Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer

Development of an application for a
personal library and expense management

Nazrin Orujaliyeva

Supervisor: Ing. Pavel Naplava, Ph.D.
Field of study: Software engineering and technologies
May 2023

ii

evuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENI TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE
4)
PFijmeni: Rakhimova Jméno: Aiya Osobni &islo: 499327

Fakulta/ustav: Fakulta elektrotechnicka

Zadavajici katedra/ustav: Katedra pocitact

Studijni program: Softwarové inZzenyrstvi a technologie

_ J
Il. UDAJE K BAKALARSKE PRACI
4 N\

Nazev bakalarské prace:

Webova aplikace pro darovani

Nazev bakalarské prace anglicky:

Web platform for donation

Pokyny pro vypracovani:

The project aims to create a platform for donations to sick people who need material assistance. As part of this work:
- analyze existing applications and platforms for donations available on the market,

- design a user interface for the application to motivate future users to use it,

- analyze technologies for the implementation of front-end, back-end, and database parts of the application,

- design application architecture with a focus on the back-end part of it,

- implement a proof of concept version of the platform,

- design test cases,

- perform appropriate testing of a proof of concept and automate testing of the core scenarios.

Seznam doporucené literatury:

Richards, Mark. Fundamentals of Software Architecture: An Engineering Approach. O'Reilly Media, 2020.

Walls, Craig. Spring Boot In Action. Shelter Island, NY: Manning Publications, 2016.

Tidwell, Jenifer, Charlie Brewer, and Aynne Valencia. Designing Interfaces: Patterns for Effective Interaction Design.
Beijing: O'Reilly, 2020.

Jméno a pracovisté vedouci(ho) bakalarské prace:

Ing. Kyrylo Bulat katedra pocitacd FEL

Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalafské prace:

Datum zadani bakalarské prace: 14.02.2023 Termin odevzdani bakalarské prace: 26.05.2023
Platnost zadani bakalarské prace: 22.09.2024

Ing. Kyrylo Bulat podpis vedouci(ho) Ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)

_ J
ll. PREVZETi ZADANI

(Studentka bere na védomi, Ze je povinna vypracovat bakalarskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.)
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v bakalarské praci.
S Datum pfevzeti zadani Podpis studentky)

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC

Acknowledgements Declaration

I want to express my sincere gratitude to By the Guideline for adhering to ethical
my supervisor, Ing. Pavel Naplava, Ph.D principles when constructing a final aca-
for his expert direction, insightful counsel, demic thesis, I confirm that the thesis
encouragement, and the time he invested provided here is entirely my own work
in me and this bachelor thesis. and that I have properly cited all relevant

sources of information.

Prague, May 2023

iii

Abstract

The main goal of this bachelor thesis is
to analyze, design, successfully implement
and test the "Libget" application. The
application supports book organization,
expense management, and the ability to
add quotes and notes.

Keywords: library, book organization,
expense management, quotes, budget,
statistics, Android, Kotlin

Supervisor: Ing. Pavel Naplava, Ph.D.

iv

Abstrakt

Hlavnim cilem této bakalarské prace je
analyzovat, navrhnout, ispésné implemen-
tovat a otestovat aplikaci "Libget". Apli-
kace podporuje organizaci knih, spravu
vydaji a rozpoctu a také moznost prida-
vat citaty a poznamky.

Kli¢ova slova: knihovna, organizace
knih, sprava vydaju, citaty, rozpocet,
statistika, Android, Kotlin

Contents 4 A|.1aly.5|s of the "Libget

application
1 Introduction 1 4.1 Functional requirements
1.1 The goals of the thesis.......... 4.2 Non-functional requirements . ..
2 "Libget" application: definitions 43 ClaSS dlagram
and usage 3|

44USeCcases . ..vvvvnienennn...
2.1 Definitions of the key terms

441 Actors

2.2 The concept of using the "Libget"

application...................... 4.4.2 Use case diagram for user . ..

3 Analysis of existing applications |5 5 "Libget" application design

3.1 EXiStng applications comparison 5.1 Wireframes

3.1.1 Storygraph (& 5.1.1 User interface

3.1.2 Read More: A Reading Tracker 6 Devel t of the "Libget"
evelopment of the '"Libge

application
3.1.3 Bookly: Book and Reading
Tracker........................ 8
6.1 Development process
3.1.4 Bookshelf 9 6.1.1 Used technologies
3.1.5 My library ... 6.2 Architectural Decisions
3.1.6 Handy library 6.3 Bookclass
3.2 Conclusion of the analysis

6.4 FirebaseRepository class.......

3.3 The “Libget” application core .. 6.5 BooksViewModel class

7 Testing of the "Libget"

application 43
7.1 Developer tests
T2 User tests.......ooovveinn... 143

7.2.1 Test cases 44

8 Improvements and new features in
the future 49

9 Project management of the

thesis 51
10 Conclusion (3
Bibliography 55
A Acronyms 59
B Electronic attachments 6l

vi

Figures

3.1 An example of statistics based on

user’s mood. ...
3.2 Timer feature.................. 8|
3.3 Timer, infographics............. 9]

3.4 An example of a bookshelf and
explore pages.

3.5 An example of a book description
in a personal library.

3.6 An example of scanning by a

barcode. 12
4.1 Class diagram.
4.2 ACtOTS. « oo 22

4.3 Use case diagram for the User

actor. i i 22
5.1 The Home page.
5.2 Statistics page.
5.3 Quotes page.
5.4 Screens map in Figma.
5.5 Home page.

vii

5.6 Statistics "1 month" page.......

5.7 Statistics "3 month" page.......

5.8 Statistics "12 month" page..

6.1 Book Class properties..........

6.2 FirebaseRepository class.

6.3 BooksViewModel class.

6.4 addBook function.

41l

Tables

3.1 Comparison of applications from
Google Play. [13

4.1 Priority of functional
requirements. 19

7.1 TC1 steps and actual results.... 46|

7.2 TC2 steps and actual results.. .. [47]

viii

Chapter 1

Introduction

People have grown accustomed to using computers and computer programs in
the modern information and communication systems era. Mobile applications
are run on a small handheld device that is portable, user-friendly, and acces-
sible from anywhere. Nowadays, many individuals use mobile applications to
communicate with friends, access the internet, manage files, create and handle
documents, and run businesses.[I] If you enjoy reading books, there’s a good
chance your library is quite extensive. And if you enjoy reading actual books,
they are likely beautifully displayed on your home’s bookshelves. What about
when you’re away from home? Walking up to your books and seeing what you
have and don’t is simple when you’re at home. When you’re at the library or
a bookshop looking for your next book, keeping track of the books you’ve
read or bought is easier when you have a virtual library. Also, remembering
your current expenses on books before buying a new one can help manage
your financial goals.

I have not always been a bookworm, but recently I developed a passion
for books. I have discussed the idea for the application with my friend, who
has been reading books her whole life. She has a lot of friends who share
a passion for books and present the idea for them. They agreed that such
an application would be highly beneficial. Later, when I was in a bookstore,
considering buying two new books and considering my finances, I thought an
application like this would be handy.

This bachelor thesis aims to develop a mobile application called "Libget" that
can help book lovers organize their libraries more efficiently and economically.
The core idea of the "Libget" application combines three main concepts:

1

1. Introduction

helping stay within budget while buying books, keeping track of the read
books, and saving quotes.

B 1.1 The goals of the thesis

The goals of this thesis are:

® to analyze and compare existing applications that help with organizing
a personal library;

B to create the analysis of key features and use cases of the "Libget"
application;

® using the results of the analysis to design and implement a simplified
version of the "Libget" mobile application that will support controlling
book expenses, book tracking, and saving quotes and notes;

® to conduct user testing to evaluate the application’s functionality and
usability.

The structure of this bachelor thesis corresponds to these goals.

Chapter 2

"Libget" application: definitions and usage

Chapter 1 introduced the main concepts of the "Libget" application, and this
chapter delves into the definitions of key concepts and examples of practical
application in real-world scenarios.

B 2.1 Definitions of the key terms

Below are the key terms that my application is based on, along with their
explanations:

® book - a written work published in printed or electronic form.

® library - a collection or group of collections of books and/or other
print or nonprint materials organized and maintained for use (reading,
consultation, study, research, etc.).

® reader - a person who reads or is fond of reading. Later referred to as
n n
user'.

2. "Libget" application: definitions and usage

B 22 The concept of using the "Libget' application

The first tool to make organizing a personal library easier is keeping track
of books. If your home library is extensive, memorizing every book you own
is hard. There are more efficient approaches than relying on a paper-based
list for keeping track of books. Such lists can be excessively lengthy and
time-consuming to create, not to mention having a separate list for books you
want to purchase and the challenge of finding specific books from among the
many others. The simplest and most efficient method to improve something
today is to have a smart application on the device that can speed up and
simplify everyday tasks. So instead of creating lengthy and time-consuming
lists, users can open the mobile application and easily find a specific book
or add a book by filling in the designed fields. To add a book to the "Wish
List," users can simply check the box labeled "Wish List." It’s a quick and
easy process.

