
Bachelor Thesis

Czech

Technical

University
in Prague

F3 Faculty of Electrical Engineering

Department of Computer Graphics and Interaction

Procedural Generation of Outdoor Scenes

Ondřej Kyzr

Supervisor: doc. Ing. Jiří Bittner, Ph.D.

May 2023

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498969 Personal ID number: Kyzr Ondřej Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:

Computer Games and Graphics Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Procedural generation of outdoor scenes

Bachelor’s thesis title in Czech:

Procedurální generování venkovních scén

Guidelines:

Bibliography / sources:

[1] Smelik, Ruben M., et al. 'A survey on procedural modeling for virtual worlds.' Computer Graphics Forum. Vol. 33. No.
6. 2014.
[2] Noor Shaker, Julian Togelius, Mark J. Nelson. Procedural Content Generation in Games. Springer International
Publishing. 2016.
[3] Hendrikx, Mark et al. Procedural Content Generation for Games: A Survey. In: ACM Trans. Multimedia Comput.
Commun. Appl. 9.
[4] Petr Brachaczek. Modely 3D scén pro jízdní simulátor. Bakalářská práce, ČVUT FEL 2017.
[5] Jana Kejvalová. Procedurální generování 3D modelu dle mapových podkladů. Diplomová práce, ČVUT FEL 2019.
[6] Jan Kutálek. Procedurální generování prostředí pro videohry. Bakalářská práce, ČVUT FEL 2021.

Name and workplace of bachelor’s thesis supervisor:

doc. Ing. Jiří Bittner, Ph.D. Department of Computer Graphics and Interaction

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 17.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature doc. Ing. Jiří Bittner, Ph.D.
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

ii

Acknowledgements
I want to thank my supervisor, doc. Ing.
Jiří Bittner, Ph.D., for proposing this en-
gaging topic and letting me change it to
my liking. I would also like to thank my Ą-
ancée for helping me with grammar, spell-
checking, and motivation.

Declaration
I declare that this work was written and
implemented by me, and I have cited all
sources I have used or was inspired by in
the bibliography.

Prague, May 20., 2023

...

iii

Abstract
This bachelor thesis describes an imple-
mentation of an easy-to-use tool for the
game engine Unity, which can procedu-
rally generate outdoor scenes. The tool
is split into several generators so that
the user can choose the features of the
terrain. These features include roads,
human-made paths, hydraulic erosion, wa-
ter bodies, and rivers. The resulting ter-
rain is easily editable with many parame-
ters and tools.

Keywords: Procedural generation,
Terrain, Landscape, Hydraulic erosion,
Rivers, Road, Paths

Supervisor: doc. Ing. Jiří Bittner,
Ph.D.
Fakulta elektrotechnická,
Karlovo nám. 13,
12000 Praha 2

Abstrakt
Tato bakalářská práce popisuje imple-
mentaci snadno použitelného nástroje pro
herní engine Unity, který dokáže procedu-
rálně generovat venkovní scény. Nástroj
je rozdělen na jednotlivé generátory, aby
si mohl uživatel vybrat, jaké vlastnosti te-
rén bude mít. Mezi ně patří silnice, lidmi
vytvořené cesty, vodní eroze terénu, vodní
tělesa a řeky. Výsledný terén je snadno
upravitelný pomocí mnoha parametrů a
nástrojů.

Klíčová slova: Procedurální generování,
Terén, Krajina, Vodní eroze, Řeky,
Silnice, Cesty

Překlad názvu: Procedurální
generování venkovních scén

iv

Contents
1 Introduction 1
1.1 Idea . 1
1.2 Tools Used . 1

2 Related Work 3
2.1 Terrain Generation 3

2.1.1 Midpoint Displacement (fractal
terrain) . 3

2.1.2 Random Terrain 4
2.1.3 Noise Generators 4
2.1.4 Physical Processes 5
2.1.5 Agent based approach 6

3 Implementation 9
3.1 Base Terrain 9

3.1.1 Texture-based Approach 10
3.1.2 Generate Terrain Component 11
3.1.3 Chunk Manager Component . 12
3.1.4 Chunk Component 13
3.1.5 Height Calculation 14

3.2 Material and Shaders 15
3.2.1 Textures and Color 15
3.2.2 Grass Shader 16

3.3 Generate Path Component 19
3.3.1 Path Control Points 19
3.3.2 Path Mesh Alteration 24
3.3.3 Random Path Generation . . . 26

3.4 Generate Road Component 26
3.5 Generate Hydraulic Erosion

Component . 27
3.5.1 Droplet Simulation 28
3.5.2 Texture Generation 29

3.6 Generate Water Component 30
3.6.1 Water Chunks 30
3.6.2 River Generation 30

4 Performance 35
4.1 Base Terrain 35
4.2 Generate Path Component 36
4.3 Generate Road Component 36
4.4 Generate Hydraulic Erosion

Component . 37
4.5 Generate Water Component 38
4.6 Discussion 40

5 Photo Recreation 41

6 Conclusion 45

Appendix A Electronic appendix
content 47

Bibliography 49

v

Figures
1.1 A screenshot of a procedurally

generated planet from the game No
ManŠs Sky [24]. 2

1.2 An example of a procedurally
generated terrain using voxels from
the video game Cube World [26]. . . 2

2.1 Midpoint Displacement
algorithm[8]. 4

2.2 Algorithm described by subsection
2.1.3. The Ąrst picture shows the
base setup with lattice vectors and
the point at which we want to
generate the height. The second
picture shows the pairs of vectors
that are used for the dot product. . . 4

2.3 Terrain generated with my tool
using one octave versus seven octaves. 5

2.4 The comparison of the effect
simulation 70 000 water droplets on a
noise generated terrain from LagueŠs
[6] video. 6

3.1 In this Figure, the green triangles
and white points represent the
terrain, the purple points are the
embalming points used to calculate
the normals. The red triangles are all
the triangles whose normals
contribute to the normal vector of
the top left point of the terrain. . . 10

3.2 The left image is a hydraulic
erosion texture of a chunk, where
gray means no change in height,
darker color means the terrain is
subtracted, and lighter color means
the terrain is heightened. The right
image is the texture applied on a
chunk. 11

3.3 A mountainous terrain generated
using my tool with hydraulic erosion
applied. 12

3.4 The Ąrst image is a terrain with
many hills and no Ćat regions. The
second image is a Ćatter terrain with
occasional mountains. 13

3.5 ModiĄed visualization of the
rendering pipeline used in modern
applications with color-distinguished
stages based on
programmability.[12] 17

3.6 Image showing the grass shader in
action. 17

3.7 A control points of a path
generated by the combined efforts of
the global and local agent. 19

3.8 A straightforward path generated
using global path-Ąnding with a
NavMesh (turquoise areas).
Additionally, for better visibility, the
corner points have been connected by
more points using linear
interpolation. 21

3.9 Two different winding paths
generated using local path-Ąnding.
The Ąrst one had default weights.
The second one had the Direction To
Goal weight lowered to create a less
straightforward path. 23

3.10 The Ąrst picture shows the Path
Incline Balance parameter set to -15.
In comparison with the second
picture, where it is set to 0. 25

3.11 Terrain with generated paths
using the Generate Paths
Component. 26

3.12 Terrain with a road generated.
The road can heighten the terrain or
even cut through it, as seen on the
left side of the image. 27

3.13 The Ąrst image shows a terrain
deformed by my hydraulic erosion
generator, while the second one shows
the same terrain without the effect. 29

3.14 The Ąrst image shows the river
agentŠs path of control points, which
follows the gradient more closely
than the one in the second image. . 33

vi

3.15 The Ąrst image shows a terrain
with only water chunks generated.
The second image shows the same
terrain shaped by the carving and
river tools. 34

4.1 Graph showing the generation and
parameter change times of the base
terrain from Table 4.1. 36

4.2 Graph showing the generation
times of roads from Table 4.3. 37

4.3 Graph showing the generation
times of hydraulic erosion from Table
4.4. 38

4.4 Graph showing the generation and
parameter change times from Table
4.5. 39

4.5 Graph showing the generation
times of rivers from Table 4.6. 39

5.1 The Ąrst image shows a real-life
photo [19]. The second image shows
the landscape from the Ąrst picture
recreated using my tool. 42

5.2 The Ąrst image shows a real-life
photo [20]. The second image shows
the landscape from the Ąrst picture
recreated using my tool. 43

5.3 The Ąrst image shows a real-life
photo [21]. The second image shows
the landscape from the Ąrst picture
recreated using my tool. 44

Tables
4.1 A table showing the time it takes

to create and edit a terrain with 100
chunks and 6 octaves of Perlin noise. 35

4.2 A table showing the time it takes
to generate a path. 36

4.3 A table showing the time it takes
to generate roads based on their
length and width. 37

4.4 A table showing the time it takes
to generate hydraulic erosion based
on the number of droplets. 37

4.5 A table showing the time it takes
to generate water chunks and change
their parameters based on the
wrapping of the water chunks. 38

4.6 A table showing the time it takes
to generate rivers on the terrain or
carve the terrain. 39

vii

Chapter 1

Introduction

1.1 Idea

My primary idea was to create an accessible tool for Unity where a user can
create realistic-looking outdoor terrain. The terrain should feature roads,
winding paths made by humans, grass, rivers, and lakes. The user should be
able to choose the look of the terrain so that different biomes (mountains,
meadows, etc.) can be generated. The Ąnal terrain should resemble the
European countryside, so I will not focus on the toolŠs ability to generate
exotic biomes.

