Bachelor Project

Czech

Technical
University
in Prague

F 3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Simulation of artificial inteligence for games

Matéj Gargula

Supervisor: doc. Ing. Jifi Bittner, Ph.D.
May 2023



ii



EvuT ZADANI BAKALARSKE PRACE

CESKE VYSOKE
UCENIi TECHNICKE
V PRAZE

I. OSOBNI A STUDIJNi UDAJE

4 R
PFijmeni: Gargula Jméno: Matéj Osobni Cislo: 492145

Fakulta/Ustav: Fakulta elektrotechnicka
Zadavajici katedra/Gstav: Katedra pocitacové grafiky a interakce

Studijni program: Oteviena informatika

Specializace: Pocitacové hry a grafika
k J
Il. UDAJE K BAKALARSKE PRACI
\
Nazev bakalarské prace:
Simulace herni umélé inteligence
Nazev bakalafské prace anglicky:
Simulating artificial inteligence in games
Pokyny pro vypracovani:
Zmapujte metody pro simulovani umélé inteligence postav v pocitacovych hrach. Soustfedte se na metody vhodné pro
tvorbu modell schopnych reagovat na aktualni stav hry, které zaroven poskytuji konzistentni vysledky, jako jsou napfiklad
stromy chovani (behavior trees).
Implementujte nastroje pro vytvareni modelu umélé inteligence postav a jeji nasledné vyhodnocovani v hernim enginu
Unity. Pro implementaci vyuzijte Ul Toolkit a soustfedte se na intuitivni vytvareni modelu, jeho snadnou modifikaci,
znovupouziti a vizualizaci vyhodnocovani modelu. Pomoci implementovanych nastroja vytvofte knihovnu nejméné péti
Casto se opakujicich modeld chovani nehracéskych postav. Vytvofenou knihovnu vyuzijte ve vlastnim hernim projektu,
ktery bude jasné demonstrovat rizné konkrétni modely chovani umélych postav.
Seznam doporucené literatury:
[1] lan Millington, John Funge. Atrtificial Intelligence for Games, 2nd edition. CRCR Press, 2009.
[2] Colledanchise, M., & Ogren, P. (2018). Behavior trees in robotics and Al: An introduction. CRC Press.
[3] Colledanchise, M., Parasuraman, R., & Ogren, P. (2018). Learning of behavior trees for autonomous agents. IEEE
Transactions on Games, 11(2), 183-189.
[4] Marcotte, R., & Hamilton, H. J. (2017). Behavior trees for modelling artificial intelligence in games: A tutorial. The
Computer Games Journal, 6(3), 171-184.
[5] Sekhavat, Y. A. (2017). Behavior trees for computer games. International Journal on Artificial Intelligence Tools, 26(02),
1730001.
Jméno a pracovisté vedouci(ho) bakalarské prace:
doc. Ing. Jifi Bittner, Ph.D. Katedra pocitacové grafiky a interakce
Jméno a pracovisté druhé(ho) vedouci(ho) nebo konzultanta(ky) bakalarské prace:
Datum zadani bakalafské prace: 17.02.2023 Termin odevzdani bakalarské prace: 26.05.2023
Platnost zadani bakalarské prace: 22.09.2024
doc. Ing. Jifi Bittner, Ph.D. podpis vedouci(ho) ustavu/katedry prof. Mgr. Petr Pata, Ph.D.
podpis vedouci(ho) prace podpis dékana(ky)
- J

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



ll. PREVZETi ZADANI

Student bere na védomi, Ze je povinen vypracovat bakalafskou praci samostatné, bez cizi pomoci, s vyjimkou poskytnutych konzultaci.
Seznam pouZzité literatury, jinych prament a jmen konzultantd je tfeba uvést v bakalarské praci.

Datum pfevzeti zadani Podpis studenta

CVUT-CZ-ZBP-2015.1 © CVUT v Praze, Design: CVUT v Praze, VIC



Acknowledgements

I would like to thank my friends for pro-
viding me with their time for needed dis-
traction. I would also like to thank my
family and girlfriend for their mental sup-
port. Most of all, I would like to thank
my supervisor, doc. Ing. Jif{ Bittner,
Ph.D., for enabling me to work on a video
game-related topic for my project and for
pointing me in the right direction when
needed.

Declaration

I hereby declare that this project repre-
sents my own work, and I have cited all
the used literature and sources I have used.

Prague, May 22, 2023



Abstract

Almost every game today contains some
sort of artificial intelligence simulation.
One of the most popular is the simula-
tion of artificial intelligence for non-player
characters. These simulations are about
creating algorithms that can make the
characters appear human-like or animal-
like. My project is focused on researching
the possible techniques used to simulate
the decision-making process of the non-
player characters and implementing one
of these techniques to create an artificial
intelligence decision-making system in the
Unity engine.

Keywords: NPC, Al simulation,
behavior trees, Al decision-making, video
games, Unity

Supervisor: doc. Ing. Jif{i Bittner,
Ph.D.

Praha 2,

Karlovo ndmésti,

E-421

vi

Abstrakt

Témeér kazda dnesni hra obsahuje néjaky
druh simulace umélé inteligence. Jednou z
nejpouzivanéjsich je simulace umélé inteli-
gence nehrac¢skych postav. Tyto simulace
jsou o vytvareni algoritmi, diky nimz mo-
hou tyto postavy ptisobit jako lidé nebo
jako zvitata. Muj projekt se zaméruje na
zmapovani moznych zptisobu pouzivanych
k simulaci rozhodovaciho procesu nehrac-
skych postav a na implementaci jedné z
téchto technik k vytvoreni systému rozho-
dovani umélé inteligence v enginu Unity.

