
Bachelor’s thesis

Web platform for donation

Aiya Rakhimova

Department of Software Engineering and Technologies

Supervisor: Ing. Kyrylo Bulat

May 23, 2023

ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

499327 Osobní číslo:​Aiya Jméno:​Rakhimova Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Webová aplikace pro darování

Název bakalářské práce anglicky:​

Web platform for donation

Pokyny pro vypracování:​
The project aims to create a platform for donations to sick people who need material assistance. As part of this work:​
- analyze existing applications and platforms for donations available on the market,​
- design a user interface for the application to motivate future users to use it,​
- analyze technologies for the implementation of front-end, back-end, and database parts of the application,​
- design application architecture with a focus on the back-end part of it,​
- implement a proof of concept version of the platform,​
- design test cases,​
- perform appropriate testing of a proof of concept and automate testing of the core scenarios.​

Seznam doporučené literatury:​
Richards, Mark. Fundamentals of Software Architecture: An Engineering Approach. O'Reilly Media, 2020.​
Walls, Craig. Spring Boot In Action. Shelter Island, NY: Manning Publications, 2016.​
Tidwell, Jenifer, Charlie Brewer, and Aynne Valencia. Designing Interfaces: Patterns for Effective Interaction Design.​
Beijing: O'Reilly, 2020.​

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

Ing. Kyrylo Bulat katedra počítačů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

Termín odevzdání bakalářské práce: 26.05.2023 Datum zadání bakalářské práce: 14.02.2023

Platnost zadání bakalářské práce: 22.09.2024

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​Ing. Kyrylo Bulat​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Acknowledgments

I would like to thank my supervisor Ing. Kyrylo Bulat for his help, useful advice and

guidance while working on the project. In addition, I would also like to express my

gratitude to my family for their support throughout the entire period of study at CTU

in Prague.

Declaration

I declare, that I have done assigned bachelor thesis alone led by supervisor and

cited all sources of information in accordance with the Guideline for adhering to

ethical principles.

In Prague on May 23, 2023 ………………

vii

Abstract

This bachelor’s thesis deals with designing and implementing a web

application for donating to sick people. The created application is divided into

three parts: Front-end, Back-end, and Database. The Front-end part is

implemented using React technology. The Back-end is written in Java using

the Spring Boot framework and the REST API. The Database uses

PostgreSQL technology.

Keywords: donation, donor, indigent, fundraising, React, Java, REST API,

PostgreSQL, Spring Boot, web application.

Abstract

Tato semestrální práce se zabývá navrhem a implementaci webové aplikaci

pro poskytování darů nemocným lidem. Vytvořená aplikace je rozdělena do

třech částí: Frontend, Backend, a Databáze. Frontendová část je

implementována pomocí technologie React. Backend je napsán v jazyce Java

s použitím frameworku Spring Boot a REST API. Databáze využíva

PostgreSQL technologii.

Klíčová slova: dar, donor, nemocné lidi, React, Java, REST API,

PostgreSQL, Spring Boot, webová aplikace.

viii

ix

Contents

Introduction .. 1

1 State-of-the-art .. 3

1.1 Existing solutions .. 3

1.1.1 Dobro .. 4

1.1.2 Planeta.ru ... 5

1.1.3 Crowdfunder ... 5

1.1.4 JustGiving ... 6

1.1.5 Darujme.cz ... 7

1.2 Summary ... 8

2 Analysis ... 9

2.1 Requirements .. 9

2.1.1 Functional requirements ... 9

2.1.2 Non-functional requirements ... 11

3 Design ... 13

3.1 Use cases ... 13

3.2 Architecture of the application ... 17

3.3 Front-end .. 18

3.3.1 Pages layout ... 18

3.3.2 Technologies .. 21

3.4 Back-end ... 23

3.4.1 Application tier .. 23

3.4.2 Technologies .. 23

3.4.3 Data tier .. 24

4 Implementation ... 27

4.1 Back-end ... 27

4.1.1 Data layer ... 27

4.1.2 Business layer .. 30

4.1.3 REST API layer... 31

x

4.2 Security ... 34

4.3 Front-end .. 37

4.3.1 Components of frontend ... 37

5 Testing ... 41

5.1 Unit testing .. 41

5.2 Scenario testing .. 42

5.2.1 Registration .. 42

5.2.2 Username and password changing ... 43

5.2.3 Donate .. 44

5.2.4 Create report with documents (with preview) 44

5.2.5 Delete document from report .. 45

5.3 Usability testing ... 45

5.3.1 Tester 1 .. 46

5.3.2 Tester 2 .. 46

5.3.3 Tester 3 .. 47

5.4 Summary of testing ... 47

Conclusion .. 49

List of literature .. 51

Acronyms .. 55

Code fragments .. 57

Final GUI .. 61

Executing application ... 65

xi

List of Figures

1.1 Dobro logo 4

1.2 Planeta.ru logo 5

1.3 Crowdfunder logo 6

1.4 JustGiving logo 6

1.5 Darujme.cz logo 7

3.1 Assigned use-cases to two types of user’s role 14

3.2 Assigned use-cases to donor and indigent 15

3.3 Three-tier architecture 17

3.4 The registration page of the needy 18

3.5 Form to fill out during registration №1 19

3.6 Form to fill out during registration №2 19

3.7 Patient profile page 20

3.8 The page for adding a new treatment report 20

3.9 Final structure of the application 25

4.1 The data layer structure 27

4.2 User entities group 28

4.3 The UML diagram 29

4.4 Example of using Lombok annotations 29

4.5 Code snippet of interface Document Repository 30

4.6 Donate function code fragment of UserService class 31

4.7 DocumentController endpoints using Swagger 32

4.8 Visual interpretation of UserController using Swagger 33

4.9 Backend structure 34

4.10 Sequence diagram of authorization and registration processe 35

4.11 Implementation of the registration process on the server side 36

4.12 Code fragment of auth.service.js 36

4.13 Code snippet of AuthorizationPage.js 37

4.14 Part of the code of DocumentUploader component 38

4.15 Part of the code of ReportCreatePage component 40

xii

1

Introduction

Access to affordable health care is an essential aspect of a healthy and prosperous

society. However, nowadays medicine is an expensive “pleasure” and not everyone

can afford it. This creates a serious problem for people in need of medical treatment

because it entails negative consequences for their health and well-being.

To solve this problem, various solutions have been created, such as government

subsidies, insurance systems and charitable organizations that provide financial

assistance to people in need. While these solutions are beneficial, they are not

always effective in providing immediate financial assistance to those in dire need.

Therefore, it was decided to develop a web application that will provide people with

a quick and easy way to donate to people in need of medical treatment. This

platform will serve as a link between donors and indigents. Donors can contribute

any amount they wish, and the donated money can be used to pay for treatment,

hospital bills and related expenses.