The user should be able to change the terrain to their liking using different
parameters and tools. Each generation part (e.g., base terrain, roads, water,
etc.) should have its own separate generator, allowing the user to choose the
presence of these features and quickly change or completely revert them.

An example of procedurally generated terrain from the game No ManŠs
Sky can be seen in Figure 1.1. This game features procedurally generated
plants, animals, planets, and even solar systems. Another example can be
seen in Figure 1.2, from the game Cube World. This game uses voxels, which
are small cubes, to represent and generate the terrain in a similar way to the
popular game Minecraft [25].

1.2 Tools Used

For this Bachelor Thesis, I decided to use the Unity game engine because
it is one of the most used game engines in the industry and is very easy to
learn. It is well documented, and many tutorials exist, which will make the
implementation easier. Personally, I have the most experience with Unity
when it comes to game engines, which was the main choice factor.

1

1. Introduction

Figure 1.1: A screenshot of a procedurally generated planet from the game No
ManŠs Sky [24].

Figure 1.2: An example of a procedurally generated terrain using voxels from
the video game Cube World [26].

2

Chapter 2

Related Work

Terrain generation has been covered in a lot of books and articles. The
whole process and its many variations will be covered in this chapter. When
it comes to the generators of different features, I did not draw from many
sources because most of the things I wanted to implement were my ideas,
with a few exceptions. I found very good tutorials and sources tackling most
of my implementation issues.

2.1 Terrain Generation

Landscapes in video games are usually represented either as a DEM (Digital
Elevation Model) or a heightĄeld, in which we store the heights of the terrain.
Some games utilize a 3D collection of data to represent layered terrain and
caves[2]. The vertices of the grid are equally distributed, and each height of
a vertex is procedurally generated. There are several methods for generating
the heights of points, such as midpoint displacement, random generation, and
noise generators.

The landscape can be separated into smaller parts called chunks. This
proves to be quite helpful, especially when it comes to performance. Lague
[3], in his Youtube series about landmass generation, successfully uses chunks
for displaying only the relevant parts of the terrain. Chunks closest to the
player character are the most detailed, and with distance, the chunks get less
and less detailed until they stop appearing.

2.1.1 Midpoint Displacement (fractal terrain)

Early algorithms used a method called midpoint displacement. This technique
is based on surface subdivision. We start with one quad and divide it into four
quads by adding vertices halfway on each edge and one in the middle. The
positions of these vertices are calculated as the average of the neighboring
vertices plus a random offset. Using this method, an inĄnitely detailed
landscape can be created. However, one cannot inĆuence where features of
the terrain are generated.[2] The subdivision process can be seen in Figure
2.1.

3

2. Related Work.....................................

Figure 2.1: Midpoint Displacement algorithm[8].

Figure 2.2: Algorithm described by subsection 2.1.3. The Ąrst picture shows
the base setup with lattice vectors and the point at which we want to generate
the height. The second picture shows the pairs of vectors that are used for the
dot product.

2.1.2 Random Terrain

One straightforward method is generating verticesŠ heights randomly [7]. This,
however, does not create a believable terrain. It creates random spikes and
pits that do not correlate with each other, and even if we interpolate the
points, the result is not convincing. However, noise generators are based on
this method.

2.1.3 Noise Generators

Noise generators take the approach of generating random numbers, and they
use them more coherently. Perlin noise, created by Ken Perlin in 1982 for
the movie Tron, is one of the most used noise generators. It uses random
numbers to generate a lattice of gradient vectors instead of heights.

A height of a point is calculated by the dot product between a vector
pointing from the current location to the lattice point and the gradient vector

4

.................................. 2.1. Terrain Generation

Figure 2.3: Terrain generated with my tool using one octave versus seven octaves.

of the lattice point. We repeat the process for each of the four closest lattice
points. Now we have four height values. We interpolate these values based
on the distance from the current point to their respective lattice point. This
gives us an extra level of smoothness. The process is visualized in Figure 2.2.

One level (octave) of noise creates a terrain that is almost too smooth. This
problem can be Ąxed by adding multiple octaves of noise with diminishing
scale and inĆuence [7]. An example using my tool can be seen in Figure 2.3.

Ken Perlin also created Simplex noise, a faster and better version of Perlin
noise. It is based on simplexes, shapes with the least possible vertices for a
given dimension. Until recently, this method was under a patent [4]. However,
I will not be using Simplex noise because I would have to implement it
myself. This is not the case with Perlin noise since it is part of the standard
mathematical library in Unity.

2.1.4 Physical Processes

Generated landscapes can be further detailed by simulating physical processes
such as hydraulic erosion, fractional Brownian motion, or weathering [2]. I
would like to focus more on hydraulic erosion since it is the easiest one to
implement and, in my opinion, looks the best.

Hydraulic erosion can be simulated as a rain of water droplets, subtracting

5

2. Related Work.....................................

Figure 2.4: The comparison of the effect simulation 70 000 water droplets on a
noise generated terrain from LagueŠs [6] video.

and depositing sediment from the terrain as they travel down the gradient.
Lague [6], in his Youtube video about hydraulic erosion, simulates each droplet
as it travels down the terrain using several attributes.

Using the inertia parameter, he calculates the dropletŠs direction as a mix
of the previous direction and the current gradient. The simulation also works
with the speed of the droplet, which is simulated using gravity and height
change. As the droplet slows down or reaches the maximum carrying capacity,
it deposits the sediment carried gradually.

The amount of sediment subtracted from the terrain is based on how much
the height has changed from the previous step of the droplet. If this were
not the case, the droplet would create impossible scenarios for Ćowing water,
which would result in weird pits and spikes on the terrain. The termination
state for these droplets is reached when they start Ćowing upwards, their
speed reaches zero, or their water level, which slowly evaporates as they travel,
reaches zero.

These simulations tend to be quite computationally demanding. Lague [6]
uses compute shaders which are run in parallel on the graphics card, to speed
up the calculation immensely. This allows him to simulate tens of thousands
of droplets in real-time. I will not be using compute shaders due to the nature
of my solution, where it would be quite difficult.

The result of such a simulation can be seen in Figure 2.4 taken from LagueŠs
[6] video about hydraulic erosion.

2.1.5 Agent based approach

Doran and Parberry [10] propose a quite different approach to landmass
generation. They use agents that have deĄned actions, lifetimes, and param-
eters. The agents traverse the terrain and create its features. The agents

6

.................................. 2.1. Terrain Generation

described in Doran and ParberryŠs paper [10] can perform these tasks, which
are executed in the following order:

. Coastline - A single agent is sent out, which deĄnes the terrainŠs general
shape by raising it. The agent can split into multiple agents, each of
which works on a separate part of the map for better performance.

. Smoothing - After the coastline agents, smoothing agents are sent out to
eliminate rapid elevation changes in the terrain. They move randomly
and change the elevation of points by interpolating with their neighbors.

. Beach - These agents create sandy areas around water bodies by travers-
ing the shoreline. They vary the heights of points by sampling from a
designer-speciĄed range of values. Using this approach, different kinds
of beaches, such as Ćat or bumpy, can be created.

.Mountain - The beach agents keep regions above a certain threshold
untouched. Mountain agents modify these areas. The agents are placed
on random map points and move randomly like the smoothing agents.
Upon encountering a V-shaped wedge, it is elevated to create a ridge.
They also periodically make foothills. After this step, another smoothing
step is used.

. Hill - Hill agents work similarly to Mountain agents but on smaller
altitudes and with smaller ranges of values. They are also not allowed
to create foothills.

. River - This is the last step of generation. Each agent gets assigned two
random points. One on the coastline and one on a mountain ridge. The
agent moves from the shoreline to the mountain ridge guided by the
gradient. Once the mountain ridge is reached, it returns to the coastline
while digging a wedge. The wedge gets wider the closer to the sea the
agent is.

Most of these agents have many parameters and designer-speciĄed ranges
of values to use for more user freedom [7].

This approach is important for my bachelor thesis in the area of generating
rivers, hydraulic erosion, and paths because a conceptually similar agent-based
approach is used.

