of our knowledge, there is no approach specifically addressing the
regularization of flow within sequential data, taking into consideration the
sequential nature of automotive datasets. To accomplish this, we propose a
strategy in which we grouped four consecutive images at times t−2, t−1, t0, t1,
resulting in three pairs: (t−2, t−1), (t−1, t0), (t0, t1). This approach eliminates
the need to modify the model’s architecture. Instead, we feed each pair into
the model individually, optimizing the model’s parameters after all three
pairs have go through the forward-pass as it is pictured in fig 3.5a.

Through the forward pass of these paired sequences, we obtain three distinct
flows and corresponding predictions of odometry. During our experimental
analysis, we observed that the rigid transformation achieves high accuracy
within a few iterations in the original SLIM. Consequently, we can rely on it as
a solid prediction for true odometry after this initial convergence. To leverage
this observation, we synchronized all four point clouds using these predictions,
resulting in a sequence of four consecutive frames. Fig 3.5b visually illustrates
the projected flow alongside the corresponding points within this synchronized
point cloud. In our notation, the pointcloud used to predict the flow for t0 is
represented in blue, while the subsequent point cloud is shown in red. The
point cloud and flow for t−1 are depicted in green, and for t−2 is in yellow.

The number of scanned points in each frame varies, leading to a non-bijective
mapping of flow between frames. However, we assume that the scanning
density within the automotive datasets is sufficiently high. Therefore, even if
a point does not have a direct correspondence in another frame, it is likely to
have a similar point within its close neighborhood. To address this problem,
we employ point matching across the sequence, leveraging the flow information.
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(a) : How the pairs are created
and the prediction of the sequntial
SLIM

(b) : Synchronized frames and their
visualization of the flows

(c) : Chained flows, the gray discol-
oration represent one chained flow

(d) : Angles between the chainned
flows

Figure 3.5: Overall visualization for Time Consistency Loss

We consider the point cloud at time t0 as our anchor. By using a nearest
neighbor function, we identify the corresponding matched points in frame t1
by finding the closest neighbors to the points in t0 based on their associated
flow vectors. Similarly, we perform this matching process in reverse, seeking
the closest neighbors for points from t0 in the point cloud at t−1 using their
corresponding flow vectors. Additionally, we apply a similar approach to find
the closest neighbors for points in t−1 within the point cloud at t−2 with
their flow vectors. This ensures that we establish correspondences across
consecutive frames, enabling a comprehensive mapping of points throughout
the sequence. The resulting mappings, referred to as chained flow, is visualized
in fig 3.5c. As depicted in the figure, it is evident that certain chained flow
mappings have identical correspondences at certain points in time. This issue
is inevitable and cause that the some points will have not any loss a thus no
gradients will not be propagete from these points.

We compute the angles between correspondings flows in each chained flow
by utilizing the atan2 function on their respective x and y coordinates. This
calculation yields two angles for each chained flow,see fig 3.5d. Given that the
datasets are captured at a frequency of 10Hz or 20Hz, the four consecutive

33



3. Methods............................................
frames represent a duration of 0.4 seconds or 0.2 seconds, respectively. Within
this small time frame, the directional changes are expected to be smooth. We
then put these angles to mean squeare error as

Langle = MSE(θi0, θi1) (3.16)

for each chained flow i.
Furthermore, we extend the assumption of smooth flow to the magnitude of

the flow vectors within this small time frame. The change between the pairs
(t−2, t−1) and (t−1, t0) should also exhibit a smooth behavior. We make the
assumption that we are capturing a dynamic rigid object, where the velocity
derivative within this time frame remains constant. Resulting in the velocity
loss as

Lvelocity = MSE(∥fit−2∥2 − ∥fit−1∥2, ∥fit−1∥2 − ∥fit0∥2) (3.17)

where index i correspond to chained flow and t to capturing time of flow.