Another valuable tool for book lovers is keeping track of their finances. It’s
crucial to stay aware of the various categories of products and services one
spends money on monthly and keep track of them. One of those categories
is books. It’s common to feel tempted to purchase new books frequently.
However, it can be beneficial to monitor your expenses and establish a budget
for yourself.

Finding quotes or notes in a particular book can take some time. There
is a more convenient way to keep them in one place. To locate quotes from
a book, one can easily use the filter in the dedicated "Quotes" section and
choose the book’s title.

And the above-described data is available for the user at all times and in
all places where the user has the mobile phone with them.

Chapter 3

Analysis of existing applications

It is crucial to consider the existing applications for keeping track of personal
books to confirm that the new "Libget" application’s development is reasonable
and to gain inspiration from the existing apps’ functionality and innovative
software solutions.

B 31 Existing applications comparison

There are many library organizing applications available in Google Play.
The applications were searched in Google Play using the “book tracker”
keyword.[2] The search was restricted to Android applications as "Libget"
is an Android application. The reasons for choosing Android are listed in
Chapter 5.1. The further analysis is based on reviews and the application’s
description wherever it was available on Google Play. Based on the reviews
of an application, advantages, and disadvantages were determined. Unfortu-
nately, the StoryGraph application reviews were not available on Google Play.
Another criterion was a rating of over 4 out of 5 and over 100 000 downloads.
This analysis compares the five most popular among them and identifies the
presence of key features. The applications are listed in decreasing rating
order. The applications have paid premium versions or additional in-app
payments. This is described in the last column, "Price," in Table 2.1.

The standards for applications to create analysis and comparison are:

5

3. Analysis of existing applications

® an app must help organize a personal library;

B an app must have an expense management possibility;

B an app must have a "Quotes" section, where a user can add quotes and
notes;

In agreement with the supervisor, the six most popular applications were
compared - Storygraph, Read More: A Reading Tracker, Bookly: Book
Reading Tracker, Bookshelf - Your virtual library, My Library, and Handy
Library. These applications meet the criteria, such as a rating of over 4 out
of 5 and over 100 000 downloads.

B 3.1.1 Storygraph

StoryGraph is currently the most popular application with a 4,9/5 rating and
over 100 000 downloads on Google Play[3][4]. The application allows users to
search books by mood and create a graph (see Figure 3.1). Users can create
lists to share with friends or the public, create their own reading challenges,
or join others’. The recommendation algorithm uses a machine-learning Al
that understands users’ reading preferences and recommends books.

User reviews: reviews are not available on Google Play.

6

3.1. Existing applications comparison

1M S0@E

m Search all books.

Read
67 books, 22,010 pages

Discover insights
about your reading

Figure 3.1: An example of statistics based on user’s mood.

The app suffices only one of the three main standards, book tracking, and
does not support expense management and creating quotes.

B 3.1.2 Read More: A Reading Tracker

This application has a 4,8 /5 rating on Google Play and over 100 000 downloads[5].
Read more helps users to get out of a reading slump. It allows users to set a
daily reading goal, follow their reading history, track reading time, and create
quotes. An example of the reading timer feature is presented in Figure 3.2.

User reviews:

® Advantages: design, timer, reading speed calculation, convenient trackers,
the ability to convert the audio format into pages, and set goals for
yourself for the day, month, and year.

7

3. Analysis of existing applications

® Disadvantages: only sometimes saves the entered number of pages read,
a problem with adding a cover to the book.

11:32AM

Remﬂ'.ng.ﬂog4

Daily Weekly Monthly Yearly

= Steve Jobs
¥ J 30 Pages > 1h13m
- Y

Steve Jobs The Little
Today's Highlights b

The starting point of all achievement is DESIRE. Keep
this constantly in mind. Weak desire brings weak
results, just as a small fire makes a small amount of
heat.

Figure 3.2: Timer feature.

The app has two main standards, book tracking and creating quotes, but it
does not support expense management.

B 3.1.3 Bookly: Book and Reading Tracker

This application has a 4,8 /5 rating on Google Play and over 100 000 downloads|[6][7].
Bookly is for book tracking and reading; the actual reading is done with

a book, e-book, or audiobook. It also allows users to set a reading goal,
play ambient sounds while reading, track reading time, see different kinds of
statistics, and create quotes. An example of the reading timer feature and
infographics is presented in Figure 3.3.

User reviews:

® Advantages: great to track the amount of time it takes to read a book

8

3.1. Existing applications comparison

and break it down into sessions and time per page, and the features to
add thoughts and quotes from the book.

® Disadvantages: only English interface, ads appear too often and take
over the entire screen, a user can’t add more than ten books and can’t
delete books, and simple, easily features locked behind a paywall.

Daily!

You are reading
243/258 ¥

BLOD LIFE

JANE BOOKLYNSON

% % % % &

Bloo Life

Jane Booklynson

00h 0O0Mm 30s §

€€ Add Quote © countdown ;

Pages read
D Add Thought [E) Add word

Ambiental sounds 1 |
Light Rain v <> M
Total reading
time

Figure 3.3: Timer, infographics.

The app has two of the three main standards, book tracking and creating
quotes, but does not support expense management.

B 3.1.4 Bookshelf

Bookshelf has a 4,7/5 rating on Google Play and over 100 000 downloads[§][9].
The application supports book tracing, building statistics for a specific time,
and how many books were read in a month. Figure 3.4 is an example of a
bookshelf and explore pages.

User reviews:

3. Analysis of existing applications

® Advantages: design, writing notes, a lot of filter options, finds books on
the internet.

® Disadvantages: sometimes, the system may encounter challenges in
identifying books through their ISBN codes.

Carrier 6:50 PM - 10:58 T -
Bookshelf (&5 books)] Q
Categories
Books Shelves Tags

-

T Unread X 1, Publish date X ‘ == t‘l :
At&Pho. Biography Business

. Bestsellers
Extraordinary Insects:

Weird. Wonderful. Indis...
Sverdrup-Thygeson, Anne

0%

O 320 [2019-04-25 3 0
[R—— SALLY 3
. ROONEY g"_ENT
Becoming 2 {PATIENT
Obama, Michelle e R 9
- .
i 54% — The Sient Pat
\ [448 [5) 20181113 3
NO LONGER
TALKING
ﬁ"’) > B ABouT t
reel Lonely Planet Greek . — RACE ¥
é’\ and Islands Deliciously Ella Why f'm No Lo This Is Going t
5
4 B m Planet, Lonely freo TS L
il @
Bookshelf

Figure 3.4: An example of a bookshelf and explore pages.

The app suffices only one of the three main standards, book tracking, and
does not support expense management and creating quotes.

B 3.1.5 My library

The application has a 4,5/5 rating on Google Play and over 100 000 downloads[10].
An example of a book details page and a short description page is shown in
Figure 3.5. In the details, apart from the name of the book title and name of
the author, there is also information about the publisher, date of publishing,
number of pages, ISBN code, the cost of the book, who borrowed the book,
and the start and end of the reading.

User reviews:

10

3.1. Existing applications comparison

® Advantages: ad-free, ease of use, ability to upload covers, extensive
search function by title, genre, and any word that was crammed into the
information about the book.

® Disadvantages: sorting only by authors or title, no sorting by series or
publisher, no ability to edit the image directly in the application, no way
to distribute books into categories (shelves), no rating option.

€& Mos 6ubnuoteka

& Mos 6ubnuoteka 7/

CBEAEHMA 3AMETKM CBELEHMA 3AMETKU

Wrpa npecTtonos Wrpa npectonos

Y
\\\; wlly

P

Dxopax P. P. MapTux

Kateropuu : ®aHTasus

[lata ny6nukauum :
05/07/2016

Dxopax P. P. MapTun

Kateropuu : aHTtasus

[Mata ny6nukauuu :
05/07/2016

WspatenbcTBo : AST,
Izdatel'stvo

WspatenbcTtBo : AST,
Izdatel'stvo

)
£
>

H““M“‘ [OAGI

768 cTp. 768 cTp.

ISBN : 978-5-17-098228-8 ISBN : 978-5-17-098228-8

Yrenue (08/05/2017 - 22/05/2017) 9nuyeckas, yekaHHas cara o mupe Cemun
KoponescTs. O MUpe CypOBbIX 3eMeslb BEYHOrO
Xonopaa v paaoCTHbIX 3eMe/ib BEeYHOro neta
Mupe NopA0B 1 repoes, BOMHOB 1 Maros,
YEPHOKHKHUKOB U y6UiiL, - BCeX, Koro ceena
BoefiuHo Cyab6a BO MCMONHEHUE APEBHEro
npopoyecTBa. O MUpe ONacHbIX NPUKIOYEHWIA,
BENMKUX AEAHUIA N TOHYAMLLINX NONUTUYECKNX
UHTPUT

Knuray : MBaHa

CTOUMOCTb : 9€

Figure 3.5: An example of a book description in a personal library.

The app suffices only one of the three main standards, book tracking, and
does not support expense management and creating quotes.