Klicova slova: NPC, Al simulace,
stromy chovani, Al rozhodovaci procesy,
video hry, Unity

Preklad nazvu: Simulace herni umélé

inteligence



Contents

1 Introduction 1
1.1 Non-player Character ..........
1.2 Important Games in History of
Game AT .......................
1.3 Aim of this thesis.............. 3
2 Decision Making Techniques 5|
2.1 Decision Trees................. 5

2.1.1 Structure of Decision Trees... [l
2.1.2 Advantages and Disadvantages

of Decision Trees ............... 6]
2.1.3 The Algorithm of Decision Trees
2.2 State Machines ................ [7]
2.2.1 Structure of State Machines .. [7]
2.2.2 State Machine Algorithm . ...
2.2.3 Advantages and Disadvantages
of State Machines .............. 8
2.2.4 Hierarchical State Machines .. [9
2.3 Behavior Trees ...............
2.3.1 Types of Tasks in a Basic
Behavior Tree ................. [11]

2.3.2 Common Types of Decorators
2.3.3 Structure of Behavior Trees . [22

2.3.4 Blackboards . ..............
3 Behavior Trees in Unity 25|
3.1 Scriptable Objects ............
3.2 Behavior Tree Asset...........

3.2.1 Blackboard . ............... 26
3.3Task Nodes ..................

3.3.1 Composite Nodes ..........

3.3.2 Action Nodes . ............. 28

3.3.3 Decorator Nodes . .......... [31]

3.3.4 Sub-tree Node . ............ 32|

3.35Root Node ................ 133
3.4 Behavior Tree Agent ..........
4 Behavior Tree Editor
4.1 UI Toolkit ................... 135
4.2 Custom Editor ............... 136/
4.3 Blackboard View .............
5 Results 43
5.1 Camera movement ............ 43|
5.2 Characters Agents ............

5.2.1 Health manager............

5.2.2 Character Actions and

Conditions. ................... 45|

5.2.3 Common Behavior .........

vii

5.2.4 Character behavior types ...
5.3 Party Controllers .............

6 Optimization and Performance
Tests

6.1 Optimazation ................
6.2 Performance Test .............

7 Conclusion
7.1 What Was Achieved ..........
7.2 Possible Improvements ........

Bibliography



Figures
2.1 Decision making schematic
2.2 Decision tree example...........
2.3 State machine example. ........
2.4 Basic state machine example with
alarm behavior
2.5 Hierarchical state machine example
with alarm behavior.............
2.6 The structure of a selector task. [14]
2.7 The structure of a sequence task.

2.8 The structure of a parallel task.

2.9 The example of a simple behavior
tree. ... 22|

2.10 Behavior tree with Blackboard
communication. ................ 23

3.1 Class diagram of the behavior tree
asset. 20
3.2 Implemetation of the sequence task

node.. ... 28
3.3 Example of implementation of the

attack action task node. ......... 29|
3.4 Example of implementation of the

move action task node. .......... [30]
3.5 Example of implementation of the

condition close to task node. ..... [31]
3.6 Example of implementation of the

sub-tree task node...............
4.1 Example of a UI toolkit graph

VIEW oo
4.2 Behavior tree editor. .......... 137
4.3 Behavior tree editor with a

sub-tree view visible. ............ 138

4.4 Behavior tree editor during runtime
with a selected in-game agent. . . ..
4.5 Blackboard view. .............

S|

5.1 Screenshot from the demo game.
5.2 Class diagram of implemented
character components. ...........
5.3 Select Target behavior tree. . ...
5.4 Approach Target behavior tree. .

5.5 Attack Target behavior tree. ...
5.6 Check for Danger behavior tree.
5.7 Flee from Danger behavior tree.
5.8 Patrol behavior tree. .......... 53]

viii

5.9 Controlled Patrol Movement

behavior tree. .................. 53l
5.10 Sword and shield character. ...
5.11 Behavior tree of the sword and

shield character. ................ 5%

5.12 Behavior tree of the two-handed
character. . ........... ... ... ....
5.13 Behavior tree of the two-handed

character....................... 56l
5.14 Behavior tree of the bow

character....................... 57
5.15 Behavior tree of the bow

character....................... 58]
5.16 Characters in a party. ........

5.17 Enemy party controller’s behavior

tree. ... 09
6.1 Behavior Tree coroutine update
method. ....................... 61]

6.2 Unity profiler showing CPU usage

during decision-making simulation
6.3 Performance test with 100

characters ..................... 63l
6.4 Performance test with 1000

characters .....................

6.5 Profiler screenshot from a test with
1000 characters



Tables

2.1 Return codes of basic task types

2.2 Return codes of common
composite tasks [2]. ....... ... ..

ix






Chapter 1

Introduction

Artificial intelligence (AI) is a branch of computer science that focuses on
developing algorithms and software that enable machines to perform tasks
normally requiring human-level intelligence. As defined in [I], AI refers to
the ability of computers to perform thinking tasks that humans and animals
are capable of.

In game development, Al simulation plays a vital role in creating realis-
tic and immersive game experiences. By implementing Al algorithms for
non-player characters (NPCs), game developers can create characters that
appear to behave like humans or animals. This can include NPCs that ex-
hibit intelligent decision-making, emotional responses, and natural movement
patterns.

Today almost every game contains some artificial intelligence simulation.
Each game might require a different approach. Games use artificial intelligence
commonly for [12]:

#® Non-player Opponents

Opponents should exhibit realistic attack behavior. This can include
decreasing or increasing the opponent’s aggression or retreating when a
big threat is located.

® Non-player Teammates

Non-player teammates should act in a coordinated, supportive manner.
This means that the Al teammate characters should be able to act in a
synchronized way with the player and not act as an obstacle.

