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Abstract
This thesis treats basic methodology to
evaluate the scattering of electromagnetic
field by a moving highly-conducting ob-
ject. The solution is provided within the
framework of special relativity using a
frame-hopping technique. The electrody-
namics is described by the electric field
integral equation and method of moments.
The thesis also covers the implementa-
tion in the MATLAB environment. The
general treatment is compared to several
approximative solutions to the same prob-
lem, such as low-speed approximation or
point dipole approximation.

Keywords: radar, electromagnetic
scattering, moving object, special
relativity, method of moments, electric
field integral equation, numerical solution

Supervisor: Lukáš Jelínek
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Abstrakt
Tato práce se zabývá základními po-
stupy výpočtu rozptylu elektromagnetic-
kého pole na pohybujícím se dobře vo-
divém objektu. Řešení využívá speciální
teorii relativity a techniky frame-hopping.
Elektrodynamika je popsána integrální
rovnicí elektrického pole a metodou mo-
mentů. Práce se dále zabývá implementací
řešení v prostředí MATLAB. Obecné ře-
šení je porovnáváno s několika aproxima-
tivními řešeními stejného problému, jako
je aproximace pro nízké rychlosti nebo
bodová dipólová aproximace.

Klíčová slova: radar, rozptyl
elektromagnetického pole, pohybující se
objekt, speciální teorie relativity, metoda
momentů, integrální rovnice elektrického
pole, numerické řešení

Překlad názvu: Rozptyl
elektromagnetické vlny na pohybujícím
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Chapter 1
Introduction

Radar technology [1] experienced a long evolution since its battle premiere
in the Second World War and its first publication [2] in the Nature journal.
After the Second World War, this secret weapon evolved into a widely civil-
used device and spread throughout the world. The radar had expanded
its application from addressing speeding tickets over the physiology [3] to
meteorology. Radar also became the natural tool for answering many questions
in space exploration, giving rise to radar astronomy [4].

Skolnik [1] defines radar as: “A radar operates by radiating electromagnetic
energy and detecting the echo returned from reflecting objects (targets).” The
returned echo can be inspected in various ways. The directionality of the
antenna can help to determine the direction of the object from the radar, the
frequency shift, called Doppler shift, indicates the movement of the object and
the velocity of the movement and, if the resolution of the radar is high enough,
the information about the shape and size of the object can be obtained [5].

The above-mentioned definition of radar is rather broad. Nevertheless,
radar is typically used in a narrower set of scenarios in which either the
reflecting object is in the far field of the illuminating antenna, or the speed
of the object is many orders in magnitude slower than the speed of light.
Although these are the most practical cases, they are not the only ones. As
an example, radar astronomy deals with objects such as asteroids (speed as
high as 140000 km/h in our solar system), comets (speed as high as 250000
km/h in our solar system) or man-made probes, such as the Parker Solar
Probe [6], which reaches speed as high as 700000 km/h. A different example
is a radar mounted on an armoured vehicle which should track the path and
properties of anti-tank missiles. In this case, the echoing objects must be
tracked in the direct vicinity of the vehicle before they are destroyed.

In the last two cases, the radar detection is uneasy, and there is very little
space for errors. These radar systems must therefore be thoroughly tested
prior to their use. Since launching a test solar probe or fake missile is costly,
these tests should be performed using synthetic data, i.e., data from numerical
simulations. An important point in using synthetic data is also to see the
limits of the approximations used in standard detection algorithms, where
most commonly the non-relativistic Doppler effect and far-field approximation
are used.
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1. Introduction .....................................

Figure 1.1: Parker Solar Probe.[6]

The previously described example demonstrates the practical application
of a more theoretical problem, in which the electromagnetic waves produced
by the known source scatter by an arbitrarily shaped object moving at an
arbitrarily high fraction of the speed of light. A specific setup of this general
electromagnetic problem is the main goal of this thesis.

The problem at hand has already been addressed by other authors. For
example, an analytical solution to the scattering of a moving sphere in the
plane wave field was given in [7, 8] or the usage of finite-difference time-domain
(FDTD) method to solve scattering of the pyramid-shaped object was treated
in [9]. A notable predecessor of this work is a recent paper [10] which uses
integral equation formulation that is the most appropriate tool for scattering
problems. This work will build upon this last work and aims at creating a
freely available Matlab code that can be used by radar designers to generate
synthetic testing data.

1.1 Goals of the Thesis

The primary goal of this thesis is to implement the scattering of an electromag-
netic wave by a moving highly conducting object in general special-relativistic
settings. The implementation should be compatible with the existing tool[11]
for numerical solutions to Maxwell equations and should in the future be
built in it as an external add-on in the Matlab environment. A secondary
goal is to use the aforementioned general scenario to verify the correctness of
low-speed approximations of this scattering problem.

1.2 Outline of the Thesis

In this work, the problem of scattering of the electromagnetic waves will
be solved within the realm of special relativity, see chapter 2, using the
frame-hopping technique [12]. In this framework, the incident wave is first
transformed into the frame of the moving object. The scattering problem is

2



................................. 1.2. Outline of the Thesis

resolved within the object’s rest frame using a standard method applicable
to non-moving bodies, see chapter 3. The scattered field is afterwards
transformed back into a laboratory frame. An important part of this thesis is
the implementation of this scheme into the MATLAB environment, to which
chapter 4 is devoted.
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Chapter 2
Special relativity

About a century ago, Albert Einstein’s special and general relativity introduced
new insight into electrodynamics. The basic ingredient is the equivalence
of all frames of reference and, therefore, the lack of need for any special
coordinate systems to describe physics. This thesis will solely deal with
special relativity, i.e., with inertial frames of reference. By this, the treatment
presented here neglects the effects of acceleration on Maxwell’s equations
when the frame-hopping technique is used. In the rest frame of the body, here,
Maxwell’s equations are assumed to have the same form as in the inertial
frame. From a practical standpoint, this assumption presents just a minor
error, while computationally, the gain is high.

Special relativity is based on the following two postulates [12, 13].The laws of physics have the same form in all inertial frames.. In an inertial frame, light always propagates in empty space with a
definite speed c.

The relativity predecessor, non-relativistic Newtonian physics and the Galilean
transformation hold only as an approximation for velocities small as compared
to the speed of light [14].