The goal of this bachelor's thesis is to develop a web application that can act as a

platform for donations to sick people. The thesis will begin with an analysis of

existing market solutions. This analysis will help to identify the shortcomings of

competitors and opportunities for developing a better platform.

After analyzing the problem, a prototype of the web application will be developed.

The future platform will include several features such as authentication and

registration, profile management, document upload and donation system. The web

application will be tested for the correctness of processing user data and performing

various operations.

2

3

Chapter 1

State-of-the-art

This chapter analyzes several existing solutions on the market, their pros and cons.

1.1 Existing solutions

The market is saturated with various donation systems, but most of them are not

aimed at healthcare purposes. Instead, they focus on raising funds for non-medical

purposes, such as environmental protection, animal shelters, or restoration of

historic buildings.

Platforms that allow sick people to post their financial aid ads often do not require

any confirmation of a person's health status. The lack of verification often leads to

potentially fraudulent activities and misuse of funds, thereby causing distrust of

potential donors.

Moreover, web platforms often do not provide any information about the use of

funds and the results of treatment, leaving donors in the dark about how and where

their contributions were used and what impact they had.

Several donation platforms have been studied to get information about their

functionality. It is important to note that the solutions considered may not represent

the entire range of available products. The following systems were analyzed:

● Dobro

● Planeta.ru

● Crowdfunder

● JustGiving

● Darujme. cz

State-of-the-art

4

1.1.1 Dobro

The Dobro1 project was developed in 2013 by a team of developers Mail.ru.The

creators of the project were inspired by the problems of people who live in the

Commonwealth of Independent States.

The main goal of the project is to help people who need it the most. The platform

also provides an opportunity to donate to orphans, animal shelters and projects

related to nature protection.

Figure 1.1: Dobro logo

A summary of the Dobro project’s pros and cons:

Pros:

● clear user interface

● list of success stories

● open list of people in need

● reliable information about patients

Cons:

● lack of medical evidence of a person's illness

● donations are made only through foundations

● partial treatment report

1 https://dobro.mail.ru/projects/?recipient=kids

State-of-the-art

5

1.1.2 Planeta.ru

Planeta2 is a social and service ecosystem that helps to monetize ideas, projects,

creativity and author's content in various ways. In addition, the project also

cooperates with charitable foundations.

Figure 1.2: Planeta.ru logo

Pros:

● user-friendly interface

● reliable information

● bonuses from the company for donors

● the opportunity to receive money prematurely if the amount exceeds half of

the required amount

Cons:

● small number of fees for sick people

● lack of medical evidence of a person's illness

● donations are made only through foundations

● inactive community

1.1.3 Crowdfunder

Crowdfunder.co.uk3 is a popular crowdfunding platform based in the United

Kingdom. It provides individuals and organizations with the opportunity to create

fundraising campaigns and establish contacts with potential supporters. This allows

people to share their project ideas, set funding goals, and offer rewards or

incentives to sponsors who contribute to their campaigns.

2 https://planeta.ru/
3 https://www.crowdfunder.co.uk/

State-of-the-art

6

Figure 1.3: Crowdfunder logo

Pros:

● the different types of crowdfunding

● stylish and easy-to-use interface

● list of popular projects

● list of people who have made a donation to a project

● the possibility of making a donation without registration

Cons:

● little information about the organization itself

● there is no history of expenses of donated funds

1.1.4 JustGiving

JustGiving4 is the trusted platform for online giving. They help people raise money

for the charities and people they care about the most.

Back in 2000, JustGiving.com began with one simple goal - to enable charities to

receive donations online from anywhere in the world.

Figure 1.4: JustGiving logo

Pros:

● easy navigation

● the different types of crowdfunding

● list of people who have made a donation to a project

● the possibility of donating without registration

4 https://www.justgiving.com/

State-of-the-art

7

Cons:

● in some places, a bad design

● there is no history of expenses of donated funds

1.1.5 Darujme.cz

Darujme.cz5 is the largest online donation platform in Czech Republic.

They provide organizations, institutions, but also cities, towns, and countries with a

secure tool to be seen and heard, to simply ask for a donation, and to maintain a

relationship with their donors.

Figure 1.5: Darujme.cz logo

Pros and cons of the platform:

Pros:

● user-friendly interface

● list of current projects

● update of news about fees

● the ability to write comments on fees

Cons:

● the collection is made for foundations, not specific people

● the Society does not take an active part in donating funds to sick people

● insufficient information and confirmations

5 https://www.darujme.cz/

State-of-the-art

8

1.2 Summary

Based on the analysis of existing competitors, it can be summed up that all these

platforms do not support the possibility of making donations of funds directly to

people in need, without intermediaries. Also, not all the above platforms have the

necessary functionality for creating reports and high user activity.

For this reason, it was decided to create a platform in which the necessary, useful

and convenient functionality will be present.

9

Chapter 2

Analysis

This chapter provides an analysis of functional and non-functional requirements for

the development of a web application.

2.1 Requirements

The requirements will describe the necessary functionality of the web platform.

Usually, when developing any software, two types of requirements are

distinguished:

● functional

● non-functional

2.1.1 Functional requirements

Functional requirements specify the behaviors the product will exhibit under specific

conditions. They describe what the developers must implement to enable users to

accomplish their tasks (user requirements) [1].

The web platform should contain functionality for the following groups:

● users

● patient’s form

● treatment report

● documents

2.1.1.1 Users

The platform serves two user groups: patients who require assistance and donors

who offer support. All users can perform the following primary actions:

● register a new account

● modify their user information

● sign in to the system

● log out

● delete account

Analysis

10

2.1.1.2 Patient’s form

When sick individuals register on the platform, they are required to fill in a form

providing details about their health condition, current treatment and illness

progression. The web application allows users to edit this information at any time.

Donors, on the other hand, can access forms of patients on a separate page, and

can add certain forms to their "Favorites" section for easier tracking of their

treatment progress.

As a result, the platform must have capabilities to:

● create new forms

● edit existing forms

● add and remove forms to and from the "Favorites" section

2.1.1.3 Treatment report

To ensure the transparency and accountability, indigents are required to publish

treatment reports and update them as needed to demonstrate the appropriate use

of donated funds. The system offers the following features for this purpose:

● create new treatment report

● edit recent report

● delete recent report

● view treatment history

2.1.1.4 Documents

Medical certificates are a confirmation of the presence of a disease in a person,

therefore, in addition to a textual description, the patient must attach all the

necessary documents. To do this, the platform has the following functions:

● uploading scan paper or electronic document/s to system

● deleting uploaded documents

In addition, the platform also provides the ability to download uploaded documents.

This can be useful for donors who want, for example, to get better acquainted with

medical certificates.

Analysis

11

2.1.2 Non-functional requirements

Non-functional requirements (NFRs) are requirements that do not relate to the

functionality of the system but to its operational characteristics. NFRs deal with

issues such as reliability, response time, throughput, maintainability, usability, and

portability [2].