® Support and Autonomous Characters
This may include things like generating realistic crowd behavior, which
can interact with players in a realistic manner.

® Commentary or Instruction

This includes systems that make sure the player can move through the
game world smoothly. An example of these systems can be determining
if the player is stuck and is in need of a hint on how to progress further.



1. Introduction

B 11 Non-player Character

Non-player character (NPC) [11] is any character or game object in a game
that is not directly controlled by a player. NPCs can be used to simulate ally
or enemy characters.

A good Al system for NPC simulations has a set of requirements [12]:

® Smart but not omniscient behavior

NPC should behave as a real human being would. This creates an
immersion for the player. When the AT starts to make decisions that
make no sense, the immersion starts to break.

The AT also should not cheat or have access to all information about the
game state. For example, Guards in a game should not be able to see
through walls.

® Consistency

The NPC should behave consistently to generate the impression that it
embodies a believable character. To do this, we want the NPC to act in
a controllable way. Unpredictable Al is difficult to work with. It also
helps during the debugging process. This is also why most games do not
use advanced Al techniques like machine learning for decision-making.

8 Effectivity

Games often use a large number of NPCs. Because of this, the Al must
be fast to handle multiple instances of NPCs.

® Fast Adaptability

NPC needs to adapt quickly to the game’s current state when the state
of the game changes, the NPC should be able to adapt.

. W) Important Games in History of Game Al

These are some of the games that have been important to the history of Al
in game development [I] [13] [14] [15]:

Pacman [Midway Games West Inc., 1979] was one of the first games with
a non-player character that started behaving like a thinking creature. This
was achieved by a simple Al technique: a state machine. At each junction,
the ghosts (enemies in the game) took a semi-random route, depending on
their current state. For example, if the ghosts were in chase mode, they would
try to choose a path leading to the player.

Goldeneye 007 [Rare Ltd., 1997] brought many improvements with the
same technique of using state machines with a small number of states for
each non-player character and adding a sense simulation system. Characters
would now also react to the changes in their environment. Characters could
see if some of their colleagues were missing or dead.

2



1.3. Aim of this thesis

Creatures [Cyberlife Technology Ltd., 1997] was one the first games to
have AI as the game’s main point. Creatures still have one of the most
complex Al systems seen in games. Each creature in the game had its neural
network-based brain to control it. But even with the highly complex systems
for AT simulation, the individual creatures would still be acting stupidly or
nonsensically.

Halo 2 [Bungie Software, 2004] was one of the first successful high-profile
games for which the behavior tree technique was described in detail. This
inspired other game developers to use them in their games as well.

F.E.A.R [Monolith Productions, 2005] was one of the first games to use
a Goal Oriented Action Planning (GOAP) AI. This first-person shooter
psychological horror game was able to simulate very believable human-like
actions, which resulted in a very immersive and memorable experience.

XCOM: Enemy Unknown [Firaxis Games, 2012] introduced the utility-
based decision-making system in game development. This system gave each
action a measure of "usefulness" to every possible action. With this system,
each NPC can select the most effective action based on various specified
factors such as the number of nearby enemies, distance to an objective, etc.

The Sims 4 [Maxis, 2014] is famous for its Al simulation. Like Creatures,
The Sims 4 has an Al simulation as one of the game’s main points. Each
character in the game can reach almost human-like behavior. Each character
in the game has particular needs and tries to satisfy them. The Al system
in the game weighs all potential results of each possible action to find a
new action most fit for the given situation. This creates a very believable
experience.

Red Dead Redemption 2 [Rockstar Games, 2018] utilized the behavior
tree technique and several other methods to improve overall Al decision-
making. The individual non-playable characters in this game each have
their own personality, with mood states, and are capable of remembering
and ‘experiencing’ past events to some extent. For example, if a player has
attacked a certain character. that character can next time behave differently
around the player.

. 1.3 Aim of this thesis

This thesis aims to conduct a research study on the various techniques used
to simulate the artificial intelligence of video game characters. The ultimate
objective of this study is to examine the underlying mechanisms of these
techniques and gain a deep understanding of their potential applications in
video game development.

One of the primary goals of this research study is to show the advantages
and disadvantages of the various techniques. Additionally, I will also analyze
the ability of these techniques to provide consistent and predictable results,
which is essential in creating immersive and engaging game experiences.

To provide a practical demonstration of how AI characters are simulated
in games, I plan to create an Al decision-making system in the Unity engine

3



1. Introduction

based on behavior trees (one of the discussed techniques). This decision-
making system will allow us to simulate the behavior of Al characters in a
game-like environment, providing valuable insights into how AI simulation
can be used in game development.

Furthermore, I also plan to develop an Al modeling tool that can be used
to create, edit, and visualize the behavior tree models used in the decision-
making system. This modeling tool will enable users to create and modify
complex Al models more easily.



Chapter 2

Decision Making Techniques

Decision-making refers to [12] intelligent selection of an action for the agent to
interact with the world. There are many different decision-making techniques,
but each work on a couple of the same principles. Each agent processes a set
of input data to generate the following defined action of the agent. Input
data is the internal knowledge a character can possess or external knowledge
the agent can acquire from the world, as seen in figure [1]. The generated
actions can then perform internal changes (changes concerning the agent) or
external changes (changes within the game world)

Internal
knowledge

Internal changes

Decision making Decision making
system system

External changes

External
knowledge

Figure 2.1: Decision making schematic

. 2.1 Decision Trees

Decision trees [I] are fast and easy to implement and understand. They
have directed trees representing a list of nested if-else clauses used to derive
decisions (i.e., produce a new action).

