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Abstract
This thesis focuses on employing deep rein-
forcement learning to control the position
of a quadcopter carrying a hanging load.
The task is approached by using proximal
policy optimization to directly optimize
a control policy represented as a neural
network using gradient ascent on the ac-
cumulated reward. The system is both
trained and evaluated using the MuJoCo
physics simulator. The resulting policy
is capable of successfully stabilizing the
quadcopter and following the reference
setpoint position. This is demonstrated
by using full state information and par-
tial state information without knowledge
of the suspended load state. The latter
task is tackled by using a state estimator
network trained via supervised learning
on the pendulum states. Additionally, the
thesis investigates the ability to adapt to
changing model parameters, to help miti-
gate the Sim-to-Real gap.

Keywords: Proximal policy
optimization (PPO), Deep reinforcement
learning, Hanging load, Quadcopter
control, MuJoCo simulator

Supervisor: Ing. Teymur Azayev, Ph.D.
AmpX,
Klimentska 1216,
Praha 1

Abstrakt
Tato práce se zaměřuje na využití hlubo-
kého posilovaného učení pro poziční ří-
zení kvadrokoptéry s visící zátěží. Tento
úkol je řešen pomocí metody proximal
policy optimization, kde se přímo optima-
lizuje řidící policy reprezentovaná neuro-
novou sítí pomocí gradientního stoupání
na kumulativní odměnu. Systém je tréno-
ván a testován pomocí fyzikálního simulá-
toru MuJoCo. Výsledná policy je schopna
úspěšně stabilizovat kvadrokoptéru a sle-
dovat referenční cílovou polohu. Toto je
demonstrováno jak při použití úplných in-
formací o stavu dronu, tak i při použití
pouze částečných informací bez znalosti
stavu zavěšené zátěže. Řízení při neúplné
znalosti stavu je řešeno pomocí neuronové
sítě pro odhad stavů, která je trénovaná
učením s učitelem na datech o stavu ky-
vadla. Práce také zkoumá schopnost při-
způsobit se změnám parametrů modelu,
s cílem zmírnit problém rozdílu mezi si-
mulací a reálným světem.

Klíčová slova: Proximal policy
optimization (PPO), Hluboké posilované
učení, Visící zátěž, Řízení kvadrokoptéry,
MuJoCo simulátor

Překlad názvu: Poziční řízení
kvadkoptéry s visící zátěží pomocí
hlubokého posilovaného učení
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Chapter 1
Introduction

1.1 Context

Quadcopters, also known as drones, have emerged as a transformative tech-
nology with significant importance in today’s world. Their versatility, agility,
and remote-controlled capabilities make them invaluable in diverse fields such
as aerial photography, surveillance, search and rescue operations, environ-
mental monitoring, and delivery services. These unmanned aerial vehicles
offer enhanced efficiency, cost-effectiveness, and accessibility, revolutionizing
industries and enabling novel applications that were previously unattainable.

The capability of drones to transport loads through aerial means is of signif-
icant importance due to its wide range of practical applications. This feature
allows drones to transport supplies, deliver packages, and undertake tasks such
as aerial construction, infrastructure maintenance, or emergency aid delivery
in challenging or inaccessible environments. However, successfully executing
this task poses significant technical challenges, including maintaining stability
and ensuring precise control. Overcoming these complexities necessitates
the development of advanced engineering solutions and sophisticated control
algorithms.

One promising approach to designing control algorithms for drones is
through the utilization of deep reinforcement learning [3], [7], [4]. These
methods build upon the remarkable advancements in deep learning achieved
in recent years, particularly in areas such as image recognition and natural
language processing. By leveraging the principles of deep reinforcement
learning, drones can learn to make decisions and adapt their behavior based
on interactions with their environment, paving the way for efficient, adaptive,
and autonomous systems.

1.2 Goals

The goals of this thesis are threefold. Firstly, to leverage deep reinforcement
learning (RL) techniques in developing a positional controller for a quadcopter.
This involves designing and implementing a RL-based control algorithm that
enables the drone to autonomously navigate and maintain desired positions.

1



1. Introduction .....................................
Secondly, to evaluate the effectiveness of a recurrent neural network (RNN) in
estimating the states of a pendulum attached to the drone. This experiment
aims to assess the RNN’s capability to accurately capture and predict the
pendulum’s dynamics. Lastly, to train a neural network policy that can adapt
and adjust to changing drone parameters, allowing the drone to adaptively re-
spond to variations in its physical characteristics. These three goals inherently
necessitate the development and implementation of a realistic simulation envi-
ronment to facilitate RL training, integrating it with a suitable reinforcement
learning framework, and establishing the neural network architecture. The
simulation environment will serve as a crucial tool for training and evaluating
the quadcopter’s control algorithms, providing a realistic virtual platform to
simulate real-world scenarios and challenges.

2



Chapter 2
Theory

2.1 Reinforcement learning

This section includes a brief introduction to reinforcement learning using
policy gradient methods together with some interesting results.

2.1.1 Markov decision process

The problem of drone control can be modelled as a Markov Decision Process
(MDP), which is formally a 4-tuple

(S,A, P, r) , (2.1)

where S is the set of states, A is the set of actions, P is the transition function
P (st+1|st, at) which encodes the probability of a next state st+1 ∈ S given the
current state st ∈ S and an action at ∈ A and finally r is the reward function
which associates a real value with each state transition rt = r(st+1, st, at) ∈ R.
An illustration of this model can be seen in figure 2.1. The objective in
an MDP is then to find a (in general stochastic) policy π(a|s) in order to
maximize the expected return of a trajectory

Jπ = Eτ [R(τ)] , (2.2)

where the expectation is taken over trajectories τ = (s0, a0, s1, a1, ...). The
trajectories are generated as follows. The initial state s0 is drawn from some
probability distribution ρ0 : S → R+ on the state space S. The actions and
states that follow are distributed according to the policy at ∼ π(at|st) and
the transition function st+1 ∼ P (st+1|st, at). The function R(τ) is commonly
defined as a sum of the rewards collected over the trajectory

R(τ) =
T∑
t=0

rt , (2.3)

where T is the time horizon. If the states st of the MDP are not directly
observable, the model can be extended to a Partially Observable Markov
Decision Process (POMDP), formally a 6-tuple

(S,A, P, r,Ω, O) , (2.4)

3



2. Theory .......................................
where S,A, P, r are the same as in (2.1), Ω is the observation space and
O(ot|st) is the observation model and encodes the probability of observing
ot ∈ Ω given the state st at timestep t. This introduces a new problem of
estimating the unknown state st.

Figure 2.1: Markov decision process

Solution

While traditional methods like value iteration, policy iteration, Q-learning,
and Monte Carlo methods have been effective in solving small-scale Markov
Decision Processes (MDPs) [15], they face significant challenges when applied
to complex control problems with continuous action and state spaces, such
as drone control. The continuous nature of the action and state spaces
necessitates the use of different approaches.

Traditional approaches often rely on model-based control design techniques.
These methods involve analyzing simplified models of the system dynamics
or employing Model Predictive Control (MPC) optimization to find suitable
control strategies. These traditional approaches may struggle to capture the
full complexity and dynamics of real-world systems, especially when facing
uncertainties and nonlinearities. Furthermore, optimization process involved
in MPC requires solving complex mathematical programs repeatedly, which
can be time-consuming and limit its applicability in systems that require
real-time control.

Deep reinforcement learning (RL) emerges as a promising alternative
in this context, offering a powerful framework to tackle complex control
problems with continuous action and state spaces. In the realm of RL, there
exist numerous approaches and algorithms, each with its own strengths and
limitations. For the purpose of this thesis, the focus will be on the policy
gradient method, which performs a gradient-based direct policy search. The
policy gradient approach has gained significant attention and demonstrated
remarkable success in training agents to perform tasks in high-dimensional
and continuous environments [11] [2].

4



................................ 2.1. Reinforcement learning

2.1.2 Policy gradient

The policy gradient method focuses on directly optimizing a policy πθ(at|st)
parametrized by θ (see section 2.2 on how the policy is constructed). The
optimization process iteratively improves the policy using gradient ascent
steps

θk+1 = θk + lr · ∇θJπ , (2.5)

where Jπ is the expected return (2.2) of the underlying MDP, lr is the learning
rate and θk, θk+1 denote the parameters at the current and next timestep
respectively. Note that more sophisticated gradient ascent schemes (such as
Adam [8]) are typically used nowadays and (2.5) only serves to give an idea
about the approach.

The main problem, that needs to be adressed is the objective gradient ∇θJπ
evaluation. The following analysis based on [1], [13] serves as an introduction
to how this problem is typically solved. The objective optimized in an MDP
is

Jπ = Eτ [R(τ)] =
∫
τ
P (τ |θ)R(τ) , (2.6)

where

P (τ |θ) = ρ0(s0)
T∏
t=0

P (st+1|st, at)πθ(at|st) (2.7)

is the probability of the trajectory τ conditioned on the policy parameters θ.
The gradient w.r.t. θ is then

∇θJπ = ∇θ

∫
τ
P (τ |θ)R(τ) =

∫
τ

∇θP (τ |θ)R(τ) =

=
∫
τ
P (τ |θ)∇θ logP (τ |θ)R(τ) .

(2.8)

Now, the gradient of the logarithm can be simplified using (2.7) as

∇θ logP (τ |θ) = ∇θ log ρ0(s0)
T∏
t=0

P (st+1|st, at)πθ(at|st) =
T∑
t=0

∇θ log πθ(at|st) ,

(2.9)
since the transition and the initial state probabilities do not depend on θ.
Substituting this into (2.8) gives us the policy gradient

∇θJπ =
∫
τ
P (τ |θ)

T∑
t=0

∇θ log πθ(at|st)R(τ) . (2.10)

Since computing the integral in (2.10) is intractable, we need to approximate
the distribution P (τ |θ) by samples

P (τ |θ) ≈ 1
N

N∑
i=1

δ(τ − τi) , (2.11)

5



2. Theory .......................................
where δ(·) is the Dirac delta distribution and {τi}Ni=1 are the sampled trajec-
tories generated as τi ∼ P (τ |θ). Plugging this into (2.10) gives us an estimate
for the policy gradient

∇θJπ ≈ ĝ = 1
N

N∑
i=1

T∑
t=0

∇θ log πθ(at|st)R(τi) . (2.12)

This is already quite useful result in that it enables us to learn a neural
network policy in order to maximize the cummulative reward. All we need
to do is to sample a batch of trajectories {τi}Ni=1, compute the returns R(τi)
and use (2.12) to perform gradient ascent with respect to θ. However, there
are some practical issues with this approach which will be discussed further.

