
CZECH TECHNICAL UNIVERSITY IN
PRAGUE

Faculty of Electrical Engineering

Interactive Ontology Dashboard

Bachelor Thesis
Software Engineering and Technology

Supervisor: Petr Křemen
Author: Avetis Mkrtchian

Prague 2023

ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

492731 Osobní číslo:​Avetis Jméno:​Mkrtchian Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Interaktivní ontologický dashboard

Název bakalářské práce anglicky:​

Interactive Ontology Dashboard

Pokyny pro vypracování:​
 ​

Seznam doporučené literatury:​
- OWL2 Web Ontology Language Primer, https://www.w3.org/TR/owl2-primer/​
- Jackson, R.C., Balhoff, J.P., Douglass, E. et al. ROBOT: A Tool for Automating Ontology Workflows. BMC Bioinformatics​
20, 407 (2019). https://doi.org/10.1186/s12859-019-3002-3​
- Smith, B., Ashburner, M., Rosse, C. et al. The OBO Foundry: coordinated evolution of ontologies to support biomedical​
data integration. Nat Biotechnol 25, 1251–1255 (2007). https://doi.org/10.1038/nbt1346​

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

Ing. Petr Křemen, Ph.D. skupina znalostních softwarových systémů FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

Termín odevzdání bakalářské práce: 26.05.2023 Datum zadání bakalářské práce: 24.02.2023

Platnost zadání bakalářské práce: 16.02.2025

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​Ing. Petr Křemen, Ph.D.​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

Author statement for undergraduate thesis

I declare that the presented wort was developed independently and that I have listed all
sources of information used within it in accordance with the methodical instruction for ob-
serving the ethical principles in the preparation of university theses.

Prague, 26 May 2023

3

Abstract

OBO Foundry contributes to standardizing
biomedical terminologies, taxonomies and on-
tologies. To monitor ontology quality they
produce statistics and reports. However, un-
derstanding cross-ontology problems, prob-
lems of individual ontology concepts, or other
more complex queries, the tools are missing.
The goal of this work is to create a solution
for dashboards over ontology catalogues and
test it on the OBO Foundry dashboard. As a
prominent test case, we aim at the biomedi-
cal terminologies, taxonomies, and ontologies
maintained by the OBO Foundry. This in-
volves designing a shared machine-readable
representation of ontology quality metrics and
quality constraints. Thus, to test the solution,
proprietary ontology quality metrics and on-
tology validation reports delivered by one of
OBO Foundry tools - ROBOT - will need to
be standardized as a part of the work.

Keywords: RDF, Dashboard, SPARQL,
Kibana, Elasticsearch, ROBOT, OBO
Foundry, SHACL, DQV

Abstrakt

OBO Foundry přisṕıvá ke standardizaci
biomedićınských terminologíı, taxonomíı a
ontologíı. Pro sledováńı kvality ontologíı
vytvář́ı statistiky a reporty. Pro pochopeńı
problémů např́ıč ontologiemi, problémů jed-
notlivých ontologických koncept̊u nebo jiných
složitěǰśıch dotaz̊u však nástroje chyb́ı. Ćılem
této práce je vytvořit řešeńı pro dashboardy
nad katalogy ontologíı a otestovat je na dash-
boardu OBO Foundry. Jako významný testo-
vaćı př́ıpad se zaměřujeme na biomedićınské
terminologie, taxonomie a ontologie spravo-
vané v OBO Foundry. To zahrnuje návrh
sd́ılené strojově-čitelné reprezentace metrik
kvality ontologíı a omezeńı kvality. Pro
testováńı řešeńı bude tedy třeba v rámci
práce standardizovat proprietárńı metriky
kvality ontologíı a reporty o validaci ontologíı
dodávané jedńım z nástroj̊u OBO Foundry -
ROBOT.

Kĺıčová slova: RDF, Dashboard,
SPARQL, Kibana, Elasticsearch, ROBOT,
OBO Foundry, SHACL, DQV

4

Contents

Abstract (English) 4

Abstrakt (Czech) 4

1. Introduction 7

2. What is an Ontology? 9

3. Background 10
3.1. Languages and standards . 10
3.2. Resource Description Framework . 10

3.2.1. Components of an RDF Statement (Triple) 10
3.2.2. IRIs . 11
3.2.3. Literals . 11
3.2.4. Blank Nodes . 12

3.3. Web Ontology Language . 13
3.4. SPARQL Protocol and RDF Query Language 14
3.5. RDF validation . 16

3.5.1. ShEx . 16
3.5.2. SHACL . 17
3.5.3. SHACL vs ShEx . 19

3.6. The Data Quality Vocabulary . 20
3.7. Tools for ontology processing . 22

3.7.1. ROBOT . 22
3.7.2. RDF4J . 23
3.7.3. Apache Jena . 23
3.7.4. GraphDB . 23

3.8. Existing dashboard solutions . 24
3.8.1. Kibana . 24
3.8.2. Graphana . 24
3.8.3. Apache Superset . 25
3.8.4. Dashboard choice . 25

4. Architecture 26
4.1. Description of the overall system architecture 26
4.2. Overview of the data flow and communication 28

5. Implementation 29
5.1. Overview of the implementation process . 29
5.2. Robot measure . 29
5.3. Robot report . 30
5.4. Ontology versions . 32
5.5. Storing data in GraphDB . 33
5.6. Harvesting data into ElasticSearch . 34

5

5.7. Visualization of data . 35
5.8. Screenshots of the dashboard . 36

6. Testing 43
6.1. Automation of SHACL rule testing . 43
6.2. Usefulness and usability tests . 44

7. Conclusion 48

A. Overview of RDF Syntaxes 51

B. Usability test results 54

6

1. Introduction

OBO Foundry (Open Biological and Biomedical Ontologies Foundry) is a collaborative effort
among scientists and researchers in the life sciences domain. Its goal is to develop and maintain
a collection of high-quality ontologies that help organize and represent knowledge in biology
and medicine.
The OBO Foundry library refers to a collection of ontologies created by different projects

in the life sciences. These ontologies follow certain rules established by the OBO Foundry to
ensure they work well together and are of high quality.

Figure 1.1.: OBO Foundry library

OBO Foundry has its own ROBOT tool [18] for computing number of metrics about an
ontology, such as entity and axiom counts, qualitative information and more complex metrics
aimed at informing ontology developers, or this tool can report on various issues that may
provide problems for users such as classes with multiple labels in the same languages, multiple
definitions, missing definitions.
The OBO Foundry also has an OBO Dashboard based on the results of the ROBOT tool,

which is a prominent test case for this work. This dashboard checks ontologies for compliance
with OBO Foundry principles, providing this information with details of the problems.

7

Figure 1.2.: OBO Dashboard

Dashboard solutions over ontologies are proprietary and are generally not built on top of
standards. This work aims to design and implement a rich interactive dashboard backed by
standardized vocabularies. As a prominent test case, we aim at the biomedical terminologies,
taxonomies, and ontologies maintained by the OBO Foundry. Since I was not familiar with
ontologies before, one of the first tasks for me was to familiarize myself with the RDF, OWL
language, basics of ontologies, OBO Foundry, ROBOT tool. In the following sections, I
will describe technologies that I used, explain why I used them. Next I will describe the
architecture, you will find out which way I chose to create the dashboard and how it works.
At the end, I will describe the implementation and testing.

8

2. What is an Ontology?

Ontology is a term used in philosophy, computer science, and other fields to refer to the study
and representation of knowledge about the world. In computer science it provides a formal
and structured way to describe entities, concepts, and the relationships between them in a
specific domain of knowledge.
An ontology defines and describes various concepts or entities and their properties. These

concepts can be anything from animals and plants to people, places, or even abstract ideas.
For each concept, the ontology specifies its characteristics, such as its name, attributes, and
relationships with other concepts.
Think of an ontology as a way to organize information in a logical and structured manner.

It’s like a framework or a set of rules that helps computers understand the meaning and
relationships between different concepts. It’s a bit like building blocks that fit together to
create a bigger picture.
Let’s take the example of a library, an ontology for a library might include concepts like

books, authors. Each concept would have its own properties and relationships. For instance,
a book concept might have properties like title, author, and publication date, while the
relationship between a book and an author would indicate that an author can write multiple
books.
By defining these concepts, properties, and relationships in ontology, computers can un-

derstand and reason about the information more effectively. They can perform tasks like
searching for books by a specific author, identifying related genres, or even suggesting similar
books based on a user’s preferences.
Ontologies are used in various fields, including artificial intelligence, data integration, and

knowledge management. They provide a common language for computers and humans to
communicate and share information, making it easier to organize, search, and analyze data.

9

3. Background

In this chapter I will introduce you to the basic technologies, tools, languages, standards I
needed to accomplish my assignment.

3.1. Languages and standards

In this section I will present the languages and standards that were used. I will start with
RDF which is a semantic web language for graphs, OWL builds ontologies over these graphs,
SHACL allows validate these ontologies and DQV is a concrete ontology defined for description
of metrics.

3.2. Resource Description Framework

The Resource Description Framework [23] (RDF) is a framework for expressing infor-
mation about resources. In other words, RDF is a standard way to make statements about
resources. Resources can be documents, people, physical objects, and abstract concepts. An
example of an RDF statement is:

<John> <knows> <Alice>

We can visualize this statement as a connected graph.

