
Czech Technical UniveRsity in PRague

Faculty of ElectRical EngineeRing

DepaRtment of ComputeR GRaphics and InteRaction

Bachelor’s thesis

Tile-based procedural generation

Rudolf Líbal

Supervisor: Ing. Tomáš Havlík

26 May 2023

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

498851 Personal ID number: Líbal Rudolf Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Computer Graphics and Interaction

Open Informatics Study program:

Computer Games and Graphics Specialisation:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Library for procedural generation of tiles in computer games

Bachelor’s thesis title in Czech:

Knihovna pro procedurální generování dlaždic v počítačových hrách

Guidelines:

1. Analyze existing solutions for procedural content generation (PCG) in tile-based worlds (see literature).
2. Design a generic PCG library with support for multiple terrain layers and the ability to define additional metadata and
rules for adjacent tiles.
3. Explore the possibilities of tile randomization using a combination of weighted probability and noise while mitigating the
likelihood of incompatible placements in larger areas.
4. Propose an algorithm for finding the shortest possible path through the generated environment, taking into account the
constraints imposed by terrain specification. Allow the developer to define arbitrary pathfinding rules in order to facilitate
game design decisions.
5. Allow for manual specification and editing of predefined map sections.
6. Design user interface for developers in the form of Unity editor scripts. Describe library's API from the perspective of a
game developer.
7. Implement aforementioned functionality in the form of a library in the Unity game engine. The implementation should
utilize principles of object pooling, tile state should be stored independently of the scene instance. Allow for serialization
of generated structure to a file and subsequent state recovery.
8. Demonstrate library usage by the means of a game prototype.

Bibliography / sources:

DYKEMAN, Isaac. Procedural Worlds from Simple Tiles [online] [visited on 2022-07-10]. Available from:
https://ijdykeman.github.io/ ml/2017/10/12/wang-tile-procedural-generation.html
MAUNG, David. Tile-based Method for Procedural Content Generation. Thesis. Graduate School, The Ohio State University.
2016.
SCHOLZ, Dominik. Tile-Based Procedural Terrain Generation. Thesis. Faculty of Informatics, TU Wien. 2019.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Tomáš Havlík Department of Computer Graphics and Interaction FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 12.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature

Head of department’s signature Ing. Tomáš Havlík
Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

Acknowledgements

I am deeply grateful to my thesis supervisor, Ing. Tomáš Havlík, for their invaluable
guidance and support throughout the research and writing of this thesis. Their
encouragement and patience helped me through this challenging journey. Thanks
is also due for my family, absolute pillars of support, as well as to my friends, co-
sufferers in the endeavor of thesis writing. I would also like to thank Ing. Jakub
Jirůtka for permission to use a version of his LATEX template. Further thanks goes to,
in no particular order, everyone not mentioned in this acknowledgement.

Declaration

I hereby declare that the presented thesis is my own work and that I have cited
all sources of information in accordance with the Guideline for adhering to ethical
principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the
Czech Technical University in Prague has the right to conclude a license agreement
on the utilization of this thesis as a school work under the provisions of Article 60(1)
of the Act.

In Prague on 26 May 2023 …………………

Czech Technical University in Prague

Faculty of Electrical Engineering

© 2023 Rudolf Líbal. All rights reserved.

This thesis is a school work as defined by Copyright Act of the Czech Republic. It
has been submitted at Czech Technical University in Prague, Faculty of Electrical
Engineering. The thesis is protected by the Copyright Act and its usage without author’s
permission is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis
LÍBAL, Rudolf. Tile-based procedural generation. Bachelor’s thesis. Czech Technical
University in Prague, Faculty of Electrical Engineering, 2023.

Abstrakt

Cílem této bakalářské práce je prozkoumat možný vývoj generování tzv. dlaždi-
cových systémů v reálném čase. Implementace generátoru na základě návaznosti
hranic kachlíků slouží jako podklad k průzkumu možností generace dlaždicových
systémů. Referenční implementace zahrnuje širokou škálu funkcí, včetně poolování
objektů, generování terénu, vícevrstvého obsahu, manuálního nastavování stavu a
pathfindingu. Analýzou výkonnosti různých aplikací této implementace poskytuje
tato práce poznatky omožnostech a omezeních generace takovýchto systémů v reál-
ném čase.

Klíčová slova knihovna, videohra, procedurální generace, terén, dlaždice

Abstract

This bachelor thesis explores the feasibility and capabilities of real-time procedural
generation for tileable content. By implementing a generator based on tile bor-
der connectivity, this research investigates the possibilities and limits of generating
tileable content in real time. The reference implementation encompasses a wide
range of features, including object pooling, terrain generation, layered content, ini-
tial state editing, and pathfinding. Through an analysis of performance and effi-
ciency in various applications, this research provides insights into the possibilities
afforded by real-time, tile connectivity-based procedural generation across various
domains.

Keywords toolset, video game, procedural generace, terrain, tile

Contents

Introduction 19
Overview . 20

1 Tile-based systems 21
1.1 Prologue: Of Games And Formal Systems 21
1.2 Procedural Content Generation . 21
1.3 Tiles . 22
1.4 Tile Ordering . 23
1.5 Connectivity . 23
1.6 Conflicts . 24
1.7 Run Time Generation . 24
1.8 Determinism . 25

2 Existing Solutions 27
2.1 Linden, Lopes & Bidarra, 2013 . 27
2.2 Maung, 2016 . 28
2.3 Dykeman, 2017 . 31
2.4 Further Concept Definitions . 35
2.5 Summary . 37

3 Methodology 39
3.1 Technology used . 39
3.2 Generator Specifications . 40
3.3 ResearchQuestions . 40

4 Generator Structure 43

13

4.1 Architecture . 43
4.2 Interface Design . 44

5 Tile Management 47
5.1 Tile Data Structures . 47
5.2 TileManager . 51
5.3 TileMap . 52
5.4 TileSaver and TileStats . 53
5.5 InitialState . 53

6 Tile Generation 55
6.1 Oracle . 55
6.2 TerrainMap . 59
6.3 Random Generation . 63

7 Pathfinding 67
7.1 A* Algorithm . 67
7.2 Parameters . 68
7.3 Heuristics . 68
7.4 VisualPathfinder . 69

8 Usage 71
8.1 Basic Workflow . 71
8.2 Example Usages . 72
8.3 Generic Use Cases . 73

9 Evaluation 75
9.1 ResearchQuestion Evaluation . 75
9.2 Limitations . 76
9.3 Future Additions . 77

Conclusion 79

Sources 81

A List of abbreviations used 87

B Unity asset package structure 89

C Contents of included CD 91

14

D Installation 93
D.1 Installation with Unity Package Manager 93
D.2 Installation from CD . 93
D.3 Sample usage . 93

15

Introduction

The goal of this work is to explore the options of creating procedural content
generators (PCGs), and subsequently creating a toolset allowing for the automatic
generation of game systems. The world generator implemented is inherently the
basis of the formal system of any game using it, and therefore a special focus will
be on flexibility for usage in a number of different scenarios.

The basis of the explored generating logic is best demonstrated using the board
game Carcassonne as an example: the world consists of several same-shaped tiles,
ordered in a 2D lattice. The tiles have one main rule concerning their generation,
that in order for two tiles to be placed next to each other, their near sides (borders),
must be of the same type¹.

In the following chapters, the possibilities and limitations of generating such tile-
border based systems will be explored, as well as formal definitions for several
terms including the tiles themselves. This is followed by a description of the
implementation of a tool implementing these concepts. The last part of this work
details means of usage and usability in 2D and 3D games and presents a concrete
example.

¹This concept shares the same basis as Wang tiles(8)

19

IntRoduction

Overview
This work consists of multiple parts. Starting with a complete overview of relevant
theory and definitions of basic terms in chapter 1, and an analysis of relevant
research alongside more advanced concepts (2).

Following up with a methodology statement for the implementation of a PCG tool
in chapter 3 (also defining several research questions in section 3.2), and a thorough
description of the implemented tool itself (chapters 4 to 7), interlaced with relevant
theory.

The third part of this thesis consists of the tool’s usage and usability from a game
designer’s perspective (8) and an evaluation of its strengths and
limitations (9).

20

ChapteR 1
Tile-based systems

In this chapter, baseline theory is explained. Terms used in further chapters are
defined here.

1.1 Prologue: Of Games And Formal Systems
Games as a medium combine the figurative “best of two worlds”, by adding together
a story and a formal system(20). The story has a virtually unlimited range of
complexity; ranging from Pac-Man(3) (the story is “stay away from ghosts”), up
to Dungeons & Dragons(1), in which players can build up arbitrarily convoluted
stories using just a basic rule set.

The distinctive feature for all games, and videogames in particular, is the
underlying formal system, more commonly known under terms like “rules” or
game mechanics(5) in the case of videogames. For example, Chess(11) is still
played the same, no matter the design or name of the pieces.

Like with the story, the underlying formal system can be of any complexity, but the
defining feature is its integration with the game’s story. Typically game designers
try to either hide the mechanics as much as possible², or expose as much as
possible³. For the purpose of this work, (audio)visuals will be considered as story,
and technical details as part of the formal system.

1.2 Procedural Content Generation
The blunt definition of procedural content is that it is simply anything, that is not
hand-crafted. More specifically, it is content generated by a procedure, whether

²Typically games that focus heavily on telling a story, like What Remains of Edith Finch(12)
³Perhaps the most exemplary is Kittens Game(4), which initially has only one single line of story,

but an entire wiki devoted to precise explanations of game mechanics.

21

1. Tile-based systems

entirely random, or deterministic (39). Conversely, the procedure itself is typically
hand-crafted.⁴ Examples of procedurally generated content include:

• the randomly selected next piece in Tetris(42)

• players are part of the generating procedure in Carcassonne (51)

• a single, but effectively infinite world in No Man’s Sky(15)

• the entire sequence of player tasks in Dwarf Quest(25)

• procedural music generation(7): “[A] composition that evolves in real time
according to a specific set of rules or control logics”.

Procedural content generation is commonly used to either increase variety (Tetris,
Catan(41)) and/or create more content, than would be otherwise possible or
practical (No Man’s Sky, Minecraft(29)). This often comes at the expense of content
broadness in all generated aspects⁵.

In this thesis, the focus will be on procedural generation as a means of creating
virtual game worlds, e.g. away from the game’s story and primarily on procedural
generation as part of a formal system.

1.3 Tiles
Many PCGs use a simplification in which generated elements are ordered inside a
2D or 3D lattice. Perhaps the most basic example is Minesweeper(18), where a 2D
array contains a mix of empty and mined tiles.

For practical purposes, lattice-based systems are very effective, as they simplify the
process of definition down to a discrete space, as compared tomost physical systems,
which have, in essence, a continuous state space. This is the same reason for why
most tabletop games include a discrete tile array as part of their playing field, for
example Chess(11), or Catan(41).

From a game design perspective, tile-based outputs, especially orthogonal ones, are
generally inferior to lattice-less worlds, as they inherently include some degree of
repetitiveness. The subsequent goal for a game developer is thus to either capitalize
on the advantages of this approach(10)(34) or mitigate the disadvantages (often by
trying to hide the lattice itself - typically for terrain(2)).

⁴Interestingly, the definition allows for some broader and less expected processes to be considered
as PCG. For example, growing (procedure) a tree (content) from a seed (limited input).

⁵Discussed in section 2.1

22

1.4. Tile Ordering

1.4 Tile Ordering
Many tile-based systems utilize a square, oblong⁶, or cuboid ordering. The main
advantage is in simplicity, which again, limits versatility. Other types of ordering
include hexagonal (e.g. Catan) and non-uniform shape (e.g. letters in this
paragraph). No ordering at all, that is, a continuous state space, is also possible.
This is commonly used for example in foliage generation(19).

No ordering is considered superior from a game design perspective, as lattice-based
systems limit possibilities. Short and Adams even advise against using, or at the
very least, revealing the presence of any lattice system in their publication.(40) I.e.,
there is an unavoidable trade-off between versatility and simplicity.

For the purposes of this work, only 2D orderings will be explored. The position of a
tile is thus encodable into a 2-dimensional integer vector: coordinates. Each unique
coordinate corresponds to a different position in the world itself. Generally, this is
given by a function N2 → Rn. For example, (x, y) → (x, 0, y) could be used for
square tiles ordered in a 2D plane within a 3D world, or (x, y) → (32 · y, 0,

√
3 · (x+

y
2)) for a hexagonal tile system, by using axial coordinates.(16)

1.5 Connectivity
Generating a new tile requires selecting from a pool of different tile types. The pool
can be predetermined or also procedurally generated.

