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Abstract
In this bachelor thesis, we will focus on
performance optimization in the Unity
Engine. We will look up and document
the commonly used game performance op-
timization techniques and how they are
implemented in the engine. Then we will
test the Visibility Culling and Levels of
detail optimization techniques in differ-
ent game environments to determine how
they impact the performance.
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Abstrakt
V této bakalářské práci se budeme zabývat
výkonnostní optimalizací v Unity Enginu,
podíváme se a zdokumentuje nejčastější
používáné metody, a jak jsou implemento-
vány v enginu. Následně otestujeme účin-
nost optimalizačních metod: Redukování
podle viditelnosti (Occlusion Culling) a
Levels of detail v různých herních pro-
středí, abychom zjistili jejich dopad na
výkon hry.

Klíčová slova: Výkonnostní
optimalizace, Unity Engine, Occlusion
Culling, Levels of Detail, Normalové
mapy, Parallax mapy, Zobrazovací dávky
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Chapter 1
Introduction

A critical aspect of games, and software in general, is their performance,
which can vary depending on many factors, for example, the hardware on
which the software runs, the computational cost or the render difficulty. The
game must run smoothly to ensure a satisfying player experience; in other
words, optimising its performance is fundamental to its success and is an
integral part of game development. Fortunately, most primary optimising
techniques are built in the Unity Engine and applied during build.

1.1 Motivation

I chose this topic because I sometimes had problems with poorly optimised
games. It is also a common discussion topic when new games are released
in horrible states where the optimization is lacking, resulting in atrocious
frame rates, bugs and crashes. And as an aspiring game developer, I wanted
to learn some basics of game optimization for my future projects.

1.2 Thesis Structure

This thesis is divided into two main parts. In the first part, we will document
the most popular optimization techniques: both types of bump maps, draw call
batching, all aspects of visibility culling and the level of detail technique. In
the second part, we will create different scenes and game environments, where
we will look and test how occlusion culling and level of detail optimization
techniques impact the performance of the scenes.

1.3 Related works

Rendering optimization is a popular topic for research in computer graphics.
Their goal is to find methods that help render massive, complex meshes and
environments. Both Visibility culling and level of detail, the techniques we will
focus on and test, are mainly used for this purpose, as the implementation
of their algorithms can be sophisticated but can help achieve a smooth
performance.

1



1. Introduction .....................................
In this thesis, we will use only discrete levels of detail, meaning we have

predefined models that Unity switches when needed. Other types of LOD
are progressive and continuous. The latter is the object of research to find
algorithms that can render real-time continuous levels of detail. For example,
the work of Peter Lindstrom et al. [1].

1.4 Unity Engine

The Unity Engine is a multi-platform game engine developed by Unity Tech-
nologies. The first version was released in 2005. The engine is used for 2D
and 3D game development for all platforms, such as PCs, consoles and mobile
devices.

2



Chapter 2
Documentation

The Unity Engine has several built-in methods to help optimise game software.
During build, Unity performs basic optimization for the target platform. Other
methods need to be enabled or baked in the editor. Each method is well
documented in the Unity manual.

2.1 Profiling

Profiling helps the developer with finding bottlenecks that lower performance.
Which helps furthermore optimise. It is recommended to profile from the
early stages of development to the finished product, as it can help tackle
performance issues much faster.

When profiling in the Unity editor, results are relative but serve as a good
idea of how the game will perform. Profiling on the target platform is more
critical, considering the highest and lowest spec devices.

Instead of assuming performance issues, the Unity Profiler can more ac-
curately detect the source. It also shows what exactly is happening in each
frame.

2.1.1 Profiler

The Unity profiler is instrumentation-based. It profiles code timings explicitly
wrapped in ProfilerMakers and helps detect causes of bottlenecks or freezes
during run-time; see screenshot 2.1.

The profiler can monitor CPU usage, GPU usage, rendering, memory, audio,
video, physics (3D and 2D), network, UI, global illumination and virtual
texturing. These profiler modules can be enabled and disabled as needed,
tracking only those critical for the game. Unnecessary module recording can
impact performance and affect the results.

I will be recording only the CPU and GPU usage and rendering to test
occlusion culling.

In the detailed part of the profiler, the hierarchy, we see the different API
calls in the selected frame. We can also find out if our game is CPU or GPU
bound, which means that one unit needs to wait for the other to continue
execution. If a game is CPU bound, the GPU waits and vice versa. The

3



2. Documentation....................................

Figure 2.1: The Unity profiler window

gfx.waitforpresent API call, when the CPU is ready to render the next frame
but needs to wait for the GPU to present the next frame in the profiler, will
reveal whether the computer is GPU bound.

2.1.2 Frame Time

The frame time is the length of a frame in milliseconds. We look at the CPU
and GPU time to determine the frame time and choose the higher. It is more
accurate than frames per second as it shows how many frames can fit in a
second if each frame were the same length. To determine the frame time from
the FPS, we want to achieve, we divide 1000ms by the target FPS, as shown
in this equation 2.1.

tcpu = 1000ms

FPS
(2.1)
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.................................... 2.2. Normal maps

For the three most popular target FPS counts, the frame times are defined
as follows:

60fps -> 16ms;
30fps -> 32ms;

(VR) 90fps -> 11ms .

With the frame time being more accurate, developers prefer to benchmark it
over the frames per second.

2.2 Normal maps

Normal maps are a type of bump maps used in computer graphics to simulate
light reflections and shading of high-detail geometry on simple meshes. Ren-
dering small details on geometry is very resource costly. We can use normal
maps to simulate these details on a simpler mesh geometry.

Figure 2.2: Screenshot of the
material settings.

These blueish textures store the normal
vectors of a mesh. The RGB values represent
the XYZ coordinates of these normals. To
ensure that all directions can be stored inside
normal maps, each of the coordinates of the
normal vector is added one and divided by
two. For example, a normal vector of (0, 0,
1), the default value on a flat normal map
standing for the Z-axis / up-axis, is stored
as (0.5, 0.5, 1.0).

Generally, normal maps are generated in
3D modelling software from a high-detail
model. To use them in Unity, first, the im-
age’s importer inspector needs to set the
texture type as a normal map. Then the
texture can be added to the normal map slot
of the desired material; see Figure 2.2. We
can see the normal map slot, where is placed
a normal map texture from a terrain layer.
And under it, a height map texture of terrain
brush is placed in the height map slot.

2.3 Parallax maps

Parallax maps, also known as height maps,
are a type of bump map. Working similarly
to normal maps, they are often used together
to create a more realistic look of details on a
flat mesh. The difference is the values these
height maps represent. They are also more

5



2. Documentation....................................
complex and more performance expansive

than normal maps.
These textures shift the visible parts of the surface texture by expanding

the closer side to the camera of the bumps and reducing the sides facing
away, simulating a surface-level occlusion effect of a 3D geometry. The data
is stored in grayscale, where the light areas represent high areas and the dark
areas the low areas of the texture.

Using them in Unity is similar to normal maps with these different settings,
marking the texture source as grayscale. Instead of putting them into the
normal map slot of the material, there added them into the height map slot
just under the previous one.

(a) : Height Map (b) : Normal Map

Figure 2.3: Difference between a Height map and a Normal map of a rocky wall
[6]

2.3.1 Occlusion maps

Occlusion maps are very similar to parallax maps. They serve as a complement
to them, representing the areas, in grayscale, that should receive full indirect
lightning and areas that shouldn’t.