Figure 3.1.: Informal graph of the simple statement

3.2.1. Components of an RDF Statement (Triple)

RDF is intended for situations in which information on the Web needs to be processed by
applications, rather than being only displayed to people. RDF provides a common framework
for expressing this information so it can be exchanged between applications without loss of
meaning. Since it is a common framework, application designers can leverage the availability
of common RDF parsers and processing tools. The ability to exchange information between
different applications means that the information may be made available to applications other
than those for which it was originally created.
An RDF statement consists of three components, referred to as a triple:

1. Subject: It represents the resource or entity being described. The subject is represented
by a unique identifier, such as a Uniform Resource Identifier (URI) or a blank node. The
subject can be any concept, object, or entity for which information is being conveyed.

10

2. Predicate: Also known as the property or attribute, the predicate describes the specific
aspect or characteristic of the subject. It represents a relationship between the subject
and the object. Predicates are typically represented by URIs and often come from
predefined vocabularies or ontologies.

3. Object: It represents the value or target of the predicate. The object can be a literal
value, such as a string, number, or date, or it can be another resource identified by a
URI or a blank node. The object provides the actual information associated with the
subject-predicate relationship.

Figure 3.2.: RDF statements consist of a subject, a predicate and an object.

3.2.2. IRIs

International Resource Identifier (IRI) [24] is a protocol standard which builds on Uni-
form Resource Identifier(URI) [28]. An IRI identifies a resource. As mentioned, IRIs are used
to identify resources such as documents, people, physical objects, and abstract concepts. IRIs
can appear in all three positions of above mentioned triple. It can be said that IRIs are used
as ”names” in RDF. They enable the integration and linking of information across different
datasets, systems, and domains, forming the foundation for the semantic web.
In RDF, a namespace is a logical grouping of IRIs that share a common prefix. By defin-

ing a prefix for a namespace, we can use that prefix as a shorthand notation for the cor-
responding IRIs within an RDF document or query. But prefixes are not standardized in
anyway, anyone can pick any in his/her applications.What is quite commonly used however
is https://prefix.cc/ as a helpful service for reusing prefixes.
For example, here is the following RDF triple:

<http :// example . org /books/book1>
<http :// pur l . org /dc/ e lements /1 .1/ t i t l e > ”War and Peace” .

We have book represented by <http://example.org/books/book1> and title represented
by <http://purl.org/dc/elements/1.1/title>. Using prefixes ”dc:” for
<http://purl.org/dc/elements/1.1/> and ”ex:” for <http://example.org/books/> we
can improve readability and obtain the following result:

@pre f ix dc : <http :// pur l . org /dc/ e lements /1.1/> .
@pre f ix ex : <http :// example . org /books/> .

ex : book1 dc : t i t l e ”War and Peace” .

3.2.3. Literals

Literals are basic values that are not IRIs. Literals are used for values such as strings,
numbers, and dates.

11

https://prefix.cc/

In RDF, literals are composed of three components:

• Value: The actual data value being represented. It can be a string, number, date,
boolean, or any other data type.

• Datatype: Specifies the type of the literal value. RDF provides a range of predefined
datatypes, such as xsd:string, xsd:integer, xsd:boolean, xsd:date, etc. The datatype
helps in interpreting and processing the literal value correctly.

• Language tag (optional): When representing textual values, a language tag can be
added to indicate the language of the literal value. Language tags follow the syntax
defined in the BCP 47 standard [21], such as en for English, fr for French, de for
German, etc. The language tag allows for multilingual support in RDF data.

Here are a few examples of RDF literals:

@pre f ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .

”Hel lo , World !”ˆˆ xsd : s t r i n g
”77”ˆˆ xsd : i n t e g e r
” t rue ”ˆˆ xsd : boolean
”2023−05−07”ˆˆxsd : date

3.2.4. Blank Nodes

Blank node is node in a RDF graph representing a resource for which a URI or literal is not
given. Blank nodes are like simple variables in algebra; they represent some thing without
saying what their value is. Blank Node, also known as an anonymous node or a bnode, is a
type of node that represents a resource without a specific identifier or URI. Blank Nodes are
local to a specific RDF graph and are used to denote anonymous or unidentifiable resources.
Blank nodes can appear in the subject and object position of a triple.
Here is an example of Blank Node visualization:

Figure 3.3.: Example of a blank node in a RDF graph

It can also be represented as an RDF triple:

12

@pref ix ex : <http :// example . org/> .
@pre f ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix f o a f : <http :// xmlns . com/ f o a f /0.1/>

ex : A l i c e ex : hasChi ld : bnode1 .

: bnode1 rd f : type f o a f : Person .
: bnode1 ex : hasName ex : John .

3.3. Web Ontology Language

Web Ontology Language (OWL) is a language to be used in the Semantic Web, so names in
OWL are international resource identifiers (IRIs). As IRIs are long, we will often make use
of abbreviation mechanisms for writing them in OWL. The way in which such abbreviations
work is specific to each syntactic format that can be used to encode OWL ontologies, but the
examples in this document can generally be understood without knowing these details.[17]
There are various syntaxes available for OWL which serve various purposes. The most

commonly used is RDF/XML syntax.
OWL 2 is a supercharged version of OWL, which is a special language that helps computers

understand and describe things in a detailed and organized way. OWL 2 brings even more
capabilities and features to the table, making it even more powerful for creating and working
with ontologies.
With OWL 2, you can create more complex and sophisticated ontologies that represent

knowledge in a richer and more expressive manner. It provides additional features like more
advanced relationships, constraints, and rules that allow for even deeper and more precise
descriptions of concepts and their relationships.
You can not only define basic concepts like ”car,” ”engine,” and ”wheel,” but also specify

more complex relationships as ”hasModel,” ”hasPart.” You can define constraints to ensure
that certain conditions are met, such as specifying that a car must have at least four wheels.
OWL 2 also supports more advanced reasoning capabilities, allowing computers to infer

new knowledge based on the ontological descriptions. It can help answer complex queries,
make intelligent suggestions etc.
OWL 2 is declarative, i.e. it describes a state of affairs in a logical way. Appropriate tools

can then be used to infer further information about that state of affairs. How these inferences
are realized algorithmically is not part of the OWL document but depends on the specific
implementations.
OWL 2 provides more modularization options, allowing ontologies to be organized into

smaller, reusable modules. This makes it easier to manage large-scale ontologies and promotes
collaboration and interoperability among different ontologies.
In the context of OWL, axioms and entity expressions are key concepts used to describe

relationships and constraints within an ontology:

• Axioms: the basic statements that an OWL ontology expresses

• Entities: elements used to refer to real-world objects

• Expressions: combinations of entities to form complex descriptions from basic ones

13

I suggest looking at the following example from ontology Agronomy Ontology [7]:

obo : FOODON 00001173 a owl : Class ;
r d f s : subClassOf obo : FOODON 03460177
r d f s : l a b e l ” p lant seed food product ”@en .

obo : FOODON 00001172 a owl : Class ;
r d f s : subClassOf obo : FOODON 00001262 , obo : FOODON 03460177
r d f s : l a b e l ”nut food product ”@en .

obo : FOODON 03460177 a owl : Class ;
owl : e qu iva l en tC la s s [

a owl : Class ;
owl : unionOf (
obo : FOODON 00001172
obo : FOODON 00001173

)
] ;
r d f s : subClassOf obo : FOODON 00001015 ;
r d f s : l a b e l ” p lant seed or nut food product ”@en .

Three OWL classes can be seen above. Each owl class is entity and has IRI (e.g
obo:FOODON 00001173), rdfs:subClassOf and rdfs:label.

obo : FOODON 00001173 a owl : Class ;
r d f s : subClassOf obo : FOODON 03460177

This class axiom declares a subclass relation between two OWL classes that are described
through their names (obo:FOODON 00001173 and obo:FOODON 03460177).

obo : FOODON 03460177 a owl : Class ;
owl : e qu iva l en tC la s s [

a owl : Class ;
owl : unionOf (
obo : FOODON 00001172
obo : FOODON 00001173

)
] ;
r d f s : subClassOf obo : FOODON 00001015 ;
r d f s : l a b e l ” p lant seed or nut food product ”@en .

This class defined by expression: class is equivalent to union of obo:FOODON 00001172
and obo:FOODON 00001173 classes. It can also be noticed by the labels.

3.4. SPARQL Protocol and RDF Query Language

SPARQL [22] is a set of standards for graph databases published by the W3C, but the name
is most often used to refer to the query language.
As a query language, SPARQL can be used to add, remove and retrieve data from RDF-style

graph databases. SPARQL queries can not only match patterns of subject-predicate-object

14

triples, but can also use mathematical operations and a wide range of utility functions to create
filters and new variable bindings. They can test for the absence of a pattern (negation), contain
optional sections and even entire sub-queries. The results can be freely ordered, grouped and
those groups can be aggregated over.
The SPARQL language specifies four different query variations for different purposes.[?]

• SELECT query: used to extract raw values from a SPARQL endpoint, the results are
returned in a table format.

• CONSTRUCT query: used to extract information from the SPARQL endpoint and
transform the results into valid RDF.

• ASK query: used to provide a simple True/False result for a query on a SPARQL
endpoint.

• DESCRIBE query: used to extract an RDF graph from the SPARQL endpoint, the
contents of which is left to the endpoint to decide based on what the maintainer deems
as useful information

Here is an example of RDF data:

@pref ix f o a f : <http :// xmlns . com/ f o a f /0.1/>

<http :// example . org / john>
a f o a f : Person ;
f o a f : name ”John” ;
f o a f : age 30 ;
f o a f : c i t y ”New York” .

<http :// example . org / a l i c e>
a f o a f : Person ;
f o a f : name ”Al i c e ” ;
f o a f : age 25 ;
f o a f : c i t y ”London” .