Many methods of selection involve choice based on the output of a mathematical
function. Examples include terrain generators based on Perlin noise (e.g.
Minecraft(29)), and graphical calculators — tiles represent pixels(43). In other
words, the generator navigates the state space(32) of the system and selects such
tile states that, ideally, align well with already chosen ones.

The requirement of proper alignment is satisfied by considering the mutual
compatibility of two different tiles’ edges. This is the basis of a class of formal
systems, called Wang tiles(8). In Wang tile systems, each tile is a square with a
color assigned to each side. Two tiles can be placed next to each other if, and only
if, their near edges are the same color.

A notable example of Wang tile appearances is in the board game Carcassonne(51),
where players create a world from square tiles with exactly 3 different edge
types.

⁶Square and oblong (i.e. rectangular) systems can be considered equivalent in every aspect bar
appearance.

23

1. Tile-based systems

In this work, the term connectivity will be used to quantify the compatibility of two
tiles by their borders. Connectivity can operate on Boolean logic (compatible, not
compatible), or on fuzzy logic (i.e. extent of connectivity).

1.6 Conflicts
A conflict or a conflicted state is when a tile should be placed at some coordinate,
but there is no tile type that is compatible with all previously placed neighboring
tiles. Tile sets that can and cannot tile the entire plane are called plane-filling and
non-plane-filling, respectively.

Avoiding conflicted states is crucial for the viability of a procedural content
generator (PCG). Several methods of reducing and avoiding conflicts will be
presented in this and following chapters.

1.7 Run Time Generation
Many PCGs serve only as a baseline for a static world, where the world is either
generated entirely beforehand (at “development time”), or where the PCG runs once
at run time and is then discarded. In the following chapters, this type of generators
will be referred to as static.

Contrary to this, run-time or real-time generators aim to generate content within
the limited computational margins of a program, usually simultaneously working
on several other calculations, like graphics rendering, or game logic(13).

The work presented in this thesis aims to facilitate both - the generator’s control
over the game world as well as the world’s control over the generator. An emphasis
will be put on exploration of the limits of how this goal can be achieved with real-
time constraints.

24

1.8. Determinism

1.8 Determinism
There are a few options related to the way random outputs work. In the context
of tile PCGs, generators can either be non-deterministic, where generated tiles
are completely random, deterministic for a specific loading order, or completely
deterministic, where generating the same world twice always results in the same
tile layout.

Full determinism is not easy to achieve in connectivity-based systems as each tile
placed can change the probabilities for other not yet generated tiles in a non-trivial
manner.⁷

The only universal way to enforce a completely deterministic behavior in a
connectivity-based system is by introducing a constant tile generation order.

⁷Consider one of the many aperiodic square tile sets(21).

25

ChapteR 2
Existing Solutions

There are several relevant works including procedural content generators. In this
chapter, key features and options of various PCGs are examined in their advantages
and disadvantages and their relevancy to this project. These features are then
compared across these existing examples, ranging from generic tools to generators
directly embedded into a single game. Additionally, followup concepts will be
defined side-by-side with the relevancy descriptions.

The following are exemplary works, which are analysed in depth to provide an
insight into how tile-based generators function.

2.1 Linden, Lopes & Bidarra, 2013
Linden, Lopes & Bidarra: Designing procedurally generated levels (25)

2.1.1 Description
The paper describes methodology of how to generate entire games solely by
using procedural generation. The PCG uses an action-based and then a tile-based
grammar, and then uses that theory to describe the PCG implementation in the game
Dwarf Quest(50). The game’s playing area consists of several rooms in a square
lattice. The paper also discusses the limits of automation using PCGs, in a sense as
to minimize human input.

2.1.2 Relevance
While the paper showcases the extent in which procedural generation can be used,
it also inherently implies the limitations: the mundanity, and crucially, repetitivity,
of random selection; inflexibility at run-time; and tedious implementation of
abstraction. Most of the described PCG’s complexity is not directly about the
implementation of a grammar, but on surpassing specific constraints. This leads

27

2. Existing Solutions

to pipeline approach, with a number of specialized (i.e. the opposite of broadly
usable) algorithms being employed in series.

The paper also outlines the primary purpose of procedural generation, which is
aiding the developer, not necessarily benefiting the end user (player). For example,
if a game’s content can be created faster, or better, without procedural tools, there is
no reason for their usage.⁸ The described Dwarf Quest is a perfect example of this;
it reduces the task of creating a new, unique, never before seen game level down to
setting the difficulty level.

The described PCG does make use of connectivity, and manages to avoid conflict
states by using the above mentioned pipeline. This approach is effective in avoiding
conflicts entirely, but is highly specialized and is a perfect fit only for the underlying
grammar system. In other words, the system has a well-defined purpose, which a
generic PCG does not.

2.2 Maung, 2016
David Maung: Tile-based Method for Procedural Content Generation (27)

2.2.1 Description
The thesis describes the elementary logic behind a static, connectivity-based square
tile generator. Unlike the previous example, this generator attempts to offer the
broadest possible usability, while remaining within the realm of static 2D tile
generators.

2.2.2 Relevance
There are a number of useful notions described in Maung’s thesis or otherwise
following up from it.

2.2.2.1 Connectivity as a Relation
Allowing arbitrary definitions of connectivity allows for interesting options; a set
of one black and one white tile will yield an infinite chessboard, if the connectivity
rule is that neighboring tile border colors must be different.

Even more generally, connectivity is a relation and can be represented by a
undirected graph, where nodes and edges represent border types and
compatibilities, respectively. Typically, each node will only share an edge with
itself (i.e. tiles can only be placed if their near borders are of the same type).

⁸Interestingly, Grelssonmentions in his thesis(13) that a second purpose of PCGs can be to inspire
designers, by generating combinations that are “not constrained by human imagination”.

28

2.2. Maung, 2016

2.2.2.2 Non-Uniform Distribution
Using Perlin noise(36) to form larger-scale structures. A key takeaway from
Maung’s work is that some more abstract world features cannot be consistently
generated with connectivity alone. Examples include “choke points”⁹ and “map
borders”¹⁰.

2.2.2.3 Weighted Probability
When a tile is being generated at a coordinate, multiple options of tiles can be
available. The chance one of the options will be selected can depend on any
number of factors: the degree of connectivity, tile frequency, aforementioned noise
distribution, etc.

Weights can also be integrated into the connectivity relation graph, by adding
weights to each edge. This allows for partially compatible tiles.

The above two concepts alone can lead to interesting generated outputs. Consider
a tile set with mountain tiles, ocean tiles and tiles serving as a border between the
two. Decreasing the probability of a border tile being placed to almost zero will lead
to large, though awkwardly shaped, formations of ocean and mountains. Changing
weights based solely on the tiles’ positions leads to less random results.

Figure 2.1: A combination of tiles with equal weights.

⁹Most notably in arena-based games, a location of disproportional importance compared to its
size.

¹⁰Edge of a game’s playing area, typically obstructing movement past it.

29

2. Existing Solutions

Figure 2.2: A combination of tiles; border (”shore”) tiles have a weight of 1
20 .

Figure 2.3: A combination of tiles with weights as a function of position.

2.2.2.4 Complete Tile Sets
To completely prevent conflicts, a tile must exist for each combination of edge types.
For t types of tile borders with n sides, this amounts to tn (!) total tiles. This can
be reduced to t

n
2 , given optimal generation order.¹¹ As perhaps the most limiting

constraint for a developer using such systems, several methods of reducing this
amount will be discussed throughout the rest of this work.

2.2.2.5 Tile Equivalence
Two tiles with identical border types can be considered identical. This is a
simplification aimed mainly at implementation. Conversely, rotating a tile
effectively constitutes a new tile unless rotational or axial symmetry is present.
Defining only one rotation for each tile and automatically filling in the rest allows
to reduce the amount of needed input tiles; For square tiles up to 4 times (less than
4 times for tiles with symmetry).

¹¹E.g. each tile is generated when at most half the neighboring tiles are known. Load order
optimization is further discussed below.

30

2.3. Dykeman, 2017

2.2.2.6 Optimising Load Order
Load order optimization is primarily a method of decreasing the amount of needed
tiles. It is possible to tile the plane while generating tiles that only have at most half
their neighbors already generated by starting at any coordinate and then proceeding
in a spiral.¹²

Thismay seem like a powerful tool, but it also leads to the computational complexity
of generating two tiles far apart being proportional to the square of their distance,
at minimum. There are “compromise” approaches leading to, for example, (almost)
never generating a tile with all surrounding tiles already generated. These will not
be further explored.

2.2.2.7 Tile Layers
Splitting tiles into several only partially dependent layers can aid in reducing the
amount of different tiles needed. An example could be a tile set generating terrain
(3 types of tile borders - “grass”, “soil”, “rock”) and houses on top (again 3 types -
“inside house”, “wall”, “outside house”) for a total of n = 9 combinations. Separating
the tiles into two independent tile sets saves on tiles needed significantly:

layer n n2 n4

single layer 9 81 6561
“terrain” layer 3 9 81
“building” layer 3 9 81
both layers 3 + 3 = 6 9 + 9 = 18 81 + 81 = 162

Table 2.1: Tile count for a square tile system with two layers.

While this concept for layers could be potentially what “makes or breaks” the
system’s usability, it is also barely possible in systems of current game engines.
Instead, a more realistic approach is to use layers in a less powerful form.

As two tiles with same borders are considered equal by the generator, it is possible to
encodemany tile variations into layers of a single tile. For example, terrain tiles with
multiple different types of foliage and terrain irregularities. While this approach
doesn’t directly decrease the total amount of tile border combinations, it decreases
the amount of border combinations needed to achieve a sufficient variety.

2.3 Dykeman, 2017
Isaac Dykeman: Procedural Worlds from Simple Tiles (9)

¹²For squares, OEIS sequences A174344 and A268038 form the x and y coordinates of the n-th
generated tile.(33)

31

2. Existing Solutions

2.3.1 Description
A PCG for tile connectivity-based, single-layer worlds, allowing both static and real-
time generation and square or cubical tiles in a 2D or 3D lattice, respectively.

2.3.2 Relevance
A critical concept introduced in this publication is conflict reduction. Simply put,
conflict situations can be mostly avoided, even when given a tile set, with which
random tile generation would generate conflicts, e.g. an incomplete tile set.

Several algorithms allow fixing or preventing conflict states and will be presented
in this chapter.¹³

2.3.2.1 Backtracking
The most basic method of conflict reduction is to simply delete one or more
generated tiles and try again. Backtracking is often undesirable as a significant
portion of already generated content may get removed. Additionally, given a non-
plane-filling tile set, backtracking will get “stuck” in a loop.

2.3.2.2 State Space Navigation
Each tile affects which tiles can be placed around it. This can be expressed as
an array of potential tile weights (probabilities of placement), assigned to each
coordinate. In addition, this narrowing of possible states also affects not-yet-placed
tiles neighboring the not-yet-placed tile, and so on.

This effect may continue without bounds¹⁴. Generally, if a potential tile placement
would remove the last option for any not-yet-generated tile anywhere on the lattice,
it should not be placed.

2.3.2.3 Two Pass Generation
In Dykeman’s toolset, the above concept is realized by first calculating the possible
tile states for near empty spaces and eliminating what “would lead to” conflicts, and
then choosing which tiles to place in a second iteration. The calculation does not
eliminate all conflicts, as it has a limited radius, which the author calls sphere of
influence.

There are several effectively similar algorithms that can be used for such
calculations; the most straightforward approach is to focus on calculating which
states are not possible. This approach constitutes a constraint satisfaction problem
(CSP)(48), solvable by algorithms like arc consistency 3 (AC-3)(22).

¹³A passing mention should be made to tile load order optimization (see 2.2.2.6) as a primitive
method of conflict reduction.

¹⁴Consider a tile set with only two black and white tiles. Placing one tile determines the future
state of all tiles.

32

2.3. Dykeman, 2017

2.3.2.4 Undecidability
There is no algorithm that can, in general, decide if a tile set is plane-filling or
not(38), even for many simplifications of this problem(26). This problem is called
undecidablility.

