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Prague, 2023









Declaration

I hereby declare that I completed the presented thesis independently and that all used
sources are quoted in accordance with the Methodological Instructions that cover the
ethical principles for writing an academic thesis.

In Prague, 2023

............................................
Teodor Delov

iii



iv



Acknowledgements

I would like to express my gratitude to the supervisor of this thesis, Ing. Matěj Dostál,
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Abstract

The thesis focuses on geometric algebra. We start by an informal introduction to the
necessary concepts of geometric algebra such as: oriented lengths, reflections, rotations.
We also show the fundamentality of geometric algebra, the geometric product. We then
show a simple application of the use of geometric algebra and explore the Cramer’s rule
as a method of determining solutions. Finally we show the construction of geometric
algebra.

Keywords: oriented lengths, geometric product, reflections, rotations, Cramer’s rule.

Abstrakt

Práce se zaměřuje na geometrickou algebru. Začneme neformálńım úvodem do pojmů ge-
ometrické algebry, jako jsou: orientované délky, odrazy, rotace. Ukazujeme také podstatu
geometrické algebry, geometrického součinu. Poté ukážeme jednoduchou aplikaci použit́ı
geometrické algebry a prozkoumáme Cramerovo pravidlo jako metodu určováńı řešeńı.
Nakonec ukážeme konstrukci geometrické algebry.

Kĺıčová slova: orientované délky, geometrický součin, odrazy a rotace, Cramerovo
pravidlo.
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Chapter 1

Introduction

This is a bachelor’s thesis project which can be interpreted as an introduction to geomet-

ric algebra. It introduces the basic terms, concepts, properties and their use in geometric

algebra, the way the the geometric algebra is constructed and some of it’s applications.

Geometric algebra or also called Clifford Algebra provides a generalized theory that sur-

rounds many mathematical topics such as vectors, complex numbers, matrix algebra etc.

It is also called Clifford algebra, because William Kingdon Clifford united the inner and

outer product into a single geometric product, which is the fundamental identity of ge-

ometric algebra. In this thesis we prefer the term geometric algebra because that was

also Clifford’s choice. Geometric algebra is mainly about vector multiplication and the

geometric product and how we interpret it. It is a tool which helps to express geometrical

relationships through algebraic equations. The use of geometric algebra in the past years

has proven to be helpful in solving geometrical problems in subfields of computer science

where these problems occur: computer graphics, robotics and computer vision.We usually

talk about the concept of a vector represented as a one-dimensional segment of a line with

direction, orientation and magnitude. In this project, for example we are also going to

get familiar with the term bivector, which is like a two-dimensional vector. A trivector

which is like a three-dimensional vector. This is a very short insight in how geometric

algebra works, it takes the concept of a vector as a one-dimensional segment and extends

1



2 Theoretical Background

this concept to multiple dimensions.

Chapter 2

Informal Introduction

2.1 Basic terms and introduction to GA

In this chapter, general theory and geometry terms will be introduced in order to build

an apparatus for achieving the goals of this work.

2.1.1 Scalars

Definition 2.1.1 (Scalars). [1] A scalar is physical quantity that is completely described

by it’s magnitude. In this thesis we will represent scalars as a, b, c

Example. [Scalars ] Examples of scalars are volume, density, speed, etc.

2.1.2 Vectors

Definition 2.1.2 (Vector). [1] A vector is a quantity that has both magnitude and

direction.

. In this thesis we will represent vectors as u,v,w.

Figure 2.1: Example of vectors
[1]
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By representing the vectors as oriented lengths, we can use that later to help us

introduce the operations vector addition and scalar multiplication, which will also help us

in defining the term vector space. We define the concept of a vector space below:

2.1.3 Vector Space

Figure 2.2: Vector addition [2] Figure 2.3: Scalar multiplication [2]

Definition 2.1.3 (Vector Space). A vector space consists of a set V (it’s objects are called

vectors) and a field F (it’s object are called scalars), where vector addition and scalar

multiplication are defined [2]. For it to be a vector space the vector axioms mentioned

below must be satisfied. Let u,v,w be vectors and a, b scalars. Here for further reference

we list the vector and algebra axioms:

V1. u+ v = v + u,

V2. (u+ v) +w = u+ (v +w),

V3. u+ 0 = u,

V4. u+ (−u) = 0,

V5. 1u = u,

V6. (ab)u = a(bu),

V7. a(u+ v) = au+ av,

V8. (a+ b)u = au+ bu.

A1. u(vw) = (uv)w,

A2. u(v +w) = uv + uw

(v +w)u = vu+wu,

A3. (au)v = u(av) = a(uv),

A4. 1u = u1 = u,

We define vector addition and scalar multiplication as the following :
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• Let vectors v, w ∈ V . Vector addition is an operation which produces a third vector,

v + w ∈ V .

• Let vector v ∈ V , and scalar c ∈ F. Scalar multiplication is an operation which

produces a third vector, cv ∈ V .

Let V be the set of two n× 1 matrices, consisting of real numbers and let the field of

scalars be Rn. In Rn we can define the vector addition and scalar multiplication as the

following:


x1

x2

...

xn

+


y1

y2
...

yn

 =


x1 + y1

x2 + y2
...

xn + yn

 c


x1

x2

...

xn

 =


cx1

cx2

...

cxn


The verification of the vector axioms is straightforward but we will still show a few

examples to show that axioms are satisfied.

[V 2]




x1

x2

...

xn

+


y1

y2
...

yn



+


z1

z2
...

zn

 =


x1 + y1

x2 + y2
...

xn + yn

+


z1

z2
...

zn



=


(x1 + y1) + z1

(x2 + y2) + z2
...

