
Master’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

A New Trackster Linking Algorithm Based on Graph
Neural Networks for the CMS Experiment at the
Large Hadron Collider at CERN

Bc. Jekatěrina Jaroslavceva

Supervisor: Prof. Mgr. Ondřej Chum, Ph.D.,
Department of Cybernetics, CTU

Supervisor–specialist: MSc. Felice Pantaleo, Ph.D.,
Experimental Physics Department, CMS, CERN

Study program: Cybernetics and Robotics
May 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and stud y details

474416 Personal ID number: Jarosla vceva Jekatěrina Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Depar tment of Cybernetics

Cybernetics and Robotics Study program:

II. Master’ s thesis details

Master’s thesis title in English:

A New Trackster Linking Algorithm Based on Graph Neural Netw orks f or the CMS Experiment at the
Large Hadron Collider at CERN

Master’s thesis title in Czech:

Nový algoritm us pr o spojo vání 3D ener getic kých depozitů založ ený na graf ových neur ono vých sítíc h
pro experiment CMS na velkém hadr ono vém ur ychlo vači v CERNu

Guidelines:

The CERN High-Luminosity Large Hadron Collider (HL-LHC) project aspires to significantly increase the number of collisions
in the LHC, thereby presenting a formidable challenge in terms of data volume and complexity for the current reconstruction
algorithms.
The CMS Collaboration is devising a novel endcap calorimeter system, HGCAL, which will predominantly use silicon
sensors to ensure adequate radiation tolerance and to preserve granular information in the readout in order to mitigate
the effects of pile-up. Within the CMS Software (CMSSW), a reconstruction framework, TICL (The Iterative CLustering),
is being developed to fully harness the granularity and other key detector features, such as particle identification and
precision timing, to counteract pile-up in the very dense environment of HL-LHC. In production, the TICL reconstruction
will be required to reconstruct particle properties by clustering over 500,000 individual energy deposits produced at a rate
of 1 MHz.
The project aims to investigate Graph Neural Networks (GNN) as a means of linking together Tracksters, i.e. clusters of
energy deposited around energy density peaks. Such a correct linking would reduce the dimensionality of the input problem
size by an order of magnitude and dramatically enhance the physics outreach of the experiment under the harsher conditions
of the HL-LHC.
The student will be required to study GNN network architectures that are appropriate for the task, familiarize herself with
the simulation data used for the HGCAL and generate a dataset, implement a functional GNN-based trackster linking
solution, which will be compared with the current linking baseline used in CMSSW. The proposed solution must be developed
in Python and be exportable to ONNX format for further integration into the CMSSW.

Bibliography / sources:

[1] Pantaleo, Felice, and Marco Rovere. The Iterative Clustering framework for the CMS HGCAL Reconstruction. No.
CMS-CR-2022-037. 2022.
[2] Qasim, Shah Rukh, Jan Kieseler, Yutaro Iiyama, and Maurizio Pierini. "Learning representations of irregular
particle-detector geometry with distance-weighted graph networks." The European Physical Journal C 79, no. 7 (2019):
1-11.
[3] Di Pilato, Antonio, Ziheng Chen, Felice Pantaleo, and Marco Rovere. "Reconstruction in an imaging calorimeter for
HL-LHC." Journal of Instrumentation 15, no. 06 (2020): C06023.
[4] Qu, Huilin, and Loukas Gouskos. "Jet tagging via particle clouds." Physical Review D 101, no. 5 (2020):056019.
[5] Wang, Yue, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma, Michael M. Bronstein, and Justin M. Solomon. "Dynamic graph
cnn for learning on point clouds." Acm Transactions On Graphics (tog) 38, no. 5 (2019): 1-12.
[6] Velickovic, Petar, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio. "Graph
attention networks." stat 1050 (2017): 20.

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

prof. Mgr. Ondřej Chum, Ph.D. Visual Recognition Gr oup FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 11.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
prof. Mgr. Ondřej Chum, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements
I would like to extend my heartfelt appre-
ciation to all those who have taken part
in shaping my academic journey. I am
deeply grateful to my supervisors, Ondřej
Chum and Felice Pantaleo. Their expert
guidance and mentorship have been in-
strumental in enabling me to undertake
this truly captivating project for my mas-
ter’s thesis.

I thank my CMS colleagues for the
many suggestions received during the de-
velopment of this work. I would like to
extend a special thanks to Wahid Red-
jeb, who has been an exceptional men-
tor and provided constant support and
assistance throughout the project, rang-
ing from dataset generation to integrat-
ing the final results into the production
framework. I am also indebted to Eduard
Cuba for his insightful contributions dur-
ing our regular meetings. My acknowledg-
ment extends to Marco Rovere, Loukas
Gouskos, Huilin Qu, and Benedict Maier,
who played a pivotal role in developing
the TICL Framework, for their valuable
comments and engaging discussions.

Most importantly, I want to express
deep gratitude to my family for their love
and support that enabled me to pursue
my goals. Equally important, I would like
to thank my loved one, Tomáš Twardzik,
for his constant encouragement and belief
in me. His unwavering love and under-
standing have been a constant source of
strength for me, and I am truly fortunate
to have him by my side.

Declaration
I declare that I wrote the presented thesis
on my own and that I cited all used in-
formation sources in compliance with the
methodical instructions about the ethical
principles for writing an academic thesis.

In Prague, 25. May 2023

. .
signature

v

Abstract
The upcoming High-Luminosity Large
Hadron Collider (HL-LHC) upgrade is
set to increase the number of particle
collisions, which presents a significant
challenge to existing reconstruction
algorithms. To address the associated
rise in data complexity, the Compact
Muon Solenoid (CMS) at LHC is devel-
oping a new endcap High-Granularity
Calorimeter (HGCAL) that can with-
stand the HL-LHC’s harsher conditions
and investigate high-energy collisions.
During the particle shower reconstruction
phase in HGCAL, 3D graph structures
called tracksters are produced, believed
to originate from the same physics object.
However, due to the detector’s irregular
geometry, physics processes, and particle
overlaps (pile-up), tracksters are often
fragmented, degrading the reconstruction
quality.

In this thesis, machine learning ap-
proaches are investigated, with a
particular emphasis on Graph Neural
Network (GNN) models, to enhance
event reconstruction through improved
calorimetric clustering. An end-to-end
trainable GNN-based algorithm for
accumulating incomplete energy frag-
ments into well-formed tracksters is
proposed with this goal. The algorithm
is integrated into the CMS Software
package as a linking plug-in, and its
clustering and physics reconstruction
performance is evaluated on simulation
data. The model presented in the thesis
outperforms the currently used rule-based
state-of-the-art benchmark in all metrics
and improves ParticleFlow reconstruction
even in the challenging environment of
HL-LHC.

Keywords: Calorimetric clustering,
Graph neural networks, HGCAL,
HL-LHC, TICL, CLUE, CMS, Trackster
linking, Event Reconstruction

Abstrakt
Nadcházející upgrade High-Luminosity
Large Hadron Collider (HL-LHC) vý-
znamně zvýší počet částicových srážek,
což představuje výzvu pro stávající algo-
ritmy rekonstrukce srážek kvůli souvise-
jícímu nárůstu objemu a složitosti dat.
V důsledku této změny bude instalován
nový High-Granularity kalorimetr (HG-
CAL) pro experiment Compact Muon So-
lenoid (CMS), který je mimo zvýšené přes-
nosti také schopen odolat silnější radiaci
v HL-LHC. Během rekonstrukce částico-
vých srážek v HGCAL, pomocí topologic-
kého spojování energetických depozitů v
jednotlivých vrstvách detektorů vznikají
3D energetické shluky (trackstery). Avšak
kvůli nepravidelnosti detektoru, fyzikál-
ním procesům a překryvům částic (pile-
up) jsou trackstery často fragmentovány,
což snižuje kvalitu rekonstrukce.

V této práci jsem prozkoumala aplikaci
strojového učení, specificky pak Grafo-
vých Neuronových Sítí (GNN), pro zlep-
šení kalorimetrického shlukování, které je
stěžejním prvkem rekonstrukce částico-
vých srážek. Výsledkem mé práce je end-
to-end trénovatelný algoritmus na bázi
GNN, který spojuje neúplné energetické
fragmenty do celistvých tracksterů. Sou-
částí práce byla i následná integrace algo-
ritmu do CMS Software frameworku. Va-
lidace výkonnosti shlukování a fyzikální
rekonstrukce modelu proběhla na simulo-
vaných datech částicových srážek, přičemž
výsledky všech uvedených metrik indikují
výrazné zlepšení oproti současně využí-
vané state-of-the-art metodě.

Klíčová slova: Kalorimetrické
shlukování, Grafové neuronové sítě,
HGCAL, HL-LHC, TICL, CLUE, CMS,
Rekonstrukce částicových srážek

vi

Contents
Acronyms 1

1 Introduction 3

1.1 Key Contributions 5

1.2 Thesis Structure 6

2 CMS Detector at the Large
Hadron Collider 7

2.1 The Standard Model 8

2.2 The Large Hadron Collider 9

2.3 Compact Muon Solenoid 11

2.3.1 Coordinate System and
Conventions 11

2.3.2 CMS Sub-Detectors 12

2.4 Trigger and Data Acquisition
System . 15

2.5 High Luminosity LHC Upgrade . 16

2.6 The Main CMS HL-LHC
Upgrades . 17

2.6.1 The High Granularity
Calorimeter 18

3 Event Reconstruction 21

3.1 Particle Interactions 21

3.2 ParticleFlow Reconstruction . . . 23

3.3 HGCAL Reconstruction 23

3.3.1 Layer-Cluster Formation: the
CLUE Algorithm 25

3.3.2 Trackster Formation: the
CLUE3D Algorithm 26

3.3.3 TICL Framework 27

4 Trackster Linking 31

4.1 Motivation 31

4.2 Challenges 34

4.3 Problem Definition 34

4.3.1 Data . 34

4.4 Related Work 35

4.4.1 Unsupervised Clustering
Methods . 35

4.4.2 Supervised Machine Learning
Techniques . 36

5 Event Simulation and Datasets
Generation 41

5.1 Event Simulation 41

5.2 Generated Linking Datasets 43

5.3 Raw Generated Data 47

5.4 Processed Linking Datasets 51

5.4.1 Node Features 51

5.4.2 Edge Features 53

5.4.3 Event Graph Building: Eta-Phi
Bounded Graph 54

5.4.4 Event Graph Building:
Skeleton-Based Graph 55

5.4.5 Reduced Graphs 59

5.4.6 Ground Truth Edge Labeling 60

5.5 Dataset Analysis 60

5.5.1 Final Dataset Parameters . . . 65

6 Methodology 67

6.1 Overview of Graph Neural
Networks . 67

6.1.1 Edge Convolution 70

6.2 Explored ML Approaches 70

6.2.1 Linking Problem Framing . . . 70

6.2.2 MLP Pair-Wise Linking. 71

6.2.3 General Considerations and
Design Choices 71

vii

6.2.4 GNN Linking 74

6.2.5 Model Architecture 74

6.3 Supertrackster Building 79

6.4 Loss Function 80

6.5 Performance Evaluation 82

6.5.1 Standard Clustering Metrics . 82

6.5.2 Edge Prediction Metrics 86

6.5.3 Physics Performance
Evaluation . 87

7 Experiments and Discussions 89

7.1 Approach Summary 89

7.2 Experimental Setup 89

7.3 Baseline: Standard Clustering
Methods . 90

7.4 Machine Learning Techniques . . 93

7.4.1 Training Setup 93

7.4.2 Hyperparameter Tuning 94

7.4.3 Evaluation During Training and
Final Network Selection 96

7.5 Performance Evaluation 96

7.6 Visual Inspection 96

7.6.1 Clustering Metrics Evaluation 98

7.6.2 Energy Containment 101

7.6.3 Per-Edge Evaluation 102

7.6.4 Physics Performance
Evaluation 105

7.6.5 Previous Reconstruction Steps
Bias in Physics Evaluation 106

7.6.6 Inspection of PU Merging . . 108

7.6.7 Model Complexities 113

7.6.8 Model Interpretability 115

7.6.9 Model Output
Post-Processing 118

7.7 Clustering Model Embeddings . 119

7.8 Contrastive Learning 119

7.9 Summary 121

8 Conclusions 123

8.1 Future Work 124

A Additional Figures and Tables 125

A.1 Raw Dataset Properties 125

A.2 Dataset Analysis 129

A.3 Standard Clustering Methods with
Multiparticle Dataset 131

A.4 Model Details 132

A.5 Clustering Metrics Evaluation 133

A.6 Energy Intersection Over Union 134

A.7 Model Interpretability 135

B Bibliography 137

viii

Figures
1.1 CMS collision event in 140 PU . . 4

2.1 The Standard Model of particle
physics . 8

2.2 LHC accelerator complex 10

2.3 CMS coordinate system 12

2.4 Coordinate system adopted by the
CMS detector 13

2.5 CMS detector layout 14

2.6 LHC upgrade timeline 17

2.7 HGCAL endcap layout 18

2.8 HGCAL visualization 19

3.1 Particle interactions in CMS . . . 22

3.2 CMS reconstruction time
consumption diagram 24

3.3 TICL data flow stages 25

3.4 Simulated particle showers in
HGCAL endcap 26

3.5 CLUE algorithm steps 27

3.6 Schematic overview of the TICL
framework . 28

3.7 PID trackster image 29

4.1 Double closeby pions fragmentation
and energy profile analysis 32

4.2 Schematic diagram of a hadronic
shower development 33

4.3 Pion trackster fragments before
and after geometric linking 34

4.4 Demonstration of the HGCAL’s
irregularity . 37

5.1 Illustration of events in the linking
datasets . 44

5.2 η − ϕ graph visualization 54

5.3 Trackster skeleton illustration . . 57

5.4 RANSAC-based trackster
skeletonization pipeline 59

5.5 Correlation matrix for the PU
dataset . 61

5.6 Energy distribution for double
pions in 0 PU 62

5.7 Event graph visualization 63

5.8 Edge length distribution in event
graphs . 64

5.9 Histogram of edge length and
Reco-to-Sim associator scores 64

6.1 GNN neighborhood aggregation
process . 69

6.2 MLP-based trackster linking
network architecture 72

6.3 GNN-based trackster linking
network schematic representation . 74

6.4 EdgeConv block schematic 77

7.1 Performance of double pion
clustering with standard clustering
methods . 91

7.2 Example of the learning rate range
test . 94

7.3 Predicted event graph visual
inspection for closeby pions 97

7.4 Double pion dataset clustering
performance of geometric, pair-wise
MLP and GNN linking methods . . 99

7.5 Double pion dataset EIoU score
distributions 102

7.6 Rer-edge evaluation of the MLP
and GNN models trained on double
pions . 103

ix

7.7 GNN model prediction
distributions for double pion and PU
datasets . 104

7.8 Per-edge metrics evaluation for the
double pion-trained models 104

7.9 Performance evaluation of the
double pions in the production
environment 106

7.10 Efficiency evaluation of the double
pions in the production
environment 107

7.11 Number of tracksters produced
after different linking procedures for
double pions 108

7.12 Shared energy and Reco-to-Sim
score after linking procedures for
double pions 109

7.13 tt̄ event validation in CMSSW 109

7.14 Example of a tt̄ event. 110

7.15 Double pion visualization of
reconstruction bias 110

7.16 Predicted graph visual inspection
for an event with pile-up 110

7.17 The T-SNE projection of the
event containing pile-up 112

7.18 Zoomed-in T-SNE projection of
MLP embeddings 113

7.19 CMSSW timing of the pion events
in 200 PU . 116

7.20 CMSSW allocated memory of
pions in 200 PU 117

7.21 Integrated gradients feature
importance for the double pions . 118

7.22 Standard clustering on GNN
embeddings 120

7.23 Learning process of the metric
learning model 121

A.1 Energy distribution for multiple
particles in 0 PU 129

A.2 Correlation matrix of the double
pion features 129

A.3 Correlation matrix of the
multiparticle features 130

A.4 The correlation matrix difference
of PU and non-PU trackster features
for single pion in 140 PU 130

A.5 Performance of multiparticle
dataset clustering with standard
clustering methods 131

A.6 Multiparticle dataset clustering
performance comparison of geometric,
MLP, and GNN linking methods . 133

A.7 Pile-up dataset clustering
performance comparison of geometric,
MLP, and GNN linking methods . 133

A.10 Distribution of the CLUE3D
trackster energies in tt̄ events. . . . 134

A.8 Multiparticle EIoU score
distributions 134

A.9 Single particle in 140 PU EIoU
score distributions 134

A.11 Integrated gradients feature
importance for multiple particles in 0
PU. 135

A.12 Integrated gradients feature
importance for the pile-up dataset. 135

x

Tables
5.1 Properties of the three raw linking

datasets . 46

5.2 η − ϕ graph-related properties of
the three linking datasets 63

7.1 Double pion dataset clustering
results with standard clustering
methods . 92

7.2 Double pion dataset clustering
performance with geometric linking,
MLP and GNN 98

7.3 Multiparticle dataset clustering
performance with geometric linking,
MLP and GNN 100

7.4 Single particle in 140 PU dataset
clustering performance with
geometric linking, MLP and GNN 101

7.5 MLP and GNN linking model
parameters . 114

A.1 Properties of the clusters in the
raw dataset 125

A.2 Properties of the tracksters in the
raw dataset 126

A.3 Candidates features in the raw
dataset . 127

A.4 Graph features in the raw
dataset . 127

A.5 Tracks features in the raw
dataset . 127

A.6 Association features in the raw
dataset . 128

A.7 Multiparticle dataset clustering
results with standard clustering
methods . 131

A.8 Best model parameters for
individual datasets 132

xi

Acronyms

AI Artificial Intelligence
CERN European Laboratory for Particle Physics
CLUE CLUstering of Energy algorithm
CMS Compact Muon Solenoid experiment
CMSSW CMS simulation and reconstruction Software
CNN Convolutional Neural Network
DAG Directed Acyclic Graph
DFS Depth-First Search
ECAL Electromagnetic Calorimeter
FC Fully Connected Layer
GAT Graph Attention network
GNN Graph Neural Network
HCAL Hadronic Calorimeter
HEP High Energy Physics
HGCAL High-Granularity Calorimeter
HL-LHC High-Luminosity Large Hadron Collider upgrade
HLT High-Level Trigger, a collection of software trigger algorithms
IP Interaction Point
L1 Level-1 Trigger
LC Layer-Cluster produced by the CLUE algorithm
LHC Large Hadron Collider
LR Learning Rate
LS2 Long Shutdown 2, second LHC long shutdown
LS3 Long Shutdown 3, third LHC long shutdown scheduled for

around the end of 2023
ML Machine Learning
MIP Minimum Ionizing Particle
NN Neural Network
PF Particle-Flow reconstruction
PU Pile-Up, an average quantity of proton-proton collisions

per bunch crossing
QCD Quantum Chromodynamics – a theory describing strong interactions
SM Standard Model of particle physics, is a theory concerning the

electromagnetic, weak, and strong nuclear interactions
TICL The Iterative Clustering framework used for HGCAL reconstruction
TriDAS Trigger and Data Acquisition System

1

2

Chapter 1

Introduction

The Large Hadron Collider (LHC) [EB08], the largest and most powerful particle ring-shaped
accelerator in the world, is located at the European Organization for Nuclear Research (CERN)
on the Franco-Swiss border in proximity to Geneva. The LHC operates by accelerating
protons in both clockwise and anticlockwise directions, resulting in particle collisions at
four distinct detector points (ATLAS [ABT+08], CMS [Col08], ALICE [AQA+08], and
LHCb [AJ+08]) along its 27-kilometer long accelerator ring. Particle collisions transform
energy into mass, producing secondary particles spreading in all possible directions. During
its ongoing operational phase, the LHC generates proton beam collisions at energies of
13.6 TeV1 with a luminosity2 of 1034 cm−2 · s−1. The conclusion of the current LHC run is
projected for 2025, after which the LHC and its associated experiments will be subject to
extensive modernizations for the High Luminosity LHC (HL-LHC) [Col21] project, aiming
to significantly increase the number of collisions in the accelerator. By 2029, the HL-LHC
project is expected to achieve an instant luminosity five times greater than the LHC’s nominal
value, increasing simultaneous collisions by a factor of ten beyond the original LHC design.
The LHC update is essential to unlocking its further discovery potential and ensuring its
operation continues beyond 2029. On the other hand, it poses a significant challenge for the
detectors in handling high radiation dose rates and an increased number of simultaneous
interactions referred to as pile-up (PU).

One of the detectors facing the challenges posed by the HL-LHC update is the CMS detector
– one of the two multi-purpose experiments at the LHC. To address these challenges, the
CMS sub-detectors will undergo renovation, with the current endcap calorimeters being fully
replaced with the High Granularity Calorimeter (HGCAL) [Col17b] endcaps further described
in Section 2.6.1. The endcaps are situated at the end of the cylindrical detector, boasting an
impressive ∼6.5 million data channels, divided into 47 layers, and strategically positioned
to cover the forward region in the direction of the incident beams where most interactions
happen. The calorimeter detects the energy deposits produced by the interactions of particles
with its sensors. Although the construction of the HGCAL is still ongoing, precise simulations
described in Section 5.1 permit the generation of datasets of particle interactions with the
calorimeter (Figure 1.1), facilitating the exploration of reconstruction methods for future
detector deployment.

1The kinetic energy of colliding protons is half that figure, 6.8 TeV, allowing them to travel at 99.999999%
of the speed of light.

2Rate of collisions.

3

1. Introduction ..

Figure 1.1: Visualization produced by the CMS Fireworks software, showing the simulation of a
140 PU particle collision event expected after the HL-LHC upgrade, in which energy deposits are
captured by both HGCAL endcaps. The simulated particles follow tracks highlighted in green
and, upon interaction with the calorimeter, deposit energies into the sensors, generating energetic
cascades shown in dark blue.

The upgrade’s impact extends beyond the need for new infrastructure since the increase
in data volume and complexity also poses a challenge for existing reconstruction algorithms.
In particular, the HGCAL, with its finer granularity, represents a significant departure from
previous calorimeters, requiring the development of innovative algorithms to effectively recon-
struct particle showers. To meet these evolving requirements, the Iterative CLustering (TICL)
framework [PR22] is being developed as part of the CMS Software (CMSSW) reconstruction
framework. In operation, TICL will be required to reconstruct particle showers from over
O(105)3 individual energy deposits at a rate of ∼750 kHz during the online high-level trigger-
ing (HLT). Particle shower reconstruction aims to assign a label to each energy deposit in the
calorimeter, also referred to as hit, with all hits produced by a single particle sharing the
same label. The use of traditional clustering algorithms is hindered by more than a cubic
increase in computational complexity as the sample size increases, which poses a problem
with the HL-LHC in sight. Therefore, to reduce the complexity of the reconstruction problem,
a series of two clustering steps are proposed, decreasing the problem size by one order of
magnitude in every step. First, a density-based clustering algorithm CLUE [RCDP+20] is
utilized to cluster hits on each detector layer as further discussed in Section 3.3.1, resulting in
topological structures called layer-clusters (LCs). LCs are further clustered in three dimen-
sions through the application of the CLUE3D [PR22] algorithm, producing high-homogeneity
tracksters. Tracksters are the 3D topologically connected energy deposits thought to be
part of a single reconstructed physics object, creating direct acyclic graphs (DAGs). The
current HGCAL reconstruction produces thousands of tracksters per single proton-proton
collision. However, the fragmentation of tracksters stemming from a single particle shower is
a common occurrence, caused by factors outlined in Section 4.2, including detector irregular
geometry, varying gaps between detector layers, noise, physical processes such as secondary
components initiated by bremsstrahlung [KM59] for hadronic showers, and particle overlaps.
Additionally, rejecting pile-up is important for correct event reconstruction. To achieve this,
the CLUE3D algorithm has been carefully tuned to avoid excessive clustering, which also

3Please be aware that in this context, O(·) does not refer to complexity in terms of the Big-O notation but
rather indicates the order of magnitude. This notation for the order of magnitude will be utilized consistently
in this work.

4

... 1.1. Key Contributions

leads to the creation of multiple separate trackster fragments. As a result of the above, a
supplementary trackster linking step is necessary post the three-dimensional clustering phase
to improve the reconstruction process.

This thesis is an endeavor to develop strategies for improving particle shower reconstruction
using machine learning (ML). ML-based techniques are recently demonstrating promising
advances in terms of time complexities and physics performance. Such parameterized models
learned from sufficient amounts of data often yield superior results compared to traditional
approaches. Additionally, in anticipation of potential changes in the development of the
HGCAL detector, data-driven methods would enable swift algorithm adaptation through
learning on updated data. However, leveraging ML approaches typically necessitates careful
task formulation, extensive model training, hyperparameter tuning, and data processing. The
objective of this thesis is to boost the performance of collision event reconstruction in HGCAL
by investigating ML methods, particularly Graph Neural Network (GNN) models for the
task of trackster linking. The task comes down to identifying associated fragmented energy
deposits using trackster features, such as their shapes, spatial characteristics, and neighborhood
information, and connecting them together, producing more precise representations of the
underlying physics objects.

1.1 Key Contributions

. In this thesis, an end-to-end trainable GNN is developed for linking tracksters emanating
from a common particle shower. The problem is framed as a task of edge classification in
the collision event graph, with the aim of determining whether the connections between
tracksters belong to the same shower. The network is based on custom-implemented Edge
Convolution layers with attention and designed to provide a balance between performance
and computing resources needed for inference. It is trained using PyTorch library and
equipped with the capability to be exported to the ONNX format for inference in the
production environment..As a part of this work, three Monte Carlo-based simulated datasets of varying complexities
have been created for the task of trackster linking. These datasets are used for training
and performance evaluation of the implemented networks.. In this document, I report the physics and computational performance of the proposed
algorithms. It is shown that the GNN-based linking methods significantly improve
the physics response with respect to a rule-based geometric linking benchmark and
demonstrate reconstruction improvement even in a high PU environment..The proposed GNN is integrated within the CMS production environment and is available
in the form of a linking plug-in during the HGCAL reconstruction stage..Additionally, a set of adapted clustering metrics has been devised to address the non-
uniformity of data point contributions when evaluating algorithms’ clustering perfor-
mance.. Finally, I investigated several methods for trackster skeletonization, which involves
generating a backbone representation of the calorimetric energy structures in the form
of graphs. The purpose of skeletons ranges from enabling time propagation along the
skeletons to allowing extraction of additional trackster features.

5

1. Introduction ..
1.2 Thesis Structure

This thesis is structured as follows: first, Chapter 2 discusses the theoretical background of
particle physics relevant to this work, and provides a brief overview of the CMS experiment
and its sub-detectors with a focus on the HGCAL, in the context of which this work was
carried out. The following Chapter 3 delves into the reconstruction process for the HGCAL
implemented in the TICL framework. In particular, the currently-used geometric linking is
described in this Chapter, which is used as a baseline for the performance evaluation of the
proposed solution. Then, the trackster linking task is introduced in Chapter 4, reviewing the
relevant work to the calorimeter clustering problematics and providing motivation for this
work. The created datasets are presented in Chapter 5. After that, the GNN-based linking
algorithm developed as a result of this project is discussed in Chapter 6, along with the
details related to the proposed graph neural network architecture. Training and performance
evaluation of the GNN linking method with respect to a rule-based benchmark and other
experiments are presented in Chapter 7. Finally, Chapter 8 summarizes the outcomes of the
work and outlines potential avenues for future research.

For readers solely interested in the statistical modeling aspect of this work, it is possible
to proceed directly to the task formulation and dataset description outlined in Chapters 4
and 5, respectively, bypassing Chapters 2 and 3. While the information provided in these
preceding sections is of relevance to dataset creation and decision choices for the proposed
GNN architecture, direct referencing will be employed to ensure the reader’s time is utilized
optimally.

6

Chapter 2

CMS Detector at the Large Hadron Collider

At high-energy colliders such as the CERN LHC, high-velocity particle beams collide and
result in the creation of massive, potentially undiscovered particles from the conversion of
energy to mass according to the axiomatic mass-energy equivalence equation E = mc2. These
newly formed particles, being unstable in their vast majority, rapidly, even before reaching the
first sensitive layer of CMS at 1.3 cm from the interaction point, decay into other particles.
The resulting particles can also be unstable and undergo further decay in a cascade of reactions,
forming a decay chain that ultimately terminates with the production of stable particles,
which can often be detected. The decay process is governed by the laws of conservation of
energy and momentum, meaning that the mass of the mother particle is always greater than
the combined mass of the daughter particles, and the difference in mass is released as the
kinetic energy of the decay products. Hence, to create heavier and typically more interesting
particles, higher-energetic collisions are generally targeted.

Stable particles are very few; they include protons, electrons, photons, and neutrinos,
with other particles eventually decaying into their admixture. Theoretical physics provides
information on the specific mixtures of stable particles arising from the decay of a given parent
particle, along with the probability of that particular mixture occurring. Therefore, accurate
detection and characterization of the resulting decay products hold the key to reconstructing
particle collisions, also referred to as events. Detecting these mixtures of particles is a primary
objective of the detectors at the LHC, enabling the assignment of the detected particles to
their original constituents through the subsequent software reconstruction steps.

This chapter presents a brief overview of the key concepts in the Standard Model (SM) of
particle physics, summarizing the fundamental principles underlying modern particle physics,
including electromagnetic, weak, and strong interactions. Furthermore, the particle types
utilized for training the linking networks are discussed within this context. Then, I provide an
overview of the LHC and the Compact Muon Solenoid (CMS) experiment, including its various
sub-detectors. Considering the goal of this thesis lies within improving the reconstruction of
the High Granularity Calorimeter, the main focus of this chapter will be on it.

7

2. CMS Detector at the Large Hadron Collider

R/G/B
2/3

1/2

2.3 MeV

up
u

R/G/B
−1/3

1/2

4.8 MeV

down
d

−1

1/2

511 keV

electron

e

1/2

< 2 eV

e neutrino

νe

R/G/B
2/3

1/2

1.28 GeV

charm

c

R/G/B
−1/3

1/2

95 MeV

strange
s

−1

1/2

105.7 MeV

muon

µ

1/2

< 190 keV

µ neutrino

νµ

R/G/B
2/3

1/2

173.2 GeV

top
t

R/G/B
−1/3

1/2

4.7 GeV

bottom
b

−1

1/2

1.777 GeV

tau

τ

1/2

< 18.2 MeV

τ neutrino

ντ

±1

1

80.4 GeV

W±

1

91.2 GeV

Z

1
photon

γ

color

1
gluon

g

0

125.1 GeV

Higgs
H

???

strong
nuclear

force
(color)

electrom
agnetic

force
(charge)

weak
nuclear

force
(weak

isospin)

charge
colors
mass
spin

6
qu

ar
ks

(+
6

an
ti-

qu
ar

ks
)

6
le

pt
on

s
(+

6
an

ti-
le

pt
on

s)

12 fermions
(+12 anti-fermions)
increasing mass →

5 bosons
(+1 opposite charge W)

standard matter unstable matter force carriers
Goldstone

bosons
outside

standard model
1st 2nd 3rd generation

Figure 2.1: The Standard Model of particle physics. Programmed in TikZ by Carsten Bur-
gard [Bur21].

2.1 The Standard Model

The SM constitutes a theoretical framework for the understanding of modern particle physics,
encompassing the description of both the elementary particles and the fundamental interactions
that govern them. The elementary particles, considered the fundamental building blocks
of matter, can be differentiated into bosons and fermions based on their intrinsic angular
momentum, or spin, with bosons possessing an integer positive spin and fermions exhibiting a
positive half spin. The Standard Model encompasses twelve fermions and five bosons defined
as force carriers mediating the strong, weak, and electromagnetic fundamental interactions
such as gauge bosons or explaining the mass of other particles in the case of the Higgs
boson. Fermions are categorized into three distinct generations – groups of particles that
exhibit similar behaviors, each comprising two leptons and two quarks (Figure 2.1). A lepton
generation encompasses three particles with a charge of −e and their corresponding neutrinos
(electron, electron neutrino, muon, muon neutrino, tau, tau neutrino), while a quark generation
includes a positive quark with a charge of 2/3e and a negative quark with a charge of −1/3e.
The six types of quarks, known as flavors, are up u, down d, charm c, strange s, top t, and
bottom b. Each of the twelve fermions is paired with an antiparticle possessing the same mass
as its corresponding ordinary matter counterpart but exhibits opposite electric charge and
magnetic moment.

The Standard Model adopts Quantum Field Theory to provide a consistent theoretical
description of the electromagnetic, weak, and strong interactions and incorporate the Higgs
mechanism, while not being able to include gravity as of now. The interactions are attributed
to the exchange of force-carrier particles – bosons, which mediate the interaction between
particles of matter by transferring discrete amounts of energy. Each of the three fundamental
forces has its own corresponding boson. The strong force is mediated by the gluon, the

8

......................................2.2. The Large Hadron Collider

electromagnetic force by the photon γ, and the weak force by the W and Z bosons.

The strong force is a short-range force (approximately 10−15 m) responsible for a robust
binding between quarks, thereby resulting in the formation of composite particles referred to
as hadrons. The hadrons are comprised of either a quark-antiquark pair (mesons) or three
quarks (baryons), such as a proton (uud) or neutron (ddu). Pions, which are the particles
mainly used in this work, are the lightest of the mesons, and they come in three different
types: neutral π0, positive π+, and negative π−. Pions are typically produced in high-energy
collisions and decay rapidly. Kaons are slightly heavier mesons that also come in three
versions, K0 and K±.

The electromagnetic force acts on any particle with a non-zero electric charge and is respon-
sible for binding electrons to nuclei, among others. The infinite range of the electromagnetic
force is owed to the zero rest mass of the photons, which mediates this interaction. The weak
force is a very short-range force being able to change the flavor of quarks and responsible
for radioactive phenomena. It is mediated by Z, W± bosons discovered at CERN in 1983.
In order to introduce mass terms, the Higgs mechanism is included in the SM. The Higgs
boson is generated by the Higgs field, which pervades all of space, and the interaction with
the Higgs boson gives particles their masses.

2.2 The Large Hadron Collider

The Large Hadron Collider, located approximately 100 meters underneath the surface in close
proximity to Geneva, comprises a 27-kilometer-long ring and serves as the most powerful
particle accelerator ever built. Important parameters for the characterization of the particle
accelerator performance are the instantaneous luminosity, L, and cross-section σ, which
define a potential number of particle interactions via the equation dN

dt = L · σ, where the
quantity dN

dt represents the number of collisions per unit of time. The luminosity is determined
completely from the colliding beam properties, and for Gaussian-shape n bunched beams
colliding head-on, it can be expressed as

L = f
nNaNb

4πσxσy
, (2.1)

where the bunch cross-section profiles at the interaction point σx, σy are perpendicular to
their flight direction. Na and Nb denote the number of particles in each of the two particle
bunches, which repeatedly collide at frequency f during the experiment.

The performance of a high-energy accelerator can also be evaluated through its capacity to
produce beam collisions useful for the high-energy physics community, quantified through the
integrated luminosity L =

∫
Ldt. L defines the amount of data delivered by the LHC over a

given period of time, usually a year of data taking. The typical unit of integrated luminosity
is the inverse femtobarn. To provide a sense of scale, 1 fb−1 corresponds to approximately
100 trillion (1012) proton-proton (pp) collisions.

Designed to collide oppositely circulating bunches of protons at rates up to 40 million
collisions per second, the LHC was originally engineered to operate with a center-of-mass
energy of

√
s = 7 TeV and a luminosity of L = 1034 cm−2· s−1. It is worth noting that the

LHC is not limited to proton collisions, as it can also collide heavy ions such as Pb-Pb (and
also p-Pb) with an energy of 2.8 TeV per ion and luminosity of 1027 cm−2· s−1, but this is

9

2. CMS Detector at the Large Hadron Collider

Figure 2.2: Schematic representation of the LHC and the accelerator complex with the relevant
parts highlighted in their respective colors. The accelerator chain includes the proton source,
LINAC2, proton synchrotron booster (PSB), proton synchrotron (PS), super proton synchrotron
(SPS), and ultimately the LHC. Positioned along the circular pathway of the LHC are four main
detectors, namely CMS, ATLAS, LHCb, and ALICE. The image is courtesy of CERN [Lop22].

beyond the scope of this work. The luminosity of the LHC decays during an experiment run
with a lifetime of approximately 14.9 hours, owing to losses from collisions, photon emissions
along the circular path, and scattering at residual air. As a result, fresh bunches of protons
are injected into the LHC every one or two days.

At the beginning of the experiment, hydrogen atoms are stripped of their electrons, and
the extracted protons are subsequently accelerated through several pre-accelerators, gradually
increasing their kinetic energy. Protons are first injected into the LINAC2, rising their energy
to 50 MeV (∼ 0.31c1), followed by the Proton Synchrotron Booster that takes them to 1.4 GeV
(∼ 0.916c). Subsequently, the Proton Synchrotron raises the energy to 26 GeV (∼ 0.9994c)
and, finally, the Super Proton Synchrotron propels the protons to 450 GeV (∼ 0.999998c, or
just ∼ 649 m/s slower than the speed of light). Along the LHC ring, protons are accelerated
within two adjacent vacuum tubes to the energy of 6.8 TeV2 before being subjected to
collisions at the centers of the four experiments (Figure 2.2): ATLAS (A Toroidal LHC
ApparatuS), CMS (Compact Muon Solenoid), ALICE (A Large Ion Collider Experiment) and
LHCb (LHC Beauty), which aim to capture information regarding the direction, energy, and
properties of the resulting decay products from inelastic particle collision events. To achieve
this, the detectors are partitioned into sub-detectors, each equipped to gather complementary
information.

1Calculated with v
c

=
√

1 −
(

1 − m0c2

Ek+m0c2

)2
, where m0c2 = 938 MeV for protons.

2The ultimate velocity of protons can then reach ∼ 0.999999991c in LHC, or ∼ 2.7 m/s slower than the
speed of light.

10

...................................... 2.3. Compact Muon Solenoid

2.3 Compact Muon Solenoid

The Compact Muon Solenoid experiment is one of the two general-purpose detectors at
LHC that have played a crucial role in numerous groundbreaking discoveries in particle
physics, including the co-discovery of the Higgs boson [Col12] in 2012 along with the ATLAS
experiment. The CMS experiment was envisioned with the purpose of uncovering the Higgs
Boson and exploring new physics phenomena that may exist beyond the boundaries of the
current SM paradigm. The experiment aims to shed light on some of the most pressing
questions in particle physics, including the nature of dark matter and energy, the origin of
matter-antimatter asymmetry (the Charge-Parity Violation), the unification of forces, and
allows to explore the viability of supersymmetry, string theory, or extra dimensions. In
addition, CMS was designed to perform precise measurements of various SM physics processes
and test their validity, such as the production ofW and Z bosons, top quarks, and heavy-flavor
physics, among others. Although CMS has similar scientific goals as the ATLAS experiment,
it uses different technical solutions as well as distinct event reconstruction software techniques.

The Compact Muon Solenoid gets its name from its three defining properties. First of all,
at 14.6 meters high and 21.6 meters long, it is quite compact for all the detector material
it accommodates. Interestingly, relative to ATLAS, which has approximately 1.5 times the
diameter of CMS and two times its length, CMS at 12 500 tons is almost double the weight
of ATLAS detector. Secondly, CMS is designed with a strong emphasis on detecting muons,
which serve as excellent signatures of interesting physics. They can be easily identified and,
contrary to electrons and mesons, can only come from the decay of heavy and, hence, possibly
interesting particles. For example, muons can be produced in the decay of W and Z bosons,
which are important in the study of the weak nuclear force. As a result, muon chambers
contribute strongly to the CMS Trigger system – the system trying to identify worth-to-study
pp interactions from the multitude of non-interesting events. Lastly, the solenoid in the CMS
name refers to the fact that a solenoid (the most powerful one to have been created at the
time of the construction) is in the core of the detector’s construction since a magnetic field of
substantial strength is necessary to attain precision in the measurement of the momentum of
charged particles.

2.3.1 Coordinate System and Conventions

To provide an accurate depiction of its sub-detectors’ function, the CMS experiment employs a
specific coordinate system and conventions. The experiment adopts a right-handed Cartesian
coordinate system, with the origin located at the proton beams’ interaction point (IP). The
z-axis of the system is oriented along the anti-clockwise beam direction, the y-axis points
upward perpendicular to the LHC plane, and the x-axis extends towards the center of the
LHC ring (Figure 2.3a and Figure 2.4).

In addition to the Cartesian system and in view of the cylindrical geometry of the detector,
the experiment also utilizes spherical coordinates. The azimuth half-angle ϕ indicates the
angle in the x− y plane measured from the positive x-axis, and the polar angle θ denotes the
angle relative to the positive z-axis with θ = 0◦ corresponding to the beam axis. Consequently,
the transverse particle momentum, pT, is defined using both coordinate systems as follows:

11

2. CMS Detector at the Large Hadron Collider

(a) : Schematic representation
of the CMS coordinate system.

(b) : Relation between the pseudorapidity η
and the polar angle θ.

Figure 2.3: CMS coordinate system.

pT =
√

p2
x + p2

y = p · sin θ . (2.2)

In the context of collider physics, the use of pseudo-rapidity η, defining the angle between
the particle momentum and the beam axis, is favored over the polar angle θ since the particle
production is generally constant as a function of rapidity. The conservation of transverse
momentum under Lorentz transformation along the z-axis leads to:

η = − ln
(

tan θ

2

)
. (2.3)

Pseudo-rapidity varies from 0 at θ = π/2 to ± inf at θ = 0 as shown in Figure 2.3b. In
this reference frame, it is straightforward to describe the locations of the CMS sub-detectors,
installed radially from the inside out, as outlined in detail in the following sections. The
concept of the “forward” direction is used to refer to regions of the detector that are close to
the beam axis at high |η| values. Additionally, the spatial separation between two particles,
denoted as ∆R, can be formulated using their azimuthal angle and pseudo-rapidity, and is
also Lorentz-invariant along the z-axis:

∆R =
√

(∆η)2 + (∆ϕ)2 . (2.4)

Another important event’s property is the negative sum of the transverse momenta of all
the reconstructed particles, known as missing transverse momentum pmiss

T . This quantity is
derived from the detector’s symmetry around the interaction point and its hermetic nature. It
is commonly interpreted as the total transverse momentum of neutrinos or other hypothetical
non-interacting particles that have escaped the detector without leaving any detectable
signature.

2.3.2 CMS Sub-Detectors

The CMS detector is nested cylindrically along the beam axis and consists of the following
main sub-detectors (from the inside out): an all-silicon inner tracker, a crystal Electromagnetic

12

...................................... 2.3. Compact Muon Solenoid

Figure 2.4: A more detailed visualization of the coordinate system adopted by the CMS detector.
The detector is split into two regions – barrel cylindrically surrounding the beam axis and the two
endcaps perpendicular to the beam direction.

calorimeter (ECAL), a brass and scintillator Hadronic calorimeter (HCAL), all of which operate
within a superconducting solenoid magnet, and gas-ionization muon chambers embedded in
the solenoid flux-return yoke outside of the solenoid’s magnetic field. A simplified layout of
the CMS cross-section is captured in Figure 2.5.

Tracker (r < 1.2 m, |η| < 2.5)

At the core of the detector setup, positioned closest to the IP, lies the tracker, comprised of
multiple concentric layers of silicon sensors. Only charged particles trigger a signal in the
tracker by ionizing the semiconductor and producing signals called hits. Tracker consists of
pixel and micro-strip layers, capturing the spatial position of the particle passage. The hit
information obtained from the multiple layers of the detector allows for the reconstruction of
particle trajectories, referred to as tracks, and the identification of their origins, or vertices.
This information is used to study both the primary pp interactions and secondary vertices
resulting from particle decays. In conjunction with a powerful uniform magnetic field of
B = 3.8 T, the trajectory reveals the particle’s charge q and transverse momentum pT
orthogonal to the magnetic field. The underlying concept of particle tracking is predicated
upon the principle of the deflection of charged particles in a magnetic field, with the orientation
of the bend in the track revealing the polarity of the charge. Assuming elementary charge,
the momentum pT is estimated according to the relativistic relation pT = qBr/

√
1− (v2/c2)),

where r is the bend radius of the particle trajectory.