<http :// example . org / sarah>
a f o a f : Person ;
f o a f : name ”Sarah” ;
f o a f : age 35 ;
f o a f : c i t y ” Par i s ” .

SPARQL query to retrieve only John and Alice:

PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

SELECT ? person ?name ?age ? c i t y
WHERE {

? person a f o a f : Person ;
f o a f : name ?name ;
f o a f : age ? age ;
f o a f : c i t y ? c i t y .

FILTER (?name = ”John” | | ?name = ”Al i c e ”)
}

15

Executing this query on the RDF dataset would yield the following result:

person name age city

<http://example.org/john> John 30 New York

<http://example.org/alice> Alice 25 London

3.5. RDF validation

RDF validation plays a crucial role. By validating RDF data, we can verify if it conforms to a
set of predefined criteria, which may include syntactic, structural, and semantic constraints.
This process helps identify and resolve issues, errors, or inconsistencies in the RDF data. In
this section we will discuss two popular validation languages used in the context of RDF data
validation. I will describe the pros and cons of each and tell which language I have come to
use.

3.5.1. ShEx

Shape Expressions (ShEx) is a language for describing RDF graph structures. A ShEx schema
prescribes conditions that RDF data graphs must meet in order to be considered ”confor-
mant”. In the ShEx model, a shape map specifies which nodes in an RDF graph will be
tested against a ShEx schema. ShEx schemas are intended for use in validating instance
data, communicating interface parameters and data structures, generating user interfaces,
and transforming RDF graphs into other data formats and structures.[27]
A ShEx schema is built on node constraints and triple constraints that define what it means

for a given RDF data graph to conform. In the ShEx model, a given RDF data graph is tested
against a ShEx schema to yield a validation result. In the validation process, each node in
the RDF data is treated, in turn, as a focus node, and triples involving that node are tested
against a triple constraint which, in turn, includes the node constraint IRI. This validation
process is controlled by a shape map that specifies how the constructs of a ShEx schema relate
to the components of RDF data graphs. There are many ways to populate a shape map with
nodes to be validated: through queries, APIs, protocols, or simple enumeration.[27]
ShEx may be serialized using any of three interchangeable concrete syntaxes: Shape Ex-

pressions Compact Syntax or ShExC, a compact syntax meant for human eyes and fingers;
ShExJ, a JSON-LD syntax meant for machine processing; and ShExR, the RDF interpretation
of ShExJ expressed in RDF Turtle syntax.[27]

16

Figure 3.4.: ShEx Validation

3.5.2. SHACL

Shapes Constraint Language (SHACL) [2] is a W3C standard for validating the contents of
an RDF-style graph database. It also describes what validation results should be returned so
that the user gets a meaningful warning. The syntax of SHACL is typically represented using
the Turtle syntax.
SHACL rules are written in RDF and are called ”shapes graph”. The RDF graphs being

validated against such a ”shapes graph” are called ”data graph”. The validation process takes
a ”data graph” and a ”shapes graph” as input to produce a validation report.

Figure 3.5.: SHACL Validation

The following graph represents an example of shape:

17

Here’s a simple example of SHACL validation with a data graph, shapes graph, and the
corresponding output:
Data graph:

@pref ix ex : <http :// example . org/> .
@pre f ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@pre f ix xsd : <http ://www.w3 . org /2001/XMLSchema#> .

ex : John a f o a f : Person ;
f o a f : name ”John” ;
f o a f : age ”14”ˆˆ xsd : i n t e g e r ;
f o a f : gender ”male” .

ex : A l i c e a f o a f : Person ;
f o a f : name ”Al i c e ” ;
f o a f : age ”30” ;
f o a f : gender ” female ” .

Shapes graph:

@pref ix ex : <http :// example . org/> .
@pre f ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .
@pre f ix sh : <http ://www.w3 . org /ns/ shac l#> .

ex : PersonShape
a sh : NodeShape ;
sh : t a r g e tC l a s s f o a f : Person ;
sh : property [

sh : path f o a f : name ;
sh : minLength 3 ;

] ;
sh : property [

sh : path f o a f : age ;
sh : datatype xsd : i n t e g e r ;
sh : min Inc lu s ive 18 ;

] ;
sh : property [

sh : path f o a f : gender ;
sh : in (”male” ” female ”) ;

] .

The ex:PersonShape shape defines three properties with corresponding constraints:

• foaf:name: Minimum length of 3 characters.

• foaf:age: Must be of datatype xsd:integer and have a minimum value of 18.

• foaf:gender: Must have a value that is either ”male” or ”female”.

18

Output:

[
a sh : Va l ida t i onResu l t ;
sh : r e s u l t S e v e r i t y sh : V io l a t i on ;
sh : sourceConstraintComponent sh : MinInclusiveConstraintComponent ;
sh : sourceShape : n1538 ;
sh : focusNode ex : John ;
sh : va lue 14 ;
sh : r e su l tPath f o a f : age ;
sh : r e su l tMessage ”Value i s not >= 18” ;

] .
[

a sh : Va l ida t i onResu l t ;
sh : r e s u l t S e v e r i t y sh : V io l a t i on ;
sh : sourceConstraintComponent sh : DatatypeConstraintComponent ;
sh : sourceShape : n1538 ;
sh : focusNode ex : A l i c e ;
sh : va lue ”30” ;
sh : r e su l tPath f o a f : age ;
sh : r e su l tMessage ”Value does not have datatype xsd : i n t e g e r ” ;

] .

3.5.3. SHACL vs ShEx

While they share a common goal of validating RDF data, they have some differences in terms
of syntax, features, and community adoption. Now that I have described SHACL and ShEx
above, I would like to summarize by comparing the two languages on the points that were
important to me in choosing one of these languages.

1. Syntax: SHACL uses an RDF-based syntax, represented using Turtle with SHACL
vocabulary. ShEx, on the other hand, primarily uses Shape Expressions Compact Syntax
(ShExC) and Shape Expressions JSON (ShExJ) as its syntax formats.

2. Expressivity: SHACL has rich set of built-in constraints and features. It supports
value constraints, logical conditions, shape composition etc. ShEx focused on simplicity,
has more compact syntax and a more focused set of validation features.

3. Validation Approach: SHACL validation is typically performed by validating the
entire graph against the defined shapes, producing a comprehensive validation report.
ShEx validation, on the other hand, is often based on a ”focus node” approach, where
validation starts from a specific node and traverses the graph based on shape expressions.
SHACL has ”zero to many” default cardinality, while ShEx has ”one to one”.

4. Library support: Both ShEx and SHACL have library support, but SHACL has
broader support and integration within established RDF processing libraries like RDF4J
and Apache Jena. These libraries provide extensive features for SHACL validation and
are well-maintained by active communities.

In summary, SHACL and ShEx are both powerful tools for validating RDF graphs, but my
choice is SHACL. Comparing by syntax, I find it easier to use the regular Turtle in SHACL
to write rules.As for the validation approach, as for me SHACL would be more convenient
and profitable, besides SHACL is supported by a lot more libraries than ShEx.

19

3.6. The Data Quality Vocabulary

The Data Quality Vocabulary (DQV) provides a metadata model for expressing data quality.
Aiming to facilitate the publication of such data quality information on the Web, especially
in the growing area of data catalogues, the W3C Data Web Best Practices Working (DWBP)
group has developed the DQV.
DQV [5] is a (meta)data model implemented as an RDF vocabulary which extends the Data

Catalog Vocabulary (DCAT) with properties and classes suitable for expressing the quality
of datasets and their distributions. DQV has been conceived as a high-level, interoperable
framework that must accommodate various views over data quality. DQV does not seek to
determine what ”quality” means.
The namespace for DQV is "http://www.w3.org/ns/dqv". DQV, however, seeks to re-use

elements from other vocabularies, notably DCAT[6].
DQV defines quality measures as specific instances of Quality Measurements, adapting the

daQ quality framework DaQ [11], DaQ-RDFCUBE [12].
The following example shows how DQV vocabulary can be used:

: myDatasetDistr ibut ion a dcat : D i s t r i bu t i on ;
dqv : hasQualityMeasurement : measurement1 .

: measurement1
a dqv : QualityMeasurement ;
dqv : computedOn : myDatasetDistr ibut ion ;
dqv : isMeasurementOf : downloadURLAvailabi l i tyMetric ;
dqv : va lue ” t rue ”ˆˆ xsd : boolean .

The quality of a given dcat:Distribution is assessed via a number of observed properties.
One of the properties is dqv:QualityMeasurement which represents a metric value provid-
ing quantitative or qualitative information about the dataset or distribution. In this example
we can see that :myDatasetDistribution has one measurement.
:measurement1 has following properties:

1. dqv:computedOn refers to the resource (instance of dcat:Distribution) on which
the quality measurement is performed.

2. dqv:value refers to values computed by metric.

3. dqv:isMeasurementOf indicates the metric being observed (example below).

#d e f i n i t i o n o f dimensions and metr i c s
: a v a i l a b i l i t y

a dqv : Dimension ;
skos : p re fLabe l ” Ava i l a b i l i t y ”@en ;
skos : d e f i n i t i o n ” Ava i l a b i l i t y o f a datase t i s the extent to
which data (or som por t ion o f i t) i s present , obta inab l e and
ready f o r use . ”@en ;
dqv : inCategory : a c c e s s i b i l i t y .