2.1.3 Policy gradient estimation

One of the main problems with the policy gradient estimate (2.12) lies in its
high variance when using the Return (2.3). Lucklily, there is a way to reduce
this variance and still keep the estimate unbiased. We can decompose R(τ)
in (2.10) as

R(τ) = Q(st:T , at:T−1) − b(s0:t, a0:t−1) , (2.13)
where b(s0:t, a0:t−1) depends on s0:t = (s0, ..., st) and a0:t−1 = (a0, ..., at−1), i.e.
states and actions from the trajectory before at and Q(st:T , at:T−1) depends
on st:T = (st, ..., sT ) and at:T−1 = (at, ..., aT−1), i.e. states and actions from
the trajectory that come after at. Then the policy gradient reads∫

τ
P (τ |θ)

T∑
t=0

∇θ log πθ(at|st)R(τ) =

=
∫
τ
P (τ |θ)

T∑
t=0

∇θ log πθ(at|st)[Q(st:T , at:T−1) − b(s0:t, a0:t−1)]
(2.14)

We can split the integral (2.14) and focus on the second part. The sum can
be put in front of the integral and then the sum is over terms∫

τ
P (τ |θ)∇θ log πθ(at|st)b(s0:t, a0:t−1) . (2.15)

Let us omit θ and label the parts of the trajectory before and after at
as τ− := (s0:t, a0:t−1) and τ+ := (st+1:T , at+1:T−1) respectively to simplify
notation. Then we get∫

τ
P (τ)∇ log π(at|st)b(s0:t, a0:t−1) =

=
∫
τ−

∫
at

∫
τ+
P (τ−)π(at|st)P (τ+|st, at)∇ log π(at|st)b(τ−) =

=
∫
τ−
P (τ−)b(τ−)

∫
at

π(at|st)∇ log π(at|st)
∫
τ+
P (τ+|st, at) =

=
∫
τ−
P (τ−)b(τ−)

∫
at

π(at|st)∇ log π(at|st) =

=
∫
τ−
P (τ−)b(τ−) · 0 = 0 ,

(2.16)
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................................ 2.1. Reinforcement learning

where we used the facts that the integral of a probability distribution is equal
to 1 and∫

at

π(at|st)∇ log π(at|st) =
∫
at

∇π(at|st) = ∇
∫
at

π(at|st) = ∇1 = 0 . (2.17)

Therefore b(s0:t, a0:t−1) has no effect on the expected value of the policy
gradient. Now, let us take a look at the first part of the integral (2.14), while
again ignoring the sum for simplicity∫

τ
P (τ)∇ log π(at|st)Q(st:T , at:T−1) =

=
∫
τ−

∫
at

∫
τ+
P (τ−)π(at|st)P (τ+|st, at)∇ log π(at|st)Q(st:T , at:T−1) =

=
∫
τ−
P (τ−)

∫
at

∇π(at|st)
∫
τ+
P (τ+|st, at)Q(st:T , at:T−1) .

(2.18)

This gives us an important insight: We can change the return R(τ) used for
policy gradient estimation to Ψt = Q′(st:T , at:T−1) − b′(s0:t, a0:t−1), where b′

is arbitrary and Q′ must satisfy∫
τ+
P (τ+|st, at)Q′(st:T , at:T−1) =

∫
τ+
P (τ+|st, at)Q(st:T , at:T−1) . (2.19)

Using the return (2.3), we get that

Q(st:T , at:T−1) =
T∑
t′=t

rt′ . (2.20)

Some popular choices for Ψt then include..1.
∑T
t=0 rt : total reward of the trajectory..2.

∑T
t′=t rt′ : reward following action at..3.

∑T
t′=t rt′ − b(st) : baselined version of previous formula..4. Qπ(st, at) : state-value function..5. Aπ(st, at) : advantage function..6. rt + V π(st+1) − V π(st) : Temporal difference residual

where

Qπ(st, at) =
∫
τ+
P (τ+|st, at)

T∑
t′=t

rt′ ,

Aπ(st, at) = Qπ(st, at) − V π(st) ,

V π(st) =
∫
at

π(at|st)
∫
τ+
P (τ+|st, at)

T∑
t′=t

rt′ .

(2.21)
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2. Theory .......................................
As it turns out, using the advantage function Aπ(st, at) yields the lowest
variance of the gradient estimate in practice [13]. This then leads to the
policy gradient having the form

∇θJπ =
∫
τ
P (τ |θ)

T∑
t=0

∇θ log πθ(at|st)Aπ(st, at) . (2.22)

The only problem is, that the true advantage function Aπ(st, at) is unknown
and needs to be estimated. A commonly used approach to advantage estima-
tion is discussed in section 2.1.4.

2.1.4 Generalized advantage estimation

It is possible to further decrease the variance of the gradient estimate, while
introducing bias. Here we assume infinite time horizon for the return compu-
tation, i.e.

R(τ) =
∞∑
t=0

rt . (2.23)

A simple way to decrease the variance is then to use a discounted form of the
return (2.23)

R(τ) =
∞∑
t=0

γtrt , (2.24)

where γ ∈ [0, 1] is the discount factor, which downweights reward far into the
future. The TD residual

δt = rt + γV (st+1) − V (st) , (2.25)

where V (·) is an approximation to the true value function V π(·) (2.21), can
be considered an estimate of the advantage of the action at for the discounted
return case. The term γV (st+1) is the source of bias of this advantage
estimate. Consider taking the sum of k of these TD residuals (2.25)

Â
(1)
t = δt = −V (st) + rt + γV (st+1)

Â
(2)
t = δt + γδt+1 = −V (st) + rt + γrt+1 + γ2V (st+2)

Â
(k)
t =

k−1∑
l=0

γlδt+l = −V (st) +
k−1∑
l=0

γlrt+l + γkV (st+k)

(2.26)

which again yields biased estimators of the advantage function, but the bias
is getting smaller with larger k as the biasing term γkV (st+k) is getting
increasingly discounted. The sum of the rewards

∑k−1
l=0 γ

lrt+l, on the other
hand, is a source of large variance of this estimate and is getting more
pronounced with larger k. The generalized advantage estimate is defined as
an exponentially weighted average of these k-step estimators

Â
GAE(γ,λ)
t = (1 − λ)(Â(1)

t + λÂ
(2)
t + λ2Â

(3)
t + ...) = ... =

∞∑
l=0

(γλ)lδt+l . (2.27)

8



................................ 2.1. Reinforcement learning

For λ = 0, we get Ât = δt, which has low variance, but high bias. For
λ = 1, we get Ât =

∑∞
l=0 γ

lδt+l, which has high variance and low bias. The
parameter λ ∈ [0, 1] then controls the tradeoff between bias and variance of
the advantage estimate.

Value function estimation

We discussed how to estimate the Advantage function using trajectory sam-
ples and the approximate value function V (st). This approximate value
function itself is commonly represented as a neural network V (st) = Vθ′(st),
parametrized by θ′. The simplest approach to training this value function is
by minimizing the regression loss

LV (θ′) = Êt
(
Vθ′(st) − V̂t

)2
, (2.28)

where V̂t =
∑∞
l=0 γ

lrt+l is the discounted sum of rewards collected on a tra-
jectory from state st onward. Êt denotes the empirical average taken over
a trajectory batch {τi}Ni=1. This regression loss can again be minimized via
gradient descent performed on the network parameters θ′. It is common
to have the value network Vθ′(st) share some parameters with the policy
πθ(at|st).

2.1.5 Proximal policy optimization

Using the policy gradient as is can lead to unstable behaviour during training.
One of the approaches to combat this behaviour is called Proximal Policy
Optimization[14] (PPO). The estimate of the policy gradient (2.22) using
advantage estimates Aπ(st, at) ≈ Ât is

ĝ = 1
N

N∑
i=1

T∑
t=0

∇θ log πθ(at|st)Ât , (2.29)

which is proportional to the gradient of the objective

LPG(θ) = Êt
[
log πθ(at|st)Ât

]
, (2.30)

where Êt designates the empirical average over a trajectory batch {τi}Ni=1.
The gradient estimate (2.29) can equivalently be obtained as the gradient of

L′(θ) = Êt

[
πθ(at|st)
πθold(at|st)

Ât

]
(2.31)

taken at θ = θold, which are the parameters of the policy used for the
trajectory sampling. The PPO approach replaces this objective with the
surrogate objective

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât, clip(rt(θ), 1 − ϵ, 1 + ϵ)Ât

)]
, (2.32)

9



2. Theory .......................................
where

rt(θ) = πθ(at|st)
πθold(at|st)

and ϵ > 0 is a hyperparameter. If for a given sample, the advantage is positive,
the per-sample objective reduces to

min (rt(θ), (1 + ϵ))) Ât (2.33)

which will have a zero gradient whenever rt(θ) ≥ (1 + ϵ). On the other hand,
if the advantage is negative, the per-sample objective reduces to

max (rt(θ), (1 − ϵ))) Ât , (2.34)

which will have a zero gradient for rt(θ) ≤ (1 − ϵ). This means that the objec-
tive is allowed to improve only to some extend given by the hyperparameter ϵ.
This adjustment to the objective also allows us to perform multiple gradient
ascent steps using the same trajectory samples and thus improve the sample
efficiency. A second approach mentioned in the PPO paper is to add a term
penalizing the Kullback–Leibler (KL) divergence between the old and the
new policy

LKL = DKL(πθold
(at|st)∥πθ(at|st)) (2.35)

to the original objective (2.31). The KL divergence between probability
distributions p(x) and q(x) is defined as

DKL(p∥q) =
∫
x
p(x) log

(
p(x)
q(x)

)
. (2.36)

The first approach is however used more commonly. The objectives (2.32),
(2.28) can be combined in a single objective

LPPO(θ, θ′) = cv · LV (θ′) − LCLIP(θ) , (2.37)

where cv is the value loss coefficient. The objective (2.37) can than be
minimized using the procedure 1 (adapted from [1])

Algorithm 1 PPO
1: Input: initial policy parameters θ0, initial value function parameters θ′

0
2: for k = 0, 1, 2, ... do
3: Collect set of trajectories Dk = {τi}Ni=1 by running policy πk = π(θk)

in the environment.
4: Compute rewards-to-go V̂t =

∑∞
l=0 γ

lrt+l.
5: Estimate advantages, Ât based on the current value function Vθ′

k
.

6: Update the policy and value weights by minimizing the PPO loss:

θk+1, θ
′
k+1 = arg max

θ,θ′
LPPO(θ, θ′),

typically via stochastic gradient ascent with Adam.
7: end for

10



.................................. 2.2. Policy architecture

2.2 Policy architecture

The policy gradient methods 2.1.2 aim at optimizing a stochastic policy
πθ(at|st) directly using on-policy trajectories (sampled using the policy itself).
This procedure relies on two features of the policy: the policy mapping
being stochastic and the ability to compute the gradient ∇θπθ(at|st) for any
sampled action at. A neural network is designed to be a differentiable general
function approximator and therefore the ability to compute the gradient is
not a problem. However, a neural network is also designed to be deterministic
and cannot be used to represent a probability distribution directly. Therefore
something needs to be built on top of it, in order to constuct the stochastic
policy. In particular, we need some extra computational module, that turns
the network outputs into a probability distribution while preserving the
differentiability.

For a discrete action space A = {a1, ..., am}, we can simply construct
a neural network mapping to a vector of matching size nθ : S → Rm and
use a softmax layer1 on top of it. We can then interpret the softmax output
as a probability distribution over the discrete action space. The gradient is
then straightforward to obtain. For a continuous action space e.g. A = R,
we can discretize it by picking some representative actions and use the
approach for discrete action spaces. However, it may be difficult to choose the
discretization and it may lead to suboptimal results. A different approach is
to construct a neural network that maps to the a set of parameters κ = nθ(st)
of a parametric probability distribution pκ(at) over the action space. We
only need to be able to compute the gradient of a given sample with respect
to the parametrization. The normal distribution N (µ, σ) parametrized by
κ = [µ, σ] can be used as an example. We can first obtain a sample a′

t from
a standard normal distribution N (0, 1) (zero mean, unit variance) and then
translate and scale it using the network outputs [µ(θ), σ(θ)] i.e.

at = µ(θ) + σ(θ)a′
t ,

a′
t ∼ N (0, 1) .