The first postulate indicates that, when written correctly, the equations
describing physics are identical in any inertial frame. The second postulate
states that there exists a tool for changing the point of view of different
frames. This tool is called is Lorentz transformation, detailed in section 2.2.
There are several restrictive assumptions that make the problem at hand
mathematically tractable. None of them is overly restrictive for describing
problems connected to radar technology.

The major restrictions and approximations are:.As a consequence of the second postulate, special relativity accepts
only the non-accelerated movement. This assumption allows to use of
simple field transformations when changing reference frames and, most
importantly, allows to use of the standard form of Maxwell’s equations in
the rest frame of the moving object. This not only greatly simplifies their
solution but also allows the use of already existing tools of computational
electromagnetics.
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2. Special relativity ...................................
.The trajectory of the object is predetermined and is not affected by

the incident electromagnetic wave. This assumption presents almost no
restriction with respect to macroscopic bodies, which are of interest to
this work.

2.1 Four-vectors and field tensor

The proper formalism of relativity is the four-dimensional tensor algebra [12,
15], which is briefly introduced in this section for cases that are directly used
in this work. In the case of electrodynamics, the essential components are four-
vectors (position) and anti-symmetric tensors of second rank (electromagnetic
field).

This formalism makes analytical calculations and thinking much easier, but
computers cannot profit much from it. It is, therefore, a common practice
to use three-dimensional formalism with transformation rules resulting from
tensor algebra when implementing special relativistic calculations. In the
case of the laboratory three-dimensional formalism is also typically used to
report the experimental data.

In relativity, the indexing within tensors plays an important role and its
position also defines the covariant (lower index) or the contravariant (upper
index) of the physical object. The index-changing transformation tensor ηab

is called the metric tensor. Within special relativity, it stays the same in
both cases, lowering and raising the indices [15]

ηab = ηab =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.1)

A metric tensor is used to raise or lower the indices. For example, the
Minkowski metric applied on a four-vector xb

xb =


b1
b2
b3
b4

 (2.2)

reads [15]
xa = ηabx

b. (2.3)

The result is

xa =


b1

−b2
−b3
−b4

 . (2.4)

6



................................ 2.2. Lorentz transformation

2.1.1 Four-vectors

The position vector r connects with the time t as the fourth coordinate to
create the position four-vector

Xa =


ct
rx

ry

rz

 =
(

ct
r

)
. (2.5)

For unit consistency, the time is scaled by the speed of light c [15].

2.1.2 Field tensors

Within relativity, vacuum electromagnetic field is described by anti-symmetric
field tensor

Nmn =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 Bz −By

Ey/c −Bz 0 Bx

Ez/c By −Bx 0

 . (2.6)

The field tensor is an example of a two-dimensional tensor, therefore its
element is described by two indices. Again, an electric field is divided by c
for unit consistency [12, 15].

2.2 Lorentz transformation

The main advantage of tensor formalism is the ability of frame hopping, as
the change of the frame of reference (“point of view”) is called. The choice of
the correct reference frame can significantly simplify the calculations. A rest
frame of the moving object, which will be used in this thesis, is one of these
frames.

Conversion of quantities from one inertial frame (frame moving with con-
stant velocity) to a different inertial frame is provided by Lorentz transforma-
tion. Lorentz transformation is described by tensor Ln

a . A common type of
transformation used in this text is that of a tensor Fmn in a laboratory to a
rest frame of a moving body in which it is denoted as F ′

mn. The transformation
reads

F ′
ab = Ln

aLm
b Fnm, . (2.7)

Now the Lorentz transformation tensor can be constructed as[12, 15]

Ln
a =


γ −γ vx

c −γ
vy

c −γ vz
c

−γ vx
c 1 + (γ − 1)v2

x
v2 (γ − 1)vxvy

v2 (γ − 1)vxvz
v2

−γ
vy

c (γ − 1)vyvx

v2 1 + (γ − 1)v2
y

v2 (γ − 1)vyvz

v2

−γ vz
c (γ − 1)vzvy

v2 (γ − 1)vzvy

v2 1 + (γ − 1)v2
z

v2

 , (2.8)

where the normalized speed β in units of speed of light is defined as

β = v/c < 1 (2.9)

7



2. Special relativity ...................................
and Lorentz factorγ as

γ(β) = 1√
1 − β2 ≥ 1. (2.10)

The above relation can also be written using standard matrix algebra as

F′ = LFLT = LFL (2.11)

since tensor (matrix) L is symmetric.
The application of Lorentz transformation to four-vector results in

x′a = La
nxn (2.12)

or, if it is rewritten in matrix universum, in

x′ = Lx. (2.13)

The inverse Lorentz transformation [12] can be defined as a tool which
returns the observer back to the original inertial frame. It is characterized by
tensor Ln

a , which should fulfill the analogical equation to (2.7), i.e.,

xn = Ln
ax′a. (2.14)

Since transforming the vector there and back must result in the same vector,
there is

x′a = La
nLn

mx′m (2.15)

and
La

nLn
γ = δa

γ , (2.16)

where δa
γ is Kronecker delta, or, in matrix language, a four-dimensional

identity matrix.
After further inspection of the Minkowski metric, it can be concluded the

inverse Lorentz and Lorentz transform tensors differ (expectedly) only in the
sign on the velocity v, i.e.

L−1 = L(v := −v). (2.17)

The substitution is a consequence of the reciprocity of inertial frames, the
same as the observer and the observed. The interchangeability of a Lorentz
transformation velocity argument is a key fact because all codes performing
the Lorentz transformation are easily invertible only by adding a minus to
the speed arguments.

2.3 Explicit transformation

Following the general rules for transforming tensors, this section sets out
the explicit equations for transforming three-dimensional field quantities and

8



.............................. 2.4. Lorentz transform operator

vectors from one inertial frame to another. This is also the way, how the
transformations are implemented in the Matlab package.

Transformation of the field tensor is separated from the transformation of
coordinates, therefore the coordinates still remain in the laboratory frame.
These two first transformations can be applied in both, the time and frequency
domain, unchanged: [12]

E′ = E∥ + γ (E⊥ + v × B) (2.18)

B′ = B∥ + γ

(
B⊥ − v × E

c2

)
. (2.19)

The field transformations must be supplemented by the transformation of
coordinates. The explicit transformations of coordinates read

ct′ = γ

(
ct − v · r

c

)
(2.20)

r′ = r + v

[
r · v

v2 (γ − 1) − γ
ct

c

]
. (2.21)

As stated above, the relations explicit transform from a laboratory frame
to a frame moving with velocity v. The inverse transformations are obtained
by reversing the direction of the velocity. This allows the implementation of
only one such function in Matlab codes and, if the inverse transformation is
needed, the same function is called with a different argument.

