
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Cybernetics

Multi-robot Systems

Replanning of Collision-Free
Trajectories for Unmanned Aerial

Vehicle

Master’s Thesis

Kryštof Teissing

Prague, May 2023

Study program: Cybernetics and Robotics

Supervisor: Ing. Robert Pěnička, Ph.D.

ii

iii

Acknowledgments

I would like to thank all the people who have helped me to complete this thesis. First
and foremost, I would like to express my gratitude to my supervisor Ing. Robert Pěnička,
Ph.D. for his guidance and valuable ideas, which made this work possible. I also owe thanks
to my mother Mgr. Alžběta Soperová for proofreading this thesis, and the rest of my family
and friends for their support along the way.

iv

v

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instruc-
tions for observing the ethical principles in the preparation of university theses.

Prague, May 26, 2023

vi

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

474544 Personal ID number: Teissing Kryštof Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Replanning of Collision-Free Trajectories for Unmanned Aerial Vehicle

Master’s thesis title in Czech:

Přeplánování trajektorií bezkolizního letu bezpilotních vzdušných robotů

Guidelines:

1. Study the state-of-the-art path planning and trajectory generation methods for a collision-free time-optimal flight of
unmanned aerial vehicles.
2. Propose a new method of finding the optimal velocity in given waypoints which is used for point-mass trajectory generation
over multiple waypoints.
3. Design and implement an algorithm for computing a collision-free multi-waypoint trajectory for an unmanned aerial
vehicle.
4. Compare the implemented methods with the state-of-the-art algorithms and evaluate the benefits of the proposed
approach.

Bibliography / sources:

[1] Richter, Charles, Adam Bry, and Nicholas Roy. 2016. “Polynomial Trajectory Planning for Aggressive Quadrotor Flight
in Dense Indoor Environments”. Robotics Research: 649-666.
[2] Foehn, Philipp, Angel Romero, and Davide Scaramuzza. “Time-optimal planning for quadrotor waypoint flight”. Science
Robotics 6 (56), 2021.
[3] Penicka, Robert, and Davide Scaramuzza. 2022. “Minimum-Time Quadrotor Waypoint Flight in Cluttered Environments”.
IEEE Robotics and Automation Letters 7 (2): 5719-5726.
[4] Romero, Angel, Robert Penicka, and Davide Scaramuzza. 2022. “Time-Optimal Online Replanning for Agile Quadrotor
Flight”. IEEE Robotics and Automation Letters 7 (3): 7730-7737.

Name and workplace of master’s thesis supervisor:

Ing. Robert Pěnička, Ph.D. Multi-robot Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 27.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Robert Pěnička, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

viii

ix

Abstract

Trajectory generation is one of the fundamental problems solved under the motion
planning task for autonomous Unmanned Aerial Vehicles (UAVs). This thesis deals
with the replanning of minimum-time collision-free trajectories for a multirotor UAV,
which is a task solved in time-critical applications such as search and rescue. We
propose a gradient-method-based algorithm for computing and optimizing approxi-
mate trajectories using a limited acceleration point-mass model to facilitate real-time
computation. Further, we use an iterative approach for trajectory acceleration distri-
bution to account for gravity and better reflect the design constraints of a multirotor.
An algorithm for collision-free trajectory generation is also introduced, where the
latest developments in path planning are utilized to guide trajectory planning using
paths with different topologies. We showcase that the proposed approach is capable
of finding a minimum-time collision-free trajectory in sub-millisecond times.

Keywords Unmanned Aerial Vehicles, Motion Planning, Trajectory Planning

x

xi

Abstrakt

Generováńı trajektorie je jedńım z kĺıčových problémů řešených v rámci úlohy
plánováńı pohybu autonomńıch bezpilotńıch prostředk̊u (UAV). Tato práce se
zabývá přeplánováńım bezkolizńıch trajektoríı s minimálńı dobou trváńı pro multi-
rotorové UAV, které najde využit́ı v oblastech, kde hraje zásadńı roli čas, jako je vyh-
ledáváńı a záchrana osob. Představujeme algoritmus založený na gradientńı metodě
pro výpočet a optimalizaci aproximačńıch trajektoríı za využit́ı zjednodušeného
modelu hmotného bodu s omezeným zrychleńım, který umožňuje výpočet v reálném
čase. Zároveň použ́ıváme iterativńı metodu k rozložeńı zrychleńı v rámci trajekto-
rie, abychom lépe zohlednili gravitaci a konstrukčńı omezeńı multirotorového UAV.
Dále je představen algoritmus pro výpočet bezkolizńıch trajektoríı, ve kterém up-
latňujeme nejnověǰśı poznatky v oblasti plánováńı drah, které umožňuj́ı využ́ıt dráhy
s r̊uznou topologíı jako základ pro výpočet trajektoríı. Ukazujeme, že navrhovaná
metoda je schopna naj́ıt bezkolizńı trajektorii s minimálńı dobou trváńı v časech
pod milisekundu.

Kĺıčová slova Bezpilotńı prostředky, plánováńı pohybu, plánováńı trajektoríı

xii

xiii

Abbreviations

DOF Degrees of Freedom

UAV Unmanned Aerial Vehicle

VO Velocity Optimization

TD Thrust Decomposition

CFTG Collision-free Trajectory Generaiton

PRM Probabilistic Roadmap

RRT Rapidly-exploring Random Trees

CTopPRM Clustering Topological PRM

UDV Uniform Visibility Deformation

PMM Point-Mass Model

CR Cone Refocusing

GM Gradient Method

PTS Point-mass Trajectory Search

xiv

xv

Contents

1 Introduction 1

2 Preliminaries 3

2.1 Path and trajectory . 3

2.2 Path planning . 4

2.3 Trajectory generation . 4

2.4 Gradient method for unconstrained minimization of differentiable functions . . 5

3 Related Work 7

3.1 Path planning . 7

3.2 Trajectory generation . 9

4 Methodology 13

4.1 Point-mass model trajectory . 14

4.2 Point-mass model trajectory - Axis synchronization 16

4.3 Velocity optimization using Gradient method 17

4.3.1 Velocity optimization of a one-dimensional trajectory 18

4.3.2 Velocity optimization of a multi-dimensional trajectory 20

4.4 Limited thrust decomposition . 27

4.5 Limited thrust decomposition in velocity optimization 29

4.6 Path planning using Clustering Topological PRM 31

4.7 Collision-free trajectory computation . 32

5 Results 37

5.1 Velocity optimization algorithm . 37

5.1.1 Velocity optimization method parameter selection 39

5.1.2 Thrust decomposition in velocity optimization 41

5.2 Visualization of the velocity optimization convergence 44

5.3 Comparison with state-of-the-art method . 45

5.4 Collision-free trajectory generation . 49

6 Conclusion 53

References 55

A Supplementary Definitions and Results 59

A.1 Point-Mass Model Trajectory Acceleration Scaling Solutions 59

A.2 Definition of Waypoints for the Testing Paths 60

A.3 Velocity Optimization Parameter Grid-Search Results 61

xvi

B Content of the Attached CD 63

1. INTRODUCTION 1/63

Chapter 1

Introduction

Unmanned Arial Vehicles (UAVs) have become increasingly popular for performing var-
ious tasks such as filmmaking [1], monitoring [2], or search and rescue [3] in the last years
given their agility and maneuverability. This was further boosted by the latest development
of autonomous capabilities, which reduce the demands on the pilot in command and enable
the deployment of autonomous UAVs for complex tasks. Collision-free trajectory replanning
is one of the crucial aspects of the autonomous flight problem, as it is necessary for successful
navigation of the UAV in real-life environments with obstacles. Deployment of an autonomous
UAV for time-critical operations such as search and rescue further requires minimum-time tra-
jectories generated online so that the UAV can respond to abrupt changes in the environment,
i.e., for collision avoidance or disturbance compensation.

In this thesis, we will deal with the problem of collision-free minimum-time trajectory
replanning for agile multirotor UAVs. It is a complex task where a collision-free sequence of
the multirotor states must be generated together with the respective time allocation, while
simultaneously respecting the non-linear dynamics of the multirotor UAV. Due to the un-
deractuated design of a multirotor, additional constraints are placed on the translational and
rotational accelerations of a multirotor UAV. Moreover, for multi-waypoint trajectories, where
the final motion must connect a predefined set of states (waypoints), the waypoints are usually
defined only by the robot’s pose, while the higher derivatives necessary for trajectory com-
putation are missing. The underdetermined problem of trajectory planning must therefore be
solved while respecting various criteria. In our case, these include the collision-free aspect of
the final trajectory and minimizing the trajectory duration. Solving the trajectory planning in
real-time poses an even greater challenge to the task due to the limited computational power
of the UAV’s onboard computers.

Several different approaches have been used to solve the collision-free trajectory gener-
ation task. For real-time applications, polynomials [4] or piecewise polynomials [5] have been
used to efficiently compute collision-free trajectories; however, they do not lead to minimum-
time trajectories due to the inherent smoothness of polynomials. Time-optimal trajectories
were either found for a full dynamical model of a multirotor using computationally demand-
ing methods [6] or computed with real-time sampling-based methods [7] that solved the task
for an approximated point-mass model. The latter relied on recent advancements in control
theory [8], which enable tracking of infeasible guiding trajectories in a near-time-optimal way.
However, even the sampling-based methods were able to compute only trajectories with a lim-
ited number of waypoints in real time, which prevented their application in methods where
several trajectories must be considered to account for obstacles.

This thesis brings the following contributions. We first define a closed-form solution for
limited acceleration minimum-time multidimensional point-mass model trajectory planning,
including a method for axis synchronization. Next, we extend this concept to a multi-waypoint
trajectory and introduce a novel algorithm based on the Gradient method for velocity opti-

CTU in Prague Department of Cybernetics

2/63

mization of the ambiguous velocities in the via-waypoints. Further, we present an iterative
method for distributing accelerations to individual trajectory axes in order to account for
gravity and the underactuated design of the multirotor UAV, where the acceleration norm is
limited. Several approaches to its incorporation into the velocity optimization algorithm are
also presented. We combine the above-mentioned methods to define a collision-free trajec-
tory generation method that utilizes the benefits of topologically distinct paths returned by
a state-of-the-art path planner [9], where we compute trajectories based on the fond paths to
find the minimum-time collision-free trajectory. Subsequently, we showcase on a selection of
scenarios that our approach to multi-waypoint trajectory generation results in small computa-
tional times outperforming the state-of-the-art sampling-based method. Additionally, we test
the proposed collision-free trajectory generation in a forest-like environment and show that
our method is capable of finding a minimum-time trajectory in sub-millisecond computational
time, which makes it applicable in solving online replanning tasks.

CTU in Prague Department of Cybernetics

2. PRELIMINARIES 3/63

Chapter 2

Preliminaries

We will first formally define the basic concepts used for motion planning in the field of
robotics. In Section 2.1, we will define the fundamental terms used in motion planning, namely
path and trajectory. Further, in Sections 2.2 and 2.3, we define the problems of collision-free
path planning and path-guided trajectory planning, as we will be dealing with solving these
tasks in this thesis with the goal of efficiently computing collision-free trajectories. We also
aim to find minimum-time trajectories; therefore, the gradient descent method for iterative
optimization of differentiable functions will be defined in Section 2.4. It will be used as the
backbone for our trajectory optimization algorithm.

2.1 Path and trajectory

A spatial construct called path is used in the field of robotics to describe a motion of a
robot geometrically in space [10]. The motion is defined by its start and end points, which are
usually expressed using the robot’s configurations q ∈ C, where C is the configuration space of
the robot [11]. The number of parameters necessary to define a robot’s configuration is called
Degrees of Freedom (DOF). For a robot with n DOF, the configuration is usually defined as
n-dimensional vector q ∈ Rn.

For a given start and end configurations qstart and qend, a path P can be described by
the following continuous function

P : [0, 1] −→ C,
s 7−→ q(s),

s.t. q(0) = qstart,

q(1) = qend,

(2.1)

where a robot configuration q(s) is defined for every step s ∈ [0, 1] along the path.

A path with added time allocation is called a trajectory Π [10] and similarly to (2.1)
can be described by a continuous function

Π : [0, Ttr] −→ C,
t 7−→ q(s(t)),

(2.2)

where a pose is defined for every time instance t ∈ [0, Ttr], Ttr is the trajectory duration.

Generally, an UAV in a three-dimensional space has n = 6 DOF, of which three define
its position and three describe its rotation. For our application, we will use a simplified
geometrical model of an UAV, namely a sphere with a given radius r ∈ R. The DOFs of the
simplified model are reduced to n = 3, where in a three-dimensional space, the configuration
of an UAV is defined only by the position of its centroid. This will significantly simplify the
path and trajectory planning problem-solving.

CTU in Prague Department of Cybernetics

4/63 2.2. PATH PLANNING

2.2 Path planning

Path planning is one of the problems solved under the motion planning task [11] for a
robot. Given a space, otherwise referred to as the world W = R3, in which the path planning
is performed, the objective of the path planning problem is to find a collision-free path P for
a robot A ⊂ W spanning from the start configuration qstart to the goal configuration qend.

To define what a collision-free path is, we first need to define obstacles O ⊆ W present
insideW. The geometry of a robot in a configuration q is denoted as A(q). The configuration
space can then be divided into a collision space Cobs = {q ∈ C|A(q)∩O ≠ ∅} and a free space
Cfree = C \ Cobs [11]. A collision-free path is a path P (s), where for all s the corresponding
configurations qs = P (s) lie inside Cfree, formally, ∀s ∈ [0, 1], P (s) ⊂ Cfree.

Path planning can be performed in various environmentsW; in this thesis, we will focus
on path planning in a known environment represented by a 3D grid map. Additional objectives
can be placed on the path planning process so that the resulting path or paths are selected
according to certain criteria. As we are interested in minimum-time trajectory generation,
we are generally looking for the shortest possible paths in terms of L2 norm. However, the
duration of the final trajectory can not be determined from the length of a path. Therefore,
a method that returns a set of different paths from which we can then select the one that
results in the fastest trajectory is suitable for our task.

As we have stated in the previous section, we are using a simplified model of an UAV
in the form of a sphere with a radius r, whose configurations correspond to UAV’s position
in the world. The process of determining whether a configuration is collision-free, commonly
known as collision checking, is then reduced to evaluating the distance δ(·, ·) of the robot’s
configuration (position of the sphere’s center) from all obstacles O, i.e., using Euclidean Signed
Distant Field [12]. The free space can then be defined as Cfree = {q ∈ C|δ(q,O) > r}. This
significantly reduces the computation time of the path-planning process.

2.3 Trajectory generation

The trajectory generation is a task in the classical motion planning pipeline that follows
after the path planning. The general principle is to add timing to a path P (s) generated by
a path-planning algorithm to obtain a trajectory Π(t), also given the initial conditions in the
form of start and end states, xstart ∈ Rm and xend ∈ Rm, respectively. A state usually contains
not only the configuration q of the robot, but also its derivatives in time. The dimensionality
of the start and end states depend on the method that determines the timing, commonly
known as path time parametrization. According to the definition (2.2), path parametrization
can be defined as a continuous function

s : [0, tend] −→ [0, 1],

t 7−→ s(t).
(2.3)

However, the path time parameterization must respect the kinetic and dynamic limi-
tations of the robot, also referred to as kinodynamic constraints [13]. Moreover, additional
criteria can be placed on the resulting trajectory. In our field of interest, namely motion plan-
ning for agile UAVs, the emphasis is placed on the trajectories minimizing the flight time of
an UAV, i.e. the time-optimal trajectories.

CTU in Prague Department of Cybernetics

2. PRELIMINARIES 5/63

Due to the complexity of the trajectory generation for a full dynamic model of a robot,
additional approximations can be used to obtain a simplified model. The trajectories are then
computed for the simplified model with approximate translational and rotational dynamics of
the robot, which allow faster planning. Although the resulting trajectories are consequently
infeasible for the full dynamic model, modern control methods such as the Model Predictive
Contouring Control [8] can track these trajectories in a near-time-optimal fashion. This sig-
nificantly reduces the complexity of the trajectory generation problem and can be utilized in
real-time computation methods.

Until now, we have defined the trajectory generation for a single trajectory segment,
i.e., a segment between two states xstart and xend. However, in many applications, the path
found by the path-planning algorithm is returned in the form of an ordered set containing nw

waypoints. Subsequently, a multi-segment trajectory has to be computed, where each segment
spans between the corresponding two waypoints. To do that, we need fully defined states xstarti

and xendi for each of the i = {1, ..., nw} trajectory segments. However, a full state consisting
of the robot’s configuration q and several of its derivatives, is usually defined only for the start
and end points of the whole multi-segment trajectory. For the remaining via-points, only the
configurations qi are defined in most cases. The ambiguity in the states corresponding to the
via-points must be also addressed in the time-optimal trajectory generation task, which will
be the main focus of this work.

2.4 Gradient method for unconstrained minimization of dif-
ferentiable functions

The Gradient method (also referred to as the Gradient descent method [14]) is a numeri-
cal iterative method for finding local minima of differentiable functions on Rn. Formally, given
a differentiable function f : Rn → R, the problem can be expressed as finding the minimum

x∗ = arg min
x∈Rn

f(x), (2.4)

where x ∈ Rn. The Gradient method solves the problem (2.4) iteratively updating an initial
value x0 according to the following equation

xk+1 = xk − αk∇f(xk), (2.5)

where ∇f(x) is the gradient of the function f at the point xk and αk > 0 is the step length
at iteration k. Depending on the approach, the step length can either vary for every iteration
or remain constant throughout the whole minimization process. The gradient of a function
always points in the direction of the greatest growth, so when updating the current value
xk by adding the negative of the gradient, the vector is updated in the direction of steepest
descent towards the minimum.

Different stopping criteria can be used to terminate the iterative minimization. Given
that the iterative method computes successive approximations of the minimum, a threshold
ε is usually used and, after each iteration, it is checked whether the update is below the
threshold, i.e., after |f(xk+1)− f(xk)| < ε the optimization is terminated. Also, a maximum
number of iterations N ∈ Z is used to terminate the optimization in a reasonable time should
the convergence be too slow.