(2.38)

The sample action at obtained like this is then differentiable with respect to
the parameters κ = [µ(θ), σ(θ)] and therefore also with respect to the network
parameters θ. Another distribution better suited for bounded action spaces
is the Beta(α, β) distribution with probability density function (PDF)

p(x) = c · xα−1(1 − x)β−1 for x ∈ [0, 1] , (2.39)

where
c =

∫ 1

0
xα−1(1 − x)β−1dx

is the normalization constant and κ = [α, β], where α, β > 0 are the dis-
tribution parameters. The shape of this PDF is shown on figure 2.2 for

1softmax(x)i = exi∑n

j=1 exj
i = 1, ..., n for the input x ∈ Rn.
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Figure 2.2: Beta(α, β) distribution probability density function

different sets of parameters α, β. This has the advantage of being defined on
an interval [0, 1] in contrast to the normal distribution, which has infinite
support. How to perform the differentiable sampling with Beta distribution
is however beyond the scope of this thesis.

2.2.1 Multi-layer perceptron

The simplest kind of neural network is a multilayer perceptron (MLP), which
is made up by k fully connected layers {li}ki=1. Each fully connected layer
performs a computation

li(x) = f(Wix+ bi) , (2.40)

where x ∈ Rn is the layer input vector, Wi ∈ Rm×n is a weight matrix,
bi ∈ Rm is a bias vector and f(·) is a non-linear activation function. A
common choice for the non-linearity is f(·) = tanh(·) when dealing with RL
policies. The output of the network is then obtained by chaining the linear
layers together

nθ(x) = (lk ◦ lk−1 ◦ ... ◦ l2 ◦ l1)(x) , (2.41)

where θ = {W1, b1, ...,Wk, bk} denotes weights and biases of the individual
layers, i.e. the learnable parameters of the network.

12
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Figure 2.3: LSTM computation graph

2.2.2 Long short-term memory

A recurrent neural network (RNN) is a special type of a neural network
designed to work with sequential data, i.e. the input to the network is
a sequence of vectors (xt)Tt=0 indexed by time. The network than processes
the whole sequence step by step while also retaining an internal state, which
acts as a memory. The long short-term memory (LSTM) architecture is a type
of an RNN that suppresses the vanishing gradient problem when compared
to a naive implementation. It can be described by the set of equations

i = σ(Wiix+Whih+ bi)
f = σ(Wifx+Whfh+ bf )
g = tanh(Wigx+Whgh+ bg)
o = σ(Wiox+Whoh+ bo)
c′ = f ∗ c+ i ∗ g
h′ = o ∗ tanh(c′)

(2.42)

where x is the current input, c and h are the cell state and hidden state at
the current timestep and c′ and h′ are the cell state and hidden state at the
next timestep. The σ(·) denotes the sigmoid2 function and ∗ denotes the
Hadamard (element-wise) product. The computational graph of the LSTM
cell is depicted in figure 2.3. To put it simply, the network is presented the
current input x as well as previous cell state c and hidden state h at each
timestep. These are then processed by a set of fully connected layers and
combined together to produce the new cell state c′ as well as the new hidden
state h′, which is used as the output of the cell.

The use of an RNN is justified when dealing with a partially observable
MDP, where the true state st of the system is not observable. The RNN can
then be used to either estimate the true current state st from a sequence

2The sigmoid function is defined as σ(x) = ex

1 + ex
.
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2. Theory .......................................
of past observations ot−T :t, or to map the observations to the distribution
parameters directly.

2.2.3 Convolutional network

Another neural network architecture that is commonly used with sequential
data is a convolutional neural network (CNN). This architecture makes use of
a one dimensional convolutional layer, that based on an input sequence (xi)Ii=1
of vectors xi ∈ Rn outputs another sequence (yj)Jj=1 of vectors yj ∈ Rm, where

yj = f(b+
K∑
k=0

Wkxj·s+k) . (2.43)

The W = [W0, ...,WK ], where Wk ∈ Rm×n are the weights of the layer and
b ∈ Rm is the bias. The f(·) denotes again a non-linear activation function.
The output sequence lengh is determined by the input sequence length, the
receptive field K and the stride s as J = I −K

s
+ 1. The convolutional layer

can be thought of as a fully connected layer with sparse and periodic weight
structure.

2.3 Drone model

A simple quadcopter model consists of a rigid body connected to four motors
with propellers positioned typically in the "x" configuration as depicted on
figure 2.4. Let the coordinate system of the rigid body be denoted as B
and the world coordinate system as W. The four propellers are oriented
such that their rotation axes are parallel to the drone’s bz axis, which is also
the direction of the forces they exert. The dynamics of the motors can be
approximated by a first order system

d

dt
ωm = ωd − ωm

τ
, (2.44)

where ωm [rad s−1] is the motor angular velocity, ωd [rad s−1] is the desired
angular velocity and τ [s] is the motor time constant. The magnitude of the
force exerted by a propeller (thrust) Fm [N] can be approximated as

Fm ≈ k · ω2
m , (2.45)

where k [N s2 rad−2] is the thrust force coefficient. Along with the thrust, the
motor also exerts a torque Tm [N m] on the system modelled as

Tm ≈ c · Fm , (2.46)

where c [m] is the torque proportionality constant. Note that the direction
of the torque Tm is always opposite to the direction of rotation of the given
motor. The motor rotation directions are oriented in an alternating fashion
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Figure 2.4: Ilustration of the quadcopter model

as depicted in figure 2.4. This gives rise to the following forces being exerted
on the body frame

F
Tx
Ty
Tz

 =


1 1 1 1

ld/
√

2 −ld/
√

2 −ld/
√

2 ld/
√

2
−ld/

√
2 −ld/

√
2 ld/

√
2 ld/

√
2

−c c −c c


︸ ︷︷ ︸

A


F1
F2
F3
F4

 , (2.47)

where ld [m] is the length of the drone arms, F [N] is the total thrust, Tx, Ty, Tz
[N m] are the torques along the body’s bx, by and bz axes respectively and
F1, F2, F3, F4 [N] are the motor thrusts. The matrix A is reffered to as the
mixing matrix, or allocation matrix and maps the motor thrusts to the forces
and torques exerted on the body frame B.

The rotational dynamics can then be obtained using the Euler’s equation
of motion

T = Jω̇ + ω × Jω , (2.48)

where T = [Tx, Ty, Tz]⊤ is the extrinsic torque vector exerted by the propellers,
J ∈ R3×3 [kg m2] is the tensor of inertia of the drone body, ω ∈ R3 [rad s−1]
is the intrinsic angular velocity vector of the drone and ω̇ = dω

dt is the intrinsic
angular acceleration of the drone. The orientation of a drone with respect to
the world frame W can be described by a rotation matrix R ∈ SO(3)3. This
rotation matrix evolves as

Ṙ = R[ω]× , (2.49)

where [ω]× is a skew symmetric matrix4. The translational dynamics are

3A matrix R ∈ R3×3 ∈ SO(3) if it satisfies R⊤R = I and det(R) = 1.
4The matrix [a]× constructed from the vector a ∈ R3, such that [a]×b = a × b for any

vector b ∈ R3.
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obtained from the Newton’s second law of motion as

q̈W = 1
md

R

 0
0
F

 +

0
0
g

 , (2.50)

where qW = [x, y, z]⊤ [m] is the position vector of the drone in the world
frame, md [kg] is the mass of the drone, F [N] is the total thrust of the motors
from (2.47) and g [m s−2] is the gravitational acceleration.

This approximate model of the quadcopter is fully described by the following
set of parameters

p = {τ, k, c, ld, J,md, g} , (2.51)

the following dynamic state variables

s = {qW , q̇W , R, ω, ω1, ω2, ω3, ω4} (2.52)

and the controllable inputs of this model are the four desired motor angular
velocities

a = {ωd1, ωd2, ωd3, ωd4} . (2.53)

Note that the use of the rotation matrix R in the state formulation (2.52)
does not yield a minimal representation of the drone state. This is because
a rotation matrix R has nine entries, whereas any rotation in 3D space has
only 3 degrees of freedom (Euler’s rotation theorem). Alternative rotation
representations include the axis-angle, Euler angles (or Tait–Bryan angles)
or a unit quaternion representation, each of which has its advantages and
disadvantages.

2.3.1 Suspended load

The suspended load (pendulum) below the drone can be modelled as a rigid
rod of length lp [m] with a weight of mass mp [kg] at the end of it. The rod is
attached to the drone at the origin of its coordinate frame B via a rotational
joint with 2 degrees of freedom. The addition of this suspended load leads to
a quite elaborate analysis [6], which is beyond the scope of this work. What
is important, is that it introduces two additional parameters lp and mp to
the dynamical model as well as two extra coordinates ψ′ ∈ [−π

2 ,
π
2 ]2 that

describe the orientation of the frame P = {px, py, pz} rigidly connected to
the pendulum weight as shown in figure 2.5. The rotational joint can be
though of as two succesive joints, each rotating about a single axis. The first
joint connected to the drone frame rotates about the drone’s bx axis and the
second joint rotates about rotated by axis. To put it clearly, given the two
joint angles ψ′ = [ψ′

1, ψ
′
2] of the first and second rotational joint respectively,

the rotation matrix describing orientation of the pendulum frame P can be
written as

Rp = Rx(ψ′
1)Ry(ψ′

2) , (2.54)
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Figure 2.5: Ilustration of the quadcopter model with hanging load

where Rx(·), Ry(·) are defined as in (2.59). The end of the pendulum in the
drone’s frame can be obtained as

qB
p = Rp

 0
0

−lp

 . (2.55)

The parameter set then becomes

p = {τ, k, c, ld, J,md, g, lp,mp} , (2.56)

and the state vector becomes

s = {qW , q̇W , R, ω, ψ′, ψ̇′, ω1, ω2, ω3, ω4} , (2.57)

where ψ′ are the pendulum angles and ψ̇′ = dψ′

dt is the rate of change of those
angles. This introduces a problem in the form of two extra degrees of freedom
we have to account for in control design and no extra actuators. Also, it is
often the case, that the pendulum state cannot be directly measured and
state estimation of the pendulum angles ψ′ and angular velocity ψ̇′ is needed.