2.4 Draw call batching

Batching is an optimization technique where Unity combines meshes of
GameObjects using the same material to render them in fewer draw calls.
Unity renders the content of each frame by dispatching a draw call to the
graphics API. This process takes time and resources, and sometimes the
preparation for the call is more expensive than the call itself. Render state is
the settings Unity sets on the CPU and GPU, allocating resources for the
next draw call.

Unity has built-in two types of batching: static for GameObjects marked
as static; and dynamic for moving GameObjects. All the rendering pipelines
in Unity support static batching; the High Definition Rendering Pipeline does

6



................................... 2.5. Visibility culling

not support dynamic. Both types batch the same type of renderers, Mesh
renderers with mesh renderers etc. Renderers supported are Mesh Renderers,
Trail Renderers, Line Renderers, Particle Systems, and Sprite Renderers.

2.4.1 Static batching

Unity creates vertex and index buffers for combined meshes transformed into
world space. After which, it proceeds with a series of small draw calls, not
reducing their number but reducing the number of changes of render states
between these draw calls.

Static batching is mainly used with geometry already present in the scene
but can also be prepared for generated meshes during runtime, involving the
StaticBatchingUtility class. The geometry present at build time needs to
meet a list of requirements for the batching to work with.

To use this optimization technique during build time, it must be first
enabled in the project setting of the editor and then also enabled in the static
editor flags in the inspector of the chosen GameObjects to participate in the
batching.

2.4.2 Dynamic batching

Targeted more at old and low-end devices as for the current modern consumer
hardware, this type of batching takes more resources and time than the draw
calls.

Dynamic batching transforms the vertices into the world space of moving
GameObjects on the CPU instead of the GPU. This can have a reverse effect,
so it is essential to profile the application to determine whether this technique
is helpful.

It is also enabled in the project setting of the editor. For dynamic geometry,
such as the particle system, dynamic batching is by default enabled, so Unity
will always batch it.

2.5 Visibility culling

Visibility culling is an optimization technique that saves rendering perfor-
mance. It happens for each camera in the scene, where it renders only what
can be seen. There are two types of visibility culling that Unity uses: one
which doesn’t render GameObjects outside of the view frustum, called frustum
culling, and one which doesn’t render GameObjects that are hidden behind
other objects, called occlusion culling.

2.5.1 Frustum Culling

Frustum Culling is performed automatically on every camera. The culling
is done by layers first, rendering only the GameObjects on the layers the
camera uses, then removing any GameObjects outside the camera frustum.

7



2. Documentation....................................

(a) : Demo 1 (b) : Demo 2

Figure 2.4: Example of Frustum Culling

Unity recommends organizing GameObjects into different Layers. There
is a maximum of 32 layers, each of which can be assigned a value less than
the farClipPlane in the layerCullDistances array. There is also a possibility
to manually set per-layer culling distances using Camera.layerCullDistances,
which allows for culling objects closer to the Camera than the default farClip-
Plane.

2.5.2 Occlusion Culling

(a) : Demo 1 (b) : Demo 2

Figure 2.5: Example of Occlusion Culling

Occlusion culling removes any GameObjects occluded by other GameObject,
such as those that the Camera doesn’t see. Thus lowering the render cost
even more after frustum culling. On the other hand, it is a baked process.

Unity bakes the data during build. This data, which takes some disk space,
and costs CPU time and RAM access, can also be baked manually in the
editor. This way, the developer can control the parameters to ensure the best
performance at a low data size.

Unity uses this data during run time to determine what the Camera sees.
The scene is divided into small cells, and data is generated describing the
geometry within the cell and visibility between adjacent cells.

2.5.3 Occlusion Data

For occlusion culling to work, we need first to bake the data that Unity will
use to calculate what to render and what not. In the baking window, see

8



................................... 2.5. Visibility culling

Figure 2.6: Occlusion Baking window with the three parameters, set at default
values

screenshot 2.6, three different parameters can be set. Each impacts how
fast the data will be baked, how much size the data will take and how the
rendering will be affected.

The first parameter, Smallest Occluder (default set to 5), indicates the size,
in meters, of the smallest GameObject that can occlude other GameObjects.
The smaller the number, the longer the data need to be baked, and the bigger
the data size on the disk will be. On the other hand, fewer objects can be
rendered, as even a tiny object can occlude objects behind it.

The second parameter, Smallest Hole (default set to 0.25), indicates the
diameter, in meters, of the smallest hole through which the Camera can see.

For both of these parameters, in general, for the smallest data file size and
fastest bake times, we need to find the highest number that gives us the best
render and performance result.

The third and last parameter, Backface Threshold (default set to 100), can
be set smaller if we need to reduce the size of the baked data. But it can
lead to visual artefacts. It denotes the limit percentage of backfaces a visible
occluder geometry can have so it is not discarded. The default value of 100
never removes any area.

As the baked data works only in the scene it was baked, we can fine-tune
each parameter in the different scenes such that they run smoothly. A larger
scene would need a higher parameter for the smallest occluder than a smaller
scene. It also varies on the GameObjects present in each scene. This means
each scene needs to have its occlusion culling data.

9



2. Documentation....................................
2.5.4 Occlusion Area and View Volumes

Occlusion Area is a component, generally on an empty GameObject, that
defines View Volumes in a scene. View volumes are cuboids in the scene
representing an area where the Camera will likely be during runtime.

This helps during the baking process of occlusion culling as Unity will
generate more precise data inside these areas and perform higher precision
calculations when the camera is inside these view volumes — saving the need
to have the same precise data in the whole scene, where the camera is less
likely or unlikely.

Unity will generate view volumes during the baking process if no occlusion
areas are defined in the scene. This can lead to unnecessarily large data sizes,
longer baking times and resource-intensive calculations during runtime in
more complex or large scenes.

2.5.5 Static and Dynamic objects

Now that we covered all aspects of visibility culling in Unity let’s look at how
it affects GameObjects in the scene.

Both static a dynamic objects are affected by the culling. But the baking
process of occlusion culling will consider only GameObjects marked as static.
In other words, only static GameObjects can be occluders.

2.6 Levels of detail

Level of detail is a rendering optimization technique that reduces the number
of GPU operations required to render distant meshes. The main idea is to
reduce the number of triangles rendered of a mesh depending on its distance
from the camera. For this, we create from high-detail object copies that have
decreasingly fewer faces, called LOD levels. This type of LOD technique
is called discrete LOD. We then have an ordered sequence of the different
levels with decreasing resolution and accuracy. The corresponding mesh
is selected from the sequence depending on the application’s needs.[2] In
Unity, as the camera moves further away, the high-detail mesh is replaced
by lower-resolution meshes. Thus saving GPU operation and helping the
performance of the scene.

2.6.1 LOD group

To work with LODs in the engine, we must import all the levels either bundled
together within the 3D modelling software or each level as separate models.

In the first case, Unity will automatically recognise it as a group of LODs
and create the required GameObjects and their components. In the other
case, all this configuration needs to be made manually by the user by adding
a GameObject and adding the LOD group component. In both cases, the
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....................................2.6. Levels of detail

(a) : LOD0 (b) : LOD1

(c) : LOD2 (d) : LOD3

Figure 2.7: The 4 Levels of Detail in Blender of the Spawn model used in Demo
4.

user can manually tweak the parameters and configurations of the LOD group
component. See Figure 2.8 for the LOD Group component in the inspector.