CTU in Prague Department of Cybernetics

6/63
2.4. GRADIENT METHOD FOR UNCONSTRAINED MINIMIZATION OF

DIFFERENTIABLE FUNCTIONS

CTU in Prague Department of Cybernetics

3. RELATED WORK 7/63

Chapter 3

Related Work

In this chapter, we will present the state-of-the-art methods used for the motion plan-
ning of UAVs. We will first describe different approaches to collision-free path planning in
Section 3.1. Next, several methods for trajectory generation will be introduced in Section 3.2.
We present the solutions to the two aforementioned motion planning problems separately as in
most cases, the path-planning and trajectory-planning algorithms can be combined depending
on the application.

3.1 Path planning

The path planning problem is a task in motion planning that precedes the trajectory
generation task. For our main goal of trajectory replanning, we first require a collision-free
path(s) in the environment where the UAV is moving, to guide the trajectory computation. As
we have stated in previous sections, due to the complexity and high dimensionality of the path
planning problem in a full configuration space of an UAV, the path planning is computed in an
approximated space with reduced degrees-of-freedom (DOFs). In this work, the configuration
space will be reduced to R3, where a configuration corresponds to the position of the center
point of a UAV in a given coordinate system of the world/map.

In this thesis, we deal with path planning in a known environment to simplify the path
planning task. The known environment can be represented by a 3D grid map, where the
continuous space is discretized into 3D cells to reduce the computational burden of searching
for a path in the whole configuration space. The grid map resolution determines the size of
the discrete cells. For a known environment, if a grid cell lies inside Cfree, the corresponding
configuration is collision-free and it can be used for path planning search. Otherwise, the
cell is treated as an obstacle. A collision-free trajectory can then be found in the grid map
using common graph searching algorithms such as Dijkstra’s or A∗, where each unoccupied
grid cell represents a graph node. However, for larger maps or maps with high resolution, the
exhaustive search of the whole grid map can be replaced with a sampling-based approach.

Commonly used sampling-based path planners, such as Rapidly-exploring Random
Trees (RRT) [15], search for a path using a reduced graph structure with edges drawn from
Cfree. In the case of RRT, a tree graph rooted at the start configuration is built towards the
end configuration, where in every step the tree is expanded towards a random configuration
sampled from C. The new configuration is checked as to whether it lies in Cfree, if that is
the case, it is connected to the closest tree node using a local planner. A local planner is an
algorithm that computes a simple admissible path between two configurations. However, the
RRT path planer is, suitable only for single query path planning, i.e., only for one pair of
start and end configurations, because a new tree graph has to be built for every query.

CTU in Prague Department of Cybernetics

8/63 3.1. PATH PLANNING

For our application of online replanning, a method that allows multi-query planning is
much more appropriate. One of the commonly used algorithms is the Probabilistic Roadmap
(PRM) [16], which uses the concept of roadmap, i.e. a topological graph with configurations
as its nodes. A constructed roadmap can be easily reused in a multi-query path planning task.
Currently, there are several variants and modifications to the PRM, but the general approach
consists of two phases. First, a pre-determined number of samples from Cfree is sampled and
connected into a roadmap. In the sampling process, a sample is drawn from C, checked as
to whether it lies in Cfree, and if the configuration is collision-free, it is connected with the
graph nodes in its vicinity using a local planner. Only collision-free connections between the
nodes are allowed. Then, for a given query, the start and goal nodes are connected to the
created roadmap and the resulting graph is searched for a collision-free path using common
graph-searching algorithms. Usually, the path with the shortest length is selected from all the
possible ones.

In this work, we are focusing on generating trajectories for time-critical applications,
where a minimum-time trajectory is desired. Since the shortest path does not generally trans-
late to a trajectory with the minimum duration for dynamic models of an UAV, obtaining
multiple alternative paths for subsequent trajectory generation is beneficial. Moreover, for
time-efficient trajectory computation, we are interested in distinct paths with different homo-
topy classes. A path falls in a different topological class if it cannot be continuously deformed
into another one without crossing any obstacles, for example by translation of the path points.

The authors of [5] have utilized this concept in their perception-aware trajectory re-
planning framework. Their approach to finding homotopically distinct paths uses a modified
visibility-PRM [17] algorithm, where the visibility between two configurations is defined as
the existence of a simple collision-free path (usually a line) between the two configurations
planned by a local planner. In the sampling process of the PRM, a sample is either assigned a
role, or it is discarded. A sample can have the role of a guard that guards all visible regions of
the Cfree, where two guards can not be visible to each other. In addition, a sample can be also
a connector if there are exactly two guards visible from it. A connector can be discarded if
there is a new connector that connects two guards using a shorter path. The new samples are
discarded if no role is assigned to them. The building of a roadmap then consists of sampling,
assigning a role to the newly sampled configuration, and/or discarding unused configurations.
A depth-first search is then used to find all distinct paths in the final roadmap. The described
approach provides great results and fast computational times; however, its performance is
dependent on the placement of the initial guards which can be challenging in environments
with limited visibility.

The concept of homotopically distinct path planning for minimum-time trajectory gen-
eration has been utilized also in the work [18], where the authors use the following method for
obtaining collision-free paths from different homotopy classes. An initial roadmap is computed
using Informed-PRM [19], where the sampling is focused inside using an ellipsoid, which is
iteratively relaxed until at least one collision-free path is found using Dijkstra’s algorithm.
Then, to capture as many homotopically distinct paths as possible, a configuration with the
smallest clearance from an obstacle is found for all current paths and all other configurations
of the roadmap in its vicinity are removed from the roadmap. The resulting roadmap is again
searched for a collision-free path until no new paths can be found. To account for a case, where
vertices in a narrow passage have been removed, the algorithm is recursively called from the
removed region both towards the start and end configuration. The resulting paths are then
connected to join the start and end configurations. The output of this approach is a set of
all paths found during this process. As it was reported by [9], the lack of information about

CTU in Prague Department of Cybernetics

3. RELATED WORK 9/63

which regions should be optimally removed results in an inability to find all paths in some
scenarios.

A different approach to finding distinct paths using PRM was introduced in [9], where
the sampled roadmap is clustered into a reduced roadmap so that homotopically distinct paths
can be effectively obtained from it. Given that the authors claim to outperform both [5] and
[18] in several aspects, we will further describe this method in Section 4.7 as it will be used
for path planning in our trajectory generation pipeline.

3.2 Trajectory generation

Several approaches have been used in the field of research to compute a path-guided
trajectory for an agile UAV. Specifically, for our application of trajectory replanning in time-
critical scenarios, we are interested in real-time capable methods which result in minimum time
trajectories. We focus on trajectory planning for multirotor UAVs, where the state-of-the-art
methods mainly use continuous-time polynomial-based, sampling-based, and/or optimization-
based approaches.

In real-time applications, continuous-time polynomials are often used because of their
computational efficiency. Representing a trajectory of a multirotor UAV with a continuous
polynomial is possible thanks to the differential flatness property of the multirotor, where all
states and inputs can be expressed using flat outputs (in x, y, z and yaw axis) and their finite
number of derivatives [20]. Polynomials are ideal for such flat systems as their derivatives are
easily obtainable. In [4], the authors have used this approach to efficiently compute polynomial
trajectories in real-time by solving a quadratic program, which can be solved in closed form. A
subsequent gradient method optimization is used, where the polynomial trajectory is altered
to minimize both snap and total trajectory duration. However, due to the inherent smoothness
of polynomials, this representation can not render time-optimal policies with rapid state or
input changes.

Polynomials are also used in [5] as part of a method of perception-aware online trajectory
replanning. A concept of polynomial interpolation is used, where the final trajectory is defined
by a piece-wise polynomial function called B-spline [21]. In addition, a sampling approach is
used for the yaw angle planning, where a graph model of sampled yaw angles in all waypoints
is created and searched for a trajectory that maximizes the environment coverage of the
onboard sensors. Similar to the previous work, a numeric gradient-based optimization process
follows, where the B-spline trajectory is deformed into more perception-aware trajectories.
This, however, results in trajectories that are not time optimal due to the smoothness of the
polynomials and different optimization criteria.

A method for time-optimal trajectory planning for a full dynamical model of a multirotor
has been introduced in [6]. The authors address the coupling of the linear and rotational
acceleration of a multirotor which is caused by the design of a multirotor UAV, where both
linear and rotational acceleration is controlled using the thrusts of the UAV’s actuators.
This is an important attribute of a multirotor UAV, not always addressed by state-of-the-art
trajectory planning methods. The method uses a complex optimization process, where time
allocation and a full state are assigned for each of the trajectory waypoints using a discretized
dynamic model of the multirotor. This, however, results in a computationally very demanding
method where a single trajectory computation time ranges from several minutes to hours
based on the number of waypoints. It is thus not suitable for real-time replanning.

CTU in Prague Department of Cybernetics

10/63 3.2. TRAJECTORY GENERATION

Due to the non-linearity and high dimensionality of a full multirotor model [22], many
methods use a point-mass model approximation, where the multirotor is assumed to have
the reduced dynamics of a point mass. As we have stated in the previous sections, innova-
tive control methods are able to follow trajectories generated using the simplified point-mass
model. The approximate trajectory can also be used as a guiding trajectory for other methods
respecting the full dynamics of a multirotor [23]. The algorithms for time-optimal trajectory
planning generate the point-mass model trajectory using Pontryagin’s maximum principle
[24], which results in bang-bang policy [22] in the case of limited acceleration trajectories and
in bang-singular-bang policy [25] in the case of a limited jerk trajectory.

The limited jerk point-mass model trajectory is a more accurate approximation as a
real-life UAV cannot change its acceleration in an infinitesimally small time. It is used in [25]
for an online time-optimal trajectory computation. However, many additional approximations
are used in the work wherefore this method is not generally applicable. First, a movement in
one axis at a time is assumed so that no axis synchronization has to be handled. Secondly,
the authors assume a constant vertical thrust and full state knowledge in all waypoints, which
results in 2D trajectories.

The method [26] is applicable in a more general case where the axis synchronization, i.e.,
synchronization of the single-axis motion primitives for all dimensions, is solved by stretching
the zero acceleration segment in a bang-singular-bang policy trajectory. Nevertheless, the pre-
sented solution to the axis synchronization problem does not always have a feasible solution
for a given synchronization time. Moreover, this approach still assumes known full states in
all waypoints and does not address the problem of coupled accelerations of the multirotor. We
will call this problem the limited thrust decomposition, where the acceleration limits have to
be distributed in such a way, that the norm of the collective thrust does not exceed the maxi-
mal value the multirotor’s actuators can produce. Omitting the limited thrust decomposition
problem results in non-time-optimal trajectories because the limits on per-axis accelerations
have to be conservative to ensure that the resulting thrust is within the limits at all times.

The authors of [27] propose an enhancement of the bang-singular-bang point-mass model
trajectory generation, where additional synchronization patterns are introduced to solve the
issue with axis synchronization present in the previous work. A limited acceleration scenario is
assumed. The trajectory planning is solved under the kinematic orienteering problem, which
also solves the ambiguity in the states of the via waypoints. Solving a kinematic orienteering
problem is, however, not necessary in most time-critical applications and leads to increased
computation times of several seconds which is unsuitable for real-time trajectory planning.
Moreover, the solution to the problem is not guaranteed to converge.

In the work [22], the bang-bang policy point-mass model has been used to achieve a
real-time capability of trajectory planning, i.e., a double-integrator motion primitive. The
point-mass model trajectory is a part of an obstacle avoidance framework, where it is used
as a local planner of a kinodynamic variant of the Fast Marching Tree [28] motion planning
algorithm. Moreover, as it is used only to approximate a trajectory between two configurations,
no axis synchronization approach is presented in the work. The point-mass model trajectories
are used to guide the spline-based method [4] which then generates the final trajectories
with optimized states at via waypoints. Consequently, the final trajectories suffer from the
aforementioned drawbacks of polynomial trajectories and are generally not time-optimal.

The authors of [23] also use the bang-bang policy point-mass model trajectories with
bounded accelerations to plan approximate time-optimal paths in a motion planning frame-
work for drone racing. Specifically, the approximate trajectories are used as guiding trajec-

CTU in Prague Department of Cybernetics

3. RELATED WORK 11/63

tories for online replanning, where the final trajectory is then recomputed using fourth-order
polynomials for better tracking by the UAV’s controller, similar to [22]. This time, the au-
thors present a solution for the axis-synchronization problem, where the single-axis bang-bang
policy trajectories are synchronized using acceleration scaling. The ambiguity in states of via
waypoints is solved using a sampling approach, where at every waypoint a predefined num-
ber of states with different velocities are sampled. To reduce the computational time, the
minimum-time problem is approximated as a shortest path problem, where the arc length
between the samples is set to be equivalent to the shortest trajectory duration. The sampled
states are then connected into a graph structure with the arc length as the cost of the edges; in
the next step, the final states are found using a graph searching algorithm. To reduce the size
of the search graph, a receding horizon approach is used, where the trajectory is generated
only for the first few waypoints. A further approximation of this method is that no thrust
decomposition task is solved when computing the point-mass model trajectories as they are
used to guide the final polynomial trajectories.

The ability of modern control methods to track infeasible but differentiable paths was
utilized in works [18] and [7], where a Model Predictive Contouring Control [8] method is
used to track point-mass model bang-bang policy trajectories. Similar to [23], the ambiguity
in velocities for multi-waypoint trajectories is solved using a sampling approach, where at every
via waypoint, different velocity vectors are randomly sampled. The velocity samples differ in
the vector direction and norm. They are then connected in a velocity search graph where
the trajectory duration of the point-mass model connecting two sampled states (waypoint
position and sampled velocity) is used as the cost of an edge. Moreover, to make the sampling
more time efficient, the velocity samples are sampled from inside a cone spreading from the
corresponding waypoint towards the next waypoint. Throughout the whole sampling process,
the sampling cone is refocused based on the best sample currently available, i.e. the state
which results in the shortest trajectory duration.

Further, in [18] the authors also use a gradient descent method on a sphere to optimize
the thrust acceleration of a bang-bang policy trajectory segment to solve the limited thrust
decomposition problem and obtain thus the minimum-time trajectories. The main drawback
of the presented method is, that the computational complexity grows quadratically with the
number of velocity samples per gate and thus also the computational time. For this reason,
when the method was used for a real-time replanning in [7], a receding horizon approach was
used, where the trajectory was generated only for several subsequent waypoints. In addition,
the number of samples per gate has been limited to speed up the velocity search process.

CTU in Prague Department of Cybernetics

12/63 3.2. TRAJECTORY GENERATION

CTU in Prague Department of Cybernetics

4. METHODOLOGY 13/63

Chapter 4

Methodology

Figure 4.1: Block diagram of the proposed algorithm for collision-free trajectory planning. All
possible distinct paths Pi, i = 1, . . . , n, found by a path planning algorithm are processed
by the Collision-free trajectory generation algorithm and a minimum-time point-mass model
trajectory Π is returned.

In this chapter, we will describe the whole process of generating collision-free trajectories
for UAV in more detail. Firstly, we will introduce the point-mass model motion primitive
for one-dimensional trajectory in Section 4.1, extend it for a multi-dimensional trajectory in
Section 4.2 and solve the axis-synchronization problem which is a part of the multi-dimensional
trajectory generation. Secondly, in Section 4.3, we will introduce a novel method for velocity
optimization of a multi-waypoint point-mass model trajectory. A method for limited thrust
decomposition will be introduced in Section 4.4 and several approaches for its incorporation
into the velocity optimization process will be defined in Section 4.5. Having these building
blocks ready, we can utilize the path planning method described in Section 4.6 to define an
algorithm for collision-free trajectory generation in Section 4.7. The whole process of collision-
free trajectory planning is visualized in Figure 4.1.

CTU in Prague Department of Cybernetics

14/63 4.1. POINT-MASS MODEL TRAJECTORY

4.1 Point-mass model trajectory

Firstly, we shall define a simple trajectory segment, i.e., a trajectory between two con-
secutive waypoints without any via points. A multi-waypoint trajectory consists of multiple
connected simple trajectory segments, where the end state of one segment is also the start
state of the consecutive segment, if any. Even though there are several works dealing with
limited jerk point-mass trajectory computation for UAVs which use a bang-singular-bang
policy and bounds on jerk, velocity, and acceleration, we will reduce the kinematics of the
point-mass model to a bang-bang policy with bounds on acceleration. This will significantly
reduce the size and number of analytic solutions to problems encountered when computing
and optimizing a multi-waypoint trajectory. Also, proving the functionality of our concept
for velocity optimization described in Section 4.3 will enable further generalization for more
sophisticated point-mass models.

Given the reduced kinematics of a point-mass model, we shall define the start and end
state of a given trajectory segment as positions p0, p2 ∈ Rn and velocities v0, v2 ∈ Rn,
respectively, where n is the number of dimensions of the space in which the trajectory is
computed. In our case of a UAV flight, we are considering n = 3. The control input of the
simplified point-mass model is the acceleration a ∈ Rn, which is bounded by the per-axis
acceleration limits amin, amax ∈ Rn \ {0}, where amin ≤ a ≤ amax. We are also considering
a ̸= 0 for a non-zero trajectory with p0 ̸= p2.

As we will describe in the following sections, the per-axis acceleration limits for a mul-
tirotor UAV are bound together by the limited thrust force of the UAV. However, we will
consider only per-axis acceleration limits first to make the trajectory computation as general
as possible and deal with the bounded acceleration limits later.

First, we will study the kinematics of a single trajectory axis (dimension) and then
generalize it for a multi-dimensional trajectory in the following section. Given the Pontryagin’s
maximum principle [24] applied on a point-mass model, a time-optimal trajectory segment
can be described by the following equations:

p1 = p0 + v0t1 +
1

2
a1t

2
1,

v1 = v0 + a1t1,

p2 = p1 + v1t2 +
1

2
a2t

2
2,

v2 = v1 + a2t2,

(4.1)

where p0, v0 ∈ R are the start position and velocity, p2, v2 ∈ R are the end position and
velocity, t1, t2 ∈ R are the time durations of the corresponding sub-segments of the bang-bang
policy trajectory and a1, a2 ∈ R are the optimal control inputs such that

ai ∈ {amin, amax}, i = 1, 2. (4.2)

We also omit the case where a1 = a2 as this is equivalent to either t1 = 0 or t2 = 0 which
leaves us with only two combinations of possible values for accelerations a1 and a2.