Calorimeters

While the tracker focuses on measuring particle trajectories with an emphasis on minimizing
loss of particles’ energies3, the subsequent sub-detector layers, referred to as calorimeters,
function to entirely halt the particles, thereby absorbing their full energy (destructive mea-
surement). Unlike in tracker, this process allows detecting even neutral particles. However, as
high-energy primary particles traverse through dense calorimeter material, they do not lose
their energy all at once. Instead, they create cascades of lower-energy secondary particles,
referred to as particle showers. These low-energy particles are eventually absorbed and deposit

3Coming from nuclear interactions, multiple scattering, bremsstrahlung, and photon conversion.

13

2. CMS Detector at the Large Hadron Collider

Figure 2.5: CMS transverse slice illustration displaying various sub-detectors and individual
particle interactions. Image is based on materials sourced from CERN [Col23].

their energy into the calorimeters. CMS employs two calorimeters: the ECAL and the HCAL.

The Electromagnetic Calorimeter (1.2 m < r < 1.8 m, |η| < 3). The ECAL is positioned
immediately exterior to the tracker and consists of approximately 76 000 dense scintillating lead
tungstate PbWO4 crystals, with short radiation lengths resulting in compact electromagnetic
showers. ECAL is a homogeneous detector, meaning it is built of a single medium, which
plays the role of both absorber and detector. The principle aim of the ECAL is to measure
the energy of incident particles interacting electromagnetically, such as e± and γ, which get
absorbed and release their full energy in the ECAL. The electromagnetic showers produced by
these particles are detected as clusters of energy recorded in neighboring detector cells, which
are read out by silicon avalanche photodiodes, allowing determining both the energy and the
direction of the particles. Charged and neutral hadrons may also initiate hadronic showers in
the ECAL, which are subsequently fully absorbed in the hadron calorimeter. ECAL consists
of the barrel part, the endcap part4, and a pre-shower system in front of the endcap.

The Hadronic Calorimeter (1.8 m < r < 2.9 m, |η| < 5). The ECAL is surrounded by
brass and scintillator sampling HCAL, made up of layers of passive absorber alternating with
active detector layers. HCAL’s main parts, the hadron barrel and the hadron endcap are
located inside the magnetic field. In contrast, two other parts, the hadron outer and a forward
hadronic calorimeter, are extended beyond the magnet and serve as a means of reducing
the loss of energy from high-energy jets. The forward region5 of the HCAL consists of steel

4Barrel is part of the detector cylindrically surrounding the beam axis, and the two endcaps are the detector
regions perpendicular to the beam direction.

5The “forward region” of a detector refers to the part of the detector closest to the direction of the particle
beam, where particles produced at small angles relative to the beam direction can be detected.

14

................................. 2.4. Trigger and Data Acquisition System

absorbers with embedded quartz fibers. Traversing charged particles produce Cherenkov light
in the fibers proportional to the original hadron energy and detected with photomultipliers.
In contrast to ECAL, HCAL focuses on detecting particles interacting hadronically. Such
particles are, for example, protons, neutrons, pions, and kaons. Since these are composite
subatomic particles, HCAL plays an essential role in identifying quarks by measuring the
energy and direction of jets – tightly-focused sprays of particles produced by the hadronization
of quarks or gluons.

The Muon chambers (4.0 m < r < 7.4 m, |η| < 2.4)

Muons and other low-interacting particles, such as neutrinos, are able to traverse the calorime-
ters with little to no interactions. While neutrinos escape CMS undetected, muons, which
have a lifetime long enough to leave CMS (on average 2 · 10−6 s), are detected by additional
muon chambers constituting the outermost shell of the CMS detector. The muon system is
comprised of four distinct gaseous ionization detectors: Drift Tubes (DT) in the barrel region,
Cathode Strip Chambers (CSC) in the forward region, Resistive Plate Chambers (RPC),
and gas electron multipliers. These parts are integrated within the consecutive layers of the
iron return yoke of the superconducting magnet, which provides a region of the “uniform”
magnetic field outside the solenoid and acts as a filter for other particles produced in a
collision apart from muons and neutrinos. The DT and CSC detectors are responsible for
accurately determining the position of muons, which in turn allows for precise measurement of
their momentum. Meanwhile, the RPC chambers have lower resolution (∼ cm) but are very
fast (around a few ns to give a signal) and are therefore used for bunch-crossing identification
and provide information to the Level-1 trigger system described in the following section. The
operation of gaseous detectors relies on the ionization of gas atoms by a passing charged
particle. This ionization process frees electrons and positive ions, which are then detected by
electronics as they are driven towards the anode (or the cathode for ions) by the electric field.

2.4 Trigger and Data Acquisition System

Due to the limited storage and processing capabilities, retaining all the events generated at
CMS for analysis is not feasible since more than a billion pp interactions will take place every
second inside the CMS detector after the HL-LHC upgrade. Additionally, only a minuscule
portion of the beam crossings result in hard head-on interactions with sufficient momentum
transfer, which are the ones producing potentially interesting interactions most likely to reveal
new phenomena. Thus, a preliminary step of event selection (i.e., high-energetic particle
interactions or their unusual combinations) is performed before the data is prepared for offline
analysis. The CMS Trigger and Data Acquisition System (TriDAS) [KST+17] plays a vital
role in sequentially reducing the massive data flow produced by 40 MHz (rate of up to 80
TBps) proton-proton beam crossings to a manageable level of at most 7.5 kHz of interesting
events for storage and further analysis6.

Level-1 Triggering. TriDAS operates in several stages, beginning with a fast Level-1 (L1)
trigger based on a hardware system of programmable electronics, able to select or reject events

6values as per Phase-2, see the next section. Note that as of the current CMS run in 2023, the triggering
frequencies are approximately 5 to 7.5 times lower than the ones mentioned in this section.

15

2. CMS Detector at the Large Hadron Collider
in real-time (in about 12.5 µs after the bunch crossing) based on simplified data from the
calorimeters and muon RPCs. During this period, high-resolution data from the detectors
is temporarily stored in buffers, waiting to be processed further. A decision on whether to
tentatively accept the data to be further passed to the High-Level Trigger (HLT) or reject it
is made based on the detection of so-called trigger primitives, – candidate objects such as
ionization deposits consistent with muons, energy clusters consistent with particles exceeding
certain transverse momentum thresholds, missing transverse energy Emiss

T , or jets. As a
result, the L1 triggering stage reduces the event rate from 40 MHz to no more than about
750 kHz [Col21].

High-Level Trigger. The HLT is a software-based trigger performing a more sophisticated
event analysis, including applying fast, simplified pattern recognition algorithms and event
reconstruction, similar to that done during the offline reconstruction, but with an average
processing time of the order of 1 s per event. The HLT follows a sequence of algorithms
searching for specific signatures, which involve increasingly complex reconstruction and
filtering. Once one of the filters fails, the event is discarded, and the remaining parts (such as
the computationally expensive particle-flow algorithm) of the HLT triggering are skipped,
saving processing time. Additionally, to reduce any dead time, the reconstruction process is
limited to specific areas around L1 or higher-level objects, further reducing the time required.
The selected events are temporarily stored on a local disk before being transferred to the
CMS Tier-0 center at CERN for long-term storage and offline analysis. The rate of events
selected by the HLT ranges from 2.5 kHz to 7.5 kHz, with the vast majority of events being
processed immediately.

Despite the utilization of triggers, the sheer volume of data still generated and stored
on disk remains substantial, reaching about 12 Petabytes of data annually when CMS is
performing at its peak. Hence, the requirement for highly efficient algorithms at all stages is
imperative.

2.5 High Luminosity LHC Upgrade

At the current moment, LHC has collected around 450 fb−1 of pp collision data and is
currently preparing for its High-Luminosity upgrade [ABNR17], which will allow it to run at
five times its original design instantaneous luminosity and consecutively increase the number
of particle collisions almost ten times7. This increase in luminosity will allow collecting more
hard collision data, leading to more precise measurements, and will enable the investigation
of rare processes difficult to observe with the current LHC configuration. The HL-LHC, or
the Phase-2 operation, will start after the three-year-long third Long Shutdown (LS3) in the
years 2026–2029. The timeline of the upgrade is depicted in Figure 2.6.

The upgrade also brings the challenge of an unprecedented number of simultaneous PU
collisions per crossing and significant concerns regarding radiation damage to detectors. At
the nominal HL-LHC luminosity, the expected average pile-up is 140, while for the ultimate
scenario from 2035 and beyond, this number increases to 200. In comparison, as of 2022, the

7The HL-LHC is scheduled to operate at a nominal luminosity of L = 5 · 1034 cm−2 · s−1, with a built-in
margin to achieve an ultimate performance of 7.5 · 1034 cm−2 · s−1. Furthermore, HL-LHC aims at delivering
an integrated luminosity of up to 3000 fb−1 over about ten years of operation, starting from 2029.

16

.................................. 2.6. The Main CMS HL-LHC Upgrades

5 to 7.5 x nominal Lumi

13 TeV

integrated
luminosity

2 x nominal Lumi2 x nominal Luminominal Lumi

75% nominal Lumi

cryolimit
interaction
regions

inner triplet
radiation limit

LHC HL-LHC

Run 4 - 5...Run 2Run 1

DESIGN STUDY PROTOTYPES CONSTRUCTION INSTALLATION & COMM. PHYSICS

DEFINITION EXCAVATION

HL-LHC CIVIL ENGINEERING:

HL-LHC TECHNICAL EQUIPMENT:

Run 3

ATLAS - CMS
upgrade phase 1

ALICE - LHCb
upgrade

Diodes Consolidation
LIU Installation

Civil Eng. P1-P5

experiment
beam pipes

splice consolidation
button collimators

R2E project

13.6 TeV 13.6 - 14 TeV

7 TeV 8 TeV

LS1 EYETS EYETS LS3

ATLAS - CMS
HL upgrade

HL-LHC
installation

LS2

30 fb-1 190 fb-1 450 fb-1 3000 fb-1

4000 fb-1

BUILDINGS

20402027 20292028

pilot beam

Figure 2.6: The timeline displays the previous and expected collision energy (upper line) and
instantaneous luminosity (lower line) of the LHC from 2011 to 2040. The LHC runs on a cycle of
alternating phases, wherein data collections take place during operational runs, and the machine
undergoes upgrades and maintenance during shutdowns to prepare for the next run. The operation
of the LHC from 2011 consists of four runs with three shutdown periods. In the Run-1 from 2011
to 2013, LHC delivered about 30 fb−1 pp collision at

√
s = 7− 8 TeV. In the Run-2 from 2015 to

2018, LHC produced 190 fb−1 collisions at
√

s = 13 TeV. In 2023, the LHC is after its second
long shutdown period, in Run-3, operating at the maximum collision energy of

√
s = 13.6 TeV.

After Run-3, LHC will be upgraded to a higher luminosity, reaching five times as much as the
current value (as of 2023) [lhc].

level of pile-up was, on average, just 35, and it has recently been increased8 to reach about 60
simultaneous collisions per bunch crossing. The average pile-up is defined as follows:

⟨PU⟩ = Lσpp

nbf
, (2.5)

where σpp is the inelastic pp cross-section, nb is the number of bunches present in the beam,
and f is its revolution frequency.

2.6 The Main CMS HL-LHC Upgrades

To maintain a good physics performance in the challenging conditions of the HL-LHC, the
CMS Collaboration, along with the other LHC experiments, is planning to carry out a series
of extensive upgrades. These upgrades are expected to be commissioned during the three-year
LS3, with the main focus on the following aspects:

.The high radiation doses experienced in the HL-LHC environment necessitate a complete
overhaul of the tracker and the endcap calorimeter systems. Updates are also required
for the electronics systems in both the barrel calorimeters and the muon detectors..To cope with the increase in PU rate, highly granular readouts are necessary, along
with the introduction of precision timing. Upgrades to the electronic readout of the
ECAL and HCAL barrels are planned to increase the granularity and provide additional
timing measurements [Arc18] by introducing a new Minimum Ionizing Particle (MIP)
Timing Detector (MTD) [BTdF00] placed in front of the calorimeters. Novel methods
for mitigating PU during the event reconstruction must also be developed.

8As of the beginning of 2023.

17

2. CMS Detector at the Large Hadron Collider

Figure 2.7: Cross-section view of the HGCAL endcap on the longitudinal-radial z − r plane is
shown on the right, indicating CE-E and CE-H sections of the calorimeter. CE-E has 26 full Si
layers, while CE-H has seven full Si layers plus 14 Si-scintillators hybrid layers. Representative
layouts of an all-silicon CE-E layer (a) with variable sensor thicknesses and CE-H layer (b) with a
mixture of silicon at high η and scintillator at lower η are shown on the left. Silicon wafers are
shown as yellow and green hexagonal cells, while scintillators are shown as red mesh. Darker,
medium, and lighter shades of hexagons represent silicon wafers with thicknesses of 120, 200, and
300 µm, respectively. Re-drawn based on [Col17b].

.The expected high luminosity greatly increases the data stream, necessitating improve-
ments to the L1 Trigger primitives and the overall TriDAS system.

While most of the ECAL and HCAL barrels will be retained, the endcap calorimeters
in the forward region of the detector, which are subject to much greater radiation damage,
will be entirely replaced with the High Granularity Calorimeter [Col21]. The HGCAL is
radiation-hard and is designed to offer enhanced shower separation, particle identification,
and precise timing information. This thesis focuses on the reconstruction of the HGCAL, so
a more detailed discussion of its design is provided in the following section.

2.6.1 The High Granularity Calorimeter

Two HGCAL endcaps will be mounted on both sides of the CMS detector, each covering the
1.5 < |η| < 3.0, corresponding to the forward region of the CMS detector. Each endcap will be
divided into two compartments: electromagnetic CE-E and hadronic CE-H. Different regions
of the detector will experience distinct levels of radiation exposure. Hence, the thickness of
the active sensors needs to be adjusted to achieve the best balance between resolution and
radiation hardness. Regions closer to the IP will experience a higher particle flux and require
thinner sensors. In contrast, regions further away, where the showers are more spread out,
will experience lower particle flux and may use thicker sensors, leading to detector irregular
geometry. The CE-E comprises 26 active hexagonal silicon layers interleaved with CuW, Cu,
and Pb absorbers. Each layer is divided into 8-inch hexagonal sensors varying in the active

18

.................................. 2.6. The Main CMS HL-LHC Upgrades

(a) : Zoom-in view of the Si wafer. (b) : The High Granularity Calorimeter endcap.

Figure 2.8: Subfigure (a) shows the hexagonal silicon wafer, while (b) presents a 3D rendering of
the HGCAL endcap [Col17b].

thickness of 120, 200, and 300 µm with several single readout diodes with an active area of
0.5 or 1.0 cm2. The hexagonal silicon sensor layout is shown in Figure 2.8, along with the 3D
rendering of the HGCAL detector. The CE-H consists of 21 layers, including seven all-silicon
layers with finer sampling at smaller radii and 14 silicon/scintillator mixed squared-sensor
(∼4–30 cm2 in size) layers in the outer regions exposed to less radiation dose. The scintillator
tiles are arranged in a grid pattern in the r − ϕ plane, with their size increasing with the
radius of the grid. The arrangement of the silicon modules in the CE-E and in the front part
of the CE-H, as well as the mixed technology of silicon sensors and scintillator tiles employed
in the back part of the CE-H, are shown in Figure 2.7.

The CE-E and CE-H compartments result in a total detector depth of around 2.2 meters
fitting 47 total layers. The HGCAL has an area of approximately 620 m2 of silicon sensors
and 370 m2 of plastic scintillator tiles with the silicon photomultiplier readout. The silicon
sensors provide a total of 6 million channels that are read out individually, while the plastic
scintillator tiles feature 240 thousand channels. HGCAL’s unprecedentedly high granularity
will allow for capturing fine details of particle showers as they propagate through the detector
material at the finest level ever achieved, which is important for preserving the resolution of
electromagnetic energy measurements and compensating for the effects of hadronic showers.

The five-dimensional information provided by the HGCAL (energy, x, y, z, and time t) is
well-suited for particle-flow reconstruction, which is a technique discussed in the following
Chapter, used to identify and measure the properties of individual particles within an event by
combining information coming from different sub-detectors. The precise timing information
provided by the HGCAL will help distinguish clusters of energy deposits coming from different
particles in a single bunch crossing. This is practical for mitigating the effects of pile-up
by rejecting hits recorded outside a certain time interval ∆t. Timing will also be useful
for locating the vertex of triggered hard interactions within the dense environment of the
HL-LHC. Finally, the high granularity and precise timing information of the HGCAL can
benefit ML and pattern recognition algorithms by making use of the high data dimensionality
to improve the accuracy of particle reconstruction. However, the irregular geometry of the
HGCAL means that uniform algorithms are not appropriate, as further discussed in Chapter 4,
and adapted methods must be developed to take full advantage of the detector’s capabilities.

19

20

Chapter 3

Event Reconstruction

The coalescence of data from the diverse sub-detectors employed in the reconstruction of
events at CMS is a challenging task demanding careful consideration of both the required
physics performance and the available computational resources. These considerations show to
be of particular significance for the HL-LHC, where in light of the collision rate of 40 MHz,
corresponding to a proton bunch separation of just 25 ns, and an average PU level of 140 (or
200 in Run-5), the resulting proliferation of signals from the sub-detectors, numbering up to
several million, requires the reconstruction algorithms to demonstrate good performance in
face of formidable computational demands. HGCAL reconstruction is handled by the TICL
framework, whose purpose is to associate multiple individual energy deposits that are likely
to originate from the same particle to form a single reconstructed object, known as a TICL
candidate. The TICL reconstruction not only associates the energy deposits but also provides
information about the particle’s identification and estimates its 4-momentum1.

This chapter provides a brief overview of the CMS techniques for reconstructing physics
objects and particle candidates from detector data, allowing for the interpretation of events and
their underlying physics processes. This chapter is primarily centered on the reconstruction
in HGCAL since the main objective of this thesis is to improve it.

3.1 Particle Interactions

The CMS detector is capable of observing several types of particles and their corresponding
antiparticles, each of which interacts with the detector in a specific manner. These direct
observations include photons, electrons and positrons, charged hadrons (e.g., protons, pions
π± and kaons K±, etc.), neutral hadrons (e.g., neutrons, π0, K0, etc.), and muons.

To summarize what was already partially mentioned in the previous Chapter, charged
particles are identified by associated tracks in the tracker detector, whereas calorimeters
exhibit two distinct types of interaction processes depending on the interacting particle type
– electromagnetic and nuclear processes. Electromagnetic interaction results in a cascade

1A particle’s motion in the collider can be described using Special Relativity, which among others uses a
vector with four components called the Lorentz Vector or a 4-momentum. The components of the vector are
the particle’s energy and the three components of its momentum, providing nearly complete information about
the particle, except for its spin. From this vector, the rest mass uniquely defining a certain particle type, can
be inferred.

21

3. Event Reconstruction ..

Figure 3.1: Schematic diagram of the interaction of various particles within the CMS sub-detectors.
The diagram illustrates that photons interact primarily with the electromagnetic calorimeter,
while electrons lose their energy in the ECAL. Muons pass through both calorimeters and are
detected in the muon system, while charged and neutral hadrons are stopped in the hadronic
calorimeter [Lip12].

of particles that produce ellipsoid-shaped showers, with the cascade continuing until the
shower components reach a critical energy threshold at which no new particles are created.
Electrons with enough energy (usually above ∼10 MeV) predominantly lose energy and
produce secondary photons via bremsstrahlung. High-energy photons commonly convert into
secondary electrons and positrons through the e+e− pair production. In contrast, heavier
hadronic particles are responsible for creating hadronic shower cascades. These particles
interact primarily through strong nuclear interaction, leading to the formation of multiple
disconnected ellipsoid-like showers. In hadronic showers, particles such as neutrons, pions,
or protons, as well as charged particles such as electrons and positrons, are often created as
secondary particles. Therefore, both the electromagnetic and hadronic parts of the detector
can detect hadronic showers, but the interactions are largely observed in the hadronic part
due to the presence of heavier absorber plates.

As a result of the above, particles in the detector are identified through their distinct
interaction patterns. Photons, which are neutral particles, do not leave tracks, instead, they
interact electromagnetically and leave deposits in the ECAL. Electrons and positrons create
track signatures in the tracker and deposit their energy in the ECAL. Hadrons are much
heavier and can cross the full ECAL before depositing their energy in the thicker HCAL.
Charged hadrons interact in both the tracker and HCAL, as well as provide a part of the
signal in the ECAL. Neutral hadrons, such as neutrons, do not leave hits in the tracker and
produce signals mostly in the HCAL, with some initial interaction in the ECAL. Muons, on
the other hand, traverse all detector components and are identified by signals in the inner
detector and in the muon chambers. Neutrinos do not produce detectable signals in any of
the sub-detectors and escape undetected, although their presence can be indirectly inferred
from the transverse missing energy in the event. An illustration of the interactions in the
corresponding sub-detectors can be seen in the accompanying Figure 3.1.

22

..................................... 3.2. ParticleFlow Reconstruction

3.2 ParticleFlow Reconstruction

Before any higher-level reconstruction can be performed in the CMS detector, traversing
particles generate merely three fundamental types of information: tracking hits, energy
deposits, and time information. The primary aim of the ParticleFlow (PF) [Sc+17] event
reconstruction algorithm is to use data from the individual sub-detectors to identify and
reconstruct all particles emerging from a collision. The algorithm takes inputs in the form of
particle-flow elements within individual sub-detectors, including tracks reconstructed from
tracker hits and muon systems, as well as calorimeter clusters produced by clustering energy
deposits. The tracks and clusters are then connected through a linking2 process to create
PF blocks, which effectively summarize the behavior of a possible particle candidate across
all sub-detectors. For instance, a charged particle track can be extrapolated to the ECAL
sub-detector and linked with a compatible ECAL cluster to form a block. Linking also extends
to the HCAL and muon sub-detectors, and additional information, such as calorimeter shower
shapes, is taken into consideration at this stage. The PF algorithm can reconstruct electrons,
positrons, muons, photons, charged and neutral hadrons, hadronic jets, missing transverse
momentum pmiss

T , and other physics objects. Jets, which are collimated streams of particles
that originate from the fragmentation of quarks or gluons, are reconstructed using jet tagging
algorithms [Col13], which allow for the identification and measurement of their energies.

In the first step of the PF algorithm, the muons and electrons are reconstructed, and their
signals are removed from the measured data in order to isolate charged hadron candidates.
This allows the remaining energy depositions in calorimeters to be associated with the traces.
If the energy is consistent with the momentum of the reconstructed tracks, their 4-Vector
is determined. However, if the energy deposited in calorimeters is significantly higher than
expected from the track, it suggests the presence of an additional neutral particle. In this
case, the algorithm attempts to reconstruct a supplementary overlapping photon in the ECAL
or a neutral hadron in the HCAL. The details of the reconstruction and linking of the PF
elements can be found in [Sc+17].

3.3 HGCAL Reconstruction

The HGCAL’s reconstruction algorithm’s purpose is to process and cluster HGCAL hits,
creating physics objects then used by the PF algorithm. Due to overlapping particle showers,
reconstruction in HGCAL is a difficult task, especially in the dense environment of the
HL-LHC run. The HGCAL’s high granularity has the advantage of reducing occupancy
and improving energy deposit resolution, but, on the other hand, it inherently brings higher
computational demands for reconstruction while keeping very stringent second-level time
demands as shown in Figure 3.2.

Particles traversing the calorimeter shatter sub-particles when interacting with the detector
layers, as displayed in Figure 3.4. The initial step in the HGCAL data reconstruction process
involves uncalibrated energy deposits referred to as recHits (uncalibrated), which provide
raw information in the form of 32-bit numbers for each detector channel proportional to
the released energy. These values are subsequently calibrated by mapping them to their

2Note, that this linking is different from trackster linking, which is an objective of this thesis.

23

3. Event Reconstruction ..

Figure 3.2: Full CMS offline Phase-2 reconstruction running on tt̄ (top – anti-top quark) events
in 200 PU. The average time of the HGCAL reconstruction in the TICL framework (taking ∼4%
of the total reconstruction time of about 55 s) is shown for a single event on a single-core CPU.
The currently used trackster linking procedure takes up 1/3 of the TICL pipeline time (883 ms of
2.19 s per a single event).

corresponding positions on the detector’s geometry, which is determined by the unique
identification id for specific wafers. Once the calibration process is complete, calibrated
recHits are produced. These are 5D data points, including the spatial coordinates of the cell
(x, y, z relative to the center of the detector), energy E, and timing information t. In the
context of shower reconstruction, the primary objective of the clustering algorithm is to group
individual energy deposits that stem from a particle shower. Due to the detector’s high lateral
granularity, the number of hits per layer is substantial, making it computationally favorable
to assemble hits into 2D clusters on a layer-by-layer basis and subsequently link these 2D
clusters across different layers. For that, recHits are inputted into the Iterative CLustering
(TICL) framework [PR22], handling HGCAL reconstruction, and are first clustered within
their respective detector layers using a density-based algorithm known as CLUE [RCDP+20].
The resulting layer-clusters are then connected across different layers to create 3D energy
deposits, called tracksters, with elongated oval shapes one would expect from particle
traversal, using the CLUE3D [PR22] algorithm. In the final stage, TICL outputs a list of
particles, along with their identification probabilities and kinematic properties calculated
from trackster properties. Similar to the PF algorithm, TICL also incorporates information
from other parts of the CMS detector, such as surrounding tracking and timing detectors, to
improve the accuracy of the reconstruction.

Specific properties of layer-clusters, tracksters and TICL candidates are outlined in detail
in Chapter 5. Apart from that, during event simulations, simulated tracksters are avaliable,
forming the ground truth for the reconstruction. In the upcoming sections, I will outline the
2D and 3D analogs of the CLUE algorithm and subsequently provide a concise overview of
the modular TICL framework exploiting the above algorithms.

24

....................................... 3.3. HGCAL Reconstruction

Figure 3.3: TICL calorimetric clustering stages. First, energy deposits are clustered into topological
structures called layer-clusters (a); (b) shows reconstructed hits deposited by two close particles
indicated with red lines interacting with the calorimeter. LCs created from reconstructed hits are
then connected into graph structures referred to as tracksters (c).

3.3.1 Layer-Cluster Formation: the CLUE Algorithm

CLUE, or CLUstering of Energy, is the layer-clustering algorithm, taking in a set of n recHits.
To give a sense of scale, events with about 200 pile-up interactions are estimated to produce
an order of O(105) recHits per bunch crossing. The algorithm then generates a set of k
LCs, typically one order of magnitude smaller than n (i.e., O(104)), reducing the problem
size for the following reconstruction tasks. CLUE’s performance in TICL scales linearly
with the number of hits n to be clustered, which prevents a timing or memory explosion in
high-occupancy environments. The algorithm’s efficiency is improved by optimizing data
structures to support fast queries. In contrast to other density-based algorithms, which
inherently involve serial processes, CLUE offers a parallelizable computation process.

CLUE is a density-based algorithm that operates under the assumption that high-density
areas within a cluster are relatively distant from other high-density areas. The algorithm,
illustrated in Figure 3.5, starts with the construction of the fixed-grid spatial index for
neighborhood querying, followed by computing a local density ρ, which is defined as a
weighted sum of deposited energy in its neighboring cells:

ρi =
∑

j∈Ndc (i)
wjχ(dij) , (3.1)

with Ndc(i) being the neighbors of the hit i at the cut-off distance dc, χ(dij) is the convolutional
kernel (either a flat, Gaussian, or exponential function), dij is the distance between the hits i
and j, and wj the weight of the hit j given by its energy.

In the next step, the distance δ to the nearest hit with a higher local density (nearest-higher)
is computed for every point. If a hit’s local density is greater than a pre-defined cut-off density
ρ ≥ ρc and its δ is higher than the minimum separation requirement δc, it is promoted as a
seed – the core of a cluster. Conversely, cells with a local density less than ρc and δ greater
than the minimum separation requirement for outliers δo, are classified as outliers. Outliers
are the hits that are far from other clusters and do not have enough density to form clusters
on their own. Cells that do not meet the criteria of being a seed or an outlier are considered
followers and are assigned to their nearest cell with a higher density. Each seed and its
followers are then iteratively grouped into separate clusters. Outliers and their descendant
followers are excluded from forming clusters, which helps to eliminate low-density deposits,

25

3. Event Reconstruction ..

Figure 3.4: Example of a simulated collision event, producing ten particle showers captured in a
single HGCAL endcap. The collision of protons at the collision point generates secondary particles
that travel towards the endcaps. These particles interact with the calorimeter material, resulting
in the production of particle showers.

such as electronic noise.

The query of the dc-neighborhood is a common operation in density-based clustering
algorithms, which tends to be computationally expensive. To optimize this process for CLUE,
a fixed-grid spatial index is created for each layer of the calorimeter using a histogram-like
data structure. This index registers the indices of 2D points into square bins within the grid
based on the 2D coordinates of the points. When CLUE needs to query the d-neighborhood
of the hit i, denoted as Nd(i), it only needs to loop over the points within the bins covered by
the square window (xi ± d, yi ± d). Since the value of d is typically small and the granularity
of the points is constant, the time complexity of querying Nd(i) using a fixed-grid spatial
index is O(1). In the region of the detector with scintillator tiles, CLUE’s implementation
alters slightly as it defines and calculates the local density and the nearest neighbor in the
η − ϕ space.

3.3.2 Trackster Formation: the CLUE3D Algorithm

CLUE3D [PR22] is a density-based pattern recognition algorithm, newly introduced into
the TICL framework, that shares many similarities with CLUE. CLUE3D operates on layer-
clusters generated by CLUE, also considering the longitudinaldimension3 and clusters them
together across layers. The algorithm starts by calculating the local density for each LC on
layer j. For this, it searches for all LCs in adjacent layers j ± k, whose projected distance on
layer j lies within ∆ from LCi, and adds their energies to compute the local density of LCi

with the use of a kernel function. Next, for each LC, the algorithm finds the nearest LC with a

3Using LC’s barycenter (z, η, ϕ) spatial position.

26

....................................... 3.3. HGCAL Reconstruction

Figure 3.5: Demonstration of the CLUE algorithm. (a) In the first step, the data structure for
neighborhood searching is built. (b) The algorithm then calculates the local density ρ, represented
by the color and size of each point. (c) The nearest-higher and separation values δ are then
calculated for each hit, as indicated by the black lines. (d) Based on the local density and
separation values, the algorithm promotes a point as a seed if both ρ and δ are large or demotes
it to an outlier if ρ is small and δ is large. Outliers are represented by red squares. (e) Finally,
the algorithm propagates cluster indices from seeds through their chains of followers. Picture
from [RCDP+20].

higher local density. Based on the local density and the distance to the nearest higher-density
LC, the algorithm identifies seeds, followers, and outliers in a similar fashion as CLUE. Finally,
it builds 3D clusters, or tracksters, by aggregating seeds and their followers. The number of
resulting tracksters is typically reduced by another order of magnitude compared with the
input LC number and is now in order of O(103).

The tracksters produced by CLUE3D are direct acyclic graphs representing energy flow
(Figure 3.3(c)), with directed edges linking LCs to their nearest higher. Because CLUE3D is
tuned for a high PU rejection rate, tracksters would often represent only a fragment of a larger
shower. However, the primary objective of the reconstruction process is to encapsulate a
complete particle shower into a single trackster analogous to the simulated trackster found in
the ground truth data explained in Chapter 5. To address the fragmentation issue, a process
called linking, which is the goal of this work, is employed in the following step to account
for disconnections along the various branches of the same particle shower. More rarely, in a
high PU environment where overlapping showers occur, tracksters can also result from the
merging of multiple overlapping particles. The trackster graph nature allows diverse analysis
opportunities, including particle identification and energy regression, shower shape analysis,
identification of missing information, and analysis of energy flow. The topology of the graph
can be analyzed, enabling the identification of sub-components. By doing so, it becomes
possible to react appropriately by either linking or splitting4 tracksters as needed.

3.3.3 TICL Framework

The Iterative CLustering is a modular HGCAL reconstruction framework being developed
within the official CMS software (CMSSW) package (Figure 3.6). TICL is designed with
modularity in mind, with each stage of the reconstruction being decoupled to enable inde-
pendent development by multiple collaborators. This design also allows for easy swapping
of the algorithms for comparison and testing. The framework is currently being ported
to heterogeneous architectures to enhance computing performance. Aiming to establish a
consistent PF framework across the entire detector, the upcoming objective involves expanding

4Trackster splitting is not a part of the TICL framework as of this moment.

27

3. Event Reconstruction ..

Figure 3.6: Schematic overview of the TICL framework. First, layer-cluster selection is applied to
the reconstructed hits from the detector to form 2D clusters in the individual calorimeter layers.
Then the pattern recognition algorithm connects the 2D layer-clusters between the layers into
candidate tracksters. The TICL data clustering flow reduces the problem size by one order of
magnitude at each step. Tracksters are then refined into merged tracksters through the linking
step, from which individual particle probabilities and properties are identified. Arrows show
connections between different parts of the reconstruction. Tracks and Timing (orange blocks) are
information coming from other CMS sub-detectors (tracker and MTD, respectively). The linking
step improved in this thesis is represented with a green block.

TICL to encompass the barrel region of the CMS detector.

Pattern Recognition

The Pattern Recognition algorithm in the TICL reconstruction pipeline connects 2D layer-
clusters between the layers to form candidate tracksters. As a result of the framework’s
modularity, there are several algorithms available for trackster construction, such as Cellular
Automaton [PR22], FastJet [CSS10], and CLUE3D, which is currently used as a default.
In this thesis, the term tracksters will refer specifically to the tracksters constructed by
CLUE3D. In addition to constructing tracksters, the algorithm consolidates information for
each trackster, such as its barycenter5 position, energy-weighted Principal Components (PCA)
determining the shower propagation direction and shape through the three principal axes,
transverse momentum, timing information, particle identification probabilities (PID), and
regressed energy.

By default, the pattern recognition algorithm operates globally, covering the entire HGCAL
region. However, it can be restricted to a smaller volume by confining it to the area defined
either using HGCAL internal information (such as layer id, previous iteration or min/max
number of hits in a layer-cluster, the momentum of the object) or external information
(direction of tracks reconstructed in the tracker, Level-1 trigger objects, timing). This
restriction allows targeting individual reconstruction of specific objects and is especially
helpful when performing faster regional reconstruction during online event selection by the
HLT (as discussed in Section 2.4). To impose these restrictions, the algorithm uses seeding
regions. A seeding region is defined as a window in the η−ϕ space on a specific layer, narrowing
down the number of LCs contributing to the pattern recognition algorithm based on seed
information. The algorithm then applies a pattern recognition algorithm to all available LCs
within the targeted seeding region.

The pattern recognition algorithm can therefore be applied iteratively, with each layer-
5Spatial coordinates of the energetic center of the object, computed as the energy-weighted average of the

detector hits (on the layer-cluster level), or layer-clusters (on the trackster level).

28

....................................... 3.3. HGCAL Reconstruction

Figure 3.7: The “image” of a 122 GeV photon trackster as an input to the CNN for PID and
energy regression. The three “colors” are energy, η and ϕ, shown in separate plots. The horizontal
axes represent the HGCAL layers, and the vertical one corresponds to the LCs in the layer, with a
maximum of 10 layer-cluster “pixels” per layer [DPCPR20].

cluster assigned a fraction of the total energy of each LC that is yet available for reconstruction.
During each iteration, the algorithm reduces the fraction value for LCs associated with the
reconstructed trackster. The use of floating-point fraction not only facilitates the sharing of
layer-clusters between different TICL iterations but also allows them to be shared between
multiple tracksters.

The next stage of the TICL reconstruction involves refining the candidate tracksters and
associating them with particle showers, which further enables the identification of individual
particle probabilities and properties.

Particle Identification and Energy Regression

The tracksters (both before and after linking) undergo energy regression and particle identifi-
cation (PID) through a Convolutional Neural Network (CNN) model [DPCPR20]. The CNN
model takes an “image” of the tracksters as input, where the first dimension corresponds to
the HGCAL layers and the second to the maximum of 10 layer-cluster “pixels” per layer, as
shown in Figure 3.7. Each pixel has three properties representing positions η and ϕ, and the
energy of the LCs. The model predicts both the particle type and regressed energy using two
separate network branches, each with two fully connected layers on top of a shared stack of
three convolutions and two fully connected layers. The PID is capable of predicting eight
particle ID classes: photon, electron, muon, neutral pion, charged hadron, neutral hadron,
and additionally, “ambiguous” (e.g., shower overlaps) and “unknown” types. The last two
probabilities are constantly set to zero at this point since the PID for these types is still
in development. PID results are used to set the Particle Data Group ID (PDG ID) of the
reconstructed tracksters. The PDG ID system, which is widely used in particle physics,
including in Monte Carlo event generators (Section 5.1), assigns a unique identifier to each
type of particle, including codes for all known elementary particles, composite particles, and
atomic nuclei, as well as hypothetical particles beyond the SM.

29

3. Event Reconstruction ..
These data, along with collections of tracksters and tracks, are used as input for the

linking module responsible for clustering miss-connected tracksters generated by the pattern
recognition algorithm.

Geometric Iterative Linking

A geometric iterative linking algorithm [Nan22] has been recently implemented in CMSSW
and is currently the only linking algorithm in use. It performs linking by projecting tracks and
tracksters onto a common surface and establishing geometric links between them by verifying
their compatibility in terms of energy and time. This approach is based on the assumption
that physics objects belonging to the same particle will be geometrically close after projecting
them onto a common surface. Although not perfect, this provides a reasonable approximation
for a large number of tracksters produced in collision events and allows for simplifying the
problem by reducing its size to two dimensions.

Linking is applied on CLUE3D tracksters, producing a new collection of merged tracksters.
At the first HGCAL layer, tracks of sufficient energy (above 2 GeV) are propagated to the first
and the last CE-E layers while masking muon tracks. The projection of trackster barycenters
is then done via linear extrapolation back to the CMS vertex. The trackster-to-track linking
procedure is then performed at the first or the last CE-E layer for charged candidates,
and trackster-to-trackster linking for neutral candidates at the last CE-E layer. After the
projections, the link-finding procedure is executed, performing a η − ϕ search for tracksters
around the propagated seeding tracks or tracksters. Each entity discovered within the defined
∆R range is then referred to as a “link”, representing a potential association between two
objects. Tracks that do not have linked tracksters are directly promoted to charged candidates.
For neutral candidates, the process is slightly different. Track linking is not performed, but
tracksters are still propagated to the first and last CE-E HGCAL layers, and geometric
compatibility between tracksters at the last CE-E layer is checked. Tracksters without links
are directly promoted to neutral candidates. During the iterative construction of the final
objects (TICLCandidates), any unfeasible links are removed, aided by considerations of energy
and time compatibility.

Trackster Property Aggregation

Once the TICLCandidates are constructed through the linking algorithm, trackster property
aggregation closes the HGCAL reconstruction pipeline. The same properties as for the original
tracksters are re-calculated given the information of individual constituent LCs. The merged
trackster is passed through an energy regression and PID step and, based on PID probabilities,
is categorized as hadronic if the total probabilities of being an electron or a photon are less
than fifty percent. If marked as hadronic, charged candidates are denoted as pions π± and
neutrals as kaons K0. If not hadronic, candidates are classified as electrons, positrons e±,
or photons γ, depending on their charge. The charge is determined from the bend of the
associated track. For charged candidates, their Lorentz vector is established using the track
momentum and the regressed energy of the corresponding merged trackster. In the case of
neutrals, the combined barycenter of the accumulated tracksters is utilized as the direction,
along with the regressed energy of the merged tracksters.

As a result, TICL produces a full reconstruction of the physics objects in the HGCAL. This
work focuses on enhancing the linking process of the TICL pipeline, aiming to provide a more
efficient linking solution compared to the existing conservative geometric linking method, as
described in the following Chapter 4.

30

Chapter 4

Trackster Linking

The 3D clustering step of TICL is often challenging, especially when dealing with non-aligned
showers, tainted by noise, or affected by other overlapping physics objects. To address this
issue, this thesis introduces a new linking algorithm based on Graph Neural Networks (GNN)
that takes a set of potentially fragmented tracksters as input and produces better-formed
tracksters that represent particle showers more extensively. This process improves the energy
resolution of particle shower reconstruction by minimizing the absolute difference between
the simulated and reconstructed shower energies. In this chapter, the thesis first delves into
the problem of trackster linking and explore the various challenges that it presents. After
that, it provides an overview of the related work.

4.1 Motivation

Causes of Trackster Fragmentation. Multiple challenging physics processes result in
the creation of particle shower secondary components, making it difficult for the pattern
recognition algorithm to correctly merge LCs into complete 3D structures since the CLUE3D
algorithm specializes in single-blob aligned shower clustering, overlooking misaligned trackster
formations. For instance, in the hadronic section of the detector, intermediate Minimum
Ionizing Particles (MIP) may be produced, leading to trackster splitting. Similarly, for
electrons in the EM section of the detector, showers initiated by the bremsstrahlung1 can
lead to the formation of unwanted separate tracksters. Additionally, particles may interact
before even entering the calorimeter, also leading to clusters that need to be linked together.
Another difficult form of fragmentation may occur when a secondary particle formed by
an interaction follows a deviating track. The different material compositions and sensor
types used in the electromagnetic and hadronic compartments of the HGCAL result in
varying energy densities, causing tracksters coming from hadronic showers to be split at
the boundary between the compartments. As such, simulated trackster B in Figure 4.1
demonstrates a strongly-interacting particle initiating a shower in the electromagnetic section
of the calorimeter, located in the front part of the HGCAL (first 26 layers), then stopping
interacting and subsequently triggering the creation of a second shower in the hadronic region
of the calorimeter.

1Radiation emitted by charged particles as they are decelerated when passing through the electric field of
an atom or nucleus.

31

4. Trackster Linking ..

Figure 4.1: The figure showcases a double closeby pion event reconstruction in 0 PU. The top row
of the figure displays a 3D visualization of the reconstructed and simulated particle showers. The
two consecutive rows correspond to longitudinal shower energy profiles of the individual simulated
tracksters (A and B), marked with the same colors as in the 3D plots. In the energy profiles
plots, the left-most picture shows the simulated energy profile, the middle picture depicts the
profile reconstructed through perfect linking, and the right-most picture displays the individual
trackster before linking. The total simulated tracksters’ energy is 913.4 GeV, whereas the total
reconstructed energy is 728.1 GeV (79.71%). The number of matched tracksters is 25 for simulated
trackster A and 14 for B.

32

.. 4.1. Motivation

Figure 4.2: Schematic diagram of a hadronic shower development initiated by a π0 meson, resulting
in both hadronic and EM components. Re-drawn based on [LLW18].

The development of hadronic showers is also rather complex in itself. Figure 4.2 shows
a schematic representation of such a shower, which begins with the hard collision of an
incident hadron with a nucleus. The shower consists of a narrow core of electromagnetic
components caused by photons from π0/η0 mesons, with a surrounding halo that is dominated
by charged hadrons. Additionally, the ratio of electromagnetic and hadronic portions can vary
significantly from event to event. The response of the HGCAL detector to electromagnetic
particles is different from that to hadronic particles, leading to a difference in their energy
resolution. This means HGCAL is not able to provide an equal response to EM and hadronic
particles, and is thus considered a non-compensating calorimeter. The hadronic shower also
includes invisible energy from binding energy, nuclear recoil, neutrinos, and late components,
in addition to the visible energy carried by particles in the shower. All these factors contribute
to a limited hadronic energy resolution and the creation of multiple trackster components.