Based on the definition given above, the following basic requirements can be

deduced:

● availability

● security

● scalability

● usability

● functional completeness

2.1.2.1 Availability

In addition to ensuring the constant availability of the platform, it is also important to

allocate regular maintenance hours. This involves allocating approximately 2-3

hours every 2 months to update the system and eliminate any problems that may

arise.

2.1.2.2 Security

To ensure the security of user data, it is extremely important to use a reliable

password encryption method. The method involves converting user passwords into

an encoded format that is difficult for third parties to decrypt. Thanks to the use of

encryption, confidential information, such as a password, is protected from potential

threats and unauthorized access.

2.1.2.3 Scalability

With the passage of time, as the user base grows, it becomes essential for the

system to have the capability to scale horizontally. This means that the system

should be designed and configured in a way that allows addition of more servers or

resources to accommodate the increasing number of users and their demands.

Analysis

12

2.1.2.4 Usability

The platform is designed to directly serve people who need financial assistance for

their treatment, eliminating the need for intermediaries. It offers a user-friendly and

intuitive interface with a clean and optimized design, ensuring ease of use for all

users.

2.1.2.5 Functional completeness

In addition to the point above, the system contains the most necessary functionality

to achieve the goal of the needy and the donor. The platform includes essential

features such as enabling patients to create fundraising forms, allowing the creation

of treatment reports, and facilitating donations from donors.

13

Chapter 3

Design

This chapter describes the possible interactions of users with the system and with

each other. It also describes the selected application architecture, used

technologies and presents a prototype of the web platform.

3.1 Use cases

A use case can be defined as "a specific interaction between a system and its

actors, representing a coherent sequence of transactions that fulfills a particular

goal of the actors" [3]. It describes the functional requirements of the system from

the perspective of its users or external entities.

The web application primarily focuses on one key role. The user is the main

individual who utilizes the platform for their needs. While the project may potentially

involve other roles, such as an administrator, for the purpose of the basic prototype,

the user role is considered sufficient.

Further, users in the system can be divided into two types: authorized and

unauthorized. These two types have different sets of functionality available to them.

(Figure 3.1)

Design

14

Figure 3.1: Assigned use-cases to two types of user’s role

3.1.1 Registration

A basic operation for any user who is using the platform for the first time.

3.1.2 Log in

Functions for previously registered users.

3.1.3 Edit user information

An important use case is to edit the user data.

3.1.4 View existing forms/profiles

The user can view all existing forms/profiles of indigents

Design

15

3.1.5 View treatment history

In addition to viewing the profile, the user can view the entire history of the patient's

treatment.

3.1.6 Log out

Functions for authorized users.

3.1.7 Delete account

If necessary, the account can be permanently deleted.

Authorized users are also divided into two main groups: donors and indigents. Each

of them has its own set of necessary functionalities. (Figure 3.2)

Figure 3.2: Assigned use-cases to donor and indigent

Design

16

3.1.8 Add/delete a form to/from the “Favorites” section

For donors, the system supports the function of adding and deleting forms in the

"Favorites" category, so that it is easier and more convenient to monitor the

treatment of certain people.

3.1.9 Make a donation

The most important function for donors.

3.1.10 View history of donations

The system supports the function of viewing the donations history.

3.1.11 Creating new form

After registration, every sick person is required to fill out a certain form.

3.1.12 Editing new form

If necessary, the form can be adjusted.

3.1.13 Creating a new treatment report

The system allows patients to create treatment reports.

3.1.14 Edit/delete a recent treatment report

If necessary, recent reports can be changed or deleted.

3.1.15 Upload/delete paper or electronic document/s

A patient can upload document/s to the application or delete them.

Design

17

3.2 Architecture of the application

For this project, a three-tier architecture is the most suitable, which consists of the:

● presentation tier or user interface (UI),

● application tier, where data is processed,

● data tier, where the data associated with the application is stored and

managed [4].

The three-tier architecture offers several advantages in software development. Here

are a few of its key benefits:

● maintainability and reliability: with clear separation of concerns, the three-tier

architecture promotes modular design and code reusability. Changes or

updates made in one layer do not affect the others, simplifying maintenance

and reducing the likelihood of introducing bugs or errors,

● scalability: any tier can be scaled independently of the others as needed,

● security: because the presentation tier and data tier can't communicate

directly, a well-designed application tier can function as a sort of internal

firewall, preventing SQL injections and other malicious exploits [4].

Figure 3.3 is a visual demonstration. More information about each layer is described

in the following sections.

Figure 3.3: Three-tier architecture

Design

18

3.3 Front-end

The presentation tier is the user interface and communication layer of the

application, where the user interacts with the application. Its main purpose is to

display information to and collect information from the user [4].

3.3.1 Pages layout

Before developing any user interface, there is a need to create a prototype. The

following most important pages can be distinguished from the entire system:

● the registration page of the needy - Figures 3.4 - 3.6

● the profile page - Figure 3.7

● the page for adding a treatment report - Figure 3.8

Below are the prototypes of these pages.

Figure 3.4: The registration page of the needy

Design

19

Figure 3.5: Form to fill out during registration №1

Figure 3.6: Form to fill out during registration №2

Design

20

Figure 3.7: Patient profile page

Figure 3.8: The page for adding a new treatment report

Design

21

3.3.2 Technologies

There is a wide variety of frameworks and libraries available for front-end

development. Among them, three of the most popular and widely used ones are:

● Vue.js

● Angular

● React.js.

3.3.2.1 Vue.js

Vue is a progressive JavaScript framework for building user interfaces. It is based

on standard HTML, CSS and JavaScript and provides a declarative and

component-based programming model that helps to effectively develop both simple

and complex user interfaces [5].

3.3.2.2 React

React is a free and open-source front-end JavaScript library for building user

interfaces based on UI components. It is maintained by Meta and a community of

individual developers and companies. React can be used as a base in the

development of single-page, mobile, or server-rendered applications [6].

3.3.2.3 Angular

Angular is a TypeScript-based, free and open-source web application framework led

by the Angular Team at Google. It is designed to create single-page client

applications using HTML and TypeScript. Angular follows the component-based

architecture and promotes a structured approach to development [7].

3.3.2.4 Сhosen technology

React offers several advantages that contribute to its popularity. Some of the key

advantages of React technology are:

● сomponent-based architecture: this architecture allows developers to break

complex user interfaces into smaller, reusable components. This promotes

code reuse, modularity, and easier maintenance.

● virtual DOM (Document Object Model): React utilizes a virtual DOM, which is

a lightweight representation of the actual DOM. This approach improves

performance by reducing direct manipulation. React efficiently updates only

the necessary parts of the UI, resulting in faster rendering and improved

overall performance.

Design

22

● JSX (JavaScript XML): React technology uses a syntax extension that

allows developers to write HTML-like code within JavaScript. It simplifies the

process of building and maintaining the UI structure.