B 3.1.6 Handy library

Handy library has a 4,3/5 rating and over 100 000 downloads on Google
Play[11]. The application shows how much money was spent and the number
of books bought in total in 6 or 12 months, but it does not show which books
were purchased and the monthly expenses. Also, it shows what genre of
books were purchased the most and a reading status report. Figure 3.6 is an
example of scanning a book by its barcode.

User reviews:

11

3. Analysis of existing applications

® Advantages: the ability to create shelves, many filters, read marks and
ratings, and design.

® Disadvantages: translation problems, payment only by Google Payment,
which is not available in some countries, a problem with finding books
by barcode, finding pictures for a cover on the Internet, no sharing for
family members.

9'780553'212525

BT

Figure 3.6: An example of scanning by a barcode.

The app suffices only one of the three main standards, book tracking, and
does not support expense management and creating quotes.

B 3.2 Conclusion of the analysis

Table 3.1 below compares the selected applications from Google Play based
on the critical standards defined in Chapter 2.1.

12

€l

No| App name Books list | Expenses | Quotes Rating | Number of | Price(in USD)
uploads
1. | StoryGraph Yes. No. No. 4.9 100 000+ Premium version 4.99.
2 Read More: A | Yes. No. Yes. Text | 4.8 100 000+ In-app purchase 12.99
Reading Tracker scanner. per item.
3. | Handy Library Yes. Yes. No. 4.8 100 000+ In-app purchase 1.20 -
7.99 per item.
4. | Bookly: Book | Yes. No. Yes. 4.8 100 000+ A T-day trial is free,
Reading Tracker then offers subscription
packages: 4.99/month,
19.99/6 months, and
29.99 /year.
5. | Bookshelf -Your | Yes. No. No. 4.7 100 000+ In-app purchase 1.49 -
virtual library 11.99 per item.
6. | My Library Yes. No. No. 4.5 100 000 000+ | Free.

Table 3.1: Comparison of applications from Google Play.

sisjeue ay3 jo uoisnjouo?) ‘g€

3. Analysis of existing applications

Two of the six applications have a "Quotes" section, where users can add
quotes and notes(the second and fourth in Table 3.1). But there is a lack of
expense management features.

Only one application(the third in Table 3.1) has expense management
features. However, there is no "Quotes" section.

The first, fifth, and sixth applications in Table 3.1 meet only one standard
- book organization feature, but not the rest.

After analyzing these apps, none simultaneously satisfied all require-
ments(book organization, expense management, and quotes section). That
is why creating the “Libget” application, which meets these requirements,
is reasonable. The functionalities of the analyzed applications inspired the
functional requirements listed in Chapter 4.1.

. 3.3 The “Libget” application core

The application’s name comes from combining "library" and "budget." The
"Libget" application’s core is stated in this part. The fundamental features
are based on the analysis of existing applications and the goals of the thesis,
presented in Chapter 1.1. The features include:

® Book organization:

see brief content of the book;

ability to choose a book cover;

rate books;

search books by name or author;

filter by author, rating, genre, country, read, unread, started;
filter by author and genre;

sort by price and rating;

what books were lent and to whom and whom were borrowed from;
B Expense management:

view a graph displaying the number of books purchased in the last
month, the past three months, or the entire year, along with the
corresponding amount spent;

14

3.3. The “Libget” application core

see how much money was spent on books in total in a particular
month;

set a budget, which specifies the maximum amount you would like
to spend on books;

® Quotes:

ability to write quotes or notes;

In the next chapter, there is a detailed explanation of the application’s
specifications.

15

16

Chapter 4

Analysis of the "Libget' application

The study in the earlier chapters shows that the "Libget" application’s primary
functions are book organization, expense management, and a collection of
quotes.

As a result, the fundamental ideas behind the "Libget" application are now
clear, and a more thorough analysis of it may begin. This chapter discusses
the functional and non-functional requirements, the class diagram, and the
use cases of the "Libget" application.

B 4.1 Functional requirements

The application’s specific behavior is described by the functional requirements[12].

According to the goals of this thesis, the "Libget" application should be
"simple," which means that it should only have the critical features required
to carry out the app’s primary purpose. At the same time, this thesis
does not anticipate implementing further sophisticated functionalities. The
reason for this is that in the beginning, based on a "simple" application, it is
necessary to demonstrate both the utility of using such an application through
a voice assistant and the demand for the program among consumers. The
functional requirements were determined by the application’s expectations
and agreement with the supervisor described in Chapter 2.3.

17

4. Analysis of the "Libget" application

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

These are the "Libget" application’s functional requirements:

The application enables registering.
The application enables logging in or out.
The application enables showing all the books the user has bought.

The application enables viewing book details (name, price, author, rating,
genre).

The application shows books and expenses statistics to see how many
books the user bought in the last month, three or twelve months, and
how much money was spent.

The application enables setting and editing a monthly limit.
The application allows searching for a book in the library.
The application enables showing quotes from a book.

The application enables filtering by author, genre, sort by price, and
rating.

The application enables adding or deleting a book from the Wish List.

The application enables adding or deleting a book from the main list of
books that were bought.

The application enables rating books.

The application enables manually writing a quote and adding it to the
"Quotes" section.

The application enables choosing a book cover.

The application enables taking a picture of a text and adding it to the
quotes section.

The application enables marking a book as TBR(To be read), Started,
or Read.

The application enables filtering by country, TBR(To be read), Started,
or Read.

The application enables marking a book as borrowed /unborrowed from
someone or to someone (date, lender’s name).

The application enables searching by ISBN code.

The application enables the calculation of reading speed.

18

4.2. Non-functional requirements

21. The application enables setting daily, monthly, and yearly goals.

22. The application enables tracking progress reading books, last read page
number (through the interface)

23. The application enables the conversion of the audio format into pages.

24. The application enables a machine-learning AI that understands users’
reading preferences and recommends books.

25. The application enables to time the user’s reading time.

26. The application enables searching a book by any word crammed into the
information about the book.

27. The application enables one to find books on the Internet.
28. The application enables to share of book lists.

29. The application enables synchronizing devices.

30. The application enables the creation of literary forums.

31. The application enables following book news.

The requirements are implemented depending on priority, which is in Table
4.1.

Priority 1 2 3
Name of requirement | FR1-FR14 | FR15-FR17 | FR18-FR31

Table 4.1: Priority of functional requirements.

In Table 4.1, priority 1 means that these requirements must be implemented.
Priority 2 indicates that these requirements will be implemented if there is
enough time. Priority 3 means that these requirements will be implemented
in future application versions. The priority of requirements is determined by
the introductory definition in Chapter 1 and the number of a requirement’s
occurrences in similar applications.

B 4.2 Non-functional requirements

The non-functional requirements outline the actions that the application must
take.[12]

19

4. Analysis of the "Libget" application

This application’s concept implies the majority of the non-functional re-
quirements. Android has been chosen as the operating system for the "Libget"
application. I've solely used Android-based devices in the past. Thus I have
more familiarity with Android app development. Furthermore, because the
program is intended to be accessible worldwide, English was selected as the
primary language of the application.

The complete list of the "Libget" application’s non-functional requirements

is shown below:

1. The application must have an English interface.

2. The application will run on smartphones with Android version 5.0 (API
level 21) and newer.

B 43 Class diagram

The class diagram in Figure 4.1 shows how the system is organized. It describes
classes, attributes of the classes, their relationships, and multiplicities[14].

wenumeration»
Book status

Read
WishList
Current

Lent

Status + date: Date Genre
+ name: string

has lent to lent from

+ name: string

belongs ta

istring - L W Book Item Author
s
~— [+ titlesstring 1 wnttenby S+ mameisting
1|+ cover:biob —
description: striny
has A+ p 3
L — N
- . 1|+ price:int ,
ucee : é/ is from
+ maxAmourt:int [+ amountSpert: dube |1
+ date: Date q\ 0.* Country
T ; + name:string

isin consists of

Expenses List Page Book List Page
contains the instance of

Figure 4.1: Class diagram.

This diagram is based on the concepts described in Chapters 2.1 and 2.2.

20

4.4. Use cases

The Book List Item class contains six attributes: "title," "cover," "descrip-
tion," and "price."

Bill class contains information about the amount of money a person has
spent and the date of purchase. The "maximumAmount" in Budget describes
the maximum amount the user would like to spend.

The Book List Page contains the instance of the Expenses List Page so
they can interact.

Lent class describes when a book was lent and to whom. Or otherwise,
what book a user borrowed and from whom.

Quotes class contains the attribute "text," which presents a quote or a note
from a book.

Books have a status such as "Read," "WishList," or "Current." It indicates
whether the user has read the book, intends to purchase it, or is currently
reading it.

Author, Genre, and Country have only one attribute, "name."

