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Abstract

Radiation localization is an important topic for the protection of humans and the
environment at present. It is the main task that is tackled in this thesis. The task
uses a combination of the flexibility of an Unmanned Aerial Vehicle (UAV) and
sensors to acquire data about the environment in which they are operating. The most
essential sensor is a single layer Compton camera based on the advanced TimePix3
technology for radiation detection. The camera has a small size and low weight which
is a clear advantage over other detectors for use onboard small UAVs. Together with
the depth sensor for obstacle perception, a Light Detection and Ranging (LIDAR)
or a depth camera are placed on the UAV structure and serve as data sources
for radiation localization. The measurements from the depth sensors are stored in
the form of an OctoMap for a convenient 3D representation of the environment.
The radiation localization task is performed by processing the sensor data using
various sampling methods and fusing the radiation and depth measurements. The
advantage is the detection functionality even in more complex environments. The
estimation of the positions of the radiation sources is solved using a particle filter,
which is implemented in different variants to achieve the best possible results. The
last sensor that is used onboard the UAV is the RGB camera. The image obtained
from the camera is used as a visual output for the human operators. In the image,
the color-coded objects identified as the radiation sources are clearly visualized. The
radiation source detection procedure is applicable in many fields such as nuclear
energy, medical and industrial applications. The methods developed in this work
considerably improve the radiation localization approach developed by the Multi-
robot Systems Group (MRS) group at Faculty of Electrical Engineering (FEE) Czech
Technical University (CTU). A key advantage of the proposed solution is the ability
to localize multiple radiation sources simultaneously which has a great potential for
safety and efficiency improvements in all related fields.

KeywordsUnmanned Aerial Vehicles, Compton camera, TimePix, Radiation source
detection, Particle filter, Image processing, Object detection



vi

Abstrakt

Lokalizácia radiácie je dôležitá téma pre ochranu človeka a súčasne aj životného
prostredia. Je to hlavná úloha, ktorá sa rieši prostredńıctvom tejto práce. Pri
plneńı úlohy sa využ́ıva kombinácia flexibility bezpilotného lietadla a senzorov pre
źıskavanie dát o prostred́ı v ktorom sú umiestnené. Najdôležiteǰśım senzorom je
jednovrstvová Comptonova kamera založená na pokročilej technológii TimePix3 na
detekciu žiarenia. Disponuje ńızkymi rozmermi a ńızkou váhou čo je jednoznačná
výhoda oproti ostatným detektorom. Spolu s h́lbkovým senzorom na vńımanie
prekážok, LiDAR alebo h́lbková kamera sú umiestnené na konštrukcii bezpilotného
lietadla a slúžia ako zdroje dát na lokalizáciu žiarenia radiácie. Merania h́lbkových
senzorov sa ukladajú vo forme mapy OctoMap na pohodlné 3D zobrazenie prostre-
dia. Úloha lokalizácie radiácie zač́ına spracovańım dát zo senzorov pomocou rôznych
vzorkovaćıch metód a fúziou radiačných a h́lbkových merańı. Výhodou je funkčnosť
detekcie aj v komplexneǰsom prostred́ı. Odhad polôh zdrojov radiácie rieši časticový
filter, ktorý je implementovaný v rôznych variantách pre dosiahnutie čo najlepš́ıch
výsledkov. Posledným senzorom ktorý je súčasťou UAV je RGB kamera. Obraz
źıskaný z kamery je využitý ako vizuálny výstup pre pozorovatěla v ktorom môže
jasne vidieť farebne vyznačene zdroje radiácie. Postup detekcie zdrojov radiácie je
využitělný v mnohých oblastiach, ako napŕıklad v jadrovej energetike, v medićıne
a v priemysle. Metódy vyvinuté v tejto práci výrazne zlepšujú schopnosť lokalizácie
žiarenia ktorý bol vyvinutý skupinou MRS na ČVUT FEL v Prahe. Hlavnou
výhodou navrhovaného riešenia je možnosť lokalizovať viacero zdrojov žiarenia
súčasne, čo má vělký potenciál pre zvýšenie bezpečnosti a efekt́ıvnosti vo všetkých
súvisiacich oblastiach.

Kľúčové slová Bezpilotné lietadlo, Comptonová kamera, TimePix, Detekcia zdro-
jov radiácie, Časticový filter, Spracovanie obrazu, Detekcia objektov
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Chapter 1

Introduction

Now technology is part of everyday life. We see and use technology all the time, making
our lives more enjoyable and taking it to the next level. Day by day, new inventions and
means of improving their features and techniques of execution are coming up. Unmanned
Aerial Vehicle or UAV is one of the new technologies that the world offers us. The main
motivation for the creation of UAVs was for military purposes. Motivations were primarily
formed by the ability to explore, infiltrate enemy territory, and observe. Remote control is
one of the many advantages that UAVs possess. It provides the option to operate in the sky
without risking human lives. Over time, new types of Remotely piloted aircraft (RPA) such
as rotor aircraft have evolved from the classic RPA. Their use has gradually spread from
military purposes to every possible field of humanity[31]. It would be a shame not to use the
UAV technology majorly for the protection of humans, living creatures and the environment
we live. UAV allows us unmanned and, most importantly, safe access for humans. The UAVs
can be divided into several groups. They are classified according to their weight, speed, flying
height, or the weight they can carry. Many of them are also designed for commercial use. Shops
today offer many different types of UAVs. The most common types of UAVs are currently
four or six-propeller vehicles. People started using them for a number of new disciplines. The
most common use is image recording or just as a gadget. UAVs are also used as a common
inspection tool for a number of industries.

Nuclear power plants are among the most powerful sources of electricity. The electricity
produced makes up a significant portion of overall electricity generation. Nuclear fission plays
a major role in the process of electricity generation.

X-ray computed tomography is already common in almost every large hospital. A discov-
ery which has fatally improved medical diagnosis and saved countless lives. The principle of the
X-ray topographer is also based on radiation with very short wavelengths. These electromag-
netic waves are generated by the X-ray tube, which converts electricity into electromagnetic
waves.

All this, besides many advantages, contains disadvantages as well. The main disadvan-
tage is ionizing radiation, which can permeates through the air and has adverse effects on
organic materials. Prolonged exposure to radiation can mean death for a person. Radiation
causes changes to cells in the tissue. In most cases, it is a change of genetic information en-
coded by the Deoxyribonucleic acid (DNA). The adverse effect has led to the development
of products that are even unbeneficial to mankind. Nuclear weapons are an example of such
a product. Nuclear weapons are mainly known for their power and the untamed energy that
the weapon possesses.

In 2011, Japan was hit by a strong earthquake in the east. The earthquake caused a
tsunami, which subsequently damaged the Fukushima nuclear reactor. This damage resulted
in the release of radioactive material from the power station. The event affected the lives
of many people living in the area. The accident is still one of the worst in the world. The

CTU in Prague Department of Computer Graphics and Interaction
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Fukushima or Chernobyl nuclear power plant disasters shook the world and changed the
perception of nuclear power. Power plant accidents or the radioactive waste produced by
nuclear power plants are a problem that affects us all, because we do not know at first sight
what can and cannot be radioactive. The human body has no organ to detect low doses of
ionizing radiation, it ignores them. Reducing the consequences of radioactivity is an ongoing
effort in the field. The mitigation has resulted in the development of new ways of detecting
leaked substances and reducing the concentration of radioactivity in the air or in the ground.
Detecting and removing radioactive material is the most effective weapon the humanity has
against radiation in terms of safety.

Several types of radiation detectors are available to detect different types of ionizing
radiation. The most well-known types of radiation detectors include semiconductor, gas-filled,
scintillation, and solid-state devices. Radiation detectors use different properties of radiation.
The most common property of radiation is the disruption of electrons. By measuring the
disruption of electrons, we can determine not only the existence of radiation, but also its
intensity and even its direction. Measuring radiation in most cases means that the detector
must also be under the influence of radiation.

Precisely in order to avoid radiation coming into contact with people, the best solution
is to exclude people from the problem altogether. Combining a UAV and a sensor to detect
radiation is one of the best options for human safety. The UAV will provide easy access
for the sensor to an otherwise toxic or difficult-to-reach environment. As the result, we can
perform measurements even in close proximity to the radiation source, which would have been
impossible otherwise.

The goal of this work is to use a combination of a UAV and a radiation detector to locate
potential possible sources of radiation. Radiation sources can be at different distances from
each other and can also be placed between or within obstacles. The essential aspect is that
the sensor receives gamma radiation from the source. Locating potential radiation sources
is only possible by processing sensor output data. The data relates to both the radiation
detector and the mapped environment. Data from the sensors are fused to create an estimate
of the radiation source. All data is collected by the UAV and evaluated in real-time. With
the least amount of human involvement, this method enables fast and precise localization of
multiple radiation sources. It can be extremely useful when exploring dangerous environments
in a short amount of time. Even the best UAV has a very short battery life. Additionally,
some battery power has to be conserved for the return from a dangerous area. Thanks to the
measurement speed, the position of the source can be quickly estimated after a single charge
of the UAV.

1.1 State of the art

UAVs, as we know them today, were created as a result of the motivation of safety.
Because of their availability, UAVs have become widely used in a number of projects. They
can assist with various activities, such as detection of different objects. An example of detection
is an odour source[14] or radiation source. Also UAVs can help in firefighting[4], [9], airspace
protection[3], [16], wildfire detection in forested areas[10], [24] and scanning crops for pests[7].
Due to their small size and ability to move in complex environments, they are also well suited
for mapping and documentation of historical buildings[8].

Radiation search and localization are particularly important today. It is essential to
ensure the safety of the environment from the effects of radiation. Several methods already

CTU in Prague Department of Computer Graphics and Interaction
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exist for detecting radiation. One method is based on the gradient ascent algorithm[26]. The
algorithm tries to find a local maximum and thus determine the position of the radiation
source. Another method similar to the previous one, is iterative[25]. This method attempts
to estimate the maximum likelihood for a source using the Gradient method along with the
Newton’s method. The use of reinforcement learning algorithms has applications in this area
as well. Liu Z. and Abbaszadeh S. [15] work on a learning algorithm consisting of double Q-
learning. This algorithm, based on states from measured data and possible actions, evaluates
the position of a radiation source. Compared to the gradient method, Q-learning even achieves
better and faster results.

The Fukushima accident caused radiation contamination in the environment. A number
of works have been written on the concentrations of radioactivity in the air[21], [22]. The
primary task was to map the environment and assign the radiation to a given location. In [23],
radiation was measured by a small research team and a helicopter. To protect the helicopter
crew, an unmanned helicopter was created that can move along a pre-programmed trajectory.
New possibilities for unmanned aerial measurement were created. Nor can we forget the water
contamination that this disaster has caused. This topic is discussed by Buesseler, Ken in[28].

Radiation detection can also help protect against terrorist attacks. The attacks could be
nuclear weapons in the form of “dirty bombs”. The term “dirty bomb” is used to describe a
conventional explosive that, after detonation, contaminates the air with radioactive material.
Sean M. Brennan[34] used a network of detectors to find the threat. The network of detectors
cooperates with each other in order to obtain the best possible detection result.

The MRS1 at the Department of Cybernetics, FEE, CTU in Prague, participates in
project RaDron2, which tackles the problem of locating unknown sources of gamma radiation.
The project employs one or more UAVs to detect the radiation source quickly[11]. A Compton
camera sensor based on Timepix3 technology is used for radiation detection[12]. The Compton
camera based on the Timepix3 technology is a novel device which has only one chip. The chip
does not need cooling and the main advantage is the small size of the sensor. The small size and
low weight allow us to use the sensor directly on the UAVs. Compton sensor with TimePix3
chip is today’s accurate and fast technology build on semiconductor detectors[17][13][6].

Other approaches similar to this work are also under development. They are based on a
particle filter, which processes sensor measurements to determine the position of the radiation
source. This involves localizing the sources in an already pre-partitioned environment on a
grid of points. Subsequently, these points are assigned a weight according to the measurement
[1] or localizing sources by processing batches of data gathered in advance.[18].

1.2 Problem definition

This work tackles the problem of detecting possible radioactive substances by an au-
tonomously operating UAV. The first step of the work is to process the output data from the
Compton camera. All sensors are placed onboard a flying UAV. The main sensors used in
the work are for radiation detection, environment mapping, and image capture. The sensors
collaborate to achieve a single goal: to locate and detect potential sources of radiation. The
drone moves around the possible occurrence of radiation, and the sensor continuously collects
radiation data. The UAV is using Rospix[17], a Robot Operating System (ROS) driver for

1http://mrs.felk.cvut.cz
2http://mrs.felk.cvut.cz/projects/tacr-radron-project

CTU in Prague Department of Computer Graphics and Interaction
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Timepix-based detectors, which was developed as a part of the RaDron project. The sensor
readings are provided in the form of Compton cones. The Compton cone is a 3D representa-
tion of all possible directions to a hypothetical radiation source. The idea is to convert the
Compton cone into a suitable mathematical equation. The equation is converted to a set of
3D points using an appropriate method and data access. The sampled points serve as an as-
sumption of the radiation source’s position. To improve hypothesis placement, the Compton
camera measurements are fused with data from onboard 3D sensors. It is assumed that the
source of the radiation is not in the air. Therefore, it is possible to reduce the number of suit-
able locations by focusing on the surfaces and objects in the 3D map. The fusing dramatically
simplifies our work with the data in the next steps of the work.

Designing an appropriate iterative algorithm based on the particle filter concept is the
next phase in this project. The particle filter is able to respond to new measured point sets.
The response of the particle filter is based on discarding unnecessary measurement points.
The output of the particle filter is a set of points of approximate source localization generated
from the measured values. The output is then processed by a rounding method capable of
finding the most appropriate locations of radiation occurrence.