7

8

Chapter 3

Implementation

I have divided this chapter into sections based on the generated feature and
the component responsible for it. The components generate different terrain
features, which is why they can be skipped or do not have to be used in a
particular order, although a set order is encouraged for best results. The
user needs to generate the terrain Ąrst using the Generate Terrain component
3.1.2. Then the recommended order of generation is water 3.6, hydraulic
erosion 3.5, paths 3.3, and lastly roads 3.4.

3.1 Base Terrain

The terrain is represented as a mesh of evenly spaced vertices that create
faces. This terrain is divided into chunks. This is done so that the shape of
the terrain can be easily controlled. This approach also proves useful due to
UnityŠs limit of 65 535 vertices per mesh.

However, there is one disadvantage to using this chunk-based approach.
On the edges of chunks, the lining vertices are present in both chunks. This
means more data is sent to the graphics card than needed. Also, the normal
vectors of these lining vertices are calculated incorrectly, causing visible seams.
This is due to how normal vectors are calculated. Normal vectors for vertices
are calculated as an average of normal vectors of all the faces the vertex is
present in.

I Ąxed this by not using UnityŠs built-in function to recalculate the normals
of a mesh and implementing my own function. The function temporarily
embalms the mesh in a border layer of vertices that are used to calculate the
normals. The vertices are generated using the functions of the surrounding
chunks. This is needed because of the height-changing textures discussed in the
subsection Texture-based Approach 3.1.1. Figure 3.1 shows a visualization
of the process. This problem was discussed in an episode of Lagues [3]
Youtube series about Landmass generation, and his approach inspired my
implementation.

9

3. Implementation....................................

Figure 3.1: In this Figure, the green triangles and white points represent the
terrain, the purple points are the embalming points used to calculate the normals.
The red triangles are all the triangles whose normals contribute to the normal
vector of the top left point of the terrain.

3.1.1 Texture-based Approach

Since I wanted the different features of the terrain to be easily created, edited,
and deleted, I chose a texture-based approach. For each chunk, every feature
has its texture. The colors in the texture represent the changes to be made
to the terrain at a speciĄc point on the chunk. Each feature uses the three
color channels and one alpha channel differently. An example can be seen in
Figure 3.2.

This makes it very easy to control each terrain feature made by a generator
and even change its inĆuence, which adds an extra level of freedom. Another
advantage is that the terrainŠs level of detail, determined by the number of
vertices, can be changed without losing the generated features. However,
some features are still generated using the current detail, such as hydraulic
erosion, so the user should set the highest detail that will be used in their
application before generating.

The texture-based approach has a few disadvantages. One of them is the
number of textures created for a larger terrain containing a lot of chunks.
These textures, at the high-resolutions, start taking up a lot of storage and
processing power in the drawing phase. I experimented with chunk sizes and
texture resolutions for each generator. I decided that a chunk size of 30 Unity
units, corresponding one to one with real meters, and two resolutions, which
are used based on the generator type, of 128x128 pixels and 256x256 pixels
work well.

All generated textures are stored in the folder "Assets/ChunkTextures/",
where each scene has its folder. There are four more folders for each generated
texture type in these scene folders.

10

.....................................3.1. Base Terrain

Figure 3.2: The left image is a hydraulic erosion texture of a chunk, where gray
means no change in height, darker color means the terrain is subtracted, and
lighter color means the terrain is heightened. The right image is the texture
applied on a chunk.

3.1.2 Generate Terrain Component

The terrain is generated using the Generate Terrain component. The compo-
nent has many parameters that can be changed to generate different terrain.
However, the user can still change these even after generation. Some example
terrain can be seen in the second picture of Figure 2.3 and in Figure 3.3.
All of these settings have a tooltip when the user hovers over them. These
include:

. Seed - A seed used for the random number generation that controls the
offset from the origin of the Perlin noise.

. Parent - GameObject, which will act as a container for the chunk manager,
all the generated chunks, and other generators. A new GameObject
called "Terrain" will be used if none is given.

. Perlin scale - The scale that will be applied to all the levels of Perlin
noise (more details in 3.1.5).

.Amplitude - The amplitude used for the Perlin noise function. This can
be thought of as the maximum height of the terrain.

. Number of Octaves of Perlin noise - Number of Perlin noise octaves that
are used to recursively calculate the height of vertices (more details in
3.1.5).

.Wrapping - Number of vertices per row of a chunk. For example, if the
wrapping is 15, there will be 225 vertices in the chunks.

.Width and Height - The number of rows and columns of chunks that
will be generated.

11

3. Implementation....................................

Figure 3.3: A mountainous terrain generated using my tool with hydraulic
erosion applied.

.Material - The material that will be applied to chunks.

3.1.3 Chunk Manager Component

A chunk manager is created upon terrain generation. In the scene hierarchy,
the chunk manager has all the chunks as children. Its primary purpose is to
control all the chunks and their parameters. Some of these parameters were
discussed in section 3.1, such as the Number of Octaves, Amplitude, Material,
and Wrapping. The new parameters that can be edited in Chunk Manager
include the following:

.Offset from Seed - The seed from 3.1.2 was used as a seed in UnityŠs
random number generator, which calculated this offset that is applied to
the x and y coordinates in Perlin noise calculation.

. Is Hilly - Toggle parameter which switches between two different terrain
types. The difference can be seen in Figure 3.4.

. Lacunarity - Controls the size of pattern gaps. Determines how quickly
each octave increases its frequency [1].

. Persistence - Determines how quickly each successive octaveŠs amplitude
diminishes [1].

. Edit of Octaves - This is a list of 3D vectors. There are as many vectors
as octaves of Perlin noise. The X and Y components are added as offsets
for coordinates used for the Perlin noise calculation of the current octave.
The Z component is used as a scale of the Perlin noise octave.

12

.....................................3.1. Base Terrain

Figure 3.4: The Ąrst image is a terrain with many hills and no Ćat regions. The
second image is a Ćatter terrain with occasional mountains.

3.1.4 Chunk Component

A chunk is a square part of the terrain measuring 30 meters on each side, as
mentioned in the subsection Texture-based Approach 3.1.1. In the inspector
window for this component, there are four buttons. Each of them creates a
chunk in one of the four cardinal directions. This is useful when users need
more chunks for their landscape. These buttons can even be used in multi-
editing (selecting more than one chunk simultaneously). Upon generating a
new chunk this way, the new chunks are automatically selected so the user
can easily continue generating in the same direction.

New water chunks 3.6.1 will also be generated with the normal chunks if
the user has used the water generator component 3.6 and generated water
chunks.

13

3. Implementation....................................
Additionally, each chunk can act as a height effector. These height effectors

have two conĄgurable parameters height and range. As the name suggests,
these chunks offset the height of vertices in a set range by a set height value.
The operation is most potent in the center of the effector chunk and falls off
with distance. This is done by running the Ąnal value through the bicubic
interpolation function f(x)=−2x3 + 3x2, often used to smooth out terrain
changes [7].

3.1.5 Height Calculation

The height of each vertex is calculated by the following process. Firstly,
the coordinates for Perlin noise are calculated. Next, these coordinates are
input into UnityŠs built-in Perlin noise function. Then the resulting number,
ranging between 0 and 1, is multiplied by two and subtracted by one to change
the range of values to -1 and 1. Now if the parameter Is Hilly is toggled off,
the number is run through the MakeCubic() function. Finally, the number
is multiplied by the amplitude and divided by the number 2 or 5, based on
terrain type, to make the height range of the terrain better correspond to the
amplitude parameter. Then the current frequency is multiplied by lacunarity
and the current amplitude by persistence. This is done once per octave of
Perlin noise in use.

Once the height is calculated, an additional height from all the height-
affecting chunks, which are in range, is run through MakeCubic() and added.
Then the height from all textures generated by the different generators is
added. This is done by sampling the texture and using the pixel color based on
parameters and rules for a given generator. A 3x3 block of pixels are sampled
and averaged for road and erosion textures achieving better smoothness.
These textures also use cubic ease in and out function [17].

Here is an excerpt from the height calculation function:

p r i va t e f l o a t GetHeightOfPoint (f l o a t x , f l o a t z)
{

Vector3 chunkPos it ion = transform . p o s i t i o n ;
f l o a t per l inX = point . x + chunkPos it ion . x

+ _offsetFromSeed ;
f l o a t pe r l i nZ = point . z + chunkPos it ion . z

+ _offsetFromSeed ;

f l o a t he ight = 0 ;

f l o a t tempFrequency = 1 ;
f l o a t tempAmplitude = _amplitude ;

// Recurs ive d e t a i l
f o r (i n t i = 0 ; i < _numberOfOctaves ; i++)
{

// Get the r i g h t e d i t o f octave

14

................................. 3.2. Material and Shaders

. . .

i f (_ i s H i l l y)
{

he ight +=
(Mathf . Pe r l i nNo i s e (
tempX + editOfOctave . x ,
tempZ + editOfOctave . y)
∗ 2 − 1) ∗ tempAmplitude / 2 ;

}
e l s e
{

he ight += MakeCubic (
Mathf . Pe r l i nNo i s e (
tempX + editOfOctave . x ,
tempZ + editOfOctave . y)
∗ 2 − 1) ∗ tempAmplitude / 5 ;

}

tempAmplitude ∗= _per s i s t ence ;
tempFrequency ∗= _lacunar i ty ;

}

// Height add i t i on from t e x t u r e s
. . .