(xn + yn) + zn



=


x1 + (y1 + z1)

x2 + (y2 + z2)
...

xn + (yn + zn)



=


x1

x2

...

xn

+




y1

y2
...

yn

+


z1

z2
...

zn




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[V 6](ab)


x1

x2

...

xn

 =


(ab)x1

(ab)x2

...

(ab)xn

 =


a(bx1)

a(bx2)
...

a(bxn)

 = a

b


x1

x2

...

xn





[V 8](a+ b)


x1

x2

...

xn

 =


(a+ b)x1

(a+ b)x2

...

(a+ b)xn

 =


ax1 + bx1

ax2 + bx2

...

axn + bxn

 = a


x1

x2

...

xn

+ b


x1

x2

...

xn


Oriented lengths are not the only objects that can be represented as vectors. The term

vectors can also be used to represent for example functions or infinite sequences. We can

not visualize them as arrows with a certain length, but they also create a vector space.

This might make it harder to comprehend the concept of a vector but it greatly increases

the applications of the theory. So geometric algebra introduces new vector spaces that

are of significance to geometry.

2.1.4 Oriented lengths

[3] As stated before for now we will refer to the common vectors as oriented lengths. The

oriented length has a beginning point and an end point with an arrow at the end. These

oriented lengths have properties. We formally define the properties below:

Definition 2.1.4.

Attitude - Two oriented lengths have the same attitude if they are aligned or are parallel

to each other.

Orientation - The orientation is the direction in which the arrow of the length is pointing.

Two oriented lengths have the same orientation if they have the same attitude and if the

direction in which their arrows point is the same.

norm - The term norm is used to represent the length or size of the oriented lengths.

The norm will always have non-negative value. It does not take into consideration the

orientation. We denote the norm of v as ∥v∥

Example. For example, let u be an oriented length, then −2u, will have the same attitude

but opposite orientation and twice the norm.
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Oriented lengths are used to construct oriented areas. We define the term oriented

area below. Later in this thesis, oriented lengths will also help us define the term inner

product and outer product.

2.1.5 Oriented Areas

Definition 2.1.5 (Oriented Area). [3] An oriented area is a plane segment that has

weight and orientation. It’s orientation and weight must be well-defined.

Figure 2.4: Example of oriented area

We will use the uppercase bold letter B to denote oriented areas. In GA the term

bivector is synonymous with the term oriented area. Similarly as the oriented lengths, we

also define formally the properties of the oriented area:

Definition 2.1.6.

Attitude - Two oriented areas B1 and B2 have the same attitude if they are on the same

or on parallel planes.

Orientation - The term orientation is used to describe the rotational direction of the

oriented area. It is used to compare areas with the same attitude.

norm - The term norm is used to represent the measure of the area of B. The norm will

always have non-negative value. It does not take into consideration the orientation. It is

a measure for areas with the same attitude. we denote the norm of B as ∥B∥

Example. Oriented areas do not have any shape, on 2.1.5, the shown shapes are the same

element. We say that two oriented areas B1 and B2 are equivalent if they have the same

attitude, norm and orientation.
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Figure 2.5: Representation of two equivalent oriented areas. [3]

2.1.6 Oriented Volumes

After talking about oriented lengths and oriented areas, we now mention and define the

term oriented volumes.

Definition 2.1.7 (Oriented Volume). [3] An oriented volume represents a three-dimensional

space spanned by its factors, with a weight (volume) and orientation.

Figure 2.6: Example of an oriented volume.

In the thesis we will use the uppercase bold letter T to denote oriented volumes. In

GA the term trivector is synonymous with the term oriented volume. Oriented volumes

have the following geometric properties:

Definition 2.1.8.

Attitude - In 3-D space, every volume has only one attitude.

Orientation - The term orientation is used to describe the direction of the volume in

space, it is define by the oriented lengths that are perpendicular to the volume.

Norm - It is used to describe the measure of the volume of the oriented volume .
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2.1.7 The Geometric Algebra Gn

The Geometric Algebra Gn is a 2n vector space containing Rn [4]. We explain how is a 2n

vector space in more detail in section 4.3.1. We can reserve the term vector for vectors in

Rn, so that In Gn we can use the term multivectors.

G3

Definition 2.1.9 (Objects in G3). The objects in G3 have the form of

M = s+ v +B+T, (2.1)

where s is a scalar, v a vector,B a bivector,T a trivector. M is called a multivector.

2.2 Inner, Outter, Geometric Product

2.2.1 Inner Product

Definition 2.2.1 (Inner Product). [3] For given vectors u and v, the inner product is a

scalar :

u · v = |u| · |v| · cos θ, 0 ≤ θ ≤ π, (2.2)

where θ is the angle between u and v when one is moved parallel to itself so that the

initial points of u and v coincide.

Theorem 2.2.1 (Inner Product Properties ). The three following properties for the inner

product are true. We provide this theorem without proof:

• u ∥ v → u · v = |u||v| 1,

• u⊥v → u · v = 0 2,

• u · v = v · u

2.2.2 Outer Product

Two oriented lengths can be used to create the outer product. We formally define the

term outer product below:

1u ∥ v means that u and v are parallel
2u⊥v means that u and v are perpendicular
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Definition 2.2.2 (Outer Product). [3] The outer product combines oriented lengths

(vectors), to create higher dimensional elements such as oriented areas and oriented vol-

umes. It is denoted by the symbol ∧ called wedge. Vectors u and v, create the outer

product u∧ v. It is an operation that has the following properties. Let a be scalar and u,

v, and w be vectors, then:

antisymmetry u ∧ v = −v ∧ u

distributive u ∧ (v + w) = u ∧ v + u ∧ w,

(v + w) ∧ u = v ∧ u+ w ∧ u

homogeneity (au) ∧ v = u ∧ (av) = a(u ∧ v)

parallel u ∧ v = 0

Figure 2.7: The outer product. By changing the order of the vectors, we reverse the
orientation and introduce a minus sign in the product [5].