B 2.1.1 Structure of Decision Trees

Decision trees have two types of nodes. Non-leaf nodes or decision points
are described with a condition. Each decision point has two child nodes or



2. Decision Making Techniques

outcomes. Leaf nodes represent decisions, conclusions, or actions to be carried
out.

In figure 2.2, we see an example of non-player character behavior defined
by a decision tree. This example defines the behavior of a guard whose job is
to catch criminals. At the beginning of this decision tree, the guard runs a
test to determine if a criminal is visible. If the guard cannot see a criminal,
he continues patrolling around by selecting the "Patrol" leaf node. If he does
see a criminal, he proceeds to the next decision point. This decision point
calculates the distance to the criminal. The "Chase Criminal" leaf node is
selected if the criminal is more than a meter away. We continue to the last
decision point if the criminal is less than a meter away. In the last decision
point, the guard checks to see if the criminal has been arrested. If not, the
guard selects the "Arrest Criminal" node. Otherwise, he brings the criminal
to jail by selecting the "Go to Jail" node.

Is criminal visible?

No Yes
Is criminal > 1m away?
Patrol
No Yes
Is criminal
arrested? Chase
Criminal
No Yes
Arrest P
. Go to Jail
Criminal

Figure 2.2: Decision tree example.

B 2.1.2 Advantages and Disadvantages of Decision Trees

The technique of decision trees has its advantages and disadvantages [3] [1].

The main advantage of decision trees is their modularity. Meaning that
individual subtrees can be developed independently from the rest of the tree
and then added later where needed. They are also easy to implement and
offer good readability because of the hierarchical structure.

The main disadvantage is the mapping between the input and output of a
decision point, which means that any small change in the input can make a
big difference in the output of the decision. Because of that, the decision tree
never has a consistent inner state. This is a big issue in game development
because this can easily create problems where the Al can appear stupid.

6



2.2. State Machines

Because of that, decision trees are usually used only on very simple models
of behavior.

B 2.1.3 The Algorithm of Decision Trees

The algorithm of decision trees is simple and straightforward [I]. The tree
starts with a root node which is a decision point. When a decision is required,
the algorithm moves through the tree by decision points. At each decision
point, a condition is evaluated from data known to the agent. This data is
usually stored within the agent or is gathered from the game world. The
condition check contains no boolean logic (i.e., checks cannot be joined
together by AND, OR, etc.). The condition could, for example, be a boolean
variable or calculation if the numeric value is within a given range, as seen
above in Figure 2.2l The algorithm continues moving through the tree until it
reaches a leaf node. After that, an action attached to the leaf node is carried
out immediately.

. 2.2 State Machines

Game characters will often act in one of a limited set of ways. State machine
[1] best represents this type of behavior with the help of additional scripting.
State machines use information from the world around them and their internal
information (state).

B 2.2.1 Structure of State Machines

A state-machine agent occupies only one state [I] [3]. Each state has a set
of actions or behavior. While the agent remains in the same state, he will
keep carrying out the same action or actions defined by the state. States
are connected by transitions. Each transition moves the agent from the
current state to the next target state, and each has a set of conditions. If the
conditions are met, the transition to the target state occurs.

Figure [2.3| shows an example of a simple state machine. This state machine
defines the same behavior used in a previous chapter |2.1.1. This time the
guard character has three defined states: Patrol, Chase, and Go to Jail. At
the beginning of the game, the guard starts in the Patrol state. If the guard
spots a criminal, the condition "Can see Criminal" is met, and a transition
occurs. This moves the guard from state Patrol to state Chase. This state has
two different transitions. If the guard can no longer see the targeted criminal,
a transition back to the Patrol state occurs. But if the guard manages to
chase down the criminal and arrest him, a transition to the state Go to Jail
takes place. In the Go to Jail state, the guard simply takes the criminal to
jail. Once completed, the condition "Criminal Jailed" is met, and the guard
transitions back to the Patrol state.

Figure [2.3| shows an example of a simple state machine with states: On
Guard, Fight, Run Away. Each of these states has a set of transitions, for

7



2. Decision Making Techniques

[Cannot see Criminal]

Patrol Chase

[Can see Criminal]

[Criminal arrested]

[Criminal jailed]

Go to jail

Figure 2.3: State machine example.

example, transition "See small enemy" from state On Guard to state Fight.

B 2.2.2 State Machine Algorithm

Individual states are typically implemented with an interface [I]. This way
the state can include any specific code. The state machine itself keeps a record
of all possible states and a reference to the current state. The state machines
also store a series of transitions for each possible state. Each transition is
also generic and usually is implemented as needed. The state machine has its
update function, typically called every frame or iteration.

At each update function call, the state machine checks if any transitions
have been triggered. Then the first transition that has been triggered is
executed. After that, a list of actions for the current state is prepared. If
another transition has been triggered, the transition is executed. Transitions
can also have actions to be called or scheduled while transitioning to the next
state. For example, equip a weapon before switching to the state Fight.

Bl 2.2.3 Advantages and Disadvantages of State Machines

State machines are one of the popular techniques for modeling decision-making
for the Al agent. But this technique is still not perfect for every possible use.
State machines have their own advantages and disadvantages [3].

The main advantage of state machines is that they have a very common
structure used in many fields of computer science. They are very intuitive
and easy to understand. Each state can also be implemented separately. Also,
unlike decision trees, state machine always has a consistent inner state (the
current state). This means that, unlike decision trees, small changes in the
agent input data will not significantly impact the agent’s overall behavior.

8



2.2. State Machines

However, state machines have many drawbacks. A complex reactive agent
needs many transitions, which means difficult maintainability and scala-
bility. Adding or removing a single state often requires re-evaluating and
re-implementing the whole state machine with many changes to other states
and their corresponding transitions. This makes state machines susceptible
to human design errors. Also, transitions often depend on internal variables.
Because of this, they are impractical to reuse in a different sub-state machine
or project.