Even given a relatively small area to tile, it can be hard to determine if the given tile
set tiles it as the problem is still NP-complete(14). ¹⁵

2.3.2.5 Incomplete Tile Sets
Possibly the most important notion the work expands upon, is that with sufficient
conflict reduction, it is beneficial to not have a tile for each permutation of edge
types. From a game design perspective, there is little use for homogeneous¹⁶
randomization of tile placements. Collision reduction can prevent unfavorable
situations and thus force some degree of heterogenization. An extremely simplified
example is as follows: there are two types of borders. The second type represents a
contour line passing though the border.

¹⁵A great example is the Eternity II puzzle from 2007(30), which set a $2 million bounty for finding
a valid ordering of a mere 256 square tiles in a 16-long square grid. The puzzle is still unsolved.

¹⁶In this case equivalent to lacking any larger size structures

33

2. Existing Solutions

Figure 2.4: A full tile set, with a total of 16 automatically generated rotations

Figure 2.5: The result does not produce the expected contour lines, as contour lines do
not end, split, or join up.

Figure 2.6: Modifying how often the unwanted tiles appear to an absolute minimum will
still result in their placement (highlighted in red) being forced where there are no other
options. The only solution is thus to remove some tiles from the “palette” entirely.

Figure 2.7: A reduced tile set, with only a subset of all permutations. A total of 7
rotations are automatically generated.

34

2.4. Further Concept Definitions

Figure 2.8: Without conflict reduction. Black tiles indicate positions where no tile can
be placed.

Figure 2.9: With sufficient conflict reduction.

The expected result could only be created with a combination of incomplete tile sets
and conflict reduction. A system with the given meaning could not be created with
a complete tile set. In other words, using incomplete tile sets gives the system a
meaning.

2.4 Further Concept Definitions
This section details additional concepts and terms that are not directly related to
any of the relevant works.

2.4.1 Tile Elevation
In 3D systems, each tile can have not only a position, but also an elevation, a
height compared to the baseline plane of the system. This expands the range of

35

2. Existing Solutions

sensible tile sets with features such as terrain, while keeping the generation logic
two-dimensional.¹⁷

To facilitate faster development, the elevation range can be discretized, e.g. integer
values only. Leading from this, tiles at different height can thus be considered as
different tiles, similarly to tiles with different rotations.

2.4.2 Vertical Borders
With the tile layer definition from 2.2.2.7, a further simplification can be made by
declaring tile layers as full-fledged tiles, with their own border connectivities and
the such.

A vertical border is a parameter of a tile that defineswhich layers’ tiles can be stacked
upon it. Essentially, it works in the same way: both the default (main) tile set’s tiles
and layer tiles define a vertical border; if they are compatible, they can be on the
same coordinate together.

This works even for multiple distinct layers, but unfortunately constitutes a 3D state
space. A computational simplification can be made in which tile layers do not need
to be as strictly generated in terms of connectivity; E.g. if a conflict arises, it is
ignored.¹⁸

2.4.3 Soft Zero
Several concepts related to connectivity-based tile systems can be improved with
the concept of a soft zero. Soft zero represents a weight that is so low, it will never
be selected, unless there is no other option (or the only other options are also soft
zeroes). Conversely, a hard zero represents a weight that should never be selected,
usually due to a conflict arising. This concept can be used in border compatibility
weights too, or for example to aid non-uniform distribution (see 2.2.2.2).

2.4.4 Pathfinding
In the scope of this work, pathfinding will refer to the process of finding the
shortest path between two tiles in a tile system. The path is typically convoluted
by impassable areas. The meaning of impassable areas will be explored in the
implementation of such a process, as it does vary between applications (e.g. height
differences for a mountainous terrain, walls in a maze, etc.).

¹⁷Of course, this means expanding any given tile set and the relevant borders to accommodate all
desired changes in elevation, e.g. various sloped tiles. An example implementation can be found in
OpenTTD(34).

¹⁸Perchance this seems too limited, like in the case of the above mentioned “house on terrain”; but
this still allows generating with tile variations efficiently, esp. visual tile variations.

36

2.5. Summary

2.5 Summary
This concludes a non-exhaustive list of relevant theoretical concepts. Further
concepts related to various implementation details will be explicated in chapters
related to the implementation itself.

37

ChapteR 3
Methodology

3.1 Technology used
The following is an overview of the most important technology and tools chosen to
implement the PCG.

3.1.1 Unity With C#
No feature described previously is engine-dependent. Unity(45) was chosen as a
game engine, because it offers a good combination of usability and flexibility.
Unity also allows for simple exporting and importing of toolsets as Asset
Packages(46).

The resultant toolset should be compatible with both 2D and 3D Unity scenes,
although testing will be done primarily with 3D scenes. Unity supports multiple
scripting languages, but C# will be used for all written code. The final package
will be compatible with any platform Unity is able to build projects for; any Unity
version newer than the one used (2021.3.11f1) should be fully compatible.

3.1.2 Git
Git as a versioning system will be used both as a method of backing up the work
in progress, as well as a means of distribution of the resultant package though
the university Gitlab(24). Unity asset packages are especially appropriate for this
as they can be installed with a single click, simply by pasting the git repository
URL.

3.1.3 Json.NET
Json.NET(31) is a C# JSON serializer and deserializer. This will be used to save the
state of the generated tile system between program sessions. JSON will also be
utilized for storing documentation tooltips.

39

3. Methodology

3.1.4 Reference System Specifications
As one of the goals of this work is to optimise for performance, it is necessary to
list the most relevant used system specifications. Specifications primarily related to
this goal are:

• OS — Windows 11 Version 22H2

• CPU — 12x AMD Ryzen 5 5600H

• memory — 16GB RAM DDR4

3.2 Generator Specifications
As lattice-based PCGs are inherently limited, focus will be on allowing a broad range
of usability, at least within the confines of the tile connectivity niche.

The following is a list of basic feature requirements for the generator.

1. Separate data definitions for tiles, tile borders, and tile grouping. The
definitions should optimally be usable for any conceivable scenario, and
should allow for different definitions of connectivity.

2. Support for multiple terrain layers.

3. Tile selection and elevation randomization using weights and smooth noise.

4. Sufficient conflict reduction.

5. A pathfinding algorithm allowing for any arbitrary definition of traversibility.

6. An editor for manual specification of tiles in the system and setting up data
definitions, pathfinding and other PCG settings.

7. Object pooling, e.g. loading/unloading of tiles’ in-game objects separately
from generation logic.

8. Serialization of the tile system state to a file and subsequent state recovery.

3.3 Research Questions
It is important to question and give focus to both finding and expanding the
computational and other limits of PCGs. This section is dedicated to defining several
metrics of success for various goals, with the intent of exploring how much is
actually possible.

40

3.3. ResearchQuestions

3.3.1 Run Time Performance
What are the limits of real-time generation?

One of the bigger research goals of this thesis is to find out just how much can be
done in real time¹⁹. In games, this refers to updating the tile system on-demand, and
fast enough to not fall behind or delay other parts of the game logic. On the other
hand, the “overhead” upon startup is not limited. At least one calculation cycle is
performed between each graphics update. Anything above cca. 20 milliseconds on
average (and 100 at most) between each graphics update will not be considered real
time.

This area of PCGs is not well explored for connectivity-based tile systems.
Dykeman’s work (see 2.3) shows that it is possible to generate connectivity-based
worlds in real time, including a good amount of conflict reduction; While
Grelsson(13) comes to the conclusion that for any more complex PCG it is very
hard to fit all calculations into a 20 ms window.

The PCG implemented will be optimised for a single thread. While this does not
utilize the full performance of the game engine, not using parallelization allows for
simpler and more straightforward code that is easier to understand, maintain, and
expand. Additionally, the Unity API is majorly not thread-safe.

3.3.2 Conflict Reduction
How to effectively reduce conflicts?

From a game design performance, a single conflict can have far-reaching
consequences, from breaking game logic, obstructing gameplay, to breaking
immersion. Conflicts should be avoided at almost any costs.

There are twomain scenarios: reducing conflicts with an entirely optimal load order,
and reducing conflicts with an entirely nonoptimal load order.

Although this is not possible to achieve completely, an effort will be made in
exploring ways of reducing conflicts, and, as a secondary goal, exploring ways of
mitigating the consequences of conflicts.

¹⁹Although different, the terms real time and run time will be used interchangeably, as whenever
the program calculates at run time, it is also required to calculate in real time.

41

3. Methodology

3.3.3 Flexibility
How many different problems does this tool help with?

Although not soundly defined, a focus will be on implementing features in such a
way as to be usable simultaneously in as many ways as possible.²⁰ Just allowing
usage in different manners is not enough; the primary metric of evaluation is total
time saved while developing a specific PCG.

In order to achieve this goal, emphasis is placed not only on the generator itself,
but also on UI usability, documentation, default settings, examples, and other
accessibility.

²⁰Without becoming one of those tools that requires only minimal configuration and tweaking.

42

ChapteR4
Generator Structure

A tile connectivity-based, run-time-based PCG has been developed to accomplish
the goals stated. This chapter details the implementation odds and ends, not in their
ideal state, but in a practical state. This is influenced by many factors, such as object
design, optimization, and Unity asset pack structure.

Several limitations of Unity, C# and other used tools are inevitably reflected in how
the resultant tool performs. These will also be detailed in this chapter.

4.1 Architecture
In order to accomplish a high degree of flexibility, the generator structure is
decentralised. The central logic is split into 8 base components, each derived
from Unity’s MonoBehaviour(47). Each also provides a given API-like set of
public methods to the other components, as well as overridable methods for
simple expansion. For the sake of decentralization and expandability, components
commonly pool their own data separately, leading to some redundancy.

Several other scripts are also present, and constitute either Unity Editor scripts (e.g.
UI), data definitions for tiles, or other data structures and related logic.

4.1.1 TileSystemBase System
Each of the 8 main components is derived from the abstract TileSystemBase class,
which is derived from Unity’s MonoBehaviour. This class provides easier access to
the other components and helps ensure all components are correctly loaded.

Most MonoBehaviour components, have an abstract base class defining basic (non-
overridable) behavior and all necessary abstract methods. TileManager is still
overridable but in a limited manner.

43

4. GeneRatoR StRuctuRe

4.1.2 Communication Between Components
This section shows more details from the generator structure. Each component will
be described in detail in the following sections.

Figure 4.1: Graph of interactions. Modules with sharp and round corners represent
classes derived from MonoBehaviour and editor scripts, respectively. Arrows lead from
interactors to interactees. Physical storage is displayed as a cylinder.

4.1.3 Unique Identifiers
Each part of the generating logic has to be able to operate with multiple instances
of content. This ranges from having multiple tile types to having multiple PCG
instances running simultaneously.

Where indexation is needed, a centrally and deterministically distributed 0-indexed
integer will be used as an identifier (e.g. tile type ID); Otherwise a user-defined
string will be used (e.g. generator name). In all cases, having multiple instances of
the same name will result in undefined behavior.

4.2 Interface Design
As a toolset, a user interface (UI) is needed to facilitate the project feature
usability. A program is only as good as its UI is. The usual UI design principles
apply: maximizing the learning rate, intuitiveness, responsiveness, accuracy, and
minimizing error rate.

44

4.2. Interface Design

4.2.1 Main UI Utilities
There are 4 distinct types of UI used in this implementation, each with different
design principles and use cases:

1. Unity inspector — Unity’s inspector allows for setting persistent default
values of object fields for each instance of a MonoBehaviour and
ScriptableObject, including setting references to other object instances, list
and array elements, etc. This is primarily used to set up initial component
settings.

2. Custom UI classes — what isn’t possible or isn’t effective in the inspector, will
be implemented as a custom Editor- or EditorWindow-derived class.

These use the same GUI framework as the inspector, but are displayed in
a separate window or as a separate part of the inspector. They are used
mainly to display data unconventionally or to allow for more complex data
visualization.

3. In-scene UI — two components, InitialState and TerrainMap, can display
their state directly in the scene using Unity’s Gizmo system or by instantiating
objects in edit time.

4. Context menu items — various context menu (i.e. right-click) lists can be
expanded. Creating new data structure instances and adding a PCG variant
to a scene is implemented in this way. For example, adding a tile system is
done by selecting one of several component combinations from the context
menu.

4.2.2 Other UI Utilities
A number of other improvements have been implemented, mainly aimed at
overcoming specific limitations in the inspector UI. The following are the most
prominent inspector-improving utilities implemented:

• ReadOnlyAttribute — makes a field non-editable.(17)

• SerializableDictionary — displays a Dictionary’s contents in the inspector as
a ReadOnly list.(6)

Other minor details that could also be considered UI, like error messages, will not
be explained further in this work.