Such as the thresholds that determine which LOD model to use. The
thresholds are set as a percentage ratio of the GameObject’s height and
the screen’s height. These percentages should be fine-tuned to minimise
the pop-up effect. The effect is produced when the change of LODs is
visible. For each level, where LOD 0 is the most detailed LOD level, a
box of renderers shows the GameObject holding the Mesh used for that
level of detail. Typically the GameObjects are children of the LOD group
GameObject. Other GameObjects can be added, but Unity will prompt the
user to add it as a child of the LOD group GameObject. Unity supports a
maximum of 8 levels of detail, the first being LOD0. The object is culled after
the camera is too far, and the object takes a tiny percentage of the screen.

In the LOD group component, the user can also select the method of
transitioning between different levels, called crossfading, and customise these
transitions. Crossfading is a technique Unity uses to minimise poping, visible
change in the mesh geometry when switching LODs, by rendering both the
current and next LOD levels simultaneously with weighing similar to blending
and happens inside the transitions zones.

11



2. Documentation....................................

Figure 2.8: Screenshot of the LOD group component used for the Spawn model
from Demo 4
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Chapter 3
Test Demos

In Unity, we created two new 3D projects using the core 3D template and
the 2020.3.41f1 LTS version of the engine. The first project contains the first
demo and its three different large scenes. The second project includes three
different demos, each with one scene of a similar type. Each demo will be
focused on a different game environment to test their interaction of the baked
occlusion culling and the use of levels of detail.

In the first demo, we will study the interaction of the terrain component
with occlusion culling. Will the terrain always be rendered, or will it be
divided into smaller chunks which will be rendered when needed? And is
occlusion culling effective in large open scenes?

The second demo will be more closed and compact to see if the occlusion
culling is necessary for small scenes.

In the third demo, we will create a medium-sized scene that the camera
will not visit in its entirety, which is ideal for testing the use of occlusion
areas.

And finally, the last demo will have a less abstract geometry in the scene
to test the use of occlusion culling and levels of detail.

All the demos were created and sampled on my laptop with these hardware
specifications; see Table 3.1.

Dell G5
CPU Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz
RAM 32,0 GB
OS 64bit
GPU NVIDIA GeForce GTX 1060 with Max-Q Design
VER Direct3D 11.0
VRAM 6043 MB
DRIVER 31.0.15.3161

Table 3.1: Hardware specifications of my Dell G5.
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3. Test Demos .....................................
3.1 Demo 1 - Large terrains and Culling

The first demo will test the interaction of terrain GameObject and Occlusion
Culling.

Each scene has the default setting for the camera component. After entering
the play mode, the Camera will follow a predetermined path. This way, we
can compare the performance from the same sample. The only scene where
the Camera doesn’t follow a path is the second one because of the large size
of the terrain.

3.1.1 Scene 1

This scene will serve as a basic test of how the occlusion data works with
the terrain. The terrain tile size, the camera setting and the parameters for
baking the occlusion data are all set to default values.

(a) : Scene view (b) : Game view

Figure 3.1: Demo 1, Scene 1, screenshots of the scene setup

The terrain is modified to create a valley surrounded by mountains. We
used the tools and assets from Terrain Sample Asset Pack to achieve that.
Inside this valley lies a village created using houses from the House Pack
asset bundle downloaded for free from the Unity asset store. We placed some
destroyed skyscrapers from the Destroyed City asset bundle in three corners
of the mountain range. See Figure 3.1 for an overview of the scene.

As we mentioned before, we baked the data using the default values. During
the baking process, see Figure 3.2, Unity started to create view volumes,
represented as blue wired boxes, from the scene’s origin and covering the
whole scene. This process took 30 minutes to complete and resulted in a
baked data size of 6,5MB.

In Figure 3.2 subfigure b), we can see that the scene was divided into small
cells by the view volumes. Each cell is rendered if the Camera would see
objects in them. The Camera sends rays in the view frustum to calculate
which cell it sees. The terrain is also not rendered in its entirety, only the
visible parts. The objects behave as expected.

3.1.2 Scene 2

The second scene is much larger than the previous one, as the terrain tile
is ten times bigger than the default size. Using the same assets to create a
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.......................... 3.1. Demo 1 - Large terrains and Culling

(a) : Beginning (b) : Mid progress

(c) : Result

Figure 3.2: Demo 1, Scene 1, screenshots of different stages of baking the
occlusion culling data

(a) : Overview of the terrain (b) : View of the valley

(c) : View with the location of the Camera

Figure 3.3: Demo 1, Scene 2, screenshots of the terrain and buildings
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3. Test Demos .....................................
vast valley surrounded by mountains, inside this valley lies several villages
with the same assets and house positioning as the one in the first scene.
Complementing the villages are three cities formed by a grid of destroyed
skyscrapers. See Figure 3.3 for an overview of the scene.

(a) : Overview of the scene with the inspector

(b) : Game view

Figure 3.4: Demo 1, Scene 2, screenshots of the camera setup

The Camera is placed on the outskirts of one of the villages. It is moved
in the air to have a better view. We are using the default setting of the
camera component. The Camera sees some of the houses in the village in the
foreground and the background: destroyed skyscrapers on the left and a hill
in the centre.

In this first version of the scene, on the default setting of the occlusion
parameters, the baking process took more than 11 hours and resulted in
an error. After this, we tried greater numbers for the smallest occluder
parameter, yet even with values like 100, 500, etc..., the baking process took
still too much time and resulted in the same error, as there was not enough
space to calculate and store the data.

After several tries, we concluded this large-scale terrain was too big for my
computer to bake the occlusion data.
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.......................... 3.1. Demo 1 - Large terrains and Culling

3.1.3 Scene 3

I reduced the terrain size in the third scene compared to the terrain tile in
the second scene. This time the terrain tile is only five times bigger than
the default size. We used the Unity tree wizard to mass-place 1000000 trees;
see Figure 3.5. The top image shows the Mass place tree dialogue window
poped-up from the tree settings of the terrain component, and the bottom
image shows the result of mass placing trees. The terrain is more varied,
with several valleys and mountain ranges. But without any other assets.
It is only a varied terrain with a lot of trees. These trees come from the
Conifers[BOTD] asset bundle.

(a) : Mass place trees dialogue window

(b) : Scene view

Figure 3.5: Demo 1, Scene 3, screenshot of tree placing

This scene had similar problems as the second. The terrain was still too
large. Even with the smallest occluder set to 500, the baking process resulted
in an error. The only occluders present in the scene would be the mountain
ranges.
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3. Test Demos .....................................
3.1.4 Results

The terrain tile is divided into small tiles, which are then culled when
necessary. Other GameObjects, like the trees and buildings, behave as
expected. Occlusion culling on large terrains takes too much time to bake,
and the data takes too much place on the disk. As Unity default uses frustum
culling, it is the only effective culling on extensive plains. It also shows that
occlusion culling will be more effective in smaller-scale scenes or with a high
density of occluding objects.

3.2 Demo 2 - Small labyrinth and Culling

Considering the conclusion from the first demo that a more fitting scene
would be a smaller and dense one, we created a labyrinth-like structure of
rooms of different sizes and narrow corridors connecting them for the second
demo. The narrow and short corridors are perfect for testing the occlusion
culling.

The first attempt to create such a scene was using the ProBuilder tool
from the Unity package manager. We made a simple complex with rooms
of different sizes connected by corridors. After completion, we baked the
occlusion using the default values. Upon hitting play when the data was
calculated, nothing was culled, even if it was occluded. This discovery led to
the conclusion that Unity culls whole GameObjects and not only vertices.