. 4.4 Use cases

A use case is a set of activities describing an activity the program supports.
The method use cases are developed to ensure they address the application’s
functional needs. The external entity that utilizes or impacts the application
is an actor. Relationships between actors and use cases are depicted in use
case diagrams|[15]

B 4.4.1 Actors

The "Libget" program has two actors: the User and the Application (see
Figure 4.2). The use cases that the user launches are connected to the

21

4. Analysis of the "Libget" application

user. The use cases connected to the application are those that are launched
automatically from other use cases.

AR

User Application

Figure 4.2: Actors.

B 4.4.2 Use case diagram for user

For use cases of the User actor - see Figure 4.3.

See the Wish
Jist See the book Add book to am books.
5 Set budget
list . the book list
Log out
Add book to

the Wish List

Edit budget
Z

=— F\ter book list
User \ @
Unmark/mark
book as Wished
Unmark/mark
book as Read
See details of
Delete book the b
from the book

list

F\ter lluntes

Rate read books

Delete quote Edit quote
Add quote

Figure 4.3: Use case diagram for the User actor.

Mark a book as
borrowed /unborrowed

Twenty-one use cases were defined based on the functional requirements
listed in Chapter 3.1. Most of them are simple, such as Delete a quote, Delete

22

4.4. Use cases

book from the book list, See quotes, See the book list, See details of the
book, See Wish List or See statistics, Edit budget, Edit books, Edit quote,
Mark/Unmark book as Read, Mark/Unmark book as WishList, Mark book as
borrowed /unborrowed, Set budget. More complex would be Filter books list,
Filter Wish List, Filter quotes, Add book to the book list, Add quote, Add
book to the Wish List, Register, Log in, Log out, and Rate read books. Some
use cases were not implemented due to their complexity and time limitations.
These use cases correspond to functional requirements with priority 2 and 3,
as indicated in Table 3.1.

23

24

Chapter 5
"Libget" application design

Instead of focusing on implementing a solution, design stresses a conceptual
one that satisfies the requirements. Designs are ultimately implementable[16].
This chapter explains the "Libget" application’s design, as well as the applica-
tion’s wireframes.

. 5.1 Wireframes

Wireframes were developed to display the application’s layout. They adjust
and show the fundamental organization of each page.[I7] The designs and
functionality of other existing applications inspired the design. For expense
management, [designed my own wireframe. Additionally, it was discussed
and approved by the supervisor. Below are shown three wireframes as they are
the main concepts of the "Libget" application. The wireframes are examples
of how the application could look like.

There is a home "Libget" page in Figure 5.1. The application opens to this
page as the first one that appears. Users can see all the books in their library.
A "Filter" button allows users to filter the list by author, genre. Using the
"Sort" button, books can be sorted by price and rating. The "Add" button
allows you to add a new book to the library. The user can switch to the
"Wish List" section, where books that the user wishes to buy, that the user
wishes to buy, are displayed. Users can also switch to the "Quotes" section to
see all the quotes they added. The search bar at the top of the screen allows

25

5. "Libget" application design

users to find a book in their library.

search Q | =

All ‘ Wish list ‘ Quotes

Figure 5.1: The Home page.

In Figure 5.2, there is the Statistics page where users can see how many
books they bought and how much money they spent. It is possible to
determine the budget - the limit of money the user would like to spend on
books.

Your Statistics

Last6 month W

20%
30%
51 508 I
Jan Feb Mar
Amount spent:
100%

Set limit for this month

———+>

Figure 5.2: Statistics page.

26

5.1. Wireframes

In Figure 5.3, there is the Quotes page where users’ quotes and notes are
displayed. Under the text, there is also the title of the book.

| search O\ I =
All Wish list Quotes
“Quote”

Book Name

Figure 5.3: Quotes page.

These wireframes were presented to three potential users. Users approved
the Home and Quotes pages; they seemed logical and easy to understand
and use. However, the "Statistics" wireframe was deemed not telling and
inconvenient for tracking expenses.

B 5.1.1 User interface

The above-described wireframes and the non-functional requirements in
Chapter 4.2 were the basis for the "Libget" application’s user interface concept.
Figure 5.4. shows the high fidelity[35] prototype in Figmal[24]. The prototype
closely matches the final result of the application’s design. Figma is a
collaborative web application for interface design; further details of Figma
are provided in Chapter 6.1.1.

Due to user testing of the wireframe and the application creation, some
changes were made. The Home and Statistics pages differ from the corre-
sponding wireframes. The Home page now features bottom navigation and a
"Sort" button for enhanced user experience. The Statistics page has a different
graph that is more straightforward than the previous one. The option to set

27

5. "Libget" application design

a budget limit has been newly added. The following screenshots describe the
content of the implemented application’s pages in more detail.

% Dropdow...

|
[=1
.H‘u
Y | &
=
) . &
" — E W, ..
| B e
| @
= e
M! P == e e =
HE o =
g
i [y S— ==t feell | Pa————
- - e -

Figure 5.4: Screens map in Figma.

The Home page, as shown in Figure 5.5, displays a complete list of all the
books the user owns. The bottom navigation bar facilitates easy switching
between the Home page, "Add new book" page, and "Statistics" page. Tabs
such as "All," "Wish List," and "Quotes" are also available. The "Filter" and
"Sort" allow users to display books according to their preferences. Clicking
on a book will reveal its details; the user can edit them, view quotes from
the book, or add new ones. A search bar is provided at the top of the page

to help users find a specific book in their library.

28

5.1. Wireframes

£ Libget
(&)
o ALL WISHLIST ~ QUOTES =

— Circe
THE

SONG OF
ACHILLES

A~

MADELINE
MILLER

FRANZ KAFKA
BIDN AR

o (1]

Figure 5.5: Home page.

On the Statistics page, shown in Figures 5.6,5.7, and 5.8, users can track
their book expenses and the number of books purchased. They can view
this data for the last thirty days(within the application, it is displayed as
"l month"), the past three months, or the entire year. Users also have the
option to set a budget limit.

29

5."Libget"applicationdeSignllIlIlIIIIIIIIIIIIIIIIIIIIIIIII

& Libget

Your Statistics

1 month ~ Month limit: 50| $

W MAY Expenses

Overall:

Books Dollars
1 36

o ()

Figure 5.6: Statistics "1 month" page.

E Libget

Your Statistics

3 months ~ Month limit: 0 $

B MAY [0 APRIL Expenses

Overall:
Books Dollars

2 125

o (i)

Figure 5.7: Statistics "3 month" page.

30

o Libget

Your Statistics

12months ~ Month limit: 50 $

45
MAY

W APRIL ¥ MAY M NOVEMBER Expenses

Overall:

Books Dollars
3 160

fr (1

Figure 5.8: Statistics "12 month" page.

5.1. Wireframes

The prototype was presented to potential users who had previously tested
the wireframes, and they approved it. The pages and functionality were

deemed logical, and the interface was user-friendly.

31

32

Chapter 0

Development of the "Libget" application

This chapter details the creation of the "Libget" application, including the
technologies and architectural decisions used in the development process. Due
to limited development experience and time constraints, only a part of the
functional requirements from the Class diagram, presented in Chapter 4.3,
was implemented as the diagram also contains functional requirements with
a different priority than 1. The functional requirements are listed in Chapter
4.1.

B 61 Development process

The development process included these steps:

1. Planning: Identified the requirements and goals of the application,
including features, user experience, and target audience.

2. Architecture Design: The MVVM (Model-View-ViewModel)[27] archi-
tecture was chosen to separate concerns and improve code maintainability
and testability. ViewModel communicates with the repository to fetch
data and update the UI[28].

3. UI Design: Wireframes and UI designs were created using design tools
and guidelines. The main focus was intuitive navigation, consistent
branding, and responsive layouts for different screen sizes.

33

6. Development of the "Libget" application

4. Database Design: Implemented data models and DAO (Data Access
Object)[33] classes to interact with the database.

5. Implementation: Wrote modular and reusable code, adhering to coding
best practices and code style guidelines[34].

B 6.1.1 Used technologies

This describes the technologies used to create the "Libget" application. I chose
certain technologies, such as Android Studio, Kotlin, and Figma, because 1
became very familiar with them during my studies.

® Operational system. Implementation took place on Windows 11. The
application was also tested on a physical device with Android 13 during
development.

® Integrated development environment (IDE). Android Studio[l8]
offers a layout editor, an emulator, and compatibility with the versioned
system GIT. It also has an intuitive UI. The requirements for Android
development are thus entirely met.

® Technology Stack Selection: Kotlin[I19] was selected as the primary
programming language for Android development due to its modern
features and seamless integration with the Android framework. In order
to enhance app performance, efficient development was achieved by using
Android Jetpack components[30], including LiveData, ViewModel, and
Navigation. The alternative for Kotlin is Java[31]. Java and Kotlin are
object-oriented languages, but both languages have different purposes.

® Markup language: As the application’s markup language was selected
XML[29]. XML uses human, not computer, language. XML is readable
and understandable, even by novices, and no more difficult to code than
HTML[2§].

® Build tool. Gradle[2I] was chosen as the preferred build tool since
Android[22] has officially endorsed it over Maven|23].