Given the start state, end state, and limits on the acceleration, the remaining unknowns
are the sub-segment durations t1, t2, velocity v1 and position p1 at time t = t1. It can be shown

CTU in Prague Department of Cybernetics

4. METHODOLOGY 15/63

that analytical solutions to the equations (4.1) exist, which are as follows:

t1 = −
v0 ± σ

a1
,

t2 =
v2 ± σ

a2
,

p1 =
−v02 + v2

2 + 2 a1 p0 − 2 a2 p2
2 (a1 − a2)

,

v1 = ±σ,

σ =

√
−a2 v02 − a1 v22 − 2 a1 a2 p0 + 2 a1 a2 p2

a1 − a2
.

(4.3)

There are four solutions in total; for each combination of a1 and a2 values there are two
solutions as shown in equations (4.3). From those solutions, the final solution is chosen such
that all unknowns are real numbers, and the real-world condition of non-negative time is
satisfied, i.e., t1 > 0 and t2 > 0. In addition, the total trajectory duration of the selected
solution

Ttr = t1 + t2 (4.4)

is the smallest possible.

From the analysis of the domain of the solutions (4.1), it can be derived that a real
solution for given initial conditions exists if and only if{

(a1 − a2)(a1 v2
2 − a2 v2

2 + 2 a1 a2 p0 − 2 a1 a2 p2) ≥ 0 for v1 = v2,

(a1 − a2)(a2 v0
2 − a1 v2

2 − 2 a1 a2 p0 + 2 a1 a2 p2) ≤ 0 for v1 ̸= v2,
(4.5)

where both a1 and a2 are non-zero. This follows from (4.2) and the definition of acceleration
bounds. If conditions (4.5) are not satisfied, there is no feasible solution for a point-mass
trajectory; these conditions can be checked prior to the computation of all the solutions to
save computation time.

For further use in Section 4.3, we also define partial derivatives of total trajectory time
(4.4) with respect to the start velocity v0 and end velocity v2. These will be needed to opti-
mize segment endpoint velocities for multi-waypoint trajectories. Using general differentiation
formulas, the following equations for the corresponding partial derivatives can be obtained:

∂Ttr

∂v0
= ±

(a2 v0
σ ∓ 1

a1
− v0

σ

)
,

∂Ttr

∂v2
= ±

(a1 v2
σ ± 1

a2
− v2

σ

)
,

σ = (a1 − a2)

√
−a2 v02 − a1 v22 − 2 a1 a2 p0 + 2 a1 a2 p2

a1 − a2
.

(4.6)

Similarly to (4.5), after evaluating the domain of the partial derivatives, equations (4.6)
have a real solution under the following conditions:{

(a1 − a2)(a1 v2
2 − a2 v2

2 + 2 a1 a2 p0 − 2 a1 a2 p2) > 0 for v1 = v2,

(a1 − a2)(a2 v0
2 − a1 v2

2 − 2 a1 a2 p0 + 2 a1 a2 p2) < 0 for v1 ̸= v2.
(4.7)

CTU in Prague Department of Cybernetics

16/63 4.2. POINT-MASS MODEL TRAJECTORY - AXIS SYNCHRONIZATION

4.2 Point-mass model trajectory - Axis synchronization

When applying the trajectory computation method described in Section 4.1 to a multi-
dimensional trajectory, one will face the issue of axis synchronization. Using the equations
(4.3) we are able to compute a minimum-time trajectory for each of the trajectory dimensions,
also called axes. However, the duration of all the trajectory axes will generally not be equal; a
method for recomputing the corresponding axis trajectories to an equal duration is therefore
needed.

For this purpose, approaches from literature such as additional synchronization patterns
described in [27] or stretching of a constant velocity profile used in [26] are not applicable.
These methods were designed for a bang-singular-bang policy point-mass model trajectory,
not a bang-bang policy used in our work. For a bang-bang policy approach, we will build on
the work [7], where the authors use acceleration scaling for extending trajectory duration to
a given time.

We will showcase this approach on a one-segment multi-dimensional trajectory which
has the whole start and end states defined, velocities included. Using the equations (4.3), we
obtain segment durations Tax1 , . . . , Taxn for each of the n axes. From these durations, we will
select the longest one as the trajectory duration Tsync of the synchronized multi-dimensional
trajectory. Now, for all remaining trajectory axes, we recompute the trajectory to the selected
duration Tsync using acceleration scaling.

To that end, we introduce an acceleration scaling factor γ ∈ (0, 1] together with an
additional constraint on the total trajectory duration into the point-mass trajectory equations
(4.1); this results in the following equations for the synchronization trajectory:

p1 = p0 + v0t1 +
1

2
γ a1t

2
1,

v1 = v0 + γ a1t1,

p2 = p1 + v1t2 +
1

2
γ a2t

2
2,

v2 = v1 + γ a2t2,

Tsync = t1 + t2,

(4.8)

where a1, a2 ∈ {amin, amax} and a1 ̸= a2, similarly to (4.1). We have thus two possible combi-
nations of values for a1 and a2 in total.

We end up with five equations in five unknowns t1, t2, p1, v1, and γ. As in the previ-
ous case, the solutions to these equations can be expressed in closed form, but we have to
distinguish between two cases; one where v0 ̸= v2 and one where v0 = v2; otherwise, there
would be a division by zero in the solution equations. Solutions for both cases are listed in
Appendix A.1 due to their large size.

There are generally four solutions to the problem (4.8), two solutions for each combi-
nation of a1 and a2, as listed in Appendix A.1. From them, we choose the solution for which
all unknowns are real numbers, the real-world condition of non-negative time, i.e., t1 > 0 and
t2 > 0, is satisfied, and the scale γ lies in the interval (0, 1]. The reason is that we require the
accelerations to be non-zero and within the acceleration limits, and since we have used the
maximal accelerations possible for the initial minim-time single-axis trajectory, the scaling
factor must lie within the interval (0, 1]. Even though we are trying to scale down the acceler-
ation to increase the trajectory time of an axis with smaller trajectory durations, a case may

CTU in Prague Department of Cybernetics

4. METHODOLOGY 17/63

occur where an even higher acceleration would be necessary to integrate the position to the
given value in the given time Tsync. This case is not discussed in [7]; we will therefore propose
an additional step to axis synchronization that solves this issue.

If no feasible solution for γ has been found for the given trajectory duration Tsync, we
must find the smallest possible trajectory duration Tsyncnew the axis is able to synchronize.
Again, this can be done by computing a minimum-time trajectory for the given segment using
the approach described in Section 4.1, but this time enforcing values on a1 and a2, where

a1new = a2old ,

a2new = a1old .
(4.9)

The reason is that for the old values a1old and a2old of the initial minimum-time trajectory,
there is no feasible scale γ to scale them to the given trajectory duration Tsync greater than the
minimum-time trajectory duration we are trying to synchronize. Therefore, the next smallest
trajectory duration greater then Tsync is the duration Tsyncnew of a minimum-time trajectory
(4.1) with swapped acceleration values a1new and a2new as defined in (4.9).

Given the new trajectory duration Tsyncnew > Tsyncold for synchronization, all other
trajectory axes must be recomputed using (4.8), where Tsync := Tsyncnew . Should some of those
axes not be able to synchronize to the newly selected duration, the above-described process
is repeated. This step repeats until all axes are able to synchronize to a common trajectory
duration. If one of the single-axis trajectories is a zero trajectory, i.e., a trajectory with
p0 = p2 and v0 = v2, we select γ = 0 and set the trajectory sub-segment durations as t1 = 0
and t2 = Ttr. We refer to the above-described method for a one-segment multi-dimensional
point-mass model trajectory with synchronized axis computation as computeTrajectory3D
in Algorithm 1, Algorithm 2.

4.3 Velocity optimization using Gradient method

Throughout the previous section, we assumed that all starting and ending states of
all trajectory segments of a multi-dimensional trajectory are known. i.e., the positions and
velocities are known for all waypoints. This, however, is not generally the case. Usually, we
have complete knowledge only about the desired start and end states, and the computed
collision-free path we want to follow is defined only by the positions of the path points.

A possible solution to this problem is to define zero velocity in all the via-waypoints,
which would result in minor deviations of the trajectory from the original path, but also in
slow movement. The UAV would have to speed up and decelerate between every waypoint.
Such a trajectory computed using the methods described in the previous sections can be seen
in Figure 4.2a.

In this section, we propose a new method for finding velocities in the via-waypoints so
that the trajectory is smoother and the trajectory duration is minimized. It is an iterative
method based on an optimization algorithm for finding a local minimum of a differentiable
non-linear function called Gradient method [14]. The Gradient method has been used for
optimizing polynomial trajectories in previous works such as [4].

The problem of finding optimal velocities vi ∈ Rn for all via-waypoints of a point-mass
model trajectory that minimize the trajectory duration Ttr : Rn → R can be formally written
as

{v∗
1, . . . ,v

∗
n} = arg min

v1,...,vn∈Rn
Ttr(v1, . . . ,vn), (4.10)

CTU in Prague Department of Cybernetics

18/63 4.3. VELOCITY OPTIMIZATION USING GRADIENT METHOD

(a) Original trajectory. (b) Optimized trajectory.

Figure 4.2: Visualization of a point-mass model bang-bang policy three-dimensional trajectory
with synchronized axes before velocity optimization (a) and after velocity optimization (b).
Displayed are positions p, velocities v, and accelerations a for all three axes.

where n is the number of via-waypoints of the given path from which the trajectory is
computed. The problem (4.10) is also subjected to all the constraints on a feasible point-mass
model trajectory defined in Sections 4.1 and 4.2.

4.3.1 Velocity optimization of a one-dimensional trajectory

We will first showcase the application of the gradient method on the velocity optimiza-
tion using a one-dimensional trajectory since velocity optimization of a multi-dimensional tra-
jectory is more complicated and it will be explained later. In addition, we explain the method
on a two-segment trajectory because the optimization is generally done by consecutively ap-
plying the same steps on two consecutive segments; a two-segment trajectory optimization
process can thus be easily expanded for a multi-segment trajectory.

The velocity profile of such a trajectory can be seen in Figure 4.3. Here, the notation
from Section 4.1 is adjusted to fit the two-segment trajectory, but the equations (4.1) are
applicable for both segments, i.e., for second segment v0 := v12 and so forth. The two-segment
trajectory duration is equal to

Ttr = T1 + T2 = t11 + t12 + t21 + t22. (4.11)

In all following sections, when we refer to an update of a velocity in a two-segment scope
or two-segment trajectory, we will always mean the velocity v12 which corresponds to the
waypoint that joins the two trajectory segments and which is generally not defined prior to
computing the trajectory. We also call such a velocity the unknown velocity.

For our example trajectory, the problem (4.10) is reduced to

v∗12 = arg min
v12∈R

Ttr(v12) = arg min
v12∈R

T1(v12) + T2(v12), (4.12)

CTU in Prague Department of Cybernetics

4. METHODOLOGY 19/63

Figure 4.3: Velocity profile of an example two-segment one-dimensional trajectory.

where the objective function Ttr(v12) is defined as the sum of its two segment trajectory
durations T1(v12) and T2(v12) as defined in equation (4.4).

Following the notation of a trajectory segment (4.1), the velocity v12 is equal to v2 for
the first segment and v0 for the second segment. Then it is straightforward to show that using
equations (4.6), the gradient ∇Ttr(v12) is equal to

∇Ttr(v12) =
∂Ttr

∂v12
=

∂T1

∂v12
+

∂T2

∂v12
. (4.13)

Having a differentiable objective function Ttr(v12) and its first derivative, we can apply
the gradient method on the problem (4.12). The update step (2.5) of the gradient method can
then be written as

v12k+1
= v12k − α∇Ttr(v12k). (4.14)

Velocity optimization of a two-segment trajectory is then computed by iteratively updating
an initial estimate of the unknown velocity v120 using the update step (4.14) until conver-
gence of the objective function. After every velocity update, both the trajectory segments
are recomputed using (4.3) so that the terminating conditions of the gradient method can be
checked as described in Section 2.4. We will discuss the choice of the initial estimate v120 in
the following text.

To extend this concept to a multi-segment trajectory, we apply a single update step
(4.14) to all two consecutive segments in every iteration of the optimization process. This
means that a single iteration of multi-segment trajectory consists in calculating and evaluating
a single update step and for all the unknown velocities one by one in a two-segment scope; by
evaluating, we mean recomputation of the two corresponding segments according to the new
velocity value. Again, the unknown velocity is the first segment’s end velocity and the second
segment’s start velocity in the two-segment window.

We also change the order of the two-segment scope velocity updates in every iteration
of the optimization process. It has been observed that the velocity optimization converges
faster if the unknown velocities are updated in the opposite order in every iteration. First, we
calculate and evaluate the unknown velocities starting from the beginning of the trajectory,
moving one by one toward the end. In the next iteration, we update the two-segment sub-
trajectories starting from the end and moving towards the beginning of the trajectory.

CTU in Prague Department of Cybernetics

20/63 4.3. VELOCITY OPTIMIZATION USING GRADIENT METHOD

In other words, we have a two-segment sliding window, and in every iteration of the
optimization process, we go through the whole trajectory from one end to the other. In every
step, we calculate a velocity update of the unknown velocity in the current scope, recompute
the two neighboring segments, and slide the window one step to the side according to the
current direction of updates. For a three-segment trajectory, this approach will result in two
velocity updates for a single iteration.

After every iteration of the optimization process, updates of each of the unknown ve-
locities are checked, and if all updates lie below a threshold ε, the optimization will terminate
with the best possible velocities found, i.e., when the condition

|Ttr(v12k+1
)− Ttr(v12k)| < ε (4.15)

is satisfied.

Also, to apply the gradient method to the velocity optimization, an initial value for all
the unknown velocities must be selected. Setting all initial velocities to zero has been selected
as the best option as this guarantees the trajectory’s feasibility before the optimization process,
provided that all other initial parameters allow it. Additionally, setting all initial values to
the same value ensures that for a multi-segment trajectory, all velocity values are iteratively
updated according to how much their change will reduce the total trajectory duration. This
is given by the corresponding gradients.

4.3.2 Velocity optimization of a multi-dimensional trajectory

Extending the concept described in Section 4.3.1 to multi-dimensional trajectories is
not straightforward. There are two main reasons, the first one being that the single-axis
trajectories of a multi-dimensional trajectory contain not only minimum time segments (4.1)
but also synchronization segments (4.8). The duration of the synchronization segments is
given and selected according to the slowest axis, as described in Section 4.2. The second
reason is that any adjustment to a velocity in one axis and the subsequent change in the axis
trajectory duration directly affects all other axes. For example, a case can occur, where an
axis trajectory segment to which all other axes are synchronized has a shorter duration due
to the velocity update. Subsequently, all other axes now have a different time to which they
must be synchronized.

We will introduce the following notation to distinguish all cases that can arise during
the velocity optimization. A point-mass bang-bang policy minimum time trajectory segment
(4.1) will be referred to as a MIN segment. For a synchronization point-mass bang-bang policy
trajectory segment (4.8), we will use the designation SYNC segment. We will also distinguish
different roles of a single-axis segment in the multi-axis trajectory, where a role means whether
it is a MIN segment to which other axes are synchronized or a SYNC segment that needs to
be synchronized.

In a two-segment scope, the following combinations of the previously defined segments
can arise for a synchronized single-axis trajectory of a multi-axis trajectory: MIN-MIN, SYNC-
SYNC, MIN-SYNC and SYNC-MIN.

In the MIN-MIN case, the trajectory optimization of the velocity for the given axis is
done the same way we described in Section 4.3.1 using the partial derivative of the corre-
sponding MIN segment with respect to its start or end velocity.

CTU in Prague Department of Cybernetics

4. METHODOLOGY 21/63

The SYNC-SYNC case does not require any update to the velocities as both segments
of the given axis are adjusted according to some other axis, so updating the velocity would
not influence the total trajectory time at all.

The MIN-SYNC and SYNC-MIN cases are treated similarly, but additional calculations
are needed to ensure correct velocity updates. The difference between the approach used in
the case MIN-MIN is that the SYNC segment has a constant duration, which results using
the equations (4.6) and (4.11) in the following expression for the gradient of the two-segment
trajectory

∇TMIN-SYNC(v12) =
∂TMIN-SYNC

∂v12
=

∂TMIN

∂v12
+

∂TSYNC

∂v12︸ ︷︷ ︸
0

=
∂TMIN

∂v12
,

∇TSYNC-MIN(v12) =
∂TSYNC-MIN

∂v12
=

∂TSYNC

∂v12︸ ︷︷ ︸
0

+
∂TMIN

∂v12
=

∂TMIN

∂v12
,

(4.16)

where v12 is the velocity of the boundary waypoint between the two segments as depicted in
Figure 4.3.

This alone is insufficient for the velocity update as the SYNC segment places additional
bounds on the final updated velocity. A solution to the SYNC segment equations (4.8) must
still exist that ensures the final acceleration scale γ is within the defined interval (0, 1]. We are
thus searching for the solution of the equations (4.8) for γ = 1 and velocities v0 or v2 become
new additional unknowns for SYNC-MIN and MIN-SYNC cases, respectively. By solving this
system of equations, we get the solutions for our boundary velocities

vS-M12B1
= v0 + Tsync a11 ±

√
(a11 − a12)

(
a11 T 2

sync + 2 v0 Tsync + 2 p0 − 2 p12
)
,

vM-S
12B1

= v22 − Tsync a22 ±
√
(a21 − a22)

(
−a22 T 2

sync + 2 v22 Tsync + 2 p12 − 2 p22
)
,

(4.17)

for the SYNC-MIN and MIN-SYNC cases, respectively. Again, as described in Section 4.2,
only real number values of the boundary velocities corresponding to non-negative real values
of the trajectory sub-segments durations t1 and t2 are considered and evaluated for both
combinations of the sub-segment accelerations a1 and a2 values. Consequently, four possible
values for the velocity bounds exist for each of the MIN-SYNC and SYNC-MIN cases. From
those, only the valid and closest to the initial value of the boundary velocity v12k in terms of
Euclidean distance are taken as the lower and upper bound, respectively, to which the velocity
update is limited.