Apart from challenging physics processes, numerous simultaneous collisions within the
detector, forming a high PU environment, impose a strict limit on the clustering sensitivity
to prevent the formation of a single cluster encompassing multiple particle showers. CLUE3D
is therefore tuned for PU, unequivocally leading to some tracksters being split into multiple
pure (homogeneous) yet low-efficiency (incomplete) trackster candidates.

Geometric Linking Baseline. While a rather conservative geometric iterative linking described
in Section 3.3.3 does a reasonable job re-connecting single particle fragments in 0 PU, as
shown in Figure 4.3, with just a small efficiency drop at low energies, the pile-up and multiple
particles have a big impact on the reconstruction efficiency of the hadronic showers. This
drop in performance is especially evident in the high η regions, where the detector occupancy
is the highest [WR].

The above considerations necessitate exploring limitations of the geometric linking and
breaching these limitations with investigating alternative approaches to trackster linking.
Apart from improving event interpretation, such linking also aims to reduce the computational
complexity driven by the large number of tracksters even in simple events with no pile-up.
As such, an average number of tracksters produced by two close-by pion showers in 0 PU,
with energies ranging from 10 to 600 GeV, reaches 28 on average, as will be further shown in
Table 5.1. Furthermore, correct trackster linking is important to ensure the matching of the
reconstructed energy deposits in the calorimeter to the objects reconstructed elsewhere in the
detector, such as tracks, preventing double counting of energy.

33

4. Trackster Linking ..

Figure 4.3: The image displays the tracksters reconstructed from a solitary simulated charged
pion generated at the CMS vertex. On the left-hand side, the tracksters created by CLUE3D are
shown in different colors on individual hit-level. The merged tracksters collection obtained by
applying the geometric linking procedure to the CLUE3D tracksters is shown on the right-hand
side. The linking has combined several tracksters into a larger single trackster (shown in violet),
while some small tracksters remain unmerged due to their misalignment. In an ideal scenario with
a single particle, we anticipate seeing only a single trackster after linking. The visualization was
created using the Fireworks tool [Nan22].

4.2 Challenges

The trackster fragment re-connection algorithm faces several challenges, including linking
tracksters over long distances (as further shown in Figure 5.8), particularly in high PU
with numerous overlapping particle showers, even such that some hits are only fractionally
assigned to a certain reconstructed object. Showers to be re-connected might have irregular
shapes. Apart from that, an incorrect connection of non-matching tracksters implies a loss
of information. Finally, ensuring compatibility of the merged tracksters with tracks is also
a non-trivial aspect. Failure to match energy deposits from a charged particle with the
corresponding track leads to the creation of fake neutrals and double counting of energy.

4.3 Problem Definition

The task of accumulating hits belonging to the same particle is traditionally framed as a 3D
point clustering problem. The TICL framework already clusters hits in 2D, creating layer-
clusters, and in 3D, generating trackster fragments. By using this iterative clustering, instead
of handling large numbers of detector hits, it is now possible to focus on high-level objects
characterized by sets of features, such as trackster spatial properties, energies, graph-based
features, and more. Then, the linking problem can also be defined as a clustering task, but
on the trackster level. Given individual trackster fragment features, the goal of linking is to
find an assignment in which tracksters coming from the same particle (simulated trackster in
the simulation environment) are connected, while the ones coming from different showers are
kept separate.

4.3.1 Data

Due to the sparsity of detector data, each collision event can be represented with a point
cloud, with each point being a trackster. This approach has the advantage of avoiding the

34

... 4.4. Related Work

need to impose an order on the data or store it in a grid-like structure, which could result in
information loss or prove challenging given the heterogeneous geometry of the detector. In
addition to being represented as point clouds, the data can be naturally represented with
graphs in a sense of a particle shower interaction tree given the knowledge of the detector
geometry, as described in Section 5.4. A graph is made up on top of the point cloud with
geometrically built edges that represent potential relationships between the nodes. Graphs
are a particularly appealing way of expressing data from particle detectors as they allow us
to easily employ graph-based techniques for linking, such as graph neural networks.

In this study, I use point cloud/graph datasets with varying levels of complexity and rate
of particle shower overlap, explained in Chapter 5. In general, two problem settings are taken
into account. The simpler cases are single and multi-particle datasets with no additional
interactions (0 PU), for which all layer-cluster ground truth assignments are known. Second,
I consider datasets that have additional PU interactions, for which the ground truth is only
available for the hard-scattering particle showers in the event.

4.4 Related Work

This section presents an overview of the related literature for particle shower reconstruction
and calorimetric clustering tasks, general clustering approaches for non-physical point clouds,
and similar attempts at applying ML to calorimetric data as the ones presented in this thesis.

4.4.1 Unsupervised Clustering Methods

First, I cover traditional unsupervised clustering methods that are directly applicable to
point clouds without the requirement for a graph structure. It should be emphasized that
the number of clusters in the particle shower reconstruction is unknown in advance, which
restricts the direct use of techniques like K-means [Mac67] and Gaussian Mixture Models
(GMMs) [Rey09] that call for pre-specifying the number of clusters. Multiple runs of these
algorithms can still be used to estimate the appropriate number of clusters, but this increases
their time complexity. As a result, we opt to deal with distribution, density, and hierarchy-
based algorithms rather than centroid-based methods. Several of the described methods were
utilized as baselines for comparing the GNN linking performance (Section 7.3).

Centroid-based clustering. Centroid-based clustering uses iterative algorithms initializing
K cluster centroids as points in the data’s feature space. Each data point is assigned to the
centroid based on a certain criterion. The centroids are then updated with respect to all data
points in the cluster until convergence. Popular methods include K-means for convex clusters,
Gaussian Mixture Models (GMMs), Mean Shift (MS) [CP15], and Affinity Propagation
(AP) [MQY23]. GMMs assume that the data points are generated from a mixture of a finite
number of Gaussian distributions with unknown parameters. MS is a non-parametric method
finding centroids by iteratively shifting them towards the local maxima of the density function
without the need to pre-specify the number of clusters beforehand. AP iteratively sends
messages between data points to identify representative points (exemplars) and assigns data
points to clusters based on proximity to them. Each data point sends messages to update
its beliefs about which point should serve as its exemplar. Exemplars are selected if they

35

4. Trackster Linking ..
are sufficiently similar to many other samples and if they have been chosen by a significant
number of samples to be representative of themselves. AP also automatically determines the
number of clusters based on the input data.

Hierarchical clustering. Hierarchical clustering iterative algorithms can be broadly classified
into two types: agglomerative and divisive. Agglomerative clustering starts with each data
point as a separate cluster and iteratively merges the closest clusters until a stopping criterion
is met. Divisive clustering, on the other hand, starts with all data points as a single cluster
and iteratively divides the clusters into smaller clusters. The proximity between clusters can
be evaluated with various metrics such as single linkage (distance between the closest cluster
data points), complete linkage (distance between their farthest points in the clusters), average
linkage (average distance between all pairs of data points from both clusters) and Ward’s
method [ML11] (minimizes the variance of clusters), etc.

Density-based clustering. Density-based clustering determines clusters based on the local
density of data points, rather than relying on the centroids. This approach allows identifying
clusters with irregular shapes and varying densities, making them useful in applications like
HGCAL reconstruction. The most commonly used density-based clustering algorithm is
DBSCAN [SSE+17], which works much like CLUE (Section 3.3.1). OPTICS [ABKS99] is
a generalization of DBSCAN, constructing a hierarchical ordering of points in the dataset
based on reachability distance, while HDBSCAN [MHA17] uses a hierarchical approach to
automatically determine the optimal number of clusters and appropriate neighborhood radius
values for each cluster by performing DBSCAN over varying distance parameter values.

4.4.2 Supervised Machine Learning Techniques

The classic rule-based algorithms utilized in high energy physics (HEP) are heavily reliant
on the factorization of individual steps and extensive domain-specific knowledge. Their
performance, however, is restricted by the ideal-case assumptions used in their development.
As a result, ML-based approaches, refining the classical reconstruction, are progressively incor-
porated into the reconstruction pipelines. The use of ML approaches has been fundamental to
event processing in HEP studies. For example, NN models have been essential in tasks like par-
ticle shower reconstruction by clustering [JFC+20], energy regression [CKP+17, QG20, Val22]
in calorimeters and tracking devices, particle identification via classification [CKP+17, Val22,
AIK20], and jet tagging [Col17a, BGS22, CKSS15, QG20, BKV+20]. The effectiveness of ML
approaches is largely owed to the availability of precise simulation of the detector components
and physics processes, allowing for the creation of vast amounts of labeled data. However,
deep learning techniques face a limitation in accurately estimating their uncertainties and
have a tendency to rely on non-physical characteristics present in the training data to achieve
high performance.

Motivation for ML techniques in HEP. The utilization of machine-learning methods
presents a distinct advantage over traditional algorithms since ML models are designed to
be automatically optimizable and require the definition of a loss function to train, providing
a quantifiable performance metric. Conversely, classic HEP algorithms often lack a com-
prehensive quantitative measure and rely on manual parameter tuning, requiring significant
expertise and manpower. Furthermore, ML algorithms are highly parallelizable, making them

36

... 4.4. Related Work

Figure 4.4: Demonstration of the HGCAL detector irregularity through a combination of 100
events from the Multiparticle0PU dataset (see Chapter 5) to outline the detector’s geometry.
Each point corresponds to a layer-cluster with a size proportional to its respective energy. (a)
depicts the front view of the data captured by the detector, with no data captured in the center,
corresponding to the LHC beampipe. The longitudinal view (b) reveals the irregular geometry
of the HGCAL endcap, with two well-separated parts clearly visible: the dense and compact
electromagnetic part CE-E, and the hadronic part CE-H, with larger gaps between the layers and
thicker absorber plates. As the distance from the first layer increases, the density of the captured
energy decreases.

well-suited for execution on specialized hardware such as graphics processing units (GPUs)
or field programmable gate arrays (FPGAs) [DHH+18]. Apart from that, NNs provide the
added benefit of abstracting away from the specific geometry of the detector, which can be
irregular, such as in the case of the HGCAL. A notable source of inspiration for this work’s
comparison and model designs is the study of CNN and GNN applications on detectors with
irregular shapes in [QKIP19] and [DV22].

ML challenges for HEP data. The integration of ML algorithms into HEP pipelines, on the
other hand, faces two major challenges: the heterogeneous nature of the detector data and
the requirement to formulate the problem as a minimization task. The detector data is highly
irregular, stemming from the presence of multiple sub-detectors, each with its unique geometry.
Within a sub-detector, such as the HGCAL, the geometry is engineered in accordance with
physics considerations, exhibiting a high-resolution close to the interaction point and a coarser
resolution further away. Furthermore, the detector layers are not densely packed, featuring
ample interstitial space (Figure 4.4). Consequently, neural networks that necessitate regular
grid structures, such as Convolutional Neural Network (CNN) architectures [KSH+12], despite
their exceptional performance and highly optimized implementations, are impractical for
direct use, as they require the representation of particle detectors as arrays of sensors with a
regular structure.

Another hurdle in deploying NNs for particle reconstruction entails training the network
to anticipate a variable number of particles from an unknown number of inputs. Although
there are numerous algorithms and training techniques for object detection in dense data,
such as images, the majority of them still require the presence of well-defined boundaries or a
certain level of density which facilitate the exploitation of anchor boxes or strategic points
in the objects being detected. However, particle interactions in a detector typically overlap

37

4. Trackster Linking ..
substantially, and their sparsity makes it difficult to determine central points or distinct
boundaries. In order to solve this problem, the Object Condensation approach [Kie20] was put
forth building on the developments in GravNet [QKIP19] architecture. It condenses object
properties into condensation points, which can be selected by the network based on a high
confidence score. This study could contribute to this approach by aggregating the information
via condensation from the underlying layer-cluster structures to be used as additional features
during the higher-level trackster linking procedure. However, this technique is not explored
here.

Adaptation of HEP data for CNNs. One way to adapt data for use in convolutional
neural networks (CNNs) is to transform it into regular grid structures either by 3D voxeliza-
tion [CMW+17] or 2D bird’s eye view (BEV) projections [LVC+19]. Regular structures make
it possible to address the problems caused by sparse and variable-size representations and
use well-researched 2D or 3D image techniques, such as CNNs, to extract the point-cloud
local features. However, much like sampling, this transformation results in a loss of detail and
resolution due to the fixed grid sizes. As a result, the precise regional feature representations
required for successful clustering are typically missing from the feature maps at high-level
CNN layers. Using grid-based methods, therefore, seems inappropriate given the HGCAL’s
high granularity and the fact that particle showers cannot be accurately represented at lower
resolutions.

Point cloud methods. Apart from grid-based methods, a complementary approach for
point cloud processing is applying neural networks directly to point clouds, such as in the
case of PointNet [QSMG17]. The PointNet learns spatial embeddings of the data points
and afterward aggregates individual point features to a global point cloud signature without
capturing local structure. It is used for object classification and segmentation using semantic
labels. The success of convolutional architectures, however, has shown that local structures
can be effectively utilized for these tasks. Therefore, in their subsequent work, the authors of
PointNet proposed to use PointNet recursively on a nested partitioning of the input point
set in a hierarchical fashion to allow capturing local features, resulting in the PointNet++
architecture [QYSG17]. Yet, unlike computer vision tasks, where semantic labels are frequently
used to characterize object classes or attributes, HEP data frequently lacks such labels for
the shower components, making these approaches less straightforward for our task.

GNNs. Networks capable of learning geometry are particularly compelling for irregular
detectors. Such networks are Graph Neural Networks, built to function on graph data made
up of features and pairwise connections of elements, which is an alternative approach to
incorporating weight sharing, local connectivity, and specialized domain knowledge. GNNs
were first introduced in a paper by [SGT+08] in 2008, and since then, these models have been
utilized in various fields such as social networks, knowledge graphs, recommender systems,
and 3D shape analysis, as discussed in an extensive review by Jie Zhou et al. [ZCH+20].
Unlike CNNs, Graph Networks can learn the suitable representation of physics objects without
imposing constraints on the geometry of the detector. Additionally, no detector geometry-
imposed data pre-processing is necessary. Although this method is promising, its drawback, if
used as initially proposed, is the requirement to connect every vertex to every other vertex,
making memory and computation demand prohibitively high for large graphs. This issue is
resolved by defining only a portion of connections between neighbors in a representation of
learnable space, where each vertex’s features are updated based on this limited number of

38

... 4.4. Related Work

neighboring nodes. These neighborhood graphs could be either static or inferred from the
input data rather than imposed during pre-processing, which also makes the adjacency matrix
defining the relationships between the input data trainable.

One relevant paper for this study is the Dynamic Graph CNN (DGCNN) [WSL+19], which
introduced the EdgeConv layer for computing data point features by aggregating edge features
of k-Nearest Neighbors (k-NN) of each point. The key idea behind DGCNN is to learn a
dynamic graph structure from the input data, used to perform graph convolutions. This
contrasts traditional graph convolutional networks requiring a fixed graph structure as input.
Unfortunately, this network needs a lot of computational power to dynamically calculate
neighbor associations in high-dimensional space, making it impossible to utilize in the linking
task as it is. The EdgeConv-like approach is adopted in this thesis for message-passing, with
further details on EdgeConv given in Section 6.1.1. However, in contrast to the DGCNN, no
dynamic graph update is used; instead, a static graph enabling a single pre-calculation of the
related nodes is utilized for the reasons discussed in Chapter 6. Also, unlike DGCNN, which
selects a pre-defined number of neighbors, in this work, I employ every connection existing in
the pre-computed graph. This design choice is the result of two major factors. To start with,
in high-dimensional embedding space, k-NN is a slow procedure. Secondly, the number of
neighbors to be chosen is heavily influenced by the event’s amount of pile-up.

GNNs in HEP. Several GNN models have been explored for refining particle reconstruction
in HEP, such as GravNet and GarNet [QKIP19], ParticleNet [QG20], and GNN by Ju et
al. [JFC+20], all of which demonstrate the applicability of message-passing GNN architectures
to the similar task as ours. GravNet is applied to the particle reconstruction task starting from
hits. It bases on the DGCNN approach with the main goal of improving resource-demanding
high-dimensional k-NN search problem by separately learning the feature embeddings and
the low-dimensional coordinate space for neighborhood aggregation. By doing so, this
architecture aims to keep a trainable space representation at minimal computational costs
and achieves almost a factor of 10 faster inference times compared to the DGCNN model.
ParticleNet also makes extensive use of EdgeConv operations and adopts the dynamic graph
update methodology. It is applied to the problem of jet tagging, which is the identification
of the quarks initiating a collimated spray of particles (jets). However, in contrast with
the DGCNN, ParticleNet makes a number of distinct design choices to better suit the jet
tagging objective, including the appropriate number of neighbors tuning, configuring the
MLP in EdgeConv, incorporating skip connections across the layers and modifying the
pooling techniques. However, due to the substantial dimensionality of the data in high
pile-up scenarios, the aforementioned architectures are still inadequate for direct particle
reconstruction from recHits in terms of required time complexity. To address this problem in
this thesis, I use higher-level energy structures (tracksters) as the inputs to the graph network,
reducing the number of network inputs by two orders of magnitude and making the inference
time more appropriate.

Graph Attention. The success of attention-based models in natural language processing
(NLP) has inspired researchers to investigate their graph-based implementations. In particular,
Veličković et al. introduced the graph attention network (GAT) [VCC+17], using attention
mechanisms to aggregate information from nodes’ neighborhoods, allowing the model to
selectively focus on relevant information from the graph, rather than processing all the
information equally. The presence of incorrect edges in event graphs built for the linking task
motivates the incorporation of an attention mechanism in the linking problem, as discussed

39

4. Trackster Linking ..
in Chapter 6. Additionally, variable spatio-temporal separation of the tracksters allows easy
calculation of the additional hand-crafted similarity features between the tracksters.

Other NN Architectures. Apart from CNNs and GNNs, different HEP-related studies
investigate recurrent networks [FCM+18] and transformers [QLQ22]. Qu et al., for example,
reported cutting-edge performance of the Particle Transformer (ParT) [QLQ22] on the same
problem explored in their prior ParticleNet work on jet tagging. The results reveal that
ParT outperforms ParticleNet by a slight margin on all datasets tested. The authors believe
that the efficacy of ParT stems mostly from augmented self-attention, which incorporates
physics-inspired paired interactions as well as machine-learned dot-product attention.

Summary. Overall, the utilization of GNNs holds great potential for overcoming the challenges
posed by the irregular data structure of the detector, enabling abstraction from its intricate
geometry. On a negative note, it may require additional processing to create graphs from the
initial point cloud data, and requires more computational resources compared to architectures
that do not employ neighborhood aggregation.

40

Chapter 5

Event Simulation and Datasets Generation

A significant amount of data is typically required for training neural networks due to their
inherent ability to learn complex patterns and generalize from examples. Since the construction
of the HGCAL detector is yet to be completed, it is necessary to use highly detailed collision
simulations based on the actual detector geometry for improving HGCAL reconstruction
algorithms. Such simulations are beneficial for detector behavior comprehension, subsequently
helping in their design, allowing to define their operational requirements, and comparing
the obtained experimental data with the theoretical predictions. In experimental particle
physics, Monte Carlo methods [CC75] are commonly employed for such simulations. The
CMSSW facilitates sophisticated simulation tools and provides a wide range of configuration
options for running both simulation and reconstruction within individual CMS sub-detectors.
This chapter outlines the process of event simulation in CMSSW and subsequent dataset
generation for the task of trackster linking. I present the three generated datasets for network
training and physics performance evaluation used in this work, as well as the graph-building
process involved in dataset creation.

The production of the samples discussed in this section was done using CMSSW pre-release
CMSSW_12_6_0_pre3 with the TICL_v4 version of CLUE3D. The same release was used for
processing the simulated samples. The geometry used to simulate the detector is V16 (D99).

5.1 Event Simulation

The simulation process of the particle passage through matter involves three main stages
described below: physics process generation, detector simulation, and digitization.

Physics Process Generation. The first step in processing Monte Carlo events is generating
sets of outgoing particles resulting from the interactions between incoming particles according
to the quantum field theory (QFT). The CMSSW software provides interfaces to various
physics event generators, with the PYTHIA [SAC+15] generator being the most widely used
in production thus far. The event generation starts with initiating the generator with a
configuration of the key descriptions of events to be generated, such as the decay, beam
parameters, and the parton distribution functions (PDFs)1. Once the event generation stage

1PDF gives the probability of finding partons (quarks and gluons) in a hadron as a function of the fraction
of the proton’s momentum carried by the parton.

41

5. Event Simulation and Datasets Generation
is complete, the generator produces a set of final-state particles for each event according to the
chosen QFT model. The output particles are then ready for hadronization, particle shower
production, and decay of unstable particles, which are achieved through the PYTHIA software.

Detector Simulation. In the detector simulation stage, GEANT4 (for GEometry ANd Track-
ing) [AA+03] is used to simulate the energy depositions of the produced particles in the CMS
detector based on the physics of the interaction between the particles and the materials. For
that, a detailed model of the detector is created, including information about the full detector
geometry, its materials, the effect of the magnetic field, etc. After this step, the pre-computed
pile-up interactions are added to the events according to the instantaneous luminosity and
expected average pile-up.

Digitization. Next, in the digitization stage, the detector readout electronics response to
passing particles is modeled. As a result, digitized signals that closely resemble the real CMS
detector signals are produced. These signals are passed into the offline reconstruction with
the same triggering procedures and reconstruction algorithms used for the experimental data
captured by the detector. This ensures the consistency of the simulation.

Particle Guns. CMSSW supports the production of particle showers in HGCAL using a
set of the Particle Gun generator modules. Particle guns have the ability to produce one
or multiple particles, identified by their PDG IDs, by default originating from a common
vertex located at (0, 0, 0) with properties uniformly distributed within a user-specified range.
Additionally, each particle can be accompanied by its corresponding anti-particle or another
particle of the same PID, with the opposite momentum vector. This study utilized the
CloseByParticleGun and FlatRandomPtGun for sample production. CloseByParticleGun
allows for the generation of particles at any location in the CMS, as well as configuring the
η−ϕ particle ranges, particle separation ∆R, energy, number of particles, overlapping, particle
IDs (i.e., electrons and positrons with PDG ID ±11, photons ID 22, pions π± ID ±211 or
kaons K0 ID 130), their pointing, distances from a beamline, and z range. The particles are
then generated randomly within the provided feature ranges. Closeby gun mode is capable of
creating several vertices pointing back to the CMS vertex (0, 0, 0). Then, if more than one
particle is requested, each will be created at a different vertex, uniformly spaced in the ∆R
range, which is the arc-distance between two consecutive vertices over the circle of radius R.

Pile-Up Generation. In the scenario involving pile-up generation, the particles from the
hard scattering vertices are initially created without additional pile-up. Afterward, the pre-
computed PU interactions are introduced in a random fashion, using a Poisson distribution
representing the expected number of interactions per event. This simulates the effect of
additional lower-energy interactions in the detector, which can interfere with the primary
particles of interest.

HGCAL simulation. At CERN experiments, the interesting particles are often rare and
highly unstable, quickly decaying into other elementary particles. Therefore, the focus of
experiments is on reconstructing well-known fundamental particles, which can be involved in
other, more complex interactions. As a part of the HGCAL reconstruction, TICL applied to
the simulated detector data produces the structures called RecoTracksters, reconstructed
by the framework. Along with recotracksters, structures referred to as SimTracksters are

42

..................................... 5.2. Generated Linking Datasets

produced. Those are the simulated tracksters built by clustering all the simulated hits
representing a single complete particle shower. This study uses simtracksters as the ground
truth for training and to measure the performance of the reconstruction.

5.2 Generated Linking Datasets

Simulated data offers the advantage of generating large volumes of data with relative ease. In
this study, data was generated through simulation using the most recent geometric layout
of the HGCAL, as described previously. To investigate the HGCAL linking problem, we
choose to generate three datasets ranging from simpler (CloseByPions0PU) to more complex
scenarios (Multiparticle0PU), as well as the scenario similar to one expected to occur during
the actual run of the HL-LHC (SingleParticle140PU). The TICL pipeline, excluding the
geometric linking step, processes the generated events in all three datasets, resulting in
the production of fragmented tracksters after the CLUE3D step. Additionally, candidate
tracksters are generated by running the complete TICL pipeline using the default geometric
linking algorithm (Section 3.3.3) for comparative analysis. Detailed information about all the
datasets can be found in Table 5.1, while examples of events for each dataset are illustrated
in Figure 5.1.

All three datasets primarily focus on hadronic interactions, which present the most difficult
case for linking, as discussed in Chapter 4. For this purpose, majority2 of the particles in the
datasets are pions (PDG ID 211), preferred for this task as they undergo hadronic interactions,
resulting in more trackster fragments compared to particles interacting electromagnetically.

Closeby Double Pions Dataset. Objectively the easiest of the selected scenarios is the
CloseBy Pions0PU dataset containing two closely located pions with a possibility of overlap
and no additional pile-up. This dataset aims to enhance our understanding of particle shower
properties and allows us to investigate the linking challenges regarding underlying graph
construction. Moreover, it enables to scrutinize the shower fragmentation patterns and is
used as a simple scenario for tuning the proposed linking algorithms.

For this scenario, two pions are fired towards the same region of the detector, with energies
uniformly distributed between 10 GeV and 600 GeV, maximum separation of ∆R = 15 cm, and
η uniformly distributed between 1.7 and 2.7, covering almost the whole HGCAL detector. The
particles in this and Multiparticle0PU dataset are produced with the CloseByParticleGun
generator right before the HGCAL’s first layer, allowing no prior interactions before HGCAL.
While the particles do not originate at the origin, they still point to the CMS vertex.

Multiparticle Dataset. Following that, we progress to a more intricate Multiparticle0PU
dataset involving multiple particles of varying types (see Table 5.1) with higher overlaps.
As the number of particles increases, the level of overlap intensifies (mostly the low-energy
tracksters around the main trackster), and the surrounding neighborhood of high-energy
tracksters encompasses a greater number of tracksters generated by other particle showers,
making the dataset more complex for the linking task than the one considered in the previous
scenario. Additionally, this dataset serves as a means of testing NN’s ability to generalize to
different particle types.

2Or all of the particles, such as in the case of double pion dataset.

43

5. Event Simulation and Datasets Generation

Figure 5.1: Illustration of events in the three linking datasets. Panel (a) shows the reconstructed
(left) and the simulated (right) versions of two-pions scenario from the CloseByPions0PU dataset.
The (b) panel displays the same for multiple random particles, numbering 10 in this event,
from Multiparticle0PU. Panel (c) shows two pions, one per each endcap, in 140 PU from
SingleParticle140PU. The detail on one of the hard-scattering particles is provided in (d), while
all PU tracksters are visualized in blue. Each point represents a layer-cluster, and LCs belonging
to the same trackster fragments, as clustered by CLUE3D for reconstruction or belonging to the
same simtrackster in simulation, are displayed in the same colors. The z-axis is rotated upwards
for better visualization. In the PU scenario, two detector endcaps can be seen. In reconstruction
cases, many more trackster fragments are present than in the simulation scenario (14 vs. 2 for
closeby pions, 132 vs. 10 for multiparticles, and 69 vs. 2 for the PU scenario).

44

..................................... 5.2. Generated Linking Datasets

In each event, 10 to 50 particles with energies ranging from 10 to 600 GeV are generated
and shot in front of a single HGCAL endcap with the same η ranges as in CloseByPions0PU.
Given the necessity of accommodating a larger number of particles within the region, a much
higher separation distance ∆R of 62 cm has been chosen for this scenario. Unlike the case
of two particles where ∆R can be viewed as the maximum pairwise distance between them,
for a dataset containing multiple particles, ∆R defines a window around the first generated
particle, within which other particles can be positioned.

Pile-Up Dataset. To simulate the expected conditions of the experiments in the HL-LHC run,
we incorporate pile-up in the final and, presumably, the most challenging SingleParticle140PU
dataset used in this work. Pile-up simulates the effect of multiple proton-proton collisions
occurring simultaneously, resulting in multiple overlapping particle showers in the detector. To
remind the reader, this dataset is generated in such a way that the ground truth clustering is
available only for the hard-scattering particle showers in the event, as exemplified by the pion
shower depicted in Figure 5.1(d). As can be seen, this dataset has significant overlap among
particle showers, with many high-energy tracksters in the neighborhood of other non-matching
high-energy tracksters.

For each event, a single hard-scattering particle shower is generated per HGCAL endcap,
resulting in two simulated CaloParticle (discussed later) tracksters per event. The dataset
includes a variety of particles produced at the CMS vertex. However, the mere presence of a
particle at the vertex does not imply it will manifest as single tracksters in HGCAL. Two
plausible scenarios emerge: firstly, the particle may not interact before entering HGCAL, and
we observe a particle shower emanating from the single primary particle (CaloParticle in
simulation). Alternatively, the particle may interact prior to entering HGCAL, resulting in the
creation of numerous lower-energy particles. In the latter scenario, each new particle produces
a separate trackster (SimClusters in simulation). The final detected particle arrangement
hinges upon the initial particle’s lifetime, energy, and decay branching ratio. It is worth
noting that the produced dataset is dominated by pions, accounting for 80% of the dataset,
since they present the most complex cases for the linking problem. This, unlike in previous
datasets, happens for two reasons. Firstly, same as before, pions produce multiple non-aligned
trackster fragments in both the electromagnetic and hadronic compartments of the HGCAL.
Secondly, a large portion of the pile-up interactions also involves pions, with their behavior
mimicking that of the particles of interest, making it arduous for the network to differentiate
between PU and non-PU trackster fragments during the linking process.

For the generation of the events in this dataset, the FlatRandomPtGun is used with the
transverse momentum pT range from 10 GeV/c to 100 GeV/c. The decision to use a different
particle gun was driven by the need to generate pile-up from the CMS collision area, the beam
spot, in the later stages of the simulation using the same gun. Unlike in the previous two
datasets, where the goal of linking is to merge matching trackster fragments in the whole event,
here, the goal is to accurately reconstruct the shower associated with each hard-scattering
particle despite the presence of thousands of other tracksters generated by an average of
140 simultaneous particle collisions. Apart from that, it is crucial to avoid merging together
tracksters coming from PU.

45

5. Event Simulation and Datasets Generation
Table 5.1: Properties of the three linking datasets (CloseByPions0PU, Multiparticle0PU and

SingleParticle140PU) used in this study. Edges refer to the edges created through
the 0.2 η − ϕ bounded graph (Section 5.4.3). Due to significant differences in
properties among the particles in SingleParticle140PU, their values are presented
separately based on the particle type.

Particle gun CloseByParticle CloseByParticle FlatRandomPt

Separation ∆R 15 cm 62 cm -
Average PU 0 0 140
PDG IDs 211 (pions) 22 (photon),

11 (electron),
211 (pion),
-11 (positron),
130 (neutral kaon),
321 (positive kaon),
-321 (negative kaon)
Picked uniformly

80%: 211 (pion);
5%: 22 (photon),
5%: 11 (electron),
-11 (positron);
5%: 15 (tau);
5%: 130 (neutral kaon),
321 (positive kaon),
-321 (negative kaon)

Num. of simtrack-
sters CP per event

2 10-50 Pion, Tau, Electron: 2
(1 per each endcap);
Kaon, gamma: 1

ϕ range [−π, π] [−π, π] [−π, π]
η range [1.7, 2.7] [1.7, 2.7] [1.5, 3]
pT range - - [10, 100] GeV/c

Energy range [10, 600] GeV [10, 600] GeV -
Interactions before
HGCAL

No No Yes

Num. of events
in the dataset
(train/val/test)

46.5k / 5.8k / 5.8k 19.7k / 4.9k / 4.9k 14.5k / 3.6k / 3.6k

Ratio of train/val
/test events

80%/10%/10% 80%/10%/10% 80%/10%/10%

Average number of
edges per event N̄e

230 2805 Electron: 20.25
Tau: 81.7
Pion: 341.25
Kaon: 160.5
Photon: 29.35

Average number
of true edges per
event N̄ t

e

181 1156 Electron: 4.75
Tau: 29.85
Pion: 145.25
Kaon: 66.6
Photon: 5.65

Properties CloseByPions0PU Multiparticle0PU SingleParticle140PU

Continued on next page

46

.. 5.3. Raw Generated Data

Continued from previous page

Average number
of false edges per
event N̄f

e

49 1649 Electron: 15.5
Tau: 51.85
Pion: 196.0
Kaon: 93.9
Photon: 23.7

Total num. of
edges in the train-
ing dataset Ne

∼10.7 mil. ∼41.1 mil. ∼4.1 mil.

Total num. of true
edges in the train-
ing dataset N t

e

∼8.4 mil (78.4%) ∼16.9 mil. (41.2%) ∼1.6 mil. (39.8%)

Total number of
false edges in the
training dataset
Nf

e

∼2.3 mil (21.6%) ∼24.2 mil. (58.8%) ∼2.5 mil. (60.2%)

Dataset Imbalance
(true/false edges)

78.4% / 21.6% 41.2% / 58.8% 39.8% / 60.2%

Avg. num. of non-
PU tracksters per
event

- - Electron: 5.8
Tau: 10.6
Pion: 28.7
Kaon: 14.7
Photon: 5.5

Avg. num. of PU
tracksters per
event

- - Electron: 2008.9
Tau: 2020.0
Pion: 2066.3
Kaon: 2022.9
Photon: 2023.6

Avg. num. of all
recotracksters per
event N̄

28.2 215.4 Electron: 2014.7
Tau: 2030.6
Pion: 2095.0
Kaon: 2037.6
Photon: 2029.1

Properties CloseByPions0PU Multiparticle0PU SingleParticle140PU

5.3 Raw Generated Data

To facilitate data analysis, CERN has developed a specialized package for particle physics data
analysis called ROOT [BR97]. ROOT provides tools for storing, manipulating, and analyzing
large datasets generated from particle physics experiments. ROOT files are organized in a
tree-like data structure, with particular branches belonging to specific reconstruction steps or
simulated objects. In other words, each ROOT file can be thought of as a dictionary, where
the branches are the dictionary’s keys, and particular events are the key values. The ROOT
files generated for the datasets in this study consist of the following nine sub-trees:

47

5. Event Simulation and Datasets Generation
. clusters – layer-clusters produced by CLUE (Section 3.3.1) from hits.. tracksters, or recotracksters – tracksters produced by CLUE3D (Section 3.3.2) from

LCs..The simtrackstersSC sub-tree contains details regarding the simulated tracksters gen-
erated by a single SimCluster (SC). SimClusters are secondary particles produced when
a simulated particle interacts prior to entering the HGCAL. These byproducts can then
enter HGCAL and are registered as distinct clusters of energy deposits.. simtrackstersCP – simulated tracksters produced by a single CaloParticle (CP), a sim-
ulated particle that can also interact prior reaching the HGCAL, but the separate clusters
detected in HGCAL are connected to produce only a single simtrackster corresponding
to the CP.. trackstersMerged – tracksters originated by the geometric linking algorithm applied to
tracksters.. candidates, also referred to as the TICLCandidates, is the output of the geometric
linking algorithm discussed in Section 3.3.3. This collection features trackster fragments
merged into larger tracksters, and is utilized as a baseline for evaluating the performance
of the developed algorithms. TICLCandidates collection is the ultimate result of the
TICL pipeline.. graph, or a TICLGraph, represents a graph of the particle interactions in the whole event.. associations sub-tree provides associations between simulated and reconstructed ob-
jects, including both RecoToSim and SimToReco score, allowing to estimate the ground
truth for our experiments (Section 5.4.6).. tracks contain information regarding the tracks of charged particles detected by the
Tracker (Section 2.3.2).

During the simulation process, multiple ROOT files, referred to as ntuples, are generated,
each containing a specific number of events. Due to the higher memory requirements and
slow ntuple access, these raw files are loaded sequentially; necessary data is pre-processed and
stored in much faster pickle files used during the training process. The subsequent sections
provide a detailed description of each ROOT sub-tree, including its properties and function
in our final processed datasets.

Clusters

The CLUE algorithm produces a layer-cluster collection, which is referenced to by both
simtracksters and recotracksters. Neither the tracksters nor the simtrackster data objects
directly contain the constituent LCs information, but instead, refer to them using a property
called vertex_index. It is worth noting, that simulated and reconstructed tracksters include
different LCs, making ground truth assignment between the two more complicated. The prop-
erties of layer-cluster collection are described in Table A.1 and include features accumulated
from the individual hit properties (such as the accumulated time, barycenter, and energy
information) or coming from the CLUE step (i.e., local density).

Tracksters, SimtrackstersSC, SimtrackstersCP, and TrackstersMerged

In essence, a trackster is a collection of layer-clusters, where every LC is identified by an
index to the cluster collection. The attributes in Table A.2 provide further details about each

48

.. 5.3. Raw Generated Data

of the four trackster sub-trees. These collections include aggregated LC properties, such as
barycenter positions, shape properties, accumulated energies, etc., as well as PIDs and LC
seeds.

Simulated particle showers are represented with simtracksters used as the reference for the
reconstruction process. The simulated data is available at the granularity of individual hits
during the simulation, but this low-level information is not saved in the ntuples. Since multiple
particles may contribute to the energy of a single simulated LC (vertices_multiplicity
property), the fraction of energy contributed by each simtrackster is computed and assigned to
the corresponding LC (not stored in the ntuples). In the reconstruction evaluation, this energy
fraction plays a pivotal role in accurately computing the shared energy between simulated and
reconstructed tracksters. Conversely, this fraction is always unity during the reconstruction
process since each LC is exclusively assigned to a single trackster.

Candidates

Candidates sub-tree stores the TICLCandidates constructed through the geometric linking
algorithm. This sub-tree provides properties relevant to geometric linking outlined in Table A.3.
Among these properties, the most pertinent for comparing with the developed GNN model is
the trackster_in_candidate, giving individual trackster fragment assignments.

Graph

To construct the TICLGraph, the algorithm searches for other tracksters within a 0.2 η − ϕ
window opened on the barycenter of each trackster. The window’s size is sufficient to
encompass all of the significant trackster fragments without requiring a fully-connected graph
of the event. A trackster inside the window is referred to as an inner if it is nearer to the
CMS vertex than the trackster of interest and as an outer if it is farther away. Just three
properties are available for TICLGraph outlined in Table A.4. Every node in a graph is a
recotracksters with the corresponding index in the CLUE3D tracksters collection.

Tracks

As was mentioned in Section 3.3, TICL incorporates external data from various CMS sub-
detectors. One such sub-detector is the tracker, which provides tracks information with
properties shown in Table A.5. After excluding muon tracks, only those with a transverse
momentum pT greater than 2 GeV/c are propagated to the front face of the HGCAL. This
information is then utilized by geometric linking, unlike the GNN approach, which does not
rely on track data. Nevertheless, incorporating track information in GNN is advantageous
since the tracksters formed must be consistent with the tracks, giving additional constraints
on the clustering in the linking step. Additionally, the number of tracks leading to the detector
precisely determines the number of charged particles expected to be reconstructed. Therefore,
the number of final recotracksters is lower-bounded by the number of tracks.

Associations

The evaluation of reconstructed tracksters can be carried out by comparing them with the
ground truth obtained from the simulation. To achieve this, an associator is provided,
which rates the quality of the reconstructed tracksters against the ground truth and supplies

49

5. Event Simulation and Datasets Generation
labels for training the ML algorithms. For this reason, associations are used to evaluate
the performance of the linking procedure.

As a reminder, the simulation of particle interactions with the detector is performed at the
hit level (not saved in the generated ntuples); each hit is associated with the corresponding
simulated particle. The TICL pipeline is applied to the simulated hits as if they were
recorded during a standard detector run. However, the pattern recognition stage does not
directly operate on hits, but rather on higher-level energetic structures, LCs, for which initial
simtrackster assignments are unavailable. The associator algorithm furnishes a metric by
comparing reconstructed tracksters to their simulated counterparts. Association scores are
derived by considering the degree of overlap between hits belonging to a specific simulated
trackster (can be both SC and CP) and the corresponding reconstructed trackster, and vice
versa. While a perfect correspondence between reconstructed and simulated tracksters would
entail a one-to-one mapping, the complex nature of the interactions between particles and
the detector can result in situations where a simulated trackster is fragmented into several
reconstructed tracksters, or a single reconstructed trackster encompasses multiple LCs from
different simulated tracksters.

In the initial stage of the TICL pipeline, hits are clustered into LCs. Thus, before the
association scores for tracksters can be computed, they must first be accumulated for each
layer-cluster. Therefore, following the completion of the CLUE algorithm, the shared energy
between each LC i and each simtrackster s in the event is computed by taking the weighted
sum of the hit energies Eh of the LC, with the weights given by the fraction frs

h of the hit
energy deposited by the simtrackster s, and normalized by the total energy Ei of the LC:

frs
i =

∑
h∈i frs

h · Eh

Ei
. (5.1)

The fraction ranges from 0 to 1, being 0 if no overlap of LC i hits with the simtrackster s is
observed. These LC energy fractions are then utilized to calculate the pairwise Sim-to-Reco
scores between tracksters and simtracksters based on their LC shared energy, normalized by
the square of the total energy of simtracksters:

scores,t =
∑

i∈s min
((

frt
i − frs

i

)2
, (frs

i)2
)
· E2

i∑
i∈s (frs

i)2 · E2
i

, (5.2)

where i refer to individual constituent LCs of the simtrackster, frt
i and frs

i are the energy
fractions of LC i that has been assigned to the reconstructed trackster t and to the simtrackster
s, respectively. The Sim-to-Reco score measures the degree to which a simulated object
s is accurately represented with the reconstructed object t with a score of 0 indicating a
perfect match between the objects. The LCs not shared between the objects move the
score towards high values, eventually reaching 1 for two completely unrelated objects. The
Reco-to-Sim score is similarly defined and can be obtained simply by interchanging the roles
of the reconstructed and simulated tracksters. Meaning-wise, it establishes opposite links
between the reco- and simtracksters than the Sim-to-Reco scores. All associations between
objects are meant to be one-to-many, i.e., a single object can be linked to multiple objects,
with each link assigned a specific score. Pairs of objects with a Reco-to-Sim or Sim-to-Reco
score less than 0.2 are deemed to be associated.

50

..................................... 5.4. Processed Linking Datasets

The associators sub-tree of the generated ROOT datasets contains the properties listed
in Table A.6. While these properties are also available for the trackstersMerged, they are
not utilized in this analysis and are not shown in the table.

5.4 Processed Linking Datasets

The intent of the dataset processing, in view of using graph neural networks for linking, is
to represent collision events as graphs, with each node representing a trackster fragment
generated by the CLUE3D procedure and edges indicating interactions between them. These
graph structures will then be used as inputs to the GNN. Due to the high number of tracksters
in pile-up datasets, simply constructing fully-connected graphs is not computationally viable
from the network’s point of view. Consequently, there is a need to explore various graph
construction techniques to reduce the number of graph edges, as detailed in the following
sections. To start with, the selection of node and edge features is described, followed by the
graph construction considerations.

5.4.1 Node Features

For each recotrackster, which will serve as a separate node in the event graph, we select a set of
features grouped into four categories: spatial and kinematic properties, particle identification,
and substructure features. These properties are extracted from the generated ntuple data
and provide a total of 33 features per trackster.