® Design creation. Figma[24] was used to create the prototype of the
application’s design. Figma makes prototyping a seamless and straight-
forward procedure. It is highly user-friendly, has a short learning curve,
and puts a wide variety of tools and functionalities such as smart anima-
tions, advanced overlays, transitions, scrolling and hovering interactions,
auto layout, and many plugins.

34

6.2. Architectural Decisions

® Database. The Firebase Realtime Database[25] is a cloud-hosted
database. The advantage of Firebase over other databases is that Fire-
base quickly syncs data via Android, iOS, and JavaScript SDKs, allowing
for expressive queries that scale with the size of the result set. It uses
data synchronization—every time data changes, any connected device
receives that update within milliseconds.

8 The com.github.PhilJay:MPAndroidChart library was used to
incorporate interactive charts and graphs in the application. It provides
a wide range of charting functionalities, including line charts, bar charts,
and pie charts. The library offers customization options for the appear-
ance and behavior of the charts, allowing them to be tailored to fit the
application’s design. By leveraging MPAndroidChart, the application
was able to present data in a visually appealing and informative manner,
enhancing the overall user experience.

. 6.2 Architectural Decisions

By following these development steps and making informed architectural
decisions, the application achieves better code organization, maintainability,
testability, and overall user experience.

1. MVVM Architecture: MVVM was chosen for better separation of con-
cerns, maintainability, and testability. ViewModel acts as an intermediary
between the data repository and the UI components, ensuring a clear
separation of business logic from the UL

2. Android Jetpack Components: Leveraged Android Jetpack components
like LiveData, ViewModel, and Navigation to simplify development, pro-
vide lifecycle-aware components, and improve overall app performance.

3. Repository Pattern[32]: Implemented a repository layer to abstract the
data source and provide a unified interface for data access. This allows
easy switching between local and remote data sources and promotes code
reusability.

35

6. Development of the "Libget" application

data class Book(

var
var
var
var
var
var
var
val
val
var
val

id: String,
title:
author:

String,

String,
List<String>,
String,

Float,

Double,
purchaseDate: String,
quotes: MutableList<Quote>,
inWishList: Boolean,

String

genres:
coverUrl:
rating:
price:

user:

Figure 6.1: Book Class properties.

. 6.3 Book class

The Book class is used in the application to store and manage information
about books. It provides a structured representation of a book’s details, in-
cluding its metadata, cover image, rating, price, genres, purchase information,
quotes, and user-related data. With the help of this class, the application can
handle book-related operations such as displaying book details, managing
wish lists, filtering books by genre, and more. The properties of the "Book"

class shown in Figure 6.1 include:

® id: A unique identifier for the book.

m title: The title of the book.

® author: The author of the book.

® genres: A list of genres associated with the book.

® coverUrl: The URL of the book’s cover image.

® rating: The book’s rating is represented as a floating-point number.

B price: The book’s price is represented as a double.

® purchaseDate: The date of purchase for the book.

B quotes: A mutable list of Quote objects associated with the book.

® inWishList: A boolean value indicating whether the book is in the user’s

wish list.

®m user: The user identifier associated with the book.

36

6.4. FirebaseRepository class

By defining the "Book" class as a data class, it automatically generates
valuable methods such as equals(), hashCode(), and toString() based on the
defined properties. This simplifies the process of working with book objects
and allows for easy comparison and printing of book information.

. 6.4 FirebaseRepository class

The FirebaseRepository class uses instances of FirebaseFirestore and Fire-
baseStorage to interact with the Firebase services. It implements the methods
defined in the RepositoryInterface interface to perform operations such as
fetching user books, adding a new book with a cover image, updating a
book (including a cover image), deleting a book, and fetching user quotes.
Fach method communicates with Firebase Firestore and Firebase Storage
to perform the required actions and invokes the provided onComplete call-
back to notify the caller about the success or failure of the operation. The
FirebaseRepository class in Figure 6.2 contains the following properties:

® firebaseFirestore: An instance of Firebase Firestore is used for accessing
the Firestore database.

® firebaseStorage: An instance of Firebase Storage used for accessing the
Firebase Storage service.

® booksCollection: A reference to the "books" collection in the
® Firestore database.

® quotesCollection: A reference to the "quotes" collection in the Firestore
database.

37

6. Development of the "Libget" application

class FirebaseRepository() : RepositoryInterface {

private val firebaseFirestore = FirebaseFirestore.getInstance()

private val firebase5torage = FirebaseStorage.getInstance()

private val booksCollection = firebaseFirestore.collection(collectionPath: "books™)
private val quotesCollection = firebaseFirestore.collection(collectionPath: “quotes™)

J** Upload book cover to firebase storage ...*/
override fun fetchUserBooks(userId: String, onComplete: (List<Book>?) -> Unit) {

booksCollection.whereEqualTo(field "user”, vuserld).get().addOnSuccessListener { documents -»
val books = documents.mopNothull { it.toObject(Book::class.jova) }
onConplete(books)

}.addonFailureListener { it Exception
onComplete(null)

J** Upload book cover to firebase storage ...*/
override fun addBook(book: Book, coverUri: Uri, onComplete: (Boolean) -» Unit) {
val key = booksCollection.document().id
book.id = key
uploadBookCover(key, coverUri) { coverUrl ==
if (coverUrl != null) {
book.coverlrl = coverlrl
booksCollection.document (key) .set(book) .addOnSuccessListener { i Void

onComplete(true)
}.addonFailureListener { i Exception
onComplete(false)
}
}oelse {
onComplete(false)
}
}
booksCollection.document (key).set(book) .addOnSuccessListener { i Void
onComplete(true)
}.addOnFailureListener { i Exception
onConplete(false)
}

Figure 6.2: FirebaseRepository class.

fetchUserBooks: Retrieves a list of books associated with a specific user
from the Firestore database. It takes a userld parameter to identify the user
and an onComplete callback function that will be called with the retrieved
list of books or null in case of failure.

addBook: Adds a new book to the Firestore database. It takes a book
parameter representing the book object to be added, a coverUri parameter
representing the URI of the book cover image, and an onComplete callback
function that will be called with a boolean value indicating the success or
failure of the operation.

38

6.5. BooksViewModel class

Within the addBook function, a unique ID is generated for the book, and the
book’s cover image is uploaded to Firebase Storage using the uploadBookCover
function (not shown in the provided code). Once the cover image is uploaded,
the book object is updated with the cover URL and stored in the Firestore
database. The onComplete callback is then called with a boolean value
indicating the success or failure of the operation.

Overall, the FirebaseRepository class encapsulates the logic for interacting
with Firebase Firestore and Firebase Storage to perform operations related to
books, such as fetching user books and adding new books with cover images.
It provides an abstraction layer between the app and the Firebase services,
making it easier to manage book data and perform CRUD operations.

. 6.5 BooksViewModel class

The provided code snippet in Figures 6.3 and 6.4 represents a class called
BooksViewModel which extends the AndroidViewModel class. It serves as the
ViewModel for managing book-related data and operations in the application.
The BooksViewModel acts as an intermediary between the Ul components
and the repository, providing data and functions for managing books in
the application. It allows for observing and updating the book data in a
lifecycle-aware manner. The class contains the following properties:

_allBooks: A private MutableLiveData that holds a list of all books.

® allBooks: A public LiveData that exposes the _allBooks list for observing
changes externally.

® filteredBooks: A MutableLiveData that holds a list of filtered books
based on certain criteria.

® quotes: A MutableLiveData that holds a list of quotes.

® userld: A string variable representing the user ID obtained from Shared-
Preferences.

B repository: An instance of the Repositorylnterface (implemented by
FirebaseRepository) used for data operations.

In the init block, the fetchUserBooks() and fetchUserQuotes() functions are
called to populate the _ allBooks initially and quotes LiveData with the
respective data from the repository.

39

6. Development of the "Libget" application

class BooksViewModel (application: Application) : AndroidViewModel{application) {

private val _allBooks = HutablelLiveData<List<Book==()
val allBooks: LiveData<List<Book>> = _allBooks

val filteredBooks = MutablelLiveData<List<Book==()
val guotes = MutableLiveDatazList=Quotess()
private val userld = application
.getsharedPreferences(name: “me.nazrin.androidApp”, MODE_PRIVATE)

.getstring("vserld", "")!!
private val repository : RepositoryInterface = FirebaseRepository()

init {
fetchUserBooks()
fetchUserQuotes()
}

f** Fetch user books from repository and put them to live data ...x/
fun fetchuserBooks() {
repository.fetchUserBooks(userId) { books -=
if (books '= null) 4
_allBooks.postValuve(books)
filteredBooks.postValuve(books.filter { book -» !book.inWishList })

Figure 6.3: BooksViewModel class.

The class provides the following functions:

® fetchUserBooks(): Retrieves the user’s books from the repository and
updates the _allBooks and filteredBooks LiveData accordingly. It uses
the repository.fetchUserBooks() function, passing the userld and handling
the response by updating the LiveData with the retrieved books.

® addBook(book: Book, coverUri: Uri, onComplete: (Boolean) -> Unit):
Adds a new book to the repository. It uses the repository.addBook()
function, passing the book object and cover URI, and handles the response
through the onComplete callback.