The final step is the visualization of the results. The main output is represented by a
colored BGR3 or RGB camera located on the UAVs. The 3D points obtained by the previous
methods are converted into the 2D coordinate system of the camera. Then, the points are
used as a prerequisite to mark the radioactive object. This is further augmented by detecting
features directly in the image around the suspected radioactive objects. The result is a real-
time video of the tagged objects. An additional output is a 3D visualization created with
the Rviz tool. The 3D visualization displays the scanned area along with the points from the
sensor and filter at the same time.

1.3 Contributions

This thesis presents a complete processing pipeline for quick detection of multiple ra-
diation sources by a compact UAV. The procedure starts by processing the radiation mea-
surements in the form of Compton cones obtained from the Compton camera, and depth
measurements obtained from a LIDAR or a depth camera. The processing starts by formu-
lating a parametric equation describing the Compton cone envelope. The cone envelope is
then sampled using one of the two definition methods as a set of points. The set of points is
reduced using fusion with depth measurements. The procedure continues with the detection
of radiation sources, which is achieved by a filtering model. The thesis presents and compares
three possibilities of these filtering models. The models vary by the means of weight assign-
ment to the particles used by the filter. The last step of the procedure is the visualization
of the radiation sources to the user in the color camera image. The step involves detecting
objects using an edge detector and assigning the estimated radiation source to these objects.
The result is a color bounded region of the object in the image that can be considered as
radioactive.

3Blue, Green and Red color scheme
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Chapter 2

Preliminaries

This chapter introduces the basic definitions and presents the reader with the informa-
tion on which the thesis is based or contributed to its creation. It consists of an introduction
to the ROS framework, which was used in the implementation part of this thesis. The chapter
describes the test environment Gazebo and its role in the development and validation. Last
but not least, it discusses the fundamental problem to which this thesis is devoted, namely ra-
diation, the impact of radiation on the environment, and the impact on humans. It provides a
brief overview of radiation detection methods, and the principle of the radiation measurement
technique using the single-layer Compton camera.

2.1 Robot Operating System

Robot Operating System1 is a popular open-source framework used to develop robotic
software. Willow Garage launched an Open Source ROS project in 2007 to produce a frame-
work that can be used in various robotic applications. ROS is popular with researchers and
enthusiasts because it offers a variety of tools and libraries to make a complex robot system
easier. Thanks to the modular framework design of ROS, multiple software components can
be connected to each other via a common interface. For this reason, it is easier to create com-
plex robotic systems consisting of many software programs running on different computers.
The framework offers several communication protocols that enable the flow of data between
different components, including messages and services.

The foundation of ROS is the idea of a node, which is a standalone piece of software
that carries out a single function. Through the ROS protocols2, it is possible to communicate
between the different nodes. As a result, it is easy to build modular robotic systems, that allow
the combination of various nodes to produce complex behaviors. The extensive development
community, that supports ROS is one of its main advantages. For ROS, there are thousands
of packages3, that offer a wide variety of capabilities, from high-level planning and decision-
making to low-level hardware control. This implies, that developers can start creating their
own robotic systems immediately by finding the packages that easily provide the character-
istics they require. The platform independence of ROS allows it to function on a variety of
hardware and operating systems. This makes it simple to utilize ROS with a variety of robotic
gear and to adapt ROS-based apps to various platforms. In addition to being widely used in
academia and research, ROS is also employed in business to create robotic applications.

Many robotic systems, including autonomous cars, manipulators, and drones, are devel-
oped using ROS. Moreover, ROS is applied in a number of fields, including industry, health-

1https://wiki.ros.org/ROS/Introduction
2https://wiki.ros.org/ROS/Technical
3https://index.ros.org/packages
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care, and agriculture. ROS’s adaptability is one of its main benefits. Since ROS is an open-
source framework, programmers are free to alter and expand it as necessary. As a result,
programmers can extend ROS with new capabilities or change its existing ones to better suit
a given application. In order to make the creation and debugging of robotic systems easier,
ROS also offers a variety of debugging and visualization tools. Developers can view the be-
havior of their robotic systems in real time using the framework’s integrated visualization
tool, RViz. Several debugging tools are also offered by ROS, such as the ROSbag tool, which
enables programmers to capture and replay data from their robotic systems.

In conclusion, ROS offers a strong and adaptable platform for the creation of robotics
software. Its modularity, networked architecture, and community support make it easier to
build sophisticated robotic systems, that can function on a variety of hardware and operating
systems. With its and a thriving developer community, ROS is probably going to play an
important role in the advancement of robotics technologies in the oncoming years. [19]

2.1.1 Robot Operating System communication

In ROS, network communication can take place between individual parts of the program,
which are called nodes. Several possible ways of communication and their parts are described
below.

The ROSmessage4 is usually used to transfer information between nodes. A message is
a simple data structure, that consists of two parts. The first part is the message type and the
second part is the message data. Each message has its own specification and own type. A type
is a form of predefined structure, that can consist of a simple format of one type, such as a
string. It can also be represented by a more complex structure consisting of names and their
data types. Messages are mainly used to control the robot, to determine its current state or
to obtain information from sensor output. They are a useful tool to simplify communication
between components and in particular, provide modular usability and reusability.

A key component of the ROS is communication, which allows many nodes to share
information and cooperate to accomplish a shared objective. Communication is accomplished
using a variety of protocols that let nodes call and deliver services, publish and subscribe to
topics, and send messages using the parameter server. In ROS, publish/subscribe (Pub/Sub)
is the most used form of communication. Nodes in a Pub/Sub network can exchange messages
by publishing them to a topic or subscribing to it to receive messages. There is a designated
buffer over which messages are sent back and forth. To send a message to a topic, a node
creates a publisher and to receive a message from a topic, it creates an object known as a
subscriber. Many nodes can simultaneously post to and subscribe to the same topic using the
flexible and scalable Pub/Sub architecture.

ROS services are another typical communication method used in ROS. A node makes
a service call to another node, which subsequently responds to the request. A message pair
consisting of a request message and a response message defines the service. The objects in a
node that make requests are called service clients, while the objects that provide services are
called service servers. Service calls are useful when nodes need to perform complex calculations.
The main difference between service and message is that the service call returns a reply, it
is a confirmed communication. The main advantage of using a server is if you need to get
a response. Typically an essential control command where it is necessary to know if the

4https://wiki.ros.org/msg
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command was executed or not. Alternatively, the server is used to obtain information for
some trajectory planning where it is important to know if the path exists or not.

Each node in the ROS system has access to a global dictionary called a parameter server,
which is another feature provided by ROS. Parameter servers track key-value pairs, that can
be used to store configuration data such as system parameters or robot configuration. Nodes
can access parameter servers to read or write parameters and because parameter values can
be changed dynamically, the system can be dynamically reconfigured.

2.1.2 Rosbag

Rosbag, a component of ROS, was created to collect data from topics produced by ROS
nodes, while the system was in operation. Data from robot sensors like cameras, LiDARs or
microphones as well as details about the robot’s state like its position, velocity, and orientation
are frequently captured using rosbag. This information is packed in a file with the ”.bag” suffix,
which may then be played back for review or testing. Replaying the recorded data is one of
the most important benefits of using rosbag. This enables programmers to test algorithms
and debug software without the use of physical robots or sensors. It can also create several
arbitrary scenarios and possible robot states, which can then be processed in several ways to
achieve the best results.

2.2 Gazebo simulator

Gazebo is an open-source program that simulates real-world environments. It is primar-
ily focused on robotics and allows developers to model and test robotic systems in a virtual
environment. In addition to the graphical interface, it also includes many tools for generating
and managing robots or environments. It includes a built-in physics engine. It is used espe-
cially in the research and development of new robotic devices. The developers can test their
systems and robot management in a near-realistic environment. The simulator allows to test
many scenarios and states in which the robot can be in. This is aided by the aforementioned
Gazebo physics engine, which simulates the physical properties of the world and interaction
with the environment. It is suitable for simulating natural variables and interactions such as
wind, gravity, collisions, and everything that can affect the movement of the robot even in the
real world. Thanks to this, the programmer can improve, and test his system. This improves
the probability of the robot’s functionality in the real world. Also, the simulation is used to
protect both the robot itself and prevent injury to people around it. The Graphic User Inter-
face (GUI) in the Gazebo system which is shown in Fig. 2.1, can observe the robot according
to the user’s requirements from different angles or perspectives. Additionally, Gazebo offers
tools for creating and managing models. Thanks to the environment generation integrated in
the Gazebo simulator is possible to create an environment for testing. It is possible to set up
different lighting conditions or topography of the space. The Gazebo simulator also has the
ability to import your own models and then position them in the simulation. The Gazebo
simulator is also fully compatible with ROS. Thanks to this, it is possible to design any kind
of system for robotic devices. Gazebo also includes some modules that extend its functionality
and can be connected to robots. These include various sensors, cameras, and other peripher-
als. The developer can also use his own modules and plugins that are suitable for his project.
These plugins can then be freely adapted to the user’s requirements and used in many custom
products[35].
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Figure 2.1: Screenshot from Gazebo simulator. Includes user interface for inserting objects.

2.3 Radioactivity

Radioactivity is the process of releasing charged particles or electromagnetic waves from
the nucleus of an atom. The emitted particles or waves are called radiation. The phenomenon
of radiation can be observed in some types of atoms that have unstable nuclei. Atoms with
unstable nuclei contain excess energy which is usually released in the form of ionizing radiation.
Radioactivity is a natural process that persists in various elements or can be induced artificially
by human activity.

2.3.1 Types of radiation

Radiation is divided into three types: alpha, beta and gamma radiation. Each type of
radiation has different properties and characteristics.

Alpha radiation

Alpha radiation is the release of alpha particles from the nucleus of an atom. It consists
of a helium nucleus composed of two protons and two neutrons. Alpha particles are relatively
large and heavy. They have a low penetrating power, which means they can be stopped by
a sheet of paper or even the outer layer of human skin. The problem occurs if swallowed or
inhaled, in which case alpha particles can cause significant damage to body tissues and organs.
Alpha radiation is commonly emitted by heavy elements such as uranium and plutonium.

Beta radiation

Beta radiation is the release of beta particles from the nucleus of an atom, which are
high-energy electrons or positrons. Beta particles are much smaller and lighter than alpha
particles and have greater penetrating power, which means they can penetrate several layers
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of human tissue. It is possible to stop them with a wooden barrier, a layer of aluminium or
any material that has sufficient density to allow the beta particles to interact with matter.
Despite having lower mass than alpha particles, their better transmissivity and mobility make
them more dangerous. Beta radiation is commonly emitted by elements such as carbon-14 and
strontium-90, which is a by-product of nuclear reactors.

Gamma radiation

Gamma radiation is the release of gamma particles from the nucleus of an atom. They
take the form of electromagnetic waves and are high-energy photons without any mass or
electric charge. This makes it one of the most deadly and invasive forms of radiation. With-
out losing energy, gamma radiation rays can go through different materials or air. Gamma
photons may travel several meters through concrete, several centimeters through lead, and,
of course, the human body. Gamma rays are produced by the decay of various radioactive
elements, including uranium, radium or thorium. Apart from the obvious disadvantages of
gamma radiation, it is also possible to take advantage of its positive properties. Due to its
high energy and ability to penetrate materials, gamma radiation is an important aspect in
various fields. Its application in medicine for the radiation treatment of specific tumors is a
typical example[32].

Summary

Every radiation type has unique characteristics, that influence how it can be transferred
and interact with various materials. This indicates that there are various levels of risk associ-
ated with each form of radioactivity for both individuals and the environment. For instance,
gamma radiation can pass through the body and harm internal organs, whereas alpha radi-
ation can be deadly if it penetrates the body. The key is to understand the many types of
radiation that may be present in a particular environment, then identify them correctly and
respond appropriately.

Figure 2.2: Demonstration of various forms of ionizing radiation and its penetration through
materials. Source: https://owlcation.com/stem/The-Three-Types-of-Radiation
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2.3.2 Impact of radiation

Radioactivity has a variety of helpful applications around the world. Almost every tech-
nology that helps humans today is powered by electricity. A large amount of this energy is also
produced by radioactive materials. When radioactive material is present in sufficient amounts,
it is possible to effectively integrate the energy into our electrical system. Another indisputably
advantageous example is the beneficial use of radiation in medicine. The X-ray imaging and
the treatment of some cancers[32] are the two most common medical applications. Today,
radiation has become an almost indistinguishable part of medicine and electricity generation.

Although radiation has unquestionable advantages, it can also be hazardous and dam-
age people, the environment, and the animals that live there. Environment contamination can
occur in a variety of ways. The human factor and inappropriate control and storage of the ra-
diation material are two factors that contribute to environmental pollution. The use of nuclear
weapons, nuclear power plant accidents, and human-caused radioactive material leakage into
the environment are all examples of this. In addition, radioactivity can also be released into
the environment naturally, such as when radioactive material in rocks, minerals decays. The
most dangerous characteristic of radioactive substances is their ability to rapidly contaminate
the environment and not knowing about the radiation when people are exposed to it. Radia-
tion can spread most frequently through the water or air. Pollution of the sea, rivers, and lakes
has major effects not only for the local fauna and flora but also for the whole environment.
When contaminated water evaporates, radiation can be dispersed through rain over distances
of several tens of kilometers from its source, and contamination can even reach subsurface
water supplies. Another, way of spreading contamination is through the air. Radioactive dust
or fallout can spread rapidly and unstoppably through the wind over a distance of hundreds
of kilometers. Radiation enters organisms through simple breathing or skin absorption. High
radiation dosages are extremely dangerous to human beings. There are numerous health is-
sues that it may cause. Radiation exposure can alter a person’s DNA and lead to cancer or
other disorders. It can also make a person nauseous or make them vomit. Death is the final
manifestation of a high radiation dosage in a person. Radiation also poses a hazard to animal
life, thus they are not an exception. Animals that are exposed to radiation develop mutations,
live shorter lifetimes, or have trouble reproducing. This leads to the extinction of some species
and the subsequent collapse of the food chain, which has an impact on the entire ecosystem.