In addition to the above, React has a very extensive and active developer

community. This ensures continuous improvement, frequent updates and a rich

ecosystem of tools.

3.3.2.5 Axios

Axios was used to communicate with the server side of the application. Axios is a

library that is used to make API requests, return data from the API, and then

perform actions with this data in the React application.

3.3.2.6 SCSS and Material-Ui

With the help of Sass and the Material UI library, a simple and concise design of the

platform was created.

Sass is a stylesheet language that’s compiled to CSS. It allows to use variables,

nested rules, functions, and more, all with a fully CSS-compatible syntax. Sass

helps keep large style sheets well-organized and makes it easy to share design

within and across projects [8].

Material UI is an open-source React component library that implements Google's

Material Design. It includes an extensive collection of ready-made components that

are ready to be used in production right out of the box.

Material UI has a set of customization options that make it easy to implement own

custom design system on top of the basic components [9].

Design

23

3.4 Back-end

Back-end development, also known as server-side development, covers the

activities related to the server and database components of a web application. It

involves handling the logic and data processing that occurs behind the scenes when

users interact with a website or application. As Martin Fowler described, the

development of the backend focuses on "the logic that determines how data is

stored and accessed" [10].

The back-end part of the web platform can be divided into two tiers: application and

data.

3.4.1 Application tier

In a three-tier architecture, the application tier, also known as the middle or the

business logic tier, plays a crucial role in processing and managing the business

logic and rules of an application. It acts as an intermediary layer between the

presentation layer (UI) and the data storage layer. This tier is responsible for

executing and coordinating the application's core functionalities, handling user

requests, and providing the necessary processing and manipulation of data [4].

3.4.2 Technologies

Technologies used for this part of the application are described below.

3.4.2.1 Java

Java is a very popular and widely used programming language created by Sun

Microsystems (currently owned by Oracle). It is known for its strict typing and

object-oriented nature. According to James Gosling, the creator of Java, it was

designed to be "simple, object-oriented and familiar" [11]. Java has numerous

advantages such as: simplicity, security, performance, reliability and much more.

One of the notable features of Java is its versatility and platform independence. As

stated in official document on Java technology, it follows the "Write Once, Run

Anywhere" (WORA) principle, which allows applications to run on any system

equipped with the Java Runtime Environment (JRE). The Java source code is

compiled into bytecode, which can be interpreted and executed by the Java Virtual

Machine (JVM) regardless of the underlying operating system [12].

Design

24

3.4.2.2 Spring

Spring Boot is a widely used Java-based framework that provides a simplified

approach to creating reliable and scalable web applications. It aims to simplify the

development process by reducing boilerplate code and providing a convention-

based approach rather than configuration.

The Spring framework includes various modules that solve different tasks of

enterprise application development, such as data access, web development,

security, and much more. Thanks to its modular architecture, Spring allows to

expand the capabilities of the application in accordance with the requirements of a

specific application [13].

3.4.2.3 Lombok

Lombok is a Java library that aims to reduce boilerplate code and enhance

developer productivity by providing automated code generation for common Java

tasks. It offers a set of annotations that can be added to Java classes, allowing the

library to generate getter and setter methods, constructors, equals and hashCode

methods, and more [14]. For example:

● @NoArgsConstructor - generates no arguments constructor for an

annotated class

● @Getter/@Settrer - generates getters and setters for attributes of an

annotated class

3.4.2.4 Swagger

Swagger is an open-source software framework that allows developers to design,

build, document, and consume RESTful web services. It provides a set of tools and

specifications for creating and documenting APIs. With Swagger, developers can

define API endpoints, request/response structures, data models, and authentication

mechanisms in a standardized and machine-readable format [15].

3.4.3 Data tier

The data tier, sometimes called data access, is where the information processed by

the application is stored and managed. This can be a relational database

management system such as PostgreSQL, MySQL, Oracle and others [4].

Design

25

PostgreSQL technology was chosen for this web application. It is a powerful, open-

source object-oriented relational database management system (ORDBMS) that

uses and extends the SQL language combined with many features that safely store

and scale the most complicated data workloads [16].

It provides flexible access to databases, efficient data organization and storage, and

comprehensive management of records, including versioning and manipulation.

One notable advantage of PostgreSQL is its broad functionality and a rich set of

data types that enable developers to handle diverse data requirements [16]. This

flexibility is beneficial in the context of the mentioned web application.

PostgreSQL's compliance with the ACID principles is another significant feature. As

stated by Bruce Momjian in the book "PostgreSQL: Introduction and Concepts",

PostgreSQL ensures "atomicity, consistency, isolation, and durability", making it

reliable and safeguarding data against failures and losses [17].

The database was the last layer of the architecture that was not described. Now the

final structure of the project can be seen in the Figure 3.9, where all the basic

technologies that will be used in the development of this web application are

indicated.

Figure 3.9: Final structure of application

26

27

 Chapter 4

Implementation

The web application was implemented according to the design described in the

"Design" chapter. As mentioned earlier, the frontend is developed using React, the

backend part is written in Java and PostgreSQL is used as a database.

4.1 Back-end

The back-end of the web application is organized into three layers:

● data layer

● business layer

● REST API layer

By dividing the back-end into these three layers, the application achieves separation

of concerns, modularity, and scalability. Each layer has its specific responsibilities,

allowing for easier maintenance, code reuse, and flexibility in making changes or

enhancements to the application. More details about each level are described in

subsections below.

4.1.1 Data layer

The data layer consists of two main blocks, as shown in the Figure 4.1:

● entities,

● repositories.

Figure 4.1: The data layer structure

Implementation

28

4.1.1.1 Entities

In a database, an entity is represented as a set of attributes and is typically mapped

to a table [18]. In other words, entities in JPA are nothing but POJOs representing

data that can be persisted to the database.

The project contains a group of user entities, which consists of an abstract User

class, from which two other classes Donor and Indigent are inherited, and enum

UserType. Visually, these entities are shown in Figure 4.2.

Figure 4.2: User entities group

In addition to the entities mentioned above, the project consists of:

● BankAccount entity- represents the bank account object

● Donation - describes the donation object

● Document - the object that stores the data of the uploaded document

● Form - represents the indigents form object

● Report - describes the treatment report object

The final representation of all entities and their relationships is depicted in the UML

diagram in Figure 4.3

Implementation

29

Figure 4.3: The UML diagram

In these classes the Lombok technology, which was mentioned earlier, was very

useful. An example сan be seen in the Figure 4.4

Figure 4.4: Example of using Lombok annotations

4.1.1.2 Repositories

In the Java and Spring ecosystems, repositories are key components that ensure

uninterrupted communication with databases. Developers can use the capabilities of

Spring Data JPA to simplify the implementation of the repository, as it offers built-in

support for fundamental CRUD operations: create, read, update and delete.