2.3.2 Roll, pitch and yaw

There are numerous references to so called roll, pitch and yaw angles through-
out this thesis. These are a set of Tait–Bryan angles describing the orientation
of a rigid body in 3D space. The precise definition of what these three angles
represent is however not unanimous in the literature. This is a common source
of misunderstanging and one of the disadvantages of this representation. This
is why it is necessary to state how the angles are used to construct some un-
ambiguous rotation representation such as a rotation matrix. Given the three
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angles α, β, γ (roll, pitch and yaw respectively) describing the orientation of
a rigid body B in the world frame W, the rotation matrix is constructed as

R = Rz(γ)Ry(β)Rx(α) , (2.58)

where

Rz(γ) =

cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 , Ry(β) =

 cos(β) 0 sin(β)
0 1 0

− sin(β) 0 cos(β)

 ,

Rx(α) =

1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 ,

(2.59)
i.e. we first rotate about the world x axis by the roll angle α, then we rotate
about the world y axis by the angle pitch angle β and finally about the z
world axis by the yaw angle γ. Given that the body frame B is centered at
the origin of the world frame W, the transformation of a vector q from B to
W is then

qW = RqB . (2.60)

2.4 Drone control framed as an MDP

When dealing with controlling a quadcopter as modelled in section 2.3,
we typically use a digital computer, which operates in discrete timesteps.
Therefore we can consider a discretized dynamical model of the drone instead
of the continuous time one. This leads to the drone model having the form of
a general dicrete non-linear system

st+1 = f(st, at) , (2.61)

where st ∈ S is the state of the drone at timestep t and at ∈ A is the action at
timestep t. The f function here symbolically represents the discretized version
of the continuous dynamical model discussed in section 2.3. The discretized
dynamics can be obtained by integrating the continuous dynamical model in
time between timesteps t and t+ 1. Instead of doing this analytically, which
may often be intractable, this task is left to a physics simulation software,
which integrates the continuous dynamics through numerical methods. Since
the dynamical model assumed is deterministic, the transition function is
formally

P (st+1|st, at) = δ(st+1 − f(st, at)) , (2.62)
where δ(·) is the Dirac delta function. Now all that is needed for the complete
MDP formulation is the reward function

r(st−1, st, at) . (2.63)

The form of the reward function depends on the desired behaviour of the
system and is discussed in the experimental section of this thesis 4.1.
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Chapter 3
Implementation

3.1 Physics simulator

In order to optimize the policy using the PPO algorithm (1), it is impractical
to collect the trajectory samples with a real quadcopter. Besides crashing the
quadcopter whenever the randomly initialized policy makes a bad choice, the
speed at which state-action pairs can be sampled is severely limited. Instead,
we can use a physics simulator to compute the trajectories of a model of the
real system. The simulator used for RL training in this thesis is based on the
MuJoCo [16] (Multi-Joint dynamics with Contact) library, which is a C/C++
library that is capable of fast and accurate physical model simulation as well
as scene rendering. It provides a Python API, which enables seamless usage
with commonly used deep learning frameworks such as PyTorch[12]. The use
of a simulated model unfortunately introduces a so called Sim-to-Real gap,
i.e. a discrepancy between the model we use for training and the real world
system, that we want to control. This gap can be mitigated by using a more
accurate model for simulation, or training the policy to be robust to model
mismatch. Both of these directions need to be considered in the simulated
environment development.

3.1.1 MJCF

In order to define the simulated model for MuJoCo, a user can use the MJCF
scene description language, which is derived from the XML format. As such,
it is human-readable and thus quite easy to understand and use. This has no
impact on performance though, since the MJCF is compiled into more efficient
data structures prior to the actual simulation. The basic building blocks of
a MJCF model are bodies, geoms, joints and actuators. Bodies correspond to
actual physical bodies used in the simulation. Each body consists of possibly
multiple geoms, which give them their shape and mass used for the body
dynamics and collision computation. Bodies can be attached via joints to
constrain their relative movement, e.g. with a hinge joint, which enables only
rotational motion around its predefined axis. The actuators are then used
to impose some forces, velocities or even positions onto parts of the bodies.
The MJCF model is also used to define lighting for visualization and various
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additional physical simulation parameters such as air density, joint damping
and more.

3.1.2 Environment model

In order to train a policy that is robust to model mismatch, it is desirable
to generate not one single simulation model, but multiple with small per-
turbations in the model parameters. Luckily, the authors of MuJoCo also
provide the dm_control [17] library, which makes this task a breeze. The mjcf
module from dm_control provides an object oriented programming interface
for MJCF model generation, which enables conveniently constructing the
simulated model programatically in Python.

The MJCF model is generated with possibly multiple quadcopters inside
a single environment. This allows collecting many trajectories in parallel
inside a single simulation instance, increasing the efficiency of the system.
The MJCF model object is then converted to an XML file for use with the
MuJoCo simulator. The MJCF model generation can be configured using
parameters such as the frequency of the underlying physical simulation, or
a list of the drone model parameters.

Simulated drone model

Every simulated quadcopter model is parametrized by a set of 6 parameters
pi, which consists of the following values

md − Total mass of the drone [kg]
ld − Length of the drone arms [m]
mp − Mass of the pendulum weight [kg]
lp − Length of the pendulum [m]
Fm − Maximal force exerted by a propeller [N]
τ − Time constant of the drone motors [s]

(3.1)

This set of parameters (3.1) is a little different to the parameter set discussed
in (2.56). First of all, Fm replaced the thrust proportionality constant k and
torque proportionality constant c is assumed to be fixed for simplicity. The
gravitational constant g is assumed to be non-chaning, and the tensor of
inertia J is computed by MuJoCo from the underlying drone geometry, which
can be affected only by the arm length ld. This is why g and J are ommited
from the configurable parameters.

The parameters can be different for each drone inside the simulation to
allow training robust, or adaptive policies. Each drone inside the simulation is
assembled according to the parameter set using primitive shapes that capture
the general structure of a typical quadcopter as discussed in section 2.3. This
includes a main body, four arms, motors and propellers. The total drone mass
md is distributed across these body parts. Besides the geometry, there are
also four actuators aligned with the four propellers, which can be controlled
to exert forces on the drone body. A pendulum consisting of a rod of length
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lp and a cube-shaped weight of mass mp is then connected to the main body
from below via two 1 DOF rotational joints rotated 90 degrees along the bz
axis relative to each other. The first one, connected to the drone’s frame
rotates along the bx axis and the second one rotates about the rotated by
axis.

A screenshot of the drone model inside the simulated environment can be
seen in figure 3.1. The figure 3.2 depicts the simulation environment with
multiple drones used for training. The mutual collisions between the drones
have been disabled and therefore each drone model is simulated independently
of the others. The white ball in the figure 3.2 is a visualization of the reference
state and the red, green and blue cylinders sticking out of it correspond to
the orientation of its x, y, z axes respectively.

Figure 3.1: Drone model assembled from primitive shapes

Figure 3.2: Mutltiple drones inside a single simulation instance

21



3. Implementation....................................
Actuator model

The MuJoCo simulator does not support the drone propeller model mentioned
in (2.3) out of the box. Therefore a simpler motor model is used, ignoring
the quadratic dependence of the torque and thrust produced on the angular
speed of the motor and replacing it by a linear relationship. The first order
system response will be preserved to model the delayed motor response. The
implemented actuator model is then

d

dt
act(t) = ctrl − act(t)

τ
F (t) = Fm · act(t)

T (t) = ori · Fm100 · act(t)

(3.2)

where ctrl is the control signal, act(t) is the actuation state, and F (t) and
T (t) are the force and torque exterted by the actuator respectively. The
ori ∈ {−1, 1} denotes the propeller rotation orientation and only affects the
orientation of the torque exterted by the actuator. Note, that acc(t), F (t)
and T (t) are functions of a continuous time variable denoted by t. This is
because although we control and observe the simulation in discrete timesteps,
the underlying dynamical model MuJoCo uses for simulation considers time
to be continuous. This allows the simulated states to evolve continuously
between the dicrete observation and control steps.

3.2 Training framework

RLlib [10] is an open-source library for reinforcement learning providing
implementations of various RL algorithms. The use of such library allows
us to focus less on the implementation of the underlying training algorithms
and more on the simulation environment, rewards, policy model and hyper-
parameter tuning specific to our problem. The main advantage of using
RLlib over other available frameworks is the support for multiprocessing,
vectorized environments and recurrent neural networks. The RLlib provides
a versatile API that allows the user to work at arbitrary level of abstraction
– from specifying only the environment and leaving the rest to RLlib to tuning
every part of the training pipeline. RLlib supports two popular deep learning
frameworks PyTorch and Tensorflow, that can be used to define the structure
of the trained policy.

3.2.1 VecEnv

To utilize the Rllib’s vectorized environment capabilities, an environment class
has to inherit from the VecEnv class, which tells Rllib, that there are poten-
tially many simulated agents in the environment. The user also has to specify
the number of agent in the simulation and the action and observation spaces
used for interaction. Then the vector_step() and vector_reset() functions
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that allow Rllib to interact with the environment have to be implemented.
This differs a bit from the standard gym interface that is commonly used in
RL, but the idea is the same. The function vector_step() takes in a list of
actions for all the agents in the simulation, performs a simulation step on all
of them and returns the observations, rewards and terminations information.
The vector_reset() functions is used to reset the agents to initial states. The
use of this vectorized environment enables using a single MuJoCo simulation
instance with multiple simulated agents and thus sample multiple trajectories
in parallel with high efficiency.

3.2.2 PPO training

To train a policy on the environment, the PPOConfig class is first instantiated.
This class holds all the relevant configuration parameters used during training.
The most important parameters are shown in table 3.1. The environment
class env passed to PPOConfig has to implement the standard gym interface,
or the VecEnv interface discussed previously.

Parameter Description

lambda λ parameter used for the generalized advantage
estimation (2.27)

gamma γ parameter used for the generalized advantage
estimation (2.27)

lr learning rate used for gradient ascent
clip_param ϵ used in the PPO objective (2.32)
vf_loss_coeff cv used in the PPO objective (2.37)

train_batch_size number of agent experience timesteps used in
learning epoch

sgd_minibatch_size batch size used for gradient ascent
num_sgd_iter number of gradient ascent iterations per epoch
rollout_fragment_length collected experience timestep count

num_rollout_workers number of environment instances used during
training

env the environment class
env_config environment configuration
model model configuration dictionary

Table 3.1: PPO training parameters

Training the policy

After specifying the relevant parameters through the PPOConfig, the PPO
training can be started. In the process, the policy and environments are
instantiated and made ready for the training. The policy is constructed
based on the model parameter of the PPOConfig (viz. 3.2.3). A total of
num_rollout_workers environments are used, where each one uses separate
operating system process. This enables collecting trajectories from all the
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environments in parallel, increasing training speed when compared to single
process training. Each environment can be configured the env_config, which
is passes to the environment constructor.

Each training step performs the training procedure described in 1. First,
rollout_fragment_length timesteps are sampled from each agent in the envi-
ronments. This is repeated until at least train_batch_size timesteps have
been collected in total. Then the trajectories are split into training batches,
where each one is train_batch_size timesteps long. Each training batch is
then used for gradient descent over minibatches of size sgd_minibatch_size.
The gradient descent over the whole training batch is repeated num_sgd_iter
times. The loss is minimized with steps of stochastic gradient descent (SGD)
using the PyTorch’s Adam[8] implementation. The only differences to the
discussed PPO algorithm 1 is the possible splitting into training batches.
RLlib also adds an extra term to the PPO loss, which penalizes the KL
divergence (2.35) between the old and updated policy.

3.2.3 Policy configuration

The model configuration dictionary passed to the PPOConfig defines the
policy used in training. One can use the predefined models provided by RLlib
and use the model configuration to specify the type, depth, width, etc. of
the neural network used. To gain full control of the used policy, however, it
is desirable to construct a custom neural network model from scratch. Note
that the neural network and the action distribution are separate objects in
RLlib. The custom_model_config then enables passing extra arguments to
the model constructor for further customizability.