}

Where _amplitude, _persistance, _lacunarity, _editOfOctave, and _isHilly
are the parameters set in chunk manager 3.1.3. The function MakeCubic() is
a function for bicubic interpolation described in 3.1.4.

3.2 Material and Shaders

I have created a special material and a shader that colors the terrain based
on the steepness, altitude, and features generated. All textures used in the
images in this bachelor thesis were generated using a web-hosted artiĄcial
intelligence generator [16].

3.2.1 Textures and Color

Users can adjust three steepness textures with parameters that decide the
thresholds and the amount of blending between them. There are two altitude-
based textures for terrain above and below two settable thresholds. These
can be used for snow on mountaintops and sand in underwater terrain. Users
can also select the textures for the generated features, such as paths, roads,
etc. Each texture mentioned has a settable scale.

15

3. Implementation....................................
All of the textures are used with Triplanar mapping [22]. In normal

texturing, the texture is projected onto the terrain from one direction, usually
downwards. This causes the textures to stretch on steep surfaces. Triplanar
mapping projects the texture from all three main directions, the X, Y, and Z
axis. Then all three projected textures are weighed using the direction of the
normal vector. This process not only removes the stretching but also makes
the textures more variable, causing patterns to be less visible.

3.2.2 Grass Shader

The last feature I implemented in the shader was grass rendering. There are
a lot of techniques used for grass rendering. Several of them were described
in a video by Daniel Ilett [13].

Methods

One of them is billboarding, where instead of the grass having a complex
mesh, it is represented by two or more intersecting quads with a clump of
grass texture. This method is not particularly performance-heavy but does
not generate convincing results [13].

Another method is the use of compute shaders and procedural rendering.
The compute shader generates transform matrices containing the grass blade
meshesŠ positions and rotations. Then only a single grass blade mesh is sent
to the GPU, and using a special shader, the grass blade is rendered many
times using all the transform matrices. This method can render many grass
blades very efficiently [13].

The last interesting method I will mention, and the one I chose, is using
a tessellation and geometry shader. This method uses the geometry of the
terrain and adds a triangle, in this case representing grass blades, above each
face. To control the amount of grass, even if the terrain does not have many
vertices, tessellation is used. This method is closely detailed in the section
below.

Implementation

I used RoystanŠs [11] article, which contains an excessive tutorial on imple-
menting a grass shader using this method. However, I still needed to use
my old shader for drawing the terrain. Luckily, shaders in Unity can have
multiple passes. So the shader does a Ąrst pass where the terrain is rendered
and colored based on principles mentioned in the subsection Texture and
Color 3.2.1. Then another pass using a modiĄed implementation of RoystanŠs
[11] grass shader is done, which renders the grass blades.

The grass shader works as follows. After the Vertex shader, the vertices
and their properties are passed to the Hull shader. Its job is to prepare all
the data needed for the tessellation stage and pass it. Next, the tessellation
stage happens in the Domain shader, for which we need to specify how much
each triangle should be split using Tessellation factors [14]. Once this division

16

................................. 3.2. Material and Shaders

Figure 3.5: ModiĄed visualization of the rendering pipeline used in modern
applications with color-distinguished stages based on programmability.[12]

Figure 3.6: Image showing the grass shader in action.

is done, the Geometry shader is run on each triangle. This stage creates
one triangle representing a single grass blade. It has random height, width,
bend, and rotation on the Y-axis. An extra bend from a wind texture is
added, which changes with time, giving the grass believable animation. In
the last stage of the grass shader, the grass blades are colored and drawn to
the screen. The order of the rendering pipeline can be seen in Figure 3.5

While creating the shader, I used the Hull and Domain shaders implemented
by Jasper Flick [14] in his article about Tessellation. I also did not make it
possible to have more triangles per grass blade as it was not as important
to this bachelor thesis, and I was already satisĄed with the result. The
tessellation of the grass is controlled by the grass texture, meaning it does
not generate on steep hills. While on the edges between the grass and dirt
texture, the grass blades become less dense and smaller in size. For the
wind displacement texture, I used the water distortion texture provided by
Roystan [11] in his tutorial. The grass is very customizable and includes
many parameters to help with performance and general look, such as:

. Use Grass - Toggle to turn on or off the grass rendering.

17

3. Implementation....................................
.Grass Density - The user can change how much the triangles tessellate,

thus controlling the performance impact.

.Minimal Grass Density - The smallest amount of tessellation allowed. It
is used on the edges of grass textures and in reduced tessellation at a
distance, described in the parameters below.

. Cull At Maximum Distance - Controls if grass should be culled at a
maximum distance, a sum of High Detail Distance and Detail Interpolate
Distance.

. High Detail Distance - Distance from the camera to which the tessellation
set by Grass Density will be used before interpolating to Minimal Grass
Density.

. Detail Interpolate Distance - The distance from the edge of High Detail
Distance where the tessellation will be gradually interpolated from Grass
Density to Minimal Grass Density.

. Blade Bottom Color - The color applied to the bottom two vertices of
each grass blade.

. Blade Top Color - The color applied to the top vertex of each grass
blade.

. Blade Width - The distance between the bottom two vertices of each
grass blade.

. Random Offset of Width - Sets to maximum width by which a blade can
be smaller or larger than the default Blade Width. The offset in width
of each grass blade is randomly [15] generated in the shader based on
world position. This makes the grass look less uniform.

. Blade Height - The distance from the ground to the top vertex of each
grass blade.

. Random Offset of Height - Sets to maximum height by which a blade
larger than the default Blade Height. The offset in the height of each
grass blade is randomly [15] generated in the shader based on the world
position. This also makes the grass look less uniform.

. Blade Bend Amount - Controls each grass bladeŠs maximum default for-
ward bend amount. The actual amount for each grass blade is randomly
[15] generated in the shader.

.Wind Map (RG) - A texture whose red and green channels will be used
as the rotation amount in the X-axis and Z-axis for the top vertex of each
grass blade. The texture moves with time to simulate wind movement.

.Wind Scale X-axis - The speed of scrolling through the texture on the
X-axis.

18

...............................3.3. Generate Path Component

Figure 3.7: A control points of a path generated by the combined efforts of the
global and local agent.

.Wind Scale Z-axis - The speed of scrolling through the texture on the
Z-axis.

.Wind Power - Controls the maximum amount each grass blade can bend
from the wind.

3.3 Generate Path Component

This component is created upon the initial terrain generation by the Generate
Terrain Component. It is responsible for human-made path generation. These
paths can be made winding, and they can shape the landscape. The texture
which will be used for the path can be set in the material of the terrain 3.2.1.

The component is split into three parts. The Ąrst one is the approximation
of the path using control points by manual point addition and path-Ąnding.
The second one is the generation of textures, which offsets the terrain. The
last one is the option to generate random paths on the terrain.

3.3.1 Path Control Points

The main idea is to create an approximation of the path using control points.
These control points can be manually added by toggling the button mentioned
below and clicking on the terrain. These points are visually represented as
small red spheres connected by lines. After adding at least two points, the
user can send an agent to achieve a good density of control points.

The agent consists of two path-Ąnding agents working together to connect
the path. One is a global agent that uses the Unity NavMesh System, which
generates the shortest path using control points. However, the density of the
created control points is low, and the distances are usually larger than the

19

3. Implementation....................................
Travel Distance parameter. The other is a local agent that I have implemented,
which Ąlls the gaps between the control points left by the global agent. The
result of the global agent can be seen in Figure 3.8, the result of the local
agent in Figure 3.9, and path-Ąnding using both agents can be seen in Figure
3.7.

This component has several parameters and buttons:

. "Start Manually Adding Points" button - When active, all mouse clicks on
the terrain call a raycast, and a control point is placed on the intersection
with the terrain.

. Control Points - An array of points used as control points for the curve
of a path. They can all be edited in the inspector window.

. "Reset points" button - Deletes all points from the Control Points array.

. "Reset except 1st and last" button - Deletes all but the Ąrst and last
point from the Control Points array.

. Show Control Points - A toggle that changes the visibility of the control
points.