20

: downloadURLAvailabi l i tyMetric
a dqv : Metric ;
skos : d e f i n i t i o n ” I t checks i f dcat : downloadURL i s a v a i l a b l e and
i f i t s va lue i s d e r e f e r e n c e ab l e . ”@en ;
dqv : expectedDataType xsd : boolean ;
dqv : inDimension : a v a i l a b i l i t y .

Detailed definitions:

1. dqv:Metric gives a procedure for measuring a data quality dimension, which is ab-
stract, by observing a concrete quality indicator. There are usually multiple metrics per
dimension; e.g., availability can be indicated by the accessibility of a SPARQL endpoint,
or that of an RDF dump. The value of a metric can be numeric (e.g., for the metric
“human-readable labeling of classes, properties and entities”, the percentage of enti-
ties having an rdfs:label or rdfs:comment) or boolean (e.g., whether or not a SPARQL
endpoint is accessible).

2. dqv:inDimension represents the dimensions a quality metric, certificate and annota-
tion allow a measurement of.

3. dqv:Dimension represents criteria relevant for assessing quality. Each quality dimen-
sion must have one or more metric to measure it. A dimension is linked with a category
using the dqv:inCategory property.

4. dqv:inCategory represents the category a dimension is grouped in.

Figure 3.6.: Data model of DQV showing the main relevant classes and their relations.

21

3.7. Tools for ontology processing

In this section, we will discuss frameworks, databases, libraries and tools used by me to work
with ontologies and data in RDF format. I will describe why I used them and how they work.

3.7.1. ROBOT

ROBOT [18] is an open source library and command-line tool for automating ontology de-
velopment tasks. The library can be called from any programming language that runs on the
Java Virtual Machine (JVM). ROBOT provides ontology processing commands for a variety
of tasks, including commands for converting formats, running a reasoner, creating import
modules, running reports, and various other tasks.
ROBOT supports automation of a wide range of ontology development tasks, focusing on

OBO conventions. It packages common high-level ontology development functionality into
a convenient library, and makes it easy to configure, combine, and execute individual tasks
in comprehensive, automated workflows. This helps ontology developers to efficiently create,
maintain, and release high-quality ontologies, so that they can spend more time focusing on
development tasks. It also helps guarantee that released ontologies are free of certain types of
logical errors and conform to standard quality control checks, increasing the overall robustness
and efficiency of the ontology development lifecycle.
It can be said with certainty that ROBOT at the beginning of this work was the key

component on which this work was based. The two things I was most interested in in the
robot were quality metrics and violations of ontologies.
The quality metrics and violations can be computed using ROBOT by two commands:

report and measure.
The report command runs a series of quality control SPARQL queries over the input

ontology and generates a TSV or YAML report file based on the results. Each query has a
logging level to define the severity of the issue: ERROR, WARN, or INFO.

Level Rule Name Subject Property Value

ERROR duplicate label CARO:0000006 rdfs:label
material anatomical en-
tity

WARN invalid xref PLANA:0000459
oboInOwl:
hasDbXref

C90609

INFO lowercase definition PLANA:0003100 IAO:0000115
cell which is part of the
testis

Table 3.1.: Example of output lines of report ROBOT command for Planaria ontology

By the measure command ROBOT can compute a number of metrics about a ontology.
This will generate a table with metrics such as:

• Entity metrics (number of classes, object properties etc.)

• Datatypes used

• Number of axioms (logical and otherwise)

• TBox, RBox, ABox size (size as number of axioms)

• OWL2 profile information

22

Metric Metric value Metric type

axiom count 13779 single value

datatype count 5 single value

abox axiom count 19 single value

Table 3.2.: Example of output lines of measure ROBOT command for Planaria ontology

3.7.2. RDF4J

RDF4J [13] is framework for working with RDF data. It provides a comprehensive set of APIs
and tools for managing, querying, and manipulating RDF graphs. RDF4J offers support for
storing and persisting RDF data.
RDF4J also includes features for reasoning, allowing developers to apply semantic inferenc-

ing and logical deductions to derive additional knowledge from the RDF data. It supports
popular RDF serialization formats like RDF/XML, Turtle, N-Triples, JSON-LD, and more,
providing flexibility in working with different RDF data representations.
Additionally, RDF4J offers tools such as a web-based workbench and a command-line

console, which provide user-friendly interfaces for interacting with RDF data and executing
SPARQL queries against RDF data.
Being a Java-based framework, RDF4J can be integrated into Java applications. It is widely

used in various domains for building semantic web applications, knowledge graphs, and linked
data systems. It provides a powerful and flexible query API, enabling to retrieve specific data
patterns and perform advanced querying operations on RDF graphs.

3.7.3. Apache Jena

Apache Jena [3] is a Java-based open-source framework for building semantic web and linked
data applications. It provides a comprehensive set of tools, APIs, and libraries for working
with RDF (Resource Description Framework) data and semantic technologies.
Apache Jena offers support for various RDF-related tasks, including parsing and serial-

ization of RDF data, creating and manipulating RDF models, executing SPARQL queries,
performing RDF reasoning using RDFS and OWL, and managing RDF datasets. It provides
a rich set of APIs and tools that enable developers to work with RDF data.
While Apache Jena is primarily focused on Java, it also offers some web-based components

and functionalities, such as a SPARQL endpoint for remote access to RDF data over the web.
The core features and capabilities of Apache Jena are centered around Java programming and
integration with Java applications.

3.7.4. GraphDB

GraphDB [1] is a high-performance semantic graph database developed by Ontotext, a leading
provider of semantic technology solutions. GraphDB is designed to store, manage, and query
large-scale RDF datasets, enabling organizations to build knowledge graphs and semantic
applications.
GraphDB provides efficient storage mechanisms for RDF data, allowing organizations to

handle large and rapidly growing datasets. It supports horizontal scalability, enabling dis-
tributed storage across multiple nodes to accommodate the needs of big data applications.
In this case, GraphDB is one of the best solutions for storing large amounts of data, because

of having integration and support for RDF4J and Apache Jena, which I mentioned above,
allowing interaction with GraphDB using APIs.

23

3.8. Existing dashboard solutions

In this section, I would like to discuss three dashboard solutions that seemed to me the most
interesting and are among the most popular. I would like to mention that for this work I
chose between non-commercial dashboards.

3.8.1. Kibana

Kibana[25] is a visual interface tool that allows you to explore, visualize, and build a dashboard
over the log data massed in Elasticsearch Clusters. Elastic is the company behind Kibana and
the two other open source tools - Elasticsearch and Logstash. The Elasticsearch tool serves as
the database for document-oriented and semi-structured data. Logstash supports to collect,
parse, and store logs for future use. These three tools can work well together and popularly
known as ELK Stack or Elastic Stack.

Architecture: Should be configured to run against an Elasticsearch node. Best suited
for logs analysis.

Interface: Web based.

Visualization: Best suited to analyze Logs. Supports Text Based Analysis. Has panels,
each panel can have different Data sources.

Supported data sources: Supports only Elastic Search. Exists EEA RDF Indexer
for ElasticSearch allows to harvest metadata from SPARQL endpoints or plain RDF
files into ElasticSearch.

Querying: Uses Elasticsearch to query data.

3.8.1.1. RDF indexer for Elastisearch

RDF indexer for Elasticsearch [29] is a tool that allows to harvest metadata from SPARQL
endpoints into ElasticSearch. The RDF indexer query a RDF data from a endpoint and
transforms the extracted RDF triples into a format suitable for indexing in Elasticsearch.
This involves mapping the RDF properties and values to Elasticsearch’s data model, such
as defining index schemas, creating fields, and handling data types. The transformed RDF
data is indexed into Elasticsearch, creating an index that organizes the RDF information in a
structured manner. The indexer maps the RDF triples to Elasticsearch documents and stores
them in the index, making them searchable and analyzable.
The Indexer serves as a bridge between RDF data and Elasticsearch, providing an efficient

way to store, index, and search RDF information using Elasticsearch’s search and analytics
capabilities.

3.8.2. Graphana

Grafana [16] is an open source interactive data-visualization platform, developed by Grafana
Labs, which allows users to see their data via charts and graphs that are unified into one
dashboard or multiple dashboards for easier interpretation and understanding.Grafana was
built on open principles and the belief that data should be accessible throughout an organi-
zation, not just to a small handful of people. This fosters a culture where data can be easily
found and used by anyone who needs it, empowering teams to be more open, innovative, and
collaborative.

24

Architecture: Needs a DB to install. Best suited for metrics analysis.

Interface: Web based.

Visualization: Best suited to analyze Metrics. Offers different visualizations capabili-
ties.

Supported data sources: Graphite, MySQL, PostgreSQL, Elastic Search.

Querying: Has a query editor to query and Visualize Metrics and also can use Elas-
ticsearch.

3.8.3. Apache Superset

Apache Superset [14] is an easy-to-use Business Intelligence tool that collects and processes
data in large volumes to produce visualized results like charts and graphs. Thus, the web ap-
plication allows users to generate dashboards and reports which aid business growth.Apache
Superset is cloud-native, and it is compatible with numerous options in each of the aforemen-
tioned customization categories.

Architecture: Apache superset is built entirely on top of python; it uses flask app
builder internally. Best suited for Business Intelligence

Interface: Web based.

Visualization: Best suited to provide insights into large numbers or other data points.

Supported data sources: MySQL, MariaDB, PostgreSQL etc...

Querying: Uses SQL.

3.8.4. Dashboard choice

All these dashboards are similar to each other, but Kibana turned out to be the most beneficial
because of RDF Indexer for Elasticsearch. This RDF Indexer solves the biggest problem with
RDF data - indexing. Using other dashboards would force me to look for ways to get data
from RDF into the dashboard.