2.4 Lorentz transform operator

For easier notation in the following chapters, the Lorentz transform operator
L[.] is established, as the linear operator over previously mentioned pairs of
physical quantities. The quantities will be paired as they occurred together
in the four-vectors and the tensors in section 2.1. Operator L[.] provides
transformation

a′, b′ = L[a, b] (2.22)

of variables a, b, which are scalar or vector, in brackets to their corresponding
images a′, b′ in the co-moving frame. Transformations are based on section 2.3.
For example, applying operator on a pair r, t, using (2.20) and (2.21), leads
to

L[r, t] = r + v

[
r · v

v2 (γ − 1) − γt

]
, γ

(
t − v · r

c2

)
= r′, t′. (2.23)

Similarly, the Inverse Lorentz transform operator L−1[.] transforms the
quantities back to the rest frame as

a, b = L−1[a′, b′] (2.24)

through the substitutions from section 2.3.

9



2. Special relativity ...................................
To ease the notation, the operators L[.] and L−1[.] will also be used

independently on multiple variables. Some of the quantities can be excluded
from the transformation, the ones which are transformed are written out in
subscripts, the example being

La,b[a, b, c, d] = L[a, b], c, d = a′, b′, c, d (2.25)

This holds similar for the inverse Lorentz transform operator.

L−1
a′,b′ [a′, b′, c′, d′] = L−1[a′, b′], c′, d′ = a, b, c′, d′ (2.26)

Applying the operators on functions f ,g does not affect the argument of the
functions, i.e.,

Lf,g[f(a, b), g(a, b)] = f ′(a, b), g′(a, b) (2.27)

On the other hand, the operators can also be applied specifically only to the
functions’ argument, which does not change the functions1 themselves.

La,b[f(a, b), g(a, b)] = f(a(a′, b′), b(a′, b′)), g(a(a′, b′), b(a′, b′)) ∼ f(a′, b′), g(a′, b′)
(2.28)

For example, the coordinates-transformed fields stay as

Lr,t[E(r, t), E(r, t)] = E(r(r′, t′), t(r′, t′)), B(r(r′, t′), t(r′, t′)) ∼ E(r′, t′), B(r′, t′).
(2.29)

1Actually, it does affect the functions, but just in a way that the new argument is first
of all inserted in the substitution and after that, the whole functions are evaluated.

10



Chapter 3
Solution to Maxwell equations

Finding the scattering by an object means finding the solution to Maxwell
equations. In this work, the solution will be performed in the rest frame of
the object by which the incident field is scattered. The solution is provided
using the electric field integral equation, which is the most appropriate tool
for this scenario. Due to the operation within the rest frame, no change is
needed to the standard procedure described below. The solution operates in
the frequency domain, therefore, ω is omitted from the function arguments.

3.1 Electric field integral equation

Assuming that the known incident field Ei(r) exists in the rest frame of
a general metal-dielectric object, the scattered electric field can be written
as [16]

Es(r) = −jωµ

∫
V

G(r, r1) · J(r1)dV1, (3.1)

where

G(r, r1) = 1
4π

[
I + ∆∆

k2

] e−jk|r−r1|

|r − r1|
(3.2)

and where J is the unknown polarization current density representing the
object, and k is the wavenumber. The interaction of the material body with
the field can then be described as [17]

ρJ = Ei + Es(J), (3.3)

where ρ is the resistivity of the material. This material relation must be
enforced with the volume of the scatterer and gives rise to a linear operator
equation for unknown current density J called the electric field integral
equation (EFIE).

The solution to (3.3) is commonly approached using Galerkin method [17].

11



3. Solution to Maxwell equations .............................
3.2 Galerkin method for EFIE

Galerking method, also known as the method of moments, provides a solution
to the inhomogeneous linear operator equation

M(f) = g, (3.4)

where g is a known complex vector function (excitation), and complex vector
function f is to be determined (response) [17].

Let Ψn be a set of basis functions [17] in the domain of M. Then unknown
vector f can be written as their linear combination

f =
∑

n

InΨn, (3.5)

where In are expansion coefficients. Due to linearity, the equation (3.4) now
reads ∑

n

InM(Ψn) = g. (3.6)

Let a reaction product ⟨f , g⟩ be defined as [17]

⟨f , g⟩ =
∫
V

f · gdV1. (3.7)

Then equations (3.6) can be tested by vector functions Ψn as∑
n

In⟨Ψn, M(Ψn)⟩ = ⟨Ψn, g⟩. (3.8)

This transforms the original operator equation into a system of linear
equations [17]

ZI = V , (3.9)

where
Zmn = ⟨Ψm, M(Ψn)⟩ (3.10)

is generalized impedance matrix, I are generalized currents and

Vm = ⟨Ψm, g⟩ (3.11)

are called generalized voltages [17]. The solution to the problem (3.4) is
transformed into the solution to a system of linear equations.

For the particular case of EFIE, the components of impedance matrix Z
are evaluated as

Zmn = ⟨Ψm, ρΨn − Es(Ψn)⟩, (3.12)

while the components of excitation vector V are evaluated as

Vm = ⟨Ψm, Ei⟩. (3.13)

12



...........................3.3. Implementation of Galerkin method

3.3 Implementation of Galerkin method

Implementation of the Galerkin method over the electric field integral equa-
tion is not a goal of this thesis. Therefore, the author used a pre-implemented
package[11] for this task. The used solver operates with RWG basis func-
tions Ψn. The RWG functions are linearly increasing functions [18] defined
over a triangular mesh and are well suited to describe scattering from arbi-
trarily shaped surfaces. The basis function is attached to each doublet of
adjacent triangles forming an overall piecewise linear approximation of the
surface current density field.
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Chapter 4
Implementation

This chapter deals with the implementation of the Lorentz transformation
discussed in chapter 2 and with the solution to a problem as a whole. The final
coding is made in Matlab 2023a. To simplify the reading, all implementation
steps will be shown using flowcharts which are then followed in the actual
codes. Note that all flowcharts use the same colour coding, see figure 4.1.
The interpolation nodes are brown because it is a mix of green and orange
colour which represents analytic-like functions made out of discrete data.