3.4.2 Dynamic Consistency Loss (DC)

We also want to utiliaze the sequntial data to create pseudo labels to further
improve the motion segmentation. After the scene synchronization of four
consentivice frames by predicted odometry, it can be shown that static obejct
stays in the same pillars, however we want to make extra pseudo labels
for dynamic objects. As it is visualize in fig 3.6, the moving car on the
pillars change it position in the time. We are able to make relatively strong
assumption about points on the front and the back of the car. We will also
employ the chained flow. If every flow in one chained flow is heading to
unoccupied pillar or heading from occupied and the pillar will be in the next
frame unoccupied, we can assume that were the edges of the moving vehicle.

In order to leverage these identified points, we attempted to update only
these specific points, resulting in a small subset of points assigned with this
pseudo labels. We do not extend this information into some clusters, beacuase
this approach makes weak pseudo labels, as it heavily depends on the correct
predicted odometry. Additionally, this method generates labels not only for
dynamic objects, but also for the ground, as the curvature of the Waymo
dataset surface need more sophisticated approach to remove all ground points,
while the naive cropping of the pointcloud in z coordinates do not remove all
ground points.

3.4.3 Experiments

For the setup involving the use of consistency losses, we begin training with
the baseline model, which was trained using only 25,000 training update
iterations. This checkpoint provides accurate predictions of the odometry.
The effectiveness of consistency losses relies heavily on accurate odometry
predictions during their pseudo creation or training regularization. However,
these methods cannot be trained directly from the beginning in the final

34



.......................... 3.4. Leveraging the Temporal Structure of the Data

(a) : t−2 (b) : t−1

(c) : t0 (d) : t1

Figure 3.6: Behavior of the dynamic object in synchronized pointclouds on the
pillars.

setup. Once the consistency losses are added, they do not harm the training
process and are not prone to encountering degenerative minima. However, the
chained flow has not been correct, and it can create incorrect regularizations.
We trained the model on additional 50,000 train iterations, incorporating
losses from the baseline along with an additional consistency loss.

type AEE ↓ AccR ↑ AccS ↑ Outl ↓ OutlR ↓
Baseline 0.0566 0.8904 0.7579 0.2839 0.0245

VC 0.0529 0.9122 0.8108 0.2837 0.0248
DC 0.0876 0.8100 0.5252 0.3361 0.0324

Table 3.5: Standard metrics for consistency methods; baseline is trained with
75,000 iterations, while the models with consistency losses are initialized with
baseline trained for 25,000 iterations and then trained for 50,000 iterations.

As observed in tab 3.5, the model trained using Velocity Loss (VC) out-
performed the baseline model in various metrics, particularly in AccR and
AccS. This indicates that the model is capable of refining the flow to ensure
temporal consistency, resulting in slightly improved results with a higher
proportion of smaller endpoint errors. However, it fails in predicting the
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segmentation, as demonstrated in tab 3.6. The performance of this setup was
notably poor in terms of average endpoint error for dynamic objects, while
the segmentation predicted static flow.

type AEE ↓ AEEDyn ↓ AEEStat ↓ AEE50−50 ↓
Baseline 0.0566 0.1751 0.0516 0.1134

VC 0.0529 0.3509 0.0402 0.1955
DC 0.0876 0.1173 0.0864 0.1018

Table 3.6: Separete metrics for dynamic and static parts for consistency methods.

The Dynamic Consistency loss (DC) primarily aims to regularize the
segmentation in order to enhance the assigments of the flow. This improve-
ment led to a decrease in average endpoint error on dynamic objects by
approximately 5 cm. This improvement results from the better segmentation.
However the static flow performs worse, because the model’s predictions for
dynamic classes were more accurate, but it occasionally mislabeled static
areas as dynamic resulting in worse static flow.