.Travel Distance - How far apart the control points should be. Used by
the local path-Ąnding agent as the distance between each step.

. "Send Agent To Generate Control Points" button - Connects the manually
added control points using the global and local agent.

Global Path-Ąnding Agent

The global path-Ąnding agent works similarly to humans with an aerial view
of the terrain. It always Ąnds at least a partial path to the goal. The paths
created are straightforward and the shortest possible while abiding by set
constraints.

My Ąrst idea of how to implement this kind of agent was to create my own
A* algorithm. This proved quite tricky, especially when generating my own
graph. So I tried a different approach using UnityŠs built-in NavMesh system.
A NavMesh is a mesh generated by Unity to approximate walkable areas
in an environment for path Ąnding and AI-controlled navigation (NavMesh
agent) [5]. This also proved difficult because you cannot control the NavMesh
system using scripts. I had to add an official experimental Unity package
called "NavMesh Building Components".

Using this package, I was able to generate a NavMesh using a script.
However, I was still unable to control the parameters of the NavMesh agent
using a script due to problems with the package. I solved this problem by
attaching a NavMeshSurface component to the GameObject, where the user
can change the parameters of agents, and by displaying a warning in the
inspector that explains the situation.

20

...............................3.3. Generate Path Component

Figure 3.8: A straightforward path generated using global path-Ąnding with a
NavMesh (turquoise areas). Additionally, for better visibility, the corner points
have been connected by more points using linear interpolation.

The NavMesh agent has several parameters that inĆuence the generation
of the whole NavMesh. The shape of the agent is a cylinder, and many of
these parameters are related to it. The parameters are:

. Radius - The radius of the cylinder that represents the agent.

. Height - The height of the cylinder that represents the agent.

. Step Height - The maximum height of a step that the agent can take
(does not inĆuence the result in my use case).

.Max Slope - Controls the maximum steepness the agent can walk on.

The path is created by generating a NavMesh for the current terrain conĄg-
uration. Then a path is calculated using NavMeshSurfaceŠs CalculatePath()
function, which represents the path as the starting point, all the corner points,
and the target point. Corner points are points on the edges of the NavMesh,
which the agent needs to go around to stay inside the NavMesh. The next
step is to add the corner points to the control points array. An example of a

21

3. Implementation....................................
path generated using only global path-Ąnding with NavMesh can be seen in
Figure 3.8.

Local Path-Ąnding Agent

The local path-Ąnding agent works similarly to humans without a map of the
terrain. It is not as reliable as the Global path-Ąnding agent. Sometimes it
can get stuck circling around the goal or not being able to Ąnd a valid path.
However, in most cases, it helps to create more natural paths.

The agent starts at the Ąrst control point and searches for the next one. At
every search step, the agent turns 90 degrees left and samples a point Travel
distance away in front of it. This sampling is done via raycasting several
meters above the terrain in the downward direction. The process produces a
single point, which is evaluated by the following reward function (a smaller
value is better):

value = steepness + slope + differenceToLastDirection

+directionToGoal/distanceToGoal

Here is a quick explanation of all the parts of the value:

. Steepness - How steep the terrain is in the direction of the sampled point.
It is calculated using the difference in the height of the current location
and the sampled point.

. Slope - Steepness of the terrain at the sampled point. Calculated by the
angle difference between the normal vector of the terrain and a vector
pointing upwards.

.Direction To Goal - Angle difference between a vector pointing to the
goal and a vector pointing to the sampled point.

. Difference To Last Direction - Angle difference between a vector pointing
from the last step to the current step and a vector pointing to the sampled
point.

Once the point with the smallest reward value is found, it is added to the
control points list, and the process of searching starts again from this new
point. This is done until the agent reaches the last point.

Connecting the control points using the local path-Ąnding agent has multiple
parameters. These include:

. Number of Steps Until Failing - The maximum number of control points
added between two control points. Used as a terminal state so that the
agent does not get stuck in an inĄnite loop.

.Max Walkable Steepness - The maximum steepness the agent can directly
walk on.

22

...............................3.3. Generate Path Component

Figure 3.9: Two different winding paths generated using local path-Ąnding. The
Ąrst one had default weights. The second one had the Direction To Goal weight
lowered to create a less straightforward path.

23

3. Implementation....................................
.Max Walkable Slope - The maximum steepness of terrain the agent can

walk on without considering the direction.

Furthermore, there are settable weights for all the reward function parts
in the inspector window of the component. In Figure 3.9, there are some
examples of the same conĄguration of control points (Start top right, Goal
bottom left) generated with different weights of these parameters. The paths
were generated on the same terrain using only the local agent to better show
the reward parametersŠ effects.

3.3.2 Path Mesh Alteration

Once the user is satisĄed with the path approximation using control points,
they can generate the path, thus creating the path texture for all affected
chunks.

Before generating, the user should choose the size of the path to generate.
This can be done using two parameters which can be changed between
generating to create differently sized paths. The Ąrst one, Width Of Paths,
controls the threshold from which the path will start blending into the
surrounding terrain. The second one, Path Smooth Width, controls the
distance to which the blending will occur.

Two buttons are located at the bottom of the inspectorŠs section. One is
called "Generate Path", which takes the control points and generates a path
on the terrain between them. The other is called "Reset Path", which resets
all the path textures of the terrain.

During the generation, three rays are cast for each step along the path
approximated by control points. One is in the middle of the path, one on
the left edge of the path, and one on the right edge. This is done to get the
height of the terrain at those points. The height is used to level the terrain,
which makes the paths look more realistic. The result of this leveling can be
seen in Figure 3.10.

The leveling can be controlled by an interactive parameter called Path
Incline Balance. This affects all the paths generated. Another interactive
parameter is Path Y Offset, which controls the pathsŠ height offset.

As mentioned in 3.1.1, the Ąnal texture uses the color channels in speciĄc
ways. The alpha channel is used for the path inĆuence over the terrain. If the
alpha channel is 0, no terrain change is made. If it is 1, the terrain is changed
by Path Y Offset. Lastly, if it is between 0 and 1, the path starts blending
with the surrounding terrain. The color channels are used for leveling the
terrain. Gray color means no change in height, when a darker color is present,
the terrain is carved into, and when a lighter color is present, the terrain is
heightened.

The result of terrain with generated paths can be seen in Figure 3.11.

24

...............................3.3. Generate Path Component

Figure 3.10: The Ąrst picture shows the Path Incline Balance parameter set to
-15. In comparison with the second picture, where it is set to 0.

25

3. Implementation....................................

Figure 3.11: Terrain with generated paths using the Generate Paths Component.

3.3.3 Random Path Generation

This componentŠs third and Ąnal part is the option to generate random
paths. The user can specify the number of paths they want to create, and
the generator tries to generate them. It is done by choosing two random
chunks and two random points in these chunks. With these control points, the
global and local agents are called. They try to connect the points using the
parameters set in the component above. If the agents manage to create a valid
path, it is generated using the parameters from the Path Mesh Alternation
described in section 3.3.2. Depending on the terrain and parameters, this
feature can create anywhere between zero and the speciĄed number of paths.

3.4 Generate Road Component

This component is also generated with the initial generation of terrain using
Generate Terrain Component. It is responsible for generating roads on the
terrain. Roads are generated in a similar way as paths so I will cover this
generator brieĆy. However, roads do not have any agents to connect the
control points. Users can manually add control points to the terrain, set their
desired width, and generate. The texture of the road as well as the color of
the road lines can be set in the material of the terrain 3.2.1.

The component has the same parameters for creating and editing control
points as paths described in section 3.3.1.

During each step of the road generation, a target height is set by interpo-
lating between the heights of the closest two control points. For each texture
pixel, the terrain is sampled using a raycast at the world location of the pixel.
Thanks to this, we know how much the terrain mesh needs to be altered in
this location to achieve a Ćat road. This method is precise and surprisingly

26

......................... 3.5. Generate Hydraulic Erosion Component

Figure 3.12: Terrain with a road generated. The road can heighten the terrain
or even cut through it, as seen on the left side of the image.

not very performance-heavy.
The texture uses the green channel to save the height adjustment, the red

channel to draw road lines, the blue channel to indicate the distance from the
middle of the road, and the alpha channel to smooth the edges of the road,
similar to paths.

For the mesh alteration, users can change the following parameters:

. Generate Road Lines - Toggles if the road to be generated should feature
road lines.

.Width Of Roads - The threshold at which the road generates road lines
and starts to blend with the terrain.

. Road Smooth Width - The distance from road lines, where the road will
be blended with the terrain. A high number is recommended for big
height differences.

. Road Max Y Offset - The maximum height change the road can make
to the terrain. It will be used as the divisor of the height change. This
is done because textures store the color as values between 0 and 1. The
user should set it before road generation and not change it.