Custom neural network

The custom models can be defined using the PyTorch framework. The
constructor of the model class is given the observation and action space
specification, the expected number of outputs and a custom_model_config
dictionary. The constructor is supposed to initialize all the layers of the
network and their weights as usual with PyTorch framework. Apart from
that, the constructor can also configure its view_requirements attribute,
which serves to inform RLlib about the information the model needs for
inference. The default view_requirements attribute is set to only include
the last observation seen by the agent. But this can be configured to also
include e.g. the previous action used by the agent, or a history of previous
observations and actions in the given episode.

The forward function is supposed to take in the batched data and compute
the distribution parameters that are then used to sample the actions. If using
the GAE (viz. section 2.1.4), the value function has to also be implemented
to provide the value estimates. It is also possible to define a custom loss
function, which can be used to add for example some supervised loss or weight
decay to the objective.
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Custom action distribution

As mentioned in 2.2, the policy consists of the neural network and the action
probability distribution that is parametrized by the network outputs. In
the RLlib framework, the probability distribution is set by default be the
normal distribution parametrized by the mean and variance. The normal
distribution has however infinite support, which means we have to clip the
sampled actions when using a bounded action space. This can potentially
lead to problems with exploration of the actions space. A solution would be
to use a truncated normal distribution constrained to the bounded action
space, but this is currently not implemented in RLlib, or PyTorch. Another
solution is to use the Beta distribution (viz. (2.39)), which has a bounded
support by definition and is also already implemented in PyTorch.

3.3 BaseDroneEnv

The main interface for working with the MuJoCo simulation is the Base-
DroneEnv class, which provides a gym-like interface to the environment
discussed in section 3.1.2. This class is based on the Gymnasium [5] library’s
MujocoEnv class, which had to be modified to work with the RLlib’s VecEnv
3.2.1 interface. It handles the environment creation, randomized drone param-
eter generation, setting initial drone states and agent-environment interaction.
The environment can be configured using parameters shown in table 3.2.

Parameter Description
num_drones number of simulated drones
frequency frequency of the underlying physical simulation

skip_steps number of simulation steps between environment
interactions

reference the reference state given by 3D position and head-
ing

start_pos the starting state of the drones given by a 3D
position and heading

max_distance maximum distance between the drone and the
reference before the episode is truncated

max_steps the maximum number of timesteps in an episode
before truncation

state_difficulty used for scaling size of the initial state distribution

param_difficulty used for scaling size of the drone parameter dis-
tributions

regen_env_at_steps number of timesteps before the drone parameters
are regenerated

Table 3.2: BaseDroneEnv configuration parameters

The goal that drives the development of this environment is to learn a neural
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network policy that can control a quadcopter, such that it reaches some static
setpoint state. While a neural network is a general function approximator,
its expressivity depends on the number of learnable parameters. With more
parameters, however, more data as well as time is required for training. It is
therefore key to constrain the state space used for training in order to get
reasonable results. This is why the initial position is sampled from a small
region around the starting position given by start_pos (viz. section 3.3.2).
Additionally, the episode is truncated if the drone gets too far away from
the reference position, which is controlled by the max_distance parameter.
Furthermore, as the drone gets closer to the static setpoint position, the
trajectories start to look more alike and carry less information for the policy
to improve. If we were to use uninterrupted episodes, these uninformative
trajectories would dominate in the dataset used for the policy training. In
order to avoid this problem, the episodes are truncated after max_steps steps.
The maximum number of steps in an episode should be set such that the
drone has enough time to reach the setpoint from any initial position and
stabilize reasonably well.

3.3.1 Drone parameter generation

During simulation initialization, every drone parameter pij ∈ pi, j = 1, 2, ..., 6
in the set (3.1) is drawn from a uniform distribution1

pij ∼ U[cj−wj ,cj+wj ] , (3.3)

where cj and wj are the center and (half-) width of the uniform distribution
respectively. The cj and wj are set by default to the values shown in table
3.3. The width parameters are additionally scaled be the param_difficulty
value, to enable easy configuration of the drone parameter ranges.

Parameter Center cj Width wj Units
md 1 0.1 [kg]
ld 0.17 0.02 [m]
mp 0.3 0.05 [kg]
lp 1.2 0.2 [m]
Fm 7 1 [N]
τ 0.01 0.0025 [s]

Table 3.3: Drone parameter distribution settings

This is repeated for every drone inside the simulation. The generated
parameters {p1, ..., pn} are then used to generate the simulated environment
model with n simulated quadcopters. It is also possible to change these drone
parameters during training, if enabled. In such case, the MuJoCo simulation

1The uniform distribution U[a,b] has probability density p(x) =

{ 1
b − a

x ∈ [a, b]

0 otherwise
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is shut down and reinitialized with new drone parameters, while copying the
final states from the previous simulation instance into the new one.

3.3.2 Initial state distribution

At start of each episode, the quadcopter state is initialized randomly. The
complete state of a drone is represented as

s = {q, q̇, ψ, ω, ψ′, ψ̇′, act} , (3.4)

where q ∈ R3 is the position vector, q̇ = dq
dt is the velocity vector, ψ = [α, β, γ]

are the roll, pitch and yaw angles of the drone respectively, ω ∈ R3 is the
intrinsic angular velocity of the drone body, ψ′ ∈ [−π

2 ,
π
2 ]2 are the pendulum

swing angles, ψ̇′ = dψ′

dt is the rate of change of the pendulum swing angles and
act ∈ [0, 1]4 is the actuation state. The position and velocity are described
in the global frame W, where as the angular velocity ω is in the local frame
B. The initial drone state s0 is computed according to the initial state
distribution parameters 3.4 in the following way.

Parameter Description Value
qm max position deviation 2 [m]
vm max velocity magnitude 4 [m s−1]
ωm angular velocity magnitude 2 [rad s−1]
dam drone angle magnitude 1.6 [rad]
pam pendulum angle magnitude 1 [rad]
pvm pendulum angular velocity 1 [rad s−1]

Table 3.4: Drone initial state distribution settings

The position q is sampled from a sphere with radius qm centered on the
starting position. The velocity q̇ and angular velocity ω vectors are sampled
uniformly from 3D spheres of radii vm and ωm respectively centered at the
origin. The yaw angle is sampled uniformly on the interval [0, 2π]. The roll
and pitch angles of the drone are both sampled uniformly from the interval
[−dam, dam]. Similarly, the pendulum states ψ′, ψ̇′ are sampled from the
intervals [−pam, pam] and [−pvm, pvm] respectively. The actuation is simply
set to all zeros. All the distribution parameters 3.4 are further scaled by the
state_difficulty value for easy configuration of the distribution size.

3.3.3 Environment interaction

To interact with the simulated environment, the underlying MuJoCo simu-
lation can be stepped by calling the vector_step() function. This function
accepts a list of actions {a1

t , ..., a
n
t }, where n is the number of simulated drones

and t is the current simulation timestep. It then performs a simulation step
and returns a list of observations {o1

t+1, ..., o
n
t+1}, a list of collected rewards
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{r1
t , ..., r

n
t } and information about episode termination. If enabled, the scene

is also rendered to a visualization window. Every action a is represented as

a ∈ [0, 1]4 , (3.5)

or in other words, the action space A = [0, 1]4 is the four-dimensional unit
cube and represents the desired motor settings for the four drone propellers.
These are internally transformed to the control signals ctrl for each motor by
the affine mapping f(x) = 0.1 + 0.9 · x. This introduces bias to the control
signal, so that we do not operate the drone motors at too low throttle, which
could lead to the motor stalling in the real world. Each observation o is by
default constructed as

o = {q, ψ, q̇, ω, ψ′, ψ̇′, q̈B, act, q∗, h∗, p} , (3.6)

which appart from the state variables (3.4) also includes the acceleration
q̈B = dqB

dt expressed in the local frame, the reference position q∗ ∈ R3, reference
heading h∗ ∈ [0, 2π] and the drone model parameters p (3.1). The reference
and heading are necessary to inform the policy of the desired state. The
parameters will become important later, when dealing with adaptive control
and the acceleration is added to help with pendulum state estimation.
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Chapter 4
Experiments

The three main tasks tackled in this thesis are:..1. Training a policy to control the position of a quadcopter with suspended
pendulum...2. Training a pendulum state estimator network...3. Training a policy that is able to adapt to changing drone parameters.

All of these tasks have a common goal, which is to minimize the distance
of a quadcopter from some setpoint state. A static reference setpoint is
considered and is given by a reference position q∗ and heading h∗, i.e. the
desired yaw angle.

4.1 Reward parametrization

4.1.1 Distance based reward

The simplest kind of reward function that captures the objective of distance
minimization is

r(s, q∗, h∗) = −∥q − q∗∥ − ch · |h− h∗| , (4.1)

where ch determines the ratio of position and heading error in the reward.
Since the actuation force of the drone motors is limited, the policy has to
make some compromise between position and heading error minimization.
The idea behind the coefficient ch is to tune the relative importance of these
two errors and steer the policy closer to desired behavior. However, the
reward (4.1) is always negative which can be a problem. The value function
used for advantage estimation is trained to regress the value estimate

V̂t =
∞∑
l=0

γlrt+l , (4.2)

which in this case is a sum of negative terms. The issue is that this value
estimate can get larger, if the episode is simply truncated early. This can
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steer the policy to learn behaviours that lead to early episode truncation. In
our case, the episode is truncated if the drone gets too far from the reference
position, and it can therefore happen, that the policy will simply learn to reach
the truncation boundary as fast as possible. To circumvent this, a positive
constant can be added to the reward function (4.1)

rdist(s, q∗, h∗) = c− ∥q − q∗∥ − ch · |h− h∗| , (4.3)

where c > 0 is chosen such that the reward is positive for the relevant part of
the state space observed by the policy. The c constant can be interpreted as
a reward for staying alive in the simulation.

The reward (4.3) is the simplest kind of reward that captures the objective
of minimizing the distance from the setpoint state. However, this does not
mean that this reward will yield optimal results. The PPO algorithm tries to
optimize the policy using on-policy data in some neighbourhood of the policy
space. This means that not only is the dataset biased by the used policy, but
so is the policy update itself. The PPO algorithm can therefore get stuck in
local maxima of the cummulative reward objective. The reward may then be
adjusted to penalize undesired behaviours and help guide the policy training.

Effort penalization

In practice it is common to prefer policies that appart from minimizing the
distance from a setpoint try to also conserve energy. These are opposing
objectives as using less energy leads to less agressive control and therefore
slower movements towards the reference setpoint. The effort penalization can
easily be added to the reward (4.3) as

reffort(s, q∗, h∗) = rdist(s, q∗, h∗) − ce · ∥ max(act− acthover, 0)∥ , (4.4)

where act is the current actuation state, ce is the effort coefficient and

acthover = g(md +mp)
4Fm

(4.5)

is the actuation state per motor required to hover the drone in steady state.
The form of this effort penalty ensures that we do not penalize energy exerted
to make the drone simply hover, which could slow down the policy training.