Example. Let’s say we want to find the area of a parallelogram spanned 3 by the vectors

u = e1 + 2e2 and v = −e1 − e2, relative to the area of e1 ∧ e2. First we would start by

determining the outer product u ∧ v and using it’s properties (ui ∧ ui = 0 and u ∧ v =

−v ∧ u).

u ∧ v

= (e1 + 2e2) ∧ (−e1 − e2)

= −e1 ∧ e1 − e1 ∧ e2 − 2e2 ∧ e1 − 2e2 ∧ e2

= −2e1 ∧ e2 − 2e2 ∧ e1

3The term span is used informally here. For more details see book [3]
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Then the area relative to e1 ∧ e2 would be:

∥u ∧ v∥
∥e1 ∧ e2∥

=
∥ − 2e1 ∧ e2 − 2e2 ∧ e1∥

∥e1 ∧ e2∥

=
∥0∥

∥e1 ∧ e2∥
= 0.

The area of a parallelogram relative to e1 ∧ e2 is 0.

2.2.3 Geometric Product

We talked about the inner and outer product. Now we will talk about the geometric

product. The geometric product is the fundamental identity of geometric algebra, it is

what makes geometric algebra powerful as a mathematical tool.

Definition 2.2.3 (Geometric Product). [3] The geometric product is defined as a sum

of the inner product and outer product.

uv = u · v + u ∧ v. (2.3)

Definition 2.2.4. [Geometric Product Properties ]

The two following properties for the geometric product are true:

• u ∥ v → uv = u · v = |u||v| ,

• u⊥v → uv = u ∧ v,

• (au)v = u(av) = a(uv)

• u(v +w) = uv + uw,

(v +w)u = vu+wu

• (uv)w = u(vw)

By reversal of the order of the elements in the geometric product, we will get:

vu = v · u+ v ∧ u = u · v − u ∧ v. (2.4)
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Let u be a nonzero vector. Then uu = u · u + u ∧ u . From the definition of the

properties of the outer product, we know that u∧ u = 0. After further simplification, we

get: u · u+ 0 = u2. After this we can write:

1 =
uu

uu
=

1

u2
uu = u

1

u2
u

After further simplification we define the multiplicative inverse of a vector as:

Definition 2.2.5 (multiplicative inverse of a vector).

u−1 =
1

u
=

u

u2
. (2.5)

2.3 Complex Numbers

This part was inspired from the book [4], and more details can be found there.

2.3.1 Complex numbers

GA complex numbers represent a multivector which combines a scalar and a vector com-

ponent. The scalar represents the real part while the vector represents the imaginary

part. Let a, b be scalars and i the unit pseudoscalar mentioned in subsection 2.3.2, then

we write the complex number as:

a+ bi

2.3.2 Pseudoscalars

The pseudoscalar or also called unit pseudoscalar is a geometric unit that has a unique

orientation in the vector space. It contains the word scalar because it behaves similarly

but it is more complex. It plays a big role in GA because it helps us later to define

rotations and reflections. This is because it captures the orientation of the vector space.

Definition 2.3.1 (Pseudoscalars). We denote the pseudoscalar as I. I = e1e2 · · · en It

represents the highest dimensional subspace in Gn. In 2-D we denote it as i.

An important property of the unit pseudoscalar is it’s square. The square of unit

pseudoscalar is:

I2 = e123e123 = (e1e2e3)(e1e2e3) = −1. (2.6)
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2.4 Rotation, Reflection

2.4.1 Reflection

We are starting to see the power of geometric algebra when we consider reflections and

rotations. The geometric product of vectors u and v is uv. We start by multiplying the

right side by the vector v−1, which is the inverse of v. After we finish, we should be left

with parts that are parallel and perpendicular to v. This is achieved by:

u = (uv)v−1

= (uv̇ + u ∧ v)v−1

= (uv̇)v−1 + (u ∧ v)v−1

(2.7)

from here we see:

u∥v = (uv̇)v−1, u⊥v = (u ∧ v)v−1. (2.8)

. The equation for u∥v is the projection of u on to v, while u⊥v is the perpendicular

component (sometimes called rejection). By switching the sign of (u ∧ v)v−1, we get the

vector:

u′ = u∥ − u⊥ = (uv̇)v−1 − (u ∧ v)v−1. (2.9)

The vector u′ is the reflection. This is the same as if we would multiply the left side of

the geometric product with v−1. In the end we would be left with an equation that is

true in general for any reflection.

In short the reflection is a transformation that mirrors a geometric object across a

plane.

2.4.2 Rotation

Before we define rotations, we need to define what is an angle in GA:

Definition 2.4.1 (The angle Iθ). [4] The angle represents a bivector Iθ. The unit

pseudoscalar I describes the plane of rotation, while θ describes the amount of the rotation.