The BooksViewModel acts as an intermediary between the Ul components
and the repository, providing data and functions for managing books in

40

6.5. BooksViewModel class

fun addBook(book: Book, coverUri: Uri, onComplete: (Boolean) -> Unit) {
repository.addBook(book, coverUri) { success -»
onComplete(success)

1

Figure 6.4: addBook function.

the application. It allows for observing and updating the book data in a
lifecycle-aware manner.

41

42

Chapter 7

Testing of the "Libget' application

This chapter describes all the testing conducted when the "Libget" application
was being developed.

B 71 Developer tests

Continuous testing was done throughout the development process. The
physical device Samsung Galaxy A53 with Android 13 and the virtual Pixel
2 API 30 with Android 11 have been tested. Through this testing method, a
significant number of bugs were detected and resolved.

. 7.2 User tests

User testing was conducted following the conclusion of the primary develop-
ment phase. It is crucial to involve actual prospective users in the testing of
the application to answer important questions:

® [s the application’s usage instructions clear?

® Does the application work as the user would expect it to?

43

7. Testing of the "Libget" application

® What should be/needs to be included in the application?

#® Will the user make use of the program?

The application was tested by three participants who had previously tested
the prototype and wireframes. They were given instructions described in
Tables 7.1 and 7.2. On the left side of the tables are the steps of the
instructions, and on the right are the actual results. The "Libget" application
was tested and installed on one mobile phone and tested by the participants
individually. It was done in person, and as the participants followed each
step, I recorded the actual result and combined the steps and result in Tables
7.1 and 7.2.

B 7.2.1 Test cases

Tables 7.1 and 7.2 describe two test cases used to find application issues and
their corresponding results. The TC1 in Table 7.1 covers functionalities such
as registration, logging in and out, adding a new book to "All," adding a new
book to "Wish List," viewing the Wish list, changing the book details, adding
a quote, viewing the Quotes page, and deleting the quote. The TC2 in Table
7.2 covers functionalities such as sorting books by price and rating, filtering
books by genre, opening the statistics page and checking its correction, and
setting the limit.

The overall feedback from these potential users was positive, and "Libget"
seems to be a valuable tool.

Several bugs that occurred during testing have been resolved:

1. To add a book to the "Wish List" on the application, it was necessary
to fill out all the fields. However, only the "name," "author," and "price"
fields are essential.

2. When moving a book from the "All" section to the "Wish List" by checking
"Wish List" in the book details, an error notification appears, although
the book is added to the "Wish List."

3. After changing any detail of a book in the "Wish List," the book moves
to the "All" section.

44

7.2. User tests

It was not possible to move a book from the "Wish List" to the "All"
section.

Books from the "Wish List" were also included in the statistics, although
only bought books must be there.

After pressing the "Delete" button on a quote, it only disappears after
reopening the "Quotes" section.

It was not possible to change the date of the book purchase and the date
is not displayed in the book details.

After sorting books in the "All" section, books from the "Wish List"
section were also displayed, which is not intended.

Due to their complexity, my little development experience, and time limi-

tations, some bugs were unfortunately not eliminated. Those bugs are the
following;:

1.

Sometimes, after making changes in the sections("All," "Wish List,"
"Quotes"), the changes do not appear at once. Switching to a different
section and returning to the previous one is necessary.

Two notifications appear consecutively when adding or updating a new
book - an error message followed by a success message. Just one of them
should occur depending on the situation.

In the detail of a book, a small top part of the number in the "price"
field is hidden. The number remains easy to understand.

There is a glitch when switching from the "All" section to the "Quotes"
section - book covers are visible for a quick second and then disappear.

When changing a book’s cover, there is no preview of the photo.

45

7. Testing of the "Libget" application

No | Steps Actual results

1. | Click the "Start" button. Registration page opens.

2 Fill in "Email" naza@cvut.cz and "Pass- | Filled.

word" 123456.
3. | Fill in "Confirm password" 123457 and | Error "Password and confirm
click "Sign up." password" should be the same'
occurred.
4. | Fill in "Confirm password" 123456 and | Main app page opens.
click "Sign up."

5. | Click the "+" icon to add a book. Opens the page for adding a book.
Two notifications appeared con-
secutively - an error message fol-
lowed by a success message.

6. | Fill in all fields, and select cover. Click | Page with all books opens.

two times to add the date and press
"Add."

7 Click "Wish List" and then "AlL" The new book appeared.

8. Click on the new book. All book details are valid.

9. | Write a quote and press "Add quote." | "Quote successfully added" notifi-
cation appeared.

10. | Change all fields and then click "Save." | Page with all books opens.

11. | Open the book again. All new details were saved.

12. | Click the "+" icon to add a book. Opens the page for adding a
book.

13. | Fill in the name, author, and price | Error "Fill all field" occurred.

fields, select a genre, check "Wish List,"
and press "Add."

14. | Click "Quotes" Page with the new quote ap-
peared.

15. | Click the "Delete" icon to delete the | The quote was not deleted.

quote.

16. | Click "All" and then on the new. Page with book details opens.

17. | Click the "Delete" button. The book was deleted.

18. | Click the "Log out" icon. Page for login opens.

19. | Log in again using the given email and | Login was successful.

password.

Table 7.1: TC1 steps and actual results.

46

7.2. User tests

No | Steps Actual results

1. Click "Start." Registration page opens.

2 Log in using data from the previous | Main app page opens.

test.

3. | Add three books with names 1, 2, 3 in | All book data is valid.

different months - in this previous and
before previous, with prices 100, 200,
300 and rating 1, 2, 3 and genres Art,
Children, Classics.

4. Sort by price ascending. Books were sorted correctly.

5. | Sort by price descending. Books were sorted correctly.

6. | Sort by rating ascending. Books were sorted correctly.

7. | Sort by rating descending. Books were sorted correctly.

8. | Filter by genre Art. Only books in the art genre
showed.

9. | Filter by genre Children. Only books in the children’s genre
showed.

10. | Filter by genre Classics. Only books in the classic genre
showed.

11. | Click the "Delete" icon to delete the | The quote was deleted.

quote.
12. | Go to statistics by pressing the "Statis- | Statistics for the last thirty
tics" icon. days(in the application shown as
"l month") displayed.

13. | Set limit. Limit was set.

14. | Select "3 months". A diagram for the last three
months appeared with the correct
statistics.

15. | Select "12 months". A diagram for the last twelve

months appeared with the correct
statistics.

Table 7.2: TC2 steps and actual results.

47

48

Chapter 8

Improvements and new features in the
future

The “Libget” application has all the basic expected features - it helps with book
organization, expense management, and saving quotes and notes(functional
requirements with priority 1). However, many things can still be improved or
added to the application. The list of improvements is based on the functional
requirements with priority 2 and 3, listed in Chapter 4.1, and users’ feedback
from testing the application.

1. There is an option to edit quotes.

2. The application enables taking a picture of a text and adding it to the
quotes section.

3. The application enables marking a book as TBR(To be read), Started,
or Read.

4. The application enables filtering by country, TBR(To be read), Started,
or Read.

5. The application enables marking a book as borrowed /unborrowed from
someone or to someone (date, lender’s name).

6. The application enables search by ISBN code.
7. The application enables the calculation of reading speed.

8. The application enables setting daily, monthly, and yearly goals.

49

8. Improvements and new features in the future

10.
11.

12.
13.

14.
15.
16.
17.

18.

The application enables tracking progress reading books, last read page
number (through the interface)

The application enables the conversion of the audio format into pages.

The application enables a machine-learning Al that understands users’
reading preferences and recommends books.

The application enables to time the user’s reading time.

The application enables searching a book by any word crammed into the
information about the book.

The application enables finding books on the Internet.
The application enables sharing book lists.

The application enables synchronizing devices.

The application enables the creation of literary forums.

The application enables following book news.

After discussing with potential users, this list of functionalities was deemed
sensible. The current version of the application boasts immense potential
and showcases a strong and reliable foundation.

50

Chapter 9

Project management of the thesis

I worked on this thesis for two semesters. The first semester I gathered
the needed information and analyzed existing applications, defining the core
of the "Libget" application and its functionalities. The next semester was
focused on designing, implementing, and testing the application. Creating a
highly complex application for the first time proved to be a challenging and
demanding task. Although I am not a developer, I put in my best effort to
develop a quality application. Once every two weeks, I consulted with my
supervisor to discuss the progress and problems along the way in writing the
thesis and developing the application.

The approximate number of hours spent on each part of the thesis:

® Analysis and Research - 200 hours.
B Design - 50 hours.
® [mplementation - 300 hours.

® Testing - 100 hours.

Based on the breakdown of hours spent, it is evident that my proficiency
level in development is not at an advanced level.

o1

52

Chapter 10

Conclusion

The "Libget" application, which allows for organizing a personal library,
budgeting for books, and saving quotes or notes, was the primary focus of
this bachelor’s thesis. Its analysis, design, implementation, and testing were
all undertaken.