Input/Output
Quantity/Variable
Analytic function
Numerical function

Interpolation

Figure 4.1: Color coding used in flowcharts.

4.1 General solution

In this section, a generic flowchart for the solved problem is given and
thoroughly discussed. More specialized cases which are actually implemented
are shown later on in section 4.2. The generic flowchart is shown1 in figure
4.2.

1The flowchart is inspired by a solution to a similar problem presented in [7].
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4. Implementation....................................
Userdata

Ei(r, ω), Bi(r, ω)

L[Ei, Bi, r, ω]

E′
i(r′, ω′), B′

i(r′, ω′) EFIE solver
by Galerkin method E′

s(r′, ω′), B′
s(r′, ω′)

L−1[E′
s, B′

s, r′, ω′]

Result
Es(r, ω), Bs(r, ω)

Figure 4.2: Sketch of a solution to the problem of wave scattering by a moving
object.

Starting in the upper left corner, the user data are collected, and from
this knowledge, the incident field within the laboratory frame Ei and Bi is
evaluated. The incident field is assumed to be known in the frequency domain,
which corresponds well with practice. Then the quantities are transformed in
the co-moving frame via the Lorentz transformation, which will be explained
further. Within the co-moving frame, the scattering problem with a static
object is solved in the frequency domain using EFIE and Galerkin method.
The solver generates scattered fields E′

s and B′
s, which are once more in the

frequency domain. Now, the quantities are transformed back to the laboratory
using inverse Lorentz transformation.

The major difficulty in performing the previous scheme lies in the two
green transformations block. Notice, the operator L[.] and L−1[.] are applied
over ω or ω′, respectively, even though they were not defined for them before.
Therefore, the green blocks must be studied in more detail. Since the two
transformation blocks must only differ in the velocity direction, it is enough
to study only one of them. The following development is, therefore, only
related to the third block.

4.1.1 Lorentz transformation of ω and full Lorentz
transformation

Assembling the third block, which will be named full Lorentz transformation
further in the text, would carry out most of the requirements necessary for
obtaining the scattered field because the block transforms everything involved
from one frame to another.

Unfortunately, Lorentz transformations cannot be directly applied in fre-
quency domain2 since it connects only the space with time variables. The
way to deal with this discomfort is to put the inverse Fourier transformation
F−1

ω [.] on the field variable to move from frequency domain ω to time domain
t. Only then one can use the Lorentz transformation into the co-moving
frame. After that, field quantities must be brought back to the frequency

2The frequency four-vector or four-frequency, on which could be the Lorentz transforma-
tion applied, does exist and is mostly used in optics, but it does not generally apply to this
case [15].
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................................... 4.1. General solution

domain (Fourier transform Ft′ [.] into variable ω′) since this is the domain
of the electromagnetic solver. This 3-step way for the particular case of the
electric field can be written as

E(r, t) = F−1
ω [E(r, ω)] (4.1)

E(r′, t′) = Lr,t[F−1
ω [E(r, ω)]] (4.2)

E(r′, ω′) = Ft′ [Lr,t[F−1
ω [E(r, ω)]]], (4.3)

where it is important to point out that the Fourier transformations in (4.3)
are not inverses of each other, because they both operate in different frames.

The sum up to the flowchart corresponding to the left green block in
4.2, is shown in figure 4.3, where the linearity of the Fourier and Lorentz
transformation was used, allowing move the Lorentz transformation block to
the end of the flowchart.

E(r, ω), B(r, ω)

F−1
ω [E(r, ω), B(r, ω)]

E(r, t), B(r, t)

Lr,t[E(r, t), B(r, t)]

E(r′, t′), B(r′, t′)

Ft′ [E(r′, t′), B(r′, t′)]

E(r′, ω′), B(r′, ω′)

LE,B[E(r′, ω′), B(r′, ω′)]

E′(r′, ω′), B′(r′, ω′)

Figure 4.3: Flowchart corresponding to the transformation L[E, B, r, ω].

Particular examples of how to handle the full Lorentz transformation
implementation-wise will be shown in the next subsections, discussing their
strengths and weaknesses before the final implementation is presented.
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4. Implementation....................................
4.1.2 Analytical full Lorentz transformation for a plane wave

The first method, allowing building up the components for the diagrams
4.2 and 4.3, consists of the assumption of canonical prescription of the
electromagnetic field as a plane wave.

The electromagnetic field of a plane wave in the laboratory is defined as [16]

EPW(r, ω) = E0(ω)e−j ω
c

n·r (4.4)

and
BPW(r, ω) = B0(ω)e−j ω

c
n·r, (4.5)

where n is a unit vector in the direction of plane wave propagation, E0(ω) is
a field of a plane wave in origin and

B0(ω) = 1
c

[n × E0(ω)]. (4.6)

In this case, the Full Lorenz transformation can be derived analytically as [12]

E′
PW(r′, ω′) = 1

γ(1 − βn · v0) E′
0

(
ω′

γ(1 − βn · v0)

)
e−jω′n′·r′ (4.7)

B′
PW(r′, ω′) = 1

γ(1 − βn · v0) B′
0

(
ω′

γ(1 − βn · v0)

)
e−jω′n′·r′ (4.8)

where
n′ = n + [n · v0(γ − 1) − γβ] v0

γ(1 − βn · v0) . (4.9)

and where E′
0, B′

0 relates to E0, B0 via (2.18) and (2.19).
An interesting property of a plane wave, seen from (4.7) and (4.8), is that

it always remains a plane wave in any inertial frame. The only difference is
an amplitude scaling, a stretched frequency axis, and a different propagation
vector.

The solution for a plane wave is the simplest solution of all, its main
advantage is the low computational complexity since the whole solution is
analytical.

4.1.3 Discretization of full Lorentz transformation

A dangerous jump to a more complex and general solution of the full Lorentz
transformation is to discretize the whole process. The discretization will
lead to implementing the entire full Lorentz transformation in Matlab codes.
Discretization is necessary, because limiting the code options to only few
particular examples that can be solved analytically, is unwanted.