Below these parameters, there are two buttons. The Ąrst one, "Generate
Road," uses the control points and draws a road on the corresponding textures.
The second one, "Reset Road," resets all the road textures of all chunks.

An example of a road can be seen in Figure 3.12.

3.5 Generate Hydraulic Erosion Component

This is another component created upon the generation of the terrain. Using
this component, the user is able to deform the landscape using the natural

27

3. Implementation....................................
hydraulic processes of water as detailed in the subsection Physical Processes
2.1.4. The water droplets are placed on the terrain, and in each step, they
slide down toward the most signiĄcant descent. They take some sediment
with them down, displacing the height of vertices. Due to this component
dramatically changing vertex height, it should be used and conĄgured before
generating roads, paths, and rivers.

This component has tools to manually drop water droplets on the terrain
so that the user can test the behavior of the droplets, which can be changed
by the parameters listed below. These include:

. Drop Type - Switches the type of water droplet generation between Grid
and Random. Grid drops the water droplets in a grid pattern with equal
offsets. Random generates the droplet positions randomly in each chunk.

.Maximum Angle - If the angle between the current direction and the
previous is larger than the maximum angle, the droplet is stopped.

. Droplet Lifetime - Maximum number of steps a water droplet can take.

. Inertia Of Droplets - A value from 0 to 1 symbolizing how closely the
direction from the previous step is kept.

. Droplets Per Chunk Row - Determines how many droplets are dropped
on terrain per chunk row. For example, if set to 9, 81 droplets will be
dropped on each chunk.

. Droplets Width Of Effect - Determines how far each droplet inĆuences
the terrain. A default value of 3 or 4 works well.

At the bottom of the component, two buttons are located. One, "Generate
Erosion," starts simulating the water droplets and creates erosion textures.
The other "Reset Erosion" resets all the textures of all chunks.

Once the texture is generated, users can inĆuence the effect of hydraulic
erosion on the terrain using an interactive parameter, Erosion Strength. The
result of hydraulic erosion can be seen in Figure 3.3 or in Figure 3.13

3.5.1 Droplet Simulation

For each droplet, two processes are run. The Ąrst one simulates the dropletsŠ
path down the terrain using the gradient and inertia while calculating the
sediment carried. If the water droplet still has the capacity, the sediment
is increased by a part of the height difference between the current and last
points. If the droplet reaches full capacity, the sediment slowly decreases.
This is also the case if the droplet starts Ćowing upwards in Ćatter regions.
During the dropletŠs descent, its speed, which is decreased with gravity and
drag, is simulated.

The lower the speed, the smaller the capacity, and when it reaches zero,
the droplet stops simulating. The Maximum Angle parameter can be used to
create another terminal state. When the angle between the direction from

28

......................... 3.5. Generate Hydraulic Erosion Component

Figure 3.13: The Ąrst image shows a terrain deformed by my hydraulic erosion
generator, while the second one shows the same terrain without the effect.

the last position to the current position and from the current position to the
next position exceeds this parameter, the droplet is also terminated. This
is done so that the droplet does not circle around the local minima of the
terrain. This process produces an array of sample points. Each point has its
position and the change in sediment that occurred since the last point.

3.5.2 Texture Generation

The points generated by the Ąrst process are used by the second process
for drawing the hydraulic erosion texture for all affected chunks. The alpha
channel once again marks the areas where the erosion is active. All three color
channels adjust the terrain height in a similar way to paths. The algorithm
interpolates from one point to another and draws in the chunk textures based
on the sediment change in an area deĄned by the Droplets Width Of Effect

29

3. Implementation....................................
parameter. An example of a hydraulic erosion texture can be seen in Figure
3.2.

3.6 Generate Water Component

This component, generated with the initial generation of the terrain, is
responsible for creating meshes representing water. I chose the approach of
generating individual chunks for water because I wanted the terrain to feature
underwater areas. The component can modify the water chunksŠ parameters,
create rivers, and carve terrain. There are a few parameters that can be
changed even after generating. Those are:

.Mesh Wrapping - The number of vertices per water chunk row. Same as
Wrapping in Chunk Manager in 3.1.3.

.Material - A Unity material that will be applied to all generated water
chunks.

.Water Level - The height at which the water level will be located.

Below these parameters, there are three buttons. The Ąrst one, "Generate
Water Chunks," generates a water chunk for each terrain chunk. The water
chunks are set as children of their corresponding terrain chunks in the hierarchy.
The second one, "Reset Water Data," resets all generated water textures,
changing the water and terrain chunks. The Ąnal one, "Delete Water Chunks,"
deletes all generated water chunks from the scene.

3.6.1 Water Chunks

The water chunks are similar to normal terrain chunks except for the height
calculation. The height of each vertex is calculated as a sum of the water
level height and the offset from the water texture generated by rivers.

3.6.2 River Generation

The river shape can be approximated by manually adding points on the
terrain along the whole river or using a river agent, which connects the start
and end points. The generated rivers have high levels of freedom, making
generating artifacts possible. The user should always check the whole river
after generation and regenerate the river in case of unwanted artifacts. Before
generating rivers, the scene should already have water chunks generated.

Control Points

As written above, control points of the river can be placed manually or by
the river agent. When using the agent, the user can specify a few parameters.

.Travel Distance - Length of each step of the agent in meters.

30

.............................. 3.6. Generate Water Component

.Max Steps Of Agent - The maximum number of steps the agent can take
between manually added control points.

This agent combines the local path-Ąnding agent and hydraulic erosion
droplet simulation. It connects two control points and uses the movement of
water droplets to create convincing river shapes. Like the local agent, it looks
around 180 degrees and Ąnds the best next step. The same formula evaluates
the candidate locations as the local agent. However, the parts of the value
whose weights can be modiĄed in the inspector differ. The parts are:

. Direction To Target - Controls how much the candidateŠs point direction
is close to the direction of the target.

. Height Difference - Controls how much the agent prefers bigger height
changes.

. Gradient Direction - Controls how much the agent goes along the terrain
gradient.

. Same Direction - Same parameter as in the local path-Ąnding agent.
Controls how the agent prefers going in the same direction as the last
step.

I recommend not setting the Direction To Target lower than Gradient
Direction because the agent can get stuck. The agent can be sent out by
pressing the "Connect River" button. A result connecting the control points
can be seen in Figure 3.14

Mesh Alteration

The same approach as in roads, hydraulic erosion, and paths is taken. A new
per-chunk texture is applied upon generating a river or carving the terrain.
However, this texture is also applied to the water chunks. Similar to roads, a
Water Max Y Offset needs to be set.

The Ąrst tool in the component is terrain carving. Before carving, the
user can set the beginning and end widths, which inĆuence the width of the
mesh alteration and is interpolated between the Ąrst and last point. Another
settable parameter is the Carve Depth. This number determines the Ąnal
height of the terrain, which is calculated as a sum of the water level and the
Carve Depth.

The second tool is river generation. The river lowers the terrain vertices
and heightens the water chunk vertices in the same area. The user can set
several parameters that are doubled. One for the start of the river and one
for the end. These are:

. River Width - Controls the area of effect of the river generation.

. River Depth - Controls how deep the river will cut into the terrain.

31

3. Implementation....................................
.Water Level - Controls the height of the water from the river bed.

If the river reaches the water level, the parameter Under Waterlevel Depth
is used to determine the height of the terrain the same way as in terrain
carving.

The texture channels are used as follows. The terrain chunks use the red
channel, where a value of 0.5 means no change, a higher value heightens the
terrain, and a lower value does the opposite. The green channel is used to
offset the water chunks, where a value of 0 means no change. Higher values
offset the height of vertices by multiplying the value with Water Max Y Offset.
The alpha channel is once again used to mark the areas where the effect of
this component is active.

Users can expand the base water level and create mountain rivers using
these two simple tools. An example can be seen in Figure 3.15. Suppose the
user is not satisĄed with the generated result. In that case, they can use a
button called "Reset Mesh Alternation Using Control Points", which resets
the water generation using the control points in a radius set by River Width.

32

.............................. 3.6. Generate Water Component

Figure 3.14: The Ąrst image shows the river agentŠs path of control points,
which follows the gradient more closely than the one in the second image.

33

3. Implementation....................................

Figure 3.15: The Ąrst image shows a terrain with only water chunks generated.
The second image shows the same terrain shaped by the carving and river tools.

34

Chapter 4

Performance

This chapter contains information about the performance of the tool I have
created. The measured times mentioned in this chapter were all calculated
as the average of 10 measurements and considered only the raw calculation
time of the functions I implemented. The real-time it takes to make these
changes to the terrain is longer and not reliably measurable due to UnityŠs
scene update and texture post-processing functions. The times were tested
on a computer with an Intel(R) Core(TM) i5-8400 CPU, 16 GB of RAM, and
NVIDIA GeForce RTX 3060 GPU.