Spatial Properties. This category comprises 21 trackster properties arising from the aggre-
gation of its constituent LCs and hits. The properties include:

. trackster_barycenter_x/y/z/eta/phi: Positions of tracksters’ barycenters, computed
by energy-weighted average of the constituent LC coordinates, represented in both
cartesian (x, y, z) coordinate space and (η, ϕ) space. Unlike layer-cluster barycenters, the
z trackster coordinate may not align with any particular detector layer but rather fall
between the two adjacent layers.. EV1/EV2/EV3: The first three eigenvalues of energy-aware PCA applied to the collection
of constituent LCs.. eVector0_x/y/z: The first principal component coordinates x, y, z of energy-aware PCA.. sigmaPCA1/2/3: The first three component-wise reconstruction errors from energy-aware
PCA.. num_LCs/hits: Number of LCs and hits per trackster, excluding 1-hits LCs, which are
disregarded during reconstruction.. z_min/z_max: Minimum and maximum coordinates of the trackster PCA skeleton3

(Section 5.4.4) components along the z-axis.. length: Shower length in terms of the number of occupied HGCAL layers normalized
with the full number of HGCAL layers (47 per endcap).

3A skeleton can be thought of as a simplified trackster backbone structure.

51

5. Event Simulation and Datasets Generation
. LC/trackster_density: LCs and trackster densities in event computed either in the en-

tire detector or in a particular seeding region, depending on the setup of the TICL pipeline.
These densities are obtained by dividing the full number of LCs/tracksters by an esti-
mated volume of reconstruction, which is approximately equal to 2× (3− 1.5)× (2× 47)
in the case of the full HGCAL. This calculation is based on the HGCAL volume with two
η ranges from 1.5 to 3, containing 47 layers in each of its two endcaps. Normalization is
needed since the networks can potentially be run on the volumes limited by the seeding
regions. Densities are the same for every trackster in the event.

The last two features should contribute to the adaptation of the GNN to events with varying
levels of pile-up4, since the GNN is expected to behave differently in these scenarios due to
the higher object density in pile-up events. In the context of multiple trackster fragments,
spatial features are very informative, since tracksters located close to each other and pointing
in the same direction or originating from the same spatial point are likely to arise from the
same CP.

Kinematic Properties. The kinematic property category comprises just three features:

. time: Trackster barycenter time information, accumulated from the LC times.. log E / log E_EM: Natural logarithms of the trackster’s total raw and total electromag-
netic energy (i.e., energy deposited in the CE-E) in GeV units. The logarithms are taken
due to the long-tailed nature of the energy distribution and are protected from negative
values5.

The time information is valuable for identifying tracksters that could have originated from
the same particle since they would exhibit similar time information. With regards to energy,
tracksters with lower energy levels can serve as indicators of small fragments to be linked to
the higher-energy tracksters.

Particle Identification Properties. The particle identification category comprises six features
representing probabilities of the following particle types from recotrackster PIDs:

. Photon: Probability of a trackster being produced by a photon (PDG ID 22).. Electron: Probability of a trackster being produced by an electron (PDG ID 11).. Muon: Probability of a muon (PDG ID 13).. Neutral Pion: Probability of a neutral pion (PDG ID 111).. Charged Hadron: Probability of a charged hadron (PDG ID 211, 321 or 2212).. Neutral Hadron: Probability of a neutral hadron (PDG ID 130, 2112 or 0).

Considering that different particles undergo distinct interactions, the aforementioned properties
hold value in defining separate linking strategies suitable for diverse particle types.

4Especially, for networks trained on the data with varying levels of pile-up.
5Specifically, log(E + 1) and log(EEM + 1) are used to ensure non-negative values

52

..................................... 5.4. Processed Linking Datasets

Structural Properties. After constructing the graph of an event (as described further in
Section 5.4.3), additional trackster information can be extracted. One such piece of information
is the normalized node degree di,norm for each trackster i, calculated by dividing the number
of edges incident upon the node by the maximum node degree dmax in the graph:

di,norm = 1
dmax

∑
j∈V

A(i, j) , (5.3)

where A is the adjacency matrix, and V is the set of vertices in the graph. Similarly, degree
centrality cd is calculated by normalizing with the maximum possible degree (i.e., n− 1 for
a graph with n nodes) rather than the maximum degree in the graph. Additionally, the
clustering coefficient ci [Kai08] is derived for each trackster i, measuring the proportion of
closed triangles in the neighborhood of the node:

ci = 2 · |ejk : vj , vk ∈ Ni|
di(di − 1) , (5.4)

where the numerator gives the number of triangles through node i with Ni referring to
the node’s neighbors in the graph, and di is the non-normalized node degree. Despite the
potential for incorrect edges in the event graph, these features provide a useful overview of
node connectivity. It should be noted that the normalized node degree is calculated only for
the outgoing node edges, while the degree centrality is calculated for the undirected graph.
This is done to minimize the correlation between the two properties.

5.4.2 Edge Features

Particle interaction features, or edge features, are derived from the geometrical and kinematic
properties of the tracksters connected with an edge in the event graph. Specifically, for a pair
of tracksters i, j, a suite of the following features is calculated:

. Edge energy difference ∆Eij = |Ei−Ej | for each edge eij in the event connecting trackster
with energies Ei and Ej ..∆z barycenter-barycenter separation in z axis, computed in terms of the Euclidean
distance between the pair of trackster barycenters.. Euclidean distance between the two closest skeleton points belonging to the pair of
tracksters.. Euclidean distance between the two furthest skeleton points belonging to the pair of
tracksters.. Barycenter separation in the transverse plane ∆R =

√
(xi − xj)2 + (yi − yj)2 ..The spatial compatibility, expressed through the angle α between the primary components

of the trackster skeletons, given by α = arccos(vi · vj), where vi and vj are the principal
component vectors. The choice of an angle, instead of just a dot product is motivated
by the skewed distribution of the PCA product, with values below 0.6 being a rarity,
typically occurring in cases of incomplete fragments characterized by a low number of
LCs and, consequently, an inconsistent PCA.. Barycenter time compatibility ∆t = |ti − tj |, if available. If not available, it is set to -99,
as in the ntuples for the missing time values.

53

5. Event Simulation and Datasets Generation

Figure 5.2: Schematic example for an event of double closeby pions shot in front of the HGCAL
in 0 PU. On the left, reconstructed tracksters numbering 100 are shown in different colors, with
each circle representing a LC. Only five major tracksters are visualized in an ellipsoid form to
improve the readability of the plot, along with the edges connecting their barycenters under the
condition they fall within a 0.2 η − ϕ window. True edges are shown in green, and the false ones
are in red. On the right, a similar visualization corresponding to the same simulated event and
comprising two simtracksters is shown.

Because ∆E and ∆z typically have long-tail distributions, their logarithms with protection
against negative values are taken as the interaction features. It is also important to note
that the irregular geometry of the detector poses a challenge to Euclidean distance metric,
since it exhibits non-uniform performance across different layers, as depicted in Figure 4.4.
The electromagnetic section, being more densely packed, contrasts with the hadronic section,
which features wider gaps between its layers. As a solution, we adopt both Euclidean distance
and the number of layers between the tracksters, despite their intrinsic correlation.

5.4.3 Event Graph Building: Eta-Phi Bounded Graph

The first explored approach for event graph building involves the TICLGraph present in the
raw ROOT dataset files. This method establishes connections between trackster barycenters
and other nearby inner tracksters (lying closer to the CMS primary vertex) whose barycenters
fall within a 0.2 η−ϕ cylindrical region around the axis of the trackster of interest (Figure 5.2).
The axis of a trackster is determined by the line connecting its barycenter with the collision
point at the center of the detector. The baseline approach for this method employs a maximum
cylinder length of 200 cm, corresponding to almost the full HGCAL length, enabling the
connection of very distant longitudinal objects. This threshold is set according to the trackster
separation experiments discussed later. A trackster is linked to its nearest neighbor if it has no
neighbors within the window, to avoid disconnected nodes in the graph. This situation might
happen when we are dealing with a complete trackster that does not require further links or
a remote fragment of a shower. The size of the window is chosen to be sufficient to guarantee
that the majority of trackster pairs coming from the same particle have an edge between
them or are connected via intermediate nodes. This approach is motivated by the angular
compatibility of tracksters reconstructed from the same particle, which tend to lie within

54

..................................... 5.4. Processed Linking Datasets

the aforementioned angular window. As a result, the GNN is directed to link longitudinally
aligned tracksters. The pseudo-code for this algorithm is outlined in Algorithm 1.

The construction of the η−ϕ bounded graph is a simple and efficient approach for building
event graphs, allowing to avoid fully-connected graphs for event representation. It makes it
possible to keep the number of edges to a physically feasible set that is still large enough
to account for the majority of potential connections. However, it solely relies on trackster
barycenter information, neglecting trackster internal structures. Consequently, this event
graph might struggle to connect tracksters whose barycenters are distant yet have closely
spaced individual layer-clusters. Apart from this issue, η − ϕ graph building fails to account
for the detector’s irregular geometry, where the η region varies significantly with increasing
distance from the CMS vertex. Therefore, graph building can benefit by introducing a
variable-size neighborhood window in the future.

Graphs for Pile-Up Events. The construction of the pile-up training graph requires additional
considerations. Although the inference graph is constructed analogously to the aforementioned
process, constructing the training graph poses a challenge since there is no available ground
truth data for the pile-up tracksters. Consequently, only the edges from the tracksters that
are associated with the simtracksters are considered for the graph building process.

5.4.4 Event Graph Building: Skeleton-Based Graph

As an alternative to the TICLGraph strategy, which focuses solely on trackster barycenters,
I developed a skeleton-based graph building approach making use of internal trackster
structures, referred to as skeletons, to drive the graph construction process. To achieve this,
several algorithms for trackster skeletonization have been developed with varying degrees
of complexity, as described in the following sections. The first method involves iterative
energy-weighted addition to the skeleton, providing extensive structures covering the majority
of LCs in the tracksters. Another approach, providing simpler skeletons, is based on energy-
aware principal component analysis with secondary components. Aside from that, I have
explored iterative random sample consensus (RANSAC) [FB81] skeletonization, which may
be particularly suitable for events with minimum ionizing particles (MIPs), whose LCs are
typically well-aligned single hits. The application of PCA and RANSAC methods in trackster
skeletonization results in the emergence of primary components, which are energy-driven, and
secondary components, which are geometry-driven. In constructing the event graph, only
the primary components are considered for linking tracksters to tracksters. However, the
secondary components are retained for future investigations concerning linking tracksters to
minimum ionizing particles. Additionally, as a part of future work, one can extract additional
properties for network training from these skeleton structures.

The skeletonization of tracksters serves a dual purpose – apart from facilitating event
graph building, it also enables propagating of time information along the skeleton structures.
This feature is especially beneficial for low-energy LCs, which may not have accurate timing
information available. While this study does not delve into this aspect, the PCA-based
algorithm developed herein is presently being employed in the time-improvement study for
HGCAL. Additionally, this technique also enables investigation into the time compatibility of
the tracksters, which, however, falls beyond the scope of this work.

Skeletonization provides a valuable solution for scenarios where particle showers have

55

5. Event Simulation and Datasets Generation
Algorithm 1: η−ϕ Graph Building and Edge Labeling (Section 5.4.6) for the training
dataset.
Data: tracksters, associations, and graph for a single event; maximum trackster

separation threshold max_dist (default: 200 cm).
Result: list of edges, edge_labels, simtrackster_match and edge_scores for the

constructed graph.
1 Initialize output variables with empty lists.
2 Algorithm BuildEtaPhiGraph
3 for tr_i ∈ tracksters do
4 score_tr_i ← best (minimum) tr_i recoToSim_score from associations.
5 best_simtr_i ← simtrackster ID corresponding to tr_i calculated through a

recoToSim map if score_tr_i < 0.2 else None.
6 simtrackster_match.append(best_simtr_i)
7 if best_simtr_i != None then
8 for tr_j ∈ graph.linked_inners(tr_i) for which Dist(tr_j,tr_i)

≤ max_dist do
9 edges.append([tr_j,tr_i]) // Create an edge

10 score_tr_j ← best (minimum) tr_j recoToSim_score from
associations.

11 best_simtr_j ← simtrackster ID corresponding to tr_j calculated
through a recoToSim map if score_tr_j < 0.2 else None.

12 if best_simtr_i == best_simtr_j then
13 edges_labels.append(1) // Edge is true
14 edges_scores.append(GetEnergyScore(tr_i, tr_j))
15 else
16 edges_labels.append(0) // Edge is false
17 edge_scores.append(0.)
18 if tr_i has no neighbours in η − ϕ window then
19 nearest_tr ← FindNearestNeighbour(tr_i)
20 edges.append([tr_i, nearest_tr])
21 edges_labels.append(0) // Edge is false
22 edge_scores.append(0.)

multiple primary components. Upon linking two tracksters, their data is merged, and PCA
directions are recalculated, which can result in the loss of the individual backbones of the
original tracksters. To overcome this issue, we propose utilizing primary components of
the skeletons to enhance the representation of merged tracksters for hadronic showers with
multiple energy blobs, as well as for electrons merged with their bremsstrahlung photons.
Additionally, skeletonization facilitates identifying and quantifying substructures within the
trackster, such as individual energy blobs or branches, as well as graph features, which can be
used as additional features for NN training.

Once the trackster backbones have been acquired, we create an event graph by analyzing
the nearest skeleton points of each tracksters falling within the same 0.2 η − ϕ window.
This approach enables more accurate distance calculations between tracksters as opposed to
relying solely on trackster barycenters. The selection of a specific skeletonization method
is contingent on the objective of the task at hand. Each method of skeletonization yields a
distinct type of graph. The iterative graph is composed of layer-clusters as nodes, forming

56

..................................... 5.4. Processed Linking Datasets

Figure 5.3: Trackster skeleton examples generated by three implemented algorithms: (a) iterative,
(b) PCA-based, and (c) RANSAC-based, for the same pion trackster fragment. In the PCA
skeleton example, the primary component is divided into two parts, depicted in green and red,
while the secondary components are shown in blue.

a connected graph. The PCA-based graph contains a primary component that does not
generally pass through the individual LCs, which is complemented by secondary components
that are connected to LCs at one of their endpoints. This skeleton is also a complete graph.
In contrast, the RANSAC-based skeletonization generates a set of disconnected segments
that are not necessarily associated with layer-clusters, resulting in a disconnected graph. In
the present work, PCA-based skeletons, offering simple and descriptive internal structures,
showed to be the most effective.

Iterative Energy-Aware Skeleton Building

The proposed iterative skeleton creation algorithm is outlined in Algorithm 2. It takes
trackster’s LC data as an input and defines a distance threshold of d = 2 cm for LCs to
be considered covered by the skeleton. Starting with the CLUE3D seed LC, the LC data
is sorted based on descending energy, and for each LC, the algorithm calculates the direct
distance to the closest skeleton edge. We are only interested in LC that are not covered
by the skeleton (i.e., the distance is greater than d); otherwise, we consider them explored.
If the new non-covered LC is closer to the seed than the closest endpoint of the closest
edge, the algorithm checks if breaking an old connection into two with the explored LC as
a middle-point affect already explored LCs (i.e., they still stay within d interval from the
set of edges, possibly different ones). If no explored nodes are affected, we perform the edge
splitting (line 7 of Algorithm 2).

However, if the new non-covered LC is further from the seed than the closest endpoint of
the closest edge (line 11 in Algorithm 2), the algorithm checks if removing the closest edge
and connecting the new LC directly to the seed affects explored LCs. If that is not the case,
we perform the edge deletion. Finally, if neither of the above two cases is satisfied (line 14 of
Algorithm 2), the algorithm adds a new edge connecting LC to the closest endpoint of the
closest edge to the skeleton. The process continues until the skeleton has covered all LCs
above an adaptive energy threshold.

The skeleton creation method employed in this study involves pruning the edges so that
they are not incident on every LC in the trackster, simplifying the backbone. While this
approach yields a highly descriptive graph that captures the internal structure of the trackster,

57

5. Event Simulation and Datasets Generation
Algorithm 2: Iterative skeleton creation pseudo-code.
Data: trackster’s LC data, distance threshold d (default: 2 cm).
Result: trackster skeleton in terms of it’s edges.

1 Initialization: edges and explored_LCs are empty sets.
2 Algorithm BuildSkeletonIteratively
3 Add CLUE3D seed to the set of explored_LCs.
4 ordered_LCs ← LCs (except for the seed) sorted in descending order of their

energies.
5 for lc ∈ ordered_LCs do
6 Find lc’s direct distance min_dist to the closest skeleton edge min_edge =

(close_ep, far_ep)
7 if |lc− seed| < |close_ep− seed| and breaking min_edge up with the lc as a

midpoint does not affect explored then
8 edges.del(min_edge)
9 edges.add((close_ep, lc))

10 edges.add((LC, far_ep))
11 else if |lc− seed| > |close_ep− seed| and removing min_edge while connecting

lc directly to seed does not affect explored then
12 edges.del(min_edge)
13 edges.add((far_endpoint, lc))
14 else
15 edges.add((closest_ep, lc))

it also generates an excessive number of edges for hadronic events making it impractical for
use in event graph building.

PCA-Based Skeleton Building

The layer-clusters of the highest energy are typically aligned with the shower’s directional
axis, while the lower-energy LCs tend to lie farther away. This characteristic high-energy
core of the shower is leveraged to construct a trackster skeleton using a weighted PCA. The
skeleton’s primary component is constructed by limiting the first eigenvector direction to
the trackster’s energetic core. After that, the secondary components are iteratively built
for high-energetic LCs in the descending order of their energy if not already covered by the
skeleton (i.e., within a certain distance threshold). Secondary components are created by
connecting those LCs to the projections of the nearest higher energy LC already covered by
the skeleton on the principle component, thus following the energy chain.

However, applying PCA on LCs within a trackster and using the first principal component
as the trackster direction may yield erroneous results, particularly for incomplete tracksters
fragments. This is attributed to the unreliable direction estimation obtained from PCA for
such tracksters. Consequently, in situations where insufficient layer-clusters are covered by
the PCA, the trackster skeleton is represented as a single point – trackster’s barycenter.

RANSAC-Based Skeleton Building

RANSAC, also known as Random Sample Consensus [FB81], is an iterative technique for
estimating the parameters of a mathematical model from a set of observed data that may

58

..................................... 5.4. Processed Linking Datasets

Figure 5.4: RANSAC-based trackster skeletonization pipeline. In the first step, LC data are
fed to RANSAC, fitting a line to the data and generating its support. In the next step, the line
is re-fitted with the energy-weighted least squares on RANSAC support. After this stage, the
skeleton component is created and its inliers are removed from the data. The process is repeated
until the stopping condition is met.

contain outliers. The RANSAC-based approach to skeletonization (Figure 5.4) entails a
three-step iterative process. First, the algorithm fits a 3D line to the trackster’s LCs by
randomly selecting pairs of LCs and treating them as hypothetical inliers. Using these LCs,
we determine the position and direction vectors of the estimated line model. Next, we test all
the remaining LCs against this estimated model by calculating the distance of each LC to the
line. Points whose distance is less than a specified threshold are classified as inliers, while
those outside the threshold are outliers. We calculate the support for this model based on
the number of inliers. The line with the maximum support above the threshold (we require
at least 4 energetic LCs to be covered by the line) is chosen after a fixed set of iterations
and re-fitted with energy-weighted least squares on RANSAC support set. The algorithm
then limits the range of the line to the energetic segment (by projecting inliers LCs), forming
the primary component. Finally, the inliers covered by the component (i.e., fall inside a
d = 2 cm region from the segment) are removed from the available LC data. The process
is then repeated, with the only difference – one of the points for RANSAC iteration is now
chosen from the inliers of the primary component. The created segments in the following
iterations are called secondary components. This iterative process continues until enough LCs
above a certain energy threshold are not covered by the skeleton components, and we are
able to find a line model for them.

If we are unable to obtain enough RANSAC inliers by the end of all iterations, we conclude
that no line model exists, and the trackster skeleton is represented either by the previously
identified components or by a single point – its barycenter. The latter scenario is typically
observed when dealing with small trackster fragments without aligned LCs. Unlike other
skeleton methods, RANSAC’s secondary components generally do not intersect with the
primary component, creating a set of line segments rather than a connected graph. While
RANSAC is effective for well-aligned tracksters, it may struggle with complex hadronic events,
resulting in multiple parallel components.

5.4.5 Reduced Graphs

In the event of high PU scenarios, the complete η − ϕ graph of the endcap might not be
feasibly processed in a single step for rapid online reconstruction. As indicated in Table 5.1,
the trackster count in 140 PU reaches above 2000, resulting in more than 10k edges as shown
in Figure 5.7. In lieu of this, when computational complexity presents a bottleneck, the TICL
framework can be leveraged to concentrate specifically on individual seeding regions. Graphs
can then be constructed exclusively in these regions, in proximity to L1 objects or tracks,

59

5. Event Simulation and Datasets Generation
resulting in a substantial reduction of computational complexity. Moreover, the utilization
of seeding regions facilitates parallel region processing. Each region may be processed as an
instance in a batch at the network input, requiring padding (or a different mini-batching
approach shown in Section 6.2.3) due to variations in size.

5.4.6 Ground Truth Edge Labeling

In order to differentiate between the true and false edges in the constructed event graphs,
we first need to determine the similarity scores between the simulated and reconstructed
tracksters. This similarity is determined based on the associator scores discussed in Section 5.3.
To this end, each edge in the graph is assigned a binary label {0,1}, where 1 (or a true
edge) indicates that the connected tracksters originate from the same simtrackster (either
CaloParticle or SimCluster). In contrast, 0 (false edge) indicates that they originate from
different objects. This study concentrates on connecting tracksters that originate from the
same CaloParticle. To remind the reader, CaloParticle refers to the parent of a particle in the
simulated decay graph situated closest to the vertex (potentially, prior to entering HGCAL).

In addition to the binary labels, each true edge is assigned a score ranging between 0
and 1, calculated based on the shared energy between the reconstructed trackster and the
corresponding simulated trackster. This score helps to account for the imbalance in the
dataset and prioritizes the connection of tracksters that contribute the most to the total
simtrackster energy:

score(i, j) =

(1− δi) · Es
i

Ei
+ (1− δj) · Es

j

Ej
if edge is True,

0 if edge is False,
(5.5)

where δs
i is the Reco-to-Sim associator score for trackster i coming from simtrackster s, Es

i

denotes the shared energy between i and s, and Ei is the total raw energy of i. Edge scores
for false edges are set to 0.

5.5 Dataset Analysis

This section is devoted to gaining insights into the properties of the problem and the nature
of the data, with a particular emphasis on hadronically interacting particles.

Feature Correlations. The presented correlation matrix in Figure 5.5 showcases the interde-
pendence among the selected network features in the single pion events in 140 PU, where
only hard-scattering trackster components are considered (i.e., events are stripped of pile-up
tracksters). The following observations are made:

. Notably, a positive correlation exists between the trackster barycenter coordinate and
the first eigenvector components, indicating that the trackster direction points back to
the CMS vertex, where they were produced. In contrast, this correlation does not hold
exactly for the double pion dataset in 0 PU (refer to Figure A.2 in the appendix), where
the x and y components exhibit a strong correlation with their respective barycenter

60

.. 5.5. Dataset Analysis

Figure 5.5: The correlation matrix pertaining to the chosen trackster features of 5000 events from
a solitary pion in the 140 PU dataset, excluding tracksters caused by pile-up interactions.

coordinates, while the z component displays a much weaker correlation. The reason for
such a difference might be that particles in the two datasets are generated at different
vertices. In the case of no PU datasets, the particles are produced right before the first
HGCAL layer, while still pointing to the CMSW origin. On the other hand, particles in
PU dataset are generated directly from the CMS vertex..Additionally, the second and third eigenvalues, which quantify trackster’s shapes in the
plane perpendicular to its main axis, exhibit a strong correlation, implying the symmetry
of tracksters in the transverse plane..A considerable correlation between σP CA1 and the first eigenvalue is evident. σP CA1 is the
first component-wise reconstruction error from energy-aware PCA applied to constituent
LCs, while the first eigenvalue measures the trackster’s extent along its principal axis.
Thus, when the trackster has a well-defined axis, the reconstruction error in that direction
will be minimized, leading to a smaller value for σP CA1 and a larger value for the first
eigenvalue..As expected, raw energy manifests a positive correlation with raw electromagnetic energy.
Additionally, a positive correlation between the number of LCs and energy and some
particle types is evident.

Very similar interdependencies were observed for the pile-up data; the correlation ma-
trix difference between pile-up and reconstructed tracksters can be seen in the appendix
(Figure A.4).

61

5. Event Simulation and Datasets Generation

0 100 200 300 400 500 600 700
Energy [GeV]

100

101

102

103

104

105

Co
un

t
Recotrackster energy distribution

0 100 200 300 400 500 600
Energy [GeV]

100

101

102

Co
un

t

Simtrackster energy distribution

Figure 5.6: Energy distribution for reco- and simtracksters for 10 000 events from the double pions
dataset in 0 PU. Original simulated particles are in the range 10–600 GeV, with their energies
uniformly distributed.

Energy Distribution. The CLUE3D step tends to split high-energy showers into smaller
tracksters fragments due to the conservative clustering settings trying to prevent merging
with the pile-up tracksters, as shown in Figure 5.6. In contrast to the simulated particles,
which display a uniform distribution of energies ranging from 0 to 600 GeV, the reconstructed
data is dominated by tracksters with low energies. It is expected that the reconstructed
trackster energy distribution can be improved by trackster linking.

Graph Parameters. Figure 5.7 displays the edges formed by the η − ϕ event graph building
algorithm in the high pile-up scenario. We observe some very long true edges connecting
tracksters belonging to the same CaloParticle, which prompts to investigate the edge length
distributions (Figure 5.8). For double pion events, the peak of the true length distribution
can be seen at 9 cm, while for single pion events in PU it is around 7 cm. However, the length
of the true edges can range above 96 cm and 98 cm (95% percentiles) for double pions and
single pions in pile-up, respectively. These long edges usually belong to connections between
lower-energy tracksters with relatively low associator scores. Although the distribution of
true edges remains consistent in both the pile-up and no pile-up scenarios, the distribution
of false edges differs significantly. More negative edges are generally observed in the pile-up
scenario due to the presence of additional pile-up tracksters in the event. This results in an
additional peak in the false edge distribution for pions in PU at around 45 cm length.

Similar analysis is performed for other particles and presented in Table 5.2, where consider-
able variations in edge distributions with respect to particle types are observed. Particularly,
photons and electrons are associated with relatively shorter true edges, 95% of same-shower
tracksters lie within a distance of merely 16–18 cm. Conversely, pions, kaons, and taus
generate true edges that can extend up to 98, 92, and 91 cm, respectively, at their 95%
percentile. These observations are anticipated since photons and electrons typically interact
in the electromagnetic region of the calorimeter, while pions can interact in both regions,
notably the hadronic one, leading to longer shower successions and hence longer edges.

62

.. 5.5. Dataset Analysis

Figure 5.7: Event of a single pion in 140 PU with 160 true edges in green (on the left), all 10250
edges in blue (middle), and 52 false edges in red (right) coming from the η − ϕ graph visualized.
Unlike in previous pictures, each point is a trackster with a size proportional to its energy. Note
that the z axis points up for a better visualization perspective. Zoom-in versions of the true and
false graphs are presented, with PU tracksters shown in blue.

Table 5.2: η − ϕ graph-related properties of the three linking datasets. Edges refer to the
edges in the constructed 0.2 η − ϕ bounded graph. Due to significant differences
in properties among the particles in SingleParticle140PU, their values are
presented separately.

Peak of length
distribution of
true / false edges

9 cm / 14 cm 10 cm / 17 cm Electron: 10 cm / 12 cm
Tau: 4 cm / 3 cm
Pion: 7 cm / 10 cm
Kaon: 15 cm / 25 cm
Photon: 6 cm / 12 cm

95% percentile of
length distribu-
tion of true /
false edges

96 cm / 116 cm 98 cm / 119 cm Electron: 16 cm / 21 cm
Tau: 91 cm / 113 cm
Pion: 98 cm / 131 cm
Kaon: 92 cm / 117 cm
Photon: 18 cm / 25 cm

Properties CloseByPions0PU Multiparticle0PU SingleParticle140PU

The distribution of associator scores in relation to edge lengths is also examined in Figure 5.9.
The majority of well-associated tracksters for true edges are found below 50 cm distance.
Similarly, for false edges, most of the worst-associated tracksters are also located in regions
below 50 cm.

63

5. Event Simulation and Datasets Generation

(a) : Distribution of true and false edge lengths for 1500 events from the double pions in 0 PU dataset.
True edges: mean length of 38 cm, std 29 cm, minimum length 0.5 cm, maximum 193 cm. False edges:
mean 48 cm, std 34 cm, minimum 1.7 cm, and maximum 193 cm.

(b) : Distribution of true and false edge lengths for 1500 events from the single pion in 140 PU dataset.
True edges: mean length 37 cm, std 30 cm, minimum length 1.0 cm, maximum 210 cm. False edges: mean
56 cm, std 38 cm, minimum 1.0 cm, maximum 213 cm.

Figure 5.8: True and false edge length distributions in η − ϕ event graphs.

0 25 50 75 100 125 150 175
Edge Length (cm)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

As
so

cia
to

r S
co

re

True edges associator scores

100

101

102

103

(a) : True edges.

0 50 100 150 200
Edge Length (cm)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

As
so

cia
to

r S
co

re

False edges associator scores

100

101

102

(b) : False edges.

Figure 5.9: Histogram of edge length and Reco-to-Sim associator scores for 5500 events of a single
pion in 140 PU. A lower associator score indicates a better association between tracksters. If the
score is less than 0.2, we consider the tracksters to belong to the same CaloParticle.

64

.. 5.5. Dataset Analysis

Trackster Fragmentation. Figure 4.1 from the preceding section demonstrates the phe-
nomenon of trackster fragmentation showcased with their energy profiles along the detector
layers. The longitudinal energy profiles obtained by aggregating deposited energies in each
detector layer are analyzed with respect to the true energy profile of the simulated particles.
To determine the simulated particle corresponding to each reconstructed trackster, association
scores are utilized. It can be seen that even the perfect linking of tracksters cannot restore
the original energy distribution perfectly, as some of the hits are eliminated during the
reconstruction process, and some LCs may already have been wrongly merged to different
tracksters before the linking step.

The event displayed in Figure 4.1 demonstrates two typical cases of recotrackster fragmen-
tation. Simtrackster A (blue) is composed of a primary recotrackster containing most of the
energy and additional low-energy tracksters (generally, with energies below 10 GeV). As for
simtrackser B, it exemplifies a major trackster splitting due to varying energy densities at the
border of the CE-E and CE-H sections of the detector, which is a common occurrence for
hadronically interacting particles.

The impact of fragmentation is particularly significant in pion reconstruction data, as
the longer shower lengths and the differences in shower density in the electromagnetic and
hadronic parts of the HGCAL exacerbate the fragmentation effect. Lower-energy photon and
electron reconstruction, on the other hand, exhibits superior performance, as their shorter
and well-aligned showers result in the reconstruction of their entire showers with only a small
proportion of low-energy miss-aligned fragmented tracksters.

5.5.1 Final Dataset Parameters

The scenario of two nearby particles is a fundamental case, allowing for the examination
of fragmentation properties and algorithm tuning. The case of multiple particles poses a
challenge to the algorithm’s scalability, requiring it to handle multiple particles of varying types
simultaneously. Lastly, the pile-up scenario simulates a high-overlap production environment
to test the proposed approach’s practical applicability.

As evidenced by Table 5.1, the datasets exhibit an assortment of sizes. Of note, the dataset
with the highest particle density, featuring multiple particles, possesses merely 29.5k events.
Conversely, the lower density double pion dataset is constituted of 58k collision events. Due
to the elevated computational demands, the pile-up dataset has a relatively reduced quantity
of events – just 21.7k. The construction of datasets of such proportions without the presence
of pile-up entails several hours of computing time using the globally distributed CMS data
analysis infrastructure, whereas the pile-up dataset requires several days for generation and
post-processing.

For the double pion dataset, each event has an average of 28.2 tracksters, resulting in a
relatively low number of edges per event (230). Therefore, a larger dataset size is preferred in
this scenario. In contrast, for multi-particle events, the average number of tracksters per event
is much higher at 253.1, resulting in an average number of edges of 2805. Thus, fewer events
are needed to achieve the same total number of tracksters (even fewer so for edges) as in the
previous case. Overall, for these two datasets, we obtain a total order of O(106) tracksters.

However, our ultimate objective is framed as an edge classification task, thus our primary
concern lies in the quantity of edges, as opposed to the count of events or tracksters. A high

65

5. Event Simulation and Datasets Generation
number of tracksters results in an even greater number of edges in event graphs. For η − ϕ
graphs, which are mostly used in this study, we obtain approximately 10.7 million and 41.1
million edges for double pions and multiparticle datasets, respectively.

In the case of the pile-up dataset, the amount of relevant data for training in each event is
relatively low, as we only construct a local graph around the hard-scattering trackster. On
average, pile-up tracksters comprise over 98% of all tracksters in events, and their average
number is around 2035 per event. Only a single simtrackster per endcap is generated for this
scenario, and the corresponding reconstructed tracksters’ average number varies significantly
depending on the particle type. Pions are the most complex case, producing an average of 28.7
reconstructed tracksters (similar to the no pile-up scenario), while particles such as photons
and electrons produce only around 5.5–5.8 reconstructed tracksters on average. However,
tracksters produced by pile-up cannot be excluded from the dataset, as they must also be
evaluated in the reconstruction, and their number is relatively high. Therefore, our final
dataset contains 24.8 reconstructed tracksters related to the simulated particles and 2081
tracksters per event overall.

The pre-processing stage of the datasets presented a substantial bottleneck throughout the
experimentation process. Even with the utilization of functions compiled to machine code,
running at native machine code speed, the preparation of datasets of the sizes employed in this
study requires two to three days. Considering the need for multiple iterations of the datasets
to select relevant features and trying different strategies to graph building, the processing
stage significantly hindered the progress of the experiments.

Dataset Imbalance

Another noteworthy aspect of Table 5.1 is the imbalance of datasets, with varying degrees
of edge class distributions for each scenario. Specifically, in the double pion case, a positive
imbalance is observed, with 78.4% of edges being true and only 21.6% negative. Conversely,
in the multiparticle and PU scenarios, a negative imbalance is present, with only 41.2% and
39.8% true edges on average, respectively. Such substantial imbalance presents a challenge
for models trained on a particular dataset, as their performance is likely to deteriorate when
dealing with data from other datasets. Additionally, it presents a challenge for neural network
training, as it can lead to prioritization of classifying all edges into one of the classes. One
approach to addressing this problem is to randomly sample incorrect edges to balance the
classes. However, this is not a viable option since these edges do not represent hard negative
examples and may not contribute significantly to the network’s learning. Moreover, for NNs,
cumulative easy negatives loss oftentimes overwhelms the total loss, which degenerates the
model. Therefore, we employ two strategies: first, we introduce edge scores (as in Section 5.4.6)
instead of binary labels to improve label distribution in case of positive imbalance in the
double pion dataset. Second, we utilize a specialized balanced loss function that is discussed
in further detail in subsequent chapters (Section 6.4).

66

Chapter 6

Methodology

While the geometric linking is based on an imperative, rule-based approach, using supervised
ML to parametrically define linking based on simulation samples may increase the physics
reach of the experiments by permitting a more thorough reconstruction. Additionally, as
highlighted in the previous chapter, ML-based algorithms seem better suited to the uneven,
high-granularity HGCAL geometry. As a result of careful considerations based on the
previously published studies, this work primarily focuses on supervised link-level prediction
using GNNs in artificially constructed graphs of collision events. This chapter overviews
graph neural network concepts relevant to this work, introduces the proposed architecture,
and explains the design choices behind it. Finally, strategies for evaluating the reconstruction
performance of the candidate solutions are described.

6.1 Overview of Graph Neural Networks

As discussed in the previous chapter, GNNs are a type of deep learning architecture designed
to learn functions on graphs. Their utilization is widespread across various machine-learning
problems related to graphs, including node-wise classification or regression, graph classification,
link prediction, anomaly, and community detection. Given that the trackster collections can
be easily represented as graphs, it is plausible to employ GNN methods for linking. GNNs
aggregate neighborhood information and adapt to uneven detector geometry, which is highly
suitable for this task, albeit with greater temporal complexity for larger adjacency matrices.
For this reason, the present work concentrates on GNN linking at the trackster level, in
contrast to other works on GNN calorimetric clustering, which commence with hits. The
process of creating tracksters from hits is fast and reduces the problem input sizes’ complexity
from O(105) to just O(103), leading to a four-order-of-magnitude reduction in adjacency
matrix sizes.

GNN types. GNN architectures are classified into four primary branches: recurrent
(RecGNNs), convolutional (ConvGNNs), spatial-temporal (STGNNs), and graph autoencoders
(GAEs). In RecGNNs, nodes repeatedly exchange messages with their neighbors until a
stable equilibrium is reached. GAEs, on the other hand, encode nodes or entire graphs into a
latent space and recover graph data from the encoded information in an unsupervised fashion.
Meanwhile, STGNNs aim to learn hidden patterns from spatial-temporal graphs. ConvGNNs

67

6. Methodology..
are the most commonly used variation among GNNs, extending the concept of convolution
from grid data to graphs, generating representations of nodes by aggregating their own features
with the features of their neighbors. Unlike RecGNNs, ConvGNNs employ multiple graph
convolutional layers to extract high-level node representations. Notably, ConvGNN models
such as ParticleNet have shown excellent performance in relevant problems within the HEP
field. As such, this section provides a detailed review of ConvGNNs’ operation.

Graph Representation. The raw detector data is essentially an unordered set of N objects.
However, the set can be supplemented into a graph by considering Ne geometric or physical
links between objects. In terms of the linking problem, nodes in the graph represent tracksters,
and the edges indicate their pair-wise relationships. Such graph representation is given by
G = (V, E), where V is the set of N nodes and E ⊆ V ×V is the set of ne edges. Each node in
the point cloud V = {x1, · · · , xN} ⊂ RF contains F node properties, and each edge can have
F ′ edge attributes.

The relationship between the nodes is classified as either directed or undirected. It can
be represented by an adjacency matrix, which is a binary N × N matrix (usually sparse)
whose elements indicate whether one vertex is linked to another. An edge index in the
coordinate list format, defined as a 2 × Ne matrix with each column containing the node
indices of each edge, is an alternative to adjacency matrix encoding of the graph. Although
this compact representation is advantageous for incremental matrix generation and smaller
memory requirements, a conversion to a compressed sparse or dense format is frequently
required for arithmetic operations.

GNN Graph Building Approaches. At the data pre-processing stage, the vertices in a graph-
based network are often linked based on predetermined criteria, such as the k-NN graph or a
fully-connected graph for small input sets, allowing the network to learn all object relations.
Graph edges then describe the pathways for information flow. Edges may also be created using
learned representations, such as those employed by the DGCNN or GravNet architectures.
In the mentioned architectures, the graph is not kept static, but rather the k-NN search is
performed in each convolution block using the latent features. This way, rather than treating
the graph G as a fixed constant, the architects learn to produce a different neighborhood
graph Gt = (Vt, E t) at each graph convolutional layer. Nevertheless, the repetitive k-NN
search suffers from the curse of dimensionality due to the high-dimensional feature spaces.
Because of the growing intricacy of calculating distances between data points and the decline
in the reliability of Euclidean distance with higher dimensions, utilizing large feature vectors
becomes impractical. ML packages often employ naive k-NN graph implementations with
O(n2) time complexity. Although more efficient implementations, like k-d trees, exist for
k-NN graph construction, I am unaware of a differentiable implementation that could be
used during network training. To address this issue, an alternative approach adopted in
this study is to create a static graph beforehand and maintain its consistency during the
training process. This technique is much less computationally demanding as it only performs
graph construction once. However, it does not incorporate an advantage of DGCNN design –
creating connections between the nodes that are similar in the obtained latent representation,
even if they are far in the original feature space. In such case, proximity in feature space
differs from proximity in the input feature space, resulting in non-local diffusion of information
throughout the point cloud.

68

................................. 6.1. Overview of Graph Neural Networks

Figure 6.1: Given an input graph on the left, graph convolution outputs the embedding of the
target node (e.g., the blue node A) by aggregating the information from neighboring nodes, as
shown in the computation graph on the right. The nodes’ level-0 hidden states (initial embeddings)
are denoted as h0

i , and the embeddings after the first neural layer as h1
i . The aggregated

embedding of the target node’s neighbors is indicated by ē1
N(A). Combining these embeddings and

passing them through the node’s activation unit creates a new embedding for node A, containing
information about its neighbors. With each layer of message passing, the node learns more about
its neighborhood and distant neighbors. It should be noted that the previous state of the element
being updated is also used in its update (self-loop).

Message Passing. GNNs operate by passing messages across a graph, which, as illustrated
in Figure 6.1, consists of two main steps: aggregations and an update. First, the edge update
function calculates updated edge attributes, also known as messages, based on the edge
et−1

ij and node attributes ht−1
i at the (t − 1) message-passing level, with a set of learnable

features Θ:
et

ij = ϕe
t,Θ (et−1

ij , ht−1
i , ht−1

j) . (6.1)
Next, the calculated messages are aggregated per node by considering either all edges or a
subset of edges incident on this node i given by N(i) = {j1, . . . , jni}:

ēt
i = ρt,j:N(i) (et

ij1 , . . . , et
ijni

, ht−1
i) . (6.2)

Finally, the node update function

ht
i = ϕv

t,Θ′ (ēt
i, ht−1

i) (6.3)

uses the aggregated edge attributes and the current node attribute to compute each node’s
updated hidden states ht

i ∈ RFt . The specific functions for update and aggregation depend
on the GNN architecture. The update functions ϕe

t,Θ and ϕv
t,Θ′ are typically implemented as

trainable NNs, while the aggregation functions ρt,j:N(i) are permutation invariant and take a
variable number of arguments (i.e., functions such as mean, maximum, minimum, sum, etc.).

69

6. Methodology..
6.1.1 Edge Convolution

A particular message-passing mechanism, whose modified version is used in this work, is
the Edge Convolution [WSL+19]. The EdgeConv update function for the hidden states is
expressed as follows:

ht
i = ρj:N(i)

(
ϕt,Θ (ht−1

i , ht−1
j)

)
, (6.4)

where ρ is the channel-wise invariant aggregation function (usually sum or maximum),
ϕt,Θ : RFt−1 × RFt−1 → RFt is a nonlinear edge update function with a set of learnable
parameters Θ. According to the terminology used in the preceding section, ϕt,Θ can be
considered as a variant of ϕe

t,Θ without employing edge features for the update. The node
update function ϕv

t is an identity, directly returning the aggregated edge attribute as a new
ht

i.

Graph convolutional networks discussed so far suffer from the limitation of assigning
equal importance to every neighbor, which is not desirable as some nodes are more essential
than others. To address this, an attention mechanism assigning a weighting factor to each
connection to account for the varying importance of different nodes is leveraged.

6.2 Explored ML Approaches

A progressive approach was taken in the experiments involving the NN linking models, starting
with simpler architectures and gradually increasing their complexity. Specifically, the first
set of experiments involves a fully connected pairwise network, followed by the use of GNNs,
culminating with the addition of attention mechanisms. The details of these experiments are
described in the following sections. Both networks can be applied either on the whole graph
of the event or a selected region.

6.2.1 Linking Problem Framing

This work frames the trackster linking problem as a clustering task tackled as a supervised link-
level classification using NNs in artificially constructed graphs of collision events. Specifically,
the proposed approach involves training a classifier to predict the presence or absence of a
link between two tracksters based on their respective embeddings.