The impact of radiation does not only affect living organisms. Rain and air are two
ways that radiation contaminates the ground. As a result, the soil is no longer suitable for
continued usage or agriculture. Fruits and vegetables produced on contaminated soil become
contaminated and hazardous to the consumer. Contamination in the soil can occur over a
very long period of time, on the scale of hundreds to thousands of years. This results in
long-term adverse effects for its use. Cleaning such a contaminated environment is a very
time-consuming and costly task. Therefore, it is important to take precautions to entirely
eradicate radioactive material contamination. The regulation of ionizing radiation is handled
by a number of standards and laws. These regulations establish safeguards for the environment,
humans, animals, and the plants that grow there. There are treaties that govern the use of
nuclear weapons and treaties for nuclear power stations to cooperate with one another in the
case of an accident. Despite the fact that radiation is typically exceedingly dangerous, it can
actually be extremely advantageous and useful to humans when handled properly.
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2.4 Radiation detector

There are many radiation detection devices. Ionization chamber detectors were among
the first devices capable of detecting ionizing radiation. This detector works by determining the
electric field potential in a gas-filled chamber that is exposed to radiation. The Geiger-Müller
detector works on a similar principle to the ionization chamber, but has a higher detection
voltage. Because of the higher voltage, the sensitivity of this detector is much higher and it
can detect even small amounts of radiation. The sensor has as output a value representing the
number of measured particles. It cannot measure the energy or determine the type of particles
measured by the sensor. The scintillation detector, which transforms ionizing radiation into
photons of light, is another crucial kind of radiation detector. A high energy particle hitting
a scintillator causes the release of lower energy photon. The energy of the emitted photon
is proportional to the energy of incoming radiation. This process of conversion is known as
luminescence. These detectors offer excellent sensitivity, but tend to be large and heavy due
to the large volume of scintillating material and accompanying electronics. This makes them
less suitable for use onboard small-scale UAVs.

In this work, a detector based on a completely different technology is used to find and
localize gamma radiation. The detector uses a single-layer Compton camera based on the
hybrid semiconductor chip Timepix3. Whole semiconductor detectors operate on the electro-
magnetic characteristics of the materials they are made of. Their great advantage is the direct
conversion of high energy particles into electric signal. This allows the detector to be very
compact while maintaining very high sensitivity, being able to detect individual particles.

2.4.1 TimePix3

TimePix3 is the third generation of TimePix chips. It was developed in 2014 to take the
place of the MidiPix chips and be an enhanced version of the TimePix base chip. These chips
were created by a collaboration based at CERN and CTU in Prague also participated in the
development. This chip works on pixel semiconductor detector technology, where each photon
of radiation hitting the sensor is instantaneously detected and transmitted for processing.
The TimePix3 sensor consists of a 256 x 256 pixel matrix with a pixel size of 55 µm. Each
pixel serves as a separate detector capable of responding to ionizing radiation. Si, GaAs, or
Cadmium Telluride (CdTe) are the materials that are used to make the sensor. The sensor
pixels can operate in three modes. The first mode is called Time-of-Arrival (ToA) mod.
The ToA mode is used to measure the time of the radiation detection event for each pixel.
The next mode is Time-over-Threshold (ToT). After the threshold of the detected signal
is crossed, ToT captures the precise time. The third mode is a particle counter, often called
MediPix mode. The main difference from the previous generation TimePix is the ability to
measure simultaneously in two modes of the device, ToA and ToT.
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Figure 2.3: Picture of the MiniPIX TimePix3 device and a picture of the circuit board of
MiniPix together with the footprint details. Source: [12]

2.4.2 Compton camera

The Compton camera is an ionizing radiation detector that uses the TimePix3 chip
technology. The Compton camera captures the radiation particles, its detection time and
energy value. Contrary to conventional radiation detectors, the camera also provides the
ability to estimate the direction from which the ionizing particles came. The compact size
of the camera also means that the sensor volume/area exposed to the ionizing particles is
limited. The Compton camera relies on detecting the products of an event known as Compton
scattering. In this event, a high energy photon changes direction and transfers a portion of its
energy to an electron bound in the detector. This allows us to reconstruct the set of directions
of a possible radiation source in the form of a Compton cone.

The Compton camera construction usually consists of at least two detector layers. The
first layer is known as the scatterer, while the second layer below is known as the absorber.
The scatterer layer is a semiconductor (e.g. Si or CdTe) and is usually thinner than the
absorber layer. This layer triggers the Compton scattering effect. The contact of a photon of
radiation with the first layer results in a recoiled electron. The electron’s position, time of
arrival, and energy are recorded by the sensor. After the scattering effect, the second layer
absorbs the scattered photon and records its position, time, and energy as well. The absorber
layer is usually thicker and composed of a material with a larger proton number, such as CdTe.
Afterwards, the scattering angle Θ can be determined using Compton’s Eq. 2.1 as illustrated
in Fig. 2.4.

cosΘ = 1−mec
2 E1

E0 (E0 − E1)

Ē0 = E1 + E2

(2.1)
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Figure 2.4: A gamma photon with energy E0 emitted from the source is then scattered in
the first layer. There, the reflected electron leaves the energy E1 and the scattered photon is
absorbed in the second layer, leaving an energy of E2. Source: [20]

In this study, a modified version of the Compton camera with only one layer is employed
instead of a multi layer Compton camera. The combined functionality of the scatterer and
absorber is provided by a single 2 mm thick layer of CdTe. The advantages of Compton’s single-
layer design lie in its small size, lightweight and simple construction. The single layer Compton
camera can accurately determine the position of the coordinates, where the radiation particles
were detected on the sensor, but the challenge is to determine the depth. Depth is the vertical
distance between the recoiled electron and the scattered photon. For depth calculation, the
TimePix 3 chip is used to record the time of the detected particles by the sensor with ToA
and ToT modes. Depth is then computed from the time difference between the two events
and a known constant velocity of signal propagation through the sensor material.

Figure 2.5: Visualisation of a single-layer Compton camera in the C coordinate system. Where
e− shows the position of the incident electron, λ‘ is the position of the incident photon and
λ is the direction towards the radiation source. C is the Compton cone reconstructed from
the two events. eλ and ee show the measured footprint of the respective scattering products.
Source: [6]
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Fig. 2.5 represents a visualization of the processing of radiation particles. The CdTe
detector has a bias voltage of 450 V with the event propagation velocity of 2325.6ms−1. If
e−t is defined as the arrival time for the scattered electron and λ

′
t as the arrival time for the

photon, then the depth is calculated as Eq. 2.2.

∆z = 2325.6ms−1
(
e−t − λ

′
t

)
(2.2)

After calculating the depth, the positions of the scattered electron and the photon are

defined in the Compton camera coordinate system C as e−c =
[
e−x , e

−
y ,∆z

]T
for the electron

and for the photon as λ
′
c =

[
λ

′
x, λ

′
y, 0

]T
. The scattering angle Θ is calculated from the energies

recorded by the sensor for the electron Ee− and photon Eλ in units of joules from the Compton
equation expressed as the Eq. 2.3:

Θ = cos−1

(
1 +mcc

2

(
1

Ee− + Eλ
− 1

Eλ

))
, (2.3)

where mc = 9.10938356 · 10−31 kg is the rest mass of an electron, c = 299792458ms−1

is the speed of light in vacuum, and the argument in cos−1 is a number belonging to the
interval between (−1, 1). Resulting from the computations are identified potential directions
for the particle’s origin or the potential location of the ionizing radiation source. The possible
directions of radiation are described using the Compton cone’s surface. Sec. 3.1 provides more
detailed information. The definition of the parameters from the Table 3.1 required to represent
Compton’s cone is for the origin at point e−c , for the direction of Compton’s cone is determined
as e−c − λ

′
c, and the internal angle is Θ.

2.5 Depth measurement

Accurate depth measuring is essential in a variety of industries, ranging from navigation,
cartography, and environmental monitoring to construction, resource exploration, mining, and
construction inspection In this work, depth measurements are primarily used to map the
environment. LIDAR and depth cameras are two relatively new techniques for measuring
depth that have grown in popularity recently.

LIDAR is a type of remote depth monitoring that measures the distances of objects
using lasers. During this process, a laser beam is emitted from the LIDAR sensor, which
bounces back to the sensor after hitting the object. The time it takes for the laser beam
to travel to and from the object is used to calculate the distance. The distances calculated
by the lasers are captured according to the frequency that is set for the device. By quickly
sweeping the laser beam in different directions, the surroundings may be mapped out in three
dimensions. The LIDAR can measure depths accurately, with precision typically ranging from
one millimeter to one centimeter.

The process of the camera consists of the camera lens emitting infrared light, which
is reflected from surfaces and returned back to the lens. It is done using multiple camera
lenses at the same time. The lenses have a specified distance between each other and each lens
acquires different data about the same space that it captures. Then the built-in calculation
unit calculates the distance of the object from the camera by combining all outputs from
the lenses. The captured object more distant from the camera has a smaller deviation of data
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between camera lenses than the object closer to the camera. This process can also be performed
without infrared light, but it gives us an advantage in poorly illuminated environments.

Two types of sensors, LIDAR and depth cameras, are employed in numerous fields,
including robotics, autonomous driving, and 3D scanning. LIDAR provides a number of ben-
efits, including great precision and accuracy, a long range, high resolution, and the capacity
to identify obstacles. However, it can be expensive and its weight can also be a barrier to
its deployment in robotics. Therefore, it is not very suitable for the low-performance small
UAV this thesis is aimed towards. Depth cameras, on the other hand, are less expensive than
LIDAR sensors, easier to use, and weigh significantly less, making them appropriate for a wide
range of applications. The depth camera is shown for example in Fig. 2.6 The depth camera
has a shorter range of only a few meters, lower resolution, and is not able to produce 3D point
clouds with the same degree of information as LIDAR. Ambient lighting has an impact on
depth cameras, which can decrease their accuracy in direct sunshine or dim lighting.

Figure 2.6: Picture of the Intel RealSense™ D435 with its dimensions. Source: https://www.
intelrealsense.com/depth-camera-d435/

Range, resolution, field of view and price are the main differences between depth cameras
and LIDAR. LIDAR is more suitable for applications in complex environments, because it can
create 3D point clouds with a high level of detail at distances of up to several hundred meters
in each direction, and we have sufficient financial resources to buy it. Depth cameras are more
appropriate for applications where it is important to reduce each weight load and in simpler
environments due to their lower accuracy, they are less expensive and have a smaller field of
view.

2.5.1 OctoMap

The OctoMap is an open source library for C++ programming language. The OctoMap
provides a highly efficient and flexible 3D mapping framework, that enables creating environ-
ment maps using depth sensors. It can accurately represent space with a probabilistic voxel
grid. The OctoMap is used frequently in the robotics industry. A robot often needs to know
about the space it is in and perform certain actions accordingly. When a robot moves in a
complex or dynamic environment, recording the environment is very important and necessary.
Using techniques like the A* algorithm or other route planning techniques, allows the robot
to plan routes efficiently while avoiding obstacles.

An essential feature of the Octomap is the efficient representation of space. The Oc-
toMap is based on the octree structure. The octree is a tree data structure that recursively
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partitions space into cubic cells. Each cell represents a volume in space, and the depth level of
iteration in the recursion determines its size. The occupancy of the cells is determined accord-
ing to a probabilistic model. The octree structure is capable of real-time updates along with
newly arriving measurements from sensors. This performance is achieved by updating only
the altered elements of the octree structure and avoiding needless changes to the structure. As
a result of the short time requirements, the environment in which the robot is placed can be
recorded very precisely and recently. Another benefit of the OctoMap is its adaptable inter-
face, which enables quick integration into unique project designs. Because the library is open
source, it is constantly evolving and new enhancements are being added. Overall, it is a very
flexible and powerful library for capturing 3D environments and its constant improvement
will ensure that it remains a part of robotics for many years to come[27].

Figure 2.7: 3D visualization of the environment using the OctoMap, in which the world is
divided into cubes. Source: https://octomap.github.io/
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Chapter 3

Sampling

This chapter focuses on the processing of the input data obtained from the main sensors.
The goal is to convert the measured values into points located in R3 space, which can be easily
and quickly processed in the next steps needed for radiation localization. The UAV is equipped
with several sensors. Each sensor has a unique purpose and is needed for the whole work to
function. The dosimetric sensor is represented by a Compton camera and the depth sensor
can be represented by a LIDAR or a depth camera. By combining the resulting measurements
from the sensors, a small set of points can be obtained. This work presents several possible
ways to obtain these points.

3.1 Dosimetry evaluation

This focuses on processing of the output data obtained from the Compton camera. The
Compton camera is used to determine the direction in which a radioactive source could be
located. The processed sensor output has a conical shape called a Compton cone. The cone
is described by two vectors and two scalars that define its position, orientation and shape.
All vectors are assumed to be located in R3. The first vector is the origin, which defines the
apex of the cone. The second vector is the direction of the cone, which defines the orientation
in which the cone points. The first scalar represents the angle between the direction vector
and the surface of the cone. The second scalar represents the distance between the origin of
the cone and its base. This parameter is not used in our calculations. Instead, it is chosen
dynamically as needed. The parameter notation is shown in Table 3.1 and an example of a
Compton cone in Fig. 3.1.

o The vector represents the origin of the cone
d The vector of the direction vector of the cone
α The scalar represents the angle, where α ∈

(
0, π

2

)
Table 3.1: Mathematical notation of the Compton cone.