3.5 Object Classification Consistency

It has been observed that motion segmentation predictions often fail to
consider the continuity of objects. This issue is particularly noticeable in the
case of cars, where the majority of points belonging to a car may be predicted
as dynamic, while certain parts are classified as static. An example of such
an wrong prediction can be seen in fig 3.7, where the front part of the car is
inaccurately classified as static. This leads to significant errors due to the
substantial disparity between the static aggregated flow obtained through the
Kabsch algorithm and the dynamic flow estimated using the RAFT method.
Conversely, when the network incorrectly predicts dynamic motion as static,
the resulting error is comparatively smaller, as the dynamic flow can still
provide a rough estimation of the flow for static objects.

In order to tackle the aforementioned issue, we have introduced a refinement
module that serves as a non-learnable refinement layer. This module is only
activated during the evaluation mode. Moreover, we aimed to address this
inconsistency of classification during the training phase as well. To achieve
this, we tried to enhance the artificial label loss that was originally proposed
in SLIM [1].

Both approaches need to utilize instance segmentation to address the prob-
lem. Our objective does not involve training an additional model component
for precise instance prediction, because the methods have not required ac-
curate instance classification. They can effectively handle oversegmented
pointclouds, thus we integrate the DBSCAN algorithm [4]. The results from
the algorithm is pictured in fig 3.8.
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(a) : Prediction without refiment module (b) : Prediction with refiment module

Figure 3.7: Motion segmentation, where the front portion of the car is inaccu-
rately classified as static (static aggregated flow is used for these points) and the
segmentation with Refiment module

3.5.1 Self-supervised Refinement Module

We attempted to incorporate the refinement module, although the absence
of labels do not allowed us follow the aproaches employed in previous works
such as Non-Rigid Residual Flow and Ego-Motion, FlowNet3D or PV-RAFT
[23, 15, 24]. In those studies, the authors utilized refinement training to
fine-tune the last few convolution layers in order to enhance and refine the
flow. To circumvent this limitation, we proposed a refinement module that
does not require any training.

The self-refinement module can operate on the top of the motion flow
network. Our model predicts both the static aggregated flow and the raw dy-
namic flow for each point. Subsequently, we apply a self-supervised DBSCAN
algorithm to cluster the point cloud. The clustering results are illustrated in
fig 3.8. For each cluster, we make a decision regarding which flow (static or
dynamic) to utilize as

fcluster = arg min
{fstataggr,fdyn}

1
|Cj |

∑
i

(NNPt+1(pi + fi) − (pi + fi)) (3.18)

where |Cj | is number of points in the cluster and the sum is over the
all point in cluster. Then, we select the flow that has a smaller nearest
neighbor distance within each cluster. For points that are not clustered by
the algorithm (i.e., noise points), a conventional classification approach is
employed. Through the utilization of this refinement module, the flow and
motion segmentation should to exhibit increased rigidity and homogeneity
within the clustered objects, leading to improved predictions.

3.5.2 Object Aware Artificial Label Loss

The Artificial Label Loss proposed in the SLIM framework, developed by the
authors, does not consider the object’s homogenity and rigidity. The creation
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Figure 3.8: Cluster pointcloud with DBSCAN [4]; the noise is light green and
othres colors represent the clusters

of pseudo labels for motion segmentation is based on the smaller nearest
neighbor distance between the static aggregated loss and the raw dynamic
flow, performed on a point-wise basis. In an effort to enhance the scene
description, we have extended this loss. Firstly, we cluster the pointcloud
using self-supervised DBSCAN algorithm, as depicted in figure 3.8. For noise
points, the loss behaves as a typical artificial label loss. For clustered points
the decision differs in that a single pseudo label is created for each cluster,
rather than on a point-wise basis. The selection of the pseudo label for cluster
follows a similar approach, where the flow with a smaller nearest neighbor
distance over all points in cluster is chosen as the representative class for the
cluster.