45

4. GeneRatoR StRuctuRe

Figure 4.2: Example of standard and custom inspector UI

Figure 4.3: Example of Gizmo-based GUI

46

ChapteR5
Tile Management

This chapter details the components and data structures related to tile
management.

5.1 Tile Data Structures
Anumber of classes facilitating various data structures have been implemented. The
core of tile structure consists of TileData and BorderData.

Figure 5.1: Tile data structures. Arrows represent has-a relations.

5.1.1 Coords
To allow for serialization of coordinates, a new Coords class is used instead of
Unity’sVector2Int. This also allows formore optionswith operator and constructor
overloading, and custom JSON operations. For convenience, the two fields of this
class are called x, z instead of Unity’s x, y.

5.1.2 BorderData
BorderData is a ScriptableObject(47) with definitions of reusable tile border
information, e.g. every piece of information, that is common to each border of the
same type. This means that each border type should correspond to one instance of
this class. Instances can be created and configured in the editor.

47

5. Tile Management

The data contained consists of a unique string identifier, pathfinding data, and a
connectivity definition.

Connectivity is defined as a list of compatible BorderData entries, with weights
from 0 to 1. The border is compatible with all listed borders. A weight of zero
represents a soft zero, while a non-existent value represents a hard zero (as described
in 2.4.3). A serialization override can modify these lists to keep the connectivity
graph they represent symmetric.

While the list is initialized with a single reference to the object it is in (e.g. standard
Wang-like connectivity), it can be changed to anything. A notable use case is having
a pair of borders that are mutually connective, but not self-connective.

Figure 5.2: A tile set with 5 tiles and 3 apparent border types: blue, brown, and
transitions. This is a simplification of a lake-ground terrain system.

Figure 5.3: An example of a valid configuration of tiles given 3 border types; all borders
shown are compatible.

To fix the obvious error, a separate type of border can be defined for (in clockwise
order) blue-to-brown and brown-to-blue transitions. These should be compatible
with one another, but shouldn’t allow for compatibility with a border of the same
type.

5.1.3 BorderInstance
ABorderInstance constitutes of aBorderData reference, as well as data, that is not
reusable between all borders of the same type. Notably relativeElevation, which
is reserved for terrain generation. Elevation denotes how high the edge of a tile is

48

5.1. Tile Data Structures

above its center. This adds a layer of connectivity restrictions, as a tile must fit with
both border types and border elevations.

5.1.4 VerticalBorderInstance
Essentially equivalent to BorderInstance, but denotes a Vector3 offset to the main
tile instead of an elevation.

5.1.5 TileData
TileData is a ScriptableObject and can represent either a standalone tile type,
or a tile layer type. It defines all data reusable between all tiles of the same type,
notably:

• id — a unique²¹, deterministic identifying value assigned at start time. This is
crucial for precalculation in the Oracle and tile serialization.

• gameObject — a prefab to be placed in the game world upon generating the
given tile.

• weight – the tile weight expressed as a value between 0 and 1.

• borders, verticalBorder — a list of BorderDataInstance, with one border
for each side of the tile, and one VerticalBorderInstance for defining
compatibility with layer tiles. All tiles should have the same amount of
borders.²² Borders should not be null, instead a border compatible with
nothing should be defined.

• currentElevation — the elevation the tile should be placed at. One tile
variation is generated for each value between minElevation and
maxElevation. For example, a tile representing the sea should only have
one elevation.

• currentRotation — a rotation denominating how many times the tile has
been rotated by one unit clockwise. This is proportional to the final rotation
of the gameObject when instantiated. Ranges from 0 to uniqueRotations.
One TileData variant is generated for each of these rotations.

• uniqueRotations — the number of unique rotations for a given tile. This
is assigned manually to allow specification of single-rotation tiles with any
borders. If a tile has k unique rotations, then rotations 0 to k − 1 are unique
(see proof in section 5.1.5.1).

²¹Unique within each layer only.
²²Although this is a not-always-useful limitation, it is also rooted in technical limitations.

Circumventing this could lead to some interesting options, like square-octagon tilings.

49

5. Tile Management

Crucially, two TileData instances with different rotations or different elevations
are considered different. Therefore, from one specified TileData, a large amount of
different tiles may be pre-generated.

5.1.5.1 Obtaining Every Unique Rotation
If a tile has k unique rotations, then rotations 0 to k − 1 are unique.

Proof. Let T be a tile with n sides and k unique rotations. This means that the
sequence of border types repeats every n

k sides, i.e. rotating the tile k times yields
the same sequence of borders.

Therefore there is a repeating pattern with n
(n
k
) = k elements. This means that

elements i and i+ lk, l ∈ Z are not mutually unique.

Thus any set of more than k neighboring rotations has just as many unique rotations
as a set of k neighboring rotations.

The set of n (e.g. all) neighboring rotations has k unique rotations, thus a set of
neighboring k rotations also has k unique rotations. Rotations 0 to k− 1 are thus a
set of k unique rotations.

5.1.6 TileInstance
TileInstance instances are exclusively auto-generated and represent a single
generated tile, including:

• coords — a Coords instance denoting where the tile was placed.

• mainTileData — a reference to the so-called “main layer” tile; that is, the
basic layer as described in section 2.2.2.7.

• layerTileData — an array of TileData, one for each additional layer.

5.1.7 Layer
In the context of this PCG tool, a Layer will refer to a set of all tiles (and variations
thereof) that are part of the same terrain layer — whether the main layer or one of
the additional layers. A Layer effectively behaves like a list.

5.1.8 Group
A tile Group contains primarily a list of tiles. This is another data structure used
to help organize TileData instances in the Unity inspector. Its primary purpose
is to facilitate data exchange between TileManager and TerrainMap components,
explained in the subsequent sections.

50

5.2. TileManager

5.2 TileManager
TileManager encapsulates a dictionary of previously generated TileInstance
instances, in effect constituting an object pool²³. This is unavoidably the centerpiece,
and thus a limitation, to almost all other components’ functioning.

It also enforces load order in synchronization-critical components. The
TileManager, while not disallowing inheritance, doesn’t have an abstract defining
class; this is one of the core limitations of this system.

Most inspector-based configuration will take place in the confines of this
component. This includes tile Group instances and terrain layers.

Additionally, the TileManager creates and handles tile loading requests, both
by retrieving tiles from storage and by interacting with the Oracle component.
Tile load requests are enqueued for each new position as defined by TileMap.
Tile unload requests for tiles that are too far just deactivate the corresponding
GameObject instances in the scene.

This makes the PCG inherently generate on-demand with all the drawbacks
associated (tiles are never “generated in advance”, and tile load order is harder to
optimise.

In order to prevent “lag spikes”, tile generation requests are added to a queue and
there is a configurable cap on how many can be processed per frame.

5.2.1 OptimalOrderTileManager
As discussed in section 2.2.2.6, the load order can be optimised in a number of
different ways. An example implementation of an optimal load order system is
presented in this override of TileManager functionality. It is only compatible with
4-sided tilings.

Tiles are loaded in a spiral order(23); this is only effective for some tile shapes, most
notably square. A request for loading any tile is processed by first checking for the
previous tiles in the spiral and generating them if not present.

Unlike many conflict prevention methods, this system can prevent conflicts
completely in square tile sets with more than t2 tiles, where t is the number of
border types, as no matter the situation, a compatible tile will always exist.

²³Object pooling is simply the fact that no generated information is being forgotten. A generated
tile can never be un-generated.

51

5. Tile Management

5.3 TileMap
The TileMap is an abstract class defining spatial and logical tile ordering with 6
abstract methods:

• GetPositionOfCoords(), which converts Coords into a Vector3 of the tile
position in the local space within the given scene.

• GetNearestTileCoords() is, in effect, inverse to GetPositionOfCoords().

• GetElevationOfTile(), calculating a tile’s actual y position based on its
elevation.

• GetLocalTileRotation(), by default zero, but can return any degree of
horizontal rotation. For example, a triangle tile system will have tiles at
different rotations.

• GetNeighboringPositions() returns a dictionary with keys being integer
directions²⁴ from the tile and values being Coords of each neighboring tile.

• OppositeSide() finds, for a neighboring tile in some direction, the direction
of the tile from the neighboring tile.

These 6 methods are enough to define any single-shape tile system. The remaining
logic is common to any tile system, and includes linear transformations and Unity
interactions.

The component also keeps track of currently loaded tiles and provides methods for
tile loading and unloading.

Two basic tile orderings have been implemented, although more are possible.

5.3.1 RectangleTileMap
RectangleTileMap has a configurable tile size using a 2D vector in the inspector.
Calculations in rectangular logic are particularly simple, as demonstrated in the
below code snippet.

1 protected over r ide Vector3 GetPositionOfCoords (Coords coords)
2 {
3 Vector2 pos = coords * t i l e S i z e ;
4 return new Vector3 (pos . x , 0 , pos . y) ;
5 }

²⁴Direction 0 is toward -z; directions increment clockwise. A tile’s n-th border is toward the n-th
direction and rotating a tile n times will make former border 0 face direction n.

52

5.4. TileSaver and TileStats

5.3.2 HexagonalTileMap
Unlike RectangleTileMap, this component only supports regular hexagons. The
positioning for a hexagon tile is a bit more complicated as axial coordinates need to
be converted to a Cartesian coordinate system(16):

1 protected over r ide Vector3 GetPositionOfCoords (Coords coords)
2 {
3 f l o a t x = Mathf . Sqrt (3) * t i l e S i z e * (coords . z / 2 f + coords . x) ;
4 f l o a t y = 3 f / 2 f * t i l e S i z e * coords . z ;
5 return new Vector3 (x , 0 , y) ;
6 }

5.4 TileSaver and TileStats
These two components have a lot of common logic in that they both use
Json.NET(31) to save and load data to a permanent memory by serializing a list of
TileInstance instances.

JSON is not ideal for what should be stored as binary data. Its main advantage lies
in its readability and flexibility towards changes in stored data.

5.4.1 TileSaver
TileSaver is invoked once upon start time, where it loads all tiles to the memory and
“feeds” them one-by-one to theTileManager. It also updates the Oracle through the
OnTileGenerated()method, to ensure the state of theOracle is consistentwith how
it was in the previous run time.

An example save file for a world consisting of a single tile with an ID of 3 could look
like this:

1 [
2 {”pos” : {”x” : 0 , ”z” : 0 } , ” id ” : 3 , ” e l ev ” : 0} ,
3]

5.4.2 TileStats
This component keeps track of generated tile statistics, including tile type
frequencies, conflict count, and elapsed time. These can be and are used in tile
generation.

5.5 InitialState
The goal of the InitialState is to pool data about a preferred initial state for some
tiles in the generated world. This is useful in a variety of game design situations,
such as having borders to a game map.

53

5. Tile Management

Most of this component’s functionality is based off having an Editor UI script to
service it. This component encapsulates several dictionaries of relevant data and
provides an API-like access for UI scripts.

Like TileSaver, tiles defined in this component are guaranteed to appear in the
scene as if they were placed before any other tiles.

In the scene, a Gizmo is shown for each coordinate. The gizmo changes color based
on whether it is selected, and if there is an initial state set for it. If an initial tile is
set, the entire tile is instantiated and displayed at the position.

5.5.1 TilePickerWindow
This UI script services an entire new editor window. It is the only singleton in this
project, which means that for multiple tile systems, it switches contexts each time
a different tile system is interacted with.

This is done through another script,TileManagerEditor in turn servicing this script
by pre-processing Unity event data for the TilePickerWindow.

The window allows to select a coordinate either by clicking on a Gizmo in the scene
view, or by manually inputting the coordinates. A number of selecting toggles are
available to set a preferred initial tile group or tile.

54

ChapteR 6
Tile Generation

This chapter details the components and data structures related to tile generation.
Novel concepts are explained side-by-side with implementation descriptions.

6.1 Oracle
The simplest possible definition for an Oracle is just a function that outputs a tile
type given a set of tile types and a coordinate request, and outputs which tile type
should be placed at those coordinates.²⁵

Oracle is perhaps the single most complicated component. For this reason, its
internal logic was split into several independent abstract methods, which are then
overridden in multiple inherited components, each of which can be used as a base
class with different combinations of overriding possibilities.

Two methods are central to the Oracle’s operation:

• GenerateTileAtCoords() — selects a tile to be generated based on a variety
of factors. Returns a new TileInstance instance.

• OnTileGenerated() — called after a tile is generated, which happens in
exactly two cases: the previous method was called, or a tile was loaded from
storage. This method typically contains conflict reduction calculations.