Moreover, Spring Data JPA gives developers the flexibility to define their own

Implementation

30

custom repository implementations, allowing them to create customized solutions if

necessary [19].

A great example of a custom JpaRepository can be the interface Document

Repository. It implements the following two methods:

● findAllByFormId - this method allows to find all the documents by the ID of

the indigents form,

● findAllByReportId - a method that returns documents attached to a specific

report.

Figure 4.5 represents a code snippet of the interface described above.

Figure 4.5: Code snippet of interface Document Repository

The backend part of the project also contains repositories such as:

● BankAccountRepostory

● DonationRepository

● FormRepository

● ReportRepository

● UserRepository

It is also worth noting that some of them also contain custom functions for

processing and searching data in the database.

4.1.2 Business layer

The business or service layer contains "the logic that drives an application by

coordinating the application's response to user input and its persistence and

retrieval of domain objects from a database" [10]. It encapsulates complex business

processes, handles validations, performs calculations, and organizes

transformations according to the specific requirements and rules.

Implementation

31

The business logic layer of the project consists of several service classes:

● BankAccountService

● DocumentService

● ReportService

● UserService

The most important service class is UserService. It describes the process of

registration, updating user data, donation operation (code fragment in the Figure

4.6) and other processes. But it is worth noting that the authorization process has its

own specifics in this case, which is described in more detail below in the Security

section.

Figure 4.6: Donate function code fragment of User Service class

4.1.3 REST API layer

The REST API layer consists of two main blocks:

● controllers

● data transfer objects (DTOs)

Implementation

32

4.1.3.1 Controllers

Controllers are components that handle incoming requests and provide responses

back to the client. They act as an intermediary between the user interface (front-

end) and the back-end logic. Controllers receive and interpret HTTP requests,

extract relevant data, invoke appropriate actions or services, and generate an HTTP

response to be sent.

All API endpoints are described in four controllers:

● DocumentController

● DonationController

● ReportController

● UserController

For example, as the name implies, DocumentController is designed for user

operations. Here are some of them:

● create new document for form/report

● receive documents full information

● get all indigent forms documents

● get reports documents

● delete document

The mentioned operations are shown in Figure 4.7.

Figure 4.7: DocumentController endpoints using Swagger

Implementation

33

The UserController is responsible for operations related to user management, such

as:

● registration

● login

● profile update

● delete account

Moreover, this class contains GET methods that are used to get data from the

database and then use them on the frontend side. (Figure 4.8)

Figure 4.8: Visual interpretation of UserController using Swagger

4.1.3.2 DTOs

A DTO is an object that carries data between processes in order to reduce the

number of methods calls between client and server [10]. The DOT pattern helps to

minimize the overhead associated with multiple method calls by bundling related

data into a single object, reducing network traffic and improving performance.

The project includes the following DTOs:

● DocumentDTO

● DonationDTO

● ReportDTO

● UserDTO

Implementation

34

In addition to the above list, the project also has a CredentialsDTO, which contains

the username and password attributes. This DTO is used when authorizing users.

How this process goes is described in the "Security" section.

Having described all the levels of the backend structure, the final diagram can be

depicted as shown in the Figure 4.9

Figure 4.9: Backend structure

4.2 Security

As mentioned earlier, the system has two types of users: unauthorized and

authorized, which in turn is divided into Donor and Needy. Each of these types of

users has its own restrictions that should not be violated. Moreover, the platform

must also securely store user data from various hacks and attacks.

To achieve these goals, the project implemented a security system using JWT.

JSON Web Token (JWT) is an open standard (RFC 7519) that defines a compact

and self-contained way for securely transmitting information between parties as a

JSON object. This information can be verified and trusted because it is digitally

signed. JWTs can be signed using a secret (with the HMAC algorithm) or a

public/private key pair using RSA or ECDSA [20].

Below is a diagram describing the principle of creating and receiving a JWT during

authorization. (Figure 4.10)

Implementation

35

Figure 4.10: Sequence diagram of authorization and registration processes

During the registration process, users provide all the required information based on

their selected user type. This data is sent to the server, where it is processed,

hashed and stored securely in the database. (Figure 4.11). Upon successful

registration, a HTTP.CREATED status is returned to the frontend, indicating that the

registration was completed successfully. Next, the authorization process is carried

out.

During authentication, the user enters their credentials for verification. If the data is

correct, a new JWT is generated on the server and returned to the user as

confirmation of successful authorization.

The received JWT Response contains a token, user information and his role. The

auth.service.js class on frontend side is responsible for getting, saving and deleting

JWT to/from sessionStorage. (Figure 4.12). Based on the existing or missing token,

the React sets the visibility of pages for specific users.

Implementation

36

Figure 4.11: Implementation of the registration process on the server side

Figure 4.12: Code fragment of auth.service.js

Implementation

37

4.3 Front-end

The front-end part of the project is written using the React library. The key feature of

React is composition of components, which can have its own internal state,

properties (props), and methods [21].

In React, a component is a reusable, self-contained unit of UI that can be composed

and nested to build complex UIs. They are organized in a hierarchical structure

where parent components can have child components, forming a

tree-like structure [22].

4.3.1 Components of frontend

Frontend components of a web application can be divided into 4 main groups:

● authorization components

● components of profile

● components of reports

● rest components

4.3.1.1 Authorization and registration pages

The authorization page contains a small form that must be filled in with credentials

to log in. The code snippet is shown in the Figure 4.13

Figure 4.13: Code snippet of AuthorizationPage.js

Implementation

38

On the contrary, the registration page has a more complex structure, which is

presented in Figures В.1-B.4, located in the appendix. Depending on the selected

type of user (donor or indigent), the form to fill out changes dynamically.

In addition to the basic HTML elements, this page also contains custom elements,

such as CustomDatePicker, created using the additional Material UI library,

CurrencySelector and DocumentUploader. Each of these elements is designed as a

separate component that performs certain operations. Part of the code from the

DocumentUploader component is shown in Figure 4.14.

Figure 4.14: Part of the code of DocumentUploader component

Implementation

39

4.3.1.2 Components of profile

This group includes:

● ProfilesPage where all profiles of users who need financial assistance are

displayed

● ProfileDetailPage

● EditProfilePage to edit user data

● ProfilePage

ProfilePage component responsible for displaying the personal profile of the user

registered as a donor. While the ProfileDetailPage component is carried out the

representation of indigents data.

This page slightly changes its content depending on whether the current user is

authorized or not (using JWT). For an unauthorized user or

an authorized person in need, the donation function and the ability to add to

favorites is not available. However, if the authorized user is the owner, then the

page is transformed into a personal profile with all possible additional functions.

This ProfileDetailPage also contains embedded child components ReportBlock,

which is responsible for displaying report information, and MakeDonationWindow,

which opens after clicking on the "Donate" button and AdditionalButtons to change

data, create new reports and delete an account.