We also considered the object’s rigidity. The flow should should have the
same characteristics within the cluster, and therefore, we also attempted
to utilize L2 regularization for all flows within the cluster. As a pseudo
label, we employed the mean value from all flows within the cluster. This
minor enhancement is referred to as the Object Aware Artificial Loss with
Smoothness.

3.5.3 Experiments

We replicated the training configuration employed in training the baseline
model. The refinement module utilized the baseline model as the underlying
model for conducting refinement. In the Object-Aware Artificially Label Loss,
the classical Artificial Label loss was replaced with an improved loss function.
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type AEE ↓ AccR ↑ AccS ↑ Outl ↓ OutlR ↓
Baseline 0.0644 0.8629 0.6918 0.3008 0.0267

Refine Module 0.0540 0.8909 0.7678 0.2756 0.0224
Object Aware AL 0.0645 0.8585 0.6988 0.2999 0.0279

OAAL with Smoothness 0.0647 0.8407 0.6786 0.3155 0.0304

Table 3.7: Classical metrics for object consistency methods on Waymo dataset

Based on the results presented in table 3.7, it is evident that the Object
Aware Loss yielded comparable results to the baseline. Nevertheless, conduct-
ing a separate evaluation of the dynamic and static components in table 3.8,
it becomes apparent that the loss function led to a improvement of 0.018 m in
dynamic error, indicating a promising outcome. The model demonstrated its
ability to predict classes in a more concise manner. However, the performance
of this setup was slightly inferior for static points, which comprise the majority
of the dataset. Furthermore, the 50-50 evaluation was enhanced.

type AEE ↓ AEEDyn ↓ AEEStat ↓ AEE50−50 ↓
Baseline 0.0644 0.1560 0.0605 0.1082

Refine Module 0.0540 0.1314 0.0507 0.0911
Object Aware AL 0.0645 0.1380 0.0614 0.0997

OAAL with Smoothness 0.0654 0.1452 0.0633 0.1042

Table 3.8: Separate evaluation for dynamic and static points for object consis-
tency methods on Waymo dataset

The self-supervised non-learnable refinement module exhibited enhance-
ments in comparison to the baseline, yielding notable improvements. This
straightforward naive method effectively addresses the challenge of flow selec-
tion in the model. Specifically, the average endpoint error across all points
was reduced by 0.0104 m, while the dynamic error showed an even more
significant reduction of 0.0246 m. Moreover, the metrics pertaining to outliers
indicate a better performance in terms of reasoning capability.

Moreover, we tried to regularize the Object Aware Articial Label loss with
Smoothing loss, resulting in "OAAL with Smothness". This improvement
behaves as Object Aware AL, but it also trying to smooth the flow within
the clusters to behave same. For the noise from DBSCAN any smooth loss is
not employed. However the results from table 3.7 and 3.8 shows that this
imporvements do not influenced the results very much.

Furthermore, we attempted to enhance the regularization of the Object
Aware Artificial Label loss by incorporating a Smoothing loss, which we refer
to as "OAAL with Smoothness." This modification not only preserves the
Object Aware AL behavior but also aims to smooth all flows within the
cluster in similar manner as in the original Smoothness loss. Despite these
improvements, the results from tables 3.7 and 3.8 indicate that the impact
on the results is minimal.
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3.6 Combination

We also attempted to merge both types of regularization in order to benefit
from both approaches. Regarding the temporal structured based losses, we
decided to incorporate both approaches, as they have shown to enhance
the model’s performance. For an object awareness losses, we selected the
self-supervised refiment module (RM).

type AEE ↓ AccR ↑ AccS ↑ Outl ↓ OutlR ↓
Baseline 0.0566 0.8904 0.7579 0.2839 0.0245

VC 0.0529 0.9122 0.8108 0.2837 0.0248
VC + RM 0.0500 0.9031 0.7886 0.2788 0.0211

DC 0.0876 0.8100 0.5252 0.3361 0.0324
DC + RM 0.0566 0.8847 0.7631 0.2780 0.0258

Table 3.9: Classical metrics on Waymo dataset for combining loss functions

Based on the observations from table 3.9, it seems that integrating the
refiment module with losses that depend on the sequential structure of the
data does not improve the performance of the model. However, improving
the performance of the model using the same architecture is a difficult task.