At first glance, using link prediction on a graph with the ultimate goal of clustering might
seem unreasonable, since it does not directly address clustering. However, the neighborhood
aggregation approach employed by GNNs allows for deciding whether two tracksters should
be merged based on the conditional probabilities of other nodes being connected. This is in
contrast to a simple Multi-Layer Perceptron (MLP), making predictions independently for all
trackster pairs defined by the presence of an edge in the input event graph. Edge classifiers
for differentiating a variable number of objects in the data are not new in the HEP field and
are shown to be a rather effective approach [FCM+18, JFC+20]. However, it also entails a
set of rigorous constraints. Firstly, all potentially true edges need to be included in the graph
during the pre-processing stage to enable classification by the network since the model cannot
create edges not present in the input event graph. Finally, to construct the relevant object,
the same connections must be reassessed again after the network inference by imposing a

70

...................................... 6.2. Explored ML Approaches

threshold on the connection score. Possibly, a post-processing step, such as a graph search,
might also be required. Finally, the binary nature of edge classification limits its utility in
scenarios with significant overlaps and fractional assignments.

6.2.2 MLP Pair-Wise Linking

At the outset of the experiments, a simple multi-layer feed-forward neural network, also
known as MLP, is employed. This strategy facilitates an exploration of the trackster linking
probability in a pair-wise manner without recourse to their neighborhood information. The
underlying problem is framed as a binary classification task, whereby the model must make a
binary decision on whether two given tracksters should be connected.

This pair-wise approach serves a triple purpose: it is used as a baseline for subsequent
experiments with GNNs, helping to determine the significance of neighborhood information;
additionally, it enables an initial pre-selection of edges in scenarios with large graphs, where
some edges can be pre-pruned before being inputted into the GNN; finally, part of this model
may serve as a pre-trained component of the future GNN model.

Model Architecture. The MLP-based trackster linking network architecture is depicted in
Figure 6.2 created in Netron1 web application. The network has two inputs (node features
and edge index) and two outputs (node embeddings and edge predictions). The node feature
dimensionality is NB × F, where NB is the total node number in all the graphs in a batch of
size B; F = 33 is the node feature dimension. The edge index is provided in the coordinate
list format with dimensionality 2 × Ne,B, where Ne,B is the number of edges in the whole
batch.

The network consists of two modules – node encoder and edge classifier. The former utilizes
two or three hidden layers (depending on the training dataset size) for creating latent node
representations of dimension F ′ = 256, which are then concatenated according to the edge
index to create edge embeddings of dimension 512. Those are then passed to the edge classifier
module comprising another three hidden layers (with output sizes 256, 128, 1) and the final
sigmoid activation. The model’s output is, therefore, a single value in the range from 0 to 1 for
each trackster pair defined by the edge index (EB×1), which can be thought of as their linking
probability. To prevent overfitting, dropout layers with probability 0.2 are used between the
fully connected (FC) layers in both node embedding blocks and the edge classifier. Except
for the final sigmoid activation, the FC layers are interleaved with LeakyReLU [XWCL15]
non-linearities. The hyperparameters, such as layer sizes, non-linearity types, dropout rates,
and network depth, were determined through careful hyperparameter tuning. Apart from
edge predictions, the network also outputs edge embeddings (NB × F ′) for their visualization
and analysis.

6.2.3 General Considerations and Design Choices

Both MLP and GNN models adhere to a set of common guidelines for data pre-processing,
model design choices, and inference, which are described in this subsection.

1Netron URL: https://netron.app

71

https://netron.app

6. Methodology..

Figure 6.2: MLP linking model architecture. The network has two inputs: node features (NB ×F)
and edge index (2 × EB); and two outputs: edge predictions (EB × 1), and node embeddings
(NB ×F ′). The input node features are first standardized across the events and passed to the node
encoder – a sequence of three FC layers (represented as Gemm in the scheme, which stands for the
general matrix multiplication) interleaved with LeakyReLU activations and Dropout (not shown
in the figure). At the end of this pipeline, we receive latent representations of the nodes, making
one of the network outputs. These embeddings are concatenated according to the provided edge
index to create edge embeddings, passed to the link predictor module. Link predictor comprises a
similar block as the one creating node embeddings, except it finishes with the Sigmoid activation
at the output. The output after the sigmoid activation is the tensor of edge predictions between
every two pairs of tracksters defined by the edge index. The figure was generated using a model
in evaluation mode exported to ONNX format and visualized in Netron app. Some features are
standardized differently from others, as described in the text (represented by Slice blocks at the
input).

Mini-Batching. Instead of processing event graphs one at a time, mini-batching groups a
set of examples into a single representation, which can be processed in parallel. Typically, for
example, in the image domain, this involves resizing or padding each input to conform to a
fixed shape, prior to being stacked along an additional dimension in a mini-batch. This way,
the batch size, referring to the first dimension of the NN input, can differ in size while the
inner dimensions of the input matrix are preserved. However, the events have highly diverse
sizes depending on the scenario. For example, the number of input nodes ranges from just
two tracksters in the double pions case to as many as 2500 tracksters in the 140 PU dataset,
making the above-mentioned batching approaches inefficient or resulting in excessive memory
consumption. Hence, preserving the inner dimensionality in the number of nodes and edges
becomes problematic once multiple graphs are processed within the same batch.

A solution to the mini-batching problem is to perform an input transformation (B, N, F)→
(NB, F), where NB = ∑B

i=1 Ni is the total number of graph nodes in the mini-batch. This
approach involves stacking adjacency matrices in a diagonal manner, creating a single graph
containing multiple isolated subgraphs; similarly, node features are concatenated in the node
dimension. To ensure that the individual graphs do not interact with each other, an offset
to the edge indices is introduced to ensure that they correctly identify the nodes in the
concatenated graph. The information about the initial sizes of individual graphs and the
batch indices of nodes and edges is also retained. This extra batch index is taken into account
in all aggregation operations, including EdgeConv used in the GNN model, as described in
the subsequent section. The same principle applies when the graph includes additional fields
or an edge index. These fields are remapped to the new indices in the merged graph set to
prevent point operations that aggregate neighborhood information from overlapping with

72

...................................... 6.2. Explored ML Approaches

other event samples. As a result, the final mini-batch is fed into a model in the same way as
a single larger graph.

Compared to other batching techniques, this approach has significant advantages. Firstly,
GNN operators that rely on message passing do not need modification since nodes in different
graphs cannot exchange messages. Secondly, this method has no computational or memory
overhead, as it does not require any padding of node or edge features. Moreover, adjacency
matrices are used in a sparse format, with only non-zero entries stored, and stacking them
diagonally does not involve additional memory consumption.

Standardization. To facilitate easy integration into the CMSSW environment, the model
needs to function as a black box that can be loaded into the environment with minimal
data manipulation in C++. Therefore, we opt to keep the feature pre-processing and
standardization as part of the model. Unfortunately, some of the input features require
distinct standardization, making it impossible to use layer normalization [BKH16]. As
such, pre-processing of time-based data necessitates additional feature cleansing due to the
abundance of missing values in low-energy tracksters, as mentioned in Section 5.4. These
missing values are assigned a value of -99, and hence, standardization is performed solely
on the available values, while the absent ones are set to a negative constant ten standard
deviations away from the mean. To handle event density in terms of LCs and tracksters per
layer, standardization is not suitable since these values are uniform for every node in the
event. Instead, we aim to rescale these values to a meaningful range which is achieved by
dividing the number of LCs and tracksters by their expected order in 140 PU2.

Normalization across batches is inappropriate since events’ independence must be preserved.
Moreover, the events are processed individually in the production environment, making the
batch size always one when not using the seeding regions. Hence, data is normalized only
within events rather than across the entire dataset or a batch.

ONNX Runtime Inference. Apart from the above, the model has to be adapted for the
Open Neural Network Exchange3 (ONNX) [BLZ+19] format exportation. ONNX is an
open-source format enabling interoperability between different deep-learning frameworks. As
such, it allows models to be trained in one deep learning framework and then exported to
another for inference without the need for re-implementation. ONNX defines a common set of
operators and data types, allowing models to be moved between frameworks such as PyTorch,
TensorFlow, and Caffe2, among others. Since the models in this work are trained in Python
with the use of PyTorch [PG+19] library, while the production TICL pipeline in CMSSW is
implemented mostly in C++, we choose to convert the models to ONNX format for direct
inference in C++.

CMSSW supports ONNX Runtime inference capable of running multiple threads, which are
assigned to process events in the event loop using the first-come-first-serve principle. When
the model is loaded into ONNX Runtime, it is converted into an in-memory representation.
To minimize memory usage, a single global ONNX Runtime session is shared among all
threads, ensuring the model has only one copy in memory. Then, when multiple threads
request inference with their input data, the session accepts and serializes those requests and
produces output data.

2The LC number is divided by 104, while the trackster number by 103.
3ONNX url: https://onnx.ai/

73

https://onnx.ai/

6. Methodology..

Figure 6.3: A schematic representation of a GNN linking network is shown. The network receives
three inputs: node features, edge features, and edge index, and outputs individual node embeddings
and prediction scores for each edge in the graph. Edge scores are then thresholded to obtain the
final output graph. To begin with, both node and edge features are standardized and inputted
to the respective latent space encoders – fully connected networks with LeakyReLU activations
and dropout. The edge features are then utilized to create attention scores per every edge, which
are further leveraged during the neighborhood aggregation process in four consecutive EdgeConv
blocks with skip-connections. The final edge embeddings are constructed by concatenating the
latent representations of the hand-crafted features with the respective node embeddings. Such
embedding is created for every edge in the graph and passed to the link predictor module, a
two-layer FC network with a sigmoid output activation, producing edge predictions.

However, exporting models to ONNX format requires careful consideration due to several
potential pitfalls. For instance, certain PyTorch Geometric library modules, such as pre-
implemented Edge Convolution, cannot be exported to ONNX and thus require custom
implementations. It is necessary to avoid if conditions, for loops, and in-place operations
in model implementation. This necessitates the careful design of the custom modules with
the use of matrix or indexing operations only. Certain tensor indexing patterns are also not
exportable. Once the model is successfully exported, the resulting .onnx file contains a binary
protocol buffer with both the network structure and parameters of the exported model, which
can be directly utilized in the CMSSW environment.

6.2.4 GNN Linking

Proceeding beyond the simple MLP model, the motivation for incorporating trackster neigh-
borhoods stems from the premise that bringing in additional information about the shower
might improve the efficacy of edge classification. The GNN model builds on top of the
pair-wise MLP approach, where the relationship between a pair of tracksters is predicted.
For neighborhood aggregation, custom-implemented EdgeConv-based message-passing blocks,
exportable to ONNX and extended with an attention mechanism, are utilized.

6.2.5 Model Architecture

The schematic GNN Linking network architecture is depicted in Figure 6.3. The model
operates through a sequence of modified EdgeConv layers with attention, each layer progres-

74

...................................... 6.2. Explored ML Approaches

sively incorporating information from the latent neighborhood in the graph. Following the
neighborhood aggregation, the features corresponding to each node and edge are subsequently
processed via dense layers to produce the link-prediction output. In the forthcoming section,
I describe the specifics of this architecture.

Network Inputs. For a batch of events with a total of NB = ∑B
i=1 Ni tracksters interconnected

with EB edges, GNN Linking model makes use of three sets of inputs:

.The node feature input X includes a tensor of F = 33 features for every trackster in a
mini-batch and forms a tensor of shape (NB × F), much like in the MLP architecture..The interaction input U is a tensor of Fe (here, Fe = 8) features for every pair of
interacting tracksters, in shape (EB × Fe). The term interaction (edge features) here
refers to any feature involving a pair of tracksters, which may or may not be related to
the physical forces between them..Graph configurations E defined in terms of an edge index in the coordinate list format,
which is a (2×EB) tensor. It should be noted that the original edge indexes of individual
events in the batch are re-indexed to create a batch index (in accordance with Section 6.2.3)
suitable for the parallel processing of multiple graphs.

Standardization and Pre-Processing. As specified in section 6.2.3, the node and edge input
features undergo heterogeneous pre-processing and standardization across the events at the
network input based on the nature of each feature. Moreover, logarithmic transformations (with
protection against the negative values) are applied to features with long-tailed distributions,
such as raw energy, raw EM energy, ∆E, and ∆z separation.

Latent Space Projections. The node and interaction input features pre-processing are
each followed by MLP networks projecting them to a F ′- and F ′

e-dimensional embeddings,
x0 ∈ RNB×F ′ and u0 ∈ REB×F ′

e , respectively. Both projections are performed using two dense
layers interlaid with LeakyReLU activations and Dropout layers. Notably, the node encoder
shares the same architecture as the respective MLP sub-module. Thus, a pre-trained MLP
node encoder is utilized to pre-initialize the weights of the one used in the GNN architecture.
In this work, the node hidden dimension F ′ is set to 64, providing a 64-dimensional latent
representation for every graph node. Meanwhile, the edge feature encoder, which handles
the hand-crafted edge features, shares the same architecture but uses a smaller edge hidden
dimension F ′

e of 32.

Self-Attention. The presence of imbalanced datasets containing numerous negative edges,
coupled with the fact that each neighboring node may exert varying degrees of influence on
the target node, serves as a strong motivation for incorporating attention scores into the
GNN architecture. The present work calculates edge attention scores α exclusively from the
latent projections of hand-crafted edge features u0. These features serve a dual purpose: first
of all, they are appended to the edge embeddings created by concatenating individual node
embeddings, thus providing supplementary features. This skip-connection was empirically
found to improve model performance. Second, they undergo dimensionality reduction via a
sigmoid-activated dense layer (i.e., linear transformation, parametrized by an attention weight
vector aΘ : RF ′

e ×R) to produce a single score αij per each edge direction ranging from 0 to 1:

75

6. Methodology..

αij = 1
1 + exp(−aT

Θ(u0
ij)T)

∈ [0, 1]. (6.5)

These scores are referred to as attention scores and are learned from the input features.
They serve as weights to modulate the neighbors’ contribution during message passing. In our
formulation, the scores are kept constant during neighborhood aggregation iterations and are
not updated based on the node embeddings learned in each iteration. This serves as a form
of regularization to prevent overfitting and improve the generalization performance of the
model. By keeping the score static, the model also saves computation time in each iteration
by re-using the same score, which leads to a faster training and inference time, particularly
when dealing with large graphs, as in our problem.

Nonetheless, maintaining a static attention score for all neighborhood aggregations may
not be the most effective strategy as it fails to adapt the nodes’ contributions according to
the graph’s local structure at each step. To examine the impact of this approach, experiments
were carried out to compare the static attention score strategy with an alternative method
inspired by GAT. In GAT, attention scores are computed by concatenating the most-recently
transformed node embeddings for the adjacent nodes and passing them through a shared
attention mechanism, providing a single real number. This mechanism applies a softmax
function to the dot product of a learnable weight matrix a and the concatenated projected
node features

[
Wht

i ||Wht
k

]
, producing a set of attention coefficients for each edge:

αt
ij =

exp
(
LeakyReLU

(
aT

[
Wht

i ||Wht
j

]))
∑

k∈N (i) exp
(
LeakyReLU

(
aT

[
Wht

i ||Wht
k

])) . (6.6)

This allows the model to dynamically adapt the importance of neighboring nodes at each
layer t of the network based on the current representation of the nodes, providing a more
adaptive approach compared to static attention scores. However, since the dataset in this
study comprises large graphs, this method requires more computation and does not yield
significant improvements. As a result, it was concluded that retaining the same weight scores
for every EdgeConv iteration is more reasonable.

As observed in Equation 6.6, the softmax function ensures that the attention scores sum up
to one, endowing them with the interpretation of a probability distribution over the neighboring
nodes. Nevertheless, in the linking problem, we strive to have attention scores in the interval
from zero to one, without necessarily achieving probability distribution interpretation, as
several tracksters may have a comparable strong influence on the target trackster. As a result,
the sigmoid activation function is opted for.

It is also important to note that the effect of trackster j on trackster i does not necessarily
imply that the effect of i on j is equal, requiring the attention weight coefficients αij to be
asymmetric. To address this, two sets of attention weight vectors are employed in this work,
aΘdir

and aΘrev , for each direction in message-passing, utilizing the same edge feature vector
as their input according to Equation 6.5.

Edge Directionality. As the edges in the input graph do not have any inherent directionality,
they are converted into an undirected form before message passing is applied. Additionally,
self-loops are introduced to allow for a node’s own information to be incorporated into its
update during message passing.

76

...................................... 6.2. Explored ML Approaches

Figure 6.4: Edge Convolution with attention schematic. Three inputs are provided to the block:
undirected edge index with self-loops, node features, and attention scores. Edge features are
created by concatenating the node features according to the provided edge index. The edge
features are processed through a two-layer FC network and aggregated for each node with the
corresponding attention scores. The aggregation output is then passed through an additional
activation function.

Neighborhood Aggregation. In the neighborhood aggregation step, the initial trackster
embeddings x0 are fed into a stack of L = 4 modified Edge Convolution blocks to generate
new embeddings, {x1, . . . , xL}. These custom Edge Convolution blocks use the addition
aggregation function with learned attention scores α and self-loops to update the node
representations. Moreover, skip connections from the input node representations ht

i are
employed to ensure better stability of the node embeddings. The feature update is defined as:

ht+1
i = ht

i +
∑

j∈N (i)∪{i}
αij ·NN(ht

i ||ht
j − ht

i) , (6.7)

where N (i) represents the set of neighboring nodes of i and NN denotes a neural network
operating on the concatenated node features. The attention scores for the node itself are
set to αii = 1, allowing the node to update its own representation. The NN is given by an
MLP with two hidden layers with LeakyReLU activations and dropout after the first dense
layer-activation block. It takes input of dimensionality NB × 2 · F ′ (NB × 128) and produces
the output in a form NB × F ′ (NB × 64). This way, applying the transformations on node
features while aggregating their neighborhood information retains the input dimensionality
on the output. A schematic of the edge convolution block used in this work is presented in
Figure 6.4.

The number of neighborhood aggregation iterations serves to define the receptive field of
a trackster. The objective is to enable a trackster to gather information not only from its
immediate surroundings within the same shower but also from showers in its neighborhood,
capturing global information and potentially resulting in a lower merging rate between

77

6. Methodology..
the showers with respect to the simpler pair-wise MLP. In this work, four iterations were
experimentally deemed appropriate to ensure each node within the graph has access to
relevant information up to four edges away from itself. This allows for sufficient coverage of
the surrounding area and neighboring showers without becoming computationally prohibitive.

Aggregation Function. The aggregation function used in this study is the weighted summa-
tion. As shown by [XHLJ18], the summation aggregation is useful when the target node is
expected to be influenced by multiple features in its neighborhood, and their combined effect
is important, which aligns with the trackster linking problem. In contrast, mean aggregation
captures the distribution of the elements; max aggregation proves to be advantageous in
identifying representative elements, and min aggregation is useful when the target node is
expected to be influenced by the weakest features among its neighbors.

Neighbourhood Graph. In this study, the neighborhood graph G = (V, E) is kept static,
with the same set of edges E we aim to predict. Empirical findings of this work suggest that
maintaining the graph structure static, as opposed to recomputing it using nearest neighbors
in the feature space generated by each layer as in the DGCNN [WSL+19], is more desirable.
This is due to multiple considerations: the first is the challenge of determining the appropriate
number of nearest neighbors. The network is expected to function in scenarios with varying
levels of PU, with more neighbors required in denser scenarios. Secondly, not every node in
the graph should have the same number of neighbors (i.e., the number changes depending on
the local node density). Finally, apart from better computational complexity, a static graph
allows limiting a set of edges to a physically meaningful set.

Edge Embeddings Construction. Following the enhancement of node embeddings with
neighbor information, the next step involves the construction of edge embeddings eij for the
edges of interest (i, j) ∈ E by aggregating the adjacent node representations (hL

i , hL
j) and

additional edge features u0
ij as:

eij = ρ (hL
i , hL

j , u0
ij) , (6.8)

where ρ is the aggregation function. In this work, aggregation is accomplished by concatenat-
ing the feature vectors: ρ (hL

i , hL
j , u0

ij) = (hL
i ||hL

j ||u0
ij) ∈ R1 × (2·F ′+F ′

e). Several alternative
methods include computing node representations’ mean, sum, or element-wise product.

Link Classification. The final edge embeddings e ∈ REB × (2·F ′+F ′
e) undergo further processing

by passing them through a link prediction block, which also follows a two-layer FC network
architecture. The output of this block is then fed into a final sigmoid activation, producing
an edge classification score per every edge in E , representing its probability of being true.

Neighbourhood Aggregation Implementation. The expression for feature update presented
in Equation 6.7 is performed through matrix operations rather than individual per-node
computations. This permits the transformation and aggregation steps to be performed
simultaneously for all nodes, leading to a more efficient implementation. However, since
the number of neighboring nodes can vary across nodes, the implementation is rather tricky
and requires additional indexing. The update of the feature vector Xt in the matrix form is
calculated as follows:

78

....................................... 6.3. Supertrackster Building

Xt+1
NB×F

= Xt

NB×F
+ SRCT ⊙ΛT

NB×(NB+2EB)
×NN

(
SRC ·Xt || (DST− SRC) ·Xt

)
(NB+2EB)×F

, (6.9)

where ⊙ is the matrix-vector element-wise product. In the above, matrices SRC and DST
represent the stacked edge indices, guiding aggregation and the concatenation of the node
neighbors:

SRC
(NB+2EB)×NB

=

 I
S
D

 , DST
(NB+2EB)×NB

=

 I
D
S

 , (6.10)

where I ∈ RNB×NB is the identity matrix corresponding to the nodes’ self-loops, S ∈ REB×NB

and D ∈ REB×NB are the edge source and destination matrices. We consider edges to be
undirected, hence the duplicity. Finally, the neighbor weight vector is created through the
stacking of the vector of ones (weights for self-loops) with the bidirectional edge attention:

Λ
(NB+2EB)×1

=

 1
αdir

αrev

 . (6.11)

The above matrices are very large and sparse, with NB typically being around 2500 and EB

exceeding 10 000 for a single PU event. As a result, more efficient matrix multiplication
methods must be employed. One possible solution is to use sparse matrix operations, but
due to limited support for sparse operations in ONNX, an alternative approach had to be
implemented. Instead of using matrix multiplication, the calculations are carried out much
faster through indexing, which also avoids duplicating information in SRC and DST matrices.

6.3 Supertrackster Building

The proposed NN models infer edge scores, representing the probability for a pair of tracksters
of coming from the same particle shower, for each edge in the input graph. A common
approach to extracting the final clusters from such a graph is identifying its connected
components after thresholding the edge scores and eliminating the edges whose scores are
below the threshold. Connected components are defined as sets of vertices in a graph that
are linked to each other through paths. Each connected component forms a cluster, referred
to as a supertrackster, containing the recotracksters that the model predicts should be linked.

To identify connected components in a graph, a graph traversal algorithm, such as depth-first
search (DFS), is utilized to explore the graph from each unexplored node. This algorithm starts
by selecting a node and traversing as far as possible along each branch before backtracking.
During traversal, each node is labeled as visited to prevent re-visiting. After exploring all
the nodes in a component, the algorithm proceeds to the next unvisited node, repeating the
process until all nodes in the graph have been visited.

The proposed networks, as demonstrated in the experimental section, may suffer from
occasional edge misclassifications. As can be seen later, these are typically incorrect edges
connecting low-energetic tracksters to higher-energetic ones. This can pose a potential issue
for the DFS-based cluster-creating approach since a single false positive edge connecting two

79

6. Methodology..
otherwise well-separated particle showers (for example, through a low-energy trackster) could
result in their erroneous merging. In the case of the MLP model, we mitigate this issue by
post-processing of the model predictions. Specifically, for each low-energy trackster, a check
is performed to determine whether removing any connection would result in creating new
supertracksters above a given energy threshold. If this is the case, the edge is then removed
accordingly. In contrast, in the GNN approach, trackster pairs are evaluated in a more holistic
manner, facilitating the model to consider the possibility of a low-energy trackster connecting
to multiple high-energy tracksters and distinguishing whether they belong to the same particle.
As a result, the requirement of a low-energy trackster connecting only to a single high-energy
trackster is relaxed.

Although the models’ edge-wise predictions may be imprecise, it can be further seen that the
model can still effectively capture the community structure of particle showers in both cases,
describing the pattern of stronger connections within a community than between communities.
By predicting continuous values of edge scores instead of binary true/false values, the model
supplies valuable information about the structure of the collision event graph, which can be
viewed not only as the network certainty but also as a strength of connections between the
tracksters. Such scores can be harnessed to detect communities in the graph, a task commonly
referred to as community detection in network science.

Community Detection. Several community detection algorithms have been proposed in
the literature, including the Louvain algorithm [BGLL08], which is particularly suited for
large graphs. The Louvain algorithm optimizes a modularity function by initially placing
each node in its own community and then iteratively merging communities to maximize the
modularity score. Its time complexity is O(n log n), where n is the number of nodes in the
graph. Other than that, popular community detection algorithms include infomap [EBR17],
using random walks on the graph to detect communities with complexity O(m), where m
is the number of edges; spectral clustering [VL07] computing the eigenvectors of the graph
Laplacian matrix and then using these eigenvectors to cluster the nodes. However, due to
its O(n3) time complexity, spectral clustering is only applicable to small graphs. Another
algorithm suitable for smaller graphs is the Girvan-Newman [NG04], O(m2n), a divisive
algorithm working by iteratively removing edges with the highest betweenness centrality.

6.4 Loss Function

As discerned from the analysis in Chapter 5, the datasets used in this study exhibit a
significant imbalance, namely an abundance of true edges for the double pion dataset and
an excess of negative edges for the multiparticle and PU datasets. Addressing this issue is
crucial to avoid models’ bias towards the majority class during training. For this reason, the
Focal Loss [LGG+18] is adopted, focusing on learning hard miss-classified examples, and thus
reducing the impact of the over-represented class.

The Focal Loss builds on top of the binary cross-entropy loss by adding a modulating factor
down-weighting the contribution of well-classified examples. Formally, let y ∈ {0, 1} be the
binary ground truth label, and p ∈ [0, 1] be the predicted probability of the positive class.
The binary cross-entropy loss is defined as:

80

... 6.4. Loss Function

BCE(pt) = − log(pt) = −y log(p)− (1− y) log(1− p) , (6.12)
for

pt =
{

p if y = 1,

1− p otherwise.
(6.13)

To mitigate class imbalance, a common approach is introducing a weighting factor αt = α ∈ [0, 1]
for class y = 1, and αt = 1− α for y = 0. In practical settings, α may be determined using
inverse class frequency. The α-balanced binary cross-entropy loss is then defined as follows:

BCEα(pt) = −αt log(pt) . (6.14)

The BCEα loss exclusively regulates the weights of positive and negative samples, overlooking
the distinction between easy and hard samples. In contrast, the Focal Loss was conceived to
address both aspects simultaneously, by further modifying the α-balanced binary cross-entropy
with a modulation factor:

FL(pt) = −αt(1− pt)γy log(pt) , (6.15)

where γ is a focusing parameter that controls the rate at which easy examples are down-
weighted. γ is usually set to a value between 0 and 5, with higher values indicating a stronger
focus on hard examples and 0 corresponding to BCEα.

Apart from dealing with class imbalance, FL allows handling cost-sensitive scenarios by
assigning higher penalties to certain types of errors based on their relative cost. This is done by
modifying the class weighting parameter, which is particularly important in applications such
as our problem, where the cost of a false positive error (incorrectly merging two tracksters) is
much higher than that of a false negative error (incorrectly stating that two tracksters are
disconnected). The former leads to an immediate loss of information, while the latter can
still allow for alternative means of connection through different edges. The choice of α in our
experiments is determined by the proportion of positive and negative edges in the dataset, as
well as the degree to which penalizing false positives versus false negatives is prioritized. The
value of γ is set to 2, which results in focused training on difficult examples. Specifically, an
example with y = 1 and pt = 0.8 has a 25 times smaller loss than would be obtained with the
original BCE loss formulation. However, the focal loss is defined for the binary labels. While
binary edge labels are used in most of the experiments, the alternative edge scores defined in
Section 5.4.6 are continuous and range from 0 to 1.

Quality Focal Loss (QFL) [LWW+20] softens the one-hot category label and leads to a
possible float target y ∈ [0, 1]. Specifically, y = 0 denotes the negative samples with 0 quality
score, and 0 < y ≤ 1 stands for the positive samples with target edge score y.

QFL(p, y) = −|y − p|β ((1− y) log(1− p) + y log(p)) . (6.16)

Similarly to the Focal Loss, the term |y − p|β with β ≥ 0 acts as a modulating factor.
Specifically, the modulating factor is relatively large if an example’s quality estimation is
inaccurate and deviates from its label y, enabling the model to focus on learning hard examples.
Unlike the Focal Loss, the cross-entropy part − log(pt) is expressed in its complete form, and
the scaling factor (1 − pt)γ is replaced with the absolute difference between the estimated
probability p and its true label y, denoted as |y − p|β. The absolute value ensures that this
term is non-negative. With the QFL loss, the model can be directly trained on the edge scores
defined in Section 5.4.6. The choice of the specific loss for different datasets is described
further in Chapter 7.

81

6. Methodology..
6.5 Performance Evaluation

Given the complexity and diversity of the linking problem, it is not feasible to rely on a single
performance metric to assess the effectiveness of a linking algorithm. To thoroughly evaluate
linking performance, we advocate for a series of metrics. The overall reconstruction result
can be evaluated in terms of clustering performance, regardless of the problem formulation
or applied linking method. Because the simulated data for all objects in the calorimeter
is available, we can use clustering metrics introduced in Section 6.5.1 with a focus on the
reconstruction quality of independent particle showers. Since linking is formulated as edge
prediction, and this problem is naturally framed as a two-class classification task, the standard
confusion matrix metrics are also adopted: the accuracy and the area under the ROC curve
(AUC), as described in Section 6.5.2. Apart from that, it is necessary to look at the physics
performance with the energy-aware purity and efficiency (introduced in Section 6.5.3) metrics
aligned with the convention adopted by the CMS experiment. Time constraints are another
critical consideration. A highly accurate model may take too long to process events, rendering
it impractical for real-world scenarios. Thus, a balance must be struck between the model’s
complexity and its performance. The following sections go into more detail regarding the
aforementioned evaluation procedures.

6.5.1 Standard Clustering Metrics

Although access to the ground truth cluster labels in the task is available, evaluating the
performance of clustering algorithms is not as straightforward as with supervised classification
methods, which can directly use metrics like precision and recall given the predicted labels.
Instead, the clustering evaluation metric should assess whether the predicted clustering
partitions the data in a way similar to the ground truth set rather than focusing on the
numerical values of the cluster labels.

Some of the commonly used clustering metrics are based on set matching (Homogeneity,
Completeness, and V-measure), information theory (normalized mutual information (NMI)
and adjusted mutual information (AMI)), and pair object counting (random (RI) and adjusted
random indices (ARI)) as described in [dSCF+12]. Additionally, the B-Cubed (B3) measure
is often used, considering recall and precision in terms of pair counting. Nonetheless, none of
these methods account for the non-uniformity of individual data point contributions, which is
crucial for evaluating the trackster linking problem. Incorrect merging of two high-energy
tracksters should be penalized more than merging low-energy, noise-like tracksters. Therefore,
to account for this non-uniformity, I propose using energy-weighted variants of some standard
clustering metrics, which are discussed in more detail below.

In addition, a variety of alternative intrinsic measures, such as the Silhouette score, Dunn
index, or the Calinski-Harabasz index [AAAB15], are used to evaluate clustering effectiveness
in the absence of ground truth labels. These metrics quantify the anticipated clusters’
compactness and separation. However, because they do not rely on ground truth labelings,
they are unable to give efficient metrics for the linking problem and are thus excluded from
this study.

Nomenclature. Most standard metrics, including homogeneity, completeness, AMI, and ARI,
rely on a common basis – they can all be calculated using a contingency table. To construct

82

....................................... 6.5. Performance Evaluation

such a table, we start with a set of n objects denoted as X = {x1, . . . , xn}, representing
individual recotracksters in the event. Then, we consider a partition U = {U1, . . . , UR} of X
generated by a clustering algorithm, and a ground truth partition V = {V1, . . . , VK} based on
a priori information independent of U . The set U are the final tracksters generated by the
linking algorithm, referred to as supertracksters in what follows. V is a set of ground truth
simtracksters. A contingency matrix describes the relationship between the true and predicted
clustering labels. In its standard form, it is a matrix C such that its element Cv,u gives the
number of samples from the true class v observed in the predicted class u. In case when
the weights of the individual points are not uniform, we assume that every sample has an
assigned energy E = {e1, . . . , en}, scaled to the range from zero to one. This study proposes
an energy-weighted version of the contingency matrix, denoted as Cen, whose elements Ev,u,
instead of the number of samples, contain accumulated energies of samples from the true
class v that are observed in the predicted class u. It should be noted that when the energy
of each point is uniform, we get the standard definitions of the contingency matrix, as the
accumulated unity energies technically turn into the number of samples.

Energy-Aware Homogeneity, Completeness, and V-measure. In 2007, Rosenberg and
Hirschberg [RH07] introduced two desirable objectives for cluster assignments, namely homo-
geneity h and completeness c. The former requires that each cluster should solely contain
members belonging to the same ground truth cluster, while the latter necessitates that all
members of a particular ground truth cluster should be assigned to the same predicted cluster.
Both objectives range from 0 to 1, with a higher value indicating better performance. The
harmonic mean of these two measures, known as the V-measure, is calculated as follows:

v = 2 · h · c
h + c

, (6.17)

where the formal expressions for homogeneity and completeness scores are given below:

h = 1− H(V | U)
H(V) , c = 1− H(U | V)

H(U) . (6.18)

H in the above denotes the entropy function. Unlike in the original implementation,
instead of the standard entropy, which yet again works with the numbers of samples, I exploit
its energy-aware analog. Let E be the total energy of samples for clustering, Ev and Eu

the accumulated energies of the samples belonging to ground truth cluster v and predicted
cluster u, respectively; Ev,u is the accumulated energy of samples from ground truth cluster v
assigned to cluster u obtained from the energy-aware contingency matrix. The conditional
energy-aware entropy of the ground truth partition, given the predicted cluster assignments,
is then given by:

H(V | U) = −
|V|∑

v=1

|U|∑
u=1

Ev,u

E
· log

(
Ev,u

Eu

)
. (6.19)

And the energy-aware entropy of the ground truth partition is:

H(V) = −
|V|∑

v=1

Ev

E
· log

(
Ev

E

)
. (6.20)

The conditional entropy H(U|V) and the entropy of the predicted clusters H(U) are defined
symmetrically. The energy-aware analogs of homogeneity and completeness have the same

83

6. Methodology..
properties as the standard definitions, and when uniform energies are assigned to all points,
their standard definitions are obtained. The utilization of energy-aware variants yields
higher scores than standard metrics in cases of incorrectly clustering lower-energy tracksters.
Conversely, it demonstrates a substantial drop when a high-energy trackster is clustered
inaccurately.

Energy-Aware Adjusted Random Index. The adjusted random index is a measure of the
similarity between two cluster assignments, independent of label permutations, with scores
ranging from -0.5 to 1 and low core implying a poor agreement between the cluster labels.
The ARI calculation involves constructing a pair-wise confusion matrix capturing the true
positive (TP), false negative (FN), false positive (FP), and true negative (TN) quantities of
trackster pair assignments in both ground truth and predicted clusters.

To compute the pair-wise confusion matrix, we first generate sets of trackster pairs, PV in
ground truth assignment and PU in predicted partition, belonging to the same cluster. We
also define PX as all the pairs realizable from X. Using PV , PU , and PX , the values of the
pair-wise confusion matrix are expressed as:

. TP = |PU ∩ PV | represents the number of times a pair of elements are clustered together
in both the ground truth and predicted partitions.. FN = |PV \PU | is the number of times a pair of elements is in the ground truth partition
but not in the predicted one.. FP = |PU \ PV | is the number of times a pair of elements is in the predicted partition
but not in the ground truth one.. TN = |PX \ (PU ∪ PV)| is the number of pairs not members of any clusters in either
partition.

We define N = |PX | = TP + TN + FP + FN =
(n

2
)
, as the total number of all possible

trackster pairs in the event. The unadjusted random index is proportional to the number of
sample pairs clustered together in predicted and true assignments or different in both, and is
given by:

RI = TP + TN
N

. (6.21)

However, the unadjusted random index does not guarantee that random label assignments
will get a value close to zero, particularly if the number of clusters is in the same order of
magnitude as the number of samples. To counter this effect, the expected E[RI] random index
is discounted of random labeling, and the adjusted random index is then defined the follows:

ARI = 2 · (TP · TN− FN · FP)
(TP + FN) · (FN + TN) + (TP + FP) · (FP + TN) . (6.22)

In the event of non-uniform data point weights, we construct the sets of pairs that produce
TP, TN, FP, and FN values. However, instead of extracting their counts, we compute their
pairwise energies, which are subsequently aggregated to yield the weighted TPe, TNe, FPe

and FNe. The energy-aware ARI is then calculated using the original formulation with these
values, and it retains the same range and properties as the unweighted ARI.

84

....................................... 6.5. Performance Evaluation

Pair-Wise Precision and Recall. At this stage, given the above definitions, pair-wise
energy-weighted precision Pp and recall Rp can be computed:

Pp = TPe

TPe + FPe
, Rp = TPe

TPe + FNe
. (6.23)

Those, however, are not used in this work, since a more comprehensive recall and precision
defined through the B-Cubed metric are utilized.

Energy-Aware B-Cubed Precision and Recall. The B-Cubed metric is based on the
computation of the fraction of trackster pairs (xi, xj) assigned to the same supertrackster
U in the predicted clustering (i.e., U(i) = U(j)), which were also classified into the same
simtrackster V in the ground truth clustering (i.e., V (i) = V (j)), and vice versa. The precision
measure Pb assesses the extent to which the pairs of reconstructed tracksters originate from
the same simulated trackster. On the other hand, the recall Rb evaluates the degree to which
pairs of reconstructed tracksters originating from the same particle are classified into the
same supertrackster. Assuming that recotrackster i is associated with a supertrackster U(i)
in the predicted clustering and a ground truth simtrackster V (i), and n as the total number
of recotracksters in the event, the B-Cubed metrics are expressed as follows:

Pb = 1
n

n∑
i=1

1
|U(i)|

∑
j∈U(i)

δ(i, j) , Rb = 1
n

n∑
i=1

1
|V (i)|

∑
j∈V (i)

δ(i, j) . (6.24)

Indicator function δ(i, j) in the above is defined as:

δ(i, j) =
{

1 if U(i) = U(j), i.e., i and j belong to the same simtrackster,
0 otherwise.

(6.25)

Technically, Equations 6.24 compute the precision and recall for each recotrackster individ-
ually, subsequently averaging the values to obtain the final metric scores. The main difference
between the pair-wise and B-cubed precision is that the former measures the agreement
between the predicted and ground truth clusters in a pair-wise fashion, whereas B-Cubed
precision assesses the accuracy of the predicted clustering for each data point with respect to
its own ground truth cluster. B-Cubed precision is, therefore, more focused on evaluating how
well the clustering algorithm is able to correctly assign each data point to its own cluster.

To accommodate non-uniform tracksters’ energies, instead of working with their counts, we
again exploit their energies:

Pbe = 1
E

n∑
i=1

1
EU(i)

∑
j∈U(i)

δ(i, j) · ej , Rbe = 1
E

n∑
i=1

1
EV (i)

∑
j∈V (i)

δ(i, j) · ej , (6.26)

where E is the full energy in the event, EU(i) and EV (i) are the energies of the simtrackster
and supertrackster that i belongs to, respectively; while ej is the energy of the reconstructed
trackster j.

One limitation of this metric in relation to the physics analysis described in Section 6.5.3
stems from the fact that during the simulation at the hit level, multiple particles can contribute
energy to a single recotrackster, resulting in some of the hits forming the recotrackster being

85

6. Methodology..
included in multiple simtracksters. This scenario is characterized by the shared trackster energy
fraction available during simulation, which should, ideally, be included in this evaluation.
Nevertheless, the formation of individual recotracksters is handled by CLUE3D and falls
outside the scope of this work; therefore, comparative results are prioritized, and the bias
introduced by preceeding reconstruction steps is disregarded. The final evaluation in the
CMSSW environment is relied on to address the aforementioned effect.

F-score. After precision and recall are calculated, F-score can be computed. A general Fβ

score uses a positive real factor β, where β is chosen such that recall is considered β times as
important as precision:

Fβ = (1 + β2) · P ·R
β2 · P + R

. (6.27)

Two commonly used values for β are 2, weighing recall higher than precision, and 0.5, weighing
recall lower than precision. For β = 1 it turns into the traditional F-score, which is the
harmonic mean of precision and recall:

F1 = 2 · P ·R
P + R

. (6.28)

6.5.2 Edge Prediction Metrics

Since the network is trained to assign probabilities to graph edges, we evaluate the NN’s
performance per-edge during training. While per-edge evaluation does not directly estimate
the network’s clustering effectiveness, they are closely linked.

It is important to consider the imbalance present in the dataset during this evaluation. In
the context of ML, an imbalanced dataset occurs when the distribution of classes is heavily
skewed towards one class compared to the others. In such scenarios, the number of samples
in the minority class is significantly smaller than in the majority class. In many cases, the
classifier may perform well in terms of overall accuracy by simply predicting the majority class
most of the time, while its performance on the minority class remains poor. Consequently,
out-of-the-box metrics such as precision, recall, and F1-score can become biased toward
the majority class, leading to misleading evaluation results that may not fully capture the
classifier’s performance on the minority class. One approach is to use metrics unaffected
by imbalance, such as the Receiver Operating Characteristic (ROC). Alternatively, the
contributions of individual edges can be balanced by assigning weights inversely proportional
to their frequency, as in the case of balanced accuracy (BA) [BOSB10]. A multitude of metrics
to evaluate the performance of the NN models on a per-edge basis is employed, all of which
are pre-implemented in the scikit-learn Python library:

.Weighted macro-averaged precision, recall, and F1-score capture the average scores across
all classes, while giving more weight to the performance of the minority class.. Balanced accuracy computes each class’s arithmetic mean of sensitivity (recall) and
specificity with class-balanced sample weights wj = ne

2ne,j
, where ne is the total number

of edges in the event, ne,j is the number of all edges in the respective class j (i.e., either
true or false edge).

86

....................................... 6.5. Performance Evaluation

.The confusion matrix provides a visual representation of the number of correctly classified
and misclassified predictions. True Positive Rate (TPR) and False Positive Rate (FPR)
are analyzed in particular.. ROC curve offers a graphical depiction of the binary classifier system’s performance by
plotting the TPR versus FPR for distinct classification thresholds. The Area Under the
Curve (AUC) serves as a metric for evaluating the classifier’s performance. One of the
advantages of ROC curves is that they are agnostic to class skew, as it concentrates on
the TPR and FPR, irrespective of the dataset’s balance.

As previously mentioned, the relative impact of false positives (type I error) and false
negatives (type II error) on the performance of the network is another factor to consider. This
problem, where misclassification errors have varying penalties for different classes, is known
as the “cost-sensitive” or an “imbalanced cost” problem. In this work, false positives present
a bigger issue than false negative predictions. Therefore, a higher classification threshold
can be set at the network’s output, treating edges as positive only for the higher predicted
probabilities.