25

4. Architecture

The architecture of a software system forms its structural foundation, defining how various
components interact and collaborate to achieve the desired functionality. This section dis-
cusses the architectural design and solutions adopted for the software system under study.
The purpose of this section is to provide a comprehensive understanding of the system archi-
tecture, highlighting its key components and the principles used in its development.

4.1. Description of the overall system architecture

The architectural structure of the system is designed to support the storage, management,
and retrieval of RDF data. It encompasses several key components:

• Database: GraphDB is the primary database component responsible for storing and
managing RDF data. It provides efficient storage, querying, and manipulation capabil-
ities for semantic data.

• Back-end: Using libraries/frameworks for ontology processing, obtaining and saving
data for visualization in the dashboard.

Robot core: The library refers to the core functionality of the ROBOT tool.
It contains the essential functions and modules required for executing ontology-
related operations. The library provides a foundation for building and extending
the capabilities of the ROBOT tool. Used to obtain metrics about ontology.

RDF4J: This framework allows to transpose ROBOT results into RDF format
using the DQV vocabulary and save this data to the database.

Apache Jena: Allows to leverage SHACL to define shapes and apply validation
rules to ontologies. As well as RDF4J has the ability to connect to a database of
data and save the results of validation.

Spring Boot: Used to start indexing directly from Indexer endpoint using REST
API and makes it possible to update the data every week.

• Front-end: Kibana serves as the front-end interface for the system. It provides a user-
friendly and visually appealing interface for users to interact with and visualize the RDF
data stored in GraphDB.

• RDF Indexer: The RDF Indexer component plays a critical role in data retrieval. It
is responsible for indexing the RDF data stored in GraphDB.

26

Figure 4.1.: Component diagram.

27

4.2. Overview of the data flow and communication

This section provides an overview of how data is processed, exchanged, and communicated
within the system.
The data flow in the system begins by generating the ontology data we are interested in.

This process involves the generation of metrics and the ontology violation report, the details
of this process will be described in the section Implementation 5. Metrics are described using
DQV vocabulary, violation report is generated using SHACL. After receiving the data for
the ontology, the data is saved to the database. As you can see in the diagram below, this
process occurs for each ontology. Once the data about each ontology has been saved to the
database, the ”Dashboard app” sends a request through the REST API to start indexing. In
this request, the Dashboard app passes the configuration for indexing the data; we’ll discuss
the details of what this configuration consists of in the Implementation section. The indexer
starts its indexing by querying the data from the database and then starts the indexing of the
data in Elasticsearch. At this stage, the last step is the visualization of the data in Kibana.
DQV data is visualised like a standard ROBOT measure table, SHACL data is much the
same, but is also analysed to create different graphs and metrics.
This process described above will take place every week, as you can see in the diagram

below. I would like to note that this process will be carried out only for ontologies that have
some changes since the last update, in other words - if the ontology has remained unchanged,
then it makes no sense to generate data about it again.

Figure 4.2.: Sequence diagram.

28

5. Implementation

This section presents the practical realization of the proposed solution. It serves as a com-
prehensive account of the technical aspects, development process, and implementation details
that contribute to the successful execution of the project. This section highlights the efforts
made to transform the conceptual design into a functional system, showcasing the practicality
and effectiveness of the proposed solution.
Throughout this section, we delve into the step-by-step process of implementing the sys-

tem.The implementation section provides valuable insights into the challenges encountered
during the development phasem.

5.1. Overview of the implementation process

At the beginning of the implementation, the basis for me was the ROBOT tool, in which I
was most interested in the two commands robot measure and robot report. One of my
first goals was to get the results of these two commands and find a way to visualize them
in a dashboard. First, I started to study the ROBOT tool, I needed to understand how it
works and implement it into my code. After experimenting with generating various reports
and measurements for ontologies, I set about implementing it. Since the ROBOT tool has
its own ROBOT Core library - my choice was obvious. In later sections, I will discuss the
implementation of these two commands.

5.2. Robot measure

The robot measure command computes a number of metrics about ontology, such as entity
and axiom counts, qualitative information such as OWL 2 profiles and more complex metrics
aimed at informing ontology developers such as logical expressivity and axiom shape.

The following example shows what the measure output looks like on the Planarian ontology
[20]:

Metric Metric value Metric type

class count 13779 single value

datatype count 5 single value

Table 5.1.: Output of measure ROBOT command

After receiving the metrics, my task was to present them in RDF format. I understood
this long before the implementation and started looking for some RDF grammar with which
I could describe it. After studying all the possible ways, my choice fell on DQV vocabulary.
This grammar was perfect for me because with it I could describe the result of a metric
measure with the same meaning as it is presented in the table above.

29

This is how the Table 5.3 above could be presented in the DQV vocabulary:

@pref ix ex : <http :// example . org /ns#> .

ex : measurement1 a dqv : QualityMeasurement ;
dqv : isMeasurementOf ex : c l a s s c oun t ;
dqv : va lue : 13779 ;

dqv:isMeasurementOf indicates the metric being observed, dqv:value refers to values com-
puted by metric and dqv:QualityMeasurement represents a metric value providing quantita-
tive or qualitative information.
To generate the output of the robot measure command, as I mentioned earlier, I used the

ROBOT core library. All this requires is the ontology itself as an input parameter. ROBOT
core will generate a Map with metrics, the next step is to transform this data into RDF
format, i.e. to describe data using the DQV vocabulary. To implement this transformation,
I used the RDF4J framework.

5.3. Robot report

The robot report command runs a series of quality control SPARQL queries over the input
ontology and generates a TSV or YAML report file based on the results. Each query has a
logging level to define the severity of the issue: ERROR, WARN, or INFO.
The following example shows what the report looks like on the Planarian ontology [20]

Level Rule Name Subject Property Value

ERROR duplicate label CARO:0000006 rdfs:label
material anatomical en-
tity

Table 5.2.: Output of report ROBOT command

As for the robot report, there is no well accepted declarative standards for representing
constraint violation in RDF. Thus, we decided to explore how easy it would be to map
ROBOT constraints in SHACL, reusing also the SHACL result representation in RDF. During
implementation, I started using RDF4J to validate ontologies. I started with simple OBO
rules. These validation rules are described using SPARQL queries. My goal was to start
transforming these rules into SHACL shapes.
I propose to consider the rule Lowercase Definition.
This rule has following problem: A definition or elucidation does not begin with an upper-

case letter. This may be indicative of inconsistent formatting.
This is what the query looks like in SPARQL:

PREFIX obo : <http :// pur l . obo l i b r a ry . org /obo/>

SELECT DISTINCT ? en t i t y ? property ? value WHERE {
VALUES ? property { obo : IAO 0000115

obo : IAO 0000600 }
? en t i t y ? property ? value .
FILTER (! regex (? value , ”ˆ [A−Z0−9]”))
FILTER (! i sBlank (? en t i t y))

}
ORDER BY ? en t i t y

30

And this is how this query looked after my transformation into SHACL shape:

@pref ix ex : <http :// example . com/ns#> .

ex : l ow e r c a s e d e f i n i t i o n
a sh : NodeShape ;
sh : t a r g e tC l a s s owl : ObjectProperty , owl : AnnotationProperty ,
owl : Class ;
sh : property [

sh : path obo : IAO 0000115 ;
sh : s e v e r i t y sh : In f o ;
sh : message ” l ow e r c a s e d e f i n i t i o n ” ;
sh : pattern ”ˆ [A−Z0−9] (.∗)” ;

] ;
sh : property [

sh : path obo : IAO 0000600 ;
sh : s e v e r i t y sh : In f o ;
sh : message ” l ow e r c a s e d e f i n i t i o n ” ;
sh : pattern ”ˆ [A−Z0−9] (.∗)” ;

] .

Further, when transforming more complex rules, it turned out that ordinary SHACL shapes
do not have the ability to compare nodes. The only way to implement this is to use sh:sparql
property in my SHACL shapes. This property would allow the use of sparql queries in SHACL
shapes.
Unfortunately for me, SHACL in RDF4J does not support this, so I had to use an-

other framework with SHACL validation called Apache Jena, which already supported using
SPARQL in SHACL shapes.
The following code shows how the above mentioned Lowercase Definition rule can be rep-

resented with Sparql in SHACL shape:

ex : l ow e r c a s e d e f i n i t i o n
a sh : NodeShape ;
sh : t a r g e tC l a s s owl : AnnotationProperty , owl : ObjectProperty ,
owl : Class ;
sh : message ” l ow e r c a s e d e f i n i t i o n ” ;
sh : s e v e r i t y sh : In f o ;
sh : spa rq l [

a sh : SPARQLConstraint ;
sh : p r e f i x e s ex : ;
sh : s e l e c t ”””

SELECT DISTINCT $ t h i s ? property ? value WHERE {
VALUES ? property { obo : IAO 0000115 obo : IAO 0000600 }
$ t h i s ? property ? value .
FILTER (! regex (? value , ”ˆ [A−Z0−9]”))
FILTER (! i sBlank ($ t h i s))

}
ORDER BY $ t h i s

”””
] .