The Lorentz transformations from figure 4.3 will not be changed by dis-
cretization since they are written explicitly in analytical form. However, that
does not apply to Fourier transformations, which must be replaced by Fast
Fourier transform (FFT) [19].
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................................... 4.1. General solution

Using the FFT and IFFT (inverse Fast Fourier Transform) leads to sampling
the quantities. Asking the output function for a specifically sampled field
in the co-moving frame pushes the frequency in the rest frame to be also
sampled in a way that corresponds to its co-moving sibling. Therefore, the
influence of choosing r′, ω′ must be included in the input block, because
the E′(r′, ω′) and B′(r′, ω′) cannot be obtained by reversing through the
processes. Therefore the ω′ and r′ transfer from the argument of the output
function to the (r, ω) argument of the input function. The transfer is done by
estimation function, whose construction will be, for this moment, unspecified.
The estimation step is a price for the discretization of the problem, and the
ability to process any incident field.

E(r, ω), B(r, ω)

IFFTω[E(r, ω), B(r, ω)]

E(r, t), B(r, t)

Lr,t[E(r, t), B(r, t)]

E(r′, t′), B(r′, t′)

FFTt′ [E(r′, t′), B(r′, t′)]

E(r′, ω′), B(r′, ω′)

LE,B[E(r′, ω′), B(r′, ω′)]

E′(r′, ω′), B′(r′, ω′)

(r′, ω′) → (r, ω)

Figure 4.4: Discretized version of the flowchart from figure 4.3.

The discretization of the process makes some steps uncomfortable, especially
the transition of the time coordinate from the laboratory to the co-moving
frame. The FFT algorithm requires equidistant sampling and spectrum where
positive frequency samples are complex conjugates of negative frequency
samples, including a sample for t = 0 in the time domain or ω = 0 in the
frequency spectrum, with one sample added to the left side of the spectrum [19].
That sampling creates a straight beat in the time domain with corresponding
frequency coordinates. It is necessary to hold the beat for proper work of the
FFT algorithm.

On the other hand, the Lorentz transformation of the time variable generates
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4. Implementation....................................
a time shift

ct′ = γ

(
ct − v · r

c

)
, (4.10)

see (2.20). The time shift can create off-beat samples, which are not matched
with the condition of symmetric sampling. That results in FFT stopping
working. In most cases, samples are not shifted by multiples of sampling
periods. Hence, an appropriate deployed sampling in the laboratory rest
frame does not guarantee proper sampling in the co-moving frame. Since the
quantities between the sampling points are unknown, a few more blocks must
be added to the scheme 4.4 for stabilization and symmetrization of sampling.

In this thesis, interpolation is used to estimate arbitrary function values
between sampling points. Adding the two interpolations in two directions
results in two separated coordinate set sequences, which would be the same
coordinates in continuous space, but for discrete samples, they are not equal.

For limited computational memory, the user of the Matlab package is
rather interested in interpolation over only one variable, not over the whole
position four-vector. Luckily, the request can be fulfilled since the Lorentz
transformation is used to simplify the position vector. Therefore, the position
vector remains constant through the interpolation and the only variable
varying through the interpolation is time. To make this assumption, the
interpolation block must be placed, where the position of its argument is
static.

The following three functions will be interpolated over t′ in two blocks

First interpolation block:
[
E(r′, t′)
B(r′, t′)

]
(4.11)

Second interpolation block:
[
r(r′, t′)

]
. (4.12)

The previously mentioned two sets of coordinates sequence are distinguished
by indices α, β. Borders between two areas of each index are the interpolations
blocks.

The first block will be placed after the Lorentz transformation of coordinates
allowing to match samples to FFT needs in a co-moving frame. As the
assumption holds for r′, which represents the state position of the object in
the co-moving, therefore rα = rβ.

Concurrently with placing the second interpolation block, the mysterious
block (r′, ω′) → (r, ω) is figured out.

Firstly the ωα must be transformed in time tβ which has to satisfy[19]

N = 2π

∆tα∆ωα
, (4.13)

where the ∆tα and ∆ωα is sampling step in the time, respectively frequency
domain. Then it could be transformed into the laboratory frame and inter-
polated to satisfy laboratory IFFT requirements. Because ωβ in its freedom
could break the Nyquist condition or put ωβ away under input sampling
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................................... 4.1. General solution

requirements, therefore its estimation must be made.3 From ωβ is tβ received
in analogical way as in (4.13).

After insertion of the interpolation blocks, the flowchart from figure 4.4
updates to figure 4.5.

E(rβ, ωβ), B(rβ, ωβ)

IFFTω[E(rβ, ωβ), B(rβ, ωβ)]

E(rβ, tβ), B(rβ, tβ)

Lrβ ,tβ
[E(rβ, tβ), B(rβ, tβ)]

E(r′
β, t′

β), B(r′
β, t′

β)

r′
β = r′

α

E(tβ) → E(tα)
B(tβ) → B(tα)

E(r′
α, t′

α), B(r′
α, t′

α)

FFTt′
α
[E(r′

α, t′
α), B(r′

α, t′
α)]

E(r′
α, ω′

α), B(r′
α, ω′

α)

LE,B[E(r′
α, ω′

α), B(r′
α, ω′

α)]

E′(r′
α, ω′

α), B′(r′
α, ω′

α)

rα(tα) → rβ(tβ)

rα, tα

L−1[r′
α, t′

α]

r′
α, t′

α

ω′
α → t′

α

r′
α, ω′

α

ωβ → tβ

ωβ

ωβ estimator
based on ω′

α

rβ, ωβ

Figure 4.5: Flowchart from figure 4.4 supplemented with interpolation

The unexpected problem, which was not taken into account yet, is both
interpolations are connected and they communicate with each other.

Interpolation of the position leads to extrapolation of the field and vice versa.
The author wants to avoid extrapolation because he thinks extrapolation
can produce enormous errors. Luckily, the transformation position (2.20)
is linear respective to time4, ergo the analytic relationship can be obtained

3After a few failed attempts for proper estimation in code, the ωβ is estimated by a user
for this moment.

4As expected, because the motion is uniform and linear.
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4. Implementation....................................
through finite differences (gradient). In that case, the extrapolation is painless,
because it does not have to be paid with an error. Therefore, the author
chose to interpolate the fields and extrapolate the coordinates. This must be
taken into account through the estimation of ωβ.

The issue of the solution in figure 4.5 hides in the IFFT block, because
its output has to be one value for position at one time moment. Hence, the
input calls for one full spectrum for each position, resulting in N calling
for a unique N -element spectrum for each coordinate. The computational
complexity grows over the number of samples, which arises in complicated
manipulation with memory, and it will necessarily lead to the long execution
time of the program. Therefore, the author abandoned these problems
unsolved for this moment and suggested some solutions in the last chapter of
this thesis 7. Fortunately, the solver output quantity has been forgotten until
now, and it is time for it to step forward.