6.5.3 Physics Performance Evaluation

The edge labeling during dataset preparation involved the utilization of associator scores
(Section 5.3), providing a mapping score between the reco- and simtracksters. To remind
the reader, the associator score is a numerical score in the interval [0, 1] reflecting the degree
of energy containment of the reconstructed objects in the simulated objects and the other
way around. In an ideal reconstruction scenario, a single reconstructed trackster corresponds
to a single simulated object and vice versa. In practice, however, the simulated trackster
often gets fragmented into multiple reconstructed tracksters, or some recotracksters comprise
energy from multiple simtracksters. The evaluation of these scenarios can be conducted
through associator scores, where a higher number of tracksters with a score closer to zero
indicates an improved reconstruction. In the context of calorimetric reconstruction, the TICL
framework employs four associator-based measures and one shared-energy-based measure to
assess physics reconstruction performance across the events:

.The efficiency is a shared-energy-based measure, defined as the number of reconstructed
objects associated with simulated objects that share at least 40% of their energy, scaled
by the total number of simulated objects. It should be noted that this is a many-to-
one mapping, implying that multiple simtracksters may be associated with a single
recotrackster. For instance, if two simulated objects are represented with a single
reconstructed object that shares over 40% of its energy with both, the resulting efficiency
is 1, indicating optimal performance. Therefore, efficiency is a rather weak criterion and
serves the only purpose of being sure that “something has been reconstructed”, with
some level of goodness imposed by the requirement on the shared energy between the
two objects..More stringent requirements are put in place by the purity, defined as the number
of simtracksters that have been associated with at least one reconstructed object (i.e.,
Sim-To-Reco score < 0.2), scaled by the total number of simulated objects. A high purity
indicates a high level of confidence in the reconstruction algorithm. While efficiency
quantifies the number of reconstructed simulated objects, purity measures the proportion

87

6. Methodology..
of correctly associated simulated objects. Occasionally, an algorithm may exhibit high
efficiency but low purity, indicating that numerous reconstructed objects are incorrectly
associated with the simulated objects..The merge rate is defined as the number of tracksters associated with more than one
simulated object divided by the total number of reconstructed tracksters. A high merge
rate indicates ambiguity in the reconstruction, potentially resulting in information loss.. Fake rate is one minus the ratio between the reconstructed objects associated with a
simulated one, divided by all the reconstructed ones..The duplicate rate is calculated by dividing the number of simulated objects associated
with more than one reconstructed object by the total number of simulated objects.

Purity and efficiency are the ultimate performance indicators we aim to enhance in this
study. Nevertheless, these metrics rely on lower-level data (i.e., hits) that are not included in
the dataset since a decision to abstract from lower-level information has been made to reduce
the algorithm’s computational demands. Consequently, the performance of the models cannot
be directly optimized with respect to these metrics, and their evaluation necessitates direct
inference of the linking algorithms within the TICL reconstruction pipeline.

Ideally, the goal of the reconstruction algorithm is to attain a purity and efficiency of 1.
However, it is not currently achievable with the existing metric definitions, as discussed in
Chapter 7. Furthermore, the merge, fake, and duplicate rates would all be zero in the ultimate
scenario.

88

Chapter 7

Experiments and Discussions

This chapter provides a comprehensive review of the conducted experiments and their outcomes,
discusses the identified limitations of the experimental approach, and highlights potential
avenues for future research. I report on the performance of the explored approaches to
trackster linking and discuss the implementation of a plug-in system in CMSSW that exploits
the GNN-based algorithm.

7.1 Approach Summary

Datasets of varying overlap levels are generated for model training, ranging from well-separated
two-particle scenarios to partially overlapping multi-particle, and high-overlap PU datasets
as discussed in Chapter 5. In general, the experimentation process encompasses several
phases starting with the simplest dataset consisting of only two closeby pions, and simple
pair-wise binary classification with the MLP linking model. Subsequently, based on the
accumulated knowledge, the experimentation proceeds toward more complex scenarios with
multiple particles and PU. The pair-wise approach is also expanded to consider trackster
neighborhoods using message-passing mechanisms outlined in Chapter 6. To identify the
best-performing models for each dataset, AUC and BA are employed, along with a set of
adapted energy-aware clustering metrics. Linking baselines are established with the standard
clustering methods and geometric linking, the default linking algorithm as of TICL_v4.

7.2 Experimental Setup

The particle shower reconstruction processing pipeline for the entire CMS detector is im-
plemented in the CMSSW Framework1, written mostly in C++. The system supports the
deployment of deep learning models through the Open Neural Network Exchange format.
However, to integrate NN models into the pipeline, it is also necessary to implement feature
extraction, input pre-processing, output model result interpretation, and post-processing. To
do so, I introduce an NN-based linking plug-in for the TICL pipeline, incorporating the above
steps and the network inference in C++. The integration of the linking plug-in into CMSSW
is the main objective of this work, and it is essential for the model performance evaluation.
However, the complexity of the environment makes it unsuitable for exploratory analysis

1CMSSW url: https://github.com/cms-sw/cmssw

89

https://github.com/cms-sw/cmssw

7. Experiments and Discussions
and network training. For this reason, to streamline the workflow, all the experiments are
conducted in Python, and only the final trained models are exported to be integrated into
the CMSSW framework.

For performing interactive data analysis and network training, as presented in this thesis, I
employ the SWAN2 (Service for Web-based ANalysis) CERN cloud service. The used SWAN
container is equipped with an Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz with 16 GB of
RAM, and an NVIDIA Tesla T4 GPU with 16 GB of memory. The experiments are conducted
using a set of Jupyter Notebooks in SWAN and an accompanying Python code-base. The
datasets used in the experiments are stored in CERNBox3, directly accessible from the SWAN
environment.

This work employs multiple Python libraries to manipulate physics data, develop models,
and implement evaluation metrics. Collision event data is serialized using the CMSSW
NTuplizer module to an array-based ROOT format, which is read in Python with the help of
the Uproot library [PDB+20]. To handle variable-sized nested arrays in NumPy [HMvdW+20]
fashion, the Awkward Array library [PES+20] is utilized. In addition, I utilize a suite of tools
for graph analysis, visualization, and evaluation metrics. These include the networkx [HSSC08]
library for graph analysis, matplotlib [Hun07] for visualization, and scikit-learn [PVG+11]
for out-of-the-box evaluation metrics. On the machine learning side, I implement the
MLP and GNN-Linking models using PyTorch 1.11 [PG+19] and export the trained net-
works to the ONNX format for inference. Notably, this work does not leverage the PyTorch
Geometric [FL19] library, which includes pre-implemented geometric architectures, since
their export to ONNX is not currently supported. Thus, the models used in this study are
implemented solely with the PyTorch library.

7.3 Baseline: Standard Clustering Methods

Prior to exploring ML techniques for reconnecting trackster fragments, I perform an evaluation
of classical clustering methods applied to the trackster linking problem. This evaluation aims
to establish a baseline allowing for meaningful comparison and facilitating analysis of the
strengths and limitations of ML approaches. It also serves as a benchmark for comparison with
the current default linking algorithm in TICL. The standard clustering techniques are applied
exclusively to the datasets without PU. This is because of the anticipated poor performance
due to the undesirable merging of pile-up with the tracksters of interest. The clustering
described in this section was performed in Python using the sklearn.cluster module.

The idea is to apply standard clustering algorithms to individual tracksters, where an event
is considered as a point cloud of tracksters. This contrasts CLUE3D, which performs clustering
on LC-level with finer granularity. K-means algorithm is known to suffer from high sensitivity
to outliers and does not fit non-spherical data distributions by default; therefore, it is not used
as a baseline. Instead, DBSCAN, GMMs, Mean shift (MS), agglomerative clustering (AGG),
and affinity propagation (AFF) algorithms are used. The evaluation experiments are run with
different normalized sets of features (all features, only spatial features, and spatial features
accompanied by energy). Upon evaluation presented in Table 7.1, it was found that the most
effective sets of features were those solely comprising the spatial coordinates, such as x, y, z,

2SWAN url: https://swan-k8s.cern.ch/
3CERNBox url: https://cernbox.cern.ch/

90

https://swan-k8s.cern.ch/
https://cernbox.cern.ch/

................................ 7.3. Baseline: Standard Clustering Methods

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0
Ob

se
rv

ed
 v

alu
es

Homogeneity Weighted

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

Completeness Weighted

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

V-measure Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
ARI Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Precision Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
Recall Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
Fscore Weighted

Geom DBSCAN GMM AGGL AFF MS
0

5

10

15

20

25

30
Number of Clusters

Figure 7.1: Evaluation of standard clustering methods versus the geometric linking for the double
pion dataset.

or alternatively, η, ϕ, r =
√

x2 + y2 + z2, additionally weighted by the energy of individual
tracksters in DBSCAN method. However, limiting the feature sets to just spatial coordinates
and energy is not expected to yield good performance. This assumption comes from the fact
that the preceding highly-tuned CLUE3D algorithm has already effectively leveraged spatial
features on the lower granularity. Moreover, CLUE3D is specifically optimized for high pile-up
rejection. Thus, relying solely on spatial features for determining whether to merge tracksters
would be redundant and has a high potential of degrading the homogeneity of the tracksters.

The performance of standard clustering algorithms on the double pion dataset is shown in
Table 7.1 and Figure 7.1, where it is also contrasted with the geometric linking results. In
a later section, the performance of geometric linking is presented in Table 7.2 for the same
scenario. The suitable parameters for the algorithms are determined based on the validation
dataset’s best B-Cubed F1 score, with comparable homogeneity to the geometric linking
(h = 0.959 for double pions and h = 0.955 for multiple particles). Then, the evaluation is
repeated on the test dataset using the chosen parameters and the best set of trackster features.

Among the explored baselines, MS showed the highest improvement in recall compared to
geometric linking, increasing the recall by 0.104 while only decreasing precision by 0.005 in the
two-particle case. For multiparticles, recall is improved by 0.05, while precision in decreased
by 0.03(Figure A.5). Additionally, MS reduced the average number of tracksters in two
close-by pion events from 28.2 to 12.7 (an average reduction of 6 tracksters compared to the
geometric linking), and from 215.4 to 94.5 in the multiparticle case. Overall, the conventional
clustering algorithms demonstrate a tendency toward a similar level of performance as the
geometric linking approach, given the imposition of high homogeneity. Nonetheless, leveraging
the embedding space derived from the trained models for clustering purposes is anticipated to
lead to superior results. Further investigation of this hypothesis is presented in Section 7.7.

91

7. Experiments and Discussions
Table 7.1: Double pion dataset clustering with standard clustering methods. All

evaluation metrics consider the energy of individual tracksters as described
in Section 6.5. In centroid-initialized algorithms, k stands for the number of
clusters; t is the number of iterations, and n is the number of data samples.
Best values are highlighted in bold. The initial average number of tracksters
is N̄ = 28.2. DBSCAN is additionally weighting point contributions by their
energy.

Complexity O(n log n) O(tn2c) O(n2) O(n2) O(tn2)
Initialization density centroids density distance centroids
Homogeneity 0.941 0.953 0.956 0.954 0.938
Completeness 0.401 0.377 0.401 0.340 0.423
V-measure 0.547 0.530 0.551 0.550 0.568
ARI 0.136 0.084 0.119 0.120 0.177
B-Cubed Precision 0.876 0.887 0.920 0.903 0.899
B-Cubed Recall 0.169 0.101 0.138 0.139 0.214
B-Cubed Fscore 0.253 0.177 0.231 0.232 0.322
Avg. num. trackst. 16.2 13.1 13.2 13.6 12.7
Best feature set x, y, z, (E) x, y, z x, y, z η, ϕ, r x, y, z

Algorithm DBSCAN GMM AGG AFF MS

Double Pions Settings. The optimal parameters for the algorithms were determined
according to the sufficient level of homogeneity (above 93%) and best B-Cubed Fscore. For
DBSCAN, the value of ϵ = 0.55 is identified by a knee in the nearest neighbor distances
plot [RS16], and a minimum number of samples is set to µ = 1. For GMMs, the number
of clusters k is set per event by evaluating performance for k ∈ range from 2 to 20. In
agglomerative clustering, the optimal distance threshold is found to be d = 1. The preference
parameter is set per event for affinity propagation according to the minimal Euclidean distance
between the trackster. Finally, the optimal bandwidth for MS is set to be b = 0.7.

Multiparticle Settings. Parameters for multiparticle dataset are chosen in the same fashion
as for the double pions. Specifically, I use eps = 0.27 with µ = 1 for DBSCAN, bandwidth
b = 0.34 for MS, and d = 0.5 for AGGL. The results of the evaluation are provided in the
appendix (Table A.7 and Figure A.5).

92

.................................... 7.4. Machine Learning Techniques

7.4 Machine Learning Techniques

In this section, I discuss considerations for training the proposed trackster linking networks.
Details of the parameters used for individual datasets are reported in Table A.8.

7.4.1 Training Setup

To optimize model performance, various loss functions are evaluated for each dataset, including
BCE, α-weighted BCE, FL, and QFL. Ultimately, the loss function delivering the best
performance for each scenario is adopted. The Adam optimizer [KB17] is then employed
to minimize the selected loss function with the initial learning rate found through the
range test as described in Section 7.4.2. The FC layer weights are initialized using Xavier
initialization [GB10] with zero bias, except for the last layer. LeakyReLUs [XWCL15] are
employed as activation functions to avoid the problem of dead units, and a dropout rate of
0.2 is applied to mitigate overfitting.

Pair-Wise MLP. In the case of the double pions dataset, where the positive imbalance is
observed, the continuous edge scores are utilized instead of the binary score labels during
training, helping to counteract the imbalance problem. For this dataset, the QFL Loss with
β = 2 is employed. Experiments with the focal loss (γ = 2, α = 0.25) using binary labels for
the double pion dataset were also conducted, but the approach with continuous edge labels
was found to be superior. Conversely, the other two datasets exhibit negative imbalance,
rendering the continuous edge scores down-weighting positive contributions impractical. As
a result, the α-balanced focal loss with the focusing parameter γ = 2 is utilized, with α
determined based on the label imbalance and subsequent tuning. Specifically, α is set to 0.45
for the multiparticle dataset and 0.40 for the pile-up dataset, as:

α ≈ neg

pos + neg
, (7.1)

where neg refers to the number of negative examples in the dataset, whereas pos is the number
of positive examples, with specific values for each dataset provided in Table 5.1.

The MLP models are trained for 25 epochs, commencing with an initial learning rate of
10−3, lowered during the learning process. A reduced learning rate on plateau [AKBD22] (for
double pions and multiparticle datasets) and cosine annealing [LH17] (for pile-up dataset)
LR schedulers are utilized for this purpose, with a lower bound of 10−6 on the learning rate.
The reduced learning rate on plateau scheduler is designed to monitor validation loss, and if
there is no discernible improvement of more than 10−3 in it for three consecutive epochs, the
LR is automatically reduced by a factor of 10.

GNN. Similar considerations were taken into account for the GNN training. Interestingly,
suitable training parameters for each scenario were found to be very similar as in the case of
the MLP model and are listed in Table A.8. However, achieving training convergence with
GNNs typically requires a greater number of epochs compared to MLP models. As such,
GNN models were typically trained for 50 epochs, taking up to 7 hours depending on the
particular dataset size.

93

7. Experiments and Discussions

10 7 10 6 10 5 10 4 10 3 10 2 10 1

Learning rate

10 1

100

Lo
ss

GNN Suitable learning rate estimation

Figure 7.2: Example of the learning rate range test for the GNN network with Adam optimizer
and the QFL loss for the double pion dataset. The initial learning rate for this case is chosen to
be 10−3.

Last Layer Bias Setting. The datasets used for training are imbalanced, and this knowledge
can be utilized to initialize the output layer’s bias to reflect the imbalance rates. For instance,
in the case of the double pion dataset with a 75% positive and 25% negative ratio, the bias
on the logits can be set to predict a probability of 0.75 during initialization. This technique
accelerates convergence and eliminates the “hockey stick” loss curve, where the network
primarily learns the bias in the first few epochs. Since the sigmoid function is used at the
network output, the expected output of the model is:

p0 = pos

pos + neg
= 1

1 + e−b0
, (7.2)

from where the desired initial bias of the last layer is found:

b0 = ln pos

neg
. (7.3)

7.4.2 Hyperparameter Tuning

In light of the vast search spaces involved, rather than performing an exhaustive fine-tuning
of a particular approach, this work focuses on identifying practical techniques and problem
formulations for the trackster linking. Therefore, better performance of the individual models
is likely to be achieved by means of better hyper-parameter optimization and augmenting
dataset sizes, permitting an increased number of learnable parameters.

Learning Rate Finding

A preliminary step is performed to optimize the learning rate before actual training is initiated.
This procedure involves scanning the LR from 10−7 to 10−1 using 300 mini-batches for training
and generating a plot displaying the training loss for various learning rates (Figure 7.2). The
resulting training loss plot typically manifests as a basin-shaped curve, suggesting that the
optimal learning rate value is positioned within a basin range. The basin’s extent spans a
broad range of values, indicating that the LR finder only supplies an approximate estimation.

The used approach to finding the optimal learning rate is referred to as the LR range
test [SL18]. This involves training the model with a range of learning rates and observing the
loss function during training. The learning rate range test is often implemented by gradually

94

.................................... 7.4. Machine Learning Techniques

increasing the learning rate from the smallest initial value to a large value over a fixed number
of iterations while monitoring the loss function. When starting with a small learning rate,
the network begins to converge, and as the learning rate increases, it eventually becomes too
large and causes the loss to increase. The suitable learning rate is then chosen to be ten times
smaller than the one just before the loss increase.

Model Size

In practice, optimizing the model size is also an important task. Typically, smaller models may
not perform satisfactorily owing to the limited capability of feature learning. As the model
size increases, the performance may increase to some extent; however, it may subsequently
decrease due to the problem of network degradation, i.e., deeper models may face difficulty in
learning features, especially when not enough training data is provided. Moreover, a larger
model may also lead to significantly increased inference time – a big concern for real-world
applications.

In the case of the GNN model, experiments to compare the performance of the reduced
and larger variations of the model were conducted. Recall that the final model (for double
pions and multiparticles) consists of four EdgeConv blocks (with a hidden dimension of 64),
a node encoder with two FC layers, an edge and node feature encoders with two FC layers
(output dimensionality 32 and 64, respectively), an attention score network of two layers with
a hidden dimension of 32, and a link predictor of two layers with a hidden dimension of 64.
It is worth noting that compared to the MLP model, the depth of the encoders is reduced
to two layers instead of three, and the hidden dimension size is also lowered for each of the
layers (i.e., 64 instead of 128 for feature embeddings).

In contrast, the heavier model is based on the MLP architecture (three-layer networks for
each of the sub-modules and higher hidden dimension values). During the experimentation
with the heavier model, it was observed that the model achieved a lower training loss compared
to the reduced one, indicating that the degradation issue was not encountered yet. However,
the evaluation loss failed to match the training loss, suggesting the presence of overfitting.
The evaluation results did not demonstrate any improvements by increasing the model’s size.
Consequently, the decision was made to use the reduced model.

It should also be noted that due to the smaller scale of the pile-up dataset, comprising
only 4.1 million edges compared to the 10.7 and 41.1 million edges in the double pions and
multiparticle datasets, respectively, the range of considered models was restricted in terms of
the number of learnable parameters. The graph-based models have shown to be particularly
sensitive to the model architecture, and deeper architectures with many training parameters
typically failed to converge. Specifically, extending the dimensions of the feature encoder
blocks and increasing the number of EdgeConv blocks led to unsuccessful training. Thus, the
final GNN model for the pile-up dataset uses only three EdgeConv blocks instead of four in
full GNN models for the other two datasets. Similarly, the sizes of the MLP sub-modules are
also reduced to just 2 FC layers for the PU dataset.

Prediction Dynamics Evaluation

To gain insight into the training progress, visualizations of model predictions are generated
on a fixed test batch during training. Observing the prediction movement’s dynamics makes
it possible to intuitively understand how the training is progressing and allows us to better

95

7. Experiments and Discussions
tune the model parameters. The instability of the network during the fitting process can be
detected by the excessive wiggling of the model’s predictions, often indicating a struggle to fit
the data.

7.4.3 Evaluation During Training and Final Network Selection

Datasets. Each dataset is partitioned into three sets: training, validation, and testing. The
training set accounts for 80% of the total data, while the validation and testing sets each
account for 10% of the data. The validation set is employed not only for validating the model
during training but also for determining the confidence threshold of the model.

Network Selection. Throughout the training process, the NN’s performance is assessed
using edge-oriented and clustering metrics. At the end of each epoch, a model snapshot
is saved. Once training is finished, the model achieving the best combination of AUC and
B-Cubed Recall, along with high homogeneity on the validation dataset, is chosen as the
best-performing model. B-Cubed recall, in terms of the physics performance, provides a rough
estimate of both the purity and efficiency, while non-compromised homogeneity translates to
a low merge rate.

7.5 Performance Evaluation

This study employs four distinct evaluation methodologies to quantify the overall performance
of the linking algorithms discussed in Section 6.5. Firstly, the generated partitions are evaluated
using standard clustering performance metrics, modified to be energy-aware. Secondly, the
accuracy of the neural network’s per-edge prediction class-balanced performance is evaluated.
Yet, since the linking algorithm’s primary objective is to improve particle shower reconstruction,
it is essential to assess how well the tracksters generated from the same particle are linked
together in terms of physics performance. Finally, t-distributed stochastic neighbor embedding
(t-SNE) [VdMH08] is employed to visually inspect trackster embeddings produced by NNs.
Additionally, the time complexity of algorithms is another factor considered.

7.6 Visual Inspection

In simpler scenarios, such as the case of double pions, it is visually evident that the GNN-
obtained supertracksters are similar to the ground truth, and most of the smaller and
distant tracksters are also correctly assigned to the respective supertracksters. However, such
visualizations of more complex scenarios can be difficult to interpret due to the crowded nature
of the resulting plots. An illustration of the GNN model predictions for a typical double pion
event can be observed in Figure 7.3. The figure displays the tracksters’ connections without
showing individual layer-clusters to maintain visualization readability. Panel (a) presents the
original prediction graph input to the network, with the two main simtracksters colored green
and violet. The simtracksters are relatively well-separated. In addition, two small unassigned
tracksters are located between the simtracksters. The GNN network applied to the event
graph (b) successfully separates the simtracksters while connecting most of their internal

96

.. 7.6. Visual Inspection

Z (cm)

340
360

380
400

420
440

460
X (c

m)

15
20

25
30

35

Y
(c

m
)

15
20
25
30
35
40
45

All Initial True Edges
All Initial False Edges

15 20 25 30 35
X (cm)

15

20

25

30

35

40

45

Y
(c

m
)

15 20 25 30 35
X (cm)

340

360

380

400

420

440

460

Z
(c

m
)

15 20 25 30 35 40 45
Y (cm)

340

360

380

400

420

440

460

Z
(c

m
)

(a) : Constructed graph provided as an input to the neural network. The initial number of edges is 128
(shown in black), with a total number of 16 false edges (shown in red).Z (cm)

340
360

380
400

420
440

460

X (c
m)

15
20

25
30

35

Y
(c

m
)

15
20
25
30
35
40
45

Wrong Edges
Correct Edges
Missed Edges

15 20 25 30 35
X (cm)

15

20

25

30

35

40

45

Y
(c

m
)

15 20 25 30 35
X (cm)

340

360

380

400

420

440

460

Z
(c

m
)

15 20 25 30 35 40 45
Y (cm)

340

360

380

400

420

440

460

Z
(c

m
)

Z (cm)

340
360

380
400

420
440

460

X (c
m)

15
20

25
30

35

Y
(c

m
)

15
20
25
30
35
40
45

Wrong Edges
Correct Edges
Missed Edges

15 20 25 30 35
X (cm)

15

20

25

30

35

40

45

Y
(c

m
)

15 20 25 30 35
X (cm)

340

360

380

400

420

440

460

Z
(c

m
)

15 20 25 30 35 40 45
Y (cm)

340

360

380

400

420

440

460

Z
(c

m
)

(b) : Graph of GNN model predictions after the thresholding. The network correctly predicts 97 edges,
while missing 15 (shown in blue) due to the high confidence threshold. No false positive edges are
predicted.

Z (cm)

340
360

380
400

420
440

460

X (c
m)

15
20

25
30

35

Y
(c

m
)

15
20
25
30
35
40
45

True Edges

15 20 25 30 35
X (cm)

15

20

25

30

35

40

45

Y
(c

m
)

15 20 25 30 35
X (cm)

340

360

380

400

420

440

460

Z
(c

m
)

15 20 25 30 35 40 45
Y (cm)

340

360

380

400

420

440

460

Z
(c

m
)

(c) : Graph of geometric linking predictions. Only two pairs of tracksters are merged.

Figure 7.3: Predicted graph visual inspection for an event with two relatively well-separated
closeby pions in 0 PU. Each trackster is visualized as a point at the position of its barycenter with
the size proportional to its energy. The figure presents multiple views of the same event (from left
to right: 3D, X-Y, X-Z, and Y-Z projections).

components. On the other hand, geometric linking (c) seems to have insufficient merging
power.

Numeric Comparison. In contrast to geometric linking, which predicts 34 superclusters for
the visualized event by merging only two pairs of trackster fragments, GNN results in five final
superstracksters (one more than in the ground truth data). Despite perfect homogeneity for
both methods, the completeness of the GNN predicted graph rises to 0.95, while for geometric
linking, it makes only 0.375. Additionally, the B-Cubed F-score for geometric linking is very
low, just 0.028, while for GNN, it reaches 0.976. Therefore, the metrics comparison supports
the visual observations for the event.

97

7. Experiments and Discussions
7.6.1 Clustering Metrics Evaluation

For each dataset, evaluation of clustering metrics is done separately on respective test sets
(the number of events in individual datasets is listed in Table 5.1) after choosing the best-
performing models according to the validation data. The results for each dataset are presented
in the subsequent subsections. The GNN-based linking approach is found to be highly effective
for all three scenarios, surpassing the performance of other explored linking methods, namely
pairwise MLP and geometric linking, by a wide margin. As can be seen in what follows, it
provides a high level of homogeneity, while keeping a reasonable level of merging even in the
most challenging scenario involving multiple particles.

Additionally, the results suggest that the learned approaches significantly outperform the
classical clustering methods based on the spatial disposition of the trackster point clouds. The
performance of the best clustering results obtained by the MS algorithm, as shown in Table 7.1,
was surpassed by the GNN model with a mean F-score performance improvement of 0.567
for the double pions case, and 0.367 in the multi-particles case, as illustrated in Tables 7.2
and 7.3. Therefore, the results strongly suggest that learned approaches are potential options
for improving particle shower reconstruction via calorimetric clustering beyond the classical
methods.

Double Pion Dataset

The adapted clustering metrics performance for the double pions in 0 PU is listed in Table 7.2
and visually presented in Figure 7.4.

Table 7.2: Double pion dataset clustering performance with geometric link-
ing, MLP and GNN. All evaluation metrics consider the energy
of individual tracksters as described in Section 6.5. Best values
are highlighted in bold. The initial average number of tracksters
per event is N̄ = 28.2.

Homogeneity 0.959 0.929 0.949
Completeness 0.427 0.708 0.854
V-measure 0.577 0.804 0.881
ARI 0.090 0.628 0.803
B-Cubed Precision 0.894 0.922 0.957
B-Cubed Recall 0.110 0.726 0.852
B-Cubed Fscore 0.180 0.812 0.889
Avg. num. tracksters 18.75 8.13 6.10
Confidence threshold - 0.90 0.85

Algorithm Geometric Pair-wise MLP GNN model

The homogeneity metric is essential for ensuring each supercluster comprises only members
belonging to the same simtrackster. Notably, lower homogeneity values indicate a loss of
information as a result of over-merging. While NN-based methods have been calibrated to

98

.. 7.6. Visual Inspection

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0
Ob

se
rv

ed
 v

alu
es

Homogeneity Weighted

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

Completeness Weighted

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

V-measure Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
ARI Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Precision Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
Recall Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
Fscore Weighted

Geometric MLP GNN
0

5

10

15

20

25

30
Number of Clusters

Figure 7.4: Double pion dataset clustering performance of geometric, pair-wise MLP and GNN
linking methods. Notably, the GNN method outperforms other linking approaches in all of the
metrics, except homogeneity.

achieve comparable levels of average homogeneity as the geometric linking, they exhibit higher
standard deviation. However, to enhance the homogeneity of these methods, their confidence
threshold can be further increased.

The completeness metric ensures that all elements belonging to a given simtrackster are
correctly assigned to the same predicted supercluster. Lower completeness values imply
that the algorithm is not capturing macroscopic information of the event and thus fails to
merge enough, which correlates to a higher number of final superclusters. Among the three
investigated approaches, geometric linking displays the poorest completeness score (42.7%),
whereas the MLP reaches a noteworthy increase in completeness of 28% compared to geometric
linking. However, this comes at the cost of a higher standard deviation, which is still superior
to the average of the geometric linking approach. Finally, GNN linking achieves an impressive
40% improvement in completeness over the geometric linking algorithm.

The V-measure shows a balance of homogeneity and completeness, with equal weight
given to both (i.e., β = 1). In this regard, the GNN approach again exhibits a remarkable
performance advantage over the other two methods, with improvements of 30% and 7%
compared to the geometric and MLP approaches, respectively.

The utilization of GNN linking results in a notable reduction in the average number of
tracksters per event to 6.53, compared to 8.13 for the pair-wise approach and nearly three
times as many tracksters for geometric linking. Thus, GNN linking decreases the average
number of clusters generated by CLUE3D (N̄ = 28.2) by over 4.3 times, while maintaining
high homogeneity.

In the double-pion dataset, the optimal number of supertracksters, as per the simulation, is
typically two. However, there are instances when some CLUE3D tracksters remain unassigned
to neither of the simtracksters due to a high Reco-To-Sim score (i.e., higher than 0.2) for all
of them. This means that the final ground truth assignment may contain more than just
the two final tracksters, leading to a higher number of tracksters predicted by the linking
algorithms. Such an event is shown in Figure 7.3, where the total number of the ground

99

7. Experiments and Discussions
truth tracksters totals four. These unassigned tracksters are typically located at the borders
between the simtracksters, resulting in merged hits from both.

Notably, the confidence threshold for the pair-wise approach is set higher than that of the
GNN, implying that MLP exhibits a higher merging initiative. This, however, results in a
decrease in supertrackster homogeneity. In contrast, geometric linking is optimized for high
precision, with insufficient merging capabilities, which aligns with the visual observations.

Multiparticle

Comparable trends to those observed in the double-pion scenario are apparent in the multi-
particle case, as evidenced by the clustering results presented in Table 7.3. Additionally, a
bar plot illustrating these results is included in the appendix (Figure A.6).

Table 7.3: Ten multiparticles in 0 PU dataset clustering performance with
geometric linking, MLP and GNN. All evaluation metrics con-
sider the energy of individual tracksters as described in Sec-
tion 6.5. Best values are highlighted in bold. The initial average
number of tracksters per event is N̄ = 215.4.

Homogeneity 0.960 0.980 0.984
Completeness 0.842 0.855 0.873
V-measure 0.896 0.912 0.924
ARI 0.118 0.338 0.484
B-Cubed Precision 0.511 0.792 0.839
B-Cubed Recall 0.079 0.245 0.387
B-Cubed Fscore 0.131 0.351 0.498
Avg. num. tracksters 143.9 159.5 136.8
Confidence threshold - 0.80 0.80

Algorithm Geometric Pair-wise MLP GNN model

The multiparticle dataset linking presents a more formidable task due to substantial shower
overlaps, posing challenges for the network to accurately separate tracksters from different
showers and avoid their erroneous merging. Consequently, opting for learned methods with
high homogeneity entails a trade-off with recall, which is not as high as that achieved in
the double pion dataset (specifically, a decrease of 0.465 in GNN linking recall is observed).
Nevertheless, the GNN model continues to outperform both the MLP and geometric linking
methods by a wide margin.

Single Particle in 140 PU

The performance on the dataset with pile-up, presumed to be the most challenging, yields
somewhat surprising results (Table 7.4 and Figure A.7). All metrics for the NN-based methods
demonstrate remarkably high values, with the GNN model consistently outperforming the
other methods, except for homogeneity and precision, for which the geometric linking achieves
a slightly higher score due to its low merging rate. This unexpected performance can be

100

.. 7.6. Visual Inspection

attributed to the presence of a single particle in the PU scenario, which eliminates the
challenge of predicting incorrect edges between similar-energy particles in close proximity. On
the other hand, discrimination between PU tracksters and non-PU tracksters seems to be a
much easier task.

Table 7.4: Single particle in 140 PU dataset clustering performance with ge-
ometric linking, MLP and GNN. All evaluation metrics consider
the energy of individual tracksters as described in Section 6.5.
Best values are highlighted in bold. The initial average number
of tracksters in the graph per event is N̄ = 28.7.

Homogeneity 1.000 0.978 0.991
Completeness 0.577 0.878 0.900
V-measure 0.723 0.920 0.941
ARI 0.384 0.857 0.892
B-Cubed Precision 1.000 0.989 0.997
B-Cubed Recall 0.373 0.863 0.889
B-Cubed Fscore 0.517 0.916 0.936
Avg. num. tracksters 11.54 2.86 2.74
Confidence threshold - 0.70 0.70

Algorithm Geometric Pair-wise MLP GNN model

Unlike for the other datasets, the term “number of tracksters” in Table 7.4 specifically refers
to the tracksters belonging to the training graph, rather than the total number of tracksters
in the event. This is because only a subset of event around the primary trackster is utilized
in graph creation. On average, the geometric linking tends to merge slightly over half of the
tracksters. In contrast, both the MLP and GNN approaches result in a significant reduction
of tracksters, roughly ten times fewer. This reduction in tracksters achieved by the learned
models indicates a more precise reconstruction of the event. Noticeably, the performance gap
between the MLP and GNN models has narrowed, with the GNN model demonstrating only
a marginal improvement of a few percentage points on average.

7.6.2 Energy Containment

Additionally, an analysis of energy containment of the supertracksters generated by the linking
methods in relation to the ground truth simtracksters is conducted. This assessment was
originally introduced in [Nan22] when proposing the current geometric linking approach. The
energy intersection over union (EIoU) score is computed between the predicted supertracksters
and the simtracksters. The score between a supertrackster ti and a simtrackster sj is obtained
by dividing the sum of the energy of reconstructed tracksters r, that are common to both, by
the sum of energy of tracksters that are contained in their union:

101

7. Experiments and Discussions

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

18623
CLUE3D Tracksters

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

11712

TICL Candidates

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

5708

CNN SuperTracksters

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

2621

GNN SuperTracksters
Recotrackster to Simtrackster from CP Energy Score distribution

Figure 7.5: Double pion EIoU score distributions for 1000 events for a) initial tracksters produced
by CLUE3D, b) candidates created by geometric linking, c) MLP and d) GNN supertracksters
(from left to right).

EIoU(ti, sj) =

∑
rn∈ ti∩ sj

Ern∑
tn∈ ti∪ sj

Ern

, (7.4)

where the association of a CLUE3D trackster to a simtrackster is determined by the associator
module. The EIoU score ranges from 0 to 1, with a score of 1 indicating a perfect match
between the supertrackster and the simtrackster in terms of their energies, while a score of 0
indicates no energy intersection. EIoU score is initially computed for each supertrackster in
the event with respect to all the available simtracksters. The highest EIoU score among the
calculated ones is then considered the final score for the supertrackster and is used to guide
its final association to a specific simtrackster. The scores for the CLUE3D tracksters, and the
candidates from the geometric linking are computed using the same approach.

In Figure 7.5, the EIoU score distribution for the double pion dataset is presented for
tracksters reconstructed by CLUE3D and various linking approaches. The original set used
to produce the visualization, consisting of 1000 double pion events, features more than 23.3k
CLUE3D-produced tracksters, of which 18.6k or 79.8%, have an EIoU score ranging from 0
to 0.01, indicating incomplete clustering. Geometric linking produces 1.5 times fewer clusters
than CLUE3D, with 15.5k total trackster candidates, merging 30%, and yielding a slightly
better score distribution with fewer low-score tracksters and more scores approaching higher
values. On the other hand, MLP and GNN produce almost an order of magnitude fewer
supertracksters, 8.3k and 4.6k, respectively, compared to geometric linking. MLP merges over
64.6% of the initial tracksters, while GNN results in an average event size reduction of 80%.
A higher fraction of clusters generated using the learned methods has scores closer to perfect
matching.

Similar plots for multiparticle and pile-up datasets are presented in Figures A.8 and A.9.
Please note that the plots are displayed with a logarithmic y scale, making the absolute
difference between the linking methods less obvious.

7.6.3 Per-Edge Evaluation

Performance evaluation of the learned methods also relies on per-edge prediction metrics,
facilitating the confidence thresholds determination.

102

.. 7.6. Visual Inspection

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate (Positive label: 1)

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ue
 P

os
iti

ve
 R

ate
 (P

os
iti

ve
 la

be
l:

1)

Receiver Operating Characteristic (ROC) curves

MLP (AUC = 0.85)
GNN (AUC = 0.94)

1% 5% 20% 50% 80% 95% 99%
False Positive Rate (Positive label: 1)

1%

5%

20%

50%

80%

95%

99%

Fa
lse

 N
eg

ati
ve

 R
ate

 (P
os

iti
ve

 la
be

l:
1)

Detection Error Tradeoff (DET) curves

MLP
GNN

0.0 0.2 0.4 0.6 0.8 1.0
Recall (Positive label: 1)

0.5

0.6

0.7

0.8

0.9

1.0

Pr
ec

isi
on

 (P
os

iti
ve

 la
be

l:
1)

Precision-Recall curves

MLP (AP = 0.85)
GNN (AP = 0.93)

Figure 7.6: ROC, detection error trade-off (DET) and weighted precision-recall curves (from left
to right) of the MLP and GNN models trained on double pions.

ROC curves. The ROC and precision-recall curves of the models are analyzed and depicted
in Figure 7.6. The MLP model achieves an AUC of 0.85 for the double pion dataset, while
the GNN performs even better with an AUC of 0.94. Although the performance is slightly
lower for the multiparticle dataset compared to the double pion one (MLP model at 0.85
and the GNN at 0.90), both models still demonstrate the ability to make reliable per-edge
predictions in the presence of overlapping showers. Remarkably, both models achieve very
high AUC values for the pile-up scenario, with the MLP model at 0.99 and the GNN model
at almost 1.0 (Table A.8), indicating very accurate prediction separation.

Prediction Distributions. To see if that is the case, the distributions of positive and negative
edge predictions by the GNN are examined, as demonstrated in Figure 7.7. By analyzing these
distributions, insights into the model’s ability to differentiate between positive and negative
edges based on their predicted scores are gained. Note that the y scale is logarithmic – despite
not being immediately apparent, there is a significant difference between the double pions
and PU prediction distributions. In the case of the double pions, there is still a non-negligible
presence of false edges with high predicted scores, as depicted in (a) of the corresponding
Figure. However, when examining the PU dataset (b), the predictions exhibit a higher
level of certainty – over 60% of negative edges are accurately predicted as incorrect with
the lowest possible score, and almost 70% of true edges are predicted as correct with the
highest achievable score. This contrasts with the double pion scenario, where a much smaller
fraction of predictions has such certainties (25% and 40%, respectively). Moreover, none of
the negative edges in PU receive a score above 0.6, indicating that setting the confidence
threshold to this value would result in almost no false positive predictions.

FP predictions origin. Upon visual inspection, it is evident that the majority of false edges
with high scores for the double pions and multiparticle datasets originate from connections
between low-energy tracksters located further away from the shower core or at the borders
between the showers; while false positive edges in the PU dataset arise mostly from low-energy
pile-up tracksters well-aligned with the hard-scattering particle.

Confidence Threshold Setting. According to the precision-recall curves for MLP and GNN
models in Figure 7.6, the MLP models tend to require a higher threshold to deliver the same
level of precision as the GNN models. In the linking task, the selection of the threshold is
guided by the objective of minimizing the probability of FP predictions. While the usual
approach is to set the threshold to maximize the F-score, in this task, higher precision over
recall is prioritized. To achieve more control over the network performance, a manual threshold

103

7. Experiments and Discussions

0.0 0.2 0.4 0.6 0.8 1.0
Predicted score

10 1

100

101

Pr
ob

ab
ili

ty
 [%

]

GNN True and False edge prediction distribtion
False predictions
True predictions

0.0 0.2 0.4 0.6 0.8 1.0
Predicted score

103

104

105

Co
un

ts
(lo

g)

GNN edge prediction distribtion
All predictions

(a) : GNN model predictions for double pion dataset. Over 25% of negative edges are accurately predicted
as incorrect with the lowest possible score. Conversely, more than 40% of true edges are predicted as
correct with the highest achievable score.

0.0 0.2 0.4 0.6 0.8 1.0
Predicted score

10 2

10 1

100

101

102

Pr
ob

ab
ili

ty
 [%

]

GNN True and False edge prediction distribtion
False predictions
True predictions

0.0 0.2 0.4 0.6 0.8 1.0
Predicted score

102

103

104

105

Co
un

ts
(lo

g)
GNN edge prediction distribtion

All predictions

(b) : GNN model predictions for a single particle in PU dataset. Over 60% of negative edges are accurately
predicted as incorrect with the lowest possible score. Conversely, almost 70% of true edges are predicted
as correct with the highest achievable score.

Figure 7.7: The distribution of the edge scores predicted by the GNN model for true and false
edges (on the left), and the full prediction distribution shown in logarithmic scale (on the right).

0.0 0.2 0.4 0.6 0.8 1.0
Confidence threshold

0.0

0.2

0.4

0.6

0.8

1.0

M
etr

ic
va

lu
e

MLP: Metrics developement with classification threshold

Balanced Precision
Balanced Recall
Balanced F-score
Balanced Accuracy

0.0 0.2 0.4 0.6 0.8 1.0
Confidence threshold

0.0

0.2

0.4

0.6

0.8

1.0

M
etr

ic
va

lu
e

GNN: Metrics developement with classification threshold

Balanced Precision
Balanced Recall
Balanced F-score
Balanced Accuracy

Figure 7.8: Evaluation of per-edge metrics for the models trained on the double pion dataset,
illustrating the variation in performance with different confidence thresholds. The left side shows
the evaluation results for the MLP model, while the right side displays the results for the GNN
model.

104

.. 7.6. Visual Inspection

selection approach is employed instead of relying on an additional Fβ-score with a smaller
beta value, giving more weight to precision. By manually setting the threshold, the trade-off
between precision and recall is fine-tuned according to the specific requirements of the task.
In the case of double pions, a confidence threshold of 0.90 is chosen for the MLP model,
while a threshold of 0.85 is selected for the GNN model. The chosen thresholds differ from
the F1-score optimal thresholds, which would have been 0.78 for the MLP and 0.76 for the
GNN model. Similar considerations are taken into account for the other datasets and the
selected values are presented in Table A.8. After that, to make sure the reasonable threshold
is chosen, the sample-weighted F-score and BA development in relation to the threshold value
are investigated, as presented in Figure 7.8.

7.6.4 Physics Performance Evaluation
The applicability of the learned models is assessed in a production setting through the
evaluation of their physics performance. The models are first exported into the ONNX format
and integrated into the CMSSW framework. Guided by the GNN outputs, a DFS algorithm is
used to reconstruct candidates as distinct connected components within a graph. This ensures
that each trackster is exclusively utilized by a single supertrackster, thereby eliminating the
need for ambiguity resolution.

The results in the absence of PU are illustrated in Figure 7.9. By applying a threshold
of 0.85 to the GNN predictions, the reconstruction efficiency exceeds 91%, while the purity
nearly reaches 50%. This represents an improvement of more than 14% in purity and 22%
in efficiency compared to the geometric linking method. The improvement in efficiency and
purity is consistent across the varying momentum values, as shown in Figure 7.10. However,
this improvement comes at the expense of a slight increase of just over 1% in the merge rate
compared to geometric linking. It is worth noting that the merge rate is not solely attributed
to the linking itself, as evident from the non-zero CLUE3D merge rate (approximately 1.7%)
visualized in Figure 7.9. In contrast, the merge rate for geometric linking tracksters is raised
to 2.8%, while for the GNN linking, it increases to 3.9%. Duplicate and fake rates are zero
for all methods, revealing a correct one-to-one mapping between simulated and reconstructed
objects. Notably, the results observed in the energy-weighted clustering metrics used for the
model selection are consistent with the enhancements observed in the production pipeline.