Definition 2.4.2 (Exponential eIθ).

eIθ = cos θ + I sin θ. (2.10)
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Figure 2.8: Example of reflection. [2]

Figure 2.9: Rotation by angle Iθ. [4]

Rotation in the plane I

We define the rotation in the plane I by angle θ. Let’s imagine that the rotation moves

the vector u to the vector v. Then u and v are in the plane of rotation, and then we have:

uv = u · vu ∧ v

= ∥u∥∥v∥ cos(θ) + ∥u∥∥v∥I sin(θ)

= ∥u∥∥v∥(cos(θ) + I sin(θ))

= ∥u∥∥v∥eIθ

(2.11)

We can further manipulate 2.11 by multiplying it with u and in the end we should be

left with: v = ueIθ. This shows the rotation of u to v.
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Chapter 3

Linear Algebra

We will now show some simple applications of geometric algebra that are explained in

more detail in the survey article [4] by Macdonald.

3.1 Linear Independence

The outer product obtained from the geometric product can be used to characterize linear

independence of vectors:

Theorem 3.1.1. The vectors u1,u2 · · ·un are linearly independent if and only if

u1 ∧ u2 ∧ ... ∧ un ̸= 0.

Geometrically, this means that the vectors span a (possibly degenerate) parallelepiped.

The oriented n-volume of such parallelepiped is nonzero precisely when the vectors defin-

ing the parallelepiped are linearly independent.

3.2 Determinant

In geometrical context the determinant represents a scalar value which describes the factor

by which it multiplies n-volumes.

We can calculate the determinant by multiplying the result from the outer product of

the vectors by the inverse of the unit pseudoscalar I. We provide the following theorem

without proof [4]. Let u1,u2 · · ·un be a set of vectors in Rn and {e1, e2, · · · en} an

orthonormal basis for Rn Then:

15
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Theorem 3.2.1.

u1 ∧ u2 ∧ ... ∧ un = det


e1u1 e1u2 . . . e1un

...
. . .

enu1 enu2 . . . enun

 I, (3.1)

The determinant also gives us information on invertibility and orientation of a multi-

vector. Let’s imagine a multivector in 3-D space. The absolute value of the determinant

tells us whether the multivector ’shrinks’ or ’expands’. If the determinant is negative, that

means that the orientation of the multivector is negative. If it is positive, the orientation

is positive. If it is nonzero, it tells us that the multivector has an inverse.

3.3 Cramer’s rule

Cramer’s rule is used to simplify solving systems of linear equations. Let A be a matrix

with n rows and columns. It is said that Cramer’s rule is usually practical for solving

simple systems, for example a system with three equations and with three unknowns

and where the integers are small. For more complex systems a Gauss’s Method based

approach is preferred because it is faster. If det(A) ̸= 0 then the system: Ax⃗ = b⃗ has a

unique solution χi = det(Bi)/ det(A). Bi is formed by substituting the i column with the

solution vector b⃗.

Example. Here we have an example of a system with three equations and three unknown

variables x, y, z. We are going to solve for z.
2x+ y + z = 1

3x+ z = 4

x− y − z = 2

By simple calculation we can see that det(A) = 3. After this we replace the third

column with the solution vector b⃗ to calculate the determinant of the new matrix and we

get det(B3) = 3. We have det(A)/ det(B3) = 1. z = 1.

In elementary linear algebra we would view the expression for x as three equations for

u1, u2 and u3, in components:

a1u1 + b1u2 + c1u3 = x1

a2u1 + b2u2 + c2u3 = x2

a3u1 + b3u2 + c3u3 = x3

Geometrically the ratio of bivectors and trivectors is actually the ratio of their weights.
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The weights can be expressed using the determinant.

x1 =

det(

∥∥∥∥∥∥∥∥
x1 b1 c1

x2 b2 c2

x3 b3 c3

∥∥∥∥∥∥∥∥)

det(

∥∥∥∥∥∥∥∥
a1 b1 c1

a2 b2 c2

a3 b3 c3

∥∥∥∥∥∥∥∥)
x2 =

det(

∥∥∥∥∥∥∥∥
a1 x1 c1

a2 x2 c2

a3 x3 c3

∥∥∥∥∥∥∥∥)

det(

∥∥∥∥∥∥∥∥
a1 b1 c1

a2 b2 c2

a3 b3 c3

∥∥∥∥∥∥∥∥)
x3 =

det(

∥∥∥∥∥∥∥∥
a1 b1 x1

a2 b2 x2

a3 b3 x3

∥∥∥∥∥∥∥∥)

det(

∥∥∥∥∥∥∥∥
a1 b1 c1

a2 b2 c2

a3 b3 c3

∥∥∥∥∥∥∥∥)
Example. Problem: To solve for c3 in R4, v = c1u1 + c2u2 + c3u3 + c4u4 we can multiply

the equation by u1 ∧ u2 on the left and u4 on the right. And use ui ∧ ui = 0:

u1 ∧ u2 ∧ v ∧ u4 =

c1(u1 ∧ u2 ∧ u1 ∧ u4) + c2(u1 ∧ u2 ∧ u2 ∧ u4) + c3(u1 ∧ u2 ∧ u3 ∧ u4) + c4(u1 ∧ u2 ∧ u4 ∧ u4) =

u1 ∧ u2 ∧ v ∧ u4 = c3(u1 ∧ u2 ∧ u3 ∧ u4)

c3 =
u1 ∧ u2 ∧ v ∧ u4

u1 ∧ u2 ∧ u3 ∧ u4

If the ui are linearly independent, the outer product on the right is invertible, and we

have a formula for c2.
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Chapter 4

Construction of GA

In this chapter we will show an elementary construction of the geometric algebra on Rn.

To be able to show the construction, we will need to introduce some mathematical

prerequisites. In section 4.1 we will introduce equivalence relations and their properties.