The goal is to transform the cone into the most appropriate set of points representing its
surface other than the origin. Therefore, it is necessary to create a generator that has a cone
description as the input and a set of points as the output. The basic principle of the generator
is to find a suitable equation of a cone that can be used to sample the cone at a given resolution.
The basic form used to solve the problem is the parametric equation, which is suitable for an
iterative approach and computationally unconstrained. The parametric expression provides a
suitable solution of the problem with a minimum number of parameter variables. The idea is
to describe cones as circles.
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Figure 3.1: Example of a Compton cone in R3 space with the origin and direction vectors
from the Compton cone notation Table 3.1. The blue vector represents o origin of cone, the
red vectors represent the d direction.

3.1.1 Circle equation

A circle in R2 can be defined as the locus of all points that satisfy the equations

x = r · cos(θ)
y = r · sin(θ),

(3.1)

where x, y are the coordinates of any point on the circle, r ∈ R≥0 is the radius of the
circle and θ ∈ ⟨0, 2π⟩ is the parameter. Equation 3.1 also represents the conversion from polar
coordinates (r, θ) to Cartesian coordinates (x, y). In this section, the cone is to be partitioned
into a set of circles. For this to work, the parametric equation has to be expanded into R3.
Let (u,v) ∈ R3 be unit vectors which define the plane in which the circle is located. The task
of u and v is to rotate the circle according to the direction of the cone. In other words, they
are the basis vectors of the circle. After adding the new vectors, it is possible to introduce the
basic form of the circle equation in space of R3 as Eq. 3.2, Eq. 3.3.

xy
z

 = r · cos(θ) · u+ r · sin(θ) · v (3.2)

x = r · cos(θ) · ux + r · sin(θ) · vx
y = r · cos(θ) · uy + r · sin(θ) · vy
z = r · cos(θ) · uz + r · sin(θ) · vz

(3.3)

The equation Eq. 3.2 contains two unknown vectors (u,v) and a scalar r which repre-
sents the radius of the circle. Vectors u and v are two orthogonal vectors that reside in the
plane of the circle. To calculate the vectors u and v it is necessary to use the vector describ-
ing the direction of the cone d from Table 3.1. The vector d represents the normal vector
of the plane defined by u and v. The first step is calculate u from the equation u · d = 0
or u = (dy,−dx, 0)

T and to normalize the vector u. The calculation of the third orthogonal
vector v is using the vector product method and normalizing the vector, v = u×d

∥u×d∥ . Now the
basis vectors u and v, together with the orientation of all circles according to the direction of
the cone, are calculated.

The next step is to calculate the radius of the circle. The circle represents the base of
the cone. For simplicity, assume that the cone has origin at (0, 0, 0) and a height of one unit.
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The assumption allows us to turn the problem into a triangle problem. The triangle is right-
angled, where the radius of the circle represents the opposite side of the triangle, the adjecent
side is the height of the cone and the hypotenuse is the length of the side of the cone. The
triangle is illustrated in Fig. 3.2. The problem can already be solved by goniometric functions.
In the case of calculating the radius where adjecent = 1 and α is from Table 3.1, the result
is r = tanα, because tanα = opposite

adjecent . If the radius is not calculated according to the given
assumption, but according to the assumption that the magnitude of the hypotenuse = 1,
the result is r = sinα = opposite

hypotenuse . This approach allows us to proceed uniformly along the
surface of the cone rather than by its height.

Figure 3.2: A right-angled triangle with marked sides and the α, which represents the angle
of the cone.

3.1.2 Cone equation

The equation Eq. 3.2 is further modified to express any point on the surface of the
cone surface. It changes from a parametric curve equation to a parametric surface equation.
Parametric surface equations contain two parameters. One is the interpreted θ and the other is
the height parameter, which scales and shifts the circle along the cone. The height parameter
is a scalar which we will recognize as h, where h ∈ R≥0. The cone may not be centered at
the origin of the coordinate system, so the whole equation needs to be shifted by the vector
o from Table 3.2. As a final step to develop the equation, it remains to define the vector
responsible for the direction of motion and velocity of the circle, called p. If we define r by
r = tanα the vector p is defined by d, since it moves at unit speed. Using a uniform approach
to the cone surface, vector p must be multiplied by cosα to reduce the velocity with respect
to the angle of the cone. The main equation that can uniformly describe the cone cover using
parametrization, and notation in Table 3.2 is as followsxy

z

 = o+ h · (p+ r · (cos(θ) · u+ sin(θ) · v)). (3.4)
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o The vector o ∈ R3 represents an offset from the origin.
p The vector p ∈ R3 represents the direction and magnitude of the step of the circle on the cone.
u,v The vectors (u,v) ∈ R3 describes the orientation of a circle in R3 space .
θ The parameter θ ∈ ⟨0, 2π⟩ represents a central angle of a circle.
h The parameter 0 ≤ h ≤ H denotes the circle’s location on the cone, and H is the cone’s height.
r Radius of the circle cut from the cone at the defined height, r ∈ R.

Table 3.2: Notation of the parametric Eq. 3.4, describing a cone.

3.2 Cone sampling

The section presents several methods to sample the surface of a cone by points using a
parametric surface equation. Thanks to the Eq. 3.4, we can define any point on the Compton
cone. The objective is to approximate the cone as precisely as possible with the lowest number
of points. Low computational complexity is also a quality that the method must meet. The
method must be able to generate a set of points from the cone almost instantaneously for
a real-time application. The need for a fast point generation motivated the development of
several cone sampling methods.

3.2.1 Line sampling method

The simplest of the methods is the approach using straight lines. When applying the
method, the part of the cone to be processed is determined. This is determined by the start
and end of the part which are defined as the distance from the origin of the Compton cone. The
cone processing starts by defining points on the circle at unit distance of the circumference
of the circle from the origin of the cone. The number of points that are generated depends
on the input parameter. In parallel, the number of points also represents the number of lines
that will be generated. Eq. 3.4 is then used to create a predetermined number of points on
the line in the chosen cone portion. The line is created as a ray from the origin of the cone
towards the generated point. If a point from the circle is defined as a vector c, vector o is
origin from Table 3.1 and h is a parameter, then the resulting point q ∈ R3 is calculated as

q =
(c− o)

∥(c− o)∥
· h+ o. (3.5)

Then, a certain number of points on the line are sampled using the parametric equation. The
sampling process is described in Alg. 1.
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Algorithm 1 Compton cone sampling with lines

1: function SampleConeLine(startHeight, endHeight, lineCount, pointsPerLine)
2: step← 2π

lineCount ▷ Dividing the circle into steps.

3: heightShift← endHeight−startHeight
pointsPerLine ▷ Dividing the line into steps.

4: θ ← 0
5: while θ < 2π do
6: pointOnCircle← generatePoint(1, θ) ▷ Generating a point using Eq. 3.4, h = 1.
7: lineHeight← startHeight
8: while lineHeight < endHeight do
9: pointOnLine← getPointOnline(pointOnCircle, lineHeight) ▷ Using Eq. 3.5.

10: points.Add(point)
11: lineHeight← lineHeight+ heightShift
12: end while
13: θ ← θ + step
14: end while
15: return points
16: end function

Method SampleConeLine needs the least computational time of all the methods listed
in this work, because it describes only a few points using the equation of a circle Eq. 3.4.
However, it has one significant disadvantage. The problem is that the distance of the points
between the lines is proportional to the distance from the origin of the cone. Inaccuracy can
have a serious impact on the accuracy of the next measurement. The other listed method tries
to solve the problem, but at the expense of performance. An example of this sampling method
is shown in Fig. 3.3. To reduce the error, which line sampling has with the proportion, ray
tracing is used to calculate the point set instead of the parametric Eq. 3.5 , as described in
more detail in Sec. 3.3. The solution to the problem can also be to set a higher line density
during sampling.

Figure 3.3: Example of line sampling with ten defined points on a circle. Lines are created by
casting ten rays using ray tracing.
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3.2.2 Uniform sampling method

The most accurate and controllable way to approximate cones is by a uniform sampling.
The technique is distinguished by the fact that all neighboring points are equally far from
one another. The algorithm, like the earlier ones, is capable of describing a particular region
of the Compton cone. The part of the cone to be processed is defined by the distance of the
start and end from the origin of the cone. The parameter that controls the distance between
the generated points is called range. The algorithm starts by processing the cone from the
defined start distance of the segment to the end, proceeding with the step of range. At each
step, a slice of the cone has to be taken using the circle Eq. 3.4. The circle is then sampled
as described earlier. The points on the circle are then determined from the equation. The
sampling step on the circle is derived as the range divided by the height of the cone at this
distance. The results of the algorithm are points in R3 representing the cone. The biggest
disadvantage is the added computational load caused by defining of the points using just the
parametric equation of the circle in space. The solution is therefore to not generate more
points than needed, i.e. to reduce the sampling rate. An example of this sampling method is
shown in Fig. 3.4. The process is procedurally described in Alg. 2

Algorithm 2 Uniform Compton cone sampling by range

1: function SampleConeUniform(startHeight, endHeight, range)
2: height← startHeight
3: while height < endHeight do
4: step← range

height·sinα ▷ Dividing the circle into steps according to range.
5: θ ← 0
6: while θ < 2π do
7: point← generatePoint(height, θ) ▷ Generating a point using Eq. 3.4.
8: points.Add(point)
9: θ ← θ + step

10: end while
11: height← height+ range ▷ Height shift according to range.
12: end while
13: return points
14: end function

Figure 3.4: Example of the Uniform sampling, with range equal to 1
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3.3 Measurement fusion

After applying one of the algorithms from Sec. 3.2 to process the Compton cone, the
set of points that need to be processed is obtained. Hundreds of points are used to accurately
represent the entire surface of the cone. The high sampling density leads to a longer time
required to process the points. To reduce the time required, it is necessary to limit the number
of active points. Some of the generated points may not be useful for locating the radiation
source. A typical example are the points that do not pass through any object, because the
radiation source is assumed a physical object, not a gas. The above assumption allows us
to exclude points that do not pass through objects. This speeds up the data processing and
allows prior exclusion of unlikely radiation locations.

To achieve the restriction of generated points, it is necessary to obtain information
about the space in which the Compton camera is located. Depth measurements taken by the
sensors are used to map the environment. The combination of dosimetric and depth measure-
ments is therefore an effective option to access processed data faster. Depth measurements are
taken with a LIDAR or a depth camera and then processed as a PointCloud. Thanks to the
OctoMap library1 and the OctoMap server2, the PointCloud is then converted to the octree
structure. The octree structure enables the efficient representation of R3 space in which the
UAV operates. This is necessary, as the overall goal is to localize potential radiation sources
in R3. To implement the enhancement, the point sampling algorithms need to be modified.
The idea is to associate the generated points with voxels in the OctoMap.

3.3.1 Ray tracing

Additionally, ray tracing from the OctoMap library is utilized for the octree. Ray tracing
in the thesis serves as a replacement and refinement of point generation in three-dimensional
space instead of the sampling method described in the Sec. 3.2.1. Ray tracing searches for
voxels3 in the space from which the OctoMap is constructed. The found blocks are then
transformed into a set of points that describe the ray and eventually the Compton cone’s
envelope. A ray is defined by its start and end points in space. When using Eq. 3.5 the
generated points are similar to the points obtained by ray tracing, but not exactly identical.

The ray-tracing method is based on the principle [40] by Amanatides and Woo. The
method first determines if the points are a part of the OctoMap and calculate the ray direction
and voxel sizes beforehand. The ray tracing algorithm begins with the voxel at the start point
and gradually moves in the direction of the defined ray. When selecting the next voxel, the
algorithm selects the neighboring voxel in the direction of the dimensions and finally selects
the one closest to the beam towards the front. By its approach, the algorithm achieves the
optimal selection of voxels whose coordinates are converted into a set of points. The algorithm
terminates when it reaches a voxel that represents the endpoint of the ray. Ray tracing in fusion
with depth measurements improves the Compton cone sampling so that each voxel passing
through the ray is a newly generated point. The improvement is especially noticeable with
objects close to the UAV, where the beams are placed close together and ray tracing generates
a point for each voxel in the OctoMap. The ray tracing and also generates a point for each
voxel in the OctoMap passing through the ray.

1https://github.com/ctu-mrs/OctoMap mapping planning
2https://github.com/ctu-mrs/mrs OctoMap server
3a cube cell into which the OctoMap is divided
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3.4 Comparison

The section discusses the advantages and disadvantages of the developed sampling algo-
rithms. Cone sampling is performed by two algorithms. Sample line method from the Sec. 3.2.1
and Uniform sampling method from the Sec. 3.2.2. Both algorithms use a different way of sam-
pling the surface of the Compton cone by using the same parametric equation. The essential
part is the fusion of the sampled radiation data with the depth measurements. The fusion is
also performed differently for each algorithm. The SampleConeLine algorithm uses ray tracing
for the highest accuracy. Ray tracing takes advantage of all available data from depth sensors
represented by the OctoMap. The uniform sampling on the other side first generates points
describing the cone independent of depth measurements. Then, the algorithm checks the over-
lap between the points and the OctoMap data defined as occupied. Various approaches to data
fusion, achieve different results in time complexity or number of points in the set obtained by
the sampling algorithm.