4.3.1.3 Pages related to reports

This group consists of two components:

● ReportsPage - a page displaying all the reports that were created by

selected indigent,

● ReportCreatePage in which there is a form for creating a new report or or

editing an existing one.

Below is a code snippet that demonstrates the creation or editing operation in the

ReportCreatePage. (Figure 4.15)

Implementation

40

Figure 4.15: Part of the code of ReportCreatePage component

4.3.1.4 Rest components

In addition to the components mentioned earlier, which acted as child components,

the list includes:

● DeleteWindow - confirmation window for irrevocable deletion

● DonationHistoryBlock - a component that displays information about the

made donation

● IndigentProfileBlock is displayed on the “Profiles” page and contains brief

information about indigent

● Header with platform navigation and logo

41

Chapter 5

Testing

Testing is an essential part of the development lifecycle, as it helps to identify and

rectify defects, ensure software quality, and build confidence in the reliability and

functionality of the system.

Three types of testing were carried out on the web platform:

● unit testing,

● scenario testing,

● usability testing.

5.1 Unit testing

“Unit testing is a practice that includes automated checks to verify the behavior of

individual components of a program. The goal of unit testing is to detect defects in

individual modules before their integration into the system as a whole.” [23].

In the unit project, two main groups are covered by tests:

● controllers,

● services.

An additional, software called Diffblue was used to write the tests. Diffblue Cover is

designed to speed up the process of creating unit tests, which traditionally requires

manual effort from developers. By automating this process, Diffblue aims to improve

software quality, reduce the time and effort required for testing, and help developers

catch bugs earlier in the development cycle [24].

Testing

42

Controller tests include:

● DocumentControllerTest

● ReportControllerTest

● UserControllerTest

While the service test group consists of:

● DocumentServiceTest

● ReportServiceTest

● UserServiceTest

5.2 Scenario testing

Scenario testing is a software testing activity that uses scenarios: hypothetical

stories to help the tester work through a complex problem or test system [25].

In scenario-based testing, test cases are designed to simulate real-world scenarios

that users may encounter when interacting with the software application. These

scenarios typically represent specific sequences of user actions and system

responses.

For this purpose, various scenarios have been created, here are some of them.

5.2.1 Registration

Description: The new user wants to register in web platform.

Steps:

1. Go to the registration page by clicking the "Sign up" button in the upper right

corner.

2. Fill in the form with bad data and press the "Sign up" button.

3. Verify that an error message is displayed.

4. Fill in the all the necessary fields in accordance with the requirements and

click the "Sign up" button.

Testing

43

Expected results:

● At the second point the system should check the input data for:

a. absence of blank fields,

b. absence of numbers and symbols in the “Name” and “Surname”

fields,

c. correctness of the format of the entered email,

d. correspondence of the “Password” and “Repeat password” fields.

 After unsuccessful validation display an error message.

● By clicking on the button after filling out the form correctly, the platform

should redirect the user to the profile page.

Сonclusion: validation of the completed form and redirection to the desired page

work correctly.

5.2.2 Username and password changing

Description: the authorized donor wants to change his username.

Steps:

1. Click on the button “Edit”.

2. Enter a new username.

3. Check box “Change password” and press button “save”.

4. Verify that a message is displayed indicating a successful saving.

5. Log out from system.

6. Sign in with new credentials (username and password).

Expected results:

● By clicking on button “Edit” system should redirect user to the Edit profile

page.

● After checking the box inputs for entering a new password should be

displayed.

● If the new username has not been registered yet, the system should display

the message “Changes saved".

● After logging out, the user should be redirected to the main page.

● Upon successful authorization, the user must be on the profile page.

Testing

44

Сonclusion: authorization with the new data was not successful because the new

password was not saved in the database.

5.2.3 Donate

Description: donor wants to donate money.

Steps:

1. Click on “Donate” button.

2. Enter the desired amount in the dialog window that appears.

3. Select currency and click on the button.

4. Make sure that a message about a successful transaction displays.

5. Verify that the amount of funds collected has increased by the specified

amount.

6. Check the section “History” in the profile page for the appearance of

donation in it.

Expected results:

● By clicking on “Donate” button dialog window should be displayed.

● The system must check the field for emptiness and the entered value, which

cannot be less than 1. In case of correctness, display a message about the

successful completion of the donation.

● The number of donated funds should increase.

● The produced donation should be displayed in the section “History”.

Conclusion: the operation works correctly, but the donation was not recorded in the

database.

5.2.4 Create report with documents (with preview)

Description: authorized indigent wants to create a new treatment report.

Steps:

1. Press the “New report”.

2. Fill out the form and upload documents.

3. Click on the name of uploaded document and make sure that the document

is displayed in a new window.

Testing

45

4. Create document and check appearance of report in section “Actual

information”

Expected results:

● After clicking on button “New report”, the page for creation should open.

● All names of the documents should be displayed under the upload button.

● Clicking on the name of the document should open a new window with the

content of the file.

● New report should appear in “Actual information” section.

Conclusion: the document upload process was not allowed to select more than one

file.

5.2.5 Delete document from report

Description: indigent wants to delete document attached to the report

Steps:

1. Press on button “Edit” near report

2. Remove document and save changes

3. Make sure that document was deleted successfully.

Expected results:

● The page for editing should be displayed by clicking on button “Edit”.

● Document should be removed.

Conclusion: delete operation works correctly.

5.3 Usability testing

Usability testing is a technique used in software development to evaluate the

usability of a system, application, or website by observing real users as they interact

with it. It aims to identify usability issues, gather user feedback, and assess the

overall user experience [26].

Testing

46

This testing was conducted with the participation of three users of different ages and

fields of activity. Each of them was given the opportunity to familiarize themselves

with the application, and then share their impressions of using it.

The tests were conducted remotely using AnyDesk and TeamViewer applications,

which allowed participants to interact with the application, and through video calls

they shared their comments, recommendations and wishes.

5.3.1 Tester 1

The first participant, a student from a technical university with small testing

experience, noticed a couple of issues while evaluating the system.

The first thing that caught their eye was the navigation buttons on the main page.

They suggested that the navigation buttons on the main page seemed unnecessary

and could be eliminated since they didn't serve any significant functional purpose.

Additionally, after making changes to user data in their profile, the participant felt

that the system lacked a clear indication of successful data saving. To address this,

they recommended implementing a pop-up browser window with a message instead

of relying solely on the presence of highlighted green text above the form.

5.3.2 Tester 2

The second participant, a manager in an educational center over 40 years old, had

no experience in such matters.

They identified a couple of defects during their evaluation of the system. Firstly, they

observed that the input fields in the registration and authorization forms appeared

faded, blending with the background image and lacking clarity. To address this

issue, the participant suggested improving the visual expression of the input fields.

Furthermore, the participant noticed that the red field headers were challenging to

differentiate from error messages, potentially causing confusion. They

recommended using a different color for the field headers to enhance visual

distinction.