4.1 Base Terrain

The generation of the terrain is pretty optimized. Changing parameters
for highly detailed meshes is slow and could be made faster by optimizing
the height-calculation function or running it on the GPU. That is why
changing the parameters using a low-detailed terrain version is recommended.
I measured these times using 100 chunks, which all had the number of octaves
set to 6. Using more octaves does not have much inĆuence over the detail of
the terrain, and using fewer has only a small inĆuence on the performance.
All the measured times can be seen in Table 4.1 and in Figure 4.1.

Wrapping Vertices Generation Time [ms] Update Time [ms]
11 12 100 375 172
25 62 500 797 607
51 260 100 2 191 2 027
75 562 500 4 255 4 107
101 1 020 100 7 269 7 057

Table 4.1: A table showing the time it takes to create and edit a terrain with
100 chunks and 6 octaves of Perlin noise.

35

4. Performance

Figure 4.1: Graph showing the generation and parameter change times of the
base terrain from Table 4.1.

4.2 Generate Path Component

The connection of paths is fast. I tried measuring the time using different
terrain and parameters. However, it was always around 200 milliseconds,
which is why I did not put it in a table. The global agentŠs generation of a
NavMesh takes up most of the connecting time. This could only be optimized
if I implemented my own global path-Ąnding and did not use the Unity
NavMesh system. The time it takes to generate paths of different lengths
and the time it takes to generate random paths, which can differ based on
the success rate, can be seen in Table 4.2.

Path Length [m] Generate Time [ms]
50 115
150 235

Number of Random Paths Generate Time [ms]
5 528
10 989

Table 4.2: A table showing the time it takes to generate a path.

4.3 Generate Road Component

The road generation is good from the performance side. The roads do not
feature any agent, so the connection time of control points could not be
measured. The process that takes most of the generation time is drawing the
textures. It could be further optimized by not setting each pixel of the texture
separately using the Texture2D componentŠs function SetPixel(). However, I

36

......................... 4.4. Generate Hydraulic Erosion Component

could make it work in time for the submission of the thesis. The measured
times can be found in Table 4.3 and in Figure 4.2.

Road Length [m] Total Width [m] Generate Time [ms]
50 8 990
50 16 2 764
100 8 1 585
100 16 5 149

Table 4.3: A table showing the time it takes to generate roads based on their
length and width.

Figure 4.2: Graph showing the generation times of roads from Table 4.3.

4.4 Generate Hydraulic Erosion Component

The generation of hydraulic erosion was tested on a terrain consisting of 25
chunks. The droplets had maximum steps set to 100 and the drawing width
to 3 meters. The overall performance of the generation is not good. The Ąrst
part, which is the simulation of the droplet paths, is fairly fast and can be
tested in real-time using manual droplets. However, the second part, texture
drawing, could be optimized. It suffers the same problem as roads. The
measured generation times can be found in Table 4.4 and in Figure 4.3.

Droplets per Chunk Generate Time [ms]
81 7 938
169 15 384
225 20 278

Table 4.4: A table showing the time it takes to generate hydraulic erosion based
on the number of droplets.

37

4. Performance

Figure 4.3: Graph showing the generation times of hydraulic erosion from Table
4.4.

4.5 Generate Water Component

This component has several measurable parts. The Ąrst one, water chunk
generation and editing of their parameters is fast. It was tested on a terrain
consisting of 100 chunks. An optimization would be available the same way
as normal terrain chunks, by calculating the height on the GPU or using
multithreading. The second one, river generation, and terrain carving, are
a bit slower but still performant. The times for terrain carving and river
generation are the same since the most time-consuming part, texture drawing,
is done the same way in both of them. This can be optimized using the same
method as mentioned in previous sections. All the measured times for water
chunk generation and editing can be found in Table 4.5 and in Figure 4.4.
The times for river generation are in Table 4.6 and Figure 4.5.

Wrapping Generate Time [ms] Parameter Change Time [ms]
31 239 1
61 690 52
91 1 409 118
121 2 449 211

Table 4.5: A table showing the time it takes to generate water chunks and
change their parameters based on the wrapping of the water chunks.

38

.............................. 4.5. Generate Water Component

Figure 4.4: Graph showing the generation and parameter change times from
Table 4.5.

River Length [m] Generate Time [ms]
50 1 453
100 1 751
150 2 073

Table 4.6: A table showing the time it takes to generate rivers on the terrain or
carve the terrain.

Figure 4.5: Graph showing the generation times of rivers from Table 4.6.

39

4. Performance

4.6 Discussion

Many areas could be further optimized. However, that would require rewriting
a lot of the code. I could not do that due to time constraints. The main area
that could be optimized is the texture drawing for each generator. Another
optimization would be to calculate the heights of vertices on the GPU. Right
now, the tool is not well suited for large landscapes. Considering this, the
tool can still be used even on slower computers if the user works with a less
detailed terrain in the editing phase.

40

Chapter 5

Photo Recreation

Three real-life photos need to be recreated using the tool I implemented as
part of the bachelor thesis assignment. While photo recreation is not the goal
of the tool, it is used here to demonstrate its capabilities. These photos were
taken from the Pexels website [18]. I tried to choose photos of landscapes best
suited for my tool and its features. However, the tool is not properly suited
for photo recreation and lacks important features such as the generation of
rocks, trees, etc. It would also be beneĄcial for photo recreation to have more
freedom in terrain editing. However, the results are satisfactory.

The recreation process was as follows. First, a general terrain was created
using Generate Terrain component. Then the camera was placed and rotated
as in the photo. The Perlin noise of the terrain was set low to make only the
small details visible. Then the general shape of the terrain was created by
height-effecting chunks. Next, water chunks were generated, and their height
was set. After that, the rest of the generators, hydraulic erosion, roads, paths,
and rivers, were used to make the features of the terrain.

All of the generated landscapes with their real-life counterparts can be seen
in Figure 5.1, Figure 5.2, and Figure 5.3.

41

5. Photo Recreation

Figure 5.1: The Ąrst image shows a real-life photo [19]. The second image shows
the landscape from the Ąrst picture recreated using my tool.

42

................................... 5. Photo Recreation

Figure 5.2: The Ąrst image shows a real-life photo [20]. The second image shows
the landscape from the Ąrst picture recreated using my tool.

43

5. Photo Recreation

Figure 5.3: The Ąrst image shows a real-life photo [21]. The second image shows
the landscape from the Ąrst picture recreated using my tool.

44

Chapter 6

Conclusion

There are many different methods for procedurally generating terrain, which
differ in the generated landscapeŠs believability. To produce a believable
terrain, multiple approaches ought to be used. One of the most prevalent
methods is noise generation, such as Perlin or Simplex noise. Multiple octaves
of these noises are combined with diminishing scale and amplitude to create
the terrainŠs general shape as well as small bumps and hills. The Ąnal
landscape is then deformed by physical processes such as hydraulic erosion
or agent-based approaches for creating speciĄc features. Terrains created
by this process can look very realistic and natural. However, the amount of
control the user has over the features of the landscape is very limited and
not intuitive.

My tool implements this terrain generation method chunk-like, aiming
to give the user more control. This is done by separating the features into
independent generators with many parameters, where each feature can be
easily added, altered, or deleted. This is possible thanks to a texture-based
approach, where each chunk has a texture for each generatable feature.
This texture dictates the height changes for all vertices. Additionally, most
generators give users even more freedom by letting them decide where the
feature will be generated, using easily-usable control points.

In base terrain generation using Perlin noise, the user can change the
number of octaves of Perlin noise with changeable scale and offset, lacunarity,
persistence, the amplitude of the landscape, the number of points in a line, etc.
More chunks can be generated at any time, may the user need it. Furthermore,
height-effector chunks can also inĆuence the terrain to create large mountains
or low valleys.

The terrain uses a complex shader to color the terrain based on steepness,
altitude, and the textures created by the generators. These textures are
interpolated on the edges, which the user can control. This shader also
includes the generation of grass, which moves with the wind.

The tool implements a path generator. Using this, the user can create
winding, rule-obeying, human-made paths with a high degree of freedom.
Two agents are deployed to help connect the paths and enforce the given rules.
One uses global path-Ąnding to create the shortest path from the start to the
goal. The other one connects these spread-out points using local path-Ąnding.

45

6. Conclusion......................................
The resulting paths can Ćatten the terrain to create the effect of humans
using them.

Another generatable feature is roads. These work similarly to paths, except
they follow the control points instead of the terrain. The user can easily
modify the coordinates of the control points to make the roads carve into the
terrain and even create causeways. It is possible to generate road lines with
a deĄned color.