4.1.4 Full Lorentz transformation for dipoles

Since the outcome of the used EFIE solver is current density (smooth distri-
bution of electric dipoles), one of the possibilities is to compose the scattered
field from separate dipole responses. Using the dipole moment as the input
quantity leads to another solution of full Lorentz transformation.

The electromagnetic fields of an electric dipole in a co-moving frame occur
as[16]

E′
E.dip(r′, t′) = 1

4πϵR′

(
R′

0 × (R′
0 × p̈′

ret)
c2 + [3R′

0R′
0 − I] · ṗ′

ret
R′c

+

[3R′
0R′

0 − I] · p′
ret

R′2

)
(4.14)

B′
E.dip(r′, t′) = − Z0

4πR′ R
′
0 ×

( 1
c2 p̈′

ret + 1
R′c

ṗ′
ret

)
, (4.15)

where p′
ret denotes retarded time argument p′

(
t′ − R′

c

)
, dots represent deriva-

tive with respect to the function argument, vector p′ stand for the electric
dipole, and R′ = r′ − r′

dip with R′ denoting distance |R′| and R′
0 being unit

vector along R′. The final scattered field is the superposition of all dipoles
describing the current density of the object.

Because the electromagnetic fields of dipoles can be analytically described
in the time domain, the inverse Fourier transforms in 4.3 would be rather
done over the dipole moment. This little switch between a field evaluation
and the IFFT leads to a solution to the computational problem. Now, the
information about solver quantity, this time the electric dipole, is requested
only in one position per dipole because the object and, consequently, the
dipoles are not moving in a co-moving frame. After the electric dipole in
time is easily obtained through IFFT, the field can be calculated for the
moving observer in the co-moving frame. That is truly easier because it
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................................. 4.2. Implemented solution

means calculating IFFT only few times, actually nine times per dipole (three
for each coordinate times three for zeroth, first and second derivative), which
is usually much less than the previous N times.

4.2 Implemented solution

As a summary of this chapter, the scheme shown in figure 4.6 will be im-
plemented. The final solution is built from the solution of the full Lorentz
transformation for plane wave as a source and from a set of electric dipoles
representing the object scattering. The ω estimation has returned to its
original block form from 4.4. This solution is used for numerical results in
this thesis in chapter 6.

Userdata

E′
PW(r′, ω′)

B′
PW(r′, ω′)

EFIE solver
by Galerkin method

E′
dip(r′, t′)

B′
dip(r′, t′)

Lr′,t′ [E′
dip(r′, t′), B′

dip(r′, t′)]

E′
dip(r, t), B′

dip(r, t)

FFT[E′
dip(r, t), B′

dip(r, t)]

E′
dip(r, ω), B′

dip(r, ω)

L−1
E′

dip,B′
dip

[E′
dip(r, ω), B′

dip(r, ω)]

Result
Edip(r, ω), Bdip(r, ω)

(r, ω) → (r′, ω′)

Figure 4.6: Flowchart of the final implemented solution.
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Chapter 5
Simplified test solutions

In order to provide benchmarking and testing of the developed codes, simpli-
fied solutions of the same problem sketched in flowchart 4.2 are needed. This
chapter is devoted to two such cases, one of which is a closed-form solution.

5.1 Dipole function

The first simplified solution consists of a laboratory plane-wave incident upon
a moving non-dispersive (frequency-independent) polarizable dipole. The
polarizable particle is described by its electric p and magnetic m dipole
moment

p′(r′, t′) = ε0αeE′
i(r′, t′) (5.1)

m′(r′, t′) = 1
µ0

αmB′
i(r′, t′), (5.2)

where αe, αm are non-dispersive electric and magnetic polarizabilities and
ε0 and µ0 is permittivity and permeability of vacuum, respectively. For
benchmarking purposes, polarizabilities of a perfectly conducting sphere
αe = 3V , αm = −3/2V are used with V being the volume of the sphere.

The time-domain electric and magnetic field of an electric dipole has already
been introduced in (4.14) and (4.15). The fields created by magnetic dipole
are dual and read [16]

E′
M.dip(r′, t′) = Z0

4πR′ R
′
0 ×

( 1
c2 m̈′

ret + 1
R′c

ṁ′
ret

)
(5.3)

B′
M.dip(r′, t′) = µ

4πR′

(
R′

0 × (R′
0 × m̈′

ret)
c2 + [3R′

0R′
0 − I] · ṁ′

ret
R′c

+

[3R′
0R′

0 − I] · m′
ret

R′2

)
. (5.4)

The final scattered field is a superposition of both contributions

E′
s = E′

dip = E′
E.dip + E′

M.dip (5.5)
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5. Simplified test solutions ................................
B′

s = B′
dip = B′

E.dip + B′
M.dip. (5.6)

Userdata

Ei(r, t), Bi(r, t)

L[Ei, Bi, r, t]

E′
i(r′, t′), B′

i(r′, t′) Scattering from
a polarizible dipole E′

dip(r′, t′), B′
dip(r′, t′)

L−1[E′
dip, B′

dip, r′, t′]

Edip(r′, t), B′
dip(r′, t′)

FFT[E′
dip(r, t), B′

dip(r, t)]

Result
Edip(r, ω), Bdip(r, ω)

Figure 5.1: Flowchart for a scattering from a polarizable dipole.

Since the plane wave has an analytical representation in the time domain,
the time characterization is taken as a solver in this case. The whole process
sketched in flowchart 5.1 is mostly analytical, with the only exception of the
final Fourier transforms and time derivatives that are needed in relations
(5.3) and (5.4). These two numerical pieces are provided by FFT and finite
differences. The purpose of this solution is to check the validity of the main
package.

5.2 Low-speed approximation

In most cases of radar detection, the full relativity treatment is not needed.
One of the goals of the thesis is therefore to build up a simplified package for
small velocities.

As mentioned in chapter 2, the Special relativity models should approach
the Galleian transformation in the limit of velocity small in comparison with
the speed of light. This fact is further used to validate the results of the
generic Matlab codes. The low-speed Matlab package only contains the
Galleian transformation and non-relativistic Doppler shift. This considerably
simplifies the evaluation.