Velocity bounds for the y-axis trajectory displayed in Figure 4.2a for both combina-
tions of a11 and a12 are shown in Figure 4.4. We will refer to the described method for the
computation of velocity bounds given by the SYNC segment as getSyncVelocityBounds in
Algorithm 1.

Bounds on the velocity update given by the SYNC segment are not the only limitations
that must be accounted for in the velocity optimization of a multi-dimensional trajectory. In
Section 4.1, we have described the process of computing and selecting feasible solution(s) of a
point-mass model trajectory. One of the requirements on the computed trajectory sub-segment
durations t1 and t2 was that they are non-negative. This condition is given by the physical sense
of the trajectory generation problem as we consider time to be strictly increasing. However,
this requirement is not encoded into the equations (4.1); we only select the correct solution

CTU in Prague Department of Cybernetics

22/63 4.3. VELOCITY OPTIMIZATION USING GRADIENT METHOD

Figure 4.4: Visualization of bounds (red vertical lines) on the optimized velocity v12 given
the limited interval of the acceleration scale γ ∈ (0, 1] and two possible combinations of sub-
segment acceleration values a11 and a22. The dependence of γ on the possible velocity values
v12 is shown for the y-axis SYNC-MIN trajectory displayed in Fig. 4.2a.

out of all possible solutions for the given initial conditions, if any. As we update the boundary
velocity of the two-segment trajectory, we also change the initial conditions of both the MIN
and SYNC segments. We have already described how we deal with the bounds given by the
SYNC segment equation solutions, but we also need to guarantee that the velocity update
will not cause infeasibility of the updated MIN segment because of negative sub-segment
durations.

For this purpose, we have chosen a modified function for computation of the trajectory
time of the MIN segment, namely the sum of absolute values of the sub-segment durations

T abs
tr = |t1|+ |t2|. (4.18)

The motivation behind the equation (4.18) is that a real absolute value function f(x) = |x| is
continuous and differentiable everywhere except for value x = 0, x ∈ R. And this is precisely
the value where x changes its sign. Subsequently, by finding the non-differentiable points of
the function (4.18), we can also obtain the boundary values for velocity v12 for the velocity
update of a SYNC-MIN and MIN-SYNC optimization step, respectively.

This can be seen in Figure 4.5, where the discontinuities in the MIN trajectory func-
tion (4.18), marked by red vertical lines in Figure 4.5b correspond to the change in sign of
the sub-segment duration t21 in Figure 4.5a. The trajectory duration T of the MIN segment
alone is insufficient for finding the bounds. This can be observed when comparing T and the
modified trajectory duration function T abs in Figure 4.5b. It should also be noted that due
to the reasons explained in Section 4.1, only the bound corresponding to the discontinuity in
T abs for feasible solution s1 is taken into account.

Now, we will describe the exact method for finding the velocity bounds of a MIN-SYNC
trajectory. The process is analogous to the SYNC-MIN case and for both cases, we will refer
to it as getMinVelocityBounds in Algorithm 1.

By substituting the resulting solutions of a one-segment point-mass model trajectory
(4.3) into equation (4.11) while using equation (4.18) for the MIN segment duration, we obtain
the following expression for the SYNC-MIN two-segment trajectory duration with respect to

CTU in Prague Department of Cybernetics

4. METHODOLOGY 23/63

(a) Solutions of trajectory sub-segment durations. (b) Comparison of trajectory duration functions.

Figure 4.5: Visualization of bounds (red vertical lines) on the optimized velocity v12 given
by the feasibility condition of non-negative time. Displayed are the in (a) the four solutions
s1, s2 of the sub-segment durations t21, t22 of a MIN segment of a SYNC-MIN trajectory
given different values of the velocity v12. In Figure (b), trajectory durations T and T abs of
the MIN segment are displayed to showcase the connection between the discontinuities (red
vertical lines) in T abs and change in sign of the sub-segment duration t21. The displayed values
correspond to the y-axis trajectory displayed in Fig. 4.2a.

the optimized velocity v12:

TMIN-SYNC(v12) = T abs
MIN(v12) + TSYNC = |t11(v12)|+ |t12(v12)|+ TSYNC

=
|v0 ± σ(v12)|
|a11|

+
|v12 ± σ(v12)|
|a12|

+ TSYNC,

σ(v12) =

√
−a12 v02 − a11 v122 − 2 a11 a12 p0 + 2 a11 a12 p12

a11 − a12
.

(4.19)

By calculating the partial derivative of the function (4.19) with respect to the velocity
v12 and analyzing its domain, or simply by evaluating the absolute value terms in equation
(4.19) and setting them equal to zero, we can obtain all the values of v12 where a sign of a
sub-segment duration t11 or t12 changes. To do that, we solve the equations

0 = |v0 ± σ(v12)| ,
0 = |v12 ± σ(v12)| ,
0 = σ(v12),

(4.20)

where the first two equations and σ(v12) follow from the equation (4.19), and the last equation
follows from the requirements on the existence of a point-mass trajectory (4.7).

CTU in Prague Department of Cybernetics

24/63 4.3. VELOCITY OPTIMIZATION USING GRADIENT METHOD

The resulting bounds on the updated velocity v12k+1
given by the physical requirement

on positive time are for the MIN-SYNC case are

vM-S
12B2

= ±
√
v02 − 2 a12 p0 + 2 a12 p12,

vM-S
12B2

= ±
√
v02 − 2 a11 p0 + 2 a11 p12,

vM-S
12B2

= ±
√
a12

√
v02 − 2 a11 p0 + 2 a11 p12√

a11
,

(4.21)

each solution corresponding to equations (4.20). Due to the domain of the square root function,
not all of the six velocity bounds v12B2 must exist; therefore we choose only the ones that are
real numbers. Similarly to velocity bounds given by the SYNC segment (4.17), we then sort
the bounds and, according to their Euclidean distance to the current value v12k , we select the
lower and upper bound of the velocity update v12k+1

. As mentioned above, the bounds vS-M12B2

for the SYNC-MIN case are computed analogously. In conclusion, for the MIN-SYNC and
SYNC-MIN segments, the velocity update is computed only from the gradient given by the
MIN segment, and there are two sets of bounds, within which the resulting velocity update
must lie.

Until now, we have described our approach to velocity optimization of a single-axis tra-
jectory in a two-segment scope. Expanding this approach to a multi-dimensional case means
that for every two-segment window of a multi-waypoint trajectory, we must adjust the veloc-
ities for every axis separately. In other words, a single iteration of the optimization process
consists in updating the multi-dimensional trajectory in a two-segment scope, starting from
one of the trajectory endpoints, and moving the two-segment window one by one towards the
other endpoint. In every update of a two-segment sub-trajectory, we go through each axis
individually and according to the roles of the two single-axis trajectory segments, we com-
pute the velocity update according to the method described in this section. The updates are
also adjusted so that they comply with the corresponding bounds. After all updates of the
single-axis trajectories in the two-segment window have been computed, we recompute the
whole two-segment trajectory using the approach described in Section 4.2. Next, we slide the
two-segment window one step to the side according to the current direction of updates to get
a new two-segment sub-trajectory with one of the segments identical to the previous window
position. As described in Section 4.3.1, we alter the endpoint of the trajectory at which the
velocity update process starts in every iteration for faster convergence.

However, the per-axis optimization of velocities does bring certain complications with
it. With this approach, we a priori assume that after the per-axis velocity update, the roles of
the segments in the two-segment scope remain the same for each axis. But this is not the case
because, due to the change in the unknown velocities, the role of the segments change, e.g.,
the MIN-SYNC case for one axis can change to MIN-MIN case after the velocity update. This
could lead to oscillations in the velocity updates as the updates are calculated using different
approaches in each of the cases. A situation could occur where in every iteration, the case
would switch back and forth. This would cause issues with the algorithm termination as there
would still be velocity updates. It could also happen that the case switch would increase the
two-segment trajectory duration, which is something we try to avoid.

To prevent this case, we check, after each update of the two-segment window, whether
the velocity update did not increase the two-segment trajectory duration. If that is the case,
we first look at the new roles of the two segments in each axis, where we check whether the
trajectory duration of the new MIN segments has not increased. The reason is that for a one-
segment trajectory, there is always some combination of MIN and SYNC roles for all axis,

CTU in Prague Department of Cybernetics

4. METHODOLOGY 25/63

and as the SYNC segments are synchronized to the MIN segment(s), the duration increase
could be caused by one of the MIN segments. If so, we reduce the gradient method update
step size αi for the corresponding axis i by a reduction factor η ∈ (0, 1) as

αi = η αi (4.22)

and recompute the two-segment trajectory. This is done repeatedly until either the two-
segment duration does not increase or the update step αi is reduced to a value below a given
threshold ζ ∈ R. In the second case, the update is terminated for the given axis and two-
segment trajectory, i.e., αi = 0, and the two-segment trajectory is recomputed again. After
each window shift, the vector of update steps for all axis αk are reinitialized to the initial
value αinit as

α = [αinit, . . . , αinit]
T. (4.23)

The cause of the two-segment trajectory duration increase can also lie in the SYNC tra-
jectory as there is not a continuous interval of trajectory times the SYNC segment could syn-
chronize, as described in Section 4.2. For this reason, we keep track of which velocities were up-
dated, and if the trajectory duration increase was not caused by the MIN segment, the step size
αik is reduced for all updated axis the same way analogously to the previous case. This whole
process of searching for axes in which the velocity update caused the trajectory duration in-
crease and subsequent step scaling is called findAllAxesThatIncreasedTrajectoryDuration
in Algorithm 1.

A detailed description of the velocity optimization process is shown in Algorithm 1, and
an example trajectory computed using this approach is depicted in Figure 4.2b.

In conclusion, all hyper-parameters used for the optimization process for our algorithm
based on the gradient method, we have defined the following parameters:

1. the initial update step αinit ∈ R equal for all trajectory axis;
2. the update step reduction factor η ∈ (0, 1) which is used to reduce the currently used

update step αi corresponding to the i-th trajectory axis;
3. the threshold ζ ∈ R for the update step, which determines when the update for the

given axis and segment should be terminated;
4. the threshold ε ∈ R for terminating the iterative optimization if the difference between

the current trajectory duration and the trajectory duration in the previous iteration is
too small; and

5. the maximum number of iterations N ∈ Z after which the velocity optimization is
terminated.

The impact of different values for these parameters on the convergence and computation time
of the velocity optimization will be discussed in the following Chapter 5.

CTU in Prague Department of Cybernetics

26/63 4.3. VELOCITY OPTIMIZATION USING GRADIENT METHOD

Algorithm 1: Point-Mass Model Trajectory Generation with Velocity Optimization

Input: P[i], i = 0, . . . , n - path points, v0 - start velocity, vn - end velocity, amin -
minimal per-axis accelerations, amax - maximal per-axis accelerations, α -
initial step length, η - step length reduction factor, ζ - step length threshold,
ε - time change threshold, N - maximum number of iterations

Output: Π - Optimized trajectory
1 V0 ← [v0,0, . . . ,0,vn] ▷ Initial velocities
2 Π0 ← Compute trajectories for all segments using computeTrajectory3D and V0

3 for k ∈ {1, . . . , N} do
4 Vk ← Vk−1

5 Switch order ← {1, . . . , n− 2} and order ← {n− 2, . . . , 1} every iteration k
6 for seg ∈ order do
7 α← [α, α, α]T ▷ Reinitialize for all axes i ∈ {0, 1, 2}
8 for i ∈ {0, 1, 2} do
9 p0 ← P[seg − 1][i], p12 ← P[seg][i], p22 ← P[seg + 1][i]

10 v0 ← Vk−1[seg − 1][i], v12 ← Vk−1[seg][i], v22 ← Vk−1[seg + 1][i]
11 Πi

1 ← Πk[seg − 1][i], Πi
2 ← Πk[seg][i]

12 if Πi
1 is SYNC and Πi

2 is SYNC then
13 continue
14 else if Πi

1 is MIN and Πi
2 is MIN then

15 v12k ← v12 −α[i](∇T1(v12) +∇T2(v12))
16 else if Πi

1 is MIN and Πi
2 is SYNC then

17 v12B1 ← getSyncVelocityBounds(T2, p12, p22, v22,amin[i],amax[i])
18 v12B2 ← getMinVelocityBounds(p0, v0, p12, v12,amin[i],amax[i])
19 v12k ← v12 −α[i]∇T1(v12)
20 Clip v12k given bounds v12B1 and v12B2

21 else if Πi
1 is SYNC and Πi

2 is MIN then
22 v12B1 ← getSyncVelocityBounds(T1, p0, v0, p12,amin[i],amax[i])
23 v12B2 ← getMinVelocityBounds(p12, v12, p22, v22,amin[i],amax[i])
24 v12k ← v12 −α[i]∇T2(v12)
25 Clip v12k given bounds v12B1 and v12B2

26 Vk[seg][i]← v12k

27 Update Π1 and Π2 using computeTrajectory3D given Vk[seg]
28 if (T1k + T2k) > (T1k−1

+ T2k−1
) then

29 j ← findAllAxesThatIncreasedTrajectoryDuration()
30 α[j]← ηα[j] ∀j
31 if ∃j s.t. α[j] < ζ then
32 α[j]← 0

33 Update Π1 and Π2 using computeTrajectory3D given Vk−1[seg]
34 seg ← seg − 1

35 else
36 Πk[seg − 1][i]← Π1

37 Πk[seg][i]← Π2

38 if
∣∣Ttrajk − Ttrajk−1

∣∣ < ε then
39 break

CTU in Prague Department of Cybernetics

4. METHODOLOGY 27/63

4.4 Limited thrust decomposition

In the previous section, we introduced a trajectory computing method that requires
per-axis acceleration limits. However, as described in Section 3.2, for a fixed-frame multirotor
UAV flight in a three-dimensional space, the three-axis accelerations are coupled with the
limited thrust vector of the multirotor.

Given a maximal thrust force fmax the motors of a multirotor can produce, the limited
thrust acceleration limit aTmax is computed for a multirotor of mass m as

aTmax =
fmax

m
. (4.24)

Then, including also the gravity, the body acceleration values aBi , i ∈ {x, y, z} of a trajectory
must for all times t ∈ [0, Ttr] satisfy the following constraint

aTmax ≥
√

(aBx (t))
2 + (aBy (t))

2 + (aBz (t) + g)2, (4.25)

where Ttr is the trajectory duration, and g is the gravitational acceleration at the surface of
the Earth. This constraint follows from the definition of the multirotor thrust acceleration

aT = aB − g, (4.26)

where aB is the multirotor body acceleration, i.e., acceleration of its point-mass model, and
g = [0, 0,−g] is the gravity vector.

For a multi-dimensional point-mass model trajectory, distributing the limited thrust
acceleration into the different axis accelerations in every trajectory segment is not an easy
task due to the non-linear constraint (4.25). Rather than deriving a complex optimization
approach to find these accelerations and to minimize the computation time, we will build on
the work [18] and introduce an algorithm that iteratively approximates an optimal distribution
of body accelerations

aB(t) = [aBx (t), a
B
y (t), a

B
z (t)]

T, t ∈ [0, Ttr] (4.27)

so that the trajectory duration of a point-mass model bang-bang policy trajectory segment
Ttr is minimized.

For a single three-dimensional trajectory segment with per-axis trajectory equations
(4.1), the problem can be formulated using (4.25) and (4.26) as

{aB∗
1 ,aB∗

2 } = arg min
aB
1 ,aB

2 ∈R3
Ttr(a

B
1 ,a

B
2)

s.t. aB1 = [aB1x , a
B
1y , a

B
1z]

T,

aB2 = [aB2x , a
B
2y , a

B
2z]

T,

aBi (t) = aB1i for t ∈ [0, t1i], for i ∈ {x, y, z}
aBi (t) = aB2i for t ∈ [t1i , Ttr], for i ∈ {x, y, z}

∥aB(t)− g∥ ≤ aTmax, for t ∈ [0, Ttr]

(4.28)

where aB1i is the body acceleration for the i-axis in the first trajectory sub-segment, aB2i the
body acceleration in the second sub-segment, and t1i is the switch time of the bang-bang
policy trajectory corresponding to the i-axis.

CTU in Prague Department of Cybernetics

28/63 4.4. LIMITED THRUST DECOMPOSITION

To approximate the solution to the problem (4.28), we first decompose the maximal
thrust acceleration aTmax into per-axis limits amin and amax with equal limits across all axes.
This is done by solving the following equation

aTmax =

√(
aBinit

)2
+
(
aBinit

)2
+
(
aBinit + g

)2
(4.29)

for the initial per-axis thrust acceleration limit estimate aBinit. The problem (4.29) has a closed
form solution

aBinit = −
g

3
±

√
3 (aTmax)

2 − 2 g2

3
. (4.30)

We always select the real-number non-negative solution from the two possible values. The
initial body per-axis acceleration limits are then computed as

aBmax0 = [aBinit, a
B
init, a

B
init]

T,

aBmin0 = −amax0 + 2g,
(4.31)

where the body acceleration limits are symmetrical for x and y axes and asymmetrical for the
z axis due to the gravity compensation. The second equation in (4.31) can be derived from
the following analysis of the z component of the thrust acceleration (4.29):

aTz = aBinit + g,

−aBz = −aTz − g = −aBinit − 2g,
(4.32)

where we use (4.26) for transforming the thrust acceleration into body acceleration.

Using these initial values, we compute the multi-dimensional trajectory segment with
synchronized axes using the method described in Section 4.2. As the synchronization trajec-
tories are computed using acceleration down-scaling, the norm of acceleration will generally
be different from aTmax throughout the trajectory segment. We want to use the maximal accel-
eration possible according to the Pontryagin’s maximum principle [24] for the minimum time
trajectory. This means in our case that there is a thrust acceleration vector aT used in the
trajectory such that

∥aT ∥ = aTmax. (4.33)

Using the bang-bang policy and axis synchronization, we generally have different per-
axis switch times t1i , i ∈ {x, y, z} which lead to four different body acceleration vectors
aBl , l ∈ 1, . . . , 4. Each of the accelerations aBl is used in the corresponding time intervals
between the times t0, t1x , t1y , t1z , and Ttr. However, as we are using symmetrical body
acceleration limits in x and y axis, there are only two possible values for the thrust acceleration
norm of the given trajectory, namely

∥aTl ∥ ∈
{
∥aB1 − g∥, ∥aB2 − g∥

}
, (4.34)

where aB1 := aBl=1 is the start acceleration and aB2 := aBl=4 is the end acceleration.