In section 4.2 we will define and explain formal linear combinations and the construction

of a linear space of all formal linear combinations.

In the whole chapter we will be dealing with vector spaces over the real numbers – the

field of scalars will always be R.

4.1 Equivalence relations

Before talking about the construction GA(n) 4.5 basic knowledge of discrete mathematics

is needed. The construction by Macdonald’s approach uses equivalence classes. That is

why in this part we define what equivalence relations and equivalence classes are. This

will help us later in defining the construction of the vector space GA(n). The definitions

found in this section, can also be found in the book [6] with maybe different notations.

Definition 4.1.1 (Binary Relation). Let us have sets A and B. The binary relation R

from set A to set B is a set of ordered pairs (a, b), where a ∈ A and b ∈ B . R is a subset

of the Cartesian product A × B, R ⊂ A × B. In the case A = B we speak of a binary

relation on the set A. If the elements a, b are in the relation R, we write (a, b) ∈ R or

aRb .

Example. Let A be a set of all the people dining in a restaurant, and B a set of all the

items in the menu. It is not possible to write the relation between the elements of A

and B with a functional dependency, because it is unlikely that every client will have at

most only one item from the menu. And that one item from the menu will be ordered

at most from one client. To describe the relation we need a more general term. All the

19
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information are gathered in the set:

R = {(a, b) ∈ A×B | client a has item b} (4.1)

The elements in R represent ordered pairs and they are the basis of the term relation.

Definition 4.1.2 (Reflexivity). Let R be a relation on the set A. The relation R is

reflexive if for every a ∈ A holds that aRa.

Reflexivity described with words means that every element in A is in a relation with

itself.

Example. One of the easiest examples of a reflexive relation is ”=” on the set of real

numbers, because every real number is always equal to itself.

Definition 4.1.3 (Symmetry). Let R be a relation on the set A. The relation R is

symmetric if for every a, b ∈ A holds the implication aRb =⇒ bRa.

Described with words this means that element a is in a relation with b, and b is in a

relation with a.

Example. Also one of the easiest examples of a symmetric relation is ”=” on the set of

real numbers, because if a = b =⇒ b = a.

Definition 4.1.4 (Transitivity). Let R be a relation on the set A. The relation R is

transitive if for every a, b, c ∈ A holds aRc, whenever aRb and bRc.

This means that if the first element is in a relation to the second and the second is in

a relation with the third, then the first must also be in a relation with the third element.

Example. An example of a transitive relation is ”=” on the set of real numbers, because

if a = b and b = c, then a = c.

Definition 4.1.5 (Equivalence relation). A relation R on a set A is called an equivalence

relation if the relation is reflexive, symmetric and transitive. In the case of equivalence

relation we use a ∼ b instead of aRb.

Example. From the previous examples we can see that the relation ”is equal to” fulfils all

of the requirements and it is an equivalence relation.

Definition 4.1.6 (Equivalence class). Let A be a set with an equivalence relation ∼.

The equivalence class determined by the element a ∈ A is the set:

[ a] := {b ∈ A | b ∼ a}. (4.2)
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Here we refer to the equation (4.2).

Example. While calculating mod 5, the equivalence class determined by element 1 is

equal to:

[ 1] = {5k + 1 | k ∈ Z}

Similarly [ 0] = {5k | k ∈ Z}, [ 2] = {5k + 2 | k ∈ Z}, [ 3] = {5k + 3 | k ∈ Z},
[ 4] = {5k + 4 | k ∈ Z}. We can see that we have five different equivalence classes. By

adding them together we get the set of integers Z.

4.2 Formal linear combinations

In linear algebra, a formal linear combination is typically used to describe a sum of

vectors, where each vector is multiplied by a scalar coefficient. Generally, formal linear

combinations are expressions that are generated by elements of a given set by multiplying

those elements by scalar coefficients and summing them together.

The vector space of formal linear combinations is the set of all possible formal linear

combinations that can be formed using a given set of (formal) vectors. It is equipped with

the operations of multiplication by scalars and addition so that the axioms of a vector

space are satisfied. It is a fundamental concept in linear algebra and provides a way to

describe and analyze vector spaces.

Definition 4.2.1. Let A be a set. The set of formal linear combinations over A, denoted

by V , is defined as follows:

V = {c1a1 + c2a2 + ...+ cnan | n ∈ N, c1, c2, . . . , cn ∈ R, a1, a2, . . . , an ∈ A}

In this definition, c1, c2, . . . , cn are scalar coefficients, a1, a2, . . . , an are elements of the set

A, and n is a non-negative integer.

Formal linear combinations can be added and multiplied by scalars.

Definition 4.2.2. For any two formal linear combinations u = c1a1 + c2a2 + · · · + cndn

and v = d1a1 + d2a2 + · · · + dnan in V , their sum u + v is defined to be another formal

linear combination in V , given by

u+ v = (c1 + d1)a1 + (c2 + d2)a2 + · · ·+ (cn + dn)an.

For any scalar α and any formal linear combination u = c1a1 + c2a2 + · · · + cndn in V ,
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their product αu is defined to be a formal linear combination in V , given by

αu = α(c1a1 + c2a2 + · · ·+ cnan) = (αc1)a1 + (αc2)a2 + · · ·+ (αcn)an.

These definitions ensure that the vector space of formal linear combinations over the

set A satisfies the axioms of a vector space.