6.1.1 Oracle Base Class
The base class, Oracle operates both at edit time and run time.

²⁵In more poetic words, the Oracle knows the future

55

6. Tile GeneRation

In edit time, it precalculates mutual border compatibility of tiles within one layer
and tiles from different layers.²⁶. This behavior can be overriden.

In run time, its operation is based upon a dictionary of TileData and their calculated
weights. In each step of the calculation, the weights of each tile represent how likely
it is to be placed at the given coordinate. Weights are typically from 0 (soft zero) to 1.
Hard zero values can be achieved by removing the tile from the dictionary entirely.
Each tile present is called a candidate.

The default calculations include modifying the tiles’ initial weight based on several
simple factors, such as tile frequency compensation, InitialState values, and
TerrainMap values. All of these are described in the next sections.

Upon the conclusion of these calculations, the following outcomes are
possible:

• A tile has infinite weight — then the tile is automatically selected.²⁷

• Multiple tiles with nonzero weights are left — a random one is chosen with a
probability proportional to its weight.

• Multiple tiles are left, but with zero weights — a random one is chosen with
equal probabilities.

• No tile is left — this signalises a conflict. Conflict solving policy is dedicated
to an abstract method, which is also overriden in StandardOracle.

The Oracle also defines a few helper methods aimed mainly at separating the
precalculated data structures from direct access.

6.1.2 BasicConnectivityOracle
The simplest possible Oracle simply iterates over the list of candidates and decreases
weights of values based on their compatibility with all present neighbors. The
following is a reference implementation of this functionality.

1 protected over r ide Dictionary<TileData , f l oa t> Se l ec tRe l evantTi l e s (
Dictionary<TileData , f l oa t> candidates , Coords coords)

2 {
3 return candidates . MultiplyWeights (GetCompatibi l i t iesForLayer (

ti leManager . mainLayerTileList , coords)) ;
4 }

²⁶Also referred to as intra-layer compatibility and inter-layer compatibility.
²⁷Having multiple infinite weight tiles results in undefined behavior.

56

6.1. Oracle

GetCompatibilitiesForLayer() automatically removes all hard-zero values, and
multiplication using the MultiplyWeights() extension method only returns values
for common keys.

In fact, the above described is enough to avoid all conflicts for complete tile
sets. Unfortunately, the only advantage of such approach is its low computational
cost.

This approach is used to generate non-main tile layers regardless of the main tile
generation.

6.1.3 AC3ConnectivityOracle
The AC-3 based Oracle represents the metaphorical pinnacle of this work.

The algorithm it is based on, AC-3²⁸, is based off keeping track of the possible state
space for each coordinate.

6.1.3.1 State space navigation
Conceptually, as an CSP algorithm, AC-3 operates by navigating the state space of
the system. In this case, it is 3D (2D lattice, 1D list of tile choices)²⁹.

As it is impossible to represent the entire plane in data, the state space is represented
as a vector of values for each coordinate — and coordinates’ vectors are loaded
into a dictionary lazily, e.g. on-demand. This vector of values is called a
Possibility.³⁰.

Primarily, operations with possibilities use Boolean logic. States are either allowed
(don’t lead to a conflict) or disallowed (lead to a conflict), although fuzzy logic
calculations are also possible.³¹

The goal of any derived conflict reduction algorithm is to remove as many values
as possible from this vector. Placing a tile, for example, will lead to a “collapse” in
the corresponding coordinate’s vector, with only one value remaining positive: the
one of the tile placed.

The more values culled, the better; except of course those, that don’t lead to
conflicts.

²⁸Introduced in 2.3.2.3.
²⁹Here lies the real reason tile layers do not have advanced conflict reduction; the state space

would be 4D and thus as much slower in calculations.
³⁰A Possibility, well, shows what is possible.
³¹Allowing for fuzzy logic calculations leads to several interesting changes in the system’s behavior.

This is further discussed in the evaluation.

57

6. Tile GeneRation

6.1.3.2 AC-3
After any value is removed from any coordinate’s Possibility, the tile is enqueued
in a queue representing all changed state space vectors.

Each neighbor’s every value is checked, if at least one value from the changed
Possibility supports it. “Support” is defined for any combination of two tiles simply
as their mutual compatibility.

If an option is not supported by the neighboring Possibility, it is removed from the
vector, and also enqueued.

AC-3 creates new Possibility instances during its operation. Some of these
instances can be directly initialized with some values marked as unsupported even
before a tile is placed on their coordinates. This happens when the InitialState has
a preferred state for the coordinates. As some values are newly unsupported, the
just added Possibility is also enqueued.

6.1.3.3 AC-3 iteration limit
As AC-3 iterations can cause a “chain reaction” without limits, arbitrary limits
are enforced — the distance from the first processed element, and the number of
iterations per tile placed.

Worst-case scenario, the number of iterations is proportional to the distance cutoff
squared times the number of tile types (e.g. each iteration removes only one
option).

For most tile sets though, the minimum distance two tiles can be apart is quite low.
In the ocean-mountain example, this is at most 2 for any two tiles. The largest
minimum distance for any two tiles corresponds to the distance a typical AC-3
iteration will reach. Tiles further away will almost always have a Possibility that
consists of only positive values.

In other words, tiles further away will almost always have all options available. In
his work, Dykeman calls this effect sphere of influence of a tile.(9)

Thus for many tile sets, the limits are not relevant and serve more of a “failsafe”
purpose.³² The distance and iteration cutoff have default values of 10 and 100,
respectively. Reaching the cutoff limits during a computation will result in less
effective conflict reduction.

³²Although if the limit is set too low, it is possible that the preferred initial state will not be
propagated correctly.

58

6.2. TerrainMap

A special case is terrain with many different height levels, for which the sphere of
influence is directly proportional to the number of height levels. Due to terrain
volatility, setting the radius too low can and will result in conflicts; these conflicts
will often spread in a chain reaction-like manner.³³

6.1.4 StandardOracle
The standard oracle provides standard logic for connectivity precalculation and
conflict processing.

Conflicts are resolved by choosing a tile that is compatible with as many neighbors
as possible.

6.1.5 Further Oracle Possibilities
Bar certain structural limitations, the Oracle system is designed to allow for further
expansions in a simple manner. This includes:

• Connecting with Pathfinding to make terrain that is always traversable.

• Heuristic conflict reduction, further culling some options in an approach
based on utilising the remaining inter-frame downtime.³⁴

• Different logic for connectivity, tile weight compensation, and conflict
solving.

6.2 TerrainMap
A component closely related to the InitialState and Oracle, TerrainMap adds an
additional level of structure to the PCG. Being yet another abstract component, it
provides the base logic for its task.

It has two main tasks: choosing an optimal tile group for each coordinates, and
choosing an optimal tile elevation.³⁵

For example, the already mentioned ocean-mountain terrain world could be split
into areas belonging to one of two tile Group instances:

• Ocean — big, interconnected areas with zero elevation differences.

• Mountains — smaller, disjoint areas with a rugged height profile.

³³Interestingly, this problem can be almost entirely avoided by setting the tile load distance to less
than the radius.

³⁴A MCTS-like approach could be used by pretending to place random tiles and seeing how often
different options lead to conflicts.

³⁵The name is a bit unfortunate, but had to stay for a lack of a better one.

59

6. Tile GeneRation

In other words, each tile group should have configurable sizes and other parameters
for procedural generation. For single group tile sets, only the elevation profile is
relevant.

6.2.1 GroupSettings
Each tile Group has an automatically generated GroupSettings instance, editable
in the inspector. This means, that a different set of parameters can be passed to the
TerrainMap for each Group. The class is derived from ScriptableObject and can
be overriden to enable custom settings.³⁶

6.2.2 GUI
An array of spherical Gizmos is displayed in the scene view for each coordinate.
Each Gizmo has a color unique to the group that should be placed there, and
an elevation corresponding to the calculated optimal tile elevation placed. A
screenshot of this behavior can be seen in figure 4.3.

Colors are by default distributed using an 1D variation of Fibonacci hashing across
a state space of HSV colors. Fibonacci hashing selects such a value from a range,
that is furthest from all already selected values.(37) This is employed for selecting
the hue; for any amount of groups, an almost-optimal set of hues will always be
preselected.³⁷

The color for each group can always be selected manually.

6.2.3 BasicTerrainMap
For 1-3 layer systems, the BasicTerrainMap alongside the BasicGroupSettings
may be used. The settings class doesn’t allow setting any parameters outside the
group’s Gizmo color. The height map itself has two parameters, one for area size
and one for “hill” size.

The functionality is based off sampling scaled Perlin noise(36) and discretizing it to
obtain a preferred tile group. For elevation, an offset Perlin noise is amplified and
sampled.

³⁶The initialization method can be overriden if specific initialization is needed.
³⁷A small variation in color darkness (value) is also added to hopefully aid with colorblind usage.

60

6.2. TerrainMap

Figure 6.1: A group size scale of 9 (left) and 2 (right).

6.2.4 BiomeTerrainMap
This component offers a more usable amount of abstraction for terrain generation.
Perlin noise sampling is wrapped in several algorithms, allowing more “humanly
understandable” values to be used as input. While this may, and will, still lead
to unexpected behavior, it is much simpler to “get a feel” for what the variables
correspond to.

In this system, the concept of biomes is used. The first part of the calculation consists
of splitting the world into various areas, assigning each one its own customised
height map. In this case, each biome has its own Perlin map variation, and for each
coordinate, the one which has the largest value wins.

The second part of the calculation aims to smooth out the transitions between
biomes’ height maps. This is done by sampling the height of near coordinates and
averaging the results. This process is called blending.

6.2.4.1 Biome Border Blending
Blending has been implemented as a weighted average of the height values of
several coordinates in a limited configurable radius. A value contributes to the
average if it is of a different biome than the central coordinate. Theweight decreases
linearly with distance from the center.

Blending through all tiles in a radius is computationally expensive, and scales
square-proportionally with the given radius. This led to two optimizations: a cache
for already computed intermediate values, and a “fast blending” option, which
only selects a linear amount of tiles in any given radius, on behalf of blending
accuracy.

61

6. Tile GeneRation

Simple stress testing showed the maximum radius with a reasonable calculation
time to be around 10 with fast blending. The default is set to 2.

6.2.4.2 BiomeGroupSettings
The GroupSettings has been overriden to provide 5 different input variables, two
for biomes and three for height maps:

• size — roughly corresponds to each biome’s size. Works well when paired
with biomes of similar size.

• frequency — how often the biome appears.

• middle elevation — the average height of the biome.

• height spread — maximum tile height in a given biome.

• ruggedness — regulates steepness of terrain which in turn dictates hill shape.

Figure 6.2: Ocean-mountain demonstration of BiomeTerrainMap

6.2.5 Further TerrainMap Possibilities
It is important to note that the above two examples are just rudimentary proof-of-
concepts. There is no system that encapsulates all, or even many, options that are
available for terrain generation. These can be arbitrarily complex. Examples include
Minecraft’s(29) 5D state space navigation (Three dimensions, plus two for humidity
and temperature of biomes). Even then they can be unsuitable for use outside of
niche applications.

62

6.3. Random Generation

This component was designed to be used in many different ways, but requires prior
customization by the developer. A versatile UI, some helper methods, and an API-
like access system does precisely that.

Even in the case of BiomeTerrainMap, there are a number of things that could be
improved³⁸; but still, these aren’t improvements for every use case. The proof-of-
concept shown here is a starting point. This is just the start of the figurative path,
leading to vast, unexplored, unmappable areas.

6.3 Random Generation
This section offers a complete walkthough though the process of generating a single
tile. The main purpose of this section is to show the mechanics that were omitted
in previous chapters and to put them into perspective. Most of this logic is part of
the Oracle.

6.3.1 Start Time
Some calculations are conducted in advance. This ismainly done for tile type variant
generation and compatibility precalculation, including tile elevation profiles. All
saved tile data is loaded into memory.

6.3.2 Candidate Initialization
When the reference point moves to “uncharted” territory, a new tile generation
request is created and enqueued.

The process upon dequeuing starts with a dictionary of candidate (TileData) and
weight pairs. The weight is equal to the given tile’s initial weight, divided by the
number of unique rotations it has.

6.3.3 Weight Compensations
There is one other major weight compensation, notably tile frequency
compensation. If a tile is placed disproportionately often compared to its weight,
its weight is modified to negate this effect.

For a tile t ∈ C , the set of all candidates, pideal = weight(t)∑
c∈C weight(c) is the ideal, or

expected frequency of the tile, and preal = count(t)∑
c∈C count(c) is the actual frequency.