Different environments created with the OctoMap are used to compare the sampling
algorithms. The test is performed on a simple environment defined as a flat surface without
obstacles and for comparison an environment with obstacles is also created, representing a
real deployment. The algorithms are tested in a way where thousands of randomly generated
Compton cones are sampled in each of the environments. The data are recorded and then
displayed in the following plots Fig. 3.5a and Fig. 3.5b. It is important to note that the time
complexity of the algorithms for each test is on the order of microseconds. This demonstrates
the possibility of real-time deployment.

(a) The graph shows data obtained by comparing sam-
pling algorithms in an obstacle-free environment.

(b) The graph shows data obtained by comparing sam-
pling algorithms in an environment with obstacles.

Figure 3.5: The figures show a comparison of the two sampling algorithms developed in this
thesis. The data is obtained by testing in an environment without (a) and with obstacles
(b). The graph is a bar graph where each algorithm is represented as two columns. The first
columns for each algorithm represent the average number of points generated during sampling
and the second column is the average time complexity of the algorithm. It can be seen that
when using a uniform algorithm, the computational cost is significantly lower at the expense
of generating fewer points.

The first of the graphs represents the comparison of algorithms in the environment
without obstacles and the other with obstacles. The data displayed on the different graphs
have elements of similarity. In Fig. 3.5, it can be clearly seen that sampling in a complex
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environment has an effect on the number of points that are generated during the fusion and
this increases the time complexity over time. With the Uniform Sampling, it can be seen that
all the values are lower than those measured with Line Sampling. This is mainly caused by
the default value at the input of the sampling algorithm. In this thesis, the value of the range
parameter is set to 1. This value is empirically set according to the resolution of the OctoMap
at which the fusion is performed. When the value is reduced, the number of points generated
increases due to the increased density of the sampling algorithm. More information about
each algorithm is offered by pairwise comparisons, such as the number of sampled points
and the time required for their generation. It can be seen that the uniform algorithm needs
proportionally more time to process the Compton cone than the Line algorithm with respect
to the number of points generated. Thus, the time complexity is a disadvantage of the uniform
algorithm. However, the overall time complexity of Uniform processing is lower than using
Line Sampling because the total number of points generated is lower. The Line algorithm,
because of the number of points, has an increased time complexity in the next stages of the
work. The performance of the Line Sampling algorithm could be improved by adjusting the
number of samples or the OctoMap resolution, but the performance of the Uniform sampling
was deemed satisfactory. The Uniform sampling is the preferred method and is used in the
following sections.
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Chapter 4

Radiation source estimation

The aim of this chapter is to describe how to find possible locations of a radiation source.
There are many methods for estimating the position of radiation, but this article presents a
method focusing on the processing of data obtained from discretization of measurements. The
data to be processed are presented in the Sampling chapter. The data are acquired sequentially
at a certain frequency, and are also represented as a set of independent points. Therefore, the
best choice is to use an iterative algorithm capable of continuous updates with new incoming
measurements. The algorithm should also sort these points into essential and non-essential.
An important part of the work is to detect not just one, but multiple sources of radiation. The
sources must therefore be found using an algorithm that does not converge to a single location
in the environment. The algorithm must also be fully modular and easily re-configurable, as
the mission of parameters and objectives may change during the development or even on the
fly. One of the algorithms that can analyze incoming data and filter out the unnecessary ones
is the particle filter.

4.1 Particle Filter

Particle filter is a sequential method based on the Monte Carlo principle designed to
solve nonlinear and non-Gaussian problems. The method’s purpose is to estimate the present
but unknown probability density in the state space in order to derive assertions about a
dynamical system’s most likely state. More information can be found in [36]. The method
uses particle sets to represent probability distribution and can be used with various forms of
a state space model. The state model may be nonlinear, and the particle set, including the
noise distribution, may take any form. The particle set may also be called a sample.

Nowadays, the particle filters are applied in many industries such as data science,
robotics, statistics, medicine, and reinforcement learning. The particle filter solves many prob-
lems in applied robotics. A typical example is tracking the position of dynamic objects in space,
such as drones or underground robots. If the dynamic object is the robot itself, a particle filter
may be used for localization within the environment using its onboard sensors[33][30]. An-
other problem common in robotics is human tracking. There are many ways to tackle this
problem[39][29], and the particle filter method is one of them [38]. Multimodality is also a
characteristic of the particle filter, which allows tracking of not only one, but many objects
at the same time.

The necessity for high volumes of data is one of the issues that these algorithm face. A
vast number of samples must be input in order to acquire the desired results. Furthermore,
there is no clear demonstration of particle filter algorithm’s convergence[37].
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4.2 KD-Tree

An essential component for speeding up data processing in this work is the KD-Tree.
KD-Tree is a data structure that is used for more efficient particle searching. The structure
stores particles in a binary tree, whose levels are distributed among three dimensions. There,
each dimension represents a different coordinate axis of the particle. In comparison to a linear
search, the point search algorithm in a KD-Tree has an average time complexity of O(log n),
which unquestionably speeds up the algorithm.

The KD-tree is built by recursively splitting the space by finding a midpoint along one
of the coordinate axes for each level of the tree. Points to the left of the midpoint are inserted
into the left subtree, and points to the right of the midpoint are inserted into the right subtree.
For each of the remaining axes, this process is carried out repeatedly until all points have been
inserted to the tree. The KD-tree can be used for various spatial queries. For this work, a
custom KD-tree has been created and it is possible to find the nearest neighbor of a given
point, find all points within a certain distance from a given point, or to find the N closest
points to a given point. These queries are effective because a significant percentage of the
search space can be pruned using the tree’s hierarchical structure.

4.3 Estimation algorithm

The estimation of the radiation source location is using an iterative algorithm. The
algorithm is based on the particle filter principle. The particle filter takes the sampled cones
as the input for each iteration of new particles generation. The particles represent the possible
locations of the radiation source as described in Chapter 3. The particles are compared and
ranked with the particles from the previous measurements. The principle of one iteration of
the algorithm is described in the following steps.

1. Accept new particles from the latest measurement generated by the sampling method.
2. Assign a weight to each new particle using the stored particles.
3. Update the weights of the stored particles according to the new measurement.
4. Merge new and stored particles.
5. Exclude the particles which are unlikely to represent a radiation source.
6. Store particles that have not been excluded.
7. Find potential radiation sources’ locations using stored particles.
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Figure 4.1: 3D visualization of particles processed by the particle filter algorithm. The green
object represents one of the measured Compton cones. The grey points are created using
the sampling method from Sec. 3.2. The blue points represent the stored particles from the
particle filter algorithm. The red points represent the actual position of the radiation source,
the green point is the radiation source estimate from the filter.

The algorithm is run on each new input which updates the measurement result. The results
of the algorithm after each update should be more accurate and better approximate to the
actual radiation source’s position. A key part of the algorithm is the model method that
assigns weights to all new particles. The weights of a particle are computed both for new
particles and for particles already stored. It is the basis of the algorithm according to which
the particles in the next step are excluded. Point elimination enables data processing with a low
computational load and the use of a real-time particle filter. An example of the functionality
of the particle filter algorithm can be seen in Fig. 4.1. In the next sections, several models are
introduced and tested for calculating particle weights.

4.3.1 Average model

The first model for calculating the weights is called the Average model. This model
determines the weights for particles based on the distance of the nearest particles. The model
aims to keep the particles, which are close to other particles in the incoming measurement and
to discard the most distant particles. The model contains two parameters that determine the
number of particles in the calculations. The first parameter determines how many particles
from the dataset are used to calculate the weight of a new incoming particle. The second
parameter determines how many particles are used when updating the weights of the stored
particle by the incoming particle. The model starts by accepting a new measurement. Once
accepted, for each particle in the new measurement, the N nearest distances between the
stored particles in the dataset and the selected particle are found. The number N is given as
an input parameter. At the same time, the nearest distances for a particle in the dataset are
similarly found. The calculation of the particle distance is replaced by the squared distance
instead of the Euclidean distance to improve computational performance. The square distance
is defined as the Eq. 4.1, for two particles in R3 space.

d = (x1 − x2)
2 + (y1 − y2)

2 + (z1 − z2)
2 (4.1)

After finding the nearest distance to the measurement, its weight is calculated as

w =

∑n
t=1 dt
n

. (4.2)
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In Eq. 4.2 w is the particle’s weight, n is the number of the nearest distances, and dt is the
distance from another particle. For a particle in the dataset, the weight is calculated as

w =
wp · cwp +

∑m
t=1 dt

cwp +m
. (4.3)

The equation handles updating the weight for the particle, where it uses the weight
from the previous iteration wp and the new average distance. The variable cwp is the total
number of particles used in the calculation of the previous weight, m is the number of the
nearest distances obtained from the input parameter, and dt is the distance. After updating
the weights, the particles are merged and sorted according to the newly found weights. The
particles with the worst weights, which have the largest average distances do not get inserted
into the capacity-limited dataset. The functionality of this model is repeated periodically for
each new measurement.

The Average model can have different settings that establish the input parameters. The
weight of a particle can be calculated using the all-to-one method, where here the weight is
calculated as the average of all other particles. Another method is the one-to-one, where the
weight is calculated based on the nearest particle only. In developing the algorithm, several
different combinations of parameters were tested using percentages of the total number of
particles. The most appropriate combination of parameters is to calculate weights from the 10
percent of the nearest newly arriving particles and from all the stored particles in the dataset.

4.3.2 Worst model

The Worst model uses a similar technique to the Average model to calculate the weights.
The main difference is that instead of the best distances, it calculates the average of the worst
ones. This allows us to approach the particles differently and to focus on removing mainly the
most outlying particles, i.e. the particles which are the least probable for the presence of a
radiation source. It requires two parameters. One specifies the number of particles used from
the dataset to calculate the weight of a new incoming particle. The second parameter specifies
the number of particles used in updating the stored particle by the incoming particle. The
calculations are performed according to Eq. 4.2 for the new particles and Eq. 4.3 for the stored
particles. The difference from the Average model in the equations is that the model takes M
and N as the number of the farthest measured distances. At the end, the particles with the
largest weights, where the weight represents the average distance to the farthest particles
from the other measurements, are removed. The number of particle removals is based on the
capacity of the model dataset.

4.3.3 Surrounding model

The most adaptable filter model is the Surrounding model. This model calculates the
weight of a particle according to whether it hits or exists in its surroundings. In the surrounding
model, each particle has a counter which records the number of hits. A hit for a particle means
that there is a distance between it and another particle that is less than a specified threshold
distance. The working principle of the model is described in the following steps.

The initial step is to go through all the particles already stored in the model dataset
and for each particle, the number of hits in the new measurement is counted. At the same
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time, the hits for the particles from the new measurement are also counted using the particles
already in the dataset.

The next step is to evaluate the weights of the particles. The evaluation of the weights
is divided into two parts. The first part solves the hit count for particles already in the
dataset and the second for newly acquired particles. The weight of a particle in the dataset
is determined as follows. If the number of hits exceeds a threshold value, typically set to
zero, then the weight of the particle decreases by a specified amount. If the number of hits
exceeds the hit threshold then the weight increases by a specified amount. For the newly
received particles, the weight is determined differently. The possibility of adaptation for not
yet explored particle positions was also considered in the model design, as well as the possibility
of moving the UAV to a different location. This is why the weights for the new particles are
calculated from the weights of the dataset particles. The weight value is obtained as the weight
of a particle at a certain position in the dataset. If the number of hits for a new particle is
above a threshold, the particle has a weight gained from a better position in the dataset than
particles that do not reach the threshold.

The last step is to merge the particles of the new measurement and the dataset. Subse-
quently, the particles with the largest weights that no longer fit into the limited capacity of
the dataset are discarded. After this step, the iteration of the model is done, and it is ready
for the next input of new particles.

A keyfeature of this model is that the particle weights increase during the source search
instead of decreasing. This leads to a significantly higher number of particles that, although
they may represent the position of the radiation, do not interfere with other input data
measurements.

4.4 Estimation clustering algorithm

The filter output is too inaccurate to be used directly. The output contains a lot of
information in the form of positions where radiation sources could be located. Ideally, each
radiation source should be represented as a single point in R3 space. To implement such
a solution, an algorithm is developed that processes the output data of the particle filter
and returns only the estimated positions of the radiation sources. The algorithm is based on
BFS1 and divides the particle into clusters, where one cluster represents one position of the
radiation source. The clusters are generated according to two parameters, the first describes
the minimum positional distance between two particles belonging to the same cluster. The
second parameter expresses the minimum particle number at which the cluster is considered
a radiation source. In addition to the clustering parameters, the number of highest-rated
particles from the dataset can also be determined, which is taken into account when applying
the algorithm.

The algorithm starts by selecting an initial particle, which is the first particle without an
assigned cluster in the filtered dataset. The algorithm then finds all neighboring particles that
are within a certain threshold distance from the starting particle. These neighboring particles
are added to the cluster and their positions are used to update the estimated position of the
source and find other particles belonging to the same cluster. This process is repeated for each
unclustered particle in the particle dataset until all clusters have been found, and all particles
have been processed. The input parameters are designed to handle noisy measurements and

1Breadth First Search – an algorithm for traversing graph vertices
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tolerate missing or incomplete data. It works well in situations where the sources are widely
separated and the noise level is low. However, it may not work well in situations where the
sources are close together below the input parameter threshold or when the noise level is
high. After all, clusters have been found, the algorithm calculates the average position of the
particles in each cluster and returns these positions as the estimated positions of the radiation
sources. Estimated positions can then be used for further analysis and work. These positions
are provided as an assumption for the user about where the radiation source might be located.