The Waymo dataset consists mostly from static points, meaning that
significant improvements in dynamic points have little impact, while even
minor disturbances in static points can greatly change the results.

Therefore, a deeper understanding of how the losses impacted the flow
prediction can be obtained from the table 3.10. Similar as before, the table
divides the main metric (AEE) into static and dynamic components, and
AEE50−50 where each part have equal weight of 50%.

type AEE ↓ AEEDyn ↓ AEEStat ↓ AEE50−50 ↓
Baseline 0.0566 0.1751 0.0516 0.1134

VC 0.0529 0.3509 0.0402 0.1955
VC + RM 0.0500 0.2133 0.0426 0.1282

DC 0.0876 0.1173 0.0864 0.1018
DC + RM 0.0566 0.1176 0.0541 0.0858

Table 3.10: Distinct metrics on Waymo dataset for dynamic and static parts for
models integrating both approaches.

Based on the AEE50−50 metric, the model that performs the best includes
all baseline losses, along with an additional Dynamic Consistency loss and
Self-supervised Refiment Module. On average, this configuration was able
to enhance performance by 2.76 cm in comparation with baseline. Although
the performance on the static part of the data was not improved, there was a
notable reduction of 5.75 cm in the average endpoint error for the dynamic
points in the dataset. This improvement is significant, considering that the
baseline model struggled with dynamic data.
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Chapter 4
Conclusion

In order to achieve precise training within the self-supervised paradigm, it is
important to incorporate appropriate self-supervised losses that effectively
leverage the temporal and spatial characteristics of the data. We explored an
approach inspired by the sequential characteristics of the automotive dataset.
As a result, we introduced a Velocity loss aimed at achieving smooth flow
over time by considering the derivative of individual point velocities during
small time interval. Additionally, we proposed the Dynamic loss, which
generates motion segmentation labels by comparing the motion patterns
with the ego vehicle. This observation led to creating a pseudo label for
segmentation. Both of these losses heavily depend on accurate odometry
predictions, making the creation of pseudo labels susceptible to incorrect
predictions of the odometry.

We have also observed that our baseline model often encounters difficulties
in segmentation, leading to incorrect flow assignment. Based on these obser-
vations, we propose an extension to the previously suggested loss and also
self-supervised refinement module, which operates on top of the model. This
extension loss, called the Object Aware Artificial label loss, aimed to uniformly
assign the correct pseudo segmentation label to each object, avoiding different
pseudo labels for a few points of the object. For clustering the objects from
the scene, we utilize the widely known self-supervised DBSCAN clustering
algorithm, which provides us with clusters from the scene. Within these
clusters, a segmentation label is assigned based on the smaller average nearest
neighbor distance to the next point clouds from corresponding endpoints.
This decision-making process is employed for distinguishing between static
and dynamic flow. The self-supervised refinement module works in a similar
manner but eliminates the segmentation prediction based on logits from the
network. The decision of the class is derived from the smaller average nearest
neighbor distance within the clusters. It is important to note that this module
is only added to the evaluation process.

Based on an experiment evaluated on the Waymo Open Dataset, we
observed that the most effective configuration involves incorporating all losses
utilized in the baseline model along with our proposed Dynamic Consistency
loss and Self-supervised Refiment Module. This particular arrangement
resulted in a enhancement of 2.76 cm in the mean of a static average endpoint
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4. Conclusion...........................................
error and dynamic endpoint error. Notably, the improvement was more
significant for dynamic points, with an error reduction of 5.75 cm achieved.
The results of our work suggest that self-supervised learning can effectively
leverage also the dynamics in 3D point cloud data during larger time interval.
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