On my second attempt, we made small parts of corridors using the
ProBuilder tool. These gave me more freedom and prefabs to assemble
a labyrinth-like two-floored building. At some end, we created unique large
rooms.

The camera travelled through most of the building, starting and ending its
run at the same position and often changing directions and floors to constantly
switching what was culled.

This scene’s small scale will help me study the impact of each parameter
used for occlusion culling baking.

3.2.1 Profiling

In the main thread, we looked for the gfx.waitforpresent API call, and we
found it, which means this demo is GPU bound.

In the table 3.2, we can see the impact of each parameter on the size of the
bake data file. The file size is more significant when the first two parameters
are set to a smaller value. For my scene, the third parameter doesn’t impact
baking or data size. The result of the first two rows can be visualised in 3.6.
The smaller size of the smallest occluder creates smaller view volumes, the
blue wired boxes, resulting in fewer parts of the scene to render.
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.......................... 3.2. Demo 2 - Small labyrinth and Culling

SO SH BFT ODS
5 0.25 100 63.9KB
1 0.25 100 416.7KB SO = Smallest Occluder
1 0.10 100 367.9KB SH = Smallest Hole
5 0.10 100 79.2KB BFT = Backface Threshold
8 0.50 100 16.9KB ODS = Occlusion Data size
9 0.25 100 19.3KB

Table 3.2: Demo 2, Occlusion Baking Parameters. Default values are bolded.

(a) : Baked - ( 5, 0.25, 100) (b) : Runtime

(c) : Baked - ( 1, 0.25, 100) (d) : Runtime

Figure 3.6: Demo 2, Visualization of the Occlusion Parameters

3.2.2 Test 1 - Single frame sampling

I ran the scene with the profiler connected and recorded performance data
for each baked data. We chose to look at the 417th frame of each sample,
writing down the CPU and GPU time of the frame. The frames per second
were calculated by using the equation 3.1 derived from 2.1

FPS = 1000
tcpu[ms] (3.1)

and rounding down the result to a whole number. Results are in the 3.3
table. After occlusion culling, the FPS count increased from 44 to 91 using
the default values. Because the FPS differs for each data, the 417th frame is
different. When the FPS is higher, the frame will come earlier. It also shows
how effective the occlusion culling is with the right parameters, dividing the
frame time by 2. The second conclusion is that smaller values don’t mean
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3. Test Demos .....................................
better results, as the engine needs to calculate the data more often, frequently
changing the rendered game objects. This support the hint given by Unity
in its documentation to find the highest numbers for these parameters that
achieve the best performance results.

SO SH DS [KB] CPU [ms] GPU [ms] FPS
- - - 22.25 11.68 44
5 0.25 63.8 10.93 6.96 91
1 0.25 416.7 14.84 11.57 67
1 0.10 367.9 13.51 9.65 74

SO = Smallest Occluder, SH = Smallest Hole, DS = Data Size

Table 3.3: Demo 2, Test 1, Occlusion and Profiler Statistics - 417th frame

3.2.3 Test 2 - Single location sampling

Our second approach was to choose a location on the Camera’s path, where
a script marks the frame number, which we then analysed in the profiler.
This way, we compared stats of a different frame but at a similar place. The
number of frames, with the FPS, shows how, when optimising, more frames
are rendered in a defined time.

In the table 3.4, we have written more statistics; the occlusion parameters
and the size of the data taken on the disk; the frame that we analysed; the
time that both processing units take to process their commands in the frame;
the calculated FPS from the frame time; and from the rendering module the
number of vertices rendered in the frame and the number of draw calls.

SO SH DS Frame CPU GPU FPS VC DC
[KB] [ms] [ms]

- - - 818 19.25 19.12 51 18.3k 14
7 0.25 29.6 826 19.58 19.26 51 18.3k 14
5 0.25 63.8 834 19.43 19.64 50 18.3k 14
3 0.25 123.4 841 20.38 19.32 49 18.3k 14
1 0.25 416.7 835 31.53 21.62 31 18.3k 14
1 0.10 367.9 841 19.41 19.15 51 18.3k 14
3 0.50 122.0 815 19.96 19.22 50 18.3k 14
5 0.50 47.6 840 19.31 19.15 51 18.3k 14
5 1.00 34.8 835 19.30 19.13 51 18.3k 14
SO = Smallest Occluder, SH = Smallest Hole, DS = Data Size

VC = Vertices Count, DC = Draw Calls

Table 3.4: Demo 2, Test 2, Occlusion and Profiler Statistics
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.......................... 3.2. Demo 2 - Small labyrinth and Culling

3.2.4 Test 3 - Camera path sampling

We took a larger sample in the third and final test using this scene. The
camera travels along a predetermined path, with control points along the
way. When the camera passes a control point, a script registers the profiler
data and prints them into the console, such as frame time, vertices count and
draw calls. There are 35 control points in total.

SO STATS CONTROL POINTS
DS [KB] 1 5 10 15 20 25 30 END
0 RT [s] 2,46 11,08 30,67 39,39 47,64 62,26 72,49 86,1
0 F# 1 1096 3715 4891 6025 8009 9415 11274

FT [ms] 0 8,5 8,7 7,8 7,3 7,2 7,7 7,7
5 RT [s] 2,47 11,04 30,69 39,43 47,65 62,29 72,52 86,13
63,8 F# 1 1180 3826 4798 5859 7244 8592 10458

FT [ms] 0 7,4 7,1 10,3 6,5 12,4 7,7 6,8
1 RT [s] 3,71 14,79 34,43 43,16 51,42 66,04 76,28 89,9
416,7 F# 1 1065 3548 4703 5745 7553 8864 10436

FT [ms] 0 8,2 6,9 6,3 9,3 10,2 7,7 8,9
3 RT [s] 3 11,56 31,2 39,94 48,18 62,81 73,04 86,65
123,4 F# 1 1134 3923 5148 6327 8359 9702 11571

FT [ms] 0 6,8 7,7 8 6,8 6,9 8,1 7,2
7 RT [s] 2,51 11,06 30,71 39,44 47,69 62,31 72,55 86,17
29,6 F# 1 1138 3876 5034 6100 8044 9434 11349

FT [ms] 0 6,8 7,4 9,1 8,9 6,9 6,4 7,5
4 RT [s] 2,45 11 30,64 39,37 47,6 62,22 72,47 86,09
71,7 F# 1 1186 3997 5207 6360 8297 9691 11549

FT [ms] 0 6,4 7,5 7,1 8 6,6 8,4 7,7
SO = Smallest Occluder, DS = Data Size

RT = Realtime, F# = Frame Number, FT = Frametime

Table 3.5: Demo 2, Test 3, Table of performances depending on the smallest
occluder parameter at selected control points.

I took the data of every fifth entry and wrote it in a table to compare
each occlusion parameter’s impact on performance. First, we changed only
the smallest occluder parameter and left the rest of the parameters at their
default values to monitor its impact on the performance, see Table 3.5.

We can see that the best results are for the value of 3, but it had a problem.
When the camera travelled through the longest straight corridor, the far
wall didn’t render, leading to the second-best result for the value of 4, which
rendered everything that should. This discovery shows the importance of
watching if everything renders as it should and that the culling doesn’t cull
what needs to be rendered.