To find the body per-axis acceleration limits aBmin and aBmax which result in satisfying
the condition (4.33) for at least one thrust acceleration aTl , we propose the following iterative
approach.

First, in every iteration j, we select the largest thrust acceleration used in terms of norm

aTj = argmax(∥aB1j − g∥, ∥aB2j − g∥). (4.35)

CTU in Prague Department of Cybernetics

4. METHODOLOGY 29/63

In the next step, new per-axis acceleration limits aBminj+1
and aBmaxj+1

are approximated by

finding a factor β ∈ R with which the current maximal acceleration is scaled to achieve (4.33)
as follows

aBmaxj+1
= βaTj

aBminj+1
= −βaTj + 2g.

(4.36)

The factor β is computed by solving the equation

aTmax =

√(
βaTxj

)2
+
(
βaTyj

)2
+
(
βaTzj + g

)2
, (4.37)

where aTj = [aTxj
, aTyj , a

T
zj] , which has a closed form solution

β = −
aTzjg ±

√
(aTmax)

2 ∥aTj ∥2 −
(
aTxj

)2
g2 −

(
aTyj

)2
g2

∥aTj ∥2
. (4.38)

Again, we are choosing a real-number and positive value out of the two possible solutions in
order to correctly assign maximal and minimal acceleration values.

Multiplying all elements of the vector aTj by the same factor does not guarantee that after

recomputing the trajectory with the new per-axis acceleration bounds aBminj+1
and aBmaxj+1

the norm of the maximal sub-segment acceleration aTj+1 will equal to aTmax; yet as we will
show in the following chapter, after few iterations of the above-described algorithm we can
approximate the acceleration distribution so that∣∣∥aTj ∥ − aTmax

∣∣ < ε (4.39)

holds for some predefined threshold ε ∈ R. This is also the stopping criterion of the thrust
decomposition method for point-mass model trajectory generation. The whole algorithm is
described in Algorithm 2.

This approach for limited thrust acceleration decomposition for one trajectory segment
can be extended to a multi-waypoint trajectory by running the algorithm for every trajectory
segment separately. As it is an iterative method, we use again a maximum number of iterations
N ∈ Z to terminate the algorithm in case of slow convergence.

4.5 Limited thrust decomposition in velocity optimization

Implementing the algorithm for thrust decomposition introduced in Section 4.4 into
the velocity optimization approach explained in Section 4.3.2 is challenging. In the velocity
optimization process, we have assumed in every step that the per-axis acceleration bounds
amin and amax are constant. This assumption is necessary to compute bounds on the velocity
update to ensure the feasibility of the updated two-segment trajectory in the next segment.
However, when altering the initial conditions for the thrust acceleration decomposition by
updating the unknown velocity value, the distribution of the limited thrust acceleration norm
will result in different per-axis accelerations, which can lead to a slower two-segment trajectory.

Moreover, while using the Algorithm 2 for thrust decomposition equalizes the axis tra-
jectories implicitly by distributing the per-axis accelerations according to the minimum tra-
jectory time of each axis, doing so by reducing the maximum allowed accelerations leaves a

CTU in Prague Department of Cybernetics

30/63 4.5. LIMITED THRUST DECOMPOSITION IN VELOCITY OPTIMIZATION

Algorithm 2: Limited Thrust Decomposition

Input: p0 - start position, v0 - start velocity, p12 - end position, v12 - end velocity,
aTmax - maximal thrust acceleration, ε - acceleration norm precision, N -
maximum number of iterations

Output: Π - resulting trajectory
1

2 amax ← getEqualPerAxisMaxAcceleration(aTmax) ▷ (4.31)
3 amax0 ← [ainit, ainit, ainit]

T

4 amin0 ← −amax0 + 2g
5 Π← computeTrajectory3D(p0,v0,p12,v12,amin0 ,amax0)
6 for j ∈ 0, . . . , N − 1 do
7 a1j ,a2j ← getAccelerationVectors(Π)
8 aLj ← argmax(∥a1j − g∥, ∥a2j − g∥)
9 if

∣∣∥aLj∥ − aTmax

∣∣ < ε then
10 break

11 β ← computeScalingFactor(aLj) ▷ (4.38)

12 amaxj+1 ← βaLj

13 aminj+1 ← −βaLj + 2g

14 Update Π given aminj+1 , amaxj+1

limited room for velocity optimization. This could result in a case where a velocity update
would reduce the trajectory time but the acceleration limits placed on the corresponding axis
would be too tight and the new updated trajectory would be infeasible.

However, the Algorithm 1 is relatively robust to cases where the updates lead to infeasi-
ble or trajectory duration increasing updates. So, including the limited thrust decomposition
into trajectory re-calculation steps in Algorithm 1 could lead to reasonable results.

To test this theory, we propose three different approaches to including the thrust de-
composition in the velocity optimization:

1. In the first approach, the velocity optimization Algorithm 1 is run for constant accel-
eration limits, which are calculated using the same equation (4.30) that is used in the
initial step of the thrust decomposition algorithm. After convergence of the velocity
optimization, the resulting trajectory is recomputed using the Algorithm 2 to minimize
the trajectory duration further.

2. The second approach is similar to the first one, but this time, after convergence of
the Algorithm 1, the velocity optimization algorithm is run again. Only this time, the
thrust decomposition algorithm is used in every instance where a trajectory segment is
(re-)computed.

3. In the last approach, the velocity optimization is run using the thrust decomposition
only.

It can be expected that the different approaches will vary in computation time and quality of
the solution. In our case, it is the final trajectory duration we are trying to minimize.

CTU in Prague Department of Cybernetics

4. METHODOLOGY 31/63

4.6 Path planning using Clustering Topological PRM

For path planning, we use the Clustering Topological PRM (CTopPRM) [9] method. It
provides an efficient way of computing collision-free topologically distinct paths in a known
environment given the start and end pose of an UAV. This is highly beneficial for our task of
finding a minimum-time trajectory, as we are provided with a set of possible paths from which
we can compute the corresponding trajectories and select the one with the shortest duration.
Moreover, the authors of [9] reported that the CTopPRM method is superior in finding all
homotopically distinct paths to the previous methods, namely [18] and [5]. Therefore, the
CTopPRM algorithm has been chosen as a suitable tool for the path planning task and we
will briefly summarize the main concept in the following paragraphs.

The CTopPRM algorithm is designed using several methods that are run in a hierarchi-
cal order. First, a graph-based representation of the continuous configuration space called
roadmap is created using a sampling-based motion planner called Informed Probabilistic
Roadmap [19]. It is a modified Probabilistic Roadmap (PRM) [16] motion planner, where
in the sampling phase, the configurations are sampled only from an ellipsoid with its principal
axis spanning from the start to goal configuration. The size of the ellipsoid is reduced based
on the length of the shortest path found throughout the sampling process. The sample con-
figurations are added to the roadmap only if they lie in Cfree and there exists a collision-free
path connecting it to the roadmap. The connecting paths are computed using a local planner.

In the next step, the resulting roadmap is iteratively divided into clusters to obtain a
low-order graph consisting of the cluster centers as its vertices. The reduced graph can then
be time-efficiently searched for all distinct paths in the following step. This cluster placement
is done methodically to find distinct paths with different homotopy classes, which means that
they pass around obstacles from different sides. The homotopy classification is approximated
using the Uniform Visibility Deformation (UDV) [5] concept, where two paths P1(s) and P2(s)
belong to the same UDV case if for all s ∈ [0, 1] the line segment between configurations P1(s)
and P2(s) is collision-free.

Figure 4.6: Example distinct paths generated with the CTopPRM [9] algorithm in a forest-like
environment between the start configuration (green point) and end configuration (red point).

After a pre-determined number of clusters have been reached, the resulting sparse
roadmap is searched for all possible paths with different UDV classes. To this end, a modified

CTU in Prague Department of Cybernetics

32/63 4.7. COLLISION-FREE TRAJECTORY COMPUTATION

depth-first graph-search algorithm is used. Additionally, the resulting paths are shortened and
all paths with lengths above a threshold are filtered out. The threshold is set as the multiple
of the shortest distinct path’s length. An example output of this path-planning algorithm
is shown in Figure 4.6, where a forest-like environment was used to simulate an agile-flight
scenario.

4.7 Collision-free trajectory computation

In the previous Section 4.6, we have described a method for planning collision-free
paths in a known environment. The goal of guided collision-free trajectory computation is
to effectively find a collision-free trajectory based on those paths. Additionally, given our
application of time-critical tasks, the resulting trajectory should have the smallest trajectory
duration possible. An approach for solving this task has been introduced in [18]. However, as
we will discuss in this section and showcase in Section 5.4, the proposed method is suitable
only for certain environments.

The two main building blocks of collision-free trajectory computation are an algorithm
for trajectory computation and a method for collision checking. We have introduced several
approaches to computing a minimum-time point-mass model trajectory in Section 4.5, which
combined the proposed methods for point-mass model trajectory computation, velocity opti-
mization and limited thrust decomposition. For collision checking, we first need to be able to
sample the trajectory.

A trajectory can be sampled in different ways; we will deal with sampling in time and
sampling based on the maximum distance in position between the consecutive trajectory
samples. Sampling in time is usually used for discrete control, where a controller running at
a frequency fc is given a sampled trajectory for execution. To sample a trajectory in time, we
start with the initial trajectory state containing initial position p(0) = p0, velocity v[0] = v0

and a[0] at time t0 = 0. Then, until the whole trajectory is sampled, the time is increased
by the sampling period Ts = 1/fc after every sample tk+1 = tk + Ts and the trajectory is
integrated according to the equations (4.1) to obtain the corresponding samples of time tk,
position p[tk], velocity v[tk] and acceleration a[tk].

However, for collision checking, we need the trajectory sampled so that the Euclidean
distance between two consecutive trajectory points is below a predefined threshold δ ∈ R.
There are different methods for collision checking. In our case, we use Euclidean Signed Distant
Field, where our planning environment is discretized into 3D grid map and each cell value
contains the distance to the closest obstacle. The grid has a defined resolution, i.e., the size of
the grid cells. For collision checking, it makes sense for the distance between two consecutive
trajectory positions δ to be greater or equal to the grid resolution. Otherwise, the collision
checking would be ineffective as a collision would be checked for each cell more than once.

An equidistant sampling is then executed by starting at the initial state and solving the
following equation

δax = v[tk−1]tk +
1

2
a[tk−1]t

2
k, (4.40)

where δax is the per-axis maximum distance in position between two samples, v[tk−1] is the
singe-axis velocity at the previous time-stamp, a[tk−1] is the single-axis acceleration at the
given timestamp, and tk is the unknown time of the next sample. For simplification, we are
using a per-axis threshold. It is sufficient to ensure that the collision is checked for a sample
lying inside a neighboring grid map cell for effective computation.

CTU in Prague Department of Cybernetics

4. METHODOLOGY 33/63

The equation (4.40) has a closed form solution

tk =
vtk−1 ±

√
v[tk1]

2 − 2a[tk−1]δax
a[tk−1]

, (4.41)

where we choose the non-negative value for the time stamp tk. Due to the bang-bang policy
trajectory, it must be checked that a[tk−1] = a[tk]. Otherwise, if a change of acceleration occurs
at switch time ts, the distance δs = |p[ts]− p[tk−1]| must be calculated using acceleration
a[tk−1] and equation (4.40) solved again, this time for δax := δax − δs and a[tk−1] := a[tk] to
obtain the next time-stamp.

By solving (4.40) for every trajectory axis, we obtain three time-stamps tkx , tky and
tkz , from which the minimum is selected as the next sample time at which the trajectory is
sampled. We refer to this equidistant sampling method as sampleTrajectory in Algorithm 3.

A collision of an UAV is then checked by obtaining the 3D grid map value at the cell
corresponding to the current UAV’s body center position. If the distance to the closest obstacle
is smaller than the distance from the center of the UAV to the closest point on its surface in
the corresponding direction, there is a collision. Usually, the geometrical model of the UAV’s
body is simplified to a sphere with radius r ∈ R, and the collision checking is thus simplified
to checking if the distance to the closest obstacle is smaller or equal to the UAV’s radius r.
In our application, we use this simplification to reduce the computational time.

Having these building blocks ready, the authors of [18] suggested the following approach.
To omit the computational burden of generating trajectories for all the paths in the initial
path set P = {P1, . . . , Pn} found by the path-planning algorithm, the proposed method starts
by computing a naive trajectory between the start and goal states disregarding all obstacles
along the way and adds it to a set of possible trajectories. The approach then uses a dynamic
programming search with a priority queue to select the trajectory with the shortest duration. A
selected naive trajectory is sampled and checked for collisions. At the point of the first collision,
the closest point lying on the nearest path Ps ∈ P is computed and added to the corresponding
naive sequence of path points, from which a new trajectory is computed. By repeatedly adding
via-points lying on the already computed collision path to the initial naive two-waypoint
trajectory, the algorithm computes the final shortest-time collision-free trajectory.

This approach, however, has its drawbacks. As we will show in Section 5.3, the com-
putational time of our method for point-mass trajectory generation increases linearly with
the number of via-waypoints. Adding a large number of waypoints is thus detrimental to the
effectiveness of the trajectory generation process. Using the proposed approach can in some
cases lead to a significant increase in computational time as shown in Figure 4.7 or even to an
endless cycle. Moreover, it can render non-minimum-time trajectories as adding many way-
points results in a slow flight of the UAV due to many steering maneuvers and consequently
shorter trajectory durations.

Figure 4.7 displays a scenario, where two paths around an obstacle have been found
from the start (green) to the goal (red) position. A 2D environment is used for simplification.
Applying the above-described approach results in a) multiple via-waypoint insertions and
trajectory recomputations in the case of the blue path, and b) endless adding of the start
position in the case of the red path, as the start position is the closest point to the initial
collision marked with the black cross. It should be noted, that this approach was designed for
multi-goal trajectory generation in cluttered environments, where computing all the computed
paths for all goals becomes much more computationally demanding than in our case of a single-

CTU in Prague Department of Cybernetics

34/63 4.7. COLLISION-FREE TRAJECTORY COMPUTATION

goal trajectory generation. However, as we will show in Section 5.4, scenario (a) can also occur
in cluttered environments for larger clearances from the obstacles.

Figure 4.7: Example scenario showcasing drawbacks of the collision-free trajectory generation
approach proposed in [18]. The planning of naive trajectories (black lines) from the start state
(greed cross) to the end state (red cross) results in many added waypoints (blue dots) due to
the collision points (black crosses) of the naive trajectories with an obstacle (grey). The final
trajectory computed using the blue path is marked with the blue dashed line.

Due to the aforementioned drawbacks of the method [18], we will adapt the method
to suit a more general application. Combining the trajectory generation algorithm, trajec-
tory sampling, and collision checking in a known map, we can compute a minimum-time
collision-free trajectory using the Algorithm 3. First, we calculate the corresponding tra-
jectories T = {Π1, . . . ,Πn} with Velocity Optimization (VO) for all n paths in the initial
path set P using the approach described in Section 4.3, while simultaneously using one
of the approaches for limited Thrust Decomposition (TD) described in Section 4.4. From
the calculated trajectories, trajectory Πs with the minimum duration is selected (method
findAndRemoveBestTrajectory in Algorithm 3), sampled according to the grid resolu-
tion and checked for collision.

If the computed trajectory collides with an obstacle, we find the closest path segment
of the corresponding path Ps to the collision point using basic algebra. This method is called
findColsestPathSegmentToTheCollsion in Algorithm 3. The path segment is defined by
the corresponding via-waypoints pa and pb. Then, the closest point pc on the path between
pa and pb is computed (method findColsestPointOnPathToTheCollsion in Algorithm 3)
and added between the original path points into the initial path Ps to prevent the collision.
An updated trajectory Π′

s is then computed from the updated path P ′
s, and both replace

the original trajectory and path in the sets T and P, respectively. From the updated set of
trajectories, the path with minimal duration is again selected. This process repeats until a
collision-free path is found.

CTU in Prague Department of Cybernetics

4. METHODOLOGY 35/63

Algorithm 3: Collision-Free Point-Mass Trajectory Generation

Input: P = {P1, . . . , Pn} - initial path set, δ - collision checking precision
Output: Πs - resulting trajectory

1

2 T← Compute trajectories with VO and TD for all paths P ∈ P ▷ Alg. 1, Alg. 2
3 while T ̸= ∅ do
4 Πs ← findAndRemoveBestTrajectory(T)
5 Πδ ← sampleTrajectory(Πs, δ)
6 if Πδ is collision-free then
7 break
8 else
9 Ps ← path corresponding to Πs

10 (pa,pb)← findColsestPathSegmentToTheCollsion(Ps)
11 pc ← findColsestPointOnPathToTheCollsion(pa,pb)
12 P ′

s ← insert pc between pa,pb in Ps

13 Π′
s ← Compute trajectory with VO and TD from Ps ▷ Alg. 1, Alg. 2

14 T← T ∪ {Π′
s}

CTU in Prague Department of Cybernetics

36/63 4.7. COLLISION-FREE TRAJECTORY COMPUTATION

CTU in Prague Department of Cybernetics

5. RESULTS 37/63

Chapter 5

Results

5.1 Velocity optimization algorithm

We have selected four paths to test the performance of the proposed method for a
minimum-time multi-waypoint point-mass model trajectory computation. All of them are
three-dimensional paths that have been selected with the following aim:

1. Path P1 depicted in Figure 5.1a and defined in Table A.1 simulates online trajectory
planning using the receding horizon approach, where only next n waypoints are con-
sidered. This method can be applied in situations, where the UAV has diverted from
a preplanned mission due to an obstacle-avoiding maneuver or external disturbance. In
our case, we consider n = 3 and the path is a segment of Path 2 to simulate a disturbance
correction similar to the scenario presented in [7].

2. Path P2 shown in Figure 5.1b and defined in Table A.2 is used to compare our method
for trajectory generation and optimization with the method introduced in article [7],
from which this path has been taken over. It describes an agile flight through a drone
racing circuit where the UAV flies through some of the waypoints/gates multiple times.