The noticeable decrease in the average number of tracksters, as shown in Figure 7.11, allows
for the reconstruction of larger portions of the simtracksters and correlates with improved
efficiency. The average number of tracksters per event for the original CLUE3D tracksters
is 27.2, with a standard deviation of about 10.5. With the GNN linking approach, the
distribution is significantly improved, resulting in an average of only 8.17 tracksters per event
and a standard deviation of 7.34. Similarly, the geometric linking approach yields an average
of 19.2 tracksters per event with a standard deviation of 7.7. These results are also consistent
with the observations made during the previous experiments, implying a correct integration
into the production workflow.

Figure 7.12 illustrates the distributions of shared energy and Reco-to-Sim scores for the
explored linking algorithms. As expected, the GNN exhibits a shift towards higher energy
fractions compared to both geometric linking and the CLUE3D tracksters. This shift is
accompanied by a taller peak at a higher shared energy value. Furthermore, the Reco-to-Sim
score4 generally decreases for the GNN, although it follows a similar trend as the geometric
linking approach.

4Smaller values are superior.

105

7. Experiments and Discussions

Purity Efficiency Dupl. rate Fake rate Merge rate
0.0

0.2

0.4

0.6

0.8

1.0

Va
lu

e
Trackster global metrics

CLUE3D
Geometric
MLP
GNN

Purity Efficiency Dupl. rate Fake rate Merge rate
0.0

0.5

1.0

1.5

2.0

2.5

Va
lu

e

Global metrics ratio with respect to CLUE3D tracksters
Geometric
MLP
GNN

Figure 7.9: Model performance evaluation in the production environment. NN and geometric
linking were applied in CMSSW for 1000 double close-by pion events with shower energy ranging
from 10 to 600 GeV. The left plot displays the purities, efficiencies, duplicate, fake, and merge rates
of the four types of tracksters: CLUE3D tracksters, geometric, MLP, and GNN linking algorithm
outputs. The ratio between these trackster metrics with respect to the CLUE3D tracksters is
shown on the right.

TTbar. In order to evaluate the generalization capabilities of the network beyond its original
training conditions, the application of the GNN network trained on double pions was extended
to tt̄ events in 0 PU. These events involve the decay of top and antitop quarks, which are
interesting due to their large mass, offering insights into indirectly determining the Higgs
boson’s mass. It can be seen that in a higher-energy/momentum region, GNN reached higher
purities and efficiencies than the geometric linking (Figure 7.13). However, most of the
tracksters in tt̄ events do not exceed energies of 10 GeV (Figure A.10); hence, only a fractional
global efficiency improvement of 0.82% is observed for GNN over the geometric linking, while
the global purity is decreased by 0.51%. On a positive note, GNN linking reduces the merge
rate of these events by 1.5%. Global purities for both methods are very low, reaching just
over 5%, while global efficiencies are slightly above 15%. Nevertheless, higher purity values
may not be attainable due to substantial information loss during the preceding reconstruction
steps. This is exemplified in Figure 7.14, where only a small fraction of tracksters remains
available for linking with the CLUE3D trackster count at 45, considerably smaller than the
total number of simtracksters at 202.

Despite the lack of improvement in global metrics, these results demonstrate the network’s
ability to generalize to events not included in the training dataset. Interestingly, the double
pion network demonstrates commendable performance even when applied to PU data. Similar
experiments were conducted using the GNN trained on multiple particles, applied to double
pions. These experiments yielded comparable performance improvements to the network
trained exclusively on double pions. However, the reverse process was not successful. When
the network trained on double pions was, in its turn, applied to the multiple particle dataset,
it frequently led to the erroneous merging of distinct showers, resulting in an increased merge
rate.

7.6.5 Previous Reconstruction Steps Bias in Physics Evaluation

The TTbar analysis highlights that relying solely on global metrics is insufficient for evaluating
the performance of the methods. Due to the formulation of the linking problem with an

106

.. 7.6. Visual Inspection

Figure 7.10: The left column shows the efficiency distribution over η for GNN and geometric
linking in red and blue, respectively, and CLUE3D tracksters in green. The second column
illustrates the purities of the input tracksters and the linking output, categorized by the η of the
trackster, using the same color scheme. Finally, the right-most column shows the efficiencies with
respect to the value of transversal momentum pT.

objective of combining high-level structures, it is infeasible to re-cluster the previously
generated recotracksters, let alone LCs. As a result, potential errors introduced by the
previous reconstruction steps must be anticipated (such as a non-zero merge rate prior
to linking shown in Figure 7.9). One plausible reason for these errors is when preceding
algorithms generate flawed lower-level cluster structures (consisting of hits coming from
different simtracksters). In this case, linking cannot eliminate the bias in the performance
evaluation.

Figure 7.15 illustrates another bias that cannot be eliminated. It showcases the reconstruc-
tion of a double pion event in 0 PU, where the reconstructed data exhibits a significantly
lower number of LCs (117) compared to simulation (487). This discrepancy arises because
simtracksters encompass all hits related to the simulated particle, while some hits are rejected
as noise during the CLUE and CLUE3D reconstruction steps. Due to this noise rejection,
LCs are missing in the reconstructed tracksters, making it impossible to attain a perfect
performance when comparing against the ground truth data. As per the CLUE definition,
LCs containing less than two hits are likely to be rejected as noise. One can notice that

107

7. Experiments and Discussions

Figure 7.11: Trackster number distributions of the CLUE3D tracksters on the left and GNN (red)
and geometric linking (blue) algorithms on the right. The shown data is for 1000 double pions
events in 0 PU.

only 31% (153 out of 487) of the simulated LCs in the presented event contain more than
one hit. The effect of ignoring single-hit LCs on the reconstructed energy is not negligible.
Disregarding all single-hit layer-clusters in simulation in this particular event results in a loss
of nearly 20% of the total simtrackster energy. However, a lower energy drop (on average,
about 8% for pions) is observed in general.

Therefore, the aforementioned global evaluation suffers from an inherent constraint on the
attainable performance ceiling, the upper bound of which remains incalculable. To address
this, a plausible remedy involves constraining the research to recotracksters featuring a specific
purity threshold or dividing the purity into multiple levels: high, medium, and low, with
each category evaluated separately. Notwithstanding, the current study concentrates on the
total performance evaluation, and instead of using an absolute frame, it considers the relative
improvements with respect to the baselines.

7.6.6 Inspection of PU Merging

In the presence of PU, evaluating the purity and efficiency only informs about the recon-
struction of the dominant tracksters in the event, not considering the effect of linking on
PU. Hence, an alternative approach is required to examine whether the merging of PU has
occurred. To address this, visual techniques are leveraged, both color-labeling of the 3D
trackster predictions and T-SNE.

The plot in Figure 7.16 demonstrates the re-connection of the two primary trackster
fragments without affecting pile-up tracksters, as indicated by their distinct red color. This is
a desirable behavior, however, there is an erroneous merging of one of the well-aligned pile-up
tracksters with the green supertrackster, illustrated by the presence of red edges. The merged
PU trackster exhibits relatively low energy, and although the merging is undesired, its impact
is not considered crucial.

108

.. 7.6. Visual Inspection

Figure 7.12: CMSSW testing of the shared energy (left) and Reco-to-Sim score after different
linking procedures for 1000 double pion events in 0 PU. The GNN linking results are shown in red,
while geometric linking is in blue. The middle picture shows the Reco-to-Sim score distribution,
while the right-most plot displays this score per the best CaloParticle only. The bottom row shows
the same properties for CLUE3D tracksters in green.

Figure 7.13: tt̄ event validation in CMSSW. The first plot on the left illustrates the efficiency
distribution for both GNN and geometric linking methods as a function of energy. The subsequent
two plots display the distributions of efficiency and purity with respect to transverse momentum.

109

7. Experiments and Discussions

x (cm) 50
0

50
100

y (
cm

)

100
50

0
50

100

z (
cm

)

300
200
100
0

100
200
300
400

Reconstruction (45 tracksters)

x (cm) 50
0

50
100

y (
cm

)

100
50

0
50

100

z (
cm

)

300
200
100
0

100
200
300
400

Simulation (202 tracksters)

Figure 7.14: Example of a tt̄ event. Reconstruction with just 45 tracksters is shown on the left,
while the same simulated event with 202 tracksters is on the right. A substantial amount of energy
is not captured in the reconstructed event.

x (cm)

90
85

80
75

70
65

y (cm)

40 20 0 20 40 60 80

z (cm
)

325
350
375
400
425
450
475
500

(a) Recotracksters (23)
 All LCs (117) E=197.4 GeV

x (cm)

90
85

80
75

70
65

y (cm)

40 20 0 20 40 60 80

z (cm
)

325
350
375
400
425
450
475
500

(b) Simtracksters (2)
1-hit LCs included (487) E=330.5 GeV

x (cm)

90
85

80
75

70
65

y (cm)

40 20 0 20 40 60 80

z (cm
)

325
350
375
400
425
450
475
500

(c) Simtracksters (2)
no 1-hit LCs (153) E=220.0 GeV

Figure 7.15: Double pion visualization of reconstruction bias. Panel (a) exhibits the reconstructed
LCs corresponding to 23 individual recotracksters (before linking). The total number of LCs in
the reconstruction amounts to 117, producing an energy of approximately 197 GeV. Panel (b)
illustrates the actual simulation data with 487 LCs and a total energy of 330.5 GeV belonging
to two simulated tracksters. Panel (c) presents the simtracksters after removing the 1-hit LCs,
numbering 334 in total and contributing about 110.5 GeV of energy.

Z (cm)

400
200

0
200

400

X (c
m)

100
50

0
50

100

Y
(c

m
)

150
100
50
0
50
100
150

Wrong Edges
Correct Edges
Missed Edges

100 50 0 50 100
X (cm)

150

100

50

0

50

100

150

Y
(c

m
)

100 50 0 50 100
X (cm)

400

200

0

200

400

Z
(c

m
)

150 100 50 0 50 100 150
Y (cm)

400

200

0

200

400

Z
(c

m
)

Z (cm)

400
200

0
200

400

X (c
m)

100
50

0
50

100

Y
(c

m
)

150
100
50
0
50
100
150

Wrong Edges
Correct Edges
Missed Edges

100 50 0 50 100
X (cm)

150

100

50

0

50

100

150

Y
(c

m
)

100 50 0 50 100
X (cm)

400

200

0

200

400

Z
(c

m
)

150 100 50 0 50 100 150
Y (cm)

400

200

0

200

400

Z
(c

m
)

Figure 7.16: Predicted graph visual inspection for an event with pile-up. The image is produced
after GNN linking on the whole event graph. Incorrect edges are visualized in red, and correct
ones in black. Each trackster is visualized as a point at the position of its barycenter with the
size proportional to its energy. Tracksters visualized in red belong to pile-up. The figure presents
multiple views of the same event (from left to right: 3D, X-Y, and X-Z projections). If some of
the PU tracksters were merged together, it would have resulted in another non-red fragment.

110

.. 7.6. Visual Inspection

However, if the confidence thresholds on the network outputs are set too low, we observe that
all PU tracksters tend to merge together, particularly in the case of the GNN model. Since the
network is not trained on pile-up and does not learn to differentiate between individual pile-up
tracksters, this behavior is expected but highly undesirable. Interestingly, the MLP model is
less prone to pile-up merging, even at lower threshold values. One possible solution to address
the issue of pile-up merging is to train the networks using ground truth information for PU,
which is currently unavailable but may be incorporated in future developments. Another
approach is to use only local graphs in proximity to the main objects of interest, such as Level
1 objects or tracks.

No pile-up trackster merging is observed when a sufficiently high threshold is chosen.
This highlights the importance of carefully selecting the threshold value to ensure accurate
reconstruction without compromising the separation of PU tracksters.

T-SNE Visual Analysis

T-distributed stochastic neighbor embedding is a non-linear dimensionality reduction technique
for visualizing high-dimensional data in a low-dimensional space. It constructs a probability
distribution over pairs of high-dimensional data points so that similar objects have a high
probability of being picked while dissimilar points have a low probability. Similarly, a
distribution over the low-dimensional objects matches the high-dimensional distribution
as closely as possible. The two distributions are then compared with the Kullback-Leibler
divergence [KL51], and the low-dimensional points are iteratively adjusted until the divergence
is minimized. The resulting visualization reveals underlying structures in the data that are
difficult to discern otherwise in view of high data dimensionalities. T-SNE in this study is
used as an out-of-the-box algorithm implemented in scikit-learn library with Euclidean
distances used as a metric.

Although the networks in this study are not explicitly trained for metric learning, it is still
expected that the learned methods would exhibit close proximity in trackster embeddings
compared to the original embeddings. Specifically, the GNN model is anticipated to produce
superior trackster embeddings, with related tracksters positioned in close proximity and a
clear separation between pile-up tracksters. This expectation arises from the message-passing
mechanism employed in GNNs, which facilitates the aggregation of neighborhood information.
To validate whether the improved performance of the GNN model can be attributed to an
enhanced embedding space, T-SNE projections of the embeddings generated by the MLP and
GNN models are examined per event, and shown in Figure 7.17. As a negative control, the
T-SNE projection of the raw data space without any embeddings is also included (a). The
original feature space lacks any discernible underlying structure (except for clearly separated
endcaps). The MLP embeddings in (b) do a better job by moving the corresponding trackster
fragments together; although one instance of the simtrackster belonging trackster is positioned
further away from the main clusters, and some pile-up tracksters are found in close proximity
to the major trackster fragments (as shown in the zoomed figure of the MLP projections
Figure 7.18). However, the major trackster fragments are still relatively well-separated from
most PU tracksters. The zoomed Figure also indicates that the major tracksters are linearly
separable. The MLP model exhibits two minor merging errors where pile-up tracksters are
incorrectly assigned to the green supertrackster. In contrast, the GNN model achieves perfect
clustering, accurately separating the fragments. The geometric linking yields homogeneous
clustering but fails to merge all trackster fragments, resulting in eight fragments instead of
the expected two, as seen in Figure 7.18). Another notable observation is that the geometric

111

7. Experiments and Discussions

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

True SimTracksters

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

Candidate (geometric linking) tracksters

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

MLP Predicted SuperTracksters

60 40 20 0 20 40 60

60

40

20

0

20

40

60

80

GNN Predicted SuperTracksters

-1
0
1

T-SNE visualization of original embeddings (2147 tracksters)

(a) : T-SNE visualization of original trackster embeddings.

50 0 50
60

40

20

0

20

40

60

80
True SimTracksters

50 0 50
60

40

20

0

20

40

60

80
Candidate (geometric linking) tracksters

50 0 50
60

40

20

0

20

40

60

80
MLP Predicted SuperTracksters

50 0 50
60

40

20

0

20

40

60

80
GNN Predicted SuperTracksters

-1
0
1

T-SNE visualization of MLP embeddings (2147 tracksters)

(b) : T-SNE visualization of MLP trackster embeddings.

50 25 0 25 50

40

20

0

20

40

60

True SimTracksters

50 25 0 25 50

40

20

0

20

40

60

Candidate (geometric linking) tracksters

50 25 0 25 50

40

20

0

20

40

60

MLP Predicted SuperTracksters

50 25 0 25 50

40

20

0

20

40

60

GNN Predicted SuperTracksters

-1
0
1

T-SNE visualization of GNN embeddings (2147 tracksters)

(c) : T-SNE visualization of GNN trackster embeddings.

Figure 7.17: The T-SNE projection of the event containing PU showcases the ground truth
partitioning, as well as the supertracksters predicted by the geometric linking, MLP and GNN
models (from left to right). Each point corresponds to a separate CLUE3D trackster, with its size
proportional to the trackster’s energy. The blue points indicate PU. For this event, the geometric
linking approach demonstrates perfect homogeneity, achieving a completeness score of 0.74 and
generating eight tracksters for the two simulated major particles. The MLP model yields a slightly
lower homogeneity score, differing by only 0.001, while the GNN model achieves a perfect score.
Both the MLP and GNN models exhibit perfect completeness, accurately predicting exactly two
supertracksters.

112

.. 7.6. Visual Inspection

62 60 58 56
36

37

38

39

40

41

42

43

44
True SimTracksters

62 60 58 56
36

37

38

39

40

41

42

43

44
Candidate (geometric linking) tracksters

62 60 58 56
36

37

38

39

40

41

42

43

44
MLP Predicted SuperTracksters

62 60 58 56
36

37

38

39

40

41

42

43

44
GNN Predicted SuperTracksters

-1
0
1

T-SNE visualization of MLP embeddings close (2147 tracksters)

Figure 7.18: Zoomed-in T-SNE projection of MLP embeddings. Geometric linking results in the
creation of eight candidates, while MLP and GNN produce exactly two supertracksters, with MLP
making two errors and GNN creating a perfect clustering.

linking tends to merge pile-up tracksters. While this behavior may not necessarily be incorrect,
it is impossible to validate since no ground truth data is available for the PU tracksters.

Summary. Based on the scatter plots, it is evident that both the MLP and GNN provide
superior embeddings compared to the original feature space. However, in contrast to MLP,
the GNN embedding demonstrates significantly tighter and more distinct clusters, with all PU
tracksters effectively separated. However, since the model is not trained on the PU tracksters,
it does not learn to distinguish them from each other. As a result, there is a potential risk of
merging PU tracksters together.

7.6.7 Model Complexities

An important quality of deep learning-based models for HEP is the simplicity of the model,
the speed of its training and inference on new samples. To quantify these considerations, five
metrics for the NN models are measured:

. the number of trainable parameters of the models,. the training time of each model per data sample,. average inference times of the models in Python on both CPU and GPU,. the average inference time per event in CMSSW,. and, finally, the memory allocation required for the networks.

Although processing multiple batches simultaneously greatly reduces both training and
inference times, the data in CMSSW is processed per event, and for simulation purposes, a
batch size of one is used during inference to replicate the production environment. Regarding
the computational aspects, GNN approaches offer more compact node embeddings with a
dimension of 64, compared to 256 for MLP models. However, the edge convolution layers
in GNNs are computationally more expensive than the dense layers in feed-forward neural
networks. On the other hand, convolutional layers have fewer parameters compared to dense
layers, which can be advantageous in terms of memory usage.

113

7. Experiments and Discussions
Table 7.5: MLP and GNN model parameters. Timing experiments are run on Tesla

T4 GPU (16 GB) and Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz. The
network is used with a batch size of one in the environment used during
model training.

Trainable parameters 304 641 238 849 119 811 95 043
Params size (MB) 1.22 0.96 0.48 0.38

Trackster-level input in 0 PU: O(102) nodes and O(103) edges
Input size (MB) 0.06 0.06 0.09 0.09
Forward/backward pass size (MB) 5.54 4.72 16.72 13.03
Avg. CPU inference [s/ev] 0.400 0.332 1.05 0.795
Avg. CPU training [s/ev] 0.424 0.394 1.15 0.965
Avg. GPU inference [s/ev] 0.00189 0.00175 0.00506 0.00424
Avg. GPU training [s/ev] 0.00195 0.00187 0.00540 0.00450

Trackster-level input in 140 PU: O(103) nodes and O(104) edges
Input size (MB) 0.41 0.41 0.73 0.73
Forward/backward pass size (MB) 46.16 41.04 156.40 121.84
Avg. CPU inference [s/ ev] 0.793 0.680 1.376 1.163
Avg. CPU training [s/ev] 0.840 0.753 1.703 1.412
Avg. GPU inference [s/ev] 0.00222 0.00205 0.00566 0.00480
Avg. GPU training [s/ev] 0.00228 0.00211 0.00602 0.00509

LC-level input in 140 PU: O(104) nodes and O(105) edges
Input size (MB) 4.10 4.10 7.30 7.30
Forward/backward pass size (MB) 461.60 410.40 1564.00 1218.40
Avg. CPU inference [s/ev] 2.97 3.27 10.3 8.4
Avg. CPU training [s/ev] 3.45 3.31 13.3 11.0
Avg. GPU inference [s/ev] 0.0182 0.0165 0.0477 0.0365
Avg. GPU training [s/ev] 0.0195 0.0175 0.0521 0.0403

Model MLP full MLP red. GNN full GNN red.

Table 7.5 provides the parameter sizes for the MLP and GNN models, including the full
and reduced (used for pile-up) versions. The table provides timing information for three
different scenarios. The first scenario involves smaller events with approximately 102 nodes
and 103 edges, such as the double pions in the 0 PU dataset. The second scenario deals with
events of a larger scale, consisting of O(103) nodes and O(104) edges, corresponding to the
full event graph in 140 PU. Lastly, a hypothetical scenario is presented where the network is
applied directly to the LCs, ranging one order of magnitude more than the trackster-level,
resulting in event sizes of approximately 104 nodes and 105 edges. Given very slow LC timing
results, going down to the level of individual hits (order of 105 hits and 106 edges) becomes
intractable (0.338 s/ev on GPU for a reduced GNN). This experimentally justifies the network
application on the trackster-level, since the time complexity is reduced by two magnitudes
when compared with the hit-level.

114

.. 7.6. Visual Inspection

It can be seen that the average inference time of the proposed GNN models scales roughly
linearly with the input size, which is necessary for scalable reconstruction in high PU. We also
point out that the GNN-based method runs natively on a GPU, with the current runtime for
a full 140 PU event being roughly 5 ms/event on a consumer-grade GPU. The algorithm can
be easily adapted to computing architectures compatible with popular ML frameworks such
as PyTorch or TensorFlow. This includes GPUs, and there is potential for integration even
with the field-programmable gate arrays (FPGAs) using dedicated ML compilers [HRD+20].

It should be noted that Table 7.5 provides timing results under the same conditions as
during model training. In this case, the server is shared among multiple users, and several
CPU processes could run concurrently. Consequently, these results offer a general overview
of the time trends rather than precise timing. For this reason (and for a reason of different
hardware), the difference in network timing can be seen when evaluated in the production
environment without interference from other processes.

Networks’ time and memory allocation, including data pre- and post-processing stages, is
directly measured within the CMSSW. In the case of the simple double pions with no pile-up,
the GNN model accounts for 5.1 ms of CPU time (0.4% of the entire HGCAL reconstruction
pipeline). In this case, the complete CMS reconstruction takes on average 1281 ms. The
MLP network exhibits even more efficient timing, requiring only 3.5 ms. In comparison, the
geometric linking approach takes 7.2 ms. As a result, for small event sizes, the neural network
approaches seem to be faster than the rule-based algorithm.

For the 200 PU events, there are notable changes in the performance of the different
approaches, as shown in Figures 7.19 and 7.20. The MLP still exhibits the lowest time
requirement, with 551.2 ms, accounting for 1.5% of the total reconstruction time. It also
has the lowest allocated memory of 225 MB. However, the GNN is considerably slower
in this scenario, taking 1091 ms, which makes up 3.2% of the total reconstruction time.
Geometric linking demonstrates reasonable scalability, with a time of 680 ms per event
(1.9% of reconstruction time), although it is still around 120 ms slower than MLP-based
linking. Regarding allocated memory, geometric linking requires the least amount at 185
MB, equivalent to 1.2% of the total allocated memory. Overall, the allocated memory for
the entire reconstruction of the 200 PU events reaches nearly 15.9 GB (TICL reconstruction
taking just 2%), with a total time of 36.28 ms per event.

7.6.8 Model Interpretability

In light of the model’s growing complexity and diminished interpretability, an investigation
was conducted to ascertain the individual feature contributions to the model’s output. The
Integrated Gradients (IG) algorithm [STY17], which is a widely adopted interpretability
technique, was employed for this purpose. IG assigns an importance score to each input
feature by approximating the integral of the gradients of the model’s output with respect to
the inputs.

In order to optimize a loss function within a NN, gradients are constructed. To determine
the contribution of individual input features to the loss function, the reverse process of
integration is employed. The calculation of the integral is inherently challenging and lacks
a definitive solution, necessitating the use of a Riemann Sum approximation. This involves
dividing the process into a fixed number of steps and establishing a baseline for comparison.
The baseline serves as a reference point against which the input vector is evaluated. The

115

7. Experiments and Discussions

(a) : Geometric linking timing in CMSSW. (b) : MLP timing in CMSSW.

(c) : GNN timing in CMSSW.

Figure 7.19: CMSSW CPU Intel Xeon (Skylake IBRS) timing of the pion events in 200 PU. Time
is per one event processing using the corresponding linking method. The timing was performed on
an empty server with no additional processes running in parallel. Plots created using [Fwy].

process commences by initializing all node features randomly, with the baseline as the starting
point. Subsequently, linear interpolation is performed between the baseline and the original
node features. Gradients are then calculated to assess the relationship between feature changes
and corresponding variations in the model’s predictions. Finally, a numerical approximation
of the integral is computed by averaging the gradients, serving as an indicator of the relative
importance of each node feature in influencing the model’s output.

Figure 7.21 illustrates the feature importance of both the MLP and GNN models for
the double pion dataset determined through IG. Both models concur on the significance
of spatial features such as z, η, ϕ, and the z component of the principal eigenvector in
generating the output. Additionally, the GNN model places considerable emphasis on the
zmin and zmax positions of the trackster skeletons, whereas these feature contributions are less
apparent in the MLP model. Certain features, including raw electromagnetic (EM) energy,
photon and electron probabilities, as well as LC and trackster density per event, are deemed

116

.. 7.6. Visual Inspection

(a) : Geometric linking memory allocation in CMSSW. (b) : MLP memory allocation in CMSSW.

(c) : GNN memory allocation in CMSSW.

Figure 7.20: CMSSW allocated memory of pions in 200 PU. Memory is per one event processing
using the corresponding linking method. Plots created using [Fwy].

inconsequential for both networks’ decision-making processes. The disregard for raw EM
energy may be attributed to its strong correlation with raw energy. Photon and electron
probabilities hold little relevance in this dataset composed solely of pions. Similarly, the
densities of LC and tracksters only hold significance when the dataset encompasses varying
event sizes (e.g., including both 140 PU and 0 PU), hence their minimal influence in this
context is expected. Overall, the GNN model assigns greater importance to features that are
relatively less exploited by the MLP model, highlighting the divergent feature preferences
between the two architectures.

The feature importance analysis is also done for multiparticle (Figure A.11) and single
particle in 140 PU (Figure A.12) datasets. In the case of the multiparticle dataset, a similar
overall trend in feature importance is observed as for the double pions, except the GNN
assigned higher contributions to the photon and electron PIDs, which is expected since these
particle types are now included in the dataset. Additionally, the raw energy feature gained
more importance in the GNN model, most likely, due to the presence of multiple particles

117

7. Experiments and Discussions
x y z eta ph
i

eig
_x

eig
_y

eig
_z

EV
1

EV
2

EV
3

sig
m

aP
CA

_x

sig
m

aP
CA

_y

sig
m

aP
CA

_z

nu
m

_L
C

nu
m

_h
its

ra
w_

en
er

gy

ra
w_

em
_e

ne
rg

y

ph
ot

on
 p

ro
b

ele
ctr

on
 p

ro
b

ch
ar

ge
d_

ha
dr

on
 p

ro
b

ne
ut

ra
l_

ha
dr

on
 p

ro
b

z_
m

in

z_
m

ax

len
gt

h

no
de

 in
ne

r d
eg

re
e

de
gr

ee
 ce

nt
ra

lit
y

clu
ste

rin
g

co
ef

fs

LC
_d

en
sit

y

tra
ck

ste
r_

de
ns

ity tim
e

0.
00

34

0.
01

0.
18 0.
3

0.
24

0.
00

09
6

0.
00

18

0.
06

0.
00

26

0.
00

08
6

0.
00

06
7

0.
00

31

0.
00

09
8

0.
00

23

0.
00

12

0.
00

19

0.
00

2

9.
7e

-0
6

4.
5e

-0
5

6.
7e

-0
5

0.
00

6

0.
00

47

0.
05

2

0.
03

8

0.
00

19

0.
01

5

0.
03

3

0.
03

7

3.
3e

-0
6

5.
6e

-0
6

0.
00

3

Feature Importance Integrated Gradients MLP

10 5

10 4

10 3

10 2

10 1

(a) : Feature importance of the MLP model trained on double pions in 0 PU.

x y z eta ph
i

eig
_x

eig
_y

eig
_z

EV
1

EV
2

EV
3

sig
m

aP
CA

_x

sig
m

aP
CA

_y

sig
m

aP
CA

_z

nu
m

_L
C

nu
m

_h
its

ra
w_

en
er

gy

ra
w_

em
_e

ne
rg

y

ph
ot

on
 p

ro
b

ele
ctr

on
 p

ro
b

ch
ar

ge
d_

ha
dr

on
 p

ro
b

ne
ut

ra
l_

ha
dr

on
 p

ro
b

z_
m

in

z_
m

ax

len
gt

h

no
de

 in
ne

r d
eg

re
e

de
gr

ee
 ce

nt
ra

lit
y

clu
ste

rin
g

co
ef

fs

LC
_d

en
sit

y

tra
ck

ste
r_

de
ns

ity tim
e

0.
00

27

0.
01

5

0.
18

0.
14

0.
03

9

0.
00

12

0.
00

43

0.
11

0.
00

7

0.
00

4

0.
00

22

0.
00

75

0.
00

24

0.
00

65

0.
00

43

0.
00

39

0.
00

79

0.
00

02
1

9.
6e

-0
5

0.
00

02
5

0.
01

2

0.
01

7

0.
16

0.
11

0.
00

62

0.
01

0.
07

8

0.
04

8

4.
2e

-0
6

8.
2e

-0
6

0.
01

5

Feature Importance Integrated Gradients GNN

10 5

10 4

10 3

10 2

10 1

(b) : Feature importance of the GNN model trained on double pions in 0 PU.

Figure 7.21: Integrated gradients feature importance for the double pion dataset in 0 PU. The
values are calculated with respect to the random baselines.

interacting electromagnetically. For the PU dataset, the GNN model showed increased
importance for the x barycenter position and the sigma of the x and y PCA components.
Furthermore, time-related and graph structural features gained significance in the GNN
model.

Summary. Overall, the feature importance analysis revealed consistent patterns across
different datasets, with the GNN model often assigning greater importance to features that
are not as heavily utilized by the MLP model. A similar analysis can be done for the edge
features but is not included in this work.

7.6.9 Model Output Post-Processing

As a part of the experiments aiming to further improve NN predictions, the utilization of
the Louvain community detection method as the network post-processing step was explored.
Since the output of the network is technically a similarity graph, with each edge having
a weight, one can try detecting communities within that graph, whose components would
translate to separate supertracksters. Such post-processing was anticipated to be particularly
useful for the multiparticle case, which holds more potential for incorrect interconnection
between the non-matching showers through a low number of edges, which would likely be
removed by community detection. The Louvain method has been chosen for its relatively
low complexity O(n log n), compared to a more standard spectral clustering with O(n3),
where n is the number of nodes. It is based on the concept of modularity, measuring the
strength of the network division into communities. The Louvain algorithm follows a two-
step process: the “greedy” phase and the “aggregation” phase. In the greedy phase, the
algorithm assigns each node in the network to its own separate community. Then, it iteratively
examines each node and evaluates the potential gain in modularity resulting from moving

118

.................................... 7.7. Clustering Model Embeddings

the node to a neighboring community. The algorithm evaluates a range of possible moves
and selects the one that maximizes the modularity gain. This process is repeated until no
further improvement in modularity can be achieved. In the aggregation phase, the network
is transformed into a new network where communities detected in the previous phase are
represented as “meta-nodes”. This step reduces the complexity of the network and allows for
the detection of higher-level community structures. The two phases of the Louvain algorithm
are iterated multiple times. The edges’ strength (i.e., NN predictions) is also considered
during the modularity optimization.

Two approaches to Louvain post-processing have been explored. The first one involved
applying community detection to the entire graph, where the edge weights were derived from
the predictions of the NN. In the second approach, edges below the confidence threshold of
the NN were removed before applying community detection to the reduced graph. However,
neither of these two approaches demonstrated superior performance compared to the clustering
based on original network predictions. When applying the Louvain algorithm to the full
graphs, it had a tendency to merge distinct showers together due to the network assigning
relatively high scores to even incorrect edges (i.e., the confidence threshold is not accounted
for in the used version of the algorithm). Conversely, when applied to the reduced graph, the
algorithm tended to excessively separate tracksters, leading to the poorer recall. As a result,
such post-processing was deemed inefficient.

7.7 Clustering Model Embeddings

The analysis of trackster embeddings using T-SNE revealed that the network exhibits an
ability to group related trackster fragments together in the embedding space, even without
explicit training for that purpose. Leveraging this insight, the NN embeddings are utilized as
inputs for standard clustering methods. Results of the clustering are compared with what was
obtained from spatial clustering described at the beginning of this Chapter. In the case of
double pions, we observe improvements across all performance metrics compared to clustering
solely based on spatial features (Figure 7.22). The AFF method stood out with the best
performance, achieving a homogeneity score of 0.927 and an F-score of 0.415. Moreover,
AFF produced an average number of clusters of 6.29, three times less than geometric linking.
These results represent a noteworthy improvement of more than 20% in F-score compared to
geometric linking while experiencing a decrease of 3% in homogeneity. Furthermore, AFF
outperformed its spatial feature-based counterpart by nearly two-fold. However, it is essential
to note that AFF still fell significantly short compared to MLP and GNN, lagging behind
by more than 20% in terms of F-score. These findings highlight the potential of utilizing
trackster embeddings for clustering tasks, since they capture more discriminative information
than spatial features alone.

7.8 Contrastive Learning

Clustering in model embedding space has shown potential for learning representative trackster
embeddings. This observation has led to the consideration of training the network with the
specific metric learning objective. Experiments on contrastive GNN linking have been initiated,
although not fully completed as of this moment; therefore, only the outline of the experiments

119

7. Experiments and Discussions

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es
Homogeneity Weighted

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

Completeness Weighted

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

V-measure Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
ARI Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Precision Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
Recall Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
Fscore Weighted

Geom DBSCAN GMM AGGL AFF MS
0

5

10

15

20

25

30
Number of Clusters

Figure 7.22: Evaluation of the standard clustering methods applied to the GNN trackster
embeddings.

is provided without the experimental results. Further exploration and experimentation are
needed to fully investigate the potential of contrastive GNN linking. This includes fine-tuning
the network architecture, optimizing the contrastive loss function, and conducting evaluations
on various datasets.

The idea behind contrastive GNN linking is to train the network to learn a metric maximizing
the similarity between related tracksters and minimizing it between unrelated tracksters. The
network leverages the same GNN backbone (initial features pre-processing and static-graph
EdgeConv layers), stripped of the final edge classification sub-module. The model outputs
embeddings for each input trackster in the event. After the network is trained, computing
the similarity between two tracksters boils down to computing the dot product between their
L2-normalized embeddings (cosine similarity), which is a highly efficient operation. A modern
processor can perform millions of such operations per second.

The training process involves training the network in a Siamese fashion – several-stream
network sharing its parameters. The network receives a labeled tuple of trackster features as an
input (query q, positive p, and negatives n). Positive trackster p comes from the same shower
as the query, while the negative sample n comes from a different shower. After the network
generates embeddings for the input tracksters, distances between sample representations are
computed. The model is then optimized to minimize the distance for similar samples and
maximize it for dissimilar samples using contrastive loss [KTW+21]:

L =
{1

2d2 (hq, hj) if δ(q, j) = 1,
1
2 (max(0, α− d(hq, hj)))2 if δ(q, j) = 0,

(7.5)

where δ(q, j) = 1 indicates a pair of tracksters coming from the same shower, while δ(q, j) = 0
means they are not. Losses are initially calculated in a pair-wise manner query-positive and
query-negative and subsequently aggregated for the whole event. α is a margin hyperparameter
that determines when non-matching pairs are separated by a wide enough distance for the
loss to disregard them. d(hq, hj) denotes the Euclidean distance between the L2-normalized
trackster embeddings h. The negative vector forces learning in the network, while the positive

120

... 7.9. Summary

Figure 7.23: The learning process of the metric learning model is depicted on the left of the
picture, in which the model learns to minimize distance for similar samples and maximize distance
for dissimilar samples. The hard-, semi-, and easy-negative samples are separated on the right
side based on their distance from the query feature vector [Jek21].

vector serves as a regularizer. The margin ensures that the model does not linger, enlarging
the distinction between a triplet’s positive and negative samples when it already does so
properly, allowing it to concentrate on more challenging triplets.

During training, for every trackster in the event, positive and negative tracksters are chosen,
forming a training tuple. However, randomly sampling training tuples is an inefficient strategy,
since many of them may already fulfill the contrastive loss margin criteria. In such a case, the
GNN model’s weights would remain unchanged, and no learning would occur since an error
is not created. A typical technique for choosing the optimal training triplets involves hard
negative mining. Adverse pair selection entails iterating over non-matching tracksters that
are “hard” negatives (Figure 7.23), meaning they are similar in the descriptor space and incur
a high loss. Negative examples are chosen from fragments of the showers other than that
the query trackster belongs to. Out of all non-matching tracksters, the k nearest neighbors
are selected as negatives. Hard negative mining is repeated for every event at each iteration,
hence the hard negatives are chosen based on the current GNN parameters. The positives are
selected randomly from the matching shower.

7.9 Summary

The experimental results consistently suggest that incorporating the trackster neighborhood
within the point cloud allows the learned models to extract additional information about the
reconstructed shower, leading to enhanced reconstruction performance across all datasets.
Nevertheless, the timing results obtained in the production environment indicate that the
inference time of the GNN network is two times slower compared to the existing linking
plug-in. It is worth noting that this situation might change in the future when executed on
a GPU within the CMSSW framework. However, at this point, GPU support for network
inference in the production environment is currently unavailable.

121

122

Chapter 8

Conclusions

This thesis explored a promising approach to trackster linking in the HGCAL reconstruction
pipeline using Graph Neural Networks, with the main focus on accumulating separate
components of hadronic showers. The task for the network was framed as the between-trackster
edge classification in a sparse graph representation of pre-clustered energy deposits. This
approach offers significant advantages, including a reduction in problem size by approximately
two orders of magnitude compared to starting from lower-level energetic objects such as
recHits, and the ability to learn particle shower structures from their graph representation.
The approach employed the static collision event graphs with the custom Edge Convolution-
based model with attention. The generated weighted graph was then subjected to edge
probability thresholding and identification of the connected components, corresponding to
individual particle showers. A relatively compact GNN model, comprising approximately
120k parameters, facilitates moderately rapid inference with a full time including pre- and
post-processing of approximately 1 s per collision event in 200 PU. Additional optimizations
hold the potential of using this network for offline event reconstruction applications.

The model was trained and tested on three separate datasets with varying levels of
complexity, generated specifically for this task. Namely, datasets contained events with two
close-by pions, multiple randomly chosen particles, and a single particle in pile-up. The
proposed algorithm was also tested and deployed in the CMSSW production framework. The
results demonstrated that the model performs remarkably well for all explored scenarios. For
double pions in 0 PU, it successfully assigned even small distant tracksters to the correct
supertrackster, resulting in high-quality and efficient reconstruction. While the performance
of the GNN approach on the multiparticle dataset, where avoiding incorrect merging of
individual showers together is of difficulty, was not as outstanding, it still generated tracksters
with high homogeneity. As for the dataset including pile-up, the network exhibited exceptional
performance by effectively distinguishing between PU and non-PU tracksters. As a result,
the GNN-based approach showed a significant improvement over the currently used geometric
linking by correctly clustering a larger portion of the event’s energy across all three datasets.
Additionally, it was found that the model trained on double pions also performs well for other
particle types, such as tt̄ events, and even the pile-up scenario. Likewise, the model trained on
the multiparticle samples demonstrated effectiveness for the double pions dataset, indicating
its ability to generalize for the cases outside its training domain.

123

8. Conclusions ..
8.1 Future Work

In future work, there are several avenues to optimize the proposed GNN-based network for
faster inference. One of them is to explore model compression techniques, such as pruning,
aiming to remove unnecessary connections or parameters from the network. Additionally,
quantization can be applied to convert the model’s parameters from a higher precision format
(e.g., float32) to a lower precision format (float8), reducing memory usage and computational
requirements. Another direction to explore is the parallel processing of multiple events since
the network operates faster in batches rather than on a per-event basis. It could be also
beneficial to consider splitting the graph into multiple subgraphs, such as neighborhoods of
tracks or L1 objects and using the network on these local graphs, reducing the network input
size. Size could also be reduced by applying the GNN as a next step after the geometric
linking, with a potential of 40–50% input reduction. Exploring alternative graph-building
techniques, such as using a cone instead of a cylindrical window opened at the tracksters’
barycenters or skeleton nodes, also holds a promise for reducing the number of links between
tracksters. In conclusion, the proposed GNN algorithm offers inherent parallelizability and
can leverage hardware acceleration through graphics processing units, field-programmable
gate arrays, or specialized ML-specific processors in the production environment.

To enhance the performance and capabilities of the model, extending the model to include
track information and internal features learned from the constituent LCs could be an interesting
direction. Incorporating track information would potentially allow us to estimate the correct
number of charged particles in the event.

While I have shown that a per-edge loss function already converges to an adequate physics
performance overall, the model can be further improved with a more physics-motivated
optimization criterion. Such a loss function could take into account event-level predictions in
addition to or instead of the per-edge ones.

In order to develop an ML-based linking algorithm usable in production, a realistic PU
simulated dataset, including detailed ground truth interactions with the detector material,
needs to be used for the model training. The optimization and validation process of the network
should involve a diverse range of realistic PU events to capture global linking properties,
as well as diverse particle gun samples to ensure the model is generalizable. To evaluate
the reconstruction performance, a more diverse range of particle types needs to be studied
in detail. Additionally, assessing high-level derived quantities such as missing transverse
momentum and jet reconstruction should provide a more comprehensive understanding of the
reconstruction performance.

When employed in production, the algorithm must be adjusted to frequently changing
experimental conditions. This can be addressed by performing periodic retraining with
up-to-date running condition data. In realistic GNN training, care must be taken to ensure
that the reconstruction quality of uncommon particles and particles in the low-probability tails
of distributions are not harmed and that the reconstruction performance remains consistent,
which may be addressed with detailed simulations and weighting schemes.

Further investigating clustering techniques in the embedding space produced by NNs
also presents an opportunity for exploration. Specifically, training the neural network for
metric learning, such as contrastive linking discussed in this thesis, can allow for the efficient
separation of individual showers. Although these experiments have been initiated, they require
completion to obtain conclusive results.

124

Appendix A

Additional Figures and Tables

A.1 Raw Dataset Properties

Tables A.1–A.6 give the properties of individual sub-trees in raw ROOT dataset files.

Table A.1: Properties of the clusters sub-tree in the raw dataset ROOT files.

energy Layer-cluster energy, calculated as a sum of the constituent hits’
energies.

position
x/y/z/eta/phi

The LC’s barycenter coordinates, computed by energy-weighted
average of the constituent hit coordinates, represented in both
cartesian (x, y, z) coordinate space and (η, ϕ) space.

cluster_type List of cluster types used to identify successive layers based on
their z coordinate: CE_E_120 = 0, CE_E_200 = 1, CE_E_300 = 2,
CE_H_120_F = 3 (Fine), CE_H_200_F = 4 (Fine), CE_H_300_F =
5 (Fine), CE_H_120_C = 6 (Coarse), CE_H_200_C = 7 (Coarse),
CE_H_SCINT_C = 8 (Scintillators). The first part of the cluster
type indicates the detector compartment (CE-E or CE-H), while
the second part indicates the sensor sizes (120, 200, or 300 µm)
as described in Section 2.6.1.

cluster_time LC’s time accumulated from the rechit times. Set to -99 for
low-energy layer-clusters.

cluster_timeErr LC’s time error.
cluster_localDensity Local energy density of LCs computed by CLUE through the

application of a Gaussian convolution kernel.
cluster_number_of
_hits

Number of hits in LCs.