The Galilean transform can be derived from the Lorentz transformation
under the condition β → 0. Applying this to explicit transformation in
section 2.3, the fields remain unchanged under the Galileian transform

E = E′, B = B′. (5.7)

The transformation of the position four-vector simplifies to

r′ = r + v0βct, (5.8)
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............................... 5.2. Low-speed approximation

and the time coordinate remains the same in both frames

ct′ = ct (5.9)

This approximation will focus only on the frequency changes, the others are
neglected. Therefore, neglecting the amplitude modulation of the fields under
transformation to the moving frame, the above transformations of plane wave
field lead to a well-known non-relativistic Doppler shift

ω = ω′

1 − βn · v0
. (5.10)

The propagation vector of the plane wave n′ = n remains unchanged.
In this approximation, the frequency shift (5.10) will be used even for

general fields when they are observed far from their sources (far-field region).
In the far-field region, the propagation direction n will be represented with
the difference unit vector R0.

This far-field approximation will be used to evaluate scattered fields in the
laboratory with further assumption that the difference vector remains constant
through the observation time and with a sign change in the denominator of
(5.10), i.e.,

ω′ = ω

1 + βR0 · v0
. (5.11)

The equations (5.10) and (5.11) are drawn as the left, and the right green
block in flowchart 5.2.

Userdata

Ei(r, ω), Bi(r, ω)

ω → ω′

Ei(r, ω′), Bi(r, ω′) EFIE solver
by Galerkin method Es(r, ω′), Bs(r, ω′)

ω′ → ω

Result
Es(r, ω), Bs(r, ω)

Figure 5.2: Approximation for low speed.
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Chapter 6
Results

This chapter presents numerical examples resulting from the algorithms
detailed in the previous two chapters 4 and 5. Throughout the chapter, firstly,
the goal of the simulation is introduced, then the settings of the program are
described, and last, the results are plotted and discussed. The main purpose
of this chapter is to test every independent algorithm built in this thesis. For
more information about each program, see the sections 4.2, 5.1, and 5.2.

For the sake of presentation, this chapter assumes illumination of the
moving object with a plane wave of sinusoidal timecourse at frequency ω0,
which is modulated in amplitude by Gaussian curve of width σ. Specifically,
the frequency spectrum of the plane wave reads

E0(ω) = 1
σ

√
2π

(
e− 1

2

(
ω−ω0

σ

)2

+ e− 1
2

(
ω+ω0

σ

)2)
Ẽ0. (6.1)

Particular values used for the subsequent calculations are ω0 = 2π · 109 s−1

and σ = 4π · 108 s−1 which roughly corresponds to short pulses radiated
by a mono-pulse radar. Vector Ẽ0 prescribes the overall amplitude and
polarization of the plane wave, it is independent of frequency and changes in
each example. Particular values of vector Ẽ0 are shown in each example.

6.1 Electrically small perfectly conducting sphere

The first object of interest is an electrically small, perfectly conducting sphere
because this scattering problem can be well approximated by polarizable a
dipole particle and can be solved analytically as shown in the previous chap-
ter 5.1. Hence, the analytical approach can validate the method of moments
solution and, at the same time, the discrete full Lorentz transformation from
section 4.2 since the numerical forms of both are not present in the dipole
approximation.

6.1.1 Program settings

The dipole approximation assumes an ideal sphere, however, the Galerkin
method has to use a triangularized “origami” model of a spherical surface. Two

29



6. Results .......................................

Figure 6.1: Discretized spherical surface sonsisting of 38 and 110 nodes.

discretizations, consisting of 38 and 110 nodes, were chosen. The geometrical
accuracy of the used polyhedrons can be reviewed in figure 6.1.

Other settings are listed in table 6.1. In order to test the implementation
thoroughly, the propagation vector n and the field vector E0 were chosen
randomly. If the approximation of sphere by dipole has to hold, the radius of
the sphere a must be much less than wavelength λ0. Therefore, the author
chose a = 0.05λ0/(2π) ≈ 0.0785λ.

Table 6.1: User input for the spherical setup

User input
quantity value units

vector position r of the observer in the laboratory

 0
−0.5

0

 [m]

vector position of the center of the sphere at time t = 0

0
0
0

 [m]

vector Ẽ0

 0.9649
0.1576

−0.3707

 [V · m−1]

direction of velocity vector v0

1
0
0

 [−]

direction of plane wave propagation n

0.2449
0.4809
0.8419

 [−]

6.1.2 Results for v = 10−3c and v = 0.8c

Because the field was chosen randomly, only one component of Ẽ0 will be
plotted since the other two elements will not supplement any new information.
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.......................6.1. Electrically small perfectly conducting sphere

The left panels of figures 6.2 and 6.3 show the time course of the x-component
of the scattered field Es at the observer’s position. In the right panels of the
figures, the magnitude of frequency spectrum |Esx| is plotted. Three different
cases were considered, they consist of an analytical dipole approximation and
two different discretizations which are evaluated with numerical routine.
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Figure 6.2: Esx(t) and |Esx(ω)| of three different sphere descriptions for velocity
v = 10−3c
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Figure 6.3: Esx(t) and |Esx(ω)| of three different sphere descriptions for velocity
v = 0.8c

As can be seen from both examples, the frequency is raising with increasing
velocity, which results in squeezing the impulse in the time domain. Also
for great velocities the frequency spectrum is stretching towards the higher
frequencies.

Comparing the two examples it can be seen that overall the agreement
is good with only slight and expected dependence on the discretization of
the sphere. The trend can be clearly seen from the spectrum in figure 6.3
- the more nodes by which the sphere is approximated, the more precise
results. Nevertheless, using more precise discretizations rapidly increases the
computational time. Therefore, the quality of the results is mostly in the
users’ hands and it depends on how good the discretization of the object is
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and how long can the calculations take. Despite this, the example clearly
validates the numerical routine. Now, when the main code is validated, it
turns the coat and will be used as a reference for validation of low-speed
approximation from section 5.2.

6.2 Thin-strip dipole discretized by 72 nodes

In this chapter, a slightly more complex object will be used to see the validity
and limits of the low-speed algorithm from section 5.2. The validated main
algorithm now serves as a control tool. Concurrently, the abilities of the
solver of the main solution from section 4.2 will be tested by using a different
object - the thin-strip dipole moving along its length. Both algorithms will
be executed for different velocity magnitudes and compared to each other to
see the limits of low-speed approximation.