So when we were changing only the smallest hole parameter, we used the
value of 4 for the smallest occluder parameter as it yielded the best perfor-
mance and visual results with the default value for the backface threshold
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3. Test Demos .....................................
parameter, see Table 3.6 for the impact of the Smallest Hole parameter.

SH STATS CONTROL POINTS
DS [KB] 1 5 10 15 20 25 30 END
0 RT [s] 2,59 14,94 34,59 43,32 51,55 66,18 76,41 90,02
0 F# 1 1192 4107 5253 6320 8242 9582 11300

FT [ms] 0 7,2 7,1 7,2 6,9 7,1 7,8 7,9
0.25 RT [s] 2,41 10,97 30,63 39,36 47,59 62,21 72,44 86,05
71,7 F# 1 1049 3331 4307 5279 7010 8217 9805

FT [ms] 0 8,3 8,9 9,1 7,8 8,5 8,6 10,3
0.1 RT [s] 2,57 11,19 30,83 39,56 47,8 62,43 72,66 86,29
70,7 F# 1 1059 3432 4497 5508 7226 8357 9868

FT [ms] 0 8,1 8,4 8,4 8,8 8,7 8,6 9,4
0.5 RT [s] 2,62 11,2 30,85 39,58 47,82 62,45 72,68 86,3
53,1 F# 1 956 3219 4245 5150 6671 7790 9351

FT [ms] 0 7,7 9,6 8,8 9 8,7 7,8 8,3
0.75 RT [s] 2,4 10,97 30,61 39,35 47,59 62,22 72,46 86,08
44,5 F# 1 1057 3440 4510 5524 7196 8383 9949

FT [ms] 0 9 8,5 8,5 8,5 8,8 9,2 10,9
SH = Smallest hole, DS = Data Size

RT = Realtime, F# = Frame Number, FT = Frametime

Table 3.6: Demo 2, Test 3, Table of performances depending on the smallest
hole parameter at selected control points.

Both tables are also interpreted as graphs see 3.7.

3.2.5 Results

The first test had excellent and acceptable results. But as we wanted more
samples some days later, the frame times were significantly lower. This is
why the first test has fewer samples than the second.

The second test was made because the results would represent the optimising
technique more. But in the end, it didn’t go as well as we had hoped; the real
difference was only in the frame captured. We can see better the difference
in the frame times than in the FPS.

To my surprise, better results and more stable frame times throughout the
path were generated in the third test without the occlusion culling. This
led me to the conclusion that the scene is not complicated enough. The
baked data worsened the stats because the engine calculated unnecessary
optimization and often switched the GameObjects that needed to be culled.

3.3 Demo 3 - Medium factory and Occlusion Areas

After creating a large scene with terrain too big for the occlusion culling
data to bake and a small scene full of corridors, too small for the occlusion
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......................3.3. Demo 3 - Medium factory and Occlusion Areas

(a) : Depending on the smallest occluder parameter

(b) : Depending on the smallest hole parameter

Figure 3.7: Demo 2, Test 3, Graphs with the results of the test, comparing the
frame times

culling to make a difference, we created a medium-sized scene of a factory.
This factory comprises two levels of rooms of different sizes connected with
corridors. The data will be sampled the same way as the last test above.

The camera travels a set path and visits only a small percentage of the
scene; see Figure 3.8. Starting from the left side in the middle, where an
entrance is located, the camera then turns left and goes through a corridor to
the first stairwell. Goes up the stairs and into the second block of the factory.
In the middle of this block are located stairs which the camera takes to go
down to the ground floor of the building. At the end of the block, goes up
another stair to go to the back sectors of the facility. Take the last stairs
and forward to the vast laboratories where the camera exits the factory. The
camera didn’t go through the whole building, so there is no need to calculate
occlusion data for the entire scene, and we can practice using occlusion areas.

After baking the occlusion data with the parameters of smallest occluder:
3, smallest hole: 0.25 and backface threshold: 100%, the view volumes inside
occlusion areas are smaller than those outside them, see Figure 3.9. They are
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Figure 3.8: Demo 3, Top view of the scene with the path of the camera in red
and occlusion area as green boxes

(a) : With Occlusion Areas (b) : Without Occlusion Areas

Figure 3.9: Demo 3, View of the scene with view volumes
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.................... 3.4. Demo 4 - FPS map for Culling and Levels of detail

also smaller than the standard view volumes generated by Unity without the
use of occlusion areas. This means the calculations are more precise inside
the occlusion areas, as advertised in the Unity documentation.

OPT STATS CONTROL POINTS
OA 1 5 10 15 20 25 30 35
DS[KB]
NO RT [s] 3,3 15,97 28,77 37,17 48,73 58,13 72,94 84,08
NO F# 1 533 1166 1559 2056 2458 3075 3509
- FT [ms] 19,8 23,1 22,9 21,5 21,7 23,4 27,4

FPS 51 43 44 47 46 43 36
VC [·103] 0 27,3 165,5 145 78,9 97,3 29,7 20

YES RT [s] 2,83 13,15 25,93 34,37 45,95 55,37 70,21 81,38
NO F# 1 548 1174 1543 2025 2406 2979 3396
276 FT [ms] 19,3 23,1 24,6 22,7 23,4 31 26,2

FPS 52 43 41 44 43 32 38
VC [·103] 0 25,6 22,9 26,7 26,5 21,7 16,8 20,1

YES RT [s] 3,02 13,22 26,02 34,46 46,09 55,5 70,34 81,53
YES F# 1 450 979 1269 1691 2013 2547 2943
255,2 FT [ms] 28,1 35,4 26,7 32,3 27,8 28,8 27,4

FPS 36 28 37 31 36 35 36
VC [·103] 0 25,6 22,9 26,7 26,5 25 16,8 14,3

OPT = With optimization, OA = With occlusion areas, DS = Data Size
RT = Realtime, F# = Frame Number, FT = Frametime

FPS = Frame per seconds, VC = Vertex count

Table 3.7: Demo 3, Table of the profiler statistics at selected control points

The scene’s geometry is still too simple, and the calculations for the culling
are more expansive than without the occlusion. But we can see a slight
difference between the data size, frame times and vertex count when using
occlusion areas, and when not, see the upper graph of 3.10. The size is 276KB
without occlusion areas and 255,2KB with. It is better to use an occlusion
area to reduce the data size when we know that the camera will be only in a
particular area of the scene; we can also see how a considerable amount of
vertices are saved by rendering with occlusion culling.

3.4 Demo 4 - FPS map for Culling and Levels of
detail

For the last demo, we created a small FPS map; see 3.11. In the scene,
we can see facades of buildings delimiting the play area. They are high
enough to occlude large parts of the scene. The wide zigzagging main road is
complemented by narrower streets that can be used as shortcuts. In several
places, there are small inside yards between the facades. Four largely open
squares offer more space for fights around the game mode capture checkpoint
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3. Test Demos .....................................

(a) : Graph of the frame times

(b) : Graph of the vertices count

Figure 3.10: Demo 3, Graphs of chosen statistics at selected control points

on the main path of the objective.

We modelled the facades of buildings in Blender with four levels of detail,
and most of the small props are from the SNAPS prototype assets package
made by Unity. The facades were saved as blend files into the project’s asset
folder. This way, when the file was saved in Blender, it also updated its
geometry in Unity. The second benefit was that Unity automatically created
and set up the LOD groups for each model.