The compensated weight is thus w = weight(t) · pideal
preal

While this is effective at offsetting typical statistical outliers, it won’t be able to
compensate for massively unbalanced tile sets. In fact, compensation pushing for an

³⁸As in: multi-tiered Perlin noise, river biomes, 3D biomes, fuzzy biome selection, custom
transitions, …

63

6. Tile GeneRation

unrepresented tile type to have a higher frequency may result in other tiles having
less opportunities to be placed.³⁹ This behaviour is further explained in chapter
9.

Figure 6.3: An unbalanced tile set. All tiles have equal weight.

Figure 6.4: Without compensation, some tiles appear much more often than others.

Compensation meadow tiles border tiles city tiles
ideal 33.3% 33.3% 33.3%
none 19.0% 74.6% 6.4%

rotation 49.3% 48.4% 2.3%
rotation and frequency 17.2% 74.5% 8.3%

Table 6.1: Compensation mechanic results for a sample size of 100489 tiles

6.3.4 InitialState and TerrainMap
Tiles that have a preferred tile state in the InitialState component are automatically
selected, and the generation skips everything until layer selection.

Tiles without a preferred initial state will behave according to the TerrainMap.
Tiles of different groups than the selected one have their weights set to a soft
zero.

³⁹In the extreme example of fig. 6.3, it is almost impossible to reach a balance, as more city
tiles result in more border tiles, offsetting the balance. The tipping point (achievable with weights
around 0.05, 0.05, 1) is very unstable and leads to a combination of normal meadows and gigantic
city formations.

64

6.3. Random Generation

Tiles of different heights have their weights decreased exponentially for each unity
of height difference they have towards the heightmap. This does notmean, however,
that the generated tiles will closely match the preferred state.⁴⁰

6.3.5 Connectivity
Tile candidates, which are deemed incompatible, typically due to leading to a
conflict, are discarded (hard zero). From the remaining candidates, a single tile is
chosen by weighted probability. If no tiles remain, the state is conflicted and the
most suitable, albeit incompatible tile is chosen.

6.3.6 Layers
After a tile is generated, a layer tile is generated for each layer. The process is
simpler, consisting only of weight compensations and simple connectivity-based
culling. In case of a conflict, the most suitable tile is chosen as discussed in the
previous section

6.3.7 Finalization
The tile choice is then sent to the TileInstance constructor. Typically the tile is then
activated on the tile map by instantiating its GameObject. TileStats statistics are
updated, and

Figure 6.5: Example maze world generated in this system.

⁴⁰For example, setting any height map for a system of flat tiles will still result in a flat tiling.

65

ChapteR7
Pathfinding

Pathfinding has been implemented as a separate component; it provides several pre-
made settings for terrain navigation calculations, as well as an overridable method
for defining any other settings.

The centerpiece of this component is the GetPath() method, which returns a
list of traversed coordinates on the shortest path from one coordinate point to
another.

7.1 A* Algorithm
To calculate the shortest path, a standard A* “greedy best-first” algorithm(35) is
used.

The main calculation loop of A* pathfinding iterates over a priority queue of
potential shortest path candidates. Every iteration, the highest priority candidate is
taken: if it ends at the goal, it is selected as the shortest path; else, all valid moves
are added to the candidate’s path and enqueued.

The candidate’s priority⁴¹ is calculated as a sum of the candidate path length and a
heuristic function.(49)

Since the priority is organized so that paths with low sums of lengths and heuristic
values (e.g. estimated remaining lengths) are investigated first, the algorithm will
usually quickly locate the shortest path.

If no path was found, an empty list will be returned as the result.

⁴¹Priority is “more important” the lower its value is.

67

7. Pathfinding

7.2 Parameters

• maximumSteps defines the maximum number of iterations of the A*
algorithm before the search is given up.

• maxHeightUp, maxHeightDown — specifies the maximum height offset of
two neighboring tiles that is still considered traversable. Defaults to +1 and
-1.

• nonGeneratedIsTraversable — if and only if true, tiles that haven’t yet been
generated are considered passable. This is useful for ensuring generated
terrain is traversable.

Additionally, each tile border defines if it is traversable while moving in and out
from the tile.

7.2.1 A* Iteration Limit
The maximumSteps default was chosen to be 1000 based on a simple stress test.
The test was conducted within the Unity editor, meaning actual use cases will
run faster. Both memory time complexity appear to be quadratic; this aligns with
theory, as in 2D space, each iteration consists of a linearly increasing number of
operations.⁴²

iterations average time (s)
1000 0.20
2000 1.0
3000 2.2
4000 4.1
7000 11
10000 24

Table 7.1: Calculation time for number of iterations.

7.3 Heuristics
In simple terms, a heuristic function estimates the length of the remaining path from
the goal⁴³. Different tile sets will have different useful heuristics; consequently, the
heuristic function in the Pathfinding module can be overridden.

The default heuristic function simply computes the distance between current
coordinates and those of the target:

⁴²For one iteration, a linear amount of queue elements is processed, each in constant time.
⁴³This estimate should always underestimate the real distance. Overestimating functions are not

guaranteed to find the shortest path, but can run faster.(49)

68

7.4. VisualPathfinder

1 protected v i r t ua l f l o a t Heur i s t i c (Coords current_pos , Coords
goal_pos)

2 {
3 return (current_pos - goal_pos) . manhattanDistance ;
4 }

7.4 VisualPathfinder
VisualPathfinder is amodule that allows setting new tasks and viewing pathfinding
results in the inspector, as well as visualising them in the game world.

Figure 7.1: A shortest path with a length 75, navigating through a maze. This was
calculated in 950 iterations.

69

ChapteR 8
Usage

The reference implementation of this work has been published in a publicly
accessible Git repository.(24) Installation is best donewith Unity’s PackageManager
tool.

The package structure complies with unity guidelines(44) for better orientation. It
is described in appendix B.

8.1 Basic Workflow
One of 12 basic setups can be placed directly within a scene through the hierarchy
context menu. TileData and BorderData can be created using the project context
menu.

Most of the work needed to transform a set of tile 3D objects into a functioning PCG
then consists of inspector-based editing.

Default values should be usable for most cases, as described in several approximate
performance trials in the previous chapters. Non-default values can always be set
in the inspector. Every displayed input setting has a tooltip explaining it. Data
validation is performed for complex inputs, warning messages are utilized if a
discrepancy occurs.

For use cases requiring more customization, code is set up to allow for simple
derived classes. For example, any standard biome/height map generator can be
adapted for use by the TerrainMap, using a derived class as a wrapper.

All classes, overridable methods, public methods, and some private methods are
documented using XML documentation.(28) Less intuitive code has comments
attached.

71

8. Usage

8.2 Example Usages
The package is bundled together with several samples. These serve both as
demonstrations of the project and as reference use cases for better familiarization.
Additionally, a quick guide can be found in the README file.

These include:

• Carcassonne — an example containing complete tile sets based on the popular
Carcassone board game is implemented for both square and hexagonal tiles.

• ContourLines — example usage of conflict reduction (see figure 2.9) and an
initial state.

• TerrainHeight — a sample showcasing terrain elevation.

• Maze — a scene showcasing pathfinding and layers.

• MountainLakes — a sample showcasing biomes in a 2D setting.

Figure 8.1: A hexagonal variant of the Carcassonne scene

8.2.1 Example Game Prototype
ParcourGame is a first-person 3D platformer game prototype designed to showcase
features of the PCG. The game has minimal backstory and graphical design, but is
playable, meaning it has a complete enough set of game mechanics.

The playing field is a strip of procedurally generated obstacles, with new tiles
generating in one direction, and old ones unloading in the other; the player has
to navigate across the obstacles without falling off or staying too far behind, as
falling off yields death. The generation rate increases linearly with time, as does the
player’s maneuverability.

72

8.3. Generic Use Cases

Figure 8.2: A third-person view of the world generated in the game prototype.

Some of the showcased features include:

• connectivity — tile’s edges are of three different types, ensuring no gap is too
large.

• tile elevation — there is added difficulty in some tiles being generated
progressively higher and thus being harder to reach. This uses a slightly
modified tile height system.

• reference point — the reference point for generation is not set to the player’s
location, but rather moves on its own.

8.3 Generic Use Cases
For a toolset as generic as this one, the ideal state is to allow any tile connectivity-
based generator to be built upon it, with or without the need to create derived
classes. In other words, the goal is to minimise development time for custom
generators on this basis.

In practice, any tool is limited in its scope. Current limitations are described in
chapter 9. The following are various possible use cases:

• 2D biome generation

• hilly terrain generation

• room-based worlds (mazes, dungeons)

• procedural texture generation

• board generation for desktop game adaptations

73

ChapteR 9
Evaluation

This chapter is both a retrospection and a look ahead.

All stated generator specifications (See 3.2) have been implemented. Some
additional features are also present.

Specifications 2 (layers) and 6 (initial state) still leave a lot of room for improvement,
but their current implementations are sufficient for basic use.

9.1 Research Question Evaluation
9.1.1 Run Time Performance
What are the limits of real time generation?

This was one of the most tricky limitations to this work, requiring constant thought
throughout each phase of the implementation process.

Twomost notable optimizations have each led to about an order of magnitude better
performance: rewriting Possibility and some other data structures to operate on
lower-level code, and adding queues (buffers) to various components to even out
uneven loads.

Although several other optimizations were added, the generation is still at its limits
in terms of real-time usage, both in the editor and in run time.

Some features, and especially feature combinations, are barely usable in real time.
Often multiple different components approach the real-time limitations in different
manners:

• It is not possible to load more than ∼ 100 tiles per second, even for the
simplest tile sets.

75

9. Evaluation

• For tile sets of above ∼ 150 tiles its is barely possible to fit one generation
request into a whole frame. AC-3 will use up more calculation time than
allowed for a single frame for spheres of influence with a radius of about 20.

Further optimizations face diminishing returns. Even if optimizations were
applied to address one aspect, other critical areas would remain constraining
factors. To conclude, this type of generation is largely not suitable for real-time
applications.

9.1.2 Conflict Reduction
How to effectively reduce conflicts?

Implementing AC-3 was a success in this regard; although its limitations still
prevail: there is no option for fuzzy logic, including soft zeroes. Layer conflicts
are not significantly avoided, leading to a narrower range of usability. But the main
constraint remains: real-time performance.

Expanding the already extensive calculations could lead to further hindering of the
defined performance goal, but is possible. Not being able to avoid conflicts for a
concave tile generation order is the main downside of the current Oracle.

Overall, the conflict reduction provided is suitable for most use cases.

9.1.3 Flexibility
How many different problems does this tool help with?

A wide range of features is present in the implementation. All features are usable
and can be used in combination with each other. Components offer a ready-to-use
base implementation that can be further expanded by the developer depending on
the use case.

A lot of the flexibility is based off the versatile data definitions, especially the border
connectivity relation, and the decentralization of logic into semi-independent
calculations.

In terms of usability, the least developed part of this implementation is the
InitialState UI. Setting up an initial state is tedious and the visualisation is
rudimentary.

9.2 Limitations
Other limitations include:

• Pathfinding cannot generate tiles when navigating through unknown terrain.

76

9.3. Future Additions

• Tiles cannot be unset (removed). This leads to a more static world than
generally desirable. The decision to omit this feature lies in the Oracle’s state;
Reversing a tile placement operation can be very hard to implement properly
as to not lead to an undefined state.

• The initial state editor UI is limited in its usability as it cannot modify multiple
tiles simultaneously.

• Tile generation requests are not entirely optimised, and can lead to
inconsistent performance.

9.2.1 Tile Predicting
Perhaps the largest limitation can be seen in figure 2.3: The Oracle isn’t capable
of predicting which tiles will lead to the preferred tiles being compatible at their
positions. E.g. on group area transitions, this leads to border tiles being placed
randomly until the correct tile group happens to be compatible.

This is a limitation that is entirely unmitigated. There is almost no relevant theory
to base any mitigations on. Dykeman’s generator(9), operating on a finite area, uses
random initial tile placement and multiple iterations to smooth out a result. Setting
and resetting tiles multiple times is common. In this PCG, tile unsetting is neither
possible, nor favourable for an on-demand generation focus.

9.3 Future Additions
Expansions possible to the reference implementation include:

• Tile layer conflict reduction.

• Tile load order optimization.

• Dynamic worlds — tile setting, unsetting, modification.

• Advanced edit time state setting.