31

As a result, the decision was to transform those rules that do not require SPARQL into
SHACL shapes without SPARQL, while the rest were transformed into shapes with SPARQL.
This is what ontology validation using Apache Jena looks like in code:

pub l i c Model getReport (S t r ing shape , S t r ing onto logy){

// load ing shapes graph
Graph shapesGraph = RDFDataMgr . loadGraph (shape) ;

// load ing onto logy
Graph dataGraph = RDFDataMgr . loadGraph (onto logy) ;

// g e t t i n g o f shapes from shapesGraph
Shapes shapes = Shapes . parse (shapesGraph) ;
shapesGraph . getPref ixMapping () . getNsPrefixMap () ;

// c r e a t i on o f v a l i d a t i o n r epor t
Val idat ionReport r epor t = Shac lVa l idato r . get ()

. v a l i d a t e (shapes , dataGraph) ;

r e turn repor t . getModel () ;
}

5.4. Ontology versions

Versions in ontologies is a very interesting topic for discussion. Ontologies are standardized
and have special attributes such as owl:version or owl:versionInfo but problem is that not
all ontologies fill them in, and if they do, they are not consistent with the others. Thus, the
version information has to be consolidated. There are no tools to track versions of ontologies
in chronological order. Versions help in managing changes to an ontology. When modifications
are made to an ontology, a new version is created to represent the updated state. This allows
users to track and understand the evolution of the ontology and facilitates collaboration among
ontology developers. Versioning enables compatibility and interoperability between different
systems that use the ontology. By referencing a specific version, applications or services can
ensure that they are using a consistent and compatible ontology representation, even if newer
versions are released.
My goal was to implement a way to track the number of violations in each version of the

ontology, or compare how many classes the ontology has grown by, etc. The problem was
that different versioning schemes, such as numeric identifiers (e.g 1.0 1.1), date stamps (e.g
2021-01-01), or combinations of these, were often used to specify versions in ontologies. In
order to work with the versions in Kibana, I needed exactly the date in each ontology because
of the peculiarities of Kibana. Since the dashboard is updated every week, I decided to use
the update date as the version for ontologies that do not have a date. This would allow me
to avoid this problem and view the ontology data in chronological order. I took the ontology
versions from ”ontology-version-extractor”, which is a tool that provides up-to-date versions
of ontologies. It works so that when I update new ontologies, I add a version to all metrics
and violation reports in order to distinguish them from each other in the dashboard.

32

5.5. Storing data in GraphDB

The data storage structure in GraphDB also plays an important role, as it turns out. In order
to store data, I decided to use the so-called ”Default graph” to store general information and
create a separate graph for each ontology.
The following table shows what the information looks like for each ontology in the ”Default

graph”:

Subject Predicate Object

obo:ado.owl dc:title ”Alzheimer’s Disease Ontology”

obo:ado.owl owl:versionInfo ”2022-06-11”xsd:date

obo:ado.owl foaf:homepage
”https://github.com/Fraunhofer-SCAI-
Applied-Semantics/ADO”

Table 5.3.: Output of measure ROBOT command

As you can see ”Default graph” contains the name, the latest actual version and a link to
the ontology homepage.
Now I propose to consider what metrics and violation reports look like in GraphDB. An

example is the graph for the Ascomycete Phenotype Ontology (APO), whose name is the IRI
of the ontology - http://purl.obolibrary.org/obo/apo.owl
The following table shows what violation data looks like:

Subject Predicate Object

:genid-209223 rdf:type sh:ValidationResult

:genid-209223 sh:sourceShape ex:missing obsolete label

:genid-209223 sh:resultMessage ”missing obsolete label”

:genid-209223 sh:resultSeverity sh:Warning

:genid-209223 sh:sourceConstraintComponent sh:SPARQLConstraintComponent

:genid-209223 sh:focusNode obo:APO 0000133

:genid-209223 sh:value ”cell cycle arrest in metaphase”

:genid-209223 owl:versionInfo ”2023-04-27”

The following table shows what metric data looks like:

Subject Predicate Object

:node1gvh95b0nx631 rdf:type dqv:QualityMeasurement

:node1gvh95b0nx631 dqv:value ex:missing obsolete label

:node1gvh95b0nx631 owl:versionInfo ”20230427”

33

http://purl.obolibrary.org/obo/apo.owl

5.6. Harvesting data into ElasticSearch

Once the data has been saved to the database, our next goal is to visualize it in Kibana. As I
mentioned earlier for this purpose, I use RDF Indexer as an intermediary between GraphDB
and Kibana. Now I would like to consider the work of the indexer and its capabilities.
On the next picture you can see the graphical interface of the indexer, which includes

parameters such as the name, automatic or manual updating and the data source. The
indexer then uses SPARQL to query the data.

Figure 5.1.: Creating a new index in RDF Indexer

Consider my SPARQL query that I used:

PREFIX dqv : <http ://www.w3 . org /ns/dqv#>
PREFIX sh : <http ://www.w3 . org /ns/ shac l#>
PREFIX dqv : <http ://www.w3 . org /ns/dqv#>
PREFIX dc : <http :// pur l . org /dc/ e lements /1.1/>
PREFIX f o a f : <http :// xmlns . com/ f o a f /0.1/>

CONSTRUCT { ? sub j e c t ? p r ed i c a t e ? ob j e c t .
? sub j e c t dc : t i t l e ?nameOfOntology .
? sub j e c t f o a f : homepage ?homePage }

FROM <http ://www. ontotext . com/ e xp l i c i t>
WHERE {

?g dc : t i t l e ?nameOfOntology .
?g f o a f : homepage ?homePage .

GRAPH ?g {
{

? sub j e c t a sh : Va l ida t i onResu l t ; ? p r ed i c a t e ? ob j e c t ;
} UNION {

? sub j e c t a dqv : QualityMeasurement ; ? p r ed i c a t e ? ob j e c t ;
}

}
}

34

I would like to mention that in this SPARQL query, I excluded the BIND() functions that
were responsible for formatting in order to improve readability.
Using the CONSTRUCT query I retrieve union data from the ”Default graph” and other graphs.

As you may have noticed, at first I make the query from <http://www.ontotext.com/explicit>

- this is the ”Default graph”.
As I mentioned earlier, the ”Default graph” contains the IRI of the ontology as the subject,

and these same IRIs are the names of the ontology graphs. Then in each graph we select all
subjects of type sh:ValidationResult and dqv:QualityMeasurement. The last thing this
query does is to add to each subject the appropriate graph with the name of the ontology and
its homepage ”Default graph”.
Also, you may have noticed that the indexer has the ability to automatically update. But

in this case I decided to go a little differently and start indexing immediately after updating
ontologies from code:

@Component
pub l i c c l a s s ScheduledTasks {

St r ing indexUrl =
http :// host . docker . i n t e r n a l :8080/ api / configAndIndex ” ;

pub l i c void updateIndex () {
St r ing indexUrl =
http :// host . docker . i n t e r n a l :8080/ api / configAndIndex ” ;
HttpHeaders headers = new HttpHeaders () ;
headers . setContentType (MediaType .APPLICATION JSON) ;

S t r ing c on f i g = par s e r . getConf ig () ;
HttpEntity<Str ing> r eques tEnt i ty =
new HttpEntity<>(con f i g , headers) ;

ResponseEntity<Long> r e sponseEnt i ty =
restTemplate . exchange (indexUrl ,

HttpMethod .PUT,
requestEnt i ty ,
Long . c l a s s) ;

}
}

5.7. Visualization of data

The data have been indexed and the last step is visualization of the data. This dashboard con-
tains a navigation bar 5.1, which contains 3 dashboard variants - dashboard for one ontology,
for specific ontologies and for all ontologies.
I propose to consider each part selectively and start with dashboard for all ontologies 5.2.

As you can see this part of the dashboard shows us a list of ontologies with their names and
homepages, and gives us the current number of ontologies in the dashboard. The next graph
5.3 in dashboard for all ontologies shows the top ontologies by number of violations. And the
last graph 5.4 shows us the rules that were most frequently violated among the ontologies.

35

As for the single ontology dashboard 5.5, the user has the ability to select a single ontology
from the list and its version. Then the user will have access to information such as the
number of Warnings, Errors and Info. After selecting an ontology, the user can see table 5.6
with robot measure output and table 5.7 with robot report. The user can also find out if
the number of violations increases/decreases in versions 5.8.
To compare several ontologies, e.g. by number of violations, the user can use dashboard for

specific ontologies 5.9. In fact, the dashboard for all ontologies differs from the dashboard for
specific ontologies only in the ability to select specific ontologies, they are otherwise identical.

5.8. Screenshots of the dashboard

Figure 5.1.: Navigation bar

Figure 5.2.: List and count of ontologies

36

Figure 5.3.: Top ontologies by vilations graph

37

Figure 5.4.: Top most violated rules graph

38

Figure 5.5.: Selection of one of the ontologies and violations information

39

Figure 5.6.: ROBOT measure table

Figure 5.7.: ROBOT report table

40

Figure 5.8.: Number of violations in ontology versions

41

Figure 5.9.: Graph for comparing two or more ontologies by the number of violations

42

6. Testing

In this section I will describe the testing, namely the automation of SHACL shapes testing
and the usefulness and usability test which I did together with the OBO community.