4.5 Model comparison

Algorithm benchmarking is a key discipline in data science these days. Its goal is to
determine which algorithm can solve a given problem more accurately and quickly, which can
lead to more efficient problem-solving and a reduction in the time required for a human to
apply the algorithm. Several variants of models for the particle filter have been developed for
this thesis. The three most notable models have already been introduced in Sec. 4.3. In the
following paragraphs, these models are compared and their positive and negative properties
are discussed. The comparison is done by running all three filters in a simulated situation
that might occur in a real world application. In order to perform the comparison, different
situations had to be recorded as rosbags. An application was created, that can play these
rosbags and simultaneously run different versions of the model for the filter at the same time.
Also, this application can use a ROS service to change the model parameters, enable, and
reset the model in real-time. The results obtained during the measurement are continuously
recorded in CSV2 files for further processing. The post processing of the recorded CSV files
is performed using Python scripts that convert the data into graphs suitable for analysis and
accuracy representation of the models

4.5.1 One radiation source

The basic situation, which is demonstrated in the first comparison, is the detection
of a single radiation source. The source is static and placed in an empty environment with
no obstacles. The source is located approximately 10 meters from the sensor on the UAV.
The objective is to detect the location of the source using the incoming photons, which are
captured by a simulated Compton camera and processed into Compton cones. All acquired
Compton cones are then processed using the uniform sampling Alg. 2. The sampling converts
the measurements to a set of points in three-dimensional space. Simultaneously, the UAV
scans the space using a LIDAR placed on top of its frame. Next, the depth measurements are
fused together with the sampled set of points to form particles for input to the filter.

Static UAV

In the first case, the UAV is not moving and just hovers idly near the radiation source
for 5 minutes. The Average model is demonstrated as the first model for data filtering in
the scenario. The model is run for the whole testing period and its output particles are
updated with each new incoming measurement. The particle output from the model is further
processed by the estimation clustering algorithm from Sec. 4.4, into the form of possible
radiation sources. The results of the scenario can be seen in the following graphs Fig. 4.2.

2comma-separated values
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(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.2: The results of a single radiation source detection using the Average model (Sec.
4.3.1) and a static UAV.

Figure 4.3: Density map of estimated radiation sources for one actual radiation source with
static UAV. The density map describes the view from above in two-dimensional space. The
white marker represents the real position of the radiation source. The green dot represents the
position of the UAV. The color in the map represents the number of points estimated during
the measurement. A lighter color of the map means a higher chance of finding a radiation
source.

The measurement results appear highly accurate in the first graph Fig. 4.2a. It can be
noticed that the estimation of the radiation source by the Average model is highly accurate
throughout the measurement. After the initial measurement phase of about 50 seconds of the
experiment is over, the distance between the detected radiation source and the real one is
never more than 0.5 meters. Fig. 4.2b does not represent the accuracy of the measurement,
but it can be noticed that numerous radiation sources are estimated after the initial phase
is exceeded. This causes a serious problem in the actual detection of radiation. In Fig. 4.2a
it is possible to tell that one of the estimated sources is close to the radiation, but it is
not possible to determine which estimated source is the close one without other necessary
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information. Fig. 4.3 represents wherever the radiation source has been estimated. In a static
measurement, all estimated points are positioned in the direction of the radiation source from
the UAV’s position.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.4: The results of a single radiation source detection using the Surrounding model
(Sec. 4.3.3) and a static UAV.

Figure 4.5: Density map of estimated radiation sources for one actual radiation source with
static UAV. The density map describes the view from above in two-dimensional space. The
white marker represents the real position of the radiation source. The green dot represents the
position of the UAV. The color in the map represents the number of points estimated during
the measurement. A lighter color of the map means a higher chance of finding a radiation
source.

When using the Surrounding model, it is possible to notice the similarity to the previous
model. From Fig. 4.4, it can be noted can be deduced that there is also a number of estimated
radiation sources and it is not possible to determine which one represents the real source of
radiation. A difference between the Average model and the Surrounding model can notice
the changes in behavior in the initial phase. In contrast to the Average model, the initial
phase lasts longer but slowly converges over time. As with the Average model testing in the
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previous case, the estimation graph Fig. 4.5 shows that all estimations are in the direction of
the radiation source.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.6: The results of a single radiation source detection using the Worst model (Sec.
4.3.2) and a static UAV.

Figure 4.7: Density map of estimated radiation sources for one actual radiation source with
static UAV. The density map describes the view from above in two-dimensional space. The
white marker represents the real position of the radiation source. The green dot represents the
position of the UAV. The color in the map represents the number of points estimated during
the measurement. A lighter color of the map means a higher chance of finding a radiation
source.

The last model tested for filtration is the Worst model. The results in Fig. 4.6 are quite
different from the other models. The minimum distance measurement in the graph Fig. 4.6a
starts to decrease, but with one new measurement the distance increases above 1 meter and
the number of estimated sources in the Fig. 4.6b decreases. From the observed number of
estimated sources which start to decrease over time and the increased minimum distance, it
is reasonable to assume that the estimated sources start to converge to a certain location
which is not our real radiation source. Same as for testing other models with static UAV,
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the estimation graph Fig. 4.7 shows that all predictions are from UAV in the direction of the
radiation source.

In the summary of the tests of all models it is possible to notice one thing in common.
All models estimated more radiation sources than the actual number of sources. This can
make the environment look much more dangerous than it actually is. This problem is caused
by the frequent sampling of Compton cone points in close proximity to the UAV. Therefore,
the model cannot determine the actual position of the radiation source, since all the Compton
cones originate in the same area and their overlapping areas are much larger. However, under
these difficult circumstances, it is possible to determine the direction in which the radiation
source may be located from the estimated sources and particle output of the model. This
statement can be seen in each of the graphs containing the positions of the estimations.

Moving UAV

In this scenario, the environment is similar, there is one source of radiation that the
UAV is trying to locate. The source is located in the same place as for a stationary UAV.
The difference is that the UAV is moving and actively estimating on the fly. The movement
of the UAV forms a circular trajectory centered at the origin of the coordinate system. The
trajectory is positioned three meters above the ground with a circular radius of ten meters.
This trajectory allows the UAV to approach and move away, and it even passes over the
source. All three models are tested, one simulation run takes almost 5 minutes. The results
of all three models in this scenario can be seen in Fig. 4.8, 4.9 and 4.10

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.8: The results of a single radiation source detection using the Average model (Sec.
4.3.1) and a moving UAV.

As shown in Fig. 4.10a and Fig. 4.10b, the testing results for the moving UAV are
significantly more applicable with respect to the number of simulated radiation sources. Hence,
when comparing model results from static measurements, the number of estimated sources
not only agrees with the real number of sources, but at the same time offers a detection
accuracy of less than 1 meter. This ensures unambiguous localization and identification of
the radiation source. A better comparison of the moving and static scenarios is offered by
Fig. 4.11. This indicates that a Compton camera moving around the source clearly helps to
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(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.9: The results of a single radiation source detection using the Surrounding model
(Sec. 4.3.3) and a moving UAV.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.10: The results of a single radiation source detection using the Worst model (Sec.
4.3.2) and a moving UAV.

identify the location of a single source as contrasted to a stationary Compton camera. The
combination of a portable Compton camera and a fast-moving vehicle such as a UAV can
have a distinct advantage over a radiation detector by itself.
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Figure 4.11: The graph compares a moving scenario with a static scenario where the model is
trying to detect the position of a single source of radiation. Each bar in the graph represents
almost five minutes of measurements with a particular model. The bars consist of two parts.
The first represents the mean distance of the closest estimated position to the ground truth
across the entire scenario. The second is the median of the closest distances over the entire
scenario. Above each bar is the mean number of sources estimated by the radiation model
during the measurement.

4.5.2 Two sources of radiation

The scenario is arranged to detect the positions of two radiation sources instead of one.
The sources are deployed in an unobstructed area with a distance between the sources of
more than eleven meters. The radiation measurement is similar to the previous case. The
UAV has a Compton camera and a LIDAR on its frame, which return measurements of
the environment and these are processed by Uniform Sampling into particles suitable for
filter input. The simulation was run for all three models Average, Surrounding and Worst
model. Static measurements did not provide sufficiently accurate information about the source
location when a single radiation source was already tested. Detection with a moving UAV
provides much more accurate information which can be better used, therefore the model
testing is done only when the UAV is moving.

Moving UAV

The scenario where two sources of radiation are detected by a moving UAV is described
in this section. The radiation sources are located in the same environment as in the case of
one source, with no obstacles placed in the environment. The UAV moves along a circular
trajectory at a height of three meters above the ground. The center of the trajectory is at the
origin of the coordinate system and the radius of the trajectory is ten meters, which provides
sufficient area for the detection of radiation sources. All three filter models, as in the previous
situations, are tested and compared as follows.

Testing of the average model was accurate to an error of approximately 1 meter. From
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(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.12: The results of two radiation sources detection using the Average model (Sec.
4.3.1) and a moving UAV.

the graph Fig. 4.12b it can be seen that after the initial state, the correct estimated number
of sources was obtained. The model in motion improves source localization and eliminates
unlikely hypotheses. Also, Fig. 4.12b presents the information that the estimated sources are
located no further than 2 meters from the real sources during the initial phase. Over time, the
model achieves even better results and the distance difference between the estimated sources
and the real sources gradually decrease below 1 meter. The Average model would clearly
indicate where the radiation source might actually be located.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.13: The results of two radiation sources detection using the Surrounding model (Sec.
4.3.3) and a moving UAV.

The Surrounding model, unlike the Average model, generates a larger number of esti-
mated radiation sources according to the Fig. 4.13 in this scenario. On average, this value is
approximately three sources throughout the measurement. This is better than underestimat-
ing the number of radiation sources and increasing the risk of radiation exposure. Detection

CTU in Prague Department of Computer Graphics and Interaction



4. RADIATION SOURCE ESTIMATION 39/60

is significantly more accurate, obtaining source location detections to less than a tenth of a
meter at the expense of more false-positive detections. At the end of the measurement, the
number of sources even becomes stable and equal to two, with still high accuracy. In contrast
to the previous models, the Surrounding model has been the most successful.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.14: The results of two radiation sources detection using the Worst model (Sec. 4.3.2)
and a moving UAV.

The Worst model, in the case of more than one radiation source detection stopped
working and detecting correctly. It can be seen in Fig. 4.14b. After the initial phase, the
model stops estimating multiple sources and begins to converge to a single source. Over time,
it can be seen in Fig. 4.14a that how the model chooses one of the real sources and starts to
converge its estimation to that source. However, the process requires a lot of time and results
in incomplete estimation. Due to a limited battery capacity of a UAV, this approach is not
feasible for practical use. Unknowledge of multiple sources is also inadmissible for multi-source
detection in the safety constraints and human protection. Therefore, in this case, the model
becomes inoperable.

4.5.3 Three sources of radiation

The scenario focuses on the detection of three sources of radiation in the vicinity of the
UAV. As in previous scenarios, the UAV uses LIDAR and a Compton camera in addition to
its necessary systems for functionality. The sensor data is processed into a suitable form by
the Uniform sampling method and passed to the particle filter using the model under test.
Unlike the other scenarios, this time it is tested in a way where the UAV searches for sources
only when moving. The trajectory of motion that the UAV follows consists of a circular path
3 meters above the ground with a radius of 10 meters. The results are therefore depending
on the correct detection of the number of sources and the accuracy of the estimation. The
radiation sources are distributed in an empty space without obstacles, at irregular distances
from each other to simulate a realistic possible radiation detection scenario.

The first filter tested for the three source scenario is the Average model. In Fig. 4.15
it can be seen that the Average model was able to successfully find only two of the three
radiation sources that were in its vicinity. This is mainly shown in Fig. 4.15b in which the
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(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.15: The results of three radiation sources detection using the Average model (Sec.
4.3.1) and a moving UAV.

number of estimated sources drops to one after the initial phase, but after a while it reached
the value of two. This kind of change can clearly affect graph Fig. 4.15a, where the minimum
distance for Source 1 has increased and for all others, the distance is calculated only with
the available estimated sources. The filter is able to identify a multi-source scenario, but the
incorrect determination of the number of sources is unusable in practical terms as it increases
the risk of radiation exposure.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.16: The results of three radiation sources detection using the Surrounding model
(Sec. 4.3.3) and a moving UAV.

In the first 125 seconds of the measurement, the model predicts only 2 sources of ra-
diation. It can be seen in Fig. 4.16b that the third source is added several times, but it is
estimated at an incorrect position, as can be seen in Fig. 4.16a. A clear change occurs after
175 seconds, where a third hypothesis is initialized close to the actual source. This is also
reflected by an increased confidence in the number of estimated sources. The model accuracy
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results are satisfactory and all three sources are accurately identified with a position error of
less than 1 meter.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 4.17: The results of three radiation sources detection using the Worst model (Sec.
4.3.2) and a moving UAV.

Using the Worst model in this scenario shows the poorest results. Overall, the model
stopped working and estimated the radiation source in the wrong place. The minimum dis-
tances in Fig. 4.17a do not approach any of the radiation sources. The number of estimated
sources in Fig. 4.17b is only one. All of this can mean with a high probability that the model
has started to converge to a random location where no source is located. Not only does the
filter return an insufficient number of estimated sources, but also the estimated filter does not
present any positive effect for the real implementation.
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4.5.4 Conclusion

Figure 4.18: The graph compares the use of filter models in a scenario with a moving UAV
in which the model estimates the positions of three radiation sources. Each bar in the graph
represents five minutes of measurements with a particular model. The bars consist of two parts.
The first represents the average distance of the closest estimated position to the ground truth
across the entire scenario. The second represents the median of the closest distances obtained
over the whole scenario. Above each column is the average number of sources estimated by
the radiation model during the measurement.