• Integration of further constraints into generation (e.g. semantic)

77

Conclusion

The purpose of this thesis was to explore the options in real-time procedural
generation of tile-based content, and, more importantly, implement these in an
exemplary toolset.

Several existing solutions were examined and discussed, and a set of relevant
concepts was put together and expanded up to the limits of contemporary
research. Current research in connectivity-based procedural generation is not very
expansive — each work exploring what is possible in this area can still be called a
pioneering one.

Concrete implementation goals, such as terrain layers, usage of smooth noise,
pathfinding, state serialization, and initial state setting, were all accomplished. Their
implementation is often basic, but is also robust, flexible and expandable. The
implementation showcases what is possible in tile connectivity-based generation
even with real-time limitations.

The overarching goal for the implementation part of this project was (as with any
PCG in fact) to simplify the process of creating various formal systems. Although
significant, satisfactory and novel progress has taken place in the development of
such a PCG, there are still limitations in place, mostly of a structural kind.

Quite obvious from the evaluation in the previous chapter is a final, largest caveat of
this work: the scope was too wide. Many features are too different to be reasonably
coexisting, especially with a restrictive limitation of real-time performance.⁴⁴ This
leads to the PCG system losing meaning, the above explained tile predicting being
a prime example.

⁴⁴In other words: flexibility at the expense of functionality is at the expense of flexibility.

79

Conclusion

Of course, this could be fixed with additional logic. Perhaps an extension to
Oracle that optimizes load order, and can simulate future situations and evaluate
which tiles are best to place. This would necessarily require several further
optimizations.

But perhaps it is a better idea to stop this string of research here. Perhaps instead
of constant feature additions, it is time to think of feature subtractions.

Not trying to force together terrain and connectivity, on-demand loading and
predictivity, giant tile sets and real-time restrictions — but rather focusing on one
or a few of the features mentioned in this thesis and expanding upon them. There
are so many just barely explored possibilities.

Like concluded in 2.3.2.5, limiting variety gives the system meaning.

80

Sources

1. ACAEUM.COM. D&D Basic Set [online]. [visited on 2023-01-17]. Available
from: https://www.acaeum.com/ddindexes/setpages/basic.html.

2. AMANDINE ENTERTAINMENT. Ultimate Terrains [Unity asset pack]. [N.d.].
[visited on 2023-01-15]. Available from: https : / / assetstore . unity . com /
packages/tools/terrain/ultimate-terrains-voxel-terrain-engine-31100.

3. BANDAI NAMCO ENTERTAINMENT. Pac-Man [online]. [visited on 2023-01-
17]. Available from: https://pacman.com.

4. BLOODRIZER. Kittens Game [online]. [visited on 2023-01-17]. Available from:
https://kittensgame.com.

5. BOLLER, Sharon. Learning Game Design: Game Mechanics [online]. [visited on
2023-01-17]. Available from: http://www.theknowledgeguru.com/learning-
game-design-mechanics/.

6. CHRISTOPHFRANKE123. How to serialize Dictionary with Unity Serialization
System [online]. 2014. [visited on 2023-05-21]. Available from: http://answers.
unity.com/answers/809221/view.html.

7. COLLINS, Karen. An Introduction to Procedural Music in Video Games.
Contemporary Music Review. 2009, vol. 28, no. 1, pp. 5–15. Available from doi:
10.1080/07494460802663983.

8. CR31.CO.UK. Wang tile definition [online]. [visited on 2023-01-15]. Available
from: http://www.cr31.co.uk/stagecast/wang/intro.html.

9. DYKEMAN, Isaac. Procedural Worlds from Simple Tiles [online]. 2017. [visited
on 2023-01-15]. Available from: https://ijdykeman.github.io/ml/2017/10/
12/wang-tile-procedural-generation.html.

81

https://www.acaeum.com/ddindexes/setpages/basic.html
https://assetstore.unity.com/packages/tools/terrain/ultimate-terrains-voxel-terrain-engine-31100
https://assetstore.unity.com/packages/tools/terrain/ultimate-terrains-voxel-terrain-engine-31100
https://pacman.com
https://kittensgame.com
http://www.theknowledgeguru.com/learning-game-design-mechanics/
http://www.theknowledgeguru.com/learning-game-design-mechanics/
http://answers.unity.com/answers/809221/view.html
http://answers.unity.com/answers/809221/view.html
https://doi.org/10.1080/07494460802663983
http://www.cr31.co.uk/stagecast/wang/intro.html
https://ijdykeman.github.io/ml/2017/10/12/wang-tile-procedural-generation.html
https://ijdykeman.github.io/ml/2017/10/12/wang-tile-procedural-generation.html

SouRces

10. ELECTRONICARTS. SimCity [online]. [visited on 2023-01-15]. Available from:
https://www.ea.com/games/simcity/simcity.

11. FIDE. FIDE LAWS of CHESS [online]. [N.d.]. [visited on 2023-01-15]. Available
from: https://www.fide.com/FIDE/handbook/LawsOfChess.pdf.

12. GIANT SPARROW. What Remains of Edith Finch [online]. 2017. [visited on
2023-01-17]. Available from: https : / / store . steampowered . com / app /
501300/What_Remains_of_Edith_Finch/.

13. GRELSSON, David. Tile Based Procedural Terrain Generation in Real-Time. In:
2014.

14. HAMKINS, Joel David. Conjecture on NP-completeness of tessellation of Wang
Tile up to finite size [MathOverflow]. [N.d.]. Available from eprint: https://
mathoverflow.net/q/157714. (version: 2014-02-16).

15. HELLO GAMES. No Man’s Sky [online]. [visited on 2023-01-17]. Available
from: https://www.nomanssky.com/.

16. ISAAC. Hexagonal Grid Coordinates To Pixel Coordinates [Stack Overflow].
2010. [visited on 2023-01-20]. Available from: https://stackoverflow.com/
a/2459541/6123979.

17. IT3RATION. How to make a readonly property in the inspector? [online]. 2014.
[visited on 2023-05-21]. Available from: http://answers.unity.com/answers/
801283/view.html.

18. JOHNSON, Curt. Microsoft Minesweeper [online]. [visited on 2023-01-15].
Available from: https : / / www . microsoft . com / en - us / p / microsoft -
minesweeper/9wzdncrfhwcn.

19. JUNGMING SUH Han Zhang, Zian Wang. Procedural generating of plants
models using L-system [online]. [N.d.] [visited on 2023-01-20]. Available from:
https : / / hanzh015 . github . io / Procedural _ generating _ of _ plants _
models_using_L_system.pdf.

20. KOSTER, Ralph. A theory of fun for game design [online]. Scottsdale, 2004
[visited on 2023-01-15]. isbn 978-1449363215. Available from: https://www.
theoryoffun.com/.

21. LAGAE, Ares; KARI, Jarkko; DUTRÉ, Philip. Aperiodic Sets of Square Tiles
with Colored Corners. 2006.

22. LEYTON-BROWN, Kevin. CSPs: Arc Consistency [online]. 2010. [visited on
2023-01-15]. Available from: https://www.cs.ubc.ca/~kevinlb/teaching/
cs322%5C%20-%5C%202008-9/Lectures/CSP3.pdf.

82

https://www.ea.com/games/simcity/simcity
https://www.fide.com/FIDE/handbook/LawsOfChess.pdf
https://store.steampowered.com/app/501300/What_Remains_of_Edith_Finch/
https://store.steampowered.com/app/501300/What_Remains_of_Edith_Finch/
https://mathoverflow.net/q/157714
https://mathoverflow.net/q/157714
https://www.nomanssky.com/
https://stackoverflow.com/a/2459541/6123979
https://stackoverflow.com/a/2459541/6123979
http://answers.unity.com/answers/801283/view.html
http://answers.unity.com/answers/801283/view.html
https://www.microsoft.com/en-us/p/microsoft-minesweeper/9wzdncrfhwcn
https://www.microsoft.com/en-us/p/microsoft-minesweeper/9wzdncrfhwcn
https://hanzh015.github.io/Procedural_generating_of_plants_models_using_L_system.pdf
https://hanzh015.github.io/Procedural_generating_of_plants_models_using_L_system.pdf
https://www.theoryoffun.com/
https://www.theoryoffun.com/
https://www.cs.ubc.ca/~kevinlb/teaching/cs322%5C%20-%5C%202008-9/Lectures/CSP3.pdf
https://www.cs.ubc.ca/~kevinlb/teaching/cs322%5C%20-%5C%202008-9/Lectures/CSP3.pdf

Sources

23. LHF. On a two dimensional grid is there a formula I can use to spiral coordinates
in an outward pattern? [Mathematics Stack Exchange]. [N.d.]. Available from
eprint: https://math.stackexchange.com/q/163101. (version: 2012-06-26).

24. LÍBAL, Rudolf. Tile-based procedural generation [online]. [visited on 2023-01-
17]. Available from: https://gitlab.fel.cvut.cz/libalrud/proj-pcg.

25. LINDEN, Roland; LOPES, R.; BIDARRA, Rafael. Designing procedurally
generated levels. In: [online]. 2013, pp. 41–47 [visited on 2023-01-15].
Available from: https://www.researchgate.net/publication/288320122_
Designing_procedurally_generated_levels.

26. LUKKARILA, Ville. The 4-way deterministic tiling problem is undecidable.
Theoretical Computer Science. 2009, vol. 410, no. 16, pp. 1516–1533. issn 0304-
3975. Available from doi: https://doi.org/10.1016/j.tcs.2008.12.006. Theory
and Applications of Tiling.

27. MAUNG, David. Tile-based Method for Procedural Content Generation [online].
2016. [visited on 2023-01-15]. Available from: https : / / etd . ohiolink . edu /
apexprod / rws _ etd / send _ file / send ? accession = osu1461077485 &
disposition=inline. PhD thesis. The Ohio State University.

28. MICROSOFT CORPORATION. Documentation comments [online]. Microsoft
Corporation, 2023. [visited on 2023-05-23]. Available from: https : / / learn .
microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/.

29. MOJANG. Minecraft [online]. [visited on 2023-01-17]. Available from: https:
//minecraft.net.

30. MONCKTON, Christopher. Eternity II Instruction booklet [Internet Archive
WaybackMachine]. 2007. Archived on: 2007-10-06, URL: https://web.archive.
org/web/20071006033127/http://uk.eternityii.com/Download.ashx?id=
19934.

31. NEWTONSOFT. Json.NET [online]. [visited on 2023-01-17]. Available from:
https://www.newtonsoft.com/json.

32. NYKAMP, Duane. State space definition [online]. Math insights. [visited on
2023-01-15]. Available from: https ://mathinsight .org/definition/state_
space.

33. OEIS FOUNDATION INC. The On-Line Encyclopedia of Integer Sequences. 2023.
Published electronically at http://oeis.org.

34. OPENTTD DEVELOPMENT TEAM. OpenTTD: An open-source transportation
simulation game [https://openttd.org/]. [N.d.]. [visited on 2023-01-20].

83

https://math.stackexchange.com/q/163101
https://gitlab.fel.cvut.cz/libalrud/proj-pcg
https://www.researchgate.net/publication/288320122_Designing_procedurally_generated_levels
https://www.researchgate.net/publication/288320122_Designing_procedurally_generated_levels
https://doi.org/https://doi.org/10.1016/j.tcs.2008.12.006
https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1461077485&disposition=inline
https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1461077485&disposition=inline
https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=osu1461077485&disposition=inline
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/xmldoc/
https://minecraft.net
https://minecraft.net
https://web.archive.org/web/20071006033127/http://uk.eternityii.com/Download.ashx?id=19934
https://web.archive.org/web/20071006033127/http://uk.eternityii.com/Download.ashx?id=19934
https://web.archive.org/web/20071006033127/http://uk.eternityii.com/Download.ashx?id=19934
https://www.newtonsoft.com/json
https://mathinsight.org/definition/state_space
https://mathinsight.org/definition/state_space
http://oeis.org

SouRces

35. PATEL, Amit. Introduction to A* [online]. [visited on 2023-01-19]. Available
from: https : / / theory . stanford . edu / ~amitp / GameProgramming /
AStarComparison.html.

36. PERLIN, Ken.Making Noise [Archived onWeb Archive]. 1999. [visited on 2023-
01-15]. Available from: https://web.archive.org/web/20071011035810/
http://noisemachine.com/talk1/.

37. PREISS, Bruno R. Fibonacci Hashing [Archived onWeb Archive]. 2004. [visited
on 2023-01-15]. Available from: https://web.archive.org/web/20130515024
557/http://brpreiss.com/books/opus4/html/page214.html.