B 2.2.4 Hierarchical State Machines

Hierarchical state machines [3] or State Charts [4] resolve issues of the
standard state machines. They improve modularity and introduce a more
organized hierarchical structure. They also introduce concepts of the parent
state machine and child state machine that work as a sub-state of the parent
state machine. The child state machine starts when the parent enters a state
attached to it and stops when the transition to a different state is called.



2. Decision Making Techniques

State machines are useful tools, but it can be difficult to express some
specific behaviors. One of the most commonly tricky behavior [I] is the
"Alarm behavior".

Alarm behavior is a type of behavior that interrupts any currently running
behavior and moves the character to a new state to handle some urgent task.
After the task is done, the character transitions back to the original state. To
demonstrate the problem of simulating an Alarm behavior, we will again use
the simple state machine seen in Figure 2.3 and add a new Alarm behavior.

Hide Hide
[Can see monster]
l[Cam\O‘ See ][Can see monster]
monster]
[Cannot see Criminal] [Cannot See
monster]
Patrol Chase
[Can see Criminal]

[Criminal arrested]

[Criminal jailed]

[Cannot See monster]
—

Go to jail Hide

[Can see monster]

Figure 2.4: Basic state machine example with alarm behavior

Figure 2.4) shows the new extended simple state machine. In this state
machine, we wanted to add a new behavior: If the character sees a monster,
he should hide from it no matter his state, and when the monster leaves, the
character should return to his last state. This can be difficult to express with a
basic state machine, as seen in figure|2.4. To add the "Hide behavior", we must
add three new states with the same functionality and six new state-dependent
transitions (two for each state). Even more, problems are created when we
want to introduce more Alarm behaviors. To add more alarm behaviors, we
must specify which behavior is more important.

Information that is known to the agent.

To fix this issue, we can use hierarchical state machines and create a nested
child state machine for the patroling behavior and a separate state for the
hiding behavior. This behavior is defined in the hierarchical state machine in
Figure 2.5,

When the character sees a monster, he will only transition from the state
On Patrol to the state Hide. When the monster leaves and the transition
back to the On Patrol state occurs, the character returns to the last state in
the nested child-state machine since child-state machines keep track of the

10



2.3. Behavior Trees

/ On Patrol \

[Cannot see Criminal]

Patrol Chase

[Can see Criminal]

[Cannot See monster]

—

Hide

[Criminal arrested]

[Can see monster]

[Criminal jailed]

Go to jail ‘_—.
\ /

Figure 2.5: Hierarchical state machine example with alarm behavior

last state. With this approach, we only needed to add a single state instead
of the three in the previous example with a basic state machine. We can
now also add even more alarm behaviors. To specify the importance of the
behavior, we need to place it into the hierarchy (the highest state in the
hierarchy has the highest priority).

We can see that thanks to these additions, it is possible to separate
individual tasks in the state machines into sub-tasks. However, these sub-
tasks may still depend on each other through state-dependent transitions.
Because of this, maintainability is still an issue. Also, the state machine
hierarchies must still be user-defined and can be challenging to edit. This
means that even hierarchical state machines are still highly susceptible to
human error.

. 2.3 Behavior Trees

Behavior trees [I] combine several decision-making techniques like hierarchical
state machines, scheduling, planning, etc. Their most significant advantage is
their ability to implement these techniques in a way that is easy to understand
and create, even for non-programmers. This way, more team members can
contribute to the creation of game Al.

B 2.3.1 Types of Tasks in a Basic Behavior Tree

Tasks in the behavior tree all share the same basic structure [5]. Each task
contains an execution function. After this function is called, the task will
schedule, execute or update actions defined by the task. After a given time

11



2. Decision Making Techniques

(at the start of a new frame, for example), the task returns a status code. The
status code [5] will return either a code for success, failure, or often "running",
indicating that the task is still not completed in any way. Some developers
often add extra codes such as "error" for debugging. Each task can also call
another sub-task to run its execution function.

Task Type Succeeds Fails Running
Composites || Depends on the | Depends on the | one or more child
child’s return code child’s return code tasks are running
Decorator Varies Varies Varies
Action Upon completion When impossible to | During execution
complete
Condition If condition is met If condition is unmet | Never

Table 2.1: Return codes of basic task types [2].

The basic Behavior tree consists of four main types of tasks [I]: Conditions,
Actions, Composites, and Decorators. The table 2.1 shows the return codes
of individual basic tasks and when the tasks return them. The following
sub-sections explain the functionality, common implementations, and how
are these types of tasks used [1] [5] [6] [2].

B Conditions

Condition tasks are a fundamental component of behavior trees and are
essential in determining agents’ behavior. Conditions allow the agent to test
some properties and decide based on the result. For instance, a condition
can be used to determine whether the agent is close enough to a target to
perform an action or whether a certain enemy is in the field of view of the
agent.

Conditions can be designed to check any property that can be evaluated,
such as the distance between objects, the state of a game variable, or the
number of enemies in the vicinity. Moreover, conditions can be created and
parametrized to make them more reusable. This means the same condition
task can be used in different parts of the behavior tree with different input
parameters.

Each condition task in the behavior tree has a specific implementation that
checks the property and returns a success or failure code but never a running
code which can be seen in the table [2.1. If the condition is met, the task
returns a success code, indicating that the behavior associated with that task
can proceed. Conversely, if the condition is not met, the task returns a failure
code, which can trigger the agent to move to the next task in the behavior
tree.