6.2.1 Program settings

The strip is discretized by a triangle mesh consisting of 72 nodes which can
be seen in figure 6.4. The length of the strip was chosen to represent a
macroscopical object as l = 15 cm. The width of the strip is w = l/20 =
0.75 cm.

Figure 6.4: Mesh of a thin-strip dipole discretized by 72 nodes

The strip’s length is rotated in the direction of the x-axis, which means it
is moving in a longitudinal direction because the velocity vector v0 is also
pointing in the direction of x as can be seen in table 6.2. The distance of the
observer and the object at t = 0 was chosen 7.5 m since for bigger distances
it was hard to fulfil the Nyquist condition for the low-speed approximation.
The reason why has been left unknown to the author until finishing the thesis.
The plane wave arrives in an orthogonal direction to the strip’s motion, which
should minimalize the Doppler shift. Even if a bigger distance would be more
suitable for the low-speed, far-field approximation, it still can give a satisfying
outcome for small velocities since the travelled path during the observation
time is negligible compared to the distance between the observer and the
object. The vector Ẽ0 has been chosen arbitrarily.
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........................ 6.2. Thin-strip dipole discretized by 72 nodes

Table 6.2: User input for the thin-strip dipole setup

User input
quantity value units

vector position r of the observer in the laboratory

 0
−7.5

0

 [m]

vector position of the center of the sphere at time t = 0

0
0
0

 [m]

vector Ẽ0

1
6
0

 [V · m−1]

direction of velocity vector v0

1
0
0

 [−]

direction of plane wave propagation n

0
0
1

 [−]

6.2.2 Results for v = 10−6c, v = 10−4c and v = 10−3c

In this example, the data are plotted only in the frequency domain because
the low-speed algorithm focuses only on the frequency shift as was stated in
section 5.2. The programs have been run over a variety of object’s velocities to
receive most of the information about the qualities of low-speed approximation.
Then the author chose some exemplary cases to outline the tendency of the
solution. Unfortunately, the unexplained modulation of amplitude occurred.
Although some modulation was expected, the expectation was about maximal
1.2 scaling for smaller velocities. Until finishing this thesis, the reason, why
the scaling difference is about 104, still remains unknown. For this difference,
the linear y-axis was useless, therefore the author decided to plot |Esx(ω)| on
the logarithmic y-axis as can be seen in the following figures in 6.5.
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Figure 6.5: log |Esx(ω)| of the main and the low-speed program for velocity
10−6c, 10−4c and 10−3c.

In the first figure in 6.5, for velocity 10−6c can be seen that both algorithms
provide, despite the aforementioned amplitude modulation, matching results.
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........................ 6.2. Thin-strip dipole discretized by 72 nodes

It can be concluded that for these settings the approximation holds properly.
The second figure in 6.5 represents data for velocity 10−4c. There started

some differences in frequency stretch to occur. It is notable, that the Main
solver solution decreases in frequency spectrum a bit faster than the low-speed.
This is caused by neglecting the Lorentz factor γ during the approximation,
which led to equation (5.10). Still, the low-speed algorithm can be valid
as a rough approximation, which can give the user quicker insight into the
situation than the main code.

In the third figure in 6.5, the low-speed algorithm stops working properly
and shows significant errors. The conclusion made from the other testing
velocities is the following:

For this specific setup, the velocity above the edge, which is circa 2 · 10−4c,
the enormous error appears. Therefore the low-speed approximation should
be used for much smaller velocities. The safe area is about velocity 10−6c,
where approximated results hold with reality. For higher velocities between
10−5c and 10−4c can the program gives a quick overview of reality and the
user has to call the main algorithm to obtain precise values. The low-speed
algorithm provided to work in assumed speed interval, although unexplained
amplitude modulations did occur.
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Chapter 7
Conclusion

In summary, a brief introduction to the theory of special relativity was
made. There were introduced the Lorentz transformation, the inertial frame
equivalence and the frame-hoping technique which can significantly simplify
the solution of the object’s scattering. After gaining the ability to transform
the observer in the co-moving frame, it was derived how the electric field
integral equation will be numerically solved in the rest frame of the object,
using the pre-implemented package operating with the Galerkin method.
After the preparation of these tools, the possible solutions to the problem
were outlined. The author discussed the strengths and weaknesses of every
solution and prepared the main algorithm for solving the problem.

Apart from the main algorithm, two other particular solutions were built
primarily for testing purposes. One consisted of limiting the problem only to
a small sphere dipole, the other one assumed the object’s velocity is much
smaller than the speed of light.

After setting all the programs main package was tested. The main pro-
gram package for scattering of an electromagnetic wave by a moving highly-
conducting object has been proven to be successfully implemented, which
means the essential goal of this thesis was solved.

The low-speed package was also implemented and proved to work, however,
an unexpected amplitude modulation occurred. The author will try to figure
out the singularity in further versions of the program.

The current limitations of the program are the need to use only the plane
wave field as the source and the condition that the object was made from
Perfect Electric Conductor (PEC). The second condition can be easily broken.
For assuming different types of objects, the current PEC solver can be easily
extracted and replaced by a different solver without changing any other part
of the code.

The plane wave limitation was caused by the computational complexity of
the found solution. The author assumes there is a faster way of calculating
the problematic multiple IFFTs or a path to avoid using that approach at all.
The possible solution could be similar to the Goertzel algorithm[20] and the
Cooley–Tukey FFT algorithm[21]. The author is looking forward to getting
acquainted with problematic of digital signal processing to find the solution.
Sadly, his current knowledge of the signal processing field is not enough to
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7. Conclusion......................................
solve the problem.

The other way is to gain information about input sources through their
description by dipole moments. The same output is received from the method
of moments. Then, the transformation will be the same as in the subsection
4.1.4. This solution was not implemented because the author aimed to
implement an algorithm for arbitrary source fields. This approach would
require updating the current solver because parts of the plane wave field
calculations are built-in into the solver in the current version of the program.
Using the dipoles as the source approximation also would prevent the user
from asking for the plane wave source since it is impossible to model an ideal
plane wave by a finite number of dipoles, which may not be a problem since
the plane wave is an ideal phenomenon which does not exist in reality.

One of the possible ways to improve or further develop programmed scripts
in the future will be implementing them in the graphical user interface to
make the software more user-friendly. The next stages of this project will
include adjusting the codes to the form of a built-in add-on to the Matlab
package[11] in the future.
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