4.3 Introduction to the construction

In the rest of this chapter we show a formal construction of the Geometric Algebra GA(n)

over Rn with the standard inner product. It is inspired by Macdonald [7]. In most

literature the description of geometric algebra uses advanced concepts, such as tensor

products or usually skips the proofs of existence of the algebra. Macdonald gives an

elementary and direct approach of the geometric algebra over Rn. With his approach,

only elementary knowledge of Rn and discrete mathematics is needed.

It is our task to add to the structure of the vector space Rn a way to multiply vectors

– to add an algebra structure to Rn. This multiplication is the geometric product from

Chapter 2. Moreover, we need to enforce the defining properties of the geometric product:

these are the two fundamental identities that distinguish GA(n): for any pair u, v of

orthonormal vectors in Rn,

ee = 1, (4.3)

ef = −fe. (4.4)

Of course, we see that the result of the geometric product does not need to be a vector.

The construction of the geometric algebra GA(n) therefore adds structure to the vector

space Rn that we need to describe precisely in the construction. Just stating the axioms

from subsection 2.1.3 is practical, but that offers no guarantees that a mathematical

structure GA(n) really exists, because the axioms might be inconsistent.

4.3.1 The canonical basis of GA(3)

Let {e1, e2, e3} be an orthonormal basis for R3. The basis of the geometric algebra GA(3)

consists of the vectors described in the table below.

The index of the products of e’s increases. All of the products are in the basis.

By rearranging the order, we only change the sign (4.4). This means that the original

product and the new product are linearly dependant. In section 4.5 we stated that Gn

has a dimension of 2n.
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1
e1 e2 e3
e1e2 e1e3 e2e3

e1e2e3

Table 4.1: Canonical basis for G3

Example. Let us try and form a 4-vector in G3, e.g., e1e2e3e2, according to the product

rules in (4.3) and (4.4), this is equal to −e1e3. There are no 4-vectors in G3. A member

of the basis contains an e or it does not. Thus G3 has dimension 23 = 8. More generally,

the geometric algebra GA(n) = Gn will have a dimension of 2n.

4.4 Multiplication of basis vectors

Given a vector space Rn, we are supposed to ’freely add’ an operation of a product that

satisfies the identities (4.3) and (4.4).

Given an orthonormal basis {e1, e2, ..., en} for Rn, we therefore need to have a way

of multiplying at least the basis vectors. Taking any sequence (ei1 , ei2 , . . . , eir) of the

orthonormal basis vectors, we can therefore formally multiplying them by considering the

sequence itself as a product:

E = ei1ei2 · · · eir . (4.5)

In the given sequence any e can occur more than once and the order for the e’s is

important.

The idea for the construction of GA(n) is to take the formal products of the basis

vectors as the basis for a new vector space and set GA(n) to be this space. However, in

this way the space GA(n) would have infinite dimension and the required identities (4.3)

and (4.4) would not hold. We therefore have to identify some of the sequences (formal

products) of basis vectors as equal. This is done by defining an equivalence relation on

the set of all formal products of basis vectors.

Given a sequence E as in (4.5) we define two ways of obtaining a new sequence called

E ′ from E. A new sequence can be obtained by a finite number of steps of two types:

1. by exchanging pairs of adjacent and unequal e’s in E, and

2. by inserting or deleting pairs of adjacent and equal e’s.

Let us denote the transformation of E into E ′ by E ′ = T (E). Depending of the number

of exchanges we made to create the new sequence we can have T (E) = E ′ be odd or even.



24 CHAPTER 4. CONSTRUCTION OF GA

Example. If E = e2e1e1e3, we show some of the many possible ways to obtain a new

sequence E ′ from E. By removing the pair e1e1 from E we would obtain E ′ = e2e3.

By adding a pair e2e2 we can obtain E ′ = e2e1e2e2e1e3. The pairs e2e1 and e1e3 can be

exchanged to give a sequence E ′ = e1e2e3e1.

We can now start identifying some pairs formal products of basis vectors:

1. the identity (4.3) requires that inserting or deleting pairs of adjacent equal vectors

does not change the product,

2. the identity (4.4) requires that exchanging pairs of adjacent and unequal vectors

should change the sign of the product.

It should therefore be sufficient to identify those sequences E and E ′ for which there is an

even transformation T such that T (E) = E ′, and if T (E) = E ′ for an odd transformation

T , the sequence E should be identified with −E ′ in the resulting vector space.

However, for this approach to work, we need to show that whenever there are two

transformations T and T ′ such that T (E) = T ′(E) = E ′, these two transformations are

of the same parity (they are both either even or odd). Otherwise our construction would

not be well defined. This is solved by the following lemma.

Lemma.

Any two transformations T , T ′ with T (E) = T (E ′) = E ′ are both either even or odd.

Proof. Let G(E) be the number of times where the index of a vector e in the sequence E

is greater than the index of the vector e that is to its right. Observe now two facts:

1. Given a sequence F and obtaining F ′ by adding or removing a pair of adjacent and

equal vectors v does not change the quantity G: G(F ) = G(F ′).

2. Given a sequence F and obtaining F ′ by exchanging a pair of adjacent and unequal

vectors, G(F ′) = G(F )± 1.

The transformations T and T ′ are given by a finite number of steps of the above two

types. When applied to E, both transformations give E ′. This means that G(T (E)) =

G(E ′) = G(T ′(E)). However, the quantity G can be used to compute the parity of a

transformation: if the numbers G(E) and G(T (E)) are the same, the transformation T

is even, otherwise it is odd. Since G(T (E)) = G(T ′(E)), both T and T ′ are either even

or odd, which concludes the proof. ■
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4.5 Construction of the vector space GA(n)

Let us now define the vector space GA(n). Starting with Rn (with the standard dot

product), and taking its orthonormal basis (e1, e2, . . . , en), we first construct the set

A = {(ei1 , . . . , eik) | k ∈ N, i1, . . . , ik ∈ {1, . . . , n}}

of all formal products (sequences) of the basis vectors. Write any sequence E = (ei1 , . . . , eik)

as a formal product ei1 . . . eik . Form an equivalence relation ∼ on A by requiring E ∼ E ′

whenever there is an even transformation T for which T (E) = E ′.