Condition tasks are always placed as leaf nodes in the behavior tree, as
they do not need to control sub-tasks. Their role is to determine the outcome
of the condition and pass it to the parent node, which can then decide which

12



2.3. Behavior Trees

branch of the tree to execute next.

B Actions

As the name suggests, an action task contains an action, which can be anything
the agent should be able to do. In the context of artificial intelligence in
video games, actions refer to the actions that an agent can perform in the
game world. These actions can be used to control various aspects of the
game, such as movement, animation, and the inner state of characters. The
implementation of each action is unique and requires individual task creation.
However, unlike conditions, actions do not always have to return a code for
success or failure. Instead, actions can also return a code "running" to indicate
that the action is still being performed, shown in the table [2.1. This allows
the behavior tree to handle actions that require multiple frames to complete.

As mentioned earlier, actions are connected as leaf nodes of the behavior
tree. This means that they are always the final nodes in the tree and do not
have any child nodes. The execution of an action is straightforward - once
the action node is reached during tree traversal, the corresponding action is
performed, and the control is returned to the parent node. If the action is
successful, the parent node can continue traversing the tree. On the other
hand, if the action fails, the parent node can try a different branch of the
tree. If the action returns "running," the parent node will continue to execute
the child nodes until the action returns a success or failure code.

In practice, actions can be quite complex and can involve several sub-tasks
that need to be executed. These sub-tasks can also be organized into another
simple behavior tree, which is referred to as a sub-tree. For instance, an action
that controls the movement of a character may involve pathfinding, collision
detection, and animation control. These sub-tasks can be implemented as
child nodes of the action node, allowing for the creation of more complex
behaviors.

Actions are a crucial component of behavior trees in video game Al. They
allow agents to interact with the game world and perform tasks required to
achieve their goals. Using actions and their associated child nodes, behavior
trees can create complex, reactive, and intelligent behavior for the in-game
agents.

13



2. Decision Making Techniques

B Composites

Composites are used to control the flow of the behavior tree decision-making.
They keep a record of child nodes. Child nodes can have any task attached
to them (i.e., condition, action, decorator, or another composite).

Composite || Succeeds Fails Running

type

Selector If one child succeeds | If all children fail If one child returns
running

Sequence If all children succeed | If one child fails If one child returns
running

Parallel If N children succeed | If M-N children fail | If all children return
running

Table 2.2: Return codes of common composite tasks [2].

Their behavior is based on the behavior of the child nodes. Composite
tasks mainly group other tasks to create a specific behavior. Unlike action
or condition tasks, composite tasks usually have only a handful of imple-
mentations because we don’t need many of them to create a sophisticated
behavior. There are three most common types of composite tasks [1][3]:
selectors, sequences, and parallel.

Child task 1 | | Child task 2 . Child task N

Figure 2.6: The structure of a selector task.

The selector task, also called the fallback task [3] [2], is a simple composite
task. On each iteration, the selector runs one of its child tasks. The structure
of a selector task is depicted in Figure [2.6| (the selector is usually marked by
the "?" symbol [6]). As we can see in the selector algorithm (1| and also in
table [2.2] if the child’s task returns a "success" code, then the selector returns
a "success" code. If the child returns a "failure" code or a "running" code, the
selector returns a "running" code. If all child states return a "failure" code,
then a "failure" code is returned. Each child task is commonly called from

14



2.3. Behavior Trees

Algorithm 1 Algorithm of the Selector task

: function RUNSELECTOR
for all childT'asks do
childReturnCode < childT'ask.Run()
if childReturnCode == Running then
return Running
else if childReturnCode == Success then
return Success
end if
end for

—
e

11: return Failure
12: end function

left to right (in figure [2.6, child task 1 will be called first). This way, we can
specify the priority of each child task of the selector. Selectors are commonly
used to select the first successful from a pool of tasks based on the task’s
priority [2].

Child task 1 | | Child task 2 . Child task N

Figure 2.7: The structure of a sequence task.

The sequence task works in the opposite way of the selector task [2].
The structure of the sequence node is shown in Figure 2.7| (the sequence is
commonly marked by the arrow symbol [6]). Like the selector, the sequence
runs one of its children on each iteration. As we can see in the sequence
algorithm [2| and table [2.2] if the child task returns a "failure" code, the
sequence also returns a "failure" code. In the same way, if the child task
returns a "running" code, the sequence also returns a "running" code. The
sequence returns a "success" code only if all its children return a "success"
code. The sequence node is usually used for tasks that should be executed or
completed in a sequence.

15



2. Decision Making Techniques

Algorithm 2 Algorithm of the Sequence task

1: function RUNSEQUENCE

2 for all childTasks do

3 childReturnCode < childT ask.Run()

4 if childReturnCode == Running then

5: return Running

6 else if childReturnCode == Failure then
7 return Failure

8
9:

end if
end for
10:
11: return Success

12: end function

W

Child task 1 | | Child task 2 . Child task N

Figure 2.8: The structure of a parallel task.

The last commonly used composite task is the parallel task. The parallel
task again shares the same structure as the selector and sequence tasks, as
seen in Figure |2.8] The parallel task is commonly marked by the double arrow
symbol [6]. Unlike the selector or sequence task, the parallel task executes
each child task simultaneously. As we can see in the selector algorithm 3|
while the child tasks are running, the parallel task returns a running status
code just like the selector or sequence task. The difference starts when any
child task returns a status code different from the running status code. The
parallel task either stores this code in an array or counts the number of
successful child status codes(depending on the implementation of the task).
Then if M number of child tasks (M can be set to any number lesser than
the number of child tasks as seen in the algorithm 3) and table 2.2 returns a
successful status code, the parallel task also returns a successful status code.
Otherwise, the task returns a failure status code instead. If the number M
is set to the number of child tasks, the parallel task behaves similarly to a
sequence node and is usually called a parallel sequence. If the number M is set
to one, the task behaves similarly to a selector and is called a parallel selector.