4.1.2 Energy based reward

An alternate reward is based on the observation, that while using rewards
(4.3), (4.4) achieves low setpoint position error, the drone behaviour is rather
chaotic. In particular, the policy performs aggresive movements, pumping
energy into the pendulum, which then hinders its performance. Sometimes,
this leads to destabilization and subsequent inability to recover. This reward
is given as

renergy(s, q∗, h∗) = reffort(s, q∗, h∗) − cd · Ed − ca · (|α| + |β|) , (4.6)
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where Ed is the scaled mechanical energy deviation of the pendulum, cd is
the energy deviation coefficient, α and β are the roll and pitch angles of
the drone respectively and ca is the angle coefficient. The roll and pitch
angle penalization is added to incentivise the policy to stabilize the drone
further. The idea of the Ed term is to penalize the total mechanical energy
of the pendulum. However, the potential energy grows with height and so
we cannot use it in the reward directly for obvious reasons. Instead, we take
the mechanical energy and subtract a baseline corresponding to the lowest
atainable energy in steady state, which is equal to the potential energy of the
pendulum when hanging straight down. This is how we obtain the energy
deviation

∆E = 1
2mp∥vp∥2 +mpgzp −mpgzp0 = 1

2mp∥vp∥2 +mpgzd , (4.7)

where vp is the velocity of the pendulum in the world frame, zp is the current
height of the pendulum, zp0 is the minimum atainable height of the pendulum
given the drone height, zd = zp − zp0 is their difference, mp is the mass of the
pendulum weight and g is the gravitational acceleration. The energy deviation
(4.7) corresponds to the extra energy of the pendulum when compared to the
steady state of the drone-pendulum system. The deviation is further divided
by mp to obtain the scaled deviation

Ed = ∆E
mp

= 1
2∥vp∥2 + gzd , (4.8)

which is independent of the pendulum mass, but still proportional to ∆E.
For a single drone model, this does not change anything, since we further
scale the term by the coeffficient cd. For multiple drone models, this rescaling
causes the reward to penalize large angle deviations and angular velocities
equally for all weight masses. The quantities vp and zd can be obtained from
the drone state using (2.55), (2.60).

4.2 Observations

The following section discusses the observation vectors used for the various
experiments in this chapter.

4.2.1 Full state observation

While training the policy to control the quadcopter, the full state information
will be used as input to the policy. The observation vector is then

o = {q∗B, α, β, herr, q̇
B, ω, ψ′, ψ̇′, q̈B, act} , (4.9)

where q∗B ∈ R3 is the position of the reference setpoint in the drone’s frame,
α and β are the roll and pitch angles respectively, herr ∈ [−π

2 ,
π
2 ] is the signed

heading error, q̇B ∈ R3 is the drone’s velocity in the local frame, ω ∈ R3
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is the drone’s intrinsic angular velocity, ψ′ ∈ [−π

2 ,
π
2 ]2 and ψ̇′ ∈ R2 are the

angles and angular velocities of the pendulum joint, q̈B ∈ R3 is the drone’s
acceleration vector in local frame and act ∈ [0, 1]4 is the actuation state. The
position, velocity and heading are obtained as

q∗B = R⊤(q∗ − q)
q̇B = R⊤q̇

herr = ((h∗ − γ + π) mod 2π) − π

(4.10)

where q∗ ∈ R3 is the reference setpoint position, q ∈ R3 is the drone’s position
in the world frame, R is the rotation matrix describing the orientation of
the drone with respect to the world frame (viz. section 2.3.2), q̇ ∈ R3 is the
drone’s velocity in the world frame, h∗ is the reference heading and γ is the
drone’s yaw angle.

This observation (4.9) effectively removes rendundant information corre-
sponding to the translation of the drone-reference system and also the rotation
about the world’s z axis. The choice to represent the translation and velocity
vectors in the local frame B is rather natural. The acceleration q̈B vector is
fully dependent on the rest of the drone’s state and is thus redundant. It
is however included in the observation as it is also used for pendulum state
estimation, where the acceleration vector can provide useful information for
the policy.

4.2.2 Full state observation with drone parameters

The observation (4.9) is well suited for a single drone model. When dealing
with changing drone parameters however, it no longer provides enough in-
formation to fully describe the drone’s state. This is why the observation is
extended by the drone model parameters (3.1), which yields the observation
vector

o = {q∗B, α, β, herr, q̇
B, ω, ψ′, ψ̇′, q̈B, act, p} , (4.11)

where p are the drone model parameters and the rest is the same as in (4.9).

4.3 Position control

In the first task, the goal is to train a neural network policy πθ(at|st), that
can be used to control a quadcopter such that a distance from a reference
setpoint is minimized. Full state knowledge is assumed as the goal of this
section is to simply explore the capabilities of the RL policy and different
reward parametrizations. The observation vector used in this task (here
labeled st) is the full drone state one as described in (4.9).

4.3.1 Neural network architecture

The policy used for control in this task consists of a neural network nθ(st),
which maps the state vector st to a distribution parameter vector κ ∈ R8.
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This parameter vector is then mapped to

[α, β] = log(exp(clip(κ,−50, 50)) + 1) + 1 , (4.12)

where α = [α1, ..., α4] and β = [β1, ..., β4] are parameters used for the action
distributions Betai(αi, βi) (viz. (2.39)). The clip function is defined as

clip(x, a, b) =


a for x < a

b for x > b

x for x ∈ [a, b]
(4.13)

Note that these distribution parameters are constructed such that αi, βi > 1.
During training, the action for i-th motor is sampled from the corresponding
Betai(αi, βi) distribution. During evaluation, the action for each motor is
instead obtained as a mean of the corresponding Betai(αi, βi) distribution
given by

µi = αi
αi + βi

. (4.14)

The neural network nθ(st) is constructed as an MLP (2.2.1) as illustrated
on figure 4.1. It consists of 3 sets of layer ls, la and lv. The shared layers ls
are made up by two tanh activated fully connected layers with output sizes
[256, 128] respectively, which process the state st into the features f , which
are then fed into the value layers lv and action layers la. The action layers
la are made up by a single linear layer (without activation function) and
outputs the 8 parameters κ used for action sampling. The value layers lv are
then two fully connected layers with sizes [128, 128] with tanh activation and
a linear layer with a single output - the value function estimate V (st).

 
Linear 128

 
Linear 256

Linear 8

 
Linear 128

 
Linear 128 Linear 1

Figure 4.1: Neural network architecture

4.3.2 Training and environment configuration

The parameters of the PPO training (table 3.1) are set as shown in table 4.1.
Additionaly, a learning rate schedule is used, such that the initial learning rate
changes to 0.001 over the course of the training and than remains constant.
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Parameter Value
lambda 0.96
gamma 0.985
lr 0.01
clip_param 0.2
vf_loss_coeff 1
train_batch_size 131072
sgd_minibatch_size 32768
num_sgd_iter 10
rollout_fragment_length 256
num_rollout_workers 8

Table 4.1: PPO training configuration

The environment parameters (table 3.2) are set as shown in table 4.2.

Parameter Value
num_drones 64
frequency 200
skip_steps 2
reference [0, 0, 10, 0]
start_pos [0, 0, 10, 0]
max_distance 4
max_steps 1024
state_difficulty 0.5
param_difficulty 0

Table 4.2: BaseDroneEnv training configuration

The drone model is considered to be non-changing and thus the param_difficulty
of the environment is set to 0. This makes is so that the model parameters of
all the drones in the environment are set to the center values described in
table 3.3. The state_difficulty is set to 0.5, as this leads to reasonable results
in reasonable amount of time. Starting position start_pos is set to be the
same as the reference, corresponding to position 10 meters above the origin
and 0 heading angle.

4.3.3 Results

Distance reward with effort penalization

The following results were obtained by using the distance-based reward (4.4)
with coefficients c = 3, ch = 0.4 and ce = 0.8 for the policy training. The
reward (4.4) was further scaled down by a factor of 100, because of the
underlying training implementation not being reward scale invariant. The
policy was trained for 200 epochs, until the mean episode reward stopped
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improving at a value of 27.16. The figure 4.2 shows the progression of mean
episode reward and length as well as the changing learning rate.
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Figure 4.2: Control MLP training with distance-effort based reward

The figure 4.3 shows ten example trajectories starting in randomly sampled
states around the coordinates q0 = [−2, 0, 10]. The state distribution follows
the settings used for training. The reference setpoint is set to q∗ = [0, 0, 10]
and h∗ = 0. The figures 4.4 and 4.5 show the corresponding quadcopter
coordinate and angle evolution of the drone trajectories respectively.
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Figure 4.3: Control MLP with distance-effort based reward trajectories
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Figure 4.4: Control MLP with distance-effort based reward position
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Figure 4.5: Control MLP with distance-effort based reward angles

Energy based reward

This experiment uses the energy based reward (4.6) with coefficients c = 7,
ch = 0.4, ce = 0.1, cd = 0.1, ca = 0.05 for training the policy. This reward is
again scaled down by a factor of 100 due to the underlying implementation.
The policy is again trained for 200 epochs, until the mean episode reward
stopped improving at the value 78.74. The figure 4.6 shows the progression
of mean episode reward and length, as well as the learning rate progression.
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Figure 4.6: Control MLP training with distance effort reward

37



4. Experiments .....................................
The figure 4.7 shows ten example trajectories generated in the same way

as in 4.3.3. The starting states are in fact identical to the ones used in 4.3.
The figures 4.8 and 4.9 show the corresponding quadcopter coordinates and
angles.
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Figure 4.7: Control MLP with energy based reward trajectories
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Figure 4.8: Control MLP with energy based reward position
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Figure 4.9: Control MLP with energy based reward angles

Trajectory tracking

The performance of the learned policy is also evaluated on trajectory tracking.
The policy is designed with a static reference in mind, but trajectory tracking
can be achieved by simply moving the static reference setpoint between
timesteps. The policy does only have access to a single point on the trajectory
and has no information about the future evolution of the trajectory. Despite
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4. Experiments .....................................
this, it is quite interesting to see how the policy copes with dynamic setpoint
tracking. The trajectory consists of a spiral to show response to the setpoint
moving in all three dimensions. The heading is also varied to point in the
direction of movement. The resulting quadcopter trajectories are shown in
figure 4.10 and correspond to the policies trained using energy-based and
distance-based reward from previous section. Figure 4.11 then shows the
evolution of the reference setpoint as well as the drone positions and heading
angle for both trajectories. Figure 4.12 then shows the evolution of the roll
and pitch angles in the trajectories.
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Figure 4.10: Dynamic setpoint tracking trajectories
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Figure 4.12: Dynamic setpoint tracking angles

4.4 Pendulum state estimation

In the second task, the goal is to show whether the pendulum states can
be estimated using a state estimation network. Here, it is necessary to
differentiate between a state of the system st and the observation ot. Just as
in the previous task, the full state observation (4.9) is used for training. Only
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this time, the observed state vector st is decomposed into the observation
vector ot and the pendulum state [ψ′, ψ̇′]. The policy can be constructed
just as in the previous task, only now it operates on the state estimate ŝt
instead of the ground truth state st. This state estimate ŝt is constructed by
concatenating the observation vector ot with the pendulum state estimate
[ψ′, ψ̇′]est. The goal here is then to compute [ψ′, ψ̇′]est using only the known
observations.