3. Paths P3 and P4 shown in Figures 5.1c and 5.1d, respectively, are collision-free paths
that have been computed using the method [9] described in Section 4.6. The paths were
planned in a forest-like environment shown in Figure 4.6 to simulate a scenario where
agile flight is necessary to avoid obstacles. We have chosen similar paths with different
numbers of waypoints to demonstrate the effect of an increased number of trajectory
segments that require velocity optimization on the performance of our method for tra-
jectory computation. The paths are defined in Table A.3 and Table A.4, respectively.

As we have stated at the beginning of this thesis, we are searching for a minimum-
time trajectory that can be computed in real-time. This was the main motivation behind the
selection of the simplified point-mass model of the multirotor UAV. The testing criteria are
thus the resulting trajectory duration T ∗

tr after velocity optimization and the computational
time τcmp of the trajectory generation process.

All our methods introduced in this work have been implemented in C++ and were run
on an Intel Core i9-12900HK processor with a clock speed of 5 GHz to obtain all the results
for the experiments described in this chapter.

Table 5.1: Multirotor UAV parameters used for the experiments.

Parameter Value

m [kg] 1.0

fmax [N] 40

Due to time constraints, the proposed method has been tested only in a simulated

CTU in Prague Department of Cybernetics

38/63 5.1. VELOCITY OPTIMIZATION ALGORITHM

(a) Path P1. (b) Path P2.

(c) Path P3. (d) Path P4.

Figure 5.1: Visualization of the testing paths P1 (a), P2 (b), P3 (c), and P4 (d). Each one of
them is a three-dimensional path with starting waypoint, goal waypoint, and via waypoints.

CTU in Prague Department of Cybernetics

5. RESULTS 39/63

environment using a virtual model of an UAV. The selected multirotor UAV parameters used
for all the testing are shown in Table 5.1, where m is the UAV weight and fmax is the maximal
thrust force the UAV can produce using its propulsion system. The resulting 4:1 thrust-to-
weight ratio is suitable for an agile flight where minimum time trajectories are usually required;
it is thus suitable also for our application.

5.1.1 Velocity optimization method parameter selection

For efficient use of the velocity optimization process introduced in Algorithm 1, reason-
able hyperparameters have to be selected first. To recapitulate, the parameters of the velocity
optimization Algorithm 1 are the initial update step αinit, the update step reduction factor
η, the update step threshold ζ, the trajectory time update threshold εV O, and the maximum
number of iterations NV O. A more detailed description of those parameters can be found at
the end of Section 4.3.

Parameters NV O and εV O are standard parameters of iterative optimization methods,
and their value is usually selected as a tradeoff between the precision of the result and com-
putational time. For our application, it has been observed that

NV O = 30 (5.1)

is a reasonable value as most of the tested trajectories converged within this limit. The thresh-
old

εV O = 10−3 (5.2)

has been selected for the trajectory time difference threshold after an update. As we are
computing a trajectory for a simplified model, there is no need for more precise results as the
final trajectory executed by a real UAV will be, in either case, different due to the physical
limitations of a UAV. The value of the update step threshold has been selected as

ζ = 10−3 (5.3)

for the same reason. For a smaller update step value, the effect of the velocity change on the
resulting trajectory would be marginal when taking the selected εV O into account.

To test the effect of the two remaining parameters αinit and η on the velocity optimiza-
tion process, we have made the following experiments. For all four testing paths, we have
computed optimized trajectories according to the Algorithm 1 using different combinations of
values of the parameters αinit and η. We have also recorded the duration and computational
time of each trajectory. The resulting values are visualized using heat maps which can be
found in Appendix A.3 for all four testing paths P1, . . . , P4.

Due to space constraints, we will demonstrate the results of the hyperparameter grid
search only on heat maps displayed in Figure 5.2, which show the resulting computational
times and durations of trajectory Π1 computed from path P1.

We analyze the impact of various initial step size αinit values on the computed trajectory
first. Figure 5.2b shows the resulting trajectory durations and the first thing that can be
deduced about the step size of the gradient-method-based algorithm is that a small step
size leads to increased trajectory duration. This is probably the consequence of updating
the velocities separately for each axis and the subsequent trajectory recomputation and axis
synchronization. As the axis influence each other in the axis-synchronization process, the

CTU in Prague Department of Cybernetics

40/63 5.1. VELOCITY OPTIMIZATION ALGORITHM

(a) Trajectory Π1 computational times. (b) Trajectory Π1 durations.

Figure 5.2: Heat maps of computational times and trajectory durations for different values
of Algorithm 1 hyperparameters step length αinit and step length reduction factor η. The
trajectory Π1 has been computed from the testing path P1.

small velocity updates can get stuck in a local minimum which is far from the minimum
time achievable by our method using different parameter values. Also, updating the unknown
velocities in a two-segment window means that the velocity update is constrained by the
current values of velocities at the two-segment trajectory endpoints which restricts the velocity
updates. Small changes to those values can result in early termination of the optimization
process as the improvement in trajectory duration lies below the given threshold. Increasing
αinit leads to smaller trajectory durations as the larger updates will escape from the local
minima. However, a too-large step size can also lead to worse results; this can be seen by
comparing the trajectory duration heat-maps in Figure A.1. For all four tested cases, the best
results can be achieved by selecting the interval αinit ∈ [20, 30] for the initial step size.

The reduction factor η also influences the resulting trajectory duration. As we are using
the reduction factor to scale down the step size in problematic sections where the objective
function has increased its value due to the velocity update, selecting higher values will lead
to more evaluations of different velocity updates before the step size is scaled down below
the threshold ζ. This results in a more precise velocity optimization in some cases. However,
an increased number of evaluations leads to increased computational time, as illustrated in
Figure 5.2a. The displayed values are the mean values of computational times from 100 runs. In
our case, choosing η from the interval [0.4, 0.7] seems reasonable when comparing the results
for all the testing paths displayed in Figure A.1 as those values represent a good tradeoff
between computational time and resulting trajectory duration.

For all further testing, the following values will be used for the initial step size and the
step size reduction factor:

αinit = 25,

η = 0.5.
(5.4)

Using the results of the parameter search, we can also demonstrate some characteristics
of the velocity optimization process. The heat maps presented in Figure A.1 show that the
several approximations, separate treating of the velocity updates, and the influence of the
single-axis trajectories on each other lead to different results for similar values of the selected
hyperparameters, i.e., a small change in one parameter can lead to a significant difference in
the resulting trajectory duration. Further, a small selection of hyperparameters for the given
problem usually results in a smaller trajectory duration compared to the rest of the tested

CTU in Prague Department of Cybernetics

5. RESULTS 41/63

cases, as shown in Figure A.1d. However, we were unable to derive any general rules for the
parameter selection to obtain the shortest trajectory duration possible for a given path.

The proposed values for the hyperparameters have been selected based on the four tested
trajectories and should represent a tradeoff between the resulting trajectory duration and
computational time. Other parameter values could be more suitable in different applications,
i.e., for an UAV with different parameters or for paths containing more than 20 waypoints.

5.1.2 Thrust decomposition in velocity optimization

When defining Algorithm 2 for limited thrust acceleration decomposition in a point-
mass model three-dimensional trajectory segment, we claimed that the proposed method
for iterative per-axis acceleration bounds adjustment converges reasonably fast despite the
approximations used.

Table 5.2 shows the resulting convergence of computing point-mass model trajectories
Π1, . . . ,Π4 from testing paths P1, . . . , P4 using the proposed thrust decomposition approach.
The precision

εTD = 10−3 (5.5)

was used because the point-mass model trajectory is only an approximation of a trajectory
that a physical UAV can execute; a higher precision is, therefore, unnecessary.

Table 5.2: Results for thrust decomposition convergence shown on trajectories Π1, . . . ,Π4

corresponding to paths P1, . . . , P4 with n trajectory segments. Displayed are the mean number
of iterations µiter needed for thrust decomposition of a trajectory segment for all segments of
the corresponding trajectory, the maximum and minimum number of iterations.

n [-] µiter [-] Min Iter. [-] Max Iter. [-]

Π1 3 5.000 2 9

Π2 18 3.278 2 5

Π3 5 2.400 2 3

Π4 10 3.800 2 5

The data in Table 5.2 clearly show that for all trajectory segments, the thrust decompo-
sition approach converged within ten iterations, and except for the trajectory Π1, the mean
number of iterations necessary for thrust acceleration decomposition lies under four iterations.
The mean computational time for a single iteration was measured at 0.2321 µs; the proposed
method is, therefore, suitable for incorporation into a real-time trajectory generation algo-
rithm.

In Section 4.5, we have also proposed three approaches to including the limited thrust
decomposition into the velocity optimization process. To recapitulate:

1. The first approach consists of running the Velocity Optimization (VO) process described
in Algorithm 1 with per-axis acceleration limits and then recomputing the final trajec-
tory using the Thrust Decomposition (TD) Algorithm 2. We will refer to this approach
as Approach 1 or ”V O → TD.”

2. The second proposed approach also uses VO with per-axis acceleration limits to obtain
an intermediate result but then runs the VO process again, this time using the TD
algorithm in every instance of the VO process, where a trajectory is recomputed. We
will refer to this approach as Approach 2 or ”V O → V O + TD.”

CTU in Prague Department of Cybernetics

42/63 5.1. VELOCITY OPTIMIZATION ALGORITHM

3. The last approach, referred to as Approach 3 or ”V O+TD,” skips the VO process with
per-axis acceleration limits and runs the VO using the TD method only.

We have computed trajectories Πi from the corresponding testing paths Pi, i = 1, . . . , 4,
for all three listed approaches using the UAV parameters specified in Table 5.1 and Algorithm 1
parameters selected in Section 5.1.1. The start and end velocities were set to zero for all test
cases except for Π1 with

v0Π1
= [12.4, 4.53,−2.59]T m · s−1,

v3Π1
= [−11.0, 0, 0]T m · s−1,

(5.6)

to simulate a mid-flight replanning scenario. The resulting trajectory durations are listed in
Table 5.3. The first two columns also show displayed trajectory durations of initial Point-
Mass Model (PMM) trajectories with zero velocities at the via-waypoint computed using a)
symmetric acceleration bounds (4.30) designed as TPMM and b) thrust decomposition listed
under TTD. For the sake of clarity, the resulting trajectory durations have also been visualized
using a bar graph in Figure 5.3.

Table 5.3: Trajectory durations T of tested trajectories Π1, . . . ,Π4 computed using different
thrust decomposition (TD) approaches in velocity optimization (VO).

TPMM [s] TTD [s] TV O→TD [s] TV O→V O+TD [s] TV O+TD [s]

Π1 4.0493 2.7189 2.4418 2.3866 2.3164

Π2 23.4416 17.8943 16.2220 15.6055 15.8866

Π3 3.2833 2.4549 1.6999 1.4974 1.6839

Π4 4.6045 3.5298 2.5828 2.4160 3.3766

Figure 5.3: Trajectory durations Ttr for trajectories Πi, i = 1, . . . , 4 computed a) without
velocity optimization (VO) and thrust decomposition (TD) labeled as ”PMM ,” b) without
VO using TD labeled as ”TD,” c) with VO and subsequent TD (”V O → TD”), d) with VO
and subsequent VO with TD (”V O → V O + TD”), and d) using only VO with TD marked
as ”V O + TD.”

When comparing the initial trajectory durations TPMM with TTD, it is clear that the

CTU in Prague Department of Cybernetics

5. RESULTS 43/63

TD alone reduces the resulting trajectory duration significantly. It is, therefore, vital for
minimum-time trajectory planning for a multirotor UAV to solve the limited thrust decom-
position problem. Further, the VO using symmetrical per-axis (thrust) acceleration bounds
and subsequent recalculation of the optimized trajectory using the TD in Approach 1 re-
duces trajectory duration even more. Using the proposed VO method for a multirotor UAV
trajectory generation is thus beneficial even if the algorithm assumes per-axis (body) acceler-
ation bounds to be constant and decoupled. Moreover, given the mean computational times
computed from 100 test runs and displayed in Table 5.4, the trajectory optimization can be
computed in sub-millisecond time for all tested cases. The computational times are also more
than four times shorter compared to the two remaining approaches in virtually all cases. The
only exception is the trajectory Π4, where Approach 3 leads to a shorter computational time
τV O+TD. However, this is due to an early termination of the optimization process, as we will
explain below.

Table 5.4: Computational times τ of tested trajectories Π1, . . . ,Π4 computed using different
Thrust Decomposition (TD) approaches in Velocity Optimization (VO).

τV O→TD [ms] τV O→V O+TD [ms] τV O+TD [ms]

Π1 0.0418 0.1603 1.7350

Π2 0.2347 4.7060 18.1900

Π3 0.0869 0.4017 0.7896

Π4 0.7917 5.6290 0.2286

Using the TD method inside the VO process in Approach 3 results in a shorter trajec-
tory duration than when using Approach 1 in most cases. This, however, is not guaranteed
which can be seen on a significantly longer trajectory duration TV O+TD for trajectory Π4. In
this case, the VO optimization terminated early, which can be also deduced from the short
computational time τV O+V D in Table 5.4 and a small reduction of trajectory duration when
comparing the corresponding trajectory duration TV O+TD in Table 5.3 with the duration TTD

where no VO was used. The most probable cause for the early termination is that our VO
method was designed for constant acceleration limits and all the velocity update step bounds
are computed based on this assumption. The optimization process can thus get stuck in a
local minimum due to an unfit velocity update. Consequently, while Algorithm 1 is relatively
robust to infeasible velocity updates, the usage of the thrust decomposition method in the
VO process leads either to early termination or slow convergence. This can be seen when
comparing the computational times τV O→TD of Approach 1 and τV O+TD of Approach 3 in
Table 5.4.

Running a VO process with per-axis limits before the VO with TD in Approach 2 reduces
the computational times compared to Approach 3 in all relevant cases. Moreover, except for
trajectory Π1, Approach 2 resulted in the shortest trajectory durations TV O→V O+TD of all
three Approaches, as can be seen in the corresponding column of Table 5.4. The exception in
the case of trajectory Π1 underlines the unpredictability of Approach 3 where the best results
in terms of trajectory duration can be obtained in rare cases, but there are also cases where
the optimization process terminates early and provides the worst results in comparison with
the other approaches. The best results in terms of trajectory duration can be thus obtained
by running the VO algorithm twice, the second time using Algorithm 2 for the trajectory
computation. This is, however, at the cost of the computational time, which is usually more
than four times longer than in the case of Approach 1 due to the slow convergence and
additional computational burden of the second optimization run. Nevertheless, the additional

CTU in Prague Department of Cybernetics

44/63 5.2. VISUALIZATION OF THE VELOCITY OPTIMIZATION CONVERGENCE

computational time can be reduced by constraining the second VO process using the maximum
number of iterations, i.e., after the first VO process, only a few iterations of the second
optimization process are performed to obtain faster trajectories.

To conclude, using Approach 2 results in a trajectory with minimal duration at the
cost of significantly increased computational time in most cases; Approach 1 is best in terms
of computational time and is suitable for time-critical applications. Using Approach 3 can,
in some cases, lead to faster trajectories; this, however, can not be guaranteed and, in some
cases, the resulting trajectory duration is similar to a trajectory that was computed without
velocity optimization.

5.2 Visualization of the velocity optimization convergence

To illustrate the geometrical meaning of the proposed velocity optimization Algorithm 1,
we will take a closer look at the trajectory Π2 computed using the guiding path P2. We used
Approach 1 for incorporating limited thrust decomposition into the velocity optimization
process presented in Section 4.5, namely recomputing the resulting trajectory of the velocity
optimization process using the thrust decomposition Algorithm 2.

Figure 5.4: Visualization of the velocity optimization process described in Algorithm 1. Dis-
played are computed trajectories with increased opacity for every iteration of the optimization
algorithm. The velocity v of the point-mass model is visualized using a color bar. The final
trajectory recomputed using thrust decomposition Algorithm 2 is shown using a dashed red
line.

Figure 5.4 shows the computed trajectory for every iteration of the optimization process,
where with increasing iteration number, the opacity of the displayed trajectory also increased.
In addition, the speed v of the point-mass model is displayed using a color map. With increased

CTU in Prague Department of Cybernetics

5. RESULTS 45/63

iteration count, the sharp bends at the waypoints become gradually wider as the velocity at the
waypoints becomes nonzero. This decreases the trajectory duration, as shown in Figure 5.5,
where the convergence of the time-minimizing algorithm is visualized.

Figure 5.5: Convergence visualization of the velocity-optimizing Algorithm 1, where the tra-
jectory duration Ttr is displayed for every iteration of the optimization process. The dashed
vertical line at iteration number nine marks the termination of the velocity optimization pro-
cess, and the trajectory duration at the tenth iteration corresponds to the recomputed final
trajectory using the thrust decomposition Algorithm 2.

The optimization Algorithm 1 terminates after the 9th iteration, which is marked by a
vertical line in Figure 5.5. After that, the resulting trajectory is recomputed using the thrust
decomposition Algorithm 2, which decreases trajectory duration between the 9th and 10th.
The recomputed trajectory is also shown in Figure 5.4 using a dashed red line.

5.3 Comparison with state-of-the-art method

In the following section, we will compare our point-mass model trajectory computation
method with the state-of-the-art method proposed in [7]. The authors of [7] used similar
concepts for point-mass model trajectory generation including the bang-bang approach. We
thus consider it to be the most suitable candidate for the performance evaluation of the newly
proposed method.

To objectively evaluate and compare the two methods for trajectory generation, it is
crucial to discuss the parameter selection used for the experiments. The selected parameters
strongly influence the performance of the methods, and their wrong selection could lead to
inaccurate conclusions.

Regarding our proposed approach, we will use the parameters listed in Section 5.1.1
for the initial Velocity Optimization (VO) process using Algorithm 1 with subsequent recom-
putation of the resulting trajectory using a Thrust Decomposition (TD) Algorithm 2, i.e.,
Approach 1 described in Section 5.1.2. For TD, the following parameters were selected

εTD = 10−3,

NTD = 10.
(5.7)

We will also present the results for proposed Approach 2, where the intermediate results
for the optimized velocities are used for a second VO process with TD applied in every instance

CTU in Prague Department of Cybernetics

46/63 5.3. COMPARISON WITH STATE-OF-THE-ART METHOD

where a trajectory is (re-)computed. However, we will use different values for some parameters
in the second VO run, namely

NV O2 = 10,

ζ2 = 10−2,

η2 = 0.4.