Through extensive market research, it became apparent that no existing ap-
plications could completely incorporate all necessary concepts. Consequently,
"Libget" was created to fill this gap in the market.

The analysis of the "Libget" application included writing functional and
non-functional requirements and creating the class diagram and use cases.

The next step was designing and implementing the application. The initial
version was created in Kotlin for Android and met all functional requirements
with priority 1 and non-functional requirements.

Finally, the testing phase with potential users helped detect various bugs
while also receiving valuable feedback to incorporate into future improvements.
The user testing revealed that the "Libget" application seemed beneficial for
future users. I believe the "Libget" application has a lot of potentials, even
though it is still in its early phases, and this is its most basic form. As a
result, the "Libget" application can become quite helpful and in high demand.
Although I am grateful for this experience, I do not plan on pursuing further
development of this application. As I am not a developer, the process of
creating and implementing this application proved to be quite challenging for

53

10. Conclusion

Overall, the thesis successfully achieved its goals and provided a strong
foundation for future development. This work was beneficial for me; as
a person very new to development, it was an exciting challenge. Also, the
application concept is relevant to my life. Furthermore, I became familiar with
the application development process and gained knowledge of technologies I
have not or rarely used in my studies.

o4

[1]

2]

[5]

[6]

[7]

Bibliography

Mobile application and its Global Impact — Researchgate [on-
line]. [Accessed 15 January 2023]. Available from:
|//www.researchgate.net/profile/Dr-Md-Rashedul-Islam/ |
[publication/308022297_Mobile_application_and_ |
|its_global_impact/links/5991fbafa6fdcc53b79b606d/ |
Mobile-application-and-its-global-impact.pdfl

Book tracker — android apps on Google Play. Google [online]. [Ac-
cessed 15 January 2023]. Available from: https://play.google.com/
|[store/search?g=book+tracker& ; c=apps.

Storygraph - apps on Google Play (2021). Google [online]. [Accessed 15 Jan-
uary 2023]. Available from: https://play.google.com/store/apps/
details?id=com.thestorygraph.thestorygraph&hl=en&gl=US,

Plus: The storygraph. Plus | The StoryGraph [online]. [Accessed 15 Jan-
uary 2023]. Available from: https://app.thestorygraph.com/plus|

Read more: A reading tracker — apps on Google Play (2018). Google [on-
line|. [Accessed 15 January 2023|. Available from: https://play.googlel
|com/store/apps/details?id=com.shunan.readmore&hl=en&gl=US|

Bookly: Book € reading tracker — apps on google play. Google [online].
[Accessed 15 January 2023]. Available from: https://play.google.com/
|store/apps/details?id=com.twodoor.bookly.

GAMES, TwoDoor. Bookly: TBR €&; Book tracker. App Store
[online] 7 December 2016. [Accessed 15 January 2023]. Available
from: https://apps.apple.com/us/app/bookly-tbr-book-tracker/
11d1085047 737 7see—all=reviews.

55

 https://www.researchgate.net/profile/Dr-Md-Rashedul-Islam/publication/308022297_Mobile_application_and_its_global_impact/links/5991fbafa6fdcc53b79b606d/Mobile-application-and-its-global-impact.pdf
 https://www.researchgate.net/profile/Dr-Md-Rashedul-Islam/publication/308022297_Mobile_application_and_its_global_impact/links/5991fbafa6fdcc53b79b606d/Mobile-application-and-its-global-impact.pdf
 https://www.researchgate.net/profile/Dr-Md-Rashedul-Islam/publication/308022297_Mobile_application_and_its_global_impact/links/5991fbafa6fdcc53b79b606d/Mobile-application-and-its-global-impact.pdf
 https://www.researchgate.net/profile/Dr-Md-Rashedul-Islam/publication/308022297_Mobile_application_and_its_global_impact/links/5991fbafa6fdcc53b79b606d/Mobile-application-and-its-global-impact.pdf
 https://www.researchgate.net/profile/Dr-Md-Rashedul-Islam/publication/308022297_Mobile_application_and_its_global_impact/links/5991fbafa6fdcc53b79b606d/Mobile-application-and-its-global-impact.pdf
https://play.google.com/store/search?q=book+tracker&c=apps
https://play.google.com/store/search?q=book+tracker&c=apps
https://play.google.com/store/apps/details?id=com.thestorygraph.thestorygraph&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.thestorygraph.thestorygraph&hl=en&gl=US
https://app.thestorygraph.com/plus
https://play.google.com/store/apps/details?id=com.shunan.readmore&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.shunan.readmore&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.twodoor.bookly
https://play.google.com/store/apps/details?id=com.twodoor.bookly
https://apps.apple.com/us/app/bookly-tbr-book-tracker/id1085047737?see-all=reviews
https://apps.apple.com/us/app/bookly-tbr-book-tracker/id1085047737?see-all=reviews

10. Conclusion

[8] Bookshelf-your virtual library - apps on Google Play (2019). Google [on-
line]. [Accessed 15 January 2023]. Available from: https://play.google|
[com/store/apps/details?id=com.bookshelf .prod&hl=en&gl=US|

[9] Appadvice (2022) Bookshelf-your virtual library, AppAdvice [online]. [Ac-
cessed 15 January 2023]. Available from: https://appadvice.com/app/|
|bookshelf-your-virtual-library/1464032274}

[10] My library - apps on Google Play (2016). Google [online]. [Ac-
cessed 15 January 2023]. Available from: https://play.google.com/|
|store/apps/details?id=com.vgm.mylibrary&hl=en&gl=US,

[11] Handy Library - book organizer - apps on google play (2018). Google [on-
line]. [Accessed 15 January 2023]. Available from: https://play.google}
|com/store/apps/details?id=com.handylibrary.main&hl=en&gl=US.

[12] Functional vs non-functional requirements [updated 2021]. Enkoniz [on-
line]. [Accessed 15 January 2023]. Available from: https://enkonix.com/|
[plog/functional-requirements-vs-non-functional/|

[13] Storage [online]. [Accessed 15 January 2023]. Available from:
http://ai2.appinventor.mit.edu/reference/components/storage.|

[14] Class diagrams. in UML modeling [online]. [Accessed 15 January 2023].
Available from: |https://www.ibm.com/docs/en/rsm/7.5.07topic=
|[structure-class—-diagrams,

[15] Use-case diagrams. in UML modeling [online]. [Accessed 15 January 2023].
Available from: https://www.ibm.com/docs/en/rational-soft-arch/
[9.6.17topic=diagrams-use-case#: ~: text=In%20UML}2C%20use’, |
[2Dcase/20diagrams, the’,20system20and420its%20actors|

[16] Applying UML and patterns - The University of Teras at Dal-
las [online]. [Accessed 12 May 2023]. Available from:
|/ /www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf? |
ref=driverlayer.com/web|

[17] What is wireframing. [online]. [Accessed 12 May 2023]. Available from:
https://www.experienceux.co.uk/faqs/what-is-wireframing/|

[18] Android Developers. Android Mobile App Developer Tools — Android
Developers [online]. [Accessed 1 March 2023]. Available from:

|//developer.android.com/|

[19] Kotlin Programming Language [online]. [Accessed 1 March 2023]. Avail-
able from: https://kotlinlang.org/.

[20] XML FEssentials - W3C [online]. [Accessed 1 March 2023]. Avail-
able from: https://www.w3.org/standards/xml/core#: ~:text=What’,
[20is%20XMLY%3F ,more’%20suitable’20for’%20Web’%20usel

56

https://play.google.com/store/apps/details?id=com.bookshelf.prod&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.bookshelf.prod&hl=en&gl=US
https://appadvice.com/app/bookshelf-your-virtual-library/1464032274
https://appadvice.com/app/bookshelf-your-virtual-library/1464032274
https://play.google.com/store/apps/details?id=com.vgm.mylibrary&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.vgm.mylibrary&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.handylibrary.main&hl=en&gl=US
https://play.google.com/store/apps/details?id=com.handylibrary.main&hl=en&gl=US
https://enkonix.com/blog/functional-requirements-vs-non-functional/
https://enkonix.com/blog/functional-requirements-vs-non-functional/
http://ai2.appinventor.mit.edu/reference/components/storage.html#TinyDB
http://ai2.appinventor.mit.edu/reference/components/storage.html#TinyDB
https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams
https://www.ibm.com/docs/en/rsm/7.5.0?topic=structure-class-diagrams
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case#:~:text=In%20UML%2C%20use%2Dcase%20diagrams,the%20system%20and%20its%20actors
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case#:~:text=In%20UML%2C%20use%2Dcase%20diagrams,the%20system%20and%20its%20actors
https://www.ibm.com/docs/en/rational-soft-arch/9.6.1?topic=diagrams-use-case#:~:text=In%20UML%2C%20use%2Dcase%20diagrams,the%20system%20and%20its%20actors
https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf?ref=driverlayer.com/web
https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf?ref=driverlayer.com/web
https://www.utdallas.edu/~chung/SP/applying-uml-and-patterns.pdf?ref=driverlayer.com/web
https://www.experienceux.co.uk/faqs/what-is-wireframing/
https://developer.android.com/
https://developer.android.com/
 https://kotlinlang.org/
https://www.w3.org/standards/xml/core#:~:text=What%20is%20XML%3F,more%20suitable%20for%20Web%20use
https://www.w3.org/standards/xml/core#:~:text=What%20is%20XML%3F,more%20suitable%20for%20Web%20use

10. Conclusion

[21] Gradle (2023) Gradle Build Tool [online]. [Accessed 1 March 2023].
Available from: https://gradle.org/|

[22] Configure your build [online]. [Accessed 10 March 2023]. Available from:
https://developer.android.com/studio/build.