The camera travels a predetermined path along the buildings on the main
road; see Screenshots 3.11 represented as the red line. It serves as the payload
needing to be escorted by the attacking team if the map was fully implemented
with game-play features. It is only a static scene to test occlusion culling and
LOD optimization techniques.
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.................... 3.4. Demo 4 - FPS map for Culling and Levels of detail

(a) : Top view

(b) : Side view

Figure 3.11: Demo 4, Overview of the scene. The path of the camera is
represented as a red line

3.4.1 Models and their Levels of Detail

Most models that we modelled for this demo have four levels of detail. The
LOD 1 - 3 levels use the decimate modifier from the previous level with a
smaller and smaller ratio. These ratios also vary from each model as the
geometry is different. Only the LOD 0 level has its face count increased by
the subdivision surface modifier to compensate for the lack of other processes
costing resources, such as physics, gameplay logic etc.

Let’s look at one of the facade models, see Figure 3.12 and its levels of
detail. The statistics displayed in the upper left corner are transcribed into
Table 3.8 as well as the decimate ratio of the LOD 1 - 3. We can also see
little imperfections in these levels of detail created by the materials and the
face collapse by the decimate modifier. The fewer details, the more LODs are
uglier; finding and fine-tuning the distances at which the models are swapped
is essential.

In Unity, the models were represented as a bundle of models with an empty
parent object with the four levels as child objects. For each parent object, a
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3. Test Demos .....................................

(a) : LOD0

(b) : LOD1

(c) : LOD2

(d) : LOD3

Figure 3.12: Facade model 1 and its different LODs in Blender
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LOD Vertices Edges Faces Triangles Decimate ratio
0 111650 223296 111648 223296 -
1 699 2,091 1394 1394 0.6
2 350 1044 696 696 0.3
3 176 522 348 348 0.15

Table 3.8: Facade model 1 - LOD statistics

LOD group was assigned, containing at each LOD a model as the renderer
that should be rendered when the object takes a certain percentage of the
screen — no need to set it up manually. The LOD group cannot be changed
inside the asset. But when we create an instance in the scene, we can modify
each component of the different GameObjects making up the model as we
want. In the scene, the hierarchy of the GameObject remains the same, an
empty parent containing the LOD group, see Figure 3.13 and four children,
each representing one level of detail. We need to be careful when selecting
the objects inside the scene view as it happened to have selected one child /
one level, the one that was being rendered, instead of the whole group/parent
GameObject.

(a) : View of the model in the
scene

(b) : Inspector with the LOD
group component.

Figure 3.13: Demo 4, Screenshots of the Facade model inside Unity.

3.4.2 Test preparations

On this map, we will conduct four tests: one without any optimization,
one with LOD, one with occlusion culling, and one with both optimization
techniques enabled.

The control points at which we sampled data were changed. Instead of each
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3. Test Demos .....................................

(a) : Control point 1 (b) : Control point 6

(c) : Control point 8 (d) : Control point 12

(e) : Control point 17 (f) : Control point 24

(g) : Control point 30 (h) : Control point 35

Figure 3.14: Demo 4, Camera view at selected control points

fifth, we chose those with long sights of view to test the LODs; see Figure
3.14 for the camera view at these control points. We presume that at these
chosen places, there is a higher probability of being bottlenecks. We can also
assume that the performance between them will be more stable and better.

The first control point is located at the start of the camera path. From
the camera, we can see the street by which the camera will leave the first
square area. At the far end of the street is a building that should be rendered
with a lower LOD. The second control point, indexed 6, is in the middle of
the far-right street. From this, the street straight is blocked by wall props.
Control point 8 is located at the crossing of the main street and the narrow
street seen from the first checkpoint. We can see entering the second square
with an orange flag indicating the first capture checkpoint. With an index of
12, the following control point is just outside the square entering the main
street and providing a long sight with the defender spawn point at the end.
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.................... 3.4. Demo 4 - FPS map for Culling and Levels of detail

Going near this spawn point, the camera turns right and passes by control
point 17, from which we can see in the distance building delimiting the third
square with the second capture point. The following sample is taken from
the control point 24 just at the exit of the square. Here the camera sees a
long street at a 45 angle. The second last sample is taken from control point
30 when the camera enters the last square. In this square is the final capture
point, if captured, resulting in a win for the attackers. The square is filled
with giant black containers. And finally, the last control point, 35, is located
just in front of the last defender checkpoint, which we can see barricaded.

The first run of tests will be on my notebook, the Dell G5 see Table 3.9 for
its specification, in the editor. Then, we will rerun the same tests on the Dell
G5 and on two other notebooks borrowed from the department; see Table
3.10 for the specifications of the Lenovo Ideapad Flex 5 and Table 3.11 for the
specifications of the Lenovo Thinkpad T440s. For the second run of the test,
we will build four different builds, one without any optimization, one with
LOD, one with occlusion culling, and one with both optimization techniques
enabled.

Dell G5
CPU Intel(R) Core(TM) i7-8750H CPU @ 2.20GHz 2.21 GHz
RAM 32,0 GB
OS 64bit
GPU NVIDIA GeForce GTX 1060 with Max-Q Design
VER Direct3D 11.0
VRAM 6043 MB
DRIVER 31.0.15.3161

Table 3.9: Hardware specifications of Dell G5.

Lenovo Ideapad Flex 5
CPU AMD Ryzen 3 4300U with Radeon Graphics 2.70 GHz
RAM 8,0 GB
OS 64bit
GPU Integrated AMD Radeon(TM) Graphics
VER Direct3D 11.0
VRAM 3774 MB
DRIVER 31.0.12044.24003

Table 3.10: Hardware specifications of Lenovo Ideapad Flex 5

The results of the first run of tests, made on the Dell G5 in the editor, are
written in Table 3.12. Here we will compare the impact of each test together.
The second run compares the technique on different hardware; the results are
in separate tables.

For each test, we will first describe how we prepared the scene and its
setting for the test, then we will examine how the technique used in the test
improves the performance of the scene on my notebook, and finally, we will
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3. Test Demos .....................................
Lenovo Thinkpad T440s

CPU Intel(R) Core(TM) i7-4600U CPU @ 2.10GHz 2.70 GHz
RAM 12,0 GB
OS 64bit
GPU NVIDIA GeForce GT 730M
VER Direct3D 11.0
VRAM 986 MB
DRIVER 24.21.13.9836

Table 3.11: Hardware specifications of Lenovo Thinkpad T440s

analyse how the build performs on the three notebooks. In the end, I will
sum up the results of this demo.

3.4.3 Test 1 - Not Optimised

As Unity automatically created LOD groups for my models, we needed to
disable them to run an unoptimised test for reference. But disabling the
component had resulted in rendering all levels at the same time. To force the
use of only the first level, LOD0, we created a simple script that takes the
LOD group component and calls the ForceLOD method. The script was then
added to each LOD’s parent game object. With that set, we could record the
first test. This generated control statistics to compare how the optimization
techniques helped improve the scene’s performance.

In the editor, my notebook keeps an unstable, but never the less low frame
time, with large fluctuations by displaying a large number of vertices.

The build, see Table 3.13, has a more stable performance on the Dell G5
than in the editor, frame time of an average of 20.5 ms, which can be a result
of the build-in optimization made by Unity during the build process. Almost
stable performance, frame time of an average of 56.5 ms, was recorded on the
Ideapad. The worst performance, with high fluctuation of the frame time
and an average of 169.5 ms, has the build on the Thinkpad.

3.4.4 Test 2 - Levels of Detail

Before running this test, we disabled the force LOD script and tuned each
threshold of the levels. We minimised both the pop-up effect and the vertex
count.