6.1. Automation of SHACL rule testing

The problem was to automate the checking of SHACL rules for correctness. By writing tests,
we can check if our SHACL rules are correctly implemented and functioning as intended. The
idea was to transform the robot measure output to RDF and run two SPARQL queries and
compare SHACL and ROBOT outputs. One way of doing this transfromation was through
TARQL.
TARQL [26] is a query language designed for querying and manipulating RDF data. TARQL

supports querying data stored in CSV and TSV formats. It allows easily import data from
these tabular formats into RDF datasets and perform queries on the combined data.
Suppose we have a table:

Level Rule name Subject Property Value

ERROR multiple labels BFO:0000050 rdfs:label part of

Using TARQL I can create a SPARQL query to transform the above table into RDF:

PREFIX sh : <http ://www.w3 . org /ns/ shac l#>

CONSTRUCT {
? id a sh : Va l ida t i onResu l t ;
sh : focusNode ?nodeTyped ;
sh : r e su l tMessage ? sourceShape ;
sh : va lue ?Value ;

}
FROM < f i l e : plana . csv>
WHERE {

BIND(UUID() AS ? id)
BIND(REPLACE(? Subject , ” : ” , ” ”) AS ?node)
BIND(URI(CONCAT(” http :// pur l . obo l i b r a ry . org /obo /” , ?node))
AS ?nodeTyped)
BIND(STR(?RuleName) AS ? sourceShape)

}

43

At the output we will have:

@pref ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix sh : <http ://www.w3 . org /ns/ shac l#> .

<urn : uuid :8678183 e−0920−44bd−a7a2−8d006f4880f7>
rd f : type sh : Va l ida t i onResu l t ;
sh : focusNode <obo : BFO 0000050> ;
sh : sourceShape ” mu l t i p l e l a b e l s ” ;
sh : va lue ” pa r t o f ” .

When we have two RDF graphs, one from SHACL and one from ROBOT, we need to make
two SPARQL queries to get the data from them and compare the results.

6.2. Usefulness and usability tests

For the usefulness and usability tests I have created test scenarios and questions for which I
have sent to the OBO Community. In total I have 4 test scenarios that test usefulness where
users gave comments and rated the scenario on a scale of 1 to 5, with 1 being very easy and
5 being very difficult. And also 10 questions on usability with a scale of 1 to 5 where 1 is
strongly disagree and 5 is strongly agree.
The results are as follows:

Figure 6.1.: Testing scenario 1

Feedback on testing scenario 1:

"Load time is very slow. I’m not sure I would order by ’number of violations’

- I’d order by least number to give the user the best info first. I don’t

44

know why the most screen real estate is dedicated to three buttons that make

me choose an ontology. I don’t know why I would choose an ontology first.

A dashboard should give me an overview of all the ontologies at a glance first.

I most likely don’t know which ontology to use if I am coming to a dashboard.

Or I would like to find the release artifacts for a specific ontology;

alphabetically sorted makes this easiest"

"A logarithmic scale or a proportional scale might be useful as 87k violation

in an ontology with 1 mio classes might be "small" compared to 700 violation

in a 800 classes large Ontology"

"Overall this seems very powerful, but there’s a bit of a learning curve.

One small problem is that the first ’Dashboards’ box is too tall, so I need

to scroll down to see most of the interesting information. A larger problem

I had is that the various search and filter options were connected in non-obvious

ways, so if I wanted to clear my search / filter results then I had to look

in a number of boxes. I got stuck a few times when I was exploring, I’ve

used the Elastic Search stack in the past, but not for a while, and I’ve always

found it very powerful but also tricky to just dive in and start using. I’m

not always confident that I’m seeing all the information that I was trying

to get."

Figure 6.2.: Testing scenario 2

45

Feedback on testing scenario 2:

"there is only one ontology in the list - software ontology."

"It is not very intuitive to navigate some information is easily available,

however finding for example all error level messages from the robot report

is quite difficult as the robot report is only sortable by time.

The function and accesibility to the KQL Window can be more emphasized."

"I eventually found ’class count’ in the ’Robot measure’ box and typed that

in the search bar, but the search bar did not suggest it or autocomplete it.

Several times I got stuck with 0 results, and had trouble resetting

the interface."

Figure 6.3.: Testing scenario 3

Feedback on testing scenario 3:

"I can’t figure out how to select the software ontology - I can only click

on the link to the homepage"

"no recommendations for improvements other than maybe other than that a pie

chart for groups of violations might be useful"

"I had the easiest time with this task."

46

Figure 6.4.: Testing scenario 4

Feedback on testing scenario 4:

"I don’t see how to select multiple ontologies. if I click

"all ontologies, I should get a big list, not a corner window where I can

only see 6 ontologies."

"A header explaining where the selected and where the selectable

Ontologies are listed would be helpfull. Also at least in my opinion

"Europeans" normally assume that the tool for selectable structures

is listed to the left "before" the the list of selected structures"

"The ’Ontologies’ box on the right with multiple selection uses

case-sensitive

autocomplete, but I was expecting case-insensitive autocomplete."

Results of usability test you can find in Appendix B
The results of the feedback generally let me know that OBO Foundry was interested in

my solution. Basically, all the subjects did not like something in the visualization.One of the
subjects said he didn’t want to see single ontology and specific ontology dashboards separated.
The subjects didn’t like the fact that the most interesting information is at the bottom and
you have to get to it. But also a few subjects liked the ability to track versions of the
ontology, as well as the ability to filter data in the tables using Kibana query language - KQL.
In general, although each subject did not like something, I think that the dashboard made a
better impression on them.

47

7. Conclusion

In conclusion, this bachelor thesis has successfully addressed the objective of designing and
implementing an interactive ontology dashboard backend by standardized vocabularies (Data
Quality Vocabulary, SHACL), aimed at providing users with intuitive tool to explore and
analyze ontologies in an interactive and visual manner. As a prominent test case, we aimed at
the biomedical terminologies, taxonomies, and ontologies maintained by the OBO Foundry.
Throughout the research and development process, we conducted an in-depth analysis of

ontology quality problem and identified the key requirements for an effective dashboard.
To ensure the usability and usefulness of the dashboard, extensive user testing and feedback

were conducted with the OBO Foundry users community.
According to the results of the tests it became clear that OBO Foundry is interested in

this topic and proved to be a very responsive community that is happy to support new tools
related to the topic. One of the OBO Community representatives was very surprised by the
work done on the description in SHACL shapes of the ROBOT report rules and liked the
idea.
Some limitations were found with the visualization capabilities in Kibana, so I could say

that Kibana did not meet all of my expectations, but most of them. There is one limitation
to the number of ontologies caused by RDF Indexer, the fact that RDF Indexer ran out of
memory when indexing a large amount of data at once. But there is also another limitation
- huge ontologies that require a lot of memory to process. However, all these limitations give
me great intentions for further improvement and development in this direction in general.
In summary, this bachelor thesis has successfully achieved its objective of developing an

interactive ontology dashboard. The resulting dashboard provides users with an interactive
dashboard to explore and analyze ontologies effectively.

48

Bibliography

[1] GraphDB Downloads and Resources — graphdb.ontotext.com. URL https://graphdb.

ontotext.com. [Accessed 13-May-2023].

[2] Shapes constraint language (SHACL). Technical report, W3C, July 2017. URL https:

//www.w3.org/TR/shacl/. [Accessed 05-January-2023].

[3] Apache Jena, 2023. URL https://jena.apache.org/. [Accessed 13-May-2023].

[4] JSON, 2023. URL https://www.json.org/json-en.html. [Accessed 01-May-23].

[5] R. Albertoni and A. Isaac. Introducing the data quality vocabulary (DQV). Semantic
Web, 12(1):81–97, 2021.

[6] P. Archer. Data catalog vocabulary (dcat) (w3c recommendation). Online, January 2014.
URL https://www.w3.org/TR/vocab-dcat/. [Accessed 01-January-2023].

[7] C. Aubert, P. Buttigieg, M. Laporte, M. Devare, and E. Arnaud. Cgiar agronomy ontol-
ogy, 2017. URL http://purl.obolibrary.org/obo/agro.owl. licensed under CC BY
4.0.

[8] B. M. D. Beckett. RDF/XML syntax specification. W3C Recommendation, February
2004. URL http://www.w3.org/TR/rdf-syntax-grammar/. [Accessed 31-December-
2022].

[9] D. Beckett and T. Berners-Lee. Turtle - terse rdf triple language. W3c team submission,
W3C, January 2008. URL http://www.w3.org/TeamSubmission/turtle/. [Accessed
7-May-2023].

[10] D. Beckett, T. Berners-Lee, E. Prud’hommeaux, and G. Carothers. Rdf 1.1 turtle. World
Wide Web Consortium, pages 18–31, 2014.

[11] J. Debattista, C. Lange, and S. Auer. daQ, an ontology for dataset quality information.
In LDOW, 2014.

[12] J. Debattista, C. Lange, and S. Auer. Representing dataset quality metadata using multi-
dimensional views. In Proceedings of the 10th International Conference on Semantic
Systems, pages 92–99, 2014.

[13] E. R. developers. Welcome · Eclipse RDF4J™ — The Eclipse Foundation — rdf4j.org.
https://rdf4j.org/. [Accessed 13-May-2023].

[14] I. S. Ganiyu, S. Mittal, H. Balasankula, and Y. Sanghvi. What is apache super-
set?: 3 important factors - learn, Dec 2022. URL https://hevodata.com/learn/

apache-superset/.

[15] W. W. Group. Rdfa primer: Bridging the human and data webs, October 2008. URL
http://www.w3.org/TR/xhtml-rdfa-primer/. [Accessed 10-January-2023].

49

https://graphdb.ontotext.com
https://graphdb.ontotext.com
https://www.w3.org/TR/shacl/
https://www.w3.org/TR/shacl/
https://jena.apache.org/
https://www.json.org/json-en.html
https://www.w3.org/TR/vocab-dcat/
http://purl.obolibrary.org/obo/agro.owl
http://www.w3.org/TR/rdf-syntax-grammar/
http://www.w3.org/TeamSubmission/turtle/
https://rdf4j.org/
https://hevodata.com/learn/apache-superset/
https://hevodata.com/learn/apache-superset/
http://www.w3.org/TR/xhtml-rdfa-primer/

[16] R. Hat. What is grafana?, May 2022. URL https://www.redhat.com/en/topics/

data-services/what-is-grafana. [Accessed 10-January-2023].