[23] Porter, B. Maven — Welcome to Apache Maven |online|. [Ac-
cessed 10 March 2023]. Available from: https://maven.apache.org/|

[24] The collaborative interface design tool [online]. [Accessed 29 April 2023].
Available from: https://www.figma.com/|

[25] Flirebase realtime database Google [online]. [Accessed 11 May 2023]. Avail-
able from: https://firebase.google.com/docs/databasel

[26] How to write test cases (with format & example) (2023)
BrowserStack [online]. [Accessed 12 May 2023]. Available from:
https://www.browserstack.com/guide/how-to-write-test-cases#:
~:text=Writing}20Test%20Cases-, What20is%20a%20Test%20Case% |
I3F ,necessary%20to%20verify’20aj,20feature|

[27] Michaelstonis Model-view-viewmodel, Model-View-ViewModel | Microsoft
Learn [online]. [Accessed 18 May 2023]. Available at: https://learn|
microsoft.com/en-us/dotnet/architecture/maui/mvvm.

[28] What is User Interface (UI) design? (2023) The Interaction Design
Foundation [online]. [Accessed 18 May 2023|. Available at:

|interaction-design.org/literature/topics/ui-design.

[29] Advantages of XML [online]. [Accessed 18 May 2023]. Avail-
able from: https://www.ibm.com/docs/en/i/7.3%7topicS
|[introduction-advantages—xml|

[30] What is Android Jetpack, and why should we use it? MindOrks [online].
[Accessed 18 May 2023]. Available at: https://blog.mindorks.com/
what-is-android-jetpack-and-why-should-we-use-it/|

[31] Java.com [online]. [Accessed 18 May 2023]. Available from:

www . java.com/|

[32] Repository pattern: android developers Android Developers [online]. [Ac-
cessed 18 May 2023]. Available at: https://developer.android.com/
|codelabs/basic-android-kotlin-training-repository-pattern#0l

[33] Data Access Object Design Patterns: Data Access Ob-
ject. [online]. [Accessed 18 May 2023]. Available at:
///www.oracle.com/java/technologies/data-access-object.html#:|
~:text=The/20Data’20Access/#200bject20 (or, to%20a%20genericy, |
120client%20interfacel

o7

 https://gradle.org/
 https://developer.android.com/studio/build
https://maven.apache.org/
 https://www.figma.com/
 https://firebase.google.com/docs/database
 https://www.browserstack.com/guide/how-to-write-test-cases#:~:text=Writing%20Test%20Cases-,What%20is%20a%20Test%20Case%3F,necessary%20to%20verify%20a%20feature
 https://www.browserstack.com/guide/how-to-write-test-cases#:~:text=Writing%20Test%20Cases-,What%20is%20a%20Test%20Case%3F,necessary%20to%20verify%20a%20feature
 https://www.browserstack.com/guide/how-to-write-test-cases#:~:text=Writing%20Test%20Cases-,What%20is%20a%20Test%20Case%3F,necessary%20to%20verify%20a%20feature
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://learn.microsoft.com/en-us/dotnet/architecture/maui/mvvm
https://www.interaction-design.org/literature/topics/ui-design
https://www.interaction-design.org/literature/topics/ui-design
https://www.ibm.com/docs/en/i/7.3?topic=introduction-advantages-xml
https://www.ibm.com/docs/en/i/7.3?topic=introduction-advantages-xml
https://blog.mindorks.com/what-is-android-jetpack-and-why-should-we-use-it/
https://blog.mindorks.com/what-is-android-jetpack-and-why-should-we-use-it/
https://www.java.com/
https://www.java.com/
https://developer.android.com/codelabs/basic-android-kotlin-training-repository-pattern#0
https://developer.android.com/codelabs/basic-android-kotlin-training-repository-pattern#0
https://www.oracle.com/java/technologies/data-access-object.html#:~:text=The%20Data%20Access%20Object%20(or,to%20a%20generic%20client%20interface
https://www.oracle.com/java/technologies/data-access-object.html#:~:text=The%20Data%20Access%20Object%20(or,to%20a%20generic%20client%20interface
https://www.oracle.com/java/technologies/data-access-object.html#:~:text=The%20Data%20Access%20Object%20(or,to%20a%20generic%20client%20interface
https://www.oracle.com/java/technologies/data-access-object.html#:~:text=The%20Data%20Access%20Object%20(or,to%20a%20generic%20client%20interface

10. Conclusion

[34] Carty, D. (2020) Follow Google’s lead with Programming Style Guides:
TechTarget, Software Quality [online]. [Accessed 18 May 2023]. Available
at: https://www.techtarget.com/searchsoftwarequality/feature/|
Follow-Googles—lead-with-programming-style—-guides#:~: |

[text=A%20style,20guide/,20tells’,20a, and/20bad/20programmingy, |
[20behavior/20explicit|

[35] Babich, N. (2023) Low fidelity vs. high fidelity: The differences between
design prototypes: Webflow blog, Webflow [online]. [Accessed 23 May 2023].
Available at: |https://webflow.com/blog/low-vs-high-fidelity#]
~:text=What/20is%20highy,20fidelity%3F, the’20final’,20producty|
[20as?%20possiblel

o8

https://www.techtarget.com/searchsoftwarequality/feature/Follow-Googles-lead-with-programming-style-guides#:~:text=A%20style%20guide%20tells%20a,and%20bad%20programming%20behavior%20explicit
https://www.techtarget.com/searchsoftwarequality/feature/Follow-Googles-lead-with-programming-style-guides#:~:text=A%20style%20guide%20tells%20a,and%20bad%20programming%20behavior%20explicit
https://www.techtarget.com/searchsoftwarequality/feature/Follow-Googles-lead-with-programming-style-guides#:~:text=A%20style%20guide%20tells%20a,and%20bad%20programming%20behavior%20explicit
https://www.techtarget.com/searchsoftwarequality/feature/Follow-Googles-lead-with-programming-style-guides#:~:text=A%20style%20guide%20tells%20a,and%20bad%20programming%20behavior%20explicit
https://webflow.com/blog/low-vs-high-fidelity#:~:text=What%20is%20high%20fidelity%3F,the%20final%20product%20as%20possible
https://webflow.com/blog/low-vs-high-fidelity#:~:text=What%20is%20high%20fidelity%3F,the%20final%20product%20as%20possible
https://webflow.com/blog/low-vs-high-fidelity#:~:text=What%20is%20high%20fidelity%3F,the%20final%20product%20as%20possible

Appendix A

Acronyms

MVVM - Model-View-ViewModel

UI - User Interface

XML - Extensible Markup Language

DAO - Data Access Object

IDE - Integrated development environment
IOS - iPhone operating system

SDK - A Software Development Kit

99

60

Appendix B

Electronic attachments

In the electronic attachments, there are the following files:

® User manual for the "Libget" application: User Manual.pdf
® Source code of the "Libget" application: LibgetApp.zip
® High fidelity prototype in Figma: Prototype.png

® Full text of this bachelor work: Bachelor Thesis Nazrin Orujaliyeva.pdf

61

	2526fc6e0cc029ccfae2794396a97618a56c9c222f6c9a8558d8ec3faf49f91a.pdf
	2526fc6e0cc029ccfae2794396a97618a56c9c222f6c9a8558d8ec3faf49f91a.pdf
	blank595x841
	2526fc6e0cc029ccfae2794396a97618a56c9c222f6c9a8558d8ec3faf49f91a.pdf
	Introduction
	The goals of the thesis

	"Libget" application: definitions and usage
	Definitions of the key terms
	The concept of using the "Libget" application

	Analysis of existing applications
	Existing applications comparison
	Storygraph
	Read More: A Reading Tracker
	Bookly: Book and Reading Tracker
	Bookshelf
	My library
	Handy library

	Conclusion of the analysis
	The “Libget” application core

	Analysis of the "Libget" application
	Functional requirements
	Non-functional requirements
	Class diagram
	Use cases
	Actors
	Use case diagram for user

	"Libget" application design
	Wireframes
	User interface

	Development of the "Libget" application
	Development process
	Used technologies

	Architectural Decisions
	Book class
	FirebaseRepository class
	BooksViewModel class

	Testing of the "Libget" application
	Developer tests
	User tests
	Test cases

	Improvements and new features in the future
	Project management of the thesis
	Conclusion
	Bibliography
	Acronyms
	Electronic attachments