4.4.1 Neural network architecture

The general structure of the used policy is depicted in figure 4.13. The policy
π(at|ŝt) is the same as used in the position control task 4.3.1, only now the
state estimate ŝt replaces the state st. The policy does however not have
direct access to the pendulum state [ψ′, ψ̇′]. It is instead replaced with the
estimated pendulum state [ψ′, ψ̇′]est, which is computed by the state estimator
module η(ot−T :t, at−T :t−1) based on the observation and action histories ot−T :t,
at−T :t−1. The state estimator network η(ot−T :t, at−T :t−1) architecture is dis-
cussed in sections 4.4.1 and 4.4.1. Regardless of the underlying architecture,
the state estimator networks are trained using the supervised loss

Lest = ∥[ψ′, ψ̇′]est − [ψ′, ψ̇′]∥2 , (4.15)

which leverages the knowledge of the ground truth pendulum states.

Figure 4.13: Policy with pendulum state estimator

LSTM state estimator

The first estimator module architecture is based around the LSTM 2.2.2
block. The computation graph is depicted in figure 4.14. The input to this
RNN at each timestep t is the previous observation and action ot−1 , at−1
paired with the current observation ot. These are passed through two fully
connected tanh activated layers with output of sizes 32. The output of these
fully connected layers then feeds into the LSTM block of size 32 along with
its previous hidden state ht−1 and cell state ct−1. The output of the LSTM
block feeds into a final linear layer of size 4, which outputs the state estimates
[ψ′, ψ̇′]est ∈ R4.
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LSTM
32 Linear 4

...
... ...

...

...
...

Linear 32Linear 32

Figure 4.14: LSTM estimator network architecture

CNN state estimator

The second state estimator architecture is based on the 1D convolution
2.2.3. The computation graph of the network is depicted in figure 4.15. The
input to the network at timestep t is a sequence of action-observation pairs
(al−1, ol)tl=t−T . The time window size is chosen to be T = 64. This sequence
is first passed through a tanh activated linear layer of output size 32, and is
then fed through the two time-wise convolutional layers. The convolutional
layers are of sizes (32, 5, 2) and (16, 5, 1), where the numbers correspond to
output feature dimension, kernel size and stride respectively. The output of
the second convolution is then flattened into a single feature vector, which is
then passed through another linear layer of size 128 with tanh activation and
finally linearly mapped to the state estimates [ψ′, ψ̇′]est ∈ R4 .

Linear 32

... Conv(32,5,2)  Conv(16,5,1)  flatten Linear 128 Linear 4

Figure 4.15: CNN estimator network architecture

4.4.2 Training and environment configuration

Since the pendulum state estimation is supposed to be used in order to control
the quadcopter just as in the previous task 4.3.1, there is no need to change
the training parameters. Therefore the same setup from 4.3.2 is used for the
pendulum state estimation as well. The policy is first trained in the same
way as in previous task 4.3.1 using ground truth pendulum state [ψ′, ψ̇′].

After the policy training is finished, the ground thruth state is replaced by
the estimate [ψ′, ψ̇′]est = η(ot−T :t, at−T :t−1), the weights of the policy are fixed
and only the estimator is trained with on-policy data, i.e. while unrolling
trajectories using the policy π(at|ŝt). Some training parameters are here
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changed according to the table 4.3. All the other parameters of the training
and of the policy are reused from 4.3.2. Most notably, the learning rate is
made smaller and the rollout length has been increased to span the maximum
episode length of 1024. The number of used quadcopters in the simulation
has been decreased to 16 as to keep the train batch size the same. A learning
rate schedule is used, that slowly brings the learning rate from initial 0.001
down to 0.0001.

Parameter Value
lr 0.001
rollout_fragment_length 1024
num_drones 16

Table 4.3: Estimator training configuration

4.4.3 Results

Policy without state estimation

In order to showcase the impact of the unknown pendulum angles, the simple
policy 4.3.1 is first trained in the same way as in 4.3.3. The pendulum states
are however removed from the observation vector (4.9). The policy is trained
for 200 epochs and the progression of the mean episode reward, length and
learning rate is shown in figure 4.16. The reward has stopped improving after
reaching a value of 77.7.
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Figure 4.16: Control MLP with unknown pendulum state training

The figure 4.17 shows ten example trajectories beggining in initial states
sampled in the same way as in 4.3. The figures 4.18 and 4.19 show the evolution
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of quadcopter coordinates and angles from the trajectories respectively.
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Figure 4.17: Control MLP with unknown pendulum state trajectories
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Figure 4.18: Control MLP with unknown pendulum state errors
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Figure 4.19: Control MLP with unknown pendulum state angles

LSTM state estimator policy

Even though the policy from 4.3.1 is used, it is trained from scratch for
completeness. The energy based reward (4.6) with coefficients c = 7, ch = 0.4,
ce = 0.1, cd = 0.1, ca = 0.05 is used for training the policy. This is again
scaled down by 100. The figure 4.20 shows the progression of the mean episode
length, mean episode reward and learning rate. After convergence of the
mean episode reward at a value of 78.61, the policy weights are frozen and the
estimator module is trained using the MSE loss to predict the pendulum states.
The LSTM estimator network training took 100 epochs and its progress is
depicted in the figure 4.21. The final MSE loss stopped improving after
reaching 4.9 · 10−3.
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Figure 4.20: LSTM estimator policy training
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Figure 4.21: LSTM estimator training

The figure 4.22 shows ten example trajectories beggining in initial states
sampled in the same way as in 4.3. The trajectories were obtained using
the trained policy and the LSTM state estimator network. The figures 4.23
and 4.24 show the evolution of quadcopter coordinates and angles from
the trajectories respectively. The figure 4.25 then shows the ground truth
pendulum angles corresponding to one of the trajectories ψ′ = [ψ′

1, ψ
′
2] and

pendulum angular rates ψ̇′ = [ψ̇′
1, ψ̇

′
2] together with their estimates.
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Figure 4.22: LSTM estimator policy trajectories
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Figure 4.23: LSTM estimator policy position errors
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Figure 4.24: LSTM estimator policy angles
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Figure 4.25: LSTM estimator angle estimates

CNN state estimator

The policy is trained in exactly the same way as in 4.4.3 and the mean episode
reward, length and learning rate progress can be seen in figure 4.26. The
reward stopped improving after reaching a value of 78.47. The state estimator
network, which is again trained in the same way as in 4.4.3, has its training
progress depicted in the figure 4.27. The final training MSE loss is 1.1 · 10−2.
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Figure 4.26: CNN estimator policy training
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Figure 4.27: CNN estimator training

The figure 4.28 again shows the ten example trajectories, where the initial
states and reference are the same as in 4.22. The figures 4.29 and 4.30 show
the evolution of coordinates and angles from the trajectories respectively. The
figure 4.31 then shows the ground truth pendulum angles corresponding to
one of the trajectories ψ′ = [ψ′

1, ψ
′
2] and pendulum angular rates ψ̇′ = [ψ̇′

1, ψ̇
′
2]

together with their estimates.
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Figure 4.28: CNN estimator policy trajectories
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Figure 4.29: CNN estimator policy position errors
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Figure 4.30: CNN estimator policy angles
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Figure 4.31: CNN estimator angle estimates

Performance comparison

This experiment compares the performace of a control policy that has full
state information and three policies that do not have access to the pendulum
states. The comparison criterium is the average accumulated reward per
episode. The compared policies are the three trained in section 4.4.3 and the
energy based one from section 4.3.3, which all use the same energy-based
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reward for training. A total of 1024 trajectories are unrolled using each policy
while sampling the initial state around the reference setpoint in the same way
as during training 4.3.2. Every trajectory lasts for 5 seconds. The resulting
average rewards for all four policies are shown in table 4.4. The full state and
partial state columns refer to the policy discussed in 4.3.1 trained with full
state information and without pendulum state in the observation respectively.

Policy Full state Partial state LSTM estimator CNN estimator
Reward 37.45 36.62 37.31 37.29

Table 4.4: Performance comparison rewards

State estimation comparison

To compare the pendulum estimation quality, the following experiment was
performed. A total of 1024 drone trajectories were unrolled using the trained
policy with estimator from a randomly sampled position around the reference
setpoint using the training parameters. The trajectories were terminated
after one second to avoid saturating the data with pendulum states near
the steady state, which would not yield very informative measure of the
performance. The first 64 timesteps of these trajectories are ignored, as the
CNN estimator network does not work very well without enough samples.
The error in estimated state is evaluated using mean squared error (MSE)
for all four components separately and is compared for both the CNN-based
and LSTM-based state estimator in table 4.5.

Network ψ′
1 MSE ψ′

2 MSE ψ̇′
1 MSE ψ̇′

2 MSE
LSTM estimator 1.0 · 10−2 1.1 · 10−2 8.4 · 10−2 6.2 · 10−2

CNN estimator 7.8 · 10−3 1.0 · 10−2 1.1 · 10−1 7.1 · 10−2

Table 4.5: State estimation accuracy comparison

4.5 Model parameter adaptation

In the third task, the goal is to adapt to changing model parameters.

4.5.1 Neural network architecture

One of the main issues with deploying a RL based policy trained using
a simulator in the real world is the mismatch between the simulated model
and the real system. One way to combat this is to simply train the policy
as in 4.3.1, while varying the drone model parameters. This then leads to
the policy being more robust to model mismatch, but may also cause the
policy to be too conservative. This is because the policy is not given any
information about the drone model dynamics and thus is forced to select
an action that is likely to work for any model from the training set. Another
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solution would be to provide the drone model parameters to the policy, which
would then enable the policy to adapt its decision to the model. These
parameters are however known precisely only for the simulated model, and
are troublesome to acquire for the real one. Luckily there are ways to get
around this problem. One approach is to use an RNN network to construct
the policy. The hope is that the RNN will be able to adapt to the changing
drone behaviour implicitly. Another approach employed in this thesis is to
use a neural network architecture, that is first trained with the known model
parameters in the observation vector and then an adaptation neural network
is trained to predict these parameters based on a state action history.

LSTM adaptation network

The RNN architecture used for implicit model adaptation is depicted in figure
4.32. This network is based around the original control policy used in 4.3.1.
The main difference is that a parallel recurrent network branch has been
added to the shared layers ls used in 4.3.1. This reccurent branch consists of
two tanh activated fully connected layers with sizes 256 and 64 respectively.
The output of these two FC layers is fed into the LSTM 2.2.2 layer of size 64.
The output of this LSTM block is concatenated with the output of the feed
forward branch from the shared layers ls into a feature vector f . The rest of
the network is the same as in 4.3.1. The LSTM is of course also fed with its
previous cell and hidden states ct, ht, but this is ommited from the graph
4.32 for clarity.