Property Definition

125

A. Additional Figures and Tables
Table A.2: Properties of the tracksters, simtrackstersSC, simtrackstersCP, and

trackstersMerged sub-trees in the raw dataset ROOT files.

nClusters Total number of layer-cluster in the event. It should be noted
that the 1-hit LCs (filtered out during reconstruction) are also
included in this number.

nTracksters Total number of tracksters in the event.
time Trackster “barycenter” time. Only available for the tracksters

reaching a certain energy threshold, otherwise set to -99. It is a
distance-weighted average of the LCs times.

timeError Trackster time error.
raw_energy Trackster raw energy accumulated as a sum of the constituent LC

energies.
raw_em_energy Trackster electromagnetic raw energy accumulated as a sum of

the constituent LC energies.
trackser_barycenter
x/y/z/eta/phi

Positions of tracksters’ barycenters, computed by energy-weighted
average of the constituent LC coordinates, represented in both
Cartesian (x, y, z) coordinate space and (η, ϕ) space. Unlike layer-
cluster barycenters, the z trackster coordinate may not align with
any particular detector layer but rather fall between the two
adjacent layers.

EV1/EV2/EV3 The three eigenvalues of energy-aware PCA applied to the collec-
tion of constituent LCs.

eVector0_x/y/z The first principal component coordinates x, y, z of energy-aware
PCA.

sigmaPCA1/2/3 The three component-wise reconstruction errors from energy-
aware PCA.

id_probabilities Vector of 8 probabilities: [photon, electron, muon, neutral pion,
charged hadron, neutral hadron, ambiguous, unknown] produced
by a PID CNN applied to individual trackster (Section 3.3.3).

vertices_indices Vector of LC indices in the global collection represented as a
vector of vectors.

vertices_x/y/z Vector of LC positions represented as a vector of vectors.
vertices_energy Vector of LC energies, represented as a vector of vectors.
vertices_multipli-
city

Vector of LC multiplicities for each trackster represented as a
vector of vectors. It indicates the number of times a particular
LC has been used. For reconstructed tracksters, each LC is only
assigned to one trackster, so the vector of multiplicities is always
a vector of ones.

layer_cluster_seed Index of the CLUE3D LC seed for each trackster.

Property Definition

126

.......................................A.1. Raw Dataset Properties

Table A.3: Table of the candidates sub-tree features in the raw ROOT dataset.

candidate_charge Electric charge of the TICLCandidates.
candiate_pdgID PDG ID of the TICLCandidates.
candidate_id_prob Vector of 8 probabilities: [photon, electron, muon, neutral pion,

charged hadron, neutral hadron, ambiguous, unknown] produced
by a PID CNN applied to individual trackster (section 3.3.3).

candidate_time/
timeErr

TICLCandidate time and time error.

candidate_px/py/pz TICLCandidate momentum.
track_in_candidate Tracks assigned to individual TICLCandidates.
trackster_in_
candidate

Vector of indices of CLUE3D tracksters in the TICLCandidates.

Property Definition

Table A.4: Table of the graph sub-tree features in the raw ROOT dataset.

node_linked_inners Indices of the linked inner trackster (closer to the CMS vertex)
for each trackster.

node_linked_outers Indices of the linked outer trackster (further from the CMS vertex)
for each trackster.

isRootTrackster Is set to True if there are no linked inners, False otherwise.

Property Definition

Table A.5: Table of the tracks sub-tree features in the raw ROOT dataset.

track_hgcal
x/y/z/eta/phi

Tracks propagated to HGCAL front face positions.

track_hgcal
px/py/pz

Track propagated to HGCAL front face momentum.

track_pt Track transversal momentum pT .
track_charge Track charge.
track_time/time_err Track time and time error at the HGCAL front face.
track_time_quality Track time quality, > 0.5 is a good quality.
track_nhits Number of hits in the track.

Property Definition

127

A. Additional Figures and Tables
Table A.6: associations sub-tree features in the raw ROOT dataset. The same properties

are provided for the trackstersMerged, but they are not used in this study.

recoToSim_SC/
recoToSim_CP

For each CLUE3D trackster, a vector of simtracksters SC/CP
indices in the Reco-To-Sim map.

recoToSim_SC_score/
recoToSim_CP_score

A list of Reco-to-Sim scores quantifying the degree of similarity
between a recotrackster and all simtracksters from SimClus-
ter/CaloParticle in the event. A score of 0 indicating a perfect
match and a score of 1 indicating a complete mismatch.

simToReco_SC/
simToReco_CP

For each simtrackster SC/CP, a vector of recotrackster indices
in the Sim-To-Reco map.

simToReco_SC_score/
simToReco_CP_score

A list of Sim-to-Reco scores quantifying the degree of similarity
between a simtrackster from SimCluster and all tracksters in
the event. A score of 0 indicating a perfect match and a score
of 1 indicating a complete mismatch.

recoToSim_SC_sharedE/
recoToSim_CP_sharedE

Shared energy between individual recotracksters and all the
simtracksters SC or CP.

Property Definition

128

..A.2. Dataset Analysis

A.2 Dataset Analysis

Figure A.1 provides an additional energy distribution illustration of the multiparticle dataset,
as a part of the dataset exploratory analysis. Figures A.2, A.3, and A.4 give correlation
matrices for double pion and multiparticle datasets, and the difference of major and PU
tracksters, respectively.

0 200 400 600 800 1000 1200 1400
Energy [GeV]

100

101

102

103

104

105

Co
un

t

Recotrackster energy distribution

0 100 200 300 400 500 600 700
Energy [GeV]

100

101

102

103

Co
un

t

Simtrackster energy distribution

Figure A.1: Energy distribution for reco- and simtracksters for 10 000 events from the multiparticle
dataset in 0 PU. Original simulated particle energies are in the range from 10 to 600 GeV, uniformly
distributed.

x y z eta phi eigen_x

eigen_y

eigen_z

EV1
EV2

EV3
sigmaPCA1

sigmaPCA2

sigmaPCA3

num LC

raw_energy

raw_em_energy

photon prob

electron prob

muon prob

neutral_pion prob

charged_hadron prob

neutral_hadron prob

ambiguous

unknown

num hits

num clusters event

num tracksters event

time

x
y
z

eta
phi

eigen_x
eigen_y
eigen_z

EV1
EV2
EV3

sigmaPCA1
sigmaPCA2
sigmaPCA3

num LC
raw_energy

raw_em_energy
photon prob

electron prob
muon prob

neutral_pion prob
charged_hadron prob
neutral_hadron prob

ambiguous
unknown
num hits

num clusters event
num tracksters event

time

Correlation Matrix of the Trackster Features

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A.2: The correlation matrix for the chosen trackster features for 5000 double pion events
in 0 PU dataset.

129

A. Additional Figures and Tables

x y z eta phi eig_x
eig_y

eig_z
EV1

EV2
EV3

sigmaPCA_x

sigmaPCA_y

sigmaPCA_z

num_LC

num_hits

raw_energy

raw_em_energy

photon prob

electron prob

muon prob

neutral_pion prob

charged_hadron prob

neutral_hadron prob

z_min
z_max

length
node inner degree

degree centrality

clustering coeffs

LC_density

trackster_density

time

x
y
z

eta
phi

eig_x
eig_y
eig_z
EV1
EV2
EV3

sigmaPCA_x
sigmaPCA_y
sigmaPCA_z

num_LC
num_hits

raw_energy
raw_em_energy

photon prob
electron prob

muon prob
neutral_pion prob

charged_hadron prob
neutral_hadron prob

z_min
z_max
length

node inner degree
degree centrality
clustering coeffs

LC_density
trackster_density

time

Correlation Matrix of the Trackster Features

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A.3: The correlation matrix for the chosen trackster features for 5000 multiparticle events
dataset in 0 PU.

x y z eta phieig_x
eig_y

eig_z
EV1

EV2
EV3

sigmaPCA_x

sigmaPCA_y

sigmaPCA_z

num_LC

num_hits

raw_energy

raw_em_energy

photon prob

electron prob

muon prob

neutral_pion prob

charged_hadron prob

neutral_hadron prob

z_min
z_max

length
node inner degree

degree centrality

clustering coeffs

LC_density

trackster_density

time

x
y
z

eta
phi

eig_x
eig_y
eig_z
EV1
EV2
EV3

sigmaPCA_x
sigmaPCA_y
sigmaPCA_z

num_LC
num_hits

raw_energy
raw_em_energy

photon prob
electron prob

muon prob
neutral_pion prob

charged_hadron prob
neutral_hadron prob

z_min
z_max
length

node inner degree
degree centrality
clustering coeffs

LC_density
trackster_density

time

Correlation Matrix Difference
for non-PU and PU tracksters

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure A.4: The correlation matrix difference of the PU and non-PU tracksters for the chosen
trackster features in a single pion in 140 PU events. The difference between the two is very subtle.
The node’s inner degree for PU tracksters not included in the graph, is always zero, indicated by
their corresponding white row and column.

130

........................ A.3. Standard Clustering Methods with Multiparticle Dataset

A.3 Standard Clustering Methods with Multiparticle Dataset

Table A.7 and Figure A.5 provide additional performance evaluation of the standard clustering
methods on the multiparticle dataset. Parameters of these methods are listed in Section 6.5.1.

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Homogeneity Weighted

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

Completeness Weighted

Geom DBSCAN GMM AGGL AFF MS
0.0

0.2

0.4

0.6

0.8

1.0

V-measure Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
ARI Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Precision Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
Recall Weighted

Geom DBSCAN GMM AGGL AFF MS

0.0

0.2

0.4

0.6

0.8

1.0
Fscore Weighted

Geom DBSCAN GMM AGGL AFF MS

50

75

100

125

150

175

200

Number of Clusters

Figure A.5: Evaluation of standard clustering methods versus the geometric linking for the
multiparticle dataset.

Table A.7: Multiparticle dataset clustering with standard clustering methods. All
evaluation metrics consider the energy of individual tracksters as described
in Section 6.5. GMM stands for Gaussian Mixture models, MS for Mean
shift, AGG for agglomerative clustering, and AFF for affinity propagation.
Best values are highlighted in bold. DBSCAN is additionally weighting
point contributions by their energy. The initial average number of tracksters
is N̄ = 215.4.

Homogeneity 0.930 0.945 0.934 0.926 0.934
Completeness 0.813 0.808 0.813 0.813 0.815
V-measure 0.863 0.869 0.868 0.864 0.864
ARI 0.112 0.126 0.145 0.153 0.161
B-Cubed Precision 0.416 0.509 0.502 0.476 0.453
B-Cubed Recall 0.115 0.084 0.097 0.106 0.126
B-Cubed Fscore 0.124 0.134 0.158 0.167 0.174
Avg. num. of trackst. 114.4 113.2 93.3 90.5 94.5
Best feature set x, y, z, (E) x, y, z x, y, z η, ϕ, r x, y, z

Algorithm DBSCAN GMM AGG AFF MS

131

A. Additional Figures and Tables
A.4 Model Details

Table A.8 provides supplemental information to model training setups discussed in Section 7.4.

Table A.8: Best model parameters for individual datasets

Num. events (Train/Val/Test) 46.5k / 5.8k / 5.8k 19.7k / 4.9k / 4.9k 14.5k / 3.6k / 3.6k
Number of edges ∼10.7 mil. ∼41.1 mil. ∼4.1 mil.

Pos. / Neg. imbalance 78.4% / 21.6% 41.2% / 58.8% 39.8% / 60.2%
Pair-Wise MLP

Architecture hidden dim = 256,
3 FC sub-modules

hidden dim = 256,
3 FC sub-modules

hidden dim = 256,
2 FC sub-modules

Loss Function Quality Focal Loss
β = 2

Focal Loss
α = 0.45, γ = 2

Focal Loss
α = 0.40, γ = 2

Loss Param. LR = 10−3

Reduced
on plateau

LR = 10−3

Reduced
on plateau

LR = 10−3

Cosine annealing

Training epochs 30 25 25
Validation AUC 0.85 0.85 0.99

Confidence threshold 0.90 0.80 0.70
Graph Neural Network

Architecture hidden dim = 64
edge dim = 32
4 EdgeConvs

hidden dim = 64
edge dim = 32
4 EdgeConvs

hidden dim = 64
edge dim = 32
3 EdgeConvs

Loss Function Quality Focal Loss
β = 2

Focal Loss
α = 0.45, γ = 2

Focal Loss
α = 0.42, γ = 2

Loss Param. LR = 10−3

Cosine annealing
LR = 10−3

Cosine annealing
LR = 10−4

Cosine annealing
Training epochs 50 45 50
Validation AUC 0.94 0.90 1.00

Confidence threshold 0.85 0.80 0.70

Dataset Double Pions Multiparticle Single Particle in
140 PU

132

.................................... A.5. Clustering Metrics Evaluation

A.5 Clustering Metrics Evaluation

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Homogeneity Weighted

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

Completeness Weighted

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

V-measure Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
ARI Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Precision Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
Recall Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
Fscore Weighted

Geometric MLP GNN

50

75

100

125

150

175

200

225

Number of Clusters

Figure A.6: Multiparticle dataset clustering performance for geometric, pair-wise MLP and GNN
linking methods.

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Homogeneity Weighted

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

Completeness Weighted

Geometric MLP GNN
0.0

0.2

0.4

0.6

0.8

1.0

V-measure Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
ARI Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0

Ob
se

rv
ed

 v
alu

es

Precision Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
Recall Weighted

Geometric MLP GNN

0.0

0.2

0.4

0.6

0.8

1.0
Fscore Weighted

Geometric MLP GNN
0

5

10

15

20

25

30
Number of Clusters

Figure A.7: Pile-up dataset clustering performance for geometric, pair-wise MLP and GNN linking
methods.

133

A. Additional Figures and Tables

0 500 1000 1500 2000 2500
Energy [GeV]

100

101

102

103

104

Co
un

ts

CLUE3D Tracksters Energy distribution

Figure A.10: Distribution of the CLUE3D trackster energies in tt̄ events.

A.6 Energy Intersection Over Union

Figures A.8 and A.9 present the EIoU score described in Section 7.6.2 distributions for
multiparticle and PU datasets, respectively.

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

CLUE3D Tracksters

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

TICL Candidates

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

CNN SuperTracksters

0.00 0.25 0.50 0.75 1.00
Score (Energy over)

101

102

103

104

En
tri

es

GNN SuperTracksters
Recotrackster to Simtrackster from CP Energy Score distribution

Figure A.8: Multiparticle EIoU score distributions for 1000 events for a) initial tracksters produced
by CLUE3D, b) candidates created by geometric linking, c) MLP, and d) GNN supertracksters
(from left to right).

0.0 0.2 0.4 0.6 0.8 1.0
Score (Energy over)

101

102

103

104

105

En
tri

es

CLUE3D Tracksters

0.0 0.2 0.4 0.6 0.8 1.0
Score (Energy over)

101

102

103

104

105

En
tri

es

TICL Candidates

0.0 0.2 0.4 0.6 0.8 1.0
Score (Energy over)

101

102

103

104

105

En
tri

es

CNN SuperTracksters

0.0 0.2 0.4 0.6 0.8 1.0
Score (Energy over)

101

102

103

104

105

En
tri

es

GNN SuperTracksters
Single Particle in 140 PU RecoTrackster to SimTrackster from CP EIoU scores

Figure A.9: Single particle in 140 PU EIoU score distributions for 1000 events for a) initial
tracksters produced by CLUE3D, b) candidates created by geometric linking, c) MLP, and d)
GNN supertracksters (from left to right).

134

..A.7. Model Interpretability

A.7 Model Interpretability
Figures A.11 and A.12 show the importance of individual node features for MLP and GNN
networks trained on multiple particles in 0 PU and a single particle in 140 PU datasets,
respectively. The importance of the features is estimated through the use of IG, as described
in Section 7.6.8.

x y z eta ph
i

eig
_x

eig
_y

eig
_z

EV
1

EV
2

EV
3

sig
m

aP
CA

_x

sig
m

aP
CA

_y

sig
m

aP
CA

_z

nu
m

_L
C

nu
m

_h
its

ra
w_

en
er

gy

ra
w_

em
_e

ne
rg

y

ph
ot

on
 p

ro
b

ele
ctr

on
 p

ro
b

ch
ar

ge
d_

ha
dr

on
 p

ro
b

ne
ut

ra
l_

ha
dr

on
 p

ro
b

z_
m

in

z_
m

ax

len
gt

h

no
de

 in
ne

r d
eg

re
e

de
gr

ee
 ce

nt
ra

lit
y

clu
ste

rin
g

co
ef

fs

LC
_d

en
sit

y

tra
ck

ste
r_

de
ns

ity tim
e

0.
00

46

0.
01

0.
23

0.
36

0.
03

7

0.
00

04
3

0.
00

19

0.
01

9

0.
00

21

0.
00

26

0.
00

12

0.
00

66

0.
00

06
7

0.
00

14

0.
00

76

0.
02

2

0.
00

79

0.
00

7

0.
00

14

0.
00

07
8

0.
01

1

0.
00

77

0.
07

4

0.
06

7

0.
00

6

0.
01

7

0.
02

9

0.
05

1

1.
7e

-0
5

2.
6e

-0
5

0.
00

53

Feature Importance Multiparticle Integrated Gradients MLP

10 4

10 3

10 2

10 1

(a) : Feature importance of the MLP model.

x y z eta ph
i

eig
_x

eig
_y

eig
_z

EV
1

EV
2

EV
3

sig
m

aP
CA

_x

sig
m

aP
CA

_y

sig
m

aP
CA

_z

nu
m

_L
C

nu
m

_h
its

ra
w_

en
er

gy

ra
w_

em
_e

ne
rg

y

ph
ot

on
 p

ro
b

ele
ctr

on
 p

ro
b

ch
ar

ge
d_

ha
dr

on
 p

ro
b

ne
ut

ra
l_

ha
dr

on
 p

ro
b

z_
m

in

z_
m

ax

len
gt

h

no
de

 in
ne

r d
eg

re
e

de
gr

ee
 ce

nt
ra

lit
y

clu
ste

rin
g

co
ef

fs

LC
_d

en
sit

y

tra
ck

ste
r_

de
ns

ity tim
e

0.
00

78

0.
02

6

0.
11

0.
14

0.
03

5

0.
00

16

0.
00

63

0.
06

0.
00

73

0.
00

5

0.
00

28

0.
01

9

0.
00

34

0.
00

58

0.
01

6

0.
04

9

0.
01

8

0.
01

9

0.
00

64

0.
00

25

0.
02

2

0.
01

7

0.
11

0.
16

0.
02

0.
00

53

0.
02

0.
09

4

3.
2e

-0
6

4.
4e

-0
6

0.
00

76

Feature Importance Multiparticle Integrated Gradients GNN

10 5

10 4

10 3

10 2

10 1

(b) : Feature importance of the GNN model.

Figure A.11: Integrated gradients feature importance for the multiple particles in 0 PU. The
values are calculated with respect to the random baselines.

x y z eta ph
i

eig
_x

eig
_y

eig
_z

EV
1

EV
2

EV
3

sig
m

aP
CA

_x

sig
m

aP
CA

_y

sig
m

aP
CA

_z

nu
m

_L
C

nu
m

_h
its

ra
w_

en
er

gy

ra
w_

em
_e

ne
rg

y

ph
ot

on
 p

ro
b

ele
ctr

on
 p

ro
b

ch
ar

ge
d_

ha
dr

on
 p

ro
b

ne
ut

ra
l_

ha
dr

on
 p

ro
b

z_
m

in

z_
m

ax

len
gt

h

de
gr

ee
 ce

nt
ra

lit
y

clu
ste

rin
g

co
ef

fs

LC
_d

en
sit

y

tra
ck

ste
r_

de
ns

ity tim
e

0.
08

2

0.
01

2

0.
00

87

0.
02

9

0.
01

1

0.
01

1

0.
00

35

0.
00

9

0.
01

9

0.
01

1

0.
00

93

0.
06

5

0.
01

7

0.
01

7

0.
04

6

0.
00

56

0.
04

6

0.
02

2

0.
01

1

0.
00

22

0.
06

9

0.
06

9

0.
00

63

0.
01

1

0.
08

3

0.
17

0.
13

0.
00

07
2

0.
00

04
6

0.
02

2

Feature Importance of Single Particle in 140 PU Integrated Gradients MLP

10 3

10 2

10 1

(a) : Feature importance of the MLP model.

x y z eta ph
i

eig
_x

eig
_y

eig
_z

EV
1

EV
2

EV
3

sig
m

aP
CA

_x

sig
m

aP
CA

_y

sig
m

aP
CA

_z

nu
m

_L
C

nu
m

_h
its

ra
w_

en
er

gy

ra
w_

em
_e

ne
rg

y

ph
ot

on
 p

ro
b

ele
ctr

on
 p

ro
b

ch
ar

ge
d_

ha
dr

on
 p

ro
b

ne
ut

ra
l_

ha
dr

on
 p

ro
b

z_
m

in

z_
m

ax

len
gt

h

de
gr

ee
 ce

nt
ra

lit
y

clu
ste

rin
g

co
ef

fs

LC
_d

en
sit

y

tra
ck

ste
r_

de
ns

ity tim
e

0.
08

1

0.
01

2

0.
01

8

0.
01

8

0.
02

3

0.
02

7

0.
00

77

0.
02

0.
02

4

0.
02

3

0.
01

2

0.
04

5

0.
08

1

0.
01

4

0.
02

4

0.
01

2

0.
06

4

0.
04

1

0.
00

61

0.
01

1

0.
03

8

0.
03

4

0.
02

9

0.
03

9

0.
1

0.
07

8

0.
05

2

0.
00

01
1

8.
3e

-0
5

0.
06

2

Feature Importance of Single Particle in 140 PU Integrated Gradients GNN

10 4

10 3

10 2

10 1

(b) : Feature importance of the GNN model.

Figure A.12: Integrated gradients feature importance for the 140 PU dataset. The values are
calculated with respect to the random baselines.

135

136

Appendix B

Bibliography

[AA+03] Sea Agostinelli, John Allison, et al., GEANT4—a simulation toolkit, Nuclear
instruments and methods in physics research section A: Accelerators, Spec-
trometers, Detectors and Associated Equipment 506 (2003), no. 3, 250–303.

[AAAB15] Zahid Ansari, M. F. Azeem, Waseem Ahmed, and A. Vinaya Babu, Quantita-
tive Evaluation of Performance and Validity Indices for Clustering the Web
Navigational Sessions, 2015.

[ABKS99] Mihael Ankerst, Markus M. Breunig, Hans-Peter Kriegel, and Jörg Sander,
OPTICS: Ordering points to identify the clustering structure, ACM Sigmod
record 28 (1999), no. 2, 49–60.

[ABNR17] Giorgio Apollinari, O. Brüning, Tatsushi Nakamoto, and Lucio Rossi, High
luminosity large hadron collider HL-LHC, arXiv preprint arXiv:1705.08830
(2017).

[ABT+08] Georges Aad, J. Butterworth, J. Thion, U. Bratzler, P. Ratoff, R. Nickerson,
J. Seixas, Grabowska-Bold, et al., The ATLAS experiment at the CERN large
hadron collider, Jinst 3 (2008), S08003.

[AIK20] Juliette Alimena, Yutaro Iiyama, and Jan Kieseler, Fast convolutional neural
networks for identifying long-lived particles in a high-granularity calorimeter,
Journal of Instrumentation 15 (2020), no. 12, P12006.

[AJ+08] A. Alves Jr. et al., The LHCb detector at the LHC, Journal of instrumentation
3 (2008), no. 08, S08005.

[AKBD22] Ayman Al-Kababji, Faycal Bensaali, and Sarada Prasad Dakua, Scheduling
Techniques for Liver Segmentation: ReduceLRonPlateau Vs OneCycleLR, 2022.

[AQA+08] Kenneth Aamodt, A. Abrahantes Quintana, R. Achenbach, S. Acounis,
D. Adamová, C. Adler, M. Aggarwal, F. Agnese, G. Aglieri Rinella,
Z. Ahammed, et al., The ALICE experiment at the CERN LHC, Journal
of Instrumentation 3 (2008), no. 08, S08002.

[Arc18] Roberta Arcidiacono, The CMS ECAL Phase-2 Upgrade for High Precision
Timing and Energy Measurements, 2018 IEEE Nuclear Science Symposium and
Medical Imaging Conference Proceedings (NSS/MIC), IEEE, 2018, pp. 1–2.

137

B. Bibliography..
[BGLL08] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne

Lefebvre, Fast unfolding of communities in large networks, Journal of statistical
mechanics: theory and experiment 2008 (2008), no. 10, P10008.

[BGS22] Franco Bedeschi, Loukas Gouskos, and Michele Selvaggi, Jet flavour tagging
for future colliders with fast simulation, The European Physical Journal C 82
(2022), no. 7, 646.

[BKH16] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton, Layer Normalization,
2016.

[BKV+20] Emil Bols, Jan Kieseler, Mauro Verzetti, Markus Stoye, and Anna Stakia, Jet
flavour classification using DeepJet, Journal of Instrumentation 15 (2020),
no. 12, P12012.

[BLZ+19] Junjie Bai, Fang Lu, Ke Zhang, et al., ONNX: Open Neural Network Exchange,
https://github.com/onnx/onnx, 2019.

[BOSB10] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and
Joachim M Buhmann, The balanced accuracy and its posterior distribution,
2010 20th international conference on pattern recognition, IEEE, 2010, pp. 3121–
3124.

[BR97] Rene Brun and Fons Rademakers, ROOT—An object oriented data analysis
framework, Nuclear instruments and methods in physics research section A:
accelerators, spectrometers, detectors and associated equipment 389 (1997),
no. 1-2, 81–86.

[BTdF00] Joel N. Butler and Tommaso Tabarelli de Fatis, A MIP timing detector for the
CMS phase-2 upgrade, Tech. report, Fermi National Accelerator Lab.(FNAL),
Batavia, IL (United States), 1900.

[Bur21] Carsten Burgard, Example: Standard model of physics, online, 2021, [Accessed:
2023-02-19] https://texample.net/tikz/examples/model-physics/.

[CC75] Leland Lavele Carter and Edmond Darrell Cashwell, Particle-transport sim-
ulation with the Monte Carlo method, Tech. report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 1975.

[CKP+17] Federico Carminati, Gulrukh Khattak, Maurizio Pierini, Sofia Vallecorsa, Amir
Farbin, B. Hooberman, W. Wei, M. Zhang, B. Pacela, M. Spiropulu Vitorial,
et al., Calorimetry with deep learning: particle classification, energy regression,
and simulation for high-energy physics, Workshop on deep learning for physical
sciences (DLPS 2017), NIPS, 2017.

[CKSS15] Josh Cogan, Michael Kagan, Emanuel Strauss, and Ariel Schwarztman, Jet-
images: computer vision inspired techniques for jet tagging, Journal of High
Energy Physics 2015 (2015), no. 2, 1–16.

[CMW+17] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia, Multi-view 3D object
detection network for autonomous driving, Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, 2017, pp. 1907–1915.

[Col08] CMS Collaboration, The CMS experiment at the CERN LHC, Jinst 3 (2008),
S08004.

138

https://github.com/onnx/onnx
https://texample.net/tikz/examples/model-physics/

.. B. Bibliography

[Col12] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with
the CMS experiment at the LHC, Physics Letters B 716 (2012), no. 1, 30–61.

[Col13] , Identification of b-quark jets with the CMS experiment, Journal of
Instrumentation 8 (2013), no. 04, P04013.

[Col17a] , New developments for jet substructure reconstruction in CMS,
Detector Performance Summary: CMS-DPS-17-027, https://cds. cern.
ch/record/2275226 (2017).

[Col17b] , The phase-2 upgrade of the cms endcap calorimeter, CMS Technical
Design Report CERN-LHCC-2017-023. CMS-TDR-019, CERN (2017).

[Col21] , The Phase-2 Upgrade of the CMS Data Acquisition and High Level
Trigger, Tech. report, CERN, Geneva, 2021.

[Col23] , Interactive Slice of the CMS detector, online, 2023, [Ac-
cessed: 2023-02-13] https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/
ShowDocument?docid=4172.

[CP15] Miguel Á. Carreira-Perpiñán, A review of mean-shift algorithms for clustering,
2015.

[CSS10] Matteo Cacciari, Gavin P Salam, and Gregory Soyez, FastJet, 2010.

[DHH+18] Javier Duarte, Song Han, Philip Harris, Sergo Jindariani, Edward Kreinar,
Benjamin Kreis, Jennifer Ngadiuba, Maurizio Pierini, Ryan Rivera, Nhan Tran,
et al., Fast inference of deep neural networks in FPGAs for particle physics,
Journal of Instrumentation 13 (2018), no. 07, P07027.

[DPCPR20] Antonio Di Pilato, Ziheng Chen, Felice Pantaleo, and Marco Rovere, Recon-
struction in an imaging calorimeter for HL-LHC, Journal of Instrumentation
15 (2020), no. 06, C06023.

[dSCF+12] Marcilio C. de Souto, André L. Coelho, Katti Faceli, Tiemi C. Sakata, Viviane
Bonadia, and Ivan G. Costa, A comparison of external clustering evaluation
indices in the context of imbalanced data sets, 2012 Brazilian Symposium on
Neural Networks, IEEE, 2012, pp. 49–54.

[DV22] Javier Duarte and Jean-Roch Vlimant, Graph Neural Networks for particle
tracking and reconstruction, Artificial intelligence for high energy physics,
World Scientific, 2022, pp. 387–436.

[EB08] Lyndon Evans and Philip Bryant, LHC machine, Journal of instrumentation 3
(2008), no. 08, S08001.

[EBR17] Daniel Edler, Ludvig Bohlin, and Martin Rosvall, Mapping Higher-Order
Network Flows in Memory and Multilayer Networks with Infomap, Algorithms
10 (2017), no. 4, 112.

[FB81] Martin A. Fischler and Robert C. Bolles, Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography, Communications of the ACM 24 (1981), no. 6, 381–395.

139

https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?docid=4172
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/ShowDocument?docid=4172

B. Bibliography..
[FCM+18] Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Dustin Anderson, Jean-

Roch Vlimant, Stephan Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe
Cerati, Lindsey Gray, et al., Novel deep learning methods for track reconstruc-
tion, arXiv preprint arXiv:1810.06111 (2018).

[FL19] Matthias Fey and Jan Eric Lenssen, Fast graph representation learning with
PyTorch Geometric, arXiv preprint arXiv:1903.02428 (2019).

[Fwy] Fwyzard, FWYZARD/Circles: Scripts and web pages to visualise CMSSW
resource usage with CarrotSearch circles.

[GB10] Xavier Glorot and Yoshua Bengio, Understanding the difficulty of training deep
feedforward neural networks, Proceedings of the thirteenth international confer-
ence on artificial intelligence and statistics, JMLR Workshop and Conference
Proceedings, 2010, pp. 249–256.

[HMvdW+20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, et al., Array
programming with NumPy, Nature 585 (2020), no. 7825, 357–362.

[HRD+20] Aneesh Heintz, Vesal Razavimaleki, Javier Duarte, Gage DeZoort, Isobel
Ojalvo, Savannah Thais, Markus Atkinson, Mark Neubauer, Lindsey Gray,
Sergo Jindariani, et al., Accelerated charged particle tracking with graph neural
networks on FPGAs, arXiv preprint arXiv:2012.01563 (2020).

[HSSC08] Aric Hagberg, Pieter Swart, and Daniel S Chult, Exploring network structure,
dynamics, and function using NetworkX, Tech. report, Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), 2008.

[Hun07] J. D. Hunter, Matplotlib: A 2D graphics environment, Computing in Science
& Engineering 9 (2007), no. 3, 90–95.

[Jek21] Jaroslavceva Jekaterina, Image Retrieval via CNNs in TensorFlow2, B.S. thesis,
CTU, FEE. Center of machine perception, 2021.

[JFC+20] Xiangyang Ju, Steven Farrell, Paolo Calafiura, Daniel Murnane, Lindsey Gray,
Thomas Klijnsma, Kevin Pedro, Giuseppe Cerati, Jim Kowalkowski, Gabriel
Perdue, et al., Graph neural networks for particle reconstruction in high energy
physics detectors, arXiv preprint arXiv:2003.11603 (2020).

[Kai08] Marcus Kaiser, Mean clustering coefficients: the role of isolated nodes and
leafs on clustering measures for small-world networks, New Journal of Physics
10 (2008), no. 8, 083042.

[KB17] Diederik P. Kingma and Jimmy Ba, Adam: A Method for Stochastic Optimiza-
tion, 2017.

[Kie20] Jan Kieseler, Object condensation: one-stage grid-free multi-object reconstruc-
tion in physics detectors, graph, and image data, The European Physical
Journal C 80 (2020), 1–12.

[KL51] Solomon Kullback and Richard A Leibler, On information and sufficiency,
The annals of mathematical statistics 22 (1951), no. 1, 79–86.

[KM59] H. Koch and J. Motz, Bremsstrahlung cross-section formulas and related data,
Reviews of modern physics 31 (1959), no. 4, 920.

140

.. B. Bibliography

[KSH+12] Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton, F. Pereira, C. Burges,
L. Bottou, and KQ Weinberger, Advances in neural information processing
systems, 2012.

[KST+17] Vardan Khachatryan, Albert M. Sirunyan, Armen Tumasyan, Wolfgang Adam,
E. Asilar, Thomas Bergauer, Johannes Brandstetter, Erica Brondolin, Marko
Dragicevic, Janos Erö, et al., The CMS trigger system, Journal of Instrumen-
tation 12 (2017), no. 01, P01020–P01020.

[KTW+21] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian,
Phillip Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan, Supervised Con-
trastive Learning, 2021.

[LGG+18] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár, Focal
Loss for Dense Object Detection, 2018.

[LH17] Ilya Loshchilov and Frank Hutter, SGDR: Stochastic Gradient Descent with
Warm Restarts, 2017.

[lhc] CERN accelerating science, online, [Accessed: 2023-02-13] https://
hilumilhc.web.cern.ch/.

[Lip12] Christian Lippmann, Particle identification, Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 666 (2012), 148–172.

[LLW18] Sehwook Lee, Michele Livan, and Richard Wigmans, On the limits of the
hadronic energy resolution of calorimeters, Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors and
Associated Equipment 882 (2018), 148–157.

[Lop22] E. Lopienska, The CERN accelerator complex, layout in 2022.

[LVC+19] Alex Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar
Beijbom, Pointpillars: Fast encoders for object detection from point clouds,
Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, 2019, pp. 12697–12705.

[LWW+20] Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang,
and Jian Yang, Generalized Focal Loss: Learning Qualified and Distributed
Bounding Boxes for Dense Object Detection, 2020.

[Mac67] J. MacQueen, Classification and analysis of multivariate observations, 5th
Berkeley Symp. Math. Statist. Probability, University of California Los Angeles
LA USA, 1967, pp. 281–297.

[MHA17] Leland McInnes, John Healy, and Steve Astels, HDBSCAN: Hierarchical
density based clustering, J. Open Source Softw. 2 (2017), no. 11, 205.

[ML11] Fionn Murtagh and Pierre Legendre, Ward’s hierarchical clustering
method: clustering criterion and agglomerative algorithm, arXiv preprint
arXiv:1111.6285 (2011).

141

https://hilumilhc.web.cern.ch/
https://hilumilhc.web.cern.ch/

B. Bibliography..
[MQY23] Omar Maddouri, Xiaoning Qian, and Byung-Jun Yoon, Geometric Affinity

Propagation for Clustering With Network Knowledge, IEEE Transactions on
Knowledge and Data Engineering (2023), 1–18.

[Nan22] Abhirikshma Nandi, New Techniques for Reconstruction in the CMS High
Granularity Calorimeter, Master’s thesis, RWTH Aachen University, December
2022, Submitted to the Faculty of Mathematics, Computer Science and Natural
Sciences.

[NG04] M. E. J. Newman and M. Girvan, Finding and evaluating community structure
in networks, Physical Review E 69 (2004), no. 2.

[PDB+20] Jim Pivarski, Pratyush Das, Chris Burr, Dmitri Smirnov, Matthew Feickert,
Tamas Gal, et al., scikit-hep/uproot: 3.12.0, July 2020.

[PES+20] Jim Pivarski, Charles Escott, Nicholas Smith, Michael Hedges, et al., scikit-
hep/awkward-array: 0.13.0, July 2020.

[PG+19] Adam Paszke, Sam Gross, et al., PyTorch: An Imperative Style, High-
Performance Deep Learning Library, Advances in Neural Information Process-
ing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035.

[PR22] Felice Pantaleo and Marco Rovere, The Iterative Clustering framework for the
CMS HGCAL Reconstruction, Tech. report, 2022.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, Scikit-learn:
Machine Learning in Python, Journal of Machine Learning Research 12 (2011),
2825–2830.

[QG20] Huilin Qu and Loukas Gouskos, Jet tagging via particle clouds, Physical Review
D 101 (2020), no. 5, 056019.

[QKIP19] Shah Rukh Qasim, Jan Kieseler, Yutaro Iiyama, and Maurizio Pierini, Learning
representations of irregular particle-detector geometry with distance-weighted
graph networks, The European Physical Journal C 79 (2019), no. 7, 1–11.

[QLQ22] Huilin Qu, Congqiao Li, and Sitian Qian, Particle transformer for jet tagging,
International Conference on Machine Learning, PMLR, 2022, pp. 18281–18292.

[QSMG17] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas, PointNet: Deep
learning on point sets for 3D classification and segmentation, Proceedings
of the IEEE conference on computer vision and pattern recognition, 2017,
pp. 652–660.

[QYSG17] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas, Pointnet++:
Deep hierarchical feature learning on point sets in a metric space, Advances in
neural information processing systems 30 (2017).

[RCDP+20] Marco Rovere, Ziheng Chen, Antonio Di Pilato, Felice Pantaleo, and Chris Seez,
CLUE: a fast parallel clustering algorithm for high granularity calorimeters in
high-energy physics, Frontiers in big Data 3 (2020), 591315.

142

.. B. Bibliography

[Rey09] Douglas A. Reynolds, Gaussian Mixture Models, Encyclopedia of Biometrics,
2009.

[RH07] Andrew Rosenberg and Julia Hirschberg, V-measure: A conditional entropy-
based external cluster evaluation measure, Proceedings of the 2007 Joint Confer-
ence on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL) (Prague, Czech Republic), As-
sociation for Computational Linguistics, June 2007, pp. 410–420.

[RS16] Nadia Rahmah and Imas Sukaesih Sitanggang, Determination of optimal
epsilon (eps) value on dbscan algorithm to clustering data on peatland hotspots
in sumatra, IOP conference series: earth and environmental science, vol. 31,
IoP Publishing, 2016, p. 012012.

[SAC+15] Torbjörn Sjöstrand, Stefan Ask, Jesper R. Christiansen, Richard Corke, Nishita
Desai, Philip Ilten, Stephen Mrenna, et al., An introduction to PYTHIA 8.2,
Computer physics communications 191 (2015), 159–177.

[Sc+17] Albert M. Sirunyan, CMS collaboration, et al., Particle-flow reconstruction
and global event description with the CMS detector, JINST 12 (2017), no. 10,
P10003.

[SGT+08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and
Gabriele Monfardini, The graph neural network model, IEEE transactions on
neural networks 20 (2008), no. 1, 61–80.

[SL18] Samuel L. Smith and Quoc V. Le, A Bayesian Perspective on Generalization
and Stochastic Gradient Descent, 2018.

[SSE+17] Erich Schubert, Jörg Sander, Martin Ester, Hans Peter Kriegel, and Xiaowei
Xu, DBSCAN revisited, revisited: why and how you should (still) use DBSCAN,
ACM Transactions on Database Systems (TODS) 42 (2017), no. 3, 1–21.

[STY17] Mukund Sundararajan, Ankur Taly, and Qiqi Yan, Axiomatic Attribution for
Deep Networks, 2017.

[Val22] Davide Valsecchi, Deep learning techniques for energy clustering in the CMS
ECAL, arXiv preprint arXiv:2204.10277 (2022).

[VCC+17] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, Yoshua Bengio, et al., Graph attention networks, stat 1050 (2017), no. 20,
10–48550.

[VdMH08] Laurens Van der Maaten and Geoffrey Hinton, Visualizing data using t-SNE,
Journal of machine learning research 9 (2008), no. 11.

[VL07] Ulrike Von Luxburg, A tutorial on spectral clustering, Statistics and computing
17 (2007), 395–416.

[WR] CMS Collaboration Wahid Redjeb, Poster: The TICL reconstruction at the
CMS Phase-2 High Granularity Calorimeter Endcap.

[WSL+19] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein,
and Justin M Solomon, Dynamic graph CNN for learning on point clouds, Acm
Transactions On Graphics (tog) 38 (2019), no. 5, 1–12.

143

B. Bibliography..
[XHLJ18] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka, How powerful

are graph neural networks?, arXiv preprint arXiv:1810.00826 (2018).

[XWCL15] Bing Xu, Naiyan Wang, Tianqi Chen, and Mu Li, Empirical evaluation of
rectified activations in convolutional network, arXiv preprint arXiv:1505.00853
(2015).

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan
Liu, Lifeng Wang, Changcheng Li, and Maosong Sun, Graph neural networks:
A review of methods and applications, AI open 1 (2020), 57–81.

144

	Acronyms
	Introduction
	Key Contributions
	Thesis Structure

	CMS Detector at the Large Hadron Collider
	The Standard Model
	The Large Hadron Collider
	Compact Muon Solenoid
	Coordinate System and Conventions
	CMS Sub-Detectors

	Trigger and Data Acquisition System
	High Luminosity LHC Upgrade
	The Main CMS HL-LHC Upgrades
	The High Granularity Calorimeter

	Event Reconstruction
	Particle Interactions
	ParticleFlow Reconstruction
	HGCAL Reconstruction
	Layer-Cluster Formation: the CLUE Algorithm
	Trackster Formation: the CLUE3D Algorithm
	TICL Framework

	Trackster Linking
	Motivation
	Challenges
	Problem Definition
	Data

	Related Work
	Unsupervised Clustering Methods
	Supervised Machine Learning Techniques

	Event Simulation and Datasets Generation
	Event Simulation
	Generated Linking Datasets
	Raw Generated Data
	Processed Linking Datasets
	Node Features
	Edge Features
	Event Graph Building: Eta-Phi Bounded Graph
	Event Graph Building: Skeleton-Based Graph
	Reduced Graphs
	Ground Truth Edge Labeling

	Dataset Analysis
	Final Dataset Parameters

	Methodology
	Overview of Graph Neural Networks
	Edge Convolution

	Explored ML Approaches
	Linking Problem Framing
	MLP Pair-Wise Linking
	General Considerations and Design Choices
	GNN Linking
	Model Architecture

	Supertrackster Building
	Loss Function
	Performance Evaluation
	Standard Clustering Metrics
	Edge Prediction Metrics
	Physics Performance Evaluation

	Experiments and Discussions
	Approach Summary
	Experimental Setup
	Baseline: Standard Clustering Methods
	Machine Learning Techniques
	Training Setup
	Hyperparameter Tuning
	Evaluation During Training and Final Network Selection

	Performance Evaluation
	Visual Inspection
	Clustering Metrics Evaluation
	Energy Containment
	Per-Edge Evaluation
	Physics Performance Evaluation
	Previous Reconstruction Steps Bias in Physics Evaluation
	Inspection of PU Merging
	Model Complexities
	Model Interpretability
	Model Output Post-Processing

	Clustering Model Embeddings
	Contrastive Learning
	Summary

	Conclusions
	Future Work

	Additional Figures and Tables
	Raw Dataset Properties
	Dataset Analysis
	Standard Clustering Methods with Multiparticle Dataset
	Model Details
	Clustering Metrics Evaluation
	Energy Intersection Over Union
	Model Interpretability

	Bibliography