(5.8)

The reduction of the maximum number of iterations NV O2 , the update step threshold ζ2,
and the step reduction factor η2 will shorten the second VO run computational time. This
is the approach we have suggested in Section 5.1.2, which is a tradeoff between increased
computational time and shorter trajectory durations obtained by the second VO run.

For the state-of-the-art sampling-based approach to trajectory generation introduced in
[7], we selected

syp = 20 (5.9)

samples in yaw and pitch for every waypoint. A smaller number of samples led to increased
computational time as the cone-refocusing approach took longer to converge. Additionally,
to reduce the computation time, we have computed the heading toward the next waypoint
in every waypoint. Using these headings, we can subsequently compute the initial velocity
samples only in a cone spreading in the direction towards the next waypoint. The norm of
the velocity samples vs was reduced to the interval ∥vs∥∈ [2, 20] m·s−1 and the number of
velocity samples in a single direction was limited to

sv = 8 (5.10)

samples with varying velocity norm. This further reduces the number of samples in each
waypoint, resulting in a smaller velocity search graph for finding the fastest trajectory.

The resulting trajectory durations and computational times computed with the Cone
Refocusing (CR) method and our method based on the Gradient Method (GM) using two
approaches for TD in VO are shown in Table 5.5 and Table 5.4, respectively. The presented
computational times are the mean value of 100 measurements.

Table 5.5: Trajectory durations T of tested trajectories Π1, . . . ,Π4 computed using sampling
method with Cone Refocusing (CR) proposed in [7] and our proposed method using two
different approaches for Thrust Decomposition (TD) in Velocity Optimization (VO). Displayed
are also the initial point-mass model trajectory durations TPMM without VO for reference.

TPMM [s] TCR [s] TV O→TD [s] TV O→V O+TD [s]

Π1 4.0493 2.2900 2.4418 2.3866

Π2 23.4416 14.9891 16.2220 15.6485

Π3 3.2833 1.7360 1.6999 1.4985

Π4 4.6045 2.4302 2.5828 2.4266

For both trajectories Π1 and Π2, the CR approach found faster trajectories than those
computed by our method. One of the main reasons is that throughout the whole trajectory
Π1, the z-axis segments are in the role of SYNC trajectories. As our method handles the
velocity updates per axis, the z-component of velocities in the trajectory Π1 via waypoints
remain unchanged at the initial zero value throughout the whole velocity optimization process.
Because the path P1 that guides the trajectory Π1 corresponds to a path segment of path P2,
the z-components of the velocities in the corresponding trajectory Π2 waypoints also remains
zero, which, which results in a slower trajectory from the global point of view.

CTU in Prague Department of Cybernetics

5. RESULTS 47/63

Table 5.6: Computational times τ of tested trajectories Π1, . . . ,Π4 computed using sampling
method with Cone Refocusing (CR) proposed in [7] and our proposed method using two
different approaches for Thrust Decomposition (TD) in Velocity Optimization (VO).

τCR [ms] τV O→TD [ms] τV O→V O+TD [ms]

Π1 9.6996 0.0465 0.1281

Π2 178.6230 0.2291 2.3182

Π3 39.7393 0.0899 0.3385

Π4 88.8859 0.7571 2.9721

The consequence of the per-axis optimization approach can be seen in Figure 5.6 where
the resulting trajectories computed from path P2 are shown for both tested methods. Ap-
proach 2 for thrust decomposition in velocity optimization was used to compute the displayed
trajectory corresponding to our method based on the Gradient method. When comparing the
trajectory courses between the two waypoints on the far left side in Figure 5.6 it can be seen
that the CR approach resulted in a trajectory with a significant change in the z-component of
positions between the corresponding waypoints. Our GM-based approach, on the other hand,
keeps the change in the z-component of the positions between the corresponding waypoints
tight which results in a trajectory with a longer duration.

Figure 5.6: Visualization of trajectories computed from path P1 using the cone-refocusing-
based method [7] and our approach based on the gradient method. The ”V O → V O + TD”
Approach 2 was used for thrust decomposition incorporation into our velocity optimization
method.

For the remaining two trajectories, our Approach 2 resulted in shorter trajectory du-
rations TV O→V O+TD than the CR-based method For Approach 1, it is the case only with
trajectory Π3. Nonetheless, in both cases, the resulting trajectory durations are significantly

CTU in Prague Department of Cybernetics

48/63 5.3. COMPARISON WITH STATE-OF-THE-ART METHOD

shorter than the durations TPMM of the original point-mass model trajectories with zero
velocities at the via waypoints.

The main contribution of our approach compared to the CR-based algorithm is the
reduced computational time of the trajectory generation. The computational times are more
than 100 times shorter when using our Approach 1 in all of the tested cases. Even though the
resulting trajectory durations are longer in most cases, the significantly shorter computational
times mean that our method can be used in real-time applications even for trajectories with a
larger number of waypoints. Moreover, using Approach 2 with the reduced maximal number of
iterations leads to computational times that are more than 20 times shorter than those of the
CR-based algorithm. The resulting trajectory durations under this approach are comparable
with the CR-based method and are even shorter in several instances.

Further, the disadvantage of the sampling-based approach is noticeable when comparing
the computational times of trajectories with small and large waypoint counts in Table 5.6. As
the number of graph edges in the velocity search graph grows quadratically with an increasing
number of samples per waypoint, and thus also the complexity of the graph search, short
computational times are obtained only for a limited number of waypoints. Reducing the
number of samples for longer trajectories would lead to slower convergence and thus increased
computational time, so larger numbers of samples have to be used. This can be seen when
comparing the τCR values for trajectories Π1 and Π3 in Table 5.6, where the difference in
waypoints count is only two waypoints. An even more noticeable increase in computational
time can be seen in the case of trajectory Π2 with 19 waypoints.

The tested trajectories with a larger number of waypoints resulted in one-order longer
computation times when our method was used. A slower convergence of the optimization is
also a contributing factor; however, the difference in the computational time is not as drastic
as in the case of the CR approach. The worst-case number of operations needed to update a
single trajectory segment is equal for all trajectory segments, which means that the worst-case
computational time increases linearly with the number of waypoints.

However, for scenarios similar to online trajectory replanning, i.e., trajectories with a
small number of waypoints, both presented approaches using our method for VO are applica-
ble. This follows from the results for trajectories Π1 and Π3. In the case of Approach 1, the
computational time for trajectories with n ≤ 6 waypoints lies below 0.1 ms. Even though these
values were measured on a desktop computer and the onboard computers on a UAV are gen-
erally less powerful, this approach is suitable for time-critical applications, where sub-optimal
trajectory durations are an acceptable tradeoff for short computation times. In the case of
Approach 2, the computational times increase to several milliseconds, which is still accept-
able for many applications where the trajectory (re-)planning is usually run with a frequency
greater or equal to 100 Hz. Both approaches can also be combined depending on the concrete
application, where for example new longer flights can be computed using Approach 2 to obtain
the minim trajectory duration achievable using our method, and Approach 1 can be used for
time-critical trajectory replanning in collision avoidance of disturbance compensation.

CTU in Prague Department of Cybernetics

5. RESULTS 49/63

5.4 Collision-free trajectory generation

To test the performance of our Collision-free Trajectory Generaiton (CFTG) described
in Algorithm 3, we have computed three distinct paths using the CTopPRM [9] path planning
algorithm in a forest-like map displayed in Figure 4.6. Using these paths, we have computed
a minimum-time collision-free trajectory using our CFTG algorithm described in Section 4.7
and a Point-mass Trajectory Search (PTS) introduced in [18]. In both cases, the point-mass
model trajectory alone was computed using our Approach 1 for velocity optimization with
thrust decomposition described in Section 4.5, so we are comparing only the approaches to
trajectory generation and selection based on a set of possible paths. This approach has been
selected to simulate the online replanning scenario, where the trajectory computation must
be completed in short time cycles.

Table 5.7: Computational times and trajectory durations for resulting trajectories computed
using our Collision-free Trajectory Generation (CFTG) method defined in Algorithm 3 and
Point-mass Trajectory Search (PTS) [18] method. The values correspond to the case displayed
in Figure 5.7 where the distinct paths were computed using CTopPRM [9] path planning
algorithm.

Computational Time [ms] Trajectory Duration [s]

CFTG 0.8685 2.1048

PTS [18] 1.6372 2.27801

Table 5.7 shows the resulting trajectory durations and computational times averaged
over 100 runs. The final trajectories are displayed in Figure 5.7a using blue and red lines for
our CFTG method and the PTS method, respectively. Comparing the computational times in
Table 5.7, our proposed method is nearly two times faster than the PTS method in the tested
scenario. This is due to the issue with the PTS method we have described in Section 4.7. As
the closest point to the first collision point of a naive trajectory is added to the new path
used in the next iteration, a situation can occur, where many waypoints need to be added
before the final collision-free trajectory is found. This situation is shown in Figure 5.7b, where
the naive paths (black lines) are displayed together with collision points and waypoints that
are consequently added to the next naive trajectory, both displayed with points in matching
colors.

The many added waypoints also caused the final trajectory computed with the PTS
method to have a longer duration compared to our method. As the trajectory connects way-
points that are close to each other, the velocity of the motion must be kept small to allow
short maneuvers joining those waypoints. If it was not for this issue at the beginning of the
final trajectory, the resulting trajectory duration would be arguably shorter than the one
found with our method as the rest of the trajectory marked with a red line in Figure 5.7a has
fewer bends and a higher velocity can thus be used. It can be expected that the PTS can lead
to faster trajectories and shorter computational times in some cases. This, however, is not
guaranteed and the method can even fail to compute a feasible trajectory in some cases, one
of which was discussed in Section 4.7. Therefore we believe that our CFTG method is more
suitable for general applications.

The effect of path curvature on the final trajectory duration can also be seen in Fig-
ure 5.7 where the resulting trajectory generated using our approach is displayed. The final
trajectory (blue) is guided using the yellow path although a shorter trajectory duration would

CTU in Prague Department of Cybernetics

50/63 5.4. COLLISION-FREE TRAJECTORY GENERATION

(a) Comparison of resulting trajectories. (b) Visualization of naive trajectories.

Figure 5.7: Visualization of computed paths (yellow, pink, and green lines) and minimum time
trajectories computed using Algorithm 3 (blue line) and Point-mass Trajectory Search (PTS)
method introduced in [18] (red line). The start and end configurations are marked with green
and red points, respectively. Figure (a) displays the results for both compared methods. In (b),
the whole trajectory search process of the PTS is shown, where the naive trajectories (black
lines) are displayed together with first collisions and consequently added points in matching
colors (marked with colored points).

CTU in Prague Department of Cybernetics

5. RESULTS 51/63

be achievable using a shortened pink path, which is followed by the PTS method (red). This
showcases the dependence of the resulting trajectory computed using our approach on the
distinct paths returned by the path planning algorithm. A more extensive path shortening
could result in shorter durations; however, this task goes beyond the scope of this work.

The resulting computational times of our approach to collision-free trajectory generation
also show that the method is suitable for online trajectory replanning. Even though the
trajectory generation was run on a desktop machine CPU and an onboard computer of a UAV
is generally less powerful, with computation time under one millisecond for three distinct paths
with a waypoint count of 7 to 8 waypoints, there is a lot of room for slower computation as for
most UAV applications, a trajectory (re-)planning loop is usually executed with frequencies
under 100 Hz. The worst-case computation time will increase for a larger number of distinct
paths returned by the path planner. Nonetheless, a limited number of these paths can, be
selected for the final trajectory computation, for example based on the path length.

CTU in Prague Department of Cybernetics

52/63 5.4. COLLISION-FREE TRAJECTORY GENERATION

CTU in Prague Department of Cybernetics

6. CONCLUSION 53/63

Chapter 6

Conclusion

In this thesis, we have introduced a novel approach to collision-free trajectory planning
for UAVs, where approximate minimum-time trajectories are computed using a point-mass
model motion primitive. We use topologically distinct paths to guide the trajectory planning.
The point-mass model approximation was selected to reduce the computational burden of tra-
jectory planning. The selection was also motivated by the fact that differentiable trajectories
infeasible by the UAV can be tracked by modern control methods in a near-optimal way [8].
We have defined a method for axis synchronization of a limited acceleration multidimensional
point-mass model trajectory, where the single-axis trajectories are synchronized to the shortest
feasible duration possible using acceleration scaling. It has been shown that the multidimen-
sional point-mass model trajectory can be computed in a closed form. We have introduced
a gradient-method-based algorithm for velocity optimization of a multi-waypoint trajectory,
where the velocities in the via-waypoints are iteratively adjusted to obtain the shortest tra-
jectory duration possible. The velocity updates are handled per-axis and subjected to bounds
we have derived to guarantee feasibility in the next iteration; constant per-axis acceleration
bounds are assumed. To account for gravity and underactuated multirotor design, where per-
axis accelerations are bounded by the multirotor’s limited collective trust, we propose an
iterative method for limited thrust decomposition. Further, several different approaches for
incorporation of the limited thrust decomposition into the velocity optimization process were
introduced. Based on all these building blocks, an algorithm for collision-free trajectory gener-
ation was presented, where topologically distinct paths generated by the CTopPRM [9] path
planner were used to guide the trajectory computation. Given a set of possible paths, the
collision-free trajectory generation algorithm finds the minimum-time trajectory guided by
one of the paths.

Given a set of testing paths containing four to nineteen waypoints, we have tested the
proposed method for multi-waypoint point-mass model trajectory generation using different
hyperparameter values. Both computational time and the duration of the resulting trajectory
were evaluated to test the proposed approach for online minimum-time trajectory replanning.
It has been observed that due to the per-axis velocity optimization, the optimization process
is sensitive to the hyperparameter settings. We were also unable to derive a general rule
for parameter selection to obtain the shortest trajectory duration possible. In most cases, the
resulting trajectory represents a tradeoff between computational time and trajectory duration.

The convergence of the limited thrust decomposition method was also tested, where it
was shown that the proposed algorithm converges within a few iterations. An average com-
putational time of a single iteration was measured to be 0.2321 µs, which makes the method
suitable for real-time trajectory generation. Three different approaches to incorporating the
thrust decomposition method into the velocity optimization algorithm were tested. The first
one, composed of a single velocity optimization run while assuming per-axis acceleration limits
and subsequent re-computation using the thrust decomposition algorithm, resulted in short

CTU in Prague Department of Cybernetics

54/63

computational times but increased trajectory durations compared to the other methods, which
makes it suitable for time-critical applications. The second approach added a second veloc-
ity optimization run to the first approach, where this time the trust decomposition algorithm
was used for all trajectory computations. This resulted in the shortest trajectory durations for
most tested cases but at the cost of increased computational times. However, the increase can
be reduced by terminating the second velocity run after a few iterations to quickly improve
the trajectories computed using the first approach. The last approach consisting only of the
velocity optimization with incorporated thrust decomposition led to unpredictable behavior.

The performance of the proposed algorithm for multi-waypoint trajectory planning was
further compared with a state-of-the-art sampling-based method [7]. Our approach outper-
formed the sampling-based method in terms of computational times, where the resulting
times were 20 to 100 times shorter, depending on the used approach for thrust decomposition.
Moreover, the difference in computational times between trajectories containing a small and a
large number of waypoints, respectively, was not as substantial as in the case of [7]. However,
due to the per-axis velocity optimization approach of our method, the resulting trajectory
durations were longer compared to the state-of-the-art method in several cases. The com-
putational times of our point-mass model trajectory planning method ranged from 50 µs to
3 ms (depending on the approach and number of waypoints) for trajectories containing less
than twenty waypoints, which makes the proposed method suitable for real-time trajectory
replanning.

Finally, we have tested the proposed algorithm for collision-free trajectory replanning
in a forest-like environment and compared it with a state-of-the-art method [18]. In a scenario
where three distinct paths with waypoint counts ranging from seven to eight waypoints were
found, our approach was able to generate a collision-free trajectory in less than one millisecond,
which is half the time required for the state-of-the-art method. The final trajectory duration
was also shorter than in the case of method [18]. However, as the trajectories generated by
our method are guided by the planned paths, it has been observed that the performance of
the proposed method depends on the post-processing (path shortening) of initial paths by the
path planner.

The presented approach to collision-free trajectory replanning offers several possibilities
for further development. Enhancements in velocity initialization or velocity update method
could eliminate the described issue where the per-axis optimization approach resulted in
omitting certain components of velocities that corresponded to single-axis synchronization
trajectories. This leads to a longer trajectory duration from the global point of view. The
concept of velocity optimization could be also extended to the limited jerk point-mass model
in future works, as that would approximate the full dynamic model of a multirotor UAV more
accurately.

CTU in Prague Department of Cybernetics

REFERENCES 55/63

References

[1] A. Sabirova and R. Fedorenko, “Drone cinematography system design and new guideline model
for scene objects interaction,” 2020 International Conference Nonlinearity, Information and
Robotics (NIR), pp. 1–6, 2020-12-3. doi: 10.1109/NIR50484.2020.9290236. [Online]. Avail-
able: https://ieeexplore.ieee.org/document/9290236/.

[2] H. Ren, Y. Zhao, W. Xiao, and Z. Hu, “A review of uav monitoring in mining areas, Current
status and future perspectives,” vol. 6, no. 3, pp. 320–333, 2019, issn: 2095-8293. doi: 10.1007/
s40789-019-00264-5. [Online]. Available: http://link.springer.com/10.1007/s40789-019-
00264-5.

[3] M. Atif, R. Ahmad, W. Ahmad, L. Zhao, and J. J. P. C. Rodrigues, “Uav-assisted wireless
localization for search and rescue,” IEEE Systems Journal, vol. 15, no. 3, pp. 3261–3272, 2021,
issn: 1932-8184. doi: 10.1109/JSYST.2020.3041573. [Online]. Available: https://ieeexplore.
ieee.org/document/9345802/.

[4] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadrotor flight
in dense indoor environments,” Robotics Research, pp. 649–666, 2016. doi: 10.1007/978-3-319-
28872-7 37. [Online]. Available: http://link.springer.com/10.1007/978-3-319-28872-7 37.