Remark. The relation ∼ is an equivalence relation. We quickly show this.

1. The relation ∼ is reflexive, since for every E the identity transformation I, for which

I(E) = E, has an even parity (we perform 0 swaps of vectors in the formal product).

Therefore E ∼ E.

2. The relation ∼ is symmetric. If E ∼ E ′, so for some pair of sequences E and E ′

there is an even transformation T such that T (E) = E ′, we need to show that

E ′ ∼ E. That is, we need to find an even transformation T ′ such that T ′(E ′) = E.

Such a transformation exists: take the steps performed in the transformation T and

perform them ’backwards’.

3. The relation ∼ is transitive. If E ∼ E ′ and E ′ ∼ E ′′ for some sequences E,E ′, E ′′,

this means that there are two even transformations T and T ′ such that T (E) = E ′

and T ′(E ′) = E ′′. We need to show that E ∼ E ′′. This means that we need to

find an even transformation T ′′ for which T (E) = E ′′ holds. Of course one such

transformation is T ′ ◦ T , the composition of the steps of T followed by T ′.

We are now almost in a position to define the vector space GA(n). The idea is to

take the equivalence classes on A formed by ∼ and form the vector space of formal linear

combinations over these classes. The equivalence classes would then form the basis of the

space. Intuitively, the equivalence class formalizes the fact that e.g. the vectors e1e2e3 and

e3e1e2 are to be identified in GA(n). However, this idea solves only a half of the problem.

In the vector space GA(n) we also need to identify e.g. the vector e1e2 with the vector

−e2e1 (due to equation (4.4)). We describe how this is done below.

Definition 4.5.1. Let B = A/ ∼. Let U be the set of formal linear combinations over

the set B equipped with the operation of addition of formal linear combinations and with

the operation of multiplication by scalar as defined in section 4.2. We define GA(n) to be

the vector space formed from U by identification of the following pairs of vectors: given

any sequence E and an odd transformation T , [T (E)] = −[E].
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We will show that this construction of GA(n) satisfies the vector space axioms V1-V8

(2.1.3).

Let u, v, w ∈ GA(n) . We have u = x1U1 + x2U2 + . . .+ xnUn, v = y1U1 + y2U2 + . . .+

ynUn, w = z1U1+z2U2+ . . .+znUn, where the scalars are real numbers and the symbols Ui

refer to the equivalence classes of the sequences E generated by the equivalence relation

∼.

• The axiom [V1]:

u+ v = (x1 + y1)U1 + . . .+ (xn + yn)Un

= (y1 + x1)U1 + . . .+ (yn + xn)Un

= (y1U1 + . . .+ ynUn) + (x1U1 + . . .+ xnUn)

= v + u.

• The axiom [V2]:

(u+ v) + w = ((x1 + y1)U1 + · · ·+ (xn + yn)Un) + (z1U1 + · · ·+ znUn)

= ((x1 + y1) + z1)U1 + · · ·+ ((xn + yn) + zn)Un

= (x1U1 + · · ·+ xnUn) + ((y1 + z1)U1 + · · ·+ (yn + zn)Un)

= u+ ((y1U1 + · · ·+ ynUn) + (z1U1 + · · ·+ znUn))

= u+ (v + w).

• The axiom [V3]:

u+ 0 = (x1U1 + · · ·+ xnUn) + (0U1 + · · ·+ 0Un)

= (x1 + 0)U1 + · · ·+ (xn + 0)Un

= x1U1 + · · ·+ xnUn

= u

• The axiom [V4]:

u+ (−u) = (x1U1 + · · ·+ xnUn) + ((−x1)U1 + · · ·+ (−xn)Un)

= (x1 + (−x1))U1 + · · ·+ (xn + (−xn))Un

= 0U1 + · · ·+ 0Un

= 0.
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• The axiom [V5]:

1u = 1(x1U1 + · · ·+ xnUn)

= 1(x1U1) + · · ·+ (xnUn)

= (1x1)U1 + · · ·+ (1xnUn)

= x1Un + · · ·+ xnUn

= u.

• The axiom [V6]:

a(bu) = a(b(x1U1 + · · ·+ xnUn))

= a((bx1)U1 + · · ·+ (bxn)Un)

= a(bx1)U1 + · · ·+ a(bxn)Un

= ((ab)x1)U1 + · · ·+ ((ab)xn)Un

= (ab)(x1U1) + · · ·+ (ab)(xnUn)

= ab(x1U1 + · · ·+ xnUn)

= abu

• The axiom [V7]:

a(u+ v) = a((x1U1 + · · ·+ xnUn) + (y1U1 + · · ·+ ynUn))

= a((x1 + y1)U1 + · · ·+ (xn + yn)Un)

= (a(x1 + y1))U1 + · · ·+ (a(xn + yn))Un

= (ax1 + ay1)U1 + · · ·+ (axn + ayn)Un

= (a(x1U1) + · · ·+ a(xnUn)) + (a(y1U1) + · · ·+ a(ynUn))

= a(x1U1 + · · ·+ xnUn) + a(y1U1 + · · ·+ ynUn)

= au+ av
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• The axiom [V8]:

(a+ b)u

= (a+ b)(x1U1 + · · ·+ xnUn)

= ((a+ b)x1)U1 + · · ·+ ((a+ b)xn)Un

= (ax1 + bx1)U1 + · · ·+ (axn + bxn)Un

= ((ax1)U1 + · · ·+ (axn)Un)) + ((bx1)U1 + · · ·+ (bxn)Un))

= au+ bu

Observe that the identification of E and E ′ whenever E ′ = T (E) for an odd transfor-

mation T does not pose any problems and the fact that GA(n) is well defined as a vector

space follow from the fact that the set of all formal linear combinations over a given set

naturally forms a vector space.