16



2.3. Behavior Trees

Algorithm 3 Algorithm of the Parallel task

Require: M < numberO fChildTasks
1: function RUNPARALLELTASK

2: SuccessCount < 0

3: for all childTasks do

4: childReturnCode < childT'ask.Run()
5: if childReturnCode == Running then
6: return Running

7 else if childReturnCode == Success then
8: SuccessCount < SuccessCount + 1
9: if SuccessCount > M then

10: return Success

11: end if

12: end if

13: end for

14: return Failure

15: end function

Since the selector task is used to "select" one new successful task rather than
execute a group of tasks, the parallel selector often stops or interrupts the
still-running child tasks when the first successful task is found.

As the name suggests, parallel tasks are usually used when we want to
execute some behaviors simultaneously in parallel. For example, with the
parallel task, the agent can decide where to go and what to say to the player
simultaneously.

17



2. Decision Making Techniques

B Decorators

Decorators [I] are tasks with a single child. They are used for modifying their
child’s behavior in some way. They do this by changing the returned status
code of their child. For example, if we want to make a certain node return
only the "failure" code, we can achieve this with decorators. Decorators have
many different useful implementations.

B 23.2 Common Types of Decorators

Decorators can be implemented in many ways, making designing an Al agent’s
behavior easier. But some basic types of decorators are used very often. The
following list contains examples of commonly used types decorators [I] [5]:

Algorithm 4 Algorithm of the Inverter

function RUNINVERTOR
childReturnCode < childTask.Run()

1:

2

3

4: if childReturnCode == Running then

5: return Running

6 else if childReturnCode == Success then
7 return Failure

8

9

end if

10: return Success
11:
12: end function

® Inverter

Inverter decorator is one of the most simple decorators. As the name
suggests, the Inverter simply inverts the result of the child task. As we
can see in the algorithm |4/ above, if the child task returns a "success"
code, the Inverter returns a "failure" code, and vice versa. If the child
task returns a "running" code, the Inverter also returns a "running" code.
This decorator is useful for simulating a behavior where we expect a
certain task to fail.

18



2.3. Behavior Trees

Algorithm 5 Algorithm of the Limiter

1:
2
3
4:
5:
6
7
8
9

10:
11:
12:
13:

function RUNLIMITER

if executedTimes > limit then
return Failure

end if

childReturnCode < childTask.Run();

if childReturnCode! = Running then
executedl'ime < executedTime + 1

end if

return childReturnCode

14: end function

® Limiter

A Limiter decorator is another widely used decorator. With this deco-
rator, we can limit how often the Al agent can run a child task. The
Limiter keeps track of how many times the child task was executed (i.e.,
how many times the task returned either a "success" or a "failure" code).
As we can see in the algorithm [5| above, if the child task gets over this
limit, the decorator returns only a "failure" code. The Limiter is often
used to ensure the agent doesn’t get stuck on the same behavior for an
unnecessarily long time and instead tries a differently defined behavior.

Algorithm 6 Algorithm of the Time Limiter

1:
2
3
4
5:
6
7
8
9:

function RUNTIMELIMITER

if executedStartTime — currentTime > timeLimit then
return Failure

end if

childReturnCode <+ childT ask.Run();
return childReturnCode

end function

® Time Limiter

Time Limiter decorators work similarly to the Limiter decorator. The
Time Limiter keeps track of how much time has passed since the child
task started running. As we can see in the algorithm |6| above, if the child
tasks run time exceeds a given limit, the Time Limiter stops the child
task by returning a Failure code. This can be used to limit how long can
a child’s task run. We can ensure the agent won’t get stuck in a loop

19



2. Decision Making Techniques

trying to finish a never-ending task, or it can also be used to change the
agent’s behavior more frequently.

Algorithm 7 Algorithm of the Repeater

1:
2
3
4:
5:
6
7
8

9:
10:

function RUNREPEATER

childReturnCode <+ childTask.Run();
if numberO f Repeats > limit then
return childReturnCode
end if
numberO f Repeats < numberO f Repeats + 1
return Running

end function

® Repeater

Repeater decorator is used in the opposite way to the limiter. With this
decorator, we make the child state repeat itself a set number of times.
The algorithm |7] above shows how the Repeater node execution function
works. The Repeater keeps track of how many times the node has been
repeated. Instead of returning the child’s status code, this decorator
returns a "running" code to ensure the child task is executed again. After
the set number of repeats, the Repeater returns the status code of the
child task.

This decorator is also often used at the root of the behavior tree with an
unlimited number of repeats which creates an endless loop.

Algorithm 8 Algorithm of the Repeat Until Fail

1:
2
3
4:
5:
6
7
8
9:

function RUNREPEATUNTILFAIL

childReturnCode < childTask.Run();

if childReturnCode == Failure then
return childReturnCode

end if

return childReturnCode

end function

# Repeat Until Fail

The Repeat Until Fail decorator is very similar to the Repeater. Repeat
Until Fail decorator again makes the child state repeat itself but with
a different condition. As we can see in the algorithm [8, every time a
child task returns a status code, the decorator reruns the child task
unless the return code is "failure". Otherwise, the decorator returns the
child tasks return code. It is also common to use the inverted version of

20



2.3. Behavior Trees

this decorator called Repeat Until Success. As the name suggests, the
decorator functions the same way, except that the decorator stops when
a "success" code is returned by the child task.