A big part of this thesis was explaining physical processes and how they
create a more believable terrain. That is why I implemented a basic hydraulic
erosion generator. It creates water droplets that traverse the terrain along
its gradient. As they travel, they take a part of the terrain with them and
deposit it in the lower regions. The quality of my implementation is not great,
but it adds a nice visual effect.

The users can also generate water, represented as a separate mesh similar
to normal terrain chunks. The detail, material, and height of the water are
settable. This is done using the water generator, which features two tools.
One is responsible for terrain carving, which can lower the terrain and enlarge
the water bodies at the water level. The other is the generation of rivers,
which creates downwards-Ćowing water streams using an agent. This agent is
a mix of the local path-Ąnding agent from the path generator and the droplet
simulation from the hydraulic erosion generator.

The tool can be used to create natural landscapes for video games. Photo
recreation is also possible with my tool but difficult. Many areas could be
improved upon, but all in all, it is a reliable and easy-to-use tool for landscape
generation.

46

Appendix A

Electronic appendix content

The appendix contains the Unity project in the "src/" folder with all the
necessary Ąles to open the project. Alternatively, the project can be found on
my GitLab [23]. The link for the GitLab is in the Ąle "README.txt" alongside
some basic information about the project. The folder "latex/" contains the
latex project with the written document, and the folder "images/" contains
all the images used in the thesis.

47

48

Bibliography

[1] Jason Bevins. libnoise glossary, https://libnoise.sourceforge.net/glossary/,
2003

[2] Ruben Michaël Smelik and Tim Tutenel and Rafael Bidarra and Bedrich
Benes. A Survey on Procedural Modeling for Virtual Worlds, 2014

[3] Sebastian Lague. Procedural Landmass Generation Youtube Series,
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl
0eBW2EiBtl_sxmDtSgZBxB3, 2016

[4] Petr Lhota. Editor Virtuálních Světů, Bachelor Thesis, 2022

[5] Unity Technologies. Unity Glossary, https://docs.unity3d.com/Manual/Glossary.html,
2023

[6] Sebastian Lague. Coding Adventure: Hydraulic Erosion,
https://www.youtube.com/watch?v=eaXk97ujbPQ, 2019

[7] Shaker, Noor and Togelius, Julian and Nelson, Mark J. Procedural content
generation in games, Springer International Publishing, 2016

[8] lewellen. Algorithms for Procedurally Generated Environments,
https://antimatroid.wordpress.com/tag/midpoint-displacement/, 2015

[9] Wikipedia, Navarras. https://commons.wikimedia.org/wiki/File:Climate
_inĆuence_on_terrestrial_biome.svg, 2017

[10] Jonathon Doran and Ian Parberry. Controlled Procedural Terrain Gen-
eration Using Software Agents, 2010

[11] Roystan. Grass Shader Article, https://roystan.net/articles/grass-
shader/, 2019

[12] Martin Wantke. Flow chart of a 3D graphics rendering pipeline,
https://en.wikipedia.org/wiki/Graphics_pipeline#/media/File:3D-
Pipeline.svg, 2021

[13] Daniel Ilett. Six Grass Rendering Techniques in Unity,
https://www.youtube.com/watch?v=uHDmqfdVkak, 2022

49

https://libnoise.sourceforge.net/glossary/
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl0eBW2EiBtl_sxmDtSgZBxB3
https://www.youtube.com/watch?v=wbpMiKiSKm8&list=PLFt_AvWsXl0eBW2EiBtl_sxmDtSgZBxB3
https://docs.unity3d.com/Manual/Glossary.html
https://www.youtube.com/watch?v=eaXk97ujbPQ
https://antimatroid.wordpress.com/tag/midpoint-displacement/
https://commons.wikimedia.org/wiki/File:Climate_influence_on_terrestrial_biome.svg
https://commons.wikimedia.org/wiki/File:Climate_influence_on_terrestrial_biome.svg
https://roystan.net/articles/grass-shader/
https://roystan.net/articles/grass-shader/
https://en.wikipedia.org/wiki/Graphics_pipeline#/media/File:3D-Pipeline.svg
https://en.wikipedia.org/wiki/Graphics_pipeline#/media/File:3D-Pipeline.svg
https://www.youtube.com/watch?v=uHDmqfdVkak

A. Electronic appendix content
[14] Jasper Flick. Tessellation Subdividing Trian-

gles, https://catlikecoding.com/unity/tutorials/advanced-
rendering/tessellation/, 2017

[15] Tommy Poulin. Shader Rand() Function,
https://forum.unity.com/threads/am-i-over-complicating-this-random-
function.454887/#post-2949326

[16] Polycam. Polycam Material Generator, https://poly.cam/material-
generator., 2022

[17] Andrey Sitnik and Ivan Solovev. Easing Functions Cheat Sheet,
https://easings.net, 2020

[18] Pexels. Free Stock Photos, Royalty Free Stock Images & Copyright Free
Pictures • Pexels, https://www.pexels.com, 2014

[19] Daniel Santos. Photo of Lake and Rocky Mountain Under Cloudy Sky
, https://www.pexels.com/photo/photo-of-lake-and-rocky-mountain-under-
cloudy-sky-4215909/, 2019

[20] Nextvoyage. Green Mountains Under Blue Sky and White Clouds
, https://www.pexels.com/photo/green-mountains-under-blue-sky-and-
white-clouds-4061011/, 2018

[21] Ziauddin Refah. Brown and Green Mountain Range Under Blue
Sky, https://www.pexels.com/photo/brown-and-green-mountain-range-
under-blue-sky-1461380/, 2018

[22] Jasper Flick. Triplanar Mapping, https://catlikecoding.com/unity/tutorials/advanced-
rendering/triplanar-mapping/, 2018

[23] Ondřej Kyzr, GitLab project of this bachelor thesis,
https://gitlab.fel.cvut.cz/kyzrondr/bachelorthesis, 2023

[24] Hello Games, No ManŠs Sky Beyond Development Up-
date, https://www.nomanssky.com/2019/08/beyond-development-
update/?cli_action=1684788247.408, 2019

[25] Mojang Synergies AB, The Offical Minecraft website,
https://www.minecraft.net/en-us, 2023

[26] JoeBroesLL, Image of a sunset over a procedu-
rally generated terrain in the game Cube World,
https://steamcommunity.com/sharedĄles/Ąledetails/?id=1871928236,
2019

50

https://catlikecoding.com/unity/tutorials/advanced-rendering/tessellation/
https://catlikecoding.com/unity/tutorials/advanced-rendering/tessellation/
https://forum.unity.com/threads/am-i-over-complicating-this-random-function.454887/#post-2949326
https://forum.unity.com/threads/am-i-over-complicating-this-random-function.454887/#post-2949326
https://poly.cam/material-generator
https://poly.cam/material-generator
https://easings.net
https://www.pexels.com
https://www.pexels.com/photo/photo-of-lake-and-rocky-mountain-under-cloudy-sky-4215909/
https://www.pexels.com/photo/photo-of-lake-and-rocky-mountain-under-cloudy-sky-4215909/
https://www.pexels.com/photo/green-mountains-under-blue-sky-and-white-clouds-4061011/
https://www.pexels.com/photo/green-mountains-under-blue-sky-and-white-clouds-4061011/
https://www.pexels.com/photo/brown-and-green-mountain-range-under-blue-sky-1461380/
https://www.pexels.com/photo/brown-and-green-mountain-range-under-blue-sky-1461380/
https://catlikecoding.com/unity/tutorials/advanced-rendering/triplanar-mapping/
https://catlikecoding.com/unity/tutorials/advanced-rendering/triplanar-mapping/
https://gitlab.fel.cvut.cz/kyzrondr/bachelorthesis
https://www.nomanssky.com/2019/08/beyond-development-update/?cli_action=1684788247.408
https://www.nomanssky.com/2019/08/beyond-development-update/?cli_action=1684788247.408
https://www.minecraft.net/en-us
https://steamcommunity.com/sharedfiles/filedetails/?id=1871928236

	Introduction
	Idea
	Tools Used

	Related Work
	Terrain Generation
	Midpoint Displacement (fractal terrain)
	Random Terrain
	Noise Generators
	Physical Processes
	Agent based approach

	Implementation
	Base Terrain
	Texture-based Approach
	Generate Terrain Component
	Chunk Manager Component
	Chunk Component
	Height Calculation

	Material and Shaders
	Textures and Color
	Grass Shader

	Generate Path Component
	Path Control Points
	Path Mesh Alteration
	Random Path Generation

	Generate Road Component
	Generate Hydraulic Erosion Component
	Droplet Simulation
	Texture Generation

	Generate Water Component
	Water Chunks
	River Generation

	Performance
	Base Terrain
	Generate Path Component
	Generate Road Component
	Generate Hydraulic Erosion Component
	Generate Water Component
	Discussion

	Photo Recreation
	Conclusion
	Appendix Electronic appendix content
	Bibliography