[17] P. Hitzler, M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph. OWL 2 Web
Ontology Language Primer. W3C, 2009. URL http://www.w3.org/TR/owl2-primer/.
[Accessed 5-January-2023].

[18] R. C. Jackson, J. P. Balhoff, E. Douglass, N. L. Harris, C. J. Mungall, and J. A. Overton.
ROBOT: A Tool for Automating Ontology Workflows. BMC Bioinformatics, 20(1):407,
2019.

[19] D. Longley, P.-A. Champin, and G. Kellogg. JSON-ld 1.1. W3C recommendation, W3C,
July 2020. https://www.w3.org/TR/2020/REC-json-ld11-20200716/.

[20] obophenotype. The PLANarian Anatomy Ontology, Mar 2023. URL https://github.

com/obophenotype/planaria-ontology. [Online; accessed 22-May-2023].

[21] A. Phillips and M. Davis. Tags for identifying languages, March 2006. URL https:

//tools.ietf.org/html/bcp47. [Accessed 23-May-2023].

[22] E. Prud’hommeaux and A. Seaborne. SPARQL query language for RDF.
W3C recommendation, W3C, Jan. 2008. URL https://www.w3.org/TR/2008/

REC-rdf-sparql-query-20080115/. [Accessed 15-January-2023].

[23] G. Schreiber and Y. Raimond. Rdf 1.1 primer w3c working group note. Online, 2014.
URL https://www.w3.org/TR/rdf11-primer/. [Accessed 10-January-2023].

[24] G. Schreiber and Y. Raimond. Rdf 1.1 primer w3c working group note, section - 3.2 iris.
Online, 2014. URL https://www.w3.org/TR/rdf11-primer/#section-IRI. [Accessed
10-January-2023].

[25] A. Sureka. What is kibana used for? URL https://www.clariontech.com/

platform-blog/what-is-kibana-used-for-10-important-features-to-know. [Ac-
cessed 10-January-2023].

[26] Tarql. Turn CSV into RDF using SPARQL syntax, 2019. URL http://tarql.github.

io/. [Accessed 24-May-2023].

[27] B. Thomas and P. Eric. Shape Expressions (ShEx) Primer, 2023. URL https:

//shexspec.github.io/primer/. [Accessed 05-May-2023].

[28] Wikipedia. URI — Wikipedia, the free encyclopedia. http://ru.wikipedia.org/w/

index.php?title=URI&oldid=125172905, 2023. [Accessed 03-January-2023].

[29] M. Švagr. Interactive dashboard over RDF, 2021. URL https://dspace.cvut.cz/

handle/10467/94712. [Accessed 23-May-2023].

50

https://www.redhat.com/en/topics/data-services/what-is-grafana
https://www.redhat.com/en/topics/data-services/what-is-grafana
http://www.w3.org/TR/owl2-primer/
https://github.com/obophenotype/planaria-ontology
https://github.com/obophenotype/planaria-ontology
https://tools.ietf.org/html/bcp47
https://tools.ietf.org/html/bcp47
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115/
https://www.w3.org/TR/rdf11-primer/
https://www.w3.org/TR/rdf11-primer/#section-IRI
https://www.clariontech.com/platform-blog/what-is-kibana-used-for-10-important-features-to-know
https://www.clariontech.com/platform-blog/what-is-kibana-used-for-10-important-features-to-know
http://tarql.github.io/
http://tarql.github.io/
https://shexspec.github.io/primer/
https://shexspec.github.io/primer/
http://ru.wikipedia.org/w/index.php?title=URI&oldid=125172905
http://ru.wikipedia.org/w/index.php?title=URI&oldid=125172905
https://dspace.cvut.cz/handle/10467/94712
https://dspace.cvut.cz/handle/10467/94712

A. Overview of RDF Syntaxes

Standards for encoding RDF statements now include the following five most popular syntaxes:

• Turtle [9] is the most popular text syntax for RDF statements. The W3C describes it
as a ”compact and natural text form” that includes abbreviations for commonly used
patterns.It provides a compact syntax for writing RDF triples and is commonly used
for exchanging and sharing RDF data.

Here’s an example of RDF data represented in Turtle format:

@pref ix ex : <http :// example . com/> .
@pre f ix rd f : <http ://www.w3 . org /1999/02/22− rdf−syntax−ns#> .
@pre f ix f o a f : <http :// xmlns . com/ f o a f /0.1/> .

ex : John a f o a f : Person ;
ex : knows ex : A l i c e .

ex : A l i c e a f o a f : Person .

In this example, we define two individuals (’ex:John’ and ’ex:Alice’) as persons and their
friendship relationship.

• JSON-LD [19] uses the JSON[4] syntax. JSON-LD is designed to be usable directly as
JSON, i.e. easily accessed by people without RDF background. It enables the expression
of relationships between resources using standard RDF vocabularies and ontologies.

Here’s an example of a JSON-LD document:

{
”@context ” : {

”ex ” : ” http :// example . com/” ,
” rd f ” : ” http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”,
” f o a f ” : ” http :// xmlns . com/ f o a f /0 .1/”

} ,
”@graph ” : [

{
”@id ” : ”ex : John ” ,
”@type ” : ” f o a f : Person ” ,
”ex : knows ” : ”ex : A l i c e ”

} ,
{

”@id ” : ”ex : A l i c e ” ,
”@type ” : ” f o a f : Person”

}
]

}

51

• N-Triples [10] is a subset of the Turtle syntax, designed to be a simpler text-based
format for RDF statements for improved ease of use by humans writing statements.
N-triples is suitable for batch processing of large RDF documents.

Here’s an example of RDF data represented in N-Triples format:

<http :// example . com/John>
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>

<http :// xmlns . com/ f o a f /0 .1/ Person> .

<http :// example . com/John>
<http :// example . com/knows>

<http :// example . com/Al ice> .

<http :// example . com/Al ice>
<http ://www.w3 . org /1999/02/22− rdf−syntax−ns#type>
<http :// xmlns . com/ f o a f /0 .1/ Person> .

• RDF/XML [8] is a syntax format used to represent RDF data in an XML. It provides
a way to express RDF triples and their relationships using XML tags and attributes.

Here’s an example of RDF data represented in RDF/XML syntax:

<rd f :RDF xmlns : ex=”http :// example . com/”
xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : f o a f=”http :// xmlns . com/ f o a f /0.1/”>

<rd f : De s c r ip t i on rd f : about=”http :// example . com/John”>
<rd f : type rd f : r e s ou r c e=”http :// xmlns . com/ f o a f /0 .1/ Person”/>
<ex : knows rd f : r e s ou r c e=”http :// example . com/Al i c e”/>

</rd f : Descr ipt ion>

<rd f : De s c r ip t i on rd f : about=”http :// example . com/Al i c e”>
<rd f : type rd f : r e s ou r c e=”http :// xmlns . com/ f o a f /0 .1/ Person”/>

</rd f : Descr ipt ion>
</rd f :RDF>

• Resource Description Framework in Attributes (RDFa) [15] is a way to express
RDF data within HTML. It provides a set of markup attributes to augment visual
information on the Web with machine-readable hints.

52

Here’s an example of RDF data represented in RDFa syntax:

<html xmlns=”http ://www.w3 . org /1999/ xhtml”
xmlns : ex=”http :// example . com/”
xmlns : rd f=”http ://www.w3 . org /1999/02/22− rdf−syntax−ns#”
xmlns : f o a f=”http :// xmlns . com/ f o a f /0.1/”>

<head>
<t i t l e >RDFa Tr ip l e s Example</ t i t l e >

</head>
<body>

<div typeo f=” f o a f : Person” about=”ex : John”>
<div property=”ex : knows” r e sou r c e=”ex : A l i c e”></div>

</div>
<div typeo f=” f o a f : Person” about=”ex : A l i c e”></div>

</body>
</html>

53

B. Usability test results

Figure B.0.1.: Usability question 1

Figure B.0.2.: Usability question 2

54

Figure B.0.3.: Usability question 3

Figure B.0.4.: Usability question 4

55

Figure B.0.5.: Usability question 5

Figure B.0.6.: Usability question 6

56

Figure B.0.7.: Usability question 7

Figure B.0.8.: Usability question 8

57

Figure B.0.9.: Usability question 9

Figure B.0.10.: Usability question 10

58

	Abstract (English)
	Abstrakt (Czech)
	Introduction
	What is an Ontology?
	Background
	Languages and standards
	Resource Description Framework
	Components of an RDF Statement (Triple)
	IRIs
	Literals
	Blank Nodes

	Web Ontology Language
	SPARQL Protocol and RDF Query Language
	RDF validation
	ShEx
	SHACL
	SHACL vs ShEx

	The Data Quality Vocabulary
	Tools for ontology processing
	ROBOT
	RDF4J
	Apache Jena
	GraphDB

	Existing dashboard solutions
	Kibana
	Graphana
	Apache Superset
	Dashboard choice

	Architecture
	Description of the overall system architecture
	Overview of the data flow and communication

	Implementation
	Overview of the implementation process
	Robot measure
	Robot report
	Ontology versions
	Storing data in GraphDB
	Harvesting data into ElasticSearch
	Visualization of data
	Screenshots of the dashboard

	Testing
	Automation of SHACL rule testing
	Usefulness and usability tests

	Conclusion
	Overview of RDF Syntaxes
	Usability test results