 
Linear 128

 
Linear 256 Linear 8

 
Linear 128

 
Linear 128 Linear 1Linear 64

LSTM
64Linear 256

Figure 4.32: LSTM adaptation network computation graph

Rapid motor adaption paper

The second approach to make the policy robust to changing model parameters
used in this thesis is adapted from the paper RMA: Rapid Motor Adaption
for Legged Robots[9] by Kumar et al. The policy used in the paper consists
of a base policy

π(at|st, at−1, et) , (4.16)

which outputs the distribution over the action space as usual. The inputs
are the current state st, the previous action at−1 and the model parameter
encoding et. The model parameter encoding is obtained via a Environment
Factor Encoder

et = µ(pt) , (4.17)

54



.............................. 4.5. Model parameter adaptation

which is itself another neural network mapping the ground truth model
parameters pt to the encoding et. This policy is trained using the PPO
algorithm 2.1.5 to maximize the cummulative reward. Once converged, the
policy is supposed to be able to adapt to the changing model parameters pt.
This is the first phase of the training. The second phase replaces µ(pt) with
an adaptation module

êt = ϕ(st−T :t−1, at−T :t−1) , (4.18)

which aims at estimating the parameter encoding êt based on the state and
action histories st−T :t−1, at−T :t−1. The adaptation module in the paper is
constructed by chaining an MLP and a 1D (time-wise) convolutional neural
network. The output of the adaptation module ê is used as an input to
the base policy π(at|st, at−1, êt) instead of the ground truth et, so that the
adaptation module is trained on-policy. The weights of µ and π are fixed as
they are assumed to be already optimized. The loss

MSE(êt, zt) = ∥êt − et∥2 (4.19)

is then minimized, while using the known encoding et = µ(pt). At deployment,
only ϕ and π are used to adapt to unknown and possibly changing model
parameters pt. The computational graph of both training phases can be seen
in figure 4.33.

Phase 1

Phase 2

Figure 4.33: RMA computation graph

RMA model

The policy is not given the previous action at−1 here, since the actuation
state is already present in the state vector st. The policy π(at|st, et) is then
constructed in the same way as in 4.3.1, the only difference being, the input
dimension is expanded by the parameter embedding size, which is chosen
to be 8. The environment factor encoder µ(pt) is modelled as a two-layer
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MLP depicted in figure 4.34, that consists of a tanh activated FC layer of size
32 followed by a simple linear layer, which outputs the parameter encoding
et ∈ R8.

Linear 32 Linear 8

Figure 4.34: RMA environment factor encoder computation graph

The adaptation module computation graph is depicted in 4.35. It is given
the state and action histories st−T+1:t , at−T :t−1, which are then processed in
the following manner. The module first passes every state-action pair [st, at−1]
of the state action history through two tanh FC layers of sizes 32 and 32.
The results are passed through two tanh activated 1D convolutional layers
with parameters (32, 5, 2) and (16, 5, 1), where the parameters correspond to
the output feature dimension, kernel receptive field and stride respectively.
The output of these convolutions is then flatten and passed through another
tanh FC layer of output size 32 and finally linearly mapped to the parameter
embedding estimate êt ∈ R8.

Linear 32

... Conv(32,5,2)  Conv(16,5,1)  flatten Linear 32 Linear 8Linear 32

Figure 4.35: RMA adaptation module computation graph

4.5.2 Training and environment configuration

Most of the training and environment parameters are again set as in 4.3.2.
The only exception are the parameters shown in table 4.6. This makes it
so that the drone model parameters are regenerated periodically every 256
timesteps as discussed in 3.3.1. The reduced state difficulty compared to 4.3.2
is set so that the policy converges faster.

Parameter Value
param_difficulty 2
state_difficulty 0.3
regen_env_at_steps 256

Table 4.6: Adaptation training configuration

For the adaptation module training, further adjustments are made as shown
in table 4.7. A learning schedule is used, that starts at learning rate 0.001
and progresses to the final value of 0.0001.
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Parameter Value
regen_env_at_steps 256
num_drones 32
max_steps 512
lr 0.001
num_sgd_iter 2
sgd_minibatch_size 8192

Table 4.7: Adaptation training configuration

4.5.3 Results

LSTM policy

The LSTM policy has been trained for 200 epochs and the mean episode
length, reward and learning rate progression can be seen in figure 4.36. The
final training episode reward was 79.35.
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Figure 4.36: LSTM adaptation training

The figure 4.37 shows ten example trajectories beggining in initial states
sampled using the training configuration around coordinates [−1, 0, 10], with
the setpoint position being [0, 0, 10]. The drone model parameters are also
randomly generated using the training configuration for each quadcopter
inside the simulation as discussed in 3.3.1. The figures 4.38 and 4.39 show
the evolution of quadcopter coordinates and angles from the trajectories
respectively.
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Figure 4.37: LSTM adaptation trajectories
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Figure 4.38: LSTM adaptation position errors
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Figure 4.39: LSTM adaptation angles

RMA based model

The RMA policy was trained for 200 epochs and its training progress can
be seen in the figure 4.40. The trained policy reached mean episode reward
of 79.88. After the policy has been trained, its weights were fixed and the
adaptation module training proceeded. The adaptation module was trained
using MSE loss for 50 epochs and the corresponding training progress is
shown in the figure 4.41.
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Figure 4.40: RMA policy training
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Figure 4.41: RMA adaptation module training

The figure 4.42 shows ten example trajectories beggining in initial states
sampled in the same way as in 4.37. The figures 4.43 and 4.44 show the evolu-
tion of drone coordinate errors and angles from the trajectories respectively.
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Figure 4.42: RMA trajectories
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Figure 4.43: RMA position errors

−0.5

0.0

0.5

ro
ll

[r
ad

]

−0.5

0.0

0.5

p
it

ch
[r

ad
]

0 1 2 3 4 5

time [s]

−2.5

0.0

2.5

h
ea

d
in

g
er

ro
r

[r
ad

]

Figure 4.44: RMA angles

4.6 Discussion

4.6.1 Position control

The energy-based reward has shown to be more suitable for policy training
as the obtained policy results 4.3.3 seem to be in better alignment with
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what we want the policy to do when compared to the simpler distance based
reward results 4.3.3. In particular, the position errors with the energy based
reward 4.8 show better convergence that when using the distance reward
4.4. The trajectories 4.3 and angles 4.5 with distance reward also show that
the quadcopter behaviour is more chaotic than when using the energy based
reward 4.7, 4.9. This is due to the policy having better handling of the
suspended load.

From the trajectory tracking experiment 4.3.3, the distance based reward
seems to achieve smaller position error 4.10, 4.11 than the energy based
reward. This comes however at a cost of more chaotic movements 4.12, which
can be undesirable when handling the suspended load. This is why the
energy-based reward is used in the rest of the experiments.

4.6.2 Pendulum state estimation

The results of training a policy with unknown pendulum state 4.4.3 have
shown worse performance than the full state policy 4.3.3. This is evident
from the lower training reward of 77.7 as compared to 78.74 and also the
position errors, which are larger for the unknown pendulum state 4.18 as
compared to 4.8. The training rewards achieved with the LSTM and CNN
estimator networks are 78.61 and 78.47 respectively, which suggests that
the performance of the policy is improved by including the state estimator
network and is much closer to the full state policy. This can also be seen in the
final position errors of the state estimator policies 4.23, 4.29 as compared to
the policy without pendulum information 4.18. The state estimator networks
show decent pendulum state estimation accuracy 4.25, 4.31. The performance
of the angular velocity estimation seems better than that of pendulum angles.

The evaluation of the four policies 4.4 shows again, that the average reward
improves when using the state estimator network as compared to the policy
without full state information. The LSTM and CNN estimator networks
show very similar performance achieving rewards 37.31 adn 37.29 on the
evaluation respectively. This is still not as good as the full state policy, which
achieved 37.45, but still much closer to its performance compared to partial
state information policy, which achieved reward 36.62.

The state estimator networks are further compared in table 4.5. These
results show that the LSTM estimator network has in general improved state
estimation accuracy as compared to the CNN estimator network.

4.6.3 Model parameter adaptation

When it comes to controlling a quadcopter with varying model parameters,
the LSTM policy trained in 4.5.3 showed poor performance when compared
to the non-varying model policy 4.3.3. The final position errors 4.38 are much
worse compared to 4.8. The explicit adaptation approach using the RMA
model 4.5.3 performed much better in terms of the position errors 4.43. The
RMA model does still not match the non-varying model performance 4.3.3
though, which is expected as this is a much harder task.
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Chapter 5
Conclusion

5.1 Summary

In this thesis, the use of deep reinforcement learning techniques for positional
control of a quadcopter with a hanging load was explored. Though there are
many approaches in the field of reinforcement learning, this thesis focuses
on employing gradient-based direct policy search technique known as proxi-
mal policy optimization (PPO). This technique works by directly optimizing
a stochastic policy, which maps the current state (or observations) to a distri-
bution over the action space. The policy is used to sample trajectories using
a simulated model of the original system, which are then used to reinforce
actions that lead to higher accumulated rewards.

The first step of the implementation included defining a simplified model of
the quadcopter and utilizing the MuJoCo simulator for the physical simulation
of the drone dynamics with a suspended load. The simulated quadcopter
model is assembled from primitive geometrical shapes, four force actuators
to simulate the propellers, and a pendulum connected via two perpendicular
rotational joints. The implemented simulation environment enables spawning
multiple drone models inside a single simulation instance with configurable
model parameters. The training itself is performed using the RLlib library,
which includes basic implementations of many popular reinforcement learning
algorithms, such as PPO.

The implemented instruments are used to train policies tackling three tasks.
In the first task, full state information is provided to a multi-layer perceptron
based policy and the atainable performance is evaluated. The ability of
the policy to stabilize and control a quadcopter is tested using two reward
parametrizations. Training with both rewards lead to the policy being able
to stabilize the drone successfully from various initial states as well as follow
the reference setpoint state. The first reward is simply based on penalizing
the distance from a reference state and the exerted effort. The second reward,
based on penalizing the energy of the pendulum, has been found to handle
the hanging load better than the distance-based reward and is used in the
rest of the experiments.

In the second task, the policy has only access to partial state information
which excludes the pendulum state. This naturally leads to decreased control
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performance. This is solved by augmenting the policy with a state estimator
network that is trained via supervised learning on the pendulum states. The
two trained estimator networks based on the 1D convolution and long short-
term memory architectures respectively are shown to estimate the pendulum
states with decent accuracy, improving the control performance.

The third task then focuses on controlling quadcopters with varying model
parameters such as pendulum weight, length or the maximum propeller thrust.
This task is first tackled by a recurrent neural network policy trained with
PPO, which exhibits weak control performance. The second approach relies
on first training the policy with known model parameters and then training
an adaptation module, that estimates the model parameter embedding using
available trajectory data. This second approach is shown to be able to adapt
to the unobserved model parameters far better than the simple recurrent
neural network policy.

5.2 Future work

When dealing with reinforcement learning-based policies trained in simulated
environments, a significant challenge arises due to the mismatch between the
simulated and real systems. The used simulated model is by far not perfect
as it lacks aerodynamic effects, assumes rigid bodies only and most notably,
does not simulate sensor noise. This is intentional, as these fenomena would
make training the control policy far more difficult. However, in order to be
able to deploy the learned policies in the real world, these problems need to
be adressed.
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Appendix B
Code structure

The attached code is organized as shown in figure B.1. The files in the
environments directory include the definitions of the simulation, drone model,
rewards, and observations used during training. The files in the models
directory implement the PyTorch policy models. The README.md file
contains brief instructions for installing required libraries and running the
policy training in the simulation environment.

Code

environments

init .py

BaseDroneEnv.py

env gen.py

joystick.py

mujoco env custom.py

mujoco vecenv.py

observation wrappers.py

rewards.py

transformation.py

models

ControlMLP.py

EstimatorNetworks.py

LSTMNetwork.py

RMANetwork.py

custom logging.py

distributions.py

evaluation.py

train LSTM.py

train MLP.py

train RMA.py

training.py

README.md

Figure B.1: Code structure
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