Testing

47

Additionally, the participant proposed replacing the user's id displayed in the profile

with their username. This change aimed to facilitate easy identification and

memorization of other users' profiles.

5.3.3 Tester 3

The third participant, a high school student with no testing experience, found the

design of the application to be concise. However, they encountered an

inconvenience while attempting to change the indigents data. The process of editing

several sections required constant switching between pages, which caused

frustration. To address this issue, the participant suggested implementing a single

page for editing that would consolidate all the sections in one place.

By proposing the creation of a unified editing page with all sections available

simultaneously, the participant aimed to streamline the editing process and enhance

user convenience.

5.4 Summary of testing

The tests carried out helped to identify errors in the functionality of the application,

shortcomings of the user interface, as well as to form an opinion about the

developed system as a whole.

Based on the tests conducted, the above-mentioned comments, suggestions and

recommendations, the necessary corrections and bug fixes were made to the web

application.

48

49

Conclusion

The purpose of the bachelor's thesis was to analyze existing platforms that allow

making donations to people in need of medical treatment and to develop a prototype

of a new improved platform.

Market analysis helped identify the functionality and shortcomings of existing

platforms, which served as a foundation for designing the future web application.

The prototype was created based on the design and selected technologies,

incorporating essential features and providing a user-friendly and intuitive interface.

Further, several types of testing were conducted to identify errors in the system,

improve the user interface, as well as gather valuable feedback and ideas for further

project development.

Despite the fact that the biggest and most important part of the project has been

successfully implemented, there is always something to strive for and improve. In

the future, the functionality of the project will only expand. First of all, it is necessary

to implement the technology of verifying the authenticity of uploaded documents, as

well as integrate the payment system. Moreover, thanks to the conducted testing,

such ideas as the introduction of a filter for sorting questionnaires of those in need,

a search engine, a bonus system for donors and others were identified.

The final version of the web application is available on GitLab6.

6 https://gitlab.com/aya.rakhimova2002/bachelor_project

50

51

List of literature

[1] Karl E. Wiegers. Software Requirements [online]. 2013, [Cited 2022-19-11].

ISBN-13: 978-0-7356-7966-5. Available from:

https://www.booksfree.org/wp-

content/uploads/2022/03/Software_Requirements_3rd_Edition_compressed.pdf

[2] Lauesen, Soren. Software Requirements: Styles and Techniques. 2002.

Addison-Wesley Professional. ISBN-13: 978-0321122476.

[3] Larman, Craig. Applying UML and Patterns: An Introduction to Object-Oriented

Analysis and Design and Iterative Development. 3rd ed [online]. 2004, [Cited 2022-

20-11]. Available from:

http://bsituos.weebly.com/uploads/2/5/2/5/25253721/applying-uml-and-patterns-

3rd.pdf

[4] What is three-tier architecture? [online]. IBM. [Cited 2022-26-11]. Available from:

https://www.ibm.com/topics/three-tier-

architecture#:~:text=The%20chief%20benefit%20of%20three,without%20impacting

%20the%20other%20tiers.

[5] What is Vue? [online]. Vue. [Cited 2022-26-11]. Available from:

https://vuejs.org/guide/introduction.html#what-is-vue

[6] React (software) [online]. Wikipedia. [Cited 2022-26-11]. Available from:

https://en.wikipedia.org/wiki/React_(JavaScript_library)

[7] Introduction to Angular concepts [online]. Google. [Cited 2022-26-11]. Available

from:

https://angular.io/guide/architecture

[8] Sass documentation [online]. MacStadium. [Cited 2023-20-05]. Available from:

https://sass-lang.com/documentation/

https://www.booksfree.org/wp-content/uploads/2022/03/Software_Requirements_3rd_Edition_compressed.pdf
https://www.booksfree.org/wp-content/uploads/2022/03/Software_Requirements_3rd_Edition_compressed.pdf
http://bsituos.weebly.com/uploads/2/5/2/5/25253721/applying-uml-and-patterns-3rd.pdf
http://bsituos.weebly.com/uploads/2/5/2/5/25253721/applying-uml-and-patterns-3rd.pdf
https://www.ibm.com/topics/three-tier-architecture#:~:text=The%20chief%20benefit%20of%20three,without%20impacting%20the%20other%20tiers
https://www.ibm.com/topics/three-tier-architecture#:~:text=The%20chief%20benefit%20of%20three,without%20impacting%20the%20other%20tiers
https://www.ibm.com/topics/three-tier-architecture#:~:text=The%20chief%20benefit%20of%20three,without%20impacting%20the%20other%20tiers
https://vuejs.org/guide/introduction.html#what-is-vue
https://en.wikipedia.org/wiki/React_(JavaScript_library)
https://angular.io/guide/architecture
https://sass-lang.com/documentation/

52

[9] Material UI - Overview [online]. Material UI. [Cited 2023-20-05]. Available from:

https://mui.com/material-ui/getting-started/overview/

[10] Fowler, Martin. Patterns of Enterprise Application Architecture. 2002. Addison-

Wesley Professional. ISBN-13: 978-0321127426.

[11] Gosling, James. The Java Language Specification [online]. 2002, [Cited 2022-

27-11]. Oracle. Available from:

https://www.oracle.com/java/technologies/introduction-to-java.html#318

[12] Gosling, James. The Java Virtual Machine Specification [online]. 2023 [Cited

2023-15-05]. Oracle. Available from:

https://docs.oracle.com/javase/specs/jvms/se20/jvms20.pdf

[13] Walls, Craig. Spring in Action. 5th ed. 2018. Manning. ISBN-13: 978-

1617294945.

[14] Borowiec, Rafal. Mastering Spring Boot 2.0. 2018. Packt Publishing. ISBN-13:

978-1787127562.

[15] OpenAPI Specification [online]. SmartBear. Cited [2023-15-05]. Available from:

https://swagger.io/resources/open-api/

[16] What is PosgreSQL? [online]. The PostgreSQL Global Development Group.

[Cited 2023-15-05]. Available from:

https://www.postgresql.org/about/

[17] Momjian, Bruce. PostgreSQL: Introduction and Concepts [online]. 2001, [Cited

2023-15-05]. Addison-Wesley Professional. Available from:

http://www.foo.be/docs-free/aw_pgsql_book.pdf

[18] Elmasri, R. & Navathe, S. B. Fundamentals of Database Systems. 2016.

Pearson. ISBN-13: 978-0133970777.

[19] Spring Data JPA - Reference Documentation. Spring. [Cited 2023-16-05].

Available from:

https://mui.com/material-ui/getting-started/overview/
https://www.oracle.com/java/technologies/introduction-to-java.html#318
https://docs.oracle.com/javase/specs/jvms/se20/jvms20.pdf
https://swagger.io/resources/open-api/
https://www.postgresql.org/about/
http://www.foo.be/docs-free/aw_pgsql_book.pdf

53

https://docs.spring.io/spring-

data/jpa/docs/current/reference/html/#repositories.custom-implementations

[20] Introduction to JSON Web Tokens [online]. Auth0. [Cited 2023-16-05]. Available

from:

https://jwt.io/introduction

[21] React documentation [online]. Meta Open Source. [Cited 2023-16-05].