The build performed better than when not optimised. We can see in Table
3.14 a stable 16.6 ms frame time overall for the Dell G5. The performance on
both the Ideapad and Thinkpad is similar, with less change in frame time
during the build run. Though for the Ideapad, the FPS dropped, negating
any optimization. The average frame time for the Ideapad is 84,6 ms and
92,6 ms for the Thinkpad.
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.................... 3.4. Demo 4 - FPS map for Culling and Levels of detail

LOD STATS CONTROL POINTS
OC 1 6 8 12 17 24 30 END

RT [s] 2,52 17,72 22,59 37,4 53,3 77,19 100,7 112,16
NO F# 1 578 758 2073 4045 5191 7215 8867
NO FT [ms] 0 27,3 20,1 9,6 34,6 15,5 12,3 5,1

FPS 37 50 104 29 65 81 196
VC [·106] 0 95,89 66,83 26,56 128,47 46,92 33,2 7,12
RT [s] 2,57 17,81 22,68 37,51 53,37 77,28 100,78 112,25

YES F# 1 1053 1381 2932 5052 7132 9449 11321
NO FT [ms] 0 14,1 16,1 9,2 13,4 11,1 8,5 5,1

FPS 71 62 109 75 90 118 196
VC [·106] 0 40,15 48,43 24,97 38,61 34,78 19,59 7,12
RT [s] 2,63 17,9 22,73 37,56 53,42 77,32 100,84 112,3

NO F# 1 1178 1502 3100 5379 7387 9950 11977
YES FT [ms] 0 20,3 13,1 7,5 15,7 16,6 6,8 5,6

FPS 49 76 133 64 60 147 179
VC [·106] 0 51,36 40,78 21,74 51,90 34,91 18,57 7,08
RT [s] 2,54 17,82 22,69 37,52 53,37 77,29 100,81 112,27

YES F# 1 1435 1908 3668 6018 8781 11542 13362
YES FT [ms] 0 9,9 10,5 7,6 9,4 8,1 8,4 5,9

FPS 101 95 132 106 123 119 169
VC [·106] 0 27,8 33,43 20,69 26,29 26,79 18,57 7,08

LOD = Using Levels of detail, OC = Using Occlusion Culling
RT = Realtime, F# = Frame Number, FT = Frametime

FPS = Frame per seconds, VC = Vertex count

Table 3.12: Demo 4, table of comparison between optimization techniques

3.4.5 Test 3 - Occlusion Culling

We baked the occlusion culling data for this test using occlusion areas and
the default parameters (smallest occluder - 5, smallest hole - 0.25, backface
threshold - 100). This resulted in a data size of 251.8KB and enabled the
force LOD script.

This time no change in the performance of the build on the Dell, resulting
in the same perfect average of 60FPS, see Table 3.15 The performance on the
Ideapad is a little bit better than in the previous test, with an average frame
time of 39,4 ms. The fluctuation is similar when using levels of detail. On the
Thinkpad, the performance dropped slightly but remained nearly identical to
the second test.

3.4.6 Test 4 - Occlusion Culling and Levels of Detail

The occlusion data were identical, and the force LOD script was disabled.
Again no change in the performance of the Dell G5. In Table 3.16, we can

see that the performances remain in the same order between them, where the
Dell G5 is the best followed by the Ideapad, and last, the worst performance
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3. Test Demos .....................................
HW STATS CHECKPOINTS

1 6 8 12 17 24 30 35
DG RT [s] 5,99 21,82 26,67 41,52 57,42 81,31 104,82 116,3

F# 1 557 747 1632 2546 3659 5070 5759
FT [ms] 0 25,7 17,8 16,7 33,3 16,7 16,7 16,6
FPS 39 56 60 30 60 60 60
VC [·106] 0 95,88 66,83 26,56 128,13 48,86 33,2 7,12

IP RT [s] 2,61 17,78 22,65 37,42 53,35 77,23 100,75 112,2
F# 1 183 240 591 1039 1393 1966 2381
FT [ms] 0 87,8 66,7 38,9 86,6 52,2 41,1 22,2
FPS 11 15 26 12 19 24 45
VC [·106] 0 96,1 66,41 26,57 128,5 46,92 33,2 6,56

TP RT [s] 4,92 20,93 26,29 40,95 61,81 85,88 109,30 120,69
F# 1 77 100 245 476 607 853 1049
FT [ms] 0 255,3 205,3 91,9 319,7 167,6 103,2 43,3
FPS 4 5 11 3 6 10 23
VC [·106] 0 96,63 67,38 26,56 133,43 47,24 33,2 7,12

DG = Dell G5, IP = Ideapad, TP = Thinkpad
LOD = Using Levels of detail, OC = Using Occlusion Culling

RT = Realtime, F# = Frame Number, FT = Frametime
FPS = Frame per seconds, VC = Vertex count

Table 3.13: Demo 4, Table comparing the not optimised builds on the different
hardware.

is again recorded on the Thinkpad. Despite this, the frame times lowered for
both of the Lenovo notebooks resulting in the best results of an average of
37.7 ms and 74.7 ms, respectively.

3.4.7 Results

Figure 3.15 shows the use of occlusion areas and the generated view volume.
As we already know, here, too, the view volume is smaller, resulting in more
precise calculations inside the occlusion areas. The occlusion areas are placed
around the camera path, which is represented by the red line. We can also
see how certain facades close to the camera have more triangles than those
further. This is because of the use of LODs.

The first run of tests is visualised in Graphs 3.16. We can see the per-
formance of the demo in the play mode of the editor. For the second test,
we can see the massive drop in vertices rendered when using the Levels of
detail optimization techniques. This is expected when the difference in vertex
count of the first and second levels of detail is significant. The frame time
has also dropped accordingly. Results in the third were as expected, from the
knowledge we gathered during the previous demos, as the occlusion culling
optimised the scene’s performance. Interestingly it was less effective than
LODs. Combining both techniques yielded the best results and had a more
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.................... 3.4. Demo 4 - FPS map for Culling and Levels of detail

HW STATS CHECKPOINTS
1 6 8 12 17 24 30 35

DG RT [s] 4,64 20,13 25,01 39,86 55,7 79,63 103,15 114,61
F# 1 873 1166 2057 3008 4444 5856 6544
FT [ms] 0 16,7 16,7 16,7 16,7 16,7 16,7 16,7
FPS 60 60 60 60 60 60 60
VC [·106] 0 40,14 48,43 24,97 38,66 34,77 19,59 7,12

IP RT [s] 2,6 18,16 22,6 37,98 54,2 78,25 102,01 113,52
F# 1 139 199 366 607 875 1176 1388
FT [ms] 0 110,5 105,5 76,2 93,2 91,9 69,3 45,4
FPS 9 9 13 11 11 14 22
VC [·106] 0 40,54 47,67 25,15 38,45 34,75 19,78 6,34

TP RT [s] 2,65 17,9 22,87 37,49 53,44 77,36 100,91 112,36
F# 1 126 165 333 578 813 1091 1319
FT [ms] 0 118,7 128,7 86,6 89,9 112,1 69,9 42,2
FPS 8 8 12 11 9 14 24
VC [·106] 0 40,34 48 24,98 36,88 34,75 19,77 6,56

DG = Dell G5, IP = Ideapad, TP = Thinkpad
LOD = Using Levels of detail, OC = Using Occlusion Culling