4.6 Construction of the GA

Having defined the vector space GA(n), we now show how to equip it with a product (the

geometric product) so that we get the geometric algebra GA(n).

The idea is to first define the product naturally on the basis vectors of GA(n), and

then extend the definition by linearity. Given two sequences E and F , consisting of basis

vectors, where E = ei1ei2 · · · eir , and F = ej1ej2 · · · ejs , Macdonald defines the geometric

product as a concatenation of the two sequences.

EF = (ei1ei2 · · · eir)(ej1ej2 · · · ejs) = ei1ei2 · · · eirej1ej2 · · · ejs (4.6)

This product is well defined on the equivalence classes [E] of sequences: whenever

E ∼ E ′ and F ∼ F ′, then EF ∼ E′F ′. This follows immediately from the definition of the

equivalence relation ∼. Also observe that because the product is defined by concatenation

of sequences, we obtain that the product is associative (on the basis vectors) for free. We

can thus write the product of two sequences without parentheses.

The extension of the product on all elements of GA(n) is done by linearity as follows:

given two vectors u =
∑

i aiEi and v =
∑

j bjFj, their product is defined as

(
∑
i

aiEi)(
∑
j

bjFj) =
∑
i,j

aibjEiFj (4.7)

The equation can be informally explained: every vector in GA(n) is a formal linear

combination of the basis vectors – equivalence classes of sequences. Since we know how
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to multiply the basis vectors, write down the formal linear combinations that define

the vectors u and v and define the product by formal expansion of the formal linear

combinations. Forming the product in this way is well defined since it is well defined on

the basis vectors.

The axioms A1-A4 are all satisfied. To verify that they hold in GA(n) is straightfor-

ward, but we show the proof for some of them below.

Given u = a1U1 + a2U2 + . . .+ aiUi, v = b1V1 + b2V2 + . . .+ bnVn, w = c1W1 + c2W2 +

. . . + ceWe, where the scalars are real numbers, the axiom [A1] holds by the following

computation:

u(vw) = (
∑
i

aiUi)((
∑
j

bjVj)(
∑
e

ceWe))

= (
∑
i

aiUi)(
∑
j,e

bjce(VjWe))

=
∑
i,j,e

ai(bjce)Ui(VjWe)

=
∑
i,j,e

(aibj)ce(UiVj)We

= (
∑
i,j

(aibjUiVj))(
∑
e

(ceWe))

= (uv)w.

The axiom [A3] holds by the following computation:

(αu)v

= α(
∑
i

aiUi)(
∑
j

bjVj)

= (
∑
i

(αai)Ui)(
∑
j

bjVj)

=
∑
i,j

(αai)bjUiVj

=
∑
i,j

α(aibj)UiVj

= α
∑
i,j

(aibj)UiVj

= α((
∑
i

aiUi)(
∑
j

bjVj))

= α(uv).

Moreover, observe that the equations (4.3) and (4.4) hold in GA(n) by definition: this
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is precisely why we defined the equivalence relation ∼ the way we did. This concludes

the construction of GA(n).



Chapter 5

Conclusion

The goal of this thesis is aimed to explain the fundamental mathematical principles used

in geometric algebra. The thesis consists of three main chapters, where we primarily fo-

cused on describing the foundations of geometric algebra, the construction of geometric

algebra and it’s applications, so that we can have a better understanding of this mathe-

matical framework. In chapter 2 we started by establishing the basic terms and definitions

necessary to understand the following chapters. We defined scalars, vectors and the vec-

tor space. We then explored the inner, outer and geometric product. We saw how and

why they represent an important feature of geometric algebra. The inner product grasps

the dot product of vectors, while the outer product extends it to capture the concept of

oriented lengths, oriented areas and oriented volumes. Then we introduced the fundamen-

tality of geometric algebra, the geometric product. The geometric product is a sum of the

inner and outer product. We then show the integration of complex numbers in geometric

algebra.After this by leveraging the complex number we introduced the transformations

called reflection and rotation, and how to perform these operations using simple algebraic

operations. In chapter 3 we continue to dive deeper into the concepts of geometric algebra

and show a simple application based on the foundation we laid in chapter 2. We explore

how can linear independence be proved in the concept of geometric algebra. Then inves-

tigate the role of the determinants and emphasize their role in studying oriented areas

and volumes. This leads us to the Cramer’s rule which represents an elegant method

for finding solutions of systems of linear equations. In the chapter 4, we focused on the

construction of geometric algebra, showing it’s underlying structures and building blocks

and also showing it’s consistency. In the end readers of the thesis should have the basic

knowledge to be able to continue exploring more advanced concepts and topics of the

geometric algebra and it’s geometrically intuitive approach to problem-solving. This ge-

ometrically intuitive approach increases the clarity and insight researchers, engineers and

mathematicians can use to solve problems related to computer graphics, robotics, and

31
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computer vision.
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