38. ROBINSON, Raphael M. Undecidability and nonperiodicity for tilings of the
plane. Inventiones mathematicae. 1971, vol. 12, pp. 177–209.

39. SMITH, Gillian. An Analog History of Procedural Content Generation [online].
[visited on 2023-01-17]. Available from: http://www.fdg2015.org/papers/
fdg2015_paper_19.pdf.

40. TANYA SHORT, Tarn Adams (ed.). Procedural generation in Game Design.
Taylor & Francis, 2017. Available also from: https://www.taylorfrancis.com/
books/edit/10.1201/9781315156378/procedural-generation-game-design-
tanya-short-tarn-adams.

41. TEUBER, Klaus. Catan [Board game]. 1995. Available also from: https://www.
catan.com/understand-catan/game-rules.

42. THE TETRIS COMPANY. Tetris [online]. [visited on 2023-01-17]. Available
from: https://tetris.com/.

43. TUPPER, Jeff. Reliable Two-Dimensional Graphing Methods for Mathematical
Formulae with Two Free Variables. 2001. Available also from: http://www.
dgp.toronto.edu/~mooncake/papers/SIGGRAPH2001_Tupper.pdf.

44. UNITY TECHNOLOGIES. Package layout [online]. [visited on 2023-01-20].
Available from: https://docs.unity3d.com/Manual/cus-layout.html.

45. UNITY TECHNOLOGIES. Unity [online]. [visited on 2023-01-17]. Available
from: https://unity.com/.

46. UNITY TECHNOLOGIES. Unity Asset Packages [online]. [visited on 2023-01-
17]. Available from: https : / / docs . unity3d . com / 560 / Documentation /
Manual/AssetPackages.html.

47. UNITY TECHNOLOGIES. Unity Documentation [online]. [visited on 2023-05-
05]. Available from: https://docs.unity3d.com/2021.3/Documentation/
Manual/index.html.

84

https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://theory.stanford.edu/~amitp/GameProgramming/AStarComparison.html
https://web.archive.org/web/20071011035810/http://noisemachine.com/talk1/
https://web.archive.org/web/20071011035810/http://noisemachine.com/talk1/
https://web.archive.org/web/20130515024557/http://brpreiss.com/books/opus4/html/page214.html
https://web.archive.org/web/20130515024557/http://brpreiss.com/books/opus4/html/page214.html
http://www.fdg2015.org/papers/fdg2015_paper_19.pdf
http://www.fdg2015.org/papers/fdg2015_paper_19.pdf
https://www.taylorfrancis.com/books/edit/10.1201/9781315156378/procedural-generation-game-design-tanya-short-tarn-adams
https://www.taylorfrancis.com/books/edit/10.1201/9781315156378/procedural-generation-game-design-tanya-short-tarn-adams
https://www.taylorfrancis.com/books/edit/10.1201/9781315156378/procedural-generation-game-design-tanya-short-tarn-adams
https://www.catan.com/understand-catan/game-rules
https://www.catan.com/understand-catan/game-rules
https://tetris.com/
http://www.dgp.toronto.edu/~mooncake/papers/SIGGRAPH2001_Tupper.pdf
http://www.dgp.toronto.edu/~mooncake/papers/SIGGRAPH2001_Tupper.pdf
https://docs.unity3d.com/Manual/cus-layout.html
https://unity.com/
https://docs.unity3d.com/560/Documentation/Manual/AssetPackages.html
https://docs.unity3d.com/560/Documentation/Manual/AssetPackages.html
https://docs.unity3d.com/2021.3/Documentation/Manual/index.html
https://docs.unity3d.com/2021.3/Documentation/Manual/index.html

Sources

48. VILIAM LISÝ, Branislav Bošanský. Constraint Satisfaction Programming and
Scheduling [online]. [N.d.]. [visited on 2023-05-14]. Available from: https://
cw.fel.cvut.cz/wiki/_media/courses/zui/slides-l9-2023.pdf.

49. VILIAM LISÝ, Branislav Bošanský. Informed (Heuristic) Search [online]. [N.d.].
[visited on 2023-01-19]. Available from: https : / / cw . fel . cvut . cz / b212 /
_media/courses/zui/slides-l3-2022.pdf.

50. WILD CARD. Dwarf Quest [online]. [visited on 2023-01-15]. Available from:
https://www.gamersgate.com/product/dwarf-quest/.

51. WREDE, Klaus-Jürgen. Carcassonne [Board game]. 2000. [visited on 2023-01-
15]. Available from: https://images.zmangames.com/filer_public/d5/20/
d5208d61- 8583- 478b- a06d- b49fc9cd7aaa/zm7810_carcassonne_rules.
pdf.

85

https://cw.fel.cvut.cz/wiki/_media/courses/zui/slides-l9-2023.pdf
https://cw.fel.cvut.cz/wiki/_media/courses/zui/slides-l9-2023.pdf
https://cw.fel.cvut.cz/b212/_media/courses/zui/slides-l3-2022.pdf
https://cw.fel.cvut.cz/b212/_media/courses/zui/slides-l3-2022.pdf
https://www.gamersgate.com/product/dwarf-quest/
https://images.zmangames.com/filer_public/d5/20/d5208d61-8583-478b-a06d-b49fc9cd7aaa/zm7810_carcassonne_rules.pdf
https://images.zmangames.com/filer_public/d5/20/d5208d61-8583-478b-a06d-b49fc9cd7aaa/zm7810_carcassonne_rules.pdf
https://images.zmangames.com/filer_public/d5/20/d5208d61-8583-478b-a06d-b49fc9cd7aaa/zm7810_carcassonne_rules.pdf

AppendixA
List of abbreviations used

(n)D n-dimensional (e.g. 2-dimensional)

AC-3 Arc Consistency 3

API application programming interface

BFS breadth first search

CPU central processing unit

CSP constraint satisfaction problem

GPU graphics processing unit

(G)UI (graphical) user interface

ID identifier

JSON JavaScript object notation

NP-complete nondeterministic polynomial-time complete

PCG procedural content generator (noun), or procedural content generation (verb)

URL uniform resource locator

87

AppendixB
Unity asset package structure

This is an overview of the created Unity asset package structure. Some files have
been omitted for brevity.

proj-pcg
package.json
README.md
CHANGELOG.md
LICENSE.md
Third Party Notices.md
Editor

Resources
Scripts

Runtime
Scripts

Samples
Carcassonne

Square
Hexagonal

ContourLines
Maze
Biomes
TerrainHeight

89

AppendixC
Contents of included CD

The implementation included is identical in structure to the one available at Gitlab
(https://gitlab.fel.cvut.cz/libalrud/proj-pcg).

root
thesis.pdf . This thesis as a PDF
proj-pcg .The implementation as a Unity package
screenshots .A collection of screenshots
game prototype.zip. .A playable game prototype

91

https://gitlab.fel.cvut.cz/libalrud/proj-pcg

AppendixD
Installation

D.1 Installation with Unity Package Manager
In Unity, open the ”Package Manager” tab (Window -> Package Manager).
Select + -> Add package from Git URL.... Paste the Gitlab repository
URL (https://gitlab.fel.cvut.cz/libalrud/proj-pcg.git). Unity will do the rest
automatically.

D.2 Installation from CD
In Unity, open the ”Package Manager” tab (Window -> Package Manager). Select
+ -> Add package from disk....

A file explorer will open. Navigate to the CD’s proj-pcg directory, and select the
package.json file inside. Unity will do the rest.

D.3 Sample usage
One of Unity’s limitations is the inability to load read-only scenes. Package contents
are hard-coded to be read-only. To view, edit, or use a sample scene, copy it into
your project.

93

https://gitlab.fel.cvut.cz/libalrud/proj-pcg.git

	Introduction
	Overview

	Tile-based systems
	Prologue: Of Games And Formal Systems
	Procedural Content Generation
	Tiles
	Tile Ordering
	Connectivity
	Conflicts
	Run Time Generation
	Determinism

	Existing Solutions
	Linden, Lopes & Bidarra, 2013
	Maung, 2016
	Dykeman, 2017
	Further Concept Definitions
	Summary

	Methodology
	Technology used
	Generator Specifications
	Research Questions

	Generator Structure
	Architecture
	Interface Design

	Tile Management
	Tile Data Structures
	TileManager
	TileMap
	TileSaver and TileStats
	InitialState

	Tile Generation
	Oracle
	TerrainMap
	Random Generation

	Pathfinding
	A* Algorithm
	Parameters
	Heuristics
	VisualPathfinder

	Usage
	Basic Workflow
	Example Usages
	Generic Use Cases

	Evaluation
	Research Question Evaluation
	Limitations
	Future Additions

	Conclusion
	Sources
	List of abbreviations used
	Unity asset package structure
	Contents of included CD
	Installation
	Installation with Unity Package Manager
	Installation from CD
	Sample usage

	09b75020-96a8-4dfa-9093-1be1a846a875.pdf
	Introduction
	Overview

	Tile-based systems
	Prologue: Of Games And Formal Systems
	Procedural Content Generation
	Tiles
	Tile Ordering
	Connectivity
	Conflicts
	Run Time Generation
	Determinism

	Existing Solutions
	Linden, Lopes & Bidarra, 2013
	Maung, 2016
	Dykeman, 2017
	Further Concept Definitions
	Summary

	Methodology
	Technology used
	Generator Specifications
	Research Questions

	Generator Structure
	Architecture
	Interface Design

	Tile Management
	Tile Data Structures
	TileManager
	TileMap
	TileSaver and TileStats
	InitialState

	Tile Generation
	Oracle
	TerrainMap
	Random Generation

	Pathfinding
	A* Algorithm
	Parameters
	Heuristics
	VisualPathfinder

	Usage
	Basic Workflow
	Example Usages
	Generic Use Cases

	Evaluation
	Research Question Evaluation
	Limitations
	Future Additions

	Conclusion
	Sources
	List of abbreviations used
	Unity asset package structure
	Contents of included CD
	Installation
	Installation with Unity Package Manager
	Installation from CD
	Sample usage

	09b75020-96a8-4dfa-9093-1be1a846a875.pdf
	Introduction
	Overview

	Tile-based systems
	Prologue: Of Games And Formal Systems
	Procedural Content Generation
	Tiles
	Tile Ordering
	Connectivity
	Conflicts
	Run Time Generation
	Determinism

	Existing Solutions
	Linden, Lopes & Bidarra, 2013
	Maung, 2016
	Dykeman, 2017
	Further Concept Definitions
	Summary

	Methodology
	Technology used
	Generator Specifications
	Research Questions

	Generator Structure
	Architecture
	Interface Design

	Tile Management
	Tile Data Structures
	TileManager
	TileMap
	TileSaver and TileStats
	InitialState

	Tile Generation
	Oracle
	TerrainMap
	Random Generation

	Pathfinding
	A* Algorithm
	Parameters
	Heuristics
	VisualPathfinder

	Usage
	Basic Workflow
	Example Usages
	Generic Use Cases

	Evaluation
	Research Question Evaluation
	Limitations
	Future Additions

	Conclusion
	Sources
	List of abbreviations used
	Unity asset package structure
	Contents of included CD
	Installation
	Installation with Unity Package Manager
	Installation from CD
	Sample usage

	09b75020-96a8-4dfa-9093-1be1a846a875.pdf
	Introduction
	Overview

	Tile-based systems
	Prologue: Of Games And Formal Systems
	Procedural Content Generation
	Tiles
	Tile Ordering
	Connectivity
	Conflicts
	Run Time Generation
	Determinism

	Existing Solutions
	Linden, Lopes & Bidarra, 2013
	Maung, 2016
	Dykeman, 2017
	Further Concept Definitions
	Summary

	Methodology
	Technology used
	Generator Specifications
	Research Questions

	Generator Structure
	Architecture
	Interface Design

	Tile Management
	Tile Data Structures
	TileManager
	TileMap
	TileSaver and TileStats
	InitialState

	Tile Generation
	Oracle
	TerrainMap
	Random Generation

	Pathfinding
	A* Algorithm
	Parameters
	Heuristics
	VisualPathfinder

	Usage
	Basic Workflow
	Example Usages
	Generic Use Cases

	Evaluation
	Research Question Evaluation
	Limitations
	Future Additions

	Conclusion
	Sources
	List of abbreviations used
	Unity asset package structure
	Contents of included CD
	Installation
	Installation with Unity Package Manager
	Installation from CD
	Sample usage