RT = Realtime, F# = Frame Number, FT = Frametime
FPS = Frame per seconds, VC = Vertex count

Table 3.14: Demo 4, Table comparing the builds optimised using LODs only on
the different hardware.

stable frame rate.
Again we can see how many vertices are saved when using the optimization

techniques, using both for the best results and Levels of Detail for better
performance than Occlusion culling. This can be produced by the LOD group
component that culls the object when it takes less than 1% of the screen. In
other words, on top of rendering fewer vertices by using a less detailed level
of detail, the LOD technique also culls those not visible on the screen, the
occlusion culling doing only the latter.
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HW STATS CHECKPOINTS

1 6 8 12 17 24 30 35
DG RT [s] 4,08 19,52 24,4 39,24 55,09 79,01 102,54 114

F# 1 873 1166 2057 3008 4444 5856 6544
FT [ms] 0 16,7 16,7 16,7 16,7 16,7 16,7 16,7
FPS 60 60 60 60 60 60 60
VC [·106] 0 51,79 41,11 21,76 51,89 34,91 18,57 7,08

IP RT [s] 2,6 17,62 22,54 37,32 53,21 77,14 100,65 112,12
F# 1 334 432 856 1392 1970 2630 3125
FT [ms] 0 53,4 45,5 32,2 53,3 40 30,3 21,1
FPS 19 22 31 19 25 33 47
VC [·106] 0 50,16 40,75 21,75 49,82 33,92 18,57 6,52

TP RT [s] 2,67 17,83 22,69404 37,45 53,42 77,32 100,8 112,24
F# 1 145 184 362 617 851 1140 1387
FT [ms] 0 142,1 111 77,7 122,1 102,1 66,6 37,7
FPS 7 9 13 8 10 15 27
VC [·106] 0 53,08 41,4 21,92 50,22 33,92 18,97 6,52

DG = Dell G5, IP = Ideapad, TP = Thinkpad
LOD = Using Levels of detail, OC = Using Occlusion Culling

RT = Realtime, F# = Frame Number, FT = Frametime
FPS = Frame per seconds, VC = Vertex count

Table 3.15: Demo 4, Table comparing the optimised builds using Occlusion
Culling only on the different hardware.

HW STATS CHECKPOINTS
1 6 8 12 17 24 30 35

DG RT [s] 4,13 19,67 24,55 39,39 55,24 79,16 102,69 114,15
F# 1 877 1170 2061 3012 4448 5849 6537
FT [ms] 0 16,7 16,7 16,7 16,6 16,7 16,7 16,7
FPS 60 60 60 60 60 60 60
VC [·106] 0 27,79 33,42 20,7 26,31 26,8 18,57 7,08

LN RT [s] 2,61 17,62 22,48 37,32 53,15 77,12 100,63 112,1
F# 1 383 507 960 1517 2253 2946 3442
FT [ms] 0 37,7 40 31,3 36,7 33,3 28,9 21,1
FPS 27 25 32 27 30 35 47
VC [·106] 0 27,79 33,6 20,7 25,9 26,80 18,58 7,08

TP RT [s] 2,7 17,78 22,66 37,51 53,36 77,34 100,85 112,32
F# 1 172 227 422 688 1009 1319 1565
FT [ms] 0 91 92,1 73,3 76,6 85,5 66,6 37,7
FPS 11 11 14 13 12 15 27
VC [·106] 0 29,07 33,03 20,88 26,28 26,79 18,58 6,52

Table 3.16: Demo 4, Table comparing the builds optimised by both optimization
techniques on the different hardware.
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.................... 3.4. Demo 4 - FPS map for Culling and Levels of detail

Figure 3.15: Demo 4, Shaded wire-frame view of the scene with the path of the
camera in red, occlusion area as green boxes and baked view volumes as blue
wired boxes.

37



3. Test Demos .....................................

(a) : Graph comparing frame times in selected cooptimisednts

(b) : Graph comparing vertex count in selected control points

Figure 3.16: Demo 4, Graphs comparing different optimization techniques.
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.................... 3.4. Demo 4 - FPS map for Culling and Levels of detail

(a) : Test 1 - Not optimised

(b) : Test 2 - Level of detail

(c) : Test 3 - Occlusion culling

(d) : Test 4 - Both techniques

Figure 3.17: Demo 4, Graphs of the frame times recorded on the different
hardware.
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Chapter 4
Conclusion

Performance is a crucial part of a game. We must ensure a smooth frame
time to deliver an excellent player experience. Fortunately, we have at our
disposal many tools to succeed in that. The most common ones have been
discussed in this thesis. We now know how there are used in Unity and how
simple it is to use them.

“Visibility culling is the other essential ingredient, in addition to
LOD techniques, to make applications output sensitive.” [2]

This quote sums up why we looked at Visibility culling and LOD in detail
and tested these methods.

Occlusion culling is an effective rendering optimising technique by limiting
the number of objects that need to be rendered, optimising many resources
that the GPU can use more efficiently. The only down side it needs to have
baked data to calculate the culling, taking up space on the disk. By wisely
choosing its parameters, we can achieve great results. And not always smaller
numbers have better results, as changes frequently the GameObjects that
need to be rendered. An excellent way to find the ideal parameters is to
know how big the smallest GameObject is that we want to use as an occluder
and choose the smallest occluder parameter value. Although, even like this,
finding the best parameters requires a lot of tuning. The best use of these
techniques is in environments with a more dense number of Game Objects
occluding one another. For example, rooms that are connected by corridors,
a dense cityscape with high buildings and streets.

Levels of Detail need a little more work outside the engine by modelling
different levels for a model. But in the engine, it is straightforward, as Unity
can automatically assign the LOD group component to the models. But once
set up, it offers a significant difference in performance as it effectively reduces
the vertex count for details that are not visible at longer distances. The
tunning of the parameters is also simpler and is better visualised than for
the occlusion. We need to find the sweet spot where we cannot see a visible
change between the two Levels of Detail. This technique mainly benefits more
open environments with long view distances and detailed models scattered
around the scene, where the player can move freely.
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4. Conclusion......................................
By combining both techniques, we achieved better and more stable perfor-

mance. But it doesn’t end here, as Unity disposes of a great number of other
methods that helps polish the run of the game builds. Combining different
optimization techniques, which are well documented, is recommended to
ensure smooth performance and, thus, player experience.
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Appendix A
Used assets

Here is the list of assets and tools that I used from the Unity Asset Store or
Package Manager in alphabetical order:

Conifers [BOTD] - https://assetstore.unity.com/packages/3d/vegetation/
trees/conifers-botd-142076;

Destroyed City FREE - https://assetstore.unity.com/packages/
3d/environments/sci-fi/destroyed-city-free-6459;

House pack - https://assetstore.unity.com/packages/3d/environments/
house-pack-35346;

ProBuilder - available in the Package Manager;
ProGrids - available in the Package Manager;
Snaps Prototype | Sci-Fi / Industrial - available in the Package

Manager;
Terrain Sample Asset Pack - https://assetstore.unity.com/packages/

3d/environments/landscapes/terrain-sample-asset-pack-145808;
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Appendix B
Attachments

As an attachment of this thesis are the Builds for Demo 4 located in the bin/
folder. All the files for both Unity projects are in the folder src/. The latex
file is in the folder latex/ folder. Every image this thesis uses is saved in
images/. And a README file is added with a detailed hierarchy, locations
of the files and the link to the GitLab Repository.
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