Overall, it is possible to see how the Average, Surrounding and Worst models perform
in different situations and detect different numbers of radiation sources. It tested how the
models behave when the UAV is static and moving in the environment. This was achieved
by a simple circular trajectory with no human interference in the control of the UAV. It was
observed that in the static scenario all models estimate more radiation sources than the actual
count. In most cases some of these estimated sources match the actual ones. That is, even if
it is not possible to know exactly where the source of the radiation is located, it’s at least
possible to estimate the direction from which the radiation is coming. This could serve as a
direction in which the UAV might move and collect more accurate data in the environment.
With a moving UAV, it has been observed that locating a single source for any model does
not pose a problem, and the location of a given source can be detected in a noticeably short
amount of time, approximately one minute. Detecting the positions of two radiation sources
was already exceedingly difficult for the Worst filter and it could not estimate more than one
of them. The Average model was able to accurately determine the number of radiation sources
after 50 seconds with an accuracy of about 1 meter. For the Surrounding model, there was a
problem with estimating a larger number of sources. The model needed more time to get the
correct estimate, but its accuracy was still less than 1 meter. The scenario of detecting the
positions of three radiation sources was already starting to fail even for the Average model,
which estimated only two of them. The Surrounding model needed more time to detect than
the one source scenario, but after a few seconds, it successfully estimated both the number and
location of the radiation sources. A more detailed view of the scenario is shown in Fig. 4.18,
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where the statistics for the estimation accuracy of the radiation location and the rounded
average number of estimated sources are presented. For the Average model, the number of
estimated sources reaches 1.9, for the Worst model 1.5 and Surrounding 2.9 which is the
closest to the real number 3. The Surrounding model also achieves the best accuracy with a
median minimum distance for all sources of approximately 1 meter. According to Fig. 4.18
and the graphs of all previous scenarios, it is possible to say that the Surrounding model is
the most successful of all three models for the scenarios considered in this chapter.
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Chapter 5

Visualization

In recent years, even recreational UAVs have started to be used as a tool for image
recording. They are equipped with a camera that records the picture for the user. The chap-
ter on visualization focuses on the aforementioned imaging characteristics of the thesis. The
visualization is performed as a transmission of data from the onboard color camera to the
user. In this way, the user acquires a visual cue in the form of an image of the environment
that is in front of the UAV. When the user and the UAV interact, visualization can be used
for a variety of purposes. In addition, to familiarize the user with the environment, the camera
footage can also identify possible radioactive objects by marking them. The identified objects
serve as a warning signal, which should not be approached without the necessary protective
measures, such as a protective suit. The identification of dangerous objects is based on the
results discussed in the radiation source estimation chapter. The results of the data from the
previous sections are processed and then transformed as input for the identification of objects
in the image. A large part of the object detection is performed using the OpenCV1 library,
suitable for image processing.

5.1 OpenCV

OpenCV is an open-source software that deals with image processing and editing. It
is used for computer vision, where it provides several algorithms for working with images or
videos. Real-time performance is the library’s key benefit for this thesis. The library supports
image processing in many formats such as JPG, PNG, BMP or for videos AVI format. It is
possible to use the library for conversion between formats or to change the representation of
color encoding for example from color to a monochronic color scheme. The library provides a
number of essential functions and convolutions in image processing. The functions are capable
of image blurring and resizing, and the detection of edges, circles, lines or contours in the
image.

Furthermore, the OpenCV is able to analyze the color scheme of an image. It also offers
several functions for drawing into the image, such as adding primitive geometric objects like
a circle, rectangle or even more complex objects, for example, text. OpenCV also supports
the creation of GUI, which can be used for real-time parameter setting. Last but not least, it
also offers the possibility to create a custom filter, applicable in image convolution. OpenCV
is a library created in the C++ programming language, however, it also provides extensive
support for other languages such as Java or Python. The OpenCV is a tool, which greatly
simplifies working with an image. Also, OpenCV has an active developers’ community that
contributes to the continuous improvement of the library. The OpenCV library is the clear
choice for this thesis because of the features it possesses.

1https://opencv.org/
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5.2 Object detection

The main section of this chapter is about object detection in a two-dimensional camera
image. Object detection is performed by processing the video obtained from the camera. The
camera periodically sends messages to a ROS topic. The topic contains messages from the
individual video frames that the camera records. These frames are then converted into an
OpenCV image and processed individually by an object recognition algorithm.

The object recognition algorithm operates as follows. The code first turns the input
color image into grayscale using the cvtColor function from OpenCV. Then a median filter
with a 3×3 matrix size is applied to the grayscale image to reduce noise using the medianBlur
function. Another option is the use of image dilation to fill in the gaps and make the object
boundaries smoother. Although, it is not used by default, the OpenCV GUI allows users
to adjust this during runtime. Subsequently, a thresholding algorithm is applied using the
OpenCV thresholding function with the THRESH BINARY and THRESH OTSU flags to
obtain the optimal image thresholding value. This value is then used as a boundary parameter
for the Canny edge detection algorithm using the Canny function in OpenCV to detect
edges in the image. It identifies the contours of objects in the image from the edge-detected
image using the OpenCV findContours function with the RETR EXTERNAL and CHAIN
APPROX SIMPLE flags to extract the shape of the object. RETR EXTERNAL discards all
contours inside other contours and CHAIN APPROX SIMPLE compresses the contour data,
keeping only their endpoints, sufficient to represent the contour shape. The contours represent
the detected objects and the next step is to wrap them into a geometric shape that represents
their location in the image. This is accomplished by using OpenCV’s boundingRect function,
which computes the bounding box of each contour and returns a rectangle representing the
object.

5.3 Identification of the radiation objects

The output to the user is not just a visual image obtained by the camera. The most
important contribution is the identification of possible radioactive sources in the obtained
image. To accomplish this task, the object detectors from the previous section must be used.
The detector returns a set of objects represented by bounding boxes which it assumes can
represent the objects. The next step is to determine which of these objects can be qualified as
radioactive. To accomplish this task, it is necessary to obtain coordinates where the radiation
might be located in the real world. The coordinates of possible radiation sources are calculated
as a list of points from the assumed position of the radiation in Chapter 4. These points
are represented in R3 space in the UAV coordinate system. The points then need to be
transformed into the camera coordinate system. The transformation is achieved by using the
MRS library2 based on the TF2 API3 of the ROS system, which solves various coordinate-type
transformations. Before the transformation, it is necessary to check if such a transformation
exists and is feasible. The coordinate is then converted into the camera coordinate system. The
next step is to assign the transformed points in the image coordinate system to the objects
that are detected. The assignment is solved as a comparison of the distance of the point from
the object box. If the measured distance is short enough according to the specific value of

2https://github.com/ctu-mrs/tf2
3https://wiki.ros.org/tf2
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around 30 px, the detected object is considered radioactive and is marked in the image. An
example of identification can be seen in Fig. 5.1.

Figure 5.1: Example of radiation source detection in the image from the Gazebo simulator. The
bounding boxes of identified radiation objects are bordered in pink. In blue are the circular
regions of points where objects are considered radioactive according to the assumptions. World
coordinates of the identified objects are also drawn to the image.

5.4 3D visualization

Another visual component of this work is the 3D visualization. The 3D visualization is
primarily used with simulation in the Gazebo simulator. However, its use can also be applied
to the playback of rosbags. The 3D visualization in this work utilizes the ROS Rviz tool.
The Rviz tool has full ROS support. The main advantage of Rviz is the ability to take a
topic published by a sensor or a topic created by the processing pipeline and displaying the
topic data in real time in R3 space. Typical examples for display are basic objects such as a
point in space, but more complex objects such as a UAV model located at certain coordinates
are also possible. Rviz provides a graphical user interface that allows to add or change the
visualization of an existing topic. It also has features that can be used for visual navigation of
the UAV to a certain point or interaction with objects in the simulation. The work uses Rviz
tool to display the drone’s position and show the processed input from the sensors, notably
the Compton cones and the OctoMap. Displaying the measurements helps the observer gain
a better understanding of the problem or help in solving the problem. Rviz is currently used
to display a set of points generated by the sampling function on a Compton cone fused with
depth measurements. Also, Rviz displays the particles processed by the particle filter and the
resulting radiation source estimates as color-coded points in space. The C++ library Batch
visualizer from ROS package4, which was created by the MRS group, solves the problem of
creating topics for publishing geometric objects such as sets of points, triangles, squares or
cubes. Overall, the visualization of the work adds the possibility of additional visual output,
which serves to improve the understanding.

4https://github.com/ctu-mrs/mrs lib/tree/dcc494ea1c80fafa51bbc24e80c8f12f6f8b0eed
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Chapter 6

Evaluation

This chapter demonstrates the use of all the developed methods and the real deploy-
ment of this work. The whole radiation source detection process and the results achieved
are discussed. The first part consists of radiation detection in a simulation environment. The
simulation environment is configured to resemble a real situation with a complex distribution
of objects. The second part deals with radiation detection in a real environment. The thesis
is tested on a real device with a simulated radiation source placed in the environment.

6.1 Simulation

In this section of the thesis, the evaluation in a simulated environment is presented. The
simulation models the detection of two radiation sources in a complex environment resembling
a city street. It consists of predisposition, process and results parts.

6.1.1 Predisposition

The simulation is performed in the Gazebo simulator, which has sufficient capabilities
to meet the requirements necessary for the work. The simulation runs in a newly created
Gazebo world where various types of obstacles have been added. Obstacles are represented
by buildings, cars, lamps or containers placed in the environment. The created environment
can be seen in the Fig. 6.1a. The UAVis the Tarot T650 Fig. 6.1b. The model has four
propellers and is approx. 65 cm in diameter. The UAV has simulated sensors placed onboard
with the goal of minimizing the difference between the simulation and the real world. One of
the sensors is modelled after the Ouster OS0-641. Other sensors are a single-layer Compton
camera and a color camera for video footage acquisition. Radiation sources are represented in
the Gazebo simulator as white cube-shaped objects. In this case, a strong radioactive source
simulating Cesium-137 was used. The sources are located at different places in the simulation
environment. One of the radiation sources is placed on the ground near obstacles and the
other is placed on an obstacle 1.3 meters above the ground. A uniform sampling algorithm
with a range parameter of 1 meter up to a sampling distance of 15 meters was used to detect
the locations of the radiation sources. For processing the particles, the Surrounding model
was used for the particle filter to achieve the best flexibility in detection.

6.1.2 Process

The process of the simulation is as follows. The Gazebo simulator simulates all parts of
the environment. The UAV is placed in the environment and executes its systems together with

1https://ouster.com/products/scanning-lidar/os0-sensor/
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(a) Image of the environment in which the simulation
was performed, modelling a street in a city.

(b) Image of the UAV model Tarot T650 in Gazebo
simulator.

Figure 6.1: The environment and UAV equipment precondition under which the simulation
was performed.

the radiation source localization module. In the background of the emulation, the simulation
for Compton’s camera is being calculated. Data from the Compton camera is generated by a
Monte Carlo simulation2 that evaluates all physical processes inside the detector at the single
photon level. The depth camera simultaneously maps the space from the Gazebo simulator
and contributes data to the OctoMap. The occupied part of the OctoMap can be seen in
Fig. 6.2a. A composite image from the RGB camera with the OctoMap as an overlay is
displayed in Fig. 6.2b. The radiation localization system created in this thesis detects and
processes the measurements. The UAV moves while capturing the measurements to improve
source estimation. This has been proven in the comparison model part (Sec. 4.5).

In the environment where the radiation is located, the UAV flies in autonomous mode in
a circular trajectory over the obstacles. After detecting the first possible sources of radiation,
the resulting data are displayed on a color camera and suspicious objects are detected and
marked as potential radiation sources. The UAV movement continues and new measurements
are collected and the accuracy of source localization is improving.

6.1.3 Results

After obtaining several Compton cones at different UAV locations, the results started
to approximate the real radiation sources. The process of estimation of radiation sources
during the whole measurement can be seen in Fig. 6.3a. The first graph shows the accuracy
achieved during the whole process, which is below one meter for both radiation sources. Then
in Fig. 6.3b, one can see the number of estimated sources over the duration of the whole
measurement. Also, useful information about the accuracy of the measurements is provided
by the density map (Fig. 6.4) which describes the density of detected positions of the radiation
sources estimated during the whole measurement. From the graph, the difference between the
area where the radiation was located and where it was not, is clearly recognizable.

The particle filter works as expected in the simulation. The data from the Surrounding
Model at a certain point in time are shown in Fig. 6.5. It is already possible to know where the
source of the radiation might be by the density of the particles shown in the picture. The last

2https://github.com/rospix/gazebo compton camera python
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(a) Part of the OctoMap captured in the simulation
and displayed in Rviz.

(b) The octomap depicted together with the image from
the camera.

Figure 6.2: An illustration of the OctoMap created in the simulation

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 6.3: The result of the detection of two radiation sources in a complex environment.
They show the estimation accuracy of the filtering model named the Surrounding model and
its detection capability.

step is to use the estimation algorithm from Sec. 4.4 to achieve clear positions of the radiation
sources. In the Rviz visualizer are estimated sources marked as green points. The last step is
to work with the color camera. After the estimation of the sources, the transformation of their
positions into the camera image is performed, where they are assigned to the objects and then
the objects are highlighted. The object recognition environment is no longer as explicit as in
the previous case of a flat plane, but still provides sufficient information about the location. In
spite of the even more complex situation, the work with the image is shown in Fig. 6.6a and
Fig. 6.6b. From Fig. 6.6, several objects can be seen which are considered to be the radiation
sources. Not all of the objects show the radiation sources as defined, but each object is in the
vicinity of the real source, which can be a good basis for further work.
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Figure 6.4: Density map of the estimated radiation sources for two actual radiation sources
obtained from a Gazebo simulation. Density maps describe the view from above in two-
dimensional space. The white marker represents the real position of the radiation source. The
color in the map represents the number of points estimated during the measurement. A lighter
color of the map means a higher chance of finding a radiation source.