[5] B. Zhou, J. Pan, F. Gao, and S. Shen, “Raptor, Robust and perception-aware trajectory re-
planning for quadrotor fast flight,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1992–
2009, 2021, issn: 1552-3098. doi: 10 . 1109 / TRO . 2021 . 3071527. [Online]. Available: https :
//ieeexplore.ieee.org/document/9422918/.

[6] P. Foehn, A. Romero, and D. Scaramuzza, “Time-optimal planning for quadrotor waypoint
flight,” Science Robotics, vol. 6, no. 56, 2021-07-21, issn: 2470-9476. doi: 10.1126/scirobotics.
abh1221. [Online]. Available: https://www.science.org/doi/10.1126/scirobotics.abh1221.

[7] A. Romero, R. Penicka, and D. Scaramuzza, “Time-optimal online replanning for agile quadrotor
flight,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7730–7737, 2022, issn: 2377-
3766. doi: 10.1109/LRA.2022.3185772. [Online]. Available: https://ieeexplore.ieee.org/
document/9805699/.

[8] A. Romero, S. Sun, P. Foehn, and D. Scaramuzza, “Model predictive contouring control for time-
optimal quadrotor flight,” IEEE Transactions on Robotics, vol. 38, no. 6, pp. 3340–3356, 2022,
issn: 1552-3098. doi: 10.1109/TRO.2022.3173711. [Online]. Available: https://ieeexplore.
ieee.org/document/9802523/.

[9] M. Novosad, R. Penicka, and V. Vonasek, “Ctopprm: Clustering topological prm for planning
multiple distinct paths in 3d environments,” 2023. doi: arXiv:2305.13969. [Online]. Available:
http://arxiv.org/abs/2305.13969.

[10] P. Corke, Robotics, vision and control, fundamental algorithms in MATLAB, 2nd ed. Berlin:
Springer, 2013, isbn: 978-3-642-20143-1.

[11] S. M. LaValle, Planning algorithms. New York: Cambridge University Press, 2006, isbn: 05-218-
6205-1.

[12] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox, Incremental 3d euclidean
signed distance fields for on-board mav planning,” 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 1366–1373, 2017. doi: 10.1109/IROS.2017.8202315.
[Online]. Available: http://ieeexplore.ieee.org/document/8202315/.

[13] B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,” Journal of the
ACM, vol. 40, no. 5, pp. 1048–1066, 1993, issn: 0004-5411. doi: 10 . 1145 / 174147 . 174150.
[Online]. Available: https://dl.acm.org/doi/10.1145/174147.174150.

CTU in Prague Department of Cybernetics

https://doi.org/10.1109/NIR50484.2020.9290236
https://ieeexplore.ieee.org/document/9290236/
https://doi.org/10.1007/s40789-019-00264-5
https://doi.org/10.1007/s40789-019-00264-5
http://link.springer.com/10.1007/s40789-019-00264-5
http://link.springer.com/10.1007/s40789-019-00264-5
https://doi.org/10.1109/JSYST.2020.3041573
https://ieeexplore.ieee.org/document/9345802/
https://ieeexplore.ieee.org/document/9345802/
https://doi.org/10.1007/978-3-319-28872-7_37
https://doi.org/10.1007/978-3-319-28872-7_37
http://link.springer.com/10.1007/978-3-319-28872-7_37
https://doi.org/10.1109/TRO.2021.3071527
https://ieeexplore.ieee.org/document/9422918/
https://ieeexplore.ieee.org/document/9422918/
https://doi.org/10.1126/scirobotics.abh1221
https://doi.org/10.1126/scirobotics.abh1221
https://www.science.org/doi/10.1126/scirobotics.abh1221
https://doi.org/10.1109/LRA.2022.3185772
https://ieeexplore.ieee.org/document/9805699/
https://ieeexplore.ieee.org/document/9805699/
https://doi.org/10.1109/TRO.2022.3173711
https://ieeexplore.ieee.org/document/9802523/
https://ieeexplore.ieee.org/document/9802523/
https://doi.org/arXiv:2305.13969
http://arxiv.org/abs/2305.13969
https://doi.org/10.1109/IROS.2017.8202315
http://ieeexplore.ieee.org/document/8202315/
https://doi.org/10.1145/174147.174150
https://dl.acm.org/doi/10.1145/174147.174150

56/63

[14] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge University Press,
2004, isbn: 9780521833783. doi: 10.1017/CBO9780511804441. [Online]. Available: https://www.
cambridge.org/core/books/convex-optimization/17D2FAA54F641A2F62C7CCD01DFA97C4.

[15] S. LaValle and J. Kuffner, “Randomized kinodynamic planning,” Proceedings 1999 IEEE Inter-
national Conference on Robotics and Automation (Cat. No.99CH36288C), pp. 473–479, 1999.
doi: 10.1109/ROBOT.1999.770022. [Online]. Available: http://ieeexplore.ieee.org/document/
770022/.

[16] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, issn: 1042296X. doi: 10.1109/70.508439. [Online]. Available: http:
//ieeexplore.ieee.org/document/508439/.

[17] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic roadmaps for motion
planning,” Advanced Robotics, vol. 14, no. 6, pp. 477–493, 2012-04-02, issn: 0169-1864. doi:
10.1163/156855300741960. [Online]. Available: https://www.tandfonline.com/doi/full/10.
1163/156855300741960.

[18] R. Penicka and D. Scaramuzza, “Minimum-time quadrotor waypoint flight in cluttered envi-
ronments,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 5719–5726, 2022, issn:
2377-3766. doi: 10.1109/LRA.2022.3154013. [Online]. Available: https://ieeexplore.ieee.
org/document/9721033/.

[19] M. Aria, “Optimal path planning using informed probabilistic road map algorithm,” Journal of
Engineering Research, 2021-12-14, issn: 23071877. doi: arXiv:2007.03465v. [Online]. Available:
https://kuwaitjournals.org/jer/index.php/JER/article/view/16105.

[20] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for quadrotors,”
2011 IEEE International Conference on Robotics and Automation, pp. 2520–2525, 2011. doi:
10.1109/ICRA.2011.5980409. [Online]. Available: http://ieeexplore.ieee.org/document/
5980409/.

[21] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient quadrotor trajectory
generation for fast autonomous flight,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 3529–3536, 2019, issn: 2377-3766. doi: 10.1109/LRA.2019.2927938. [Online]. Available:
https://ieeexplore.ieee.org/document/8758904/.

[22] R. Allen and M. Pavone, “A real-time framework for kinodynamic planning with application
to quadrotor obstacle avoidance,” AIAA Guidance, Navigation, and Control Conference, pp. –,
2016-01-04. doi: 10.2514/6.2016-1374. [Online]. Available: https://arc.aiaa.org/doi/10.
2514/6.2016-1374.

[23] P. Foehn, D. Brescianini, E. Kaufmann, et al., “Alphapilot, Autonomous drone racing,” Au-
tonomous Robots, vol. 46, no. 1, pp. 307–320, 2022, issn: 0929-5593. doi: 10.1007/s10514-021-
10011-y. [Online]. Available: https://link.springer.com/10.1007/s10514-021-10011-y.

[24] D. P. Bertsekas, Dynamic Programming and Optimal Control, 3rd ed. Athena Scientific, 2007,
isbn: 1-886529-43-4.

[25] M. Beul and S. Behnke, “Analytical time-optimal trajectory generation and control for mul-
tirotors,” 2016 International Conference on Unmanned Aircraft Systems (ICUAS), pp. 87–96,
2016. doi: 10.1109/ICUAS.2016.7502532. [Online]. Available: http://ieeexplore.ieee.org/
document/7502532/.

[26] M. Beul and S. Behnke, “Fast full state trajectory generation for multirotors,” 2017 International
Conference on Unmanned Aircraft Systems (ICUAS), pp. 408–416, 2017. doi: 10.1109/ICUAS.
2017.7991304. [Online]. Available: http://ieeexplore.ieee.org/document/7991304/.

[27] F. Meyer and K. Glock, “Kinematic orienteering problem with time-optimal trajectories for
multirotor uavs,” IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 402–11 409, 2022,
issn: 2377-3766. doi: 10.1109/LRA.2022.3194688. [Online]. Available: https://ieeexplore.
ieee.org/document/9844257/.

CTU in Prague Department of Cybernetics

https://doi.org/10.1017/CBO9780511804441
https://www.cambridge.org/core/books/convex-optimization/17D2FAA54F641A2F62C7CCD01DFA97C4
https://www.cambridge.org/core/books/convex-optimization/17D2FAA54F641A2F62C7CCD01DFA97C4
https://doi.org/10.1109/ROBOT.1999.770022
http://ieeexplore.ieee.org/document/770022/
http://ieeexplore.ieee.org/document/770022/
https://doi.org/10.1109/70.508439
http://ieeexplore.ieee.org/document/508439/
http://ieeexplore.ieee.org/document/508439/
https://doi.org/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960
https://www.tandfonline.com/doi/full/10.1163/156855300741960
https://doi.org/10.1109/LRA.2022.3154013
https://ieeexplore.ieee.org/document/9721033/
https://ieeexplore.ieee.org/document/9721033/
https://doi.org/arXiv:2007.03465v
https://kuwaitjournals.org/jer/index.php/JER/article/view/16105
https://doi.org/10.1109/ICRA.2011.5980409
http://ieeexplore.ieee.org/document/5980409/
http://ieeexplore.ieee.org/document/5980409/
https://doi.org/10.1109/LRA.2019.2927938
https://ieeexplore.ieee.org/document/8758904/
https://doi.org/10.2514/6.2016-1374
https://arc.aiaa.org/doi/10.2514/6.2016-1374
https://arc.aiaa.org/doi/10.2514/6.2016-1374
https://doi.org/10.1007/s10514-021-10011-y
https://doi.org/10.1007/s10514-021-10011-y
https://link.springer.com/10.1007/s10514-021-10011-y
https://doi.org/10.1109/ICUAS.2016.7502532
http://ieeexplore.ieee.org/document/7502532/
http://ieeexplore.ieee.org/document/7502532/
https://doi.org/10.1109/ICUAS.2017.7991304
https://doi.org/10.1109/ICUAS.2017.7991304
http://ieeexplore.ieee.org/document/7991304/
https://doi.org/10.1109/LRA.2022.3194688
https://ieeexplore.ieee.org/document/9844257/
https://ieeexplore.ieee.org/document/9844257/

REFERENCES 57/63

[28] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast marching tree, A fast marching
sampling-based method for optimal motion planning in many dimensions,” The International
Journal of Robotics Research, vol. 34, no. 7, pp. 883–921, 2015, issn: 0278-3649. doi: 10 .
1177/0278364915577958. [Online]. Available: http://journals.sagepub.com/doi/10.1177/
0278364915577958.

CTU in Prague Department of Cybernetics

https://doi.org/10.1177/0278364915577958
https://doi.org/10.1177/0278364915577958
http://journals.sagepub.com/doi/10.1177/0278364915577958
http://journals.sagepub.com/doi/10.1177/0278364915577958

58/63

CTU in Prague Department of Cybernetics

A 59/63

Appendix A

Supplementary Definitions and Re-
sults

A.1 Point-Mass Model Trajectory Acceleration Scaling Solu-
tions

Solutions to the equations (4.8) for the case v0 ̸= v2:

t1 =

{
a2 p0−a1 p0+a1 p2−a2 p2+σ1−Tsync a1 v2+Tsync a2 v2

(a1−a2) (v0−v2)

−a1 p0−a2 p0−a1 p2+a2 p2+σ1+Tsync a1 v2−Tsync a2 v2
(a1−a2) (v0−v2)

}
,

t2 =

{
−a2 p0−a1 p0+a1 p2−a2 p2+σ1−Tsync a1 v0+Tsync a2 v0

(a1−a2) (v0−v2)
a1 p0−a2 p0−a1 p2+a2 p2+σ1+Tsync a1 v0−Tsync a2 v0

(a1−a2) (v0−v2)

}
,

γ =

{ a1 p0−a2 p0−a1 p2+a2 p2+σ1−Tsync a2 v0+Tsync a1 v2
Tsync

2 a1 a2

−a2 p0−a1 p0+a1 p2−a2 p2+σ1+Tsync a2 v0−Tsync a1 v2
Tsync

2 a1 a2

}
,

σ1 = a1 a2

√
(a1−a2)(a1p02−a2p02+a1p22−a2p22−Tsync

2a2v02+Tsync
2a1v22−2a1p0p2+2a2p0p2−2Tsynca2p0v0+2Tsynca1p0v2+2Tsynca2p2v0−2Tsynca1p2v2)

a12a22
,

p1 = p0 + v0t1 +
1

2
γa1t

2
1,

v1 = v0 + γa1t1.
(A.1)

Solutions to the equations (4.8) for the case v0 = v2:

t1 = −
Tsync a2
a1 − a2

,

t2 =
Tsync a1
a1 − a2

,

γ =
(2 a1 − 2 a2) (p0 − p2 + Tsync v0)

Tsync
2 a1 a2

,

p1 = p0 + v0t1 +
1

2
γa1t

2
1,

v1 = v0 + γa1t1.

(A.2)

CTU in Prague Department of Cybernetics

60/63 A.2. DEFINITION OF WAYPOINTS FOR THE TESTING PATHS

A.2 Definition of Waypoints for the Testing Paths

The position of all waypoints of the paths Pi, i = 1, ..., 4, used for the testing of our
method are listed in the tables below.

Table A.1: Path P1 waypoint positions.

Waypoint Id [-] x [m] y [m] z [m]

1 7.0000 6.3400 0.7570

2 9.0900 6.2600 1.0800

3 9.2700 -3.4600 1.1700

4 -4.7500 -6.1200 2.8100

Table A.2: Path P2 waypoint positions.

Waypoint Id [-] x [m] y [m] z [m]

1 -5.0000 4.5000 1.2000

2 -0.9000 -1.2700 3.4800

3 9.0900 6.2600 1.0800

4 9.2700 -3.4600 1.1700

5 -4.0000 -6.2500 3.4000

6 -4.4800 -5.9400 1.0500

7 4.4500 -0.8000 1.0900

8 -2.6500 6.5100 1.3000

9 -0.9000 -1.2700 3.4800

10 9.0900 6.2600 1.0800

11 9.2700 -3.4600 1.1700

12 -4.0000 -6.2500 3.4000

13 -4.4800 -5.9400 1.0500

14 4.4500 -0.8000 1.0900

15 -2.6500 6.5100 1.3000

16 -0.9000 -1.2700 3.4800

17 9.0900 6.2600 1.0800

18 9.2700 -3.4600 1.1700

19 -2.5000 -6.0000 4.0000

Table A.3: Path P3 waypoint positions.

Waypoint Id [-] x [m] y [m] z [m]

1 5.0000 -4.0000 1.3000

2 4.6557 -2.5236 1.3069

3 4.7364 -2.0418 1.3258

4 4.9264 0.4307 1.4008

5 3.7276 3.2632 1.4214

6 0.0000 7.5000 1.3000

CTU in Prague Department of Cybernetics

A 61/63

Table A.4: Path P4 waypoint positions.

Waypoint Id [-] x [m] y [m] z [m]

1 5.0000 -4.0000 1.3000

2 4.7282 -2.5568 1.7704

3 4.9787 -2.0328 1.8426

4 4.4680 -0.8303 1.8237

5 2.8401 -0.2817 1.5554

6 1.8756 -0.1497 0.7626

7 2.0409 -0.0806 1.1545

8 2.3520 0.1991 1.3286

9 2.5729 0.5183 1.5392

10 2.7684 0.8974 1.5380

11 0.0000 7.5000 1.3000

A.3 Velocity Optimization Parameter Grid-Search Results

CTU in Prague Department of Cybernetics

62/63 A.3. VELOCITY OPTIMIZATION PARAMETER GRID-SEARCH RESULTS

(a) Trajectory Π1 computational times. (b) Trajectory Π1 durations.

(c) Trajectory Π2 computational times. (d) Trajectory Π2 durations.

(e) Trajectory Π3 computational times. (f) Trajectory Π3 durations.

(g) Trajectory Π2 computational times. (h) Trajectory Π2 trajectory durations.

Figure A.1: Heat maps of computational times and trajectory durations for different values
of Algorithm 1 hyperparameters, namely step length αinit and step length reduction factor η.
The trajectories Π1, . . . ,Π4 are computed from the corresponding testing paths P1, . . . , P4.

CTU in Prague Department of Cybernetics

B 63/63

Appendix B

Content of the Attached CD

The content of the attached CD is listed in Table B.1. An electronic version of this thesis
can be found in the file Masters Thesis Krystof Teissing.pdf. The file main.cpp includes a
function demonstrating the implemented algorithms contained in the rest of the source codes;
the results can be visualized by running the plot results.py script.

Table B.1: Directories and files on the attached CD.

/source code/
/conf
/include/

cftg.hpp
common.hpp
heap.hpp
pmm mg trajectory3d.hpp
pmm trajectory.hpp
pmm trajectory3d.hpp

/MK
/scripts/

plot results.py
/src/

main.cpp
cftg.cpp
common.cpp
heap.cpp
pmm mg trajectory3d.cpp
pmm trajectory.cpp
pmm trajectory3d.cpp

/Makefile
/thesis/

Masters Thesis Krystof Teissing.pdf

CTU in Prague Department of Cybernetics

	Introduction
	Preliminaries
	Path and trajectory
	Path planning
	Trajectory generation
	Gradient method for unconstrained minimization of differentiable functions

	Related Work
	Path planning
	Trajectory generation

	Methodology
	Point-mass model trajectory
	Point-mass model trajectory - Axis synchronization
	Velocity optimization using Gradient method
	Velocity optimization of a one-dimensional trajectory
	Velocity optimization of a multi-dimensional trajectory

	Limited thrust decomposition
	Limited thrust decomposition in velocity optimization
	Path planning using Clustering Topological PRM
	Collision-free trajectory computation

	Results
	Velocity optimization algorithm
	Velocity optimization method parameter selection
	Thrust decomposition in velocity optimization

	Visualization of the velocity optimization convergence
	Comparison with state-of-the-art method
	Collision-free trajectory generation

	Conclusion
	
	Supplementary Definitions and Results
	Point-Mass Model Trajectory Acceleration Scaling Solutions
	Definition of Waypoints for the Testing Paths
	Velocity Optimization Parameter Grid-Search Results

	Content of the Attached CD