Available from:

https://react.dev/learn

[22] Wieruch, R. The Road to React [online]. 2018, [Cited 2023-16-05]. Available

from:

https://sd.blackball.lv/library/the_road_to_react_(2020).pdf

[23] Martin, R. C. Clean Code: A Handbook of Agile Software Craftsmanship

[online]. 2008, [Cited 2023-17-05]. Prentice Hall. Available from:

https://thixalongmy.haugiang.gov.vn/media/1175/clean_code.pdf

[24] Diffblue Cover [online]. Diffblue Ltd. [Cited 2023-17-05]. Available from:

https://www.diffblue.com/products

[25] Cem Kaner. An Introduction to Scenario Testing [online]. 2003, [Cited 2023-20-

05]. Available from:

https://kaner.com/pdfs/ScenarioIntroVer4.pdf

[26] Dumas, J.S. and Redish, J.C. A Practical Guide to Usability Testing [online].

1999, [Cited 2023-17-05]. Available from:

https://www.jedbrubaker.com/wp-content/uploads/2013/03/Dumas-99.pdf

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.custom-implementations
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.custom-implementations
https://jwt.io/introduction
https://react.dev/learn
https://sd.blackball.lv/library/the_road_to_react_(2020).pdf
https://thixalongmy.haugiang.gov.vn/media/1175/clean_code.pdf
https://www.diffblue.com/products
https://kaner.com/pdfs/ScenarioIntroVer4.pdf
https://www.jedbrubaker.com/wp-content/uploads/2013/03/Dumas-99.pdf

54

55

Appendix A

Acronyms

JS JavaScript

REST Representation state transfer

API Application Programming Interface

SQL Structured Query Language

NFR Non-functional requirement

UI User interface

HTML HyperText Markup Language

CSS Cascading Style Sheets

DOM Document Object Model

JSX JavaScript XML

XML Extensible Markup Language

JRE Java Runtime Environment

JVM Java Virtual Machine

ORDBMS Object Oriented Relational Database Management System

ACID Four key properties of a transaction: atomicity, consistency, isolation,

and durability

POJO Plain Old Java Object

JPA Java Persistence API

UML Unified Modeling Language

DTO Data Transfer Object

HTTP HyperText Transfer Protocol

DB Database

JSON JavaScript Object Notation

JWT JSON Web Token

RFC 7159 JSON Data Interchange Format

HMAC Hash-based message authentication code

RSA (Rivest–Shamir–Adleman) Public-key cryptosystem

ECDSA Elliptic Curve Digital Signature Algorithm

56

57

Appendix B

Code fragments

Figure B.1: RegistrationPage.js code fragment №1

58

Figure B.2: RegistrationPage.js code fragment №2

59

Figure B.3: RegistrationPage.js code fragment №3

60

Figure B.4: RegistrationPage.js code fragment №4

61

Appendix С

Final GUI

Figure C.1: Registration page

Figure C.2: Profiles page

62

Figure C.3: Indigent’s profile page

Figure C.4: Page for creating a new report

63

Figure C.5: Page for editing user data

Figure C.6: Donate operation window

64

Figure C.7: Donor profile page

65

Appendix D

Executing application

Configure setting

Create local PostgreSQL database.

In src/main/resources/application.properties change setting to needed database.

spring.datasource.url=jdbc:postgresql://localhost:5432/aiplus

spring.datasource.username=postgres

spring.datasource.password=admin

Run application

To start back-end run Application.java in IntelliJ IDEA

Location: src/main/java/Application.java

To start front-end open a terminal and enter following commands:

cd src/frontend

npm install

After the installation is complete enter

npm start

After starting up the application, components should be available:

• Front-end – htttp://localhost:3000

• Back-end – htttp://localhost:8081

	Acknowledgments
	Declaration
	Abstract
	Contents
	List of Figures
	Introduction
	State-of-the-art
	1.1 Existing solutions
	1.1.1 Dobro
	1.1.2 Planeta.ru
	1.1.3 Crowdfunder
	1.1.4 JustGiving
	1.1.5 Darujme.cz

	1.2 Summary

	Analysis
	2.1 Requirements
	2.1.1 Functional requirements
	2.1.1.1 Users
	2.1.1.3 Treatment report
	2.1.1.4 Documents

	2.1.2 Non-functional requirements
	2.1.2.1 Availability
	2.1.2.2 Security
	2.1.2.3 Scalability
	2.1.2.4 Usability
	2.1.2.5 Functional completeness

	Design
	3.1 Use cases
	3.1.1 Registration
	3.1.2 Log in
	3.1.3 Edit user information
	3.1.4 View existing forms/profiles
	3.1.6 Log out
	3.1.7 Delete account
	3.1.8 Add/delete a form to/from the “Favorites” section
	3.1.9 Make a donation
	3.1.10 View history of donations
	3.1.11 Creating new form
	3.1.12 Editing new form
	3.1.13 Creating a new treatment report
	3.1.14 Edit/delete a recent treatment report
	3.1.15 Upload/delete paper or electronic document/s

	3.2 Architecture of the application
	3.3 Front-end
	3.3.1 Pages layout
	3.3.2 Technologies
	3.3.2.1 Vue.js
	3.3.2.2 React
	3.3.2.3 Angular
	3.3.2.4 Сhosen technology
	3.3.2.5 Axios
	3.3.2.6 SCSS and Material-Ui

	3.4 Back-end
	3.4.1 Application tier
	3.4.2 Technologies
	3.4.2.1 Java
	3.4.2.2 Spring
	3.4.2.3 Lombok
	3.4.2.4 Swagger

	3.4.3 Data tier

	Implementation
	4.1 Back-end
	4.1.1 Data layer
	4.1.1.1 Entities
	4.1.1.2 Repositories

	4.1.2 Business layer
	4.1.3 REST API layer
	4.1.3.1 Controllers
	4.1.3.2 DTOs

	4.2 Security
	4.3 Front-end
	4.3.1 Components of frontend
	4.3.1.1 Authorization and registration pages
	4.3.1.2 Components of profile
	4.3.1.3 Pages related to reports
	4.3.1.4 Rest components

	Testing
	5.1 Unit testing
	5.2 Scenario testing
	5.2.1 Registration
	5.2.2 Username and password changing
	5.2.3 Donate
	5.2.4 Create report with documents (with preview)
	5.2.5 Delete document from report

	5.3 Usability testing
	5.3.1 Tester 1
	5.3.2 Tester 2
	5.3.3 Tester 3

	5.4 Summary of testing

	Conclusion
	List of literature
	Acronyms
	Code fragments
	Final GUI
	Executing application