(a) 3D visualization of particles from the particle filter
in the Rviz tool.

(b) Visualization of particles from the particle filter dis-
played in the camera image.

Figure 6.5: Particles from the particle filter used in the detection of radiation sources in the
point-color simulation. The blue points represent particles, the grey points are new incoming
particles, the green points are the positions of the detected radiation sources and the red
points are the real radiation sources.
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(a) Image recorded by a camera onboard theUAV dur-
ing simulation. The first source of radiation is located
on the ground and the second source is clearly high-
lighted on the right side of the image.

(b) Image recorded by the camera onboard the UAV
during simulation. The image at this point in time
shows three estimated sources of radiation. There are
fewer inaccuracies in the identification of objects for a
source located above the ground.

Figure 6.6: The images ( a ) and ( b ) show the processed recording at some points in time from
a color camera placed on the UAV. The pink frame indicates potentially dangerous objects
that could be the radiation sources. The blue circle indicates the estimated positions of the
radiation sources in the camera coordinate frame.

6.2 Real experiment

The section is concerned with the application and results of work data obtained in a
real deployment. The developed methods were tested with a real UAV and its components,
sensors. The section consists of the prerequisites, process and results sections which describe
the experiment.

6.2.1 Prerequisites

The experiment is aimed to verify the usability of the developed methods under real
conditions. To achieve this goal, the MRS quadcopter hardware platform [2] built on the
Holybro X5003 frame is used. In addition to the onboard systems the Holybro X500 has, it
is also equipped with the Intel NUC4 with the Linux operating system for the deployment of
custom program components. The onboard computer runs the UAV MRS system [5], which
provides the UAV state estimation for the radiation localization framework. It is a mini-
computer with high computational power and sufficient memory for storing data collected
during the experiments. The whole UAV that was used in the experiment is shown in Fig. 6.7a.
The UAV is localized, in addition to the nowadays regularly used Global Positioning System
(GPS), also with the Real-time Kinematics (RTK)5 a system that serves as ground-truth for
the real experiment. The visual data is collected by a color camera placed on the bottom of
the drone in connection with the depth sensor of the Realsense camera.

3https://holybro.com/products/px4-development-kit-x500-v2
4https://www.intel.com/content/www/us/en/products/details/nuc/boards/products.html
5Technology based on the GPS improved by correction data streams from the static station

CTU in Prague Department of Computer Graphics and Interaction

https://holybro.com/products/px4-development-kit-x500-v2
https://www.intel.com/content/www/us/en/products/details/nuc/boards/products.html


6. EVALUATION 52/60

Due to the hazardous nature of strong radiation sources, and the strict regulations on
handling them, it was not possible to use real radioactive material during the experiments. In-
stead, the previously mentioned radiation simulator is used. The simulator is running directly
on the onboard computer of the UAV. The simulated radiation sources are in different loca-
tions in the space of the real environment in which the drone moves. The radiation sources are
simulating Cesium-137, and their activity was set to 1 GBq. The activity of 1 Bq represents
one photon emission per second in a random direction. With these settings, the Compton
camera yields on average 1 cone per second from a distance of 20 meters.

The experiment was executed in an open flat environment with no obstacles. The envi-
ronment contains grey barrels that represent the simulated radiation sources. The experiment
is carried out in two variants with one and two radiation sources, the results of which are pre-
sented in the next section. An example of the two-source environment in which the experiment
was carried out is shown in Fig. 6.7b. The radiation detection pipeline uses the same settings
as in the Gazebo simulations. The space is sampled using the Uniform Sampling method and
the Surrounding model is used as the model for the particle filter.

(a) The UAV model used in a real experiment with all
sensors and components based on the Holybro X500.

(b) Example of the environment in which the real ex-
periment was performed with two radiation sources and
one flying UAV.

Figure 6.7: The quadrotor platform and the environment in which it was deployed for the
experimental evaluation.

6.2.2 Process

The process of experimentation in a real implementation is performed in a similar way
as in simulation. The UAV is used to detect the radiation positions of the parts created in this
thesis. The radiation detection is uploaded to the onboard mini-computer of the UAV and
activated in flight by the ROS service. Unfortunately, the UAV used in the experiment was
built using an untested platform and its parts did not work correctly during data processing
for detection.

A significant delay in the depth camera image was observed and could not be processed
in time with the odometry measurements of the device. The onboard computer also expe-
rienced power delivery issues and turned off during multiple flights causing a loss of data.
Inaccurate data in the position readout of the UAV in space was occurring. To determine
the exact positions of the radiation sources and resolve these issues, the depth camera was
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disabled and the OctoMap of the environment was pre-computed and loaded during the exper-
iments. The voltage fluctuation and subsequent shutdowns of the onboard computer. Instead,
the vehicle was controlled manually using the radio transmitter. During the manual flight, the
onboard systems were still running and providing data in the ROS environment. The radiation
detection system was designed to operate normally under these conditions as well, as it only
requires information on the UAV’s state and the Compton camera measurements.

The UAV moved in the radiation source area during the experiment and acquired radi-
ation data. The data was then processed by sampling the Compton cones using the Uniform
Method. Next, the data was fused with the OctoMap to get the points located only in the ma-
terial space and then estimate the radiation sources. Along with the estimation, color camera
recording and object detection were performed.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 6.8: The result of the detection of one radiation source in a real environment. They
show the estimation accuracy of the filtering model named the Surrounding model and its
detection capability.

(a) Graph of the distance of the nearest estimated ra-
diation source to the actual source over time.

(b) Graph showing the number of radiation sources es-
timated by the filter over time.

Figure 6.9: The result of the detection of two radiation sources in a real environment. They
show the estimation accuracy of the filtering model named the Surrounding model and its
detection capability.
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(a) Density map from the experiment with a single ra-
diation source.

(b) Density map from the experiment with two radia-
tion sources.

Figure 6.10: Density maps of estimated radiation sources for one and two radiation sources
obtained in real-world experiments. Density maps describe the view from above in two-
dimensional space. The white marker represents ground-truth of the radiation source. The
color in the map represents the number of points estimated during the measurement. A lighter
color of the map means a higher chance of finding a radiation source.

6.2.3 Results

The results of the real experiment depended largely on the accuracy of the UAV posi-
tion acquisition using GPS or RTK technology, which affects the simulation of the radiation
sources. Despite this dependence, the real experiment has demonstrated a sufficient amount
of information and the accuracy to detect the location of the radiation source. The results of
the source localization are shown in detail throughout the experiment in Fig. 6.8 and Fig. 6.9.
Fig. 6.8 shows the results of a single radiation source experiment and graph Fig. 6.9 of two
sources. The achieved precision is around 1 meter for one radiation source (Fig. 6.8a) which
may be influenced by the localization of the UAV. During this experiment, the system cor-
rectly estimated that there is one source of radiation. Fig. 6.9 shows the experiment with two
radiation sources. In this experiment, the localization error is also below 1 meter for both
sources. The number of sources is fluctuating during the measurement process but stabilizes
over time to correctly report two sources. The whole process of all estimated sources for one or
two radiation sources is recorded in plots describing the density estimation Fig. 6.10. Where
we can see from the picture that the particle filter estimated the radiation sources near the
real position most intensively than outside it. Throughout the radiation localization, UAV
uses a color camera, which is then processed to visualize the results over Fig. 6.11. This image
shows the barrel that was used to represent the simulated radiation source. The barrel is
marked in pink to represent the estimated radiation source.
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Figure 6.11: Processed image of the color camera when detecting radiation source positions
with marked possible threatening object obtained by measurement in real environment test.

6.3 Summarization

The evaluation was performed in two variants. The first was a simulation in a complex
environment with obstacles and the second was a deployment on a real UAV in an environment
without obstacles. In both cases, the radiation localization was running online throughout the
entire flight. The results from the evaluation were presented in the previous section. After an
initial phase that takes approximately 1 minute, the localization error falls below 1 meter,
which can provide sufficient information about the location of the resources for the user.
Visually, using the density Fig. 6.10 the estimation placement shows strong agreement with
the position of the actual source. The image processing was able to detect the existence of the
object and to highlight the correct ones according to the estimated values. The complexity of
the environment affects the ability to determine the number of radiation sources, but it does
not rapidly affect the accuracy of the measurement.

In addition to the detection part developed in this work, the other components that
the UAV requires for its operation have an important role in real deployment. Notably, the
Compton cones are projected from the position of the UAV, which is provided by the GPS or
RTK positioning systems. All errors in the UAV’s self-localization are inherently propagated
into the radiation localization process. The detection process returns valid data after a few
seconds, which can already be assumed to be a suspicious location, Overall, it can be said that
the whole process of detecting the positions of radiation sources was successful with accuracy
and speed of convergence acceptable for practical use.
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Chapter 7

Conclusion

The aim of this work was to design and implement an algorithm for fusion of data
from a depth sensor and a radiation detector. The radiation detector was represented by a
Compton camera and the depth sensors by a LIDAR or a depth camera. Both types of sensors
are located onboard a small compact UAV. The algorithm for fusion is divided into two parts.

In the first part, the output data from the Compton camera, which are in the form
of Compton cones, are processed. A parametric equation of a circle in R3 is created, with
the possibility of shifting and resizing through the parameters, to describe the whole cone.
The equation is then used by two algorithms to generate a set of points in R3. Each of
the algorithms has its positive as well as negative aspects. A comparison of the developed
algorithms is shown in Sec. 3.4. The UAV is moving in an environment with an unknown
amount of radioactive emitters and the set of points represents the possible locations of the
radiation sources.

The second part deals with the fusion of dosimetry and depth measurements, where the
set of points is subsequently filtered and simplified. The depth measurements represent the
environment where the UAV operates. The radiation source is assumed not to be in the air
and to be a distinct object in the environment. This assumption allows us to filter the set of
points using a depth measurement by comparing whether the generated point coincides with
the environment in which it is located. Points that do not fulfill the condition are subsequently
excluded and the total number of points is reduced to more likely potential radiation locations.

The fusion of depth data into the radiation measurements allows a significant reduction
in the number of particles generated by the cone sampling. As a result, the process is much
faster and can even be used in real time. Additionally, the removal of very unlikely particles
results in a more accurate detection of radiation hotspots. The detection itself is possible
by an iterative algorithm, which takes as an input a set of points from the previous fusion
step. The algorithm is based on the principle of a particle filter, which evaluates the particles
and estimates the most probable locations of the radiation source. Sec. 4.5 is dedicated to
the comparison of several evaluation models used in the particle filter algorithm to assign
probabilities. The output of the iterative algorithm is a set of particles in R3 space, which is
processed and filtered to extract specific, potentially dangerous locations.

The last task is to identify the dangerous object in the image from the color stream of
the onboard camera. This task was performed using the OpenCV image processing library.
By using several functions from the library, a simple object detector for the camera image
was designed. Points representing potentially hazardous radiation sources are converted into
the camera coordinate system and assigned to the detected objects. The final result of this
thesis is the marking of hazardous objects on the real-time video recorded by the UAV.

The software pipeline can successfully find more than one radiation source by fusion
of dosimetry and depth measurements. The detected positions of the radiation sources start
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to approximate the actual positions of the sources after a short initialization period, and
after one minute reach accuracy of approximately one meter. The result is reported to the
user in the form of a video feed with the potential radiation hotspots clearly identified and
highlighted.

7.1 Future work

Although the work has achieved successful results, there is still scope for improvement
in locating the sources of radiation or in navigating the drone. The Compton camera primarily
serves as a source of possible radiation directions using Compton cones. In addition to the
possible direction of the incoming photon from the radiation source, the Timepix chip inside
the Compton camera also allows radiation intensity measurements. The use of the radiation
intensity gained from the measurement could greatly help in the localization of radiation
sources and in gaining a better knowledge of their abundance during the detection process. It
is worth noting, that only a very small fraction of the detected photons undergoes Compton
scattering. For the scenario considered in this thesis, the scattering events represent only one
percent of all detections. One of the applications is in the weighting part of the particle filter,
which would also take into consideration the intensity of the measured radiation at a given
location when calculating the weights. Also, if there is an extreme increase in intensity at
other locations it would mean the possibility of multiple sources and that could lead to an
automatic correction of the detection parameters.

Another possibility is to improve the detection of the objects in the image, for example,
using reinforcement learning or using a neural network which could improve the classification
of objects identified as radiation sources. Better processing of camera images could better
identify radiation sources for complex objects with nested components.

The mobility and navigation of UAVs to autonomously search the environment by adapt-
ing to the estimated locations of radiation sources and intensities obtained from measurements
is also a suitable area for improvement. Controlling the UAV autonomously over unexplored
areas to acquire new data or navigating the UAV in an already traversed area to improve the
accuracy of the measurements would provide a fully automatic device to scan the hazardous
area. Autonomous control of UAVs could clearly make the work more efficient and improve
detection capabilities.

Last but not least, the use of multiple collaborating UAVs is also a suitable step for
improvement. The ability to cooperatively search a single area and share the measured radia-
tion data would rapidly accelerate the localization of radiation sources. The opportunities for
improvement are limitless and could be further guided by the actual deployment requirements
and the available equipment.
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