Algorithm 9 Algorithm of the Condition Decorator

1:
2
3
4:
5:
6
7
8
9

10:
11:

function RUNCONDITIONDECORATOR
conditionMet < TestCondition()

if conditionMet == false then
return Failure

end if

childReturnCode < childTask.Run();
return child ReturnCode

end function

® Condition decorator

Condition decorator is a different way to implement the condition task.
The decorator checks if a child task should or can be run. As the name
implies, this decorator has its own defined condition or test. As we can
see in the algorithm |9 above, when the decorator task is called, a test
is evaluated. If the condition is unmet, the decorator returns a "failure"
code, and the child task is not executed. But if the condition is met,
the task runs as normal. Just like Condition tasks, the condition for the
decorator can be anything from checking the value of a variable to more
complex checks defined with a separate function.

The main difference between a decorator condition and a standard
condition (as a leaf node) is that the decorator evaluates the condition
while the child task is running. This means that the decorator’s condition
can interrupt or stop the child task during the execution (i.e., while the
child task returns a "running" status code). While with the standard
condition, we can only test the condition before the following task starts
executing or after.

21



2. Decision Making Techniques

B 2.3.3 Structure of Behavior Trees

Behavior trees work in a similar way to hierarchical state machines [1] [3].
Instead of the state, the main building blocks are tasks. Behavior trees
are mainly created with composite tasks as inner nodes, which create the
tree’s structure, and action tasks as leaf nodes which cause the agent to
interact with the game world as explained in the previous section [2.3.1. This
way, the tree can be separated into sub-tasks or sub-trees to represent more
complex behaviors. Because each task is self-contained and shares the same
interface, they can be built into hierarchies without any information on how
each sub-task is implemented.

?
— —
Inverter Patrol ey C'ha.se Arrgst Go to jail
close? criminal criminal
Can see
Criminal?

Figure 2.9: The example of a simple behavior tree.

B 2.3.4 Blackboards

To be able to create more complex behaviors, behavior trees require to have
some form of inner communication between the individual tasks. In the
example shown in Figure 2.9, we want the agent to interact with a criminal.
If there is more than one criminal in the scene, the agent cannot know which
criminal he is supposed to interact with. This problem is caused by the lack of
data [I]. Because of this, the behavior trees require a communication system.
A blackboard is the most common form of an inner communication system
for behavior trees.

Blackboard is an external data store [I]. Individual tasks can write or save
data on the blackboard. Other tasks can then later read or withdraw data

22



2.3. Behavior Trees

— —
Select Can see Chase Arrest -
‘ s ‘ ’ Patrol l Criminal ‘ Criminal? ’ criminal H criminal H ERH ‘
\ (read from blackboard)
—

Remember
Criminal

Can see
Criminal?

(write to blackboard)

Figure 2.10: Behavior tree with Blackboard communication.

from Blackboard. This way, individual nodes can communicate with each
other.

Figure [2.10| shows the same behavior tree from Figure [2.9 extended with
blackboard communication. Now when the agent sees a criminal during the
"patrol" sequence (the sequence on the left side), the action task "Remember
criminal” saves the information about the criminal into the blackboard. Then
when the agent executes the "chase" sequence (the sequence on the right
side), the action task "Select criminal" reads the saved information about the
criminal from the blackboard and selects the criminal as a target. After this,
the agent continues with the sequence.

Blackboard doesn’t have to be used just for communication between indi-
vidual nodes but also for receiving data from the game world. For example,
some actions can be dependent on the time within the game world. This
time can be stored in the blackboard and used when needed. Or we can
store useful information about the agent’s surroundings, such as nearby cover,
nearest enemy, etc.

23



24



Chapter 3

Behavior Trees in Unity

Unity is a cross-platform game engine developed by Unity Technologies based
in San Francisco. The engine can be used to create 3D and 2D games, as
well as other interactive experiences. It supports a variety of desktop, mobile,
console, and virtual reality platforms.

The Engine itself doesn’t contain an Al decision-making system. Because
of this, I had to create my own system along with an editor for managing
and visualizing AI decision-making.

B 31 Scriptable Objects

The scriptable object [10] is a type of data container included in the unity
engine. The object can store large amounts of data independent of class
instances. This is useful for storing unchanging data attached to custom
scripts in the engine. The scriptable object can also be instantiated to create
a unique copy of the original data.

. 3.2 Behavior Tree Asset

The behavior tree asset is implemented as scriptable objects. Figure|3.1/shows
the class diagram of the behavior tree asset. As we can see, the behavior tree
itself contains a list of its nodes along with a reference to the root node of
the tree. This list stores each node as a scriptable object in the behavior tree
asset, which is then stored in the unity asset folder. It also stores the current
state of the behavior tree and its blackboard. Each part of the Asset or class
associated with the behavior tree is explained in the following sections.

25



3. Behavior Trees in Unity

Blackboard

- properties:
ArmrayList<BlackboardProperty=double=>

- properties
ArrayList<BlackboardProperty<bool==

- properties
ArrayList<BlackboardProperty<string==>

BehaviorTree

+treeState: State
+rooiNode: Node
+nodes: ArrayList=Node>

+ blackboard: Blackboard

/ + Updale(): Stale

- properties:
ArrayList=BlackboardProperty=Vectord=> + CreateNode(Type,Vector2): Node \ ==gnumeration==
State
- properties: + DeleteNode(Node): void
ArmrayList<BlackboardProperty=GameObject=> Success
+ Clone{IBTAgent): BehaviorTree Failure
+ Clone(): Blackboard Running
+ GetProperty=<T=> (string). 1
BlackboardProperty<T=
+ SetProperty=<T=(string,T): void
+ DeleteProperty<T=(string,T): void pa
+ Clear(): void Node
1 Interact
+ state: State i e

IBTAgent

+|BTAgent agent
+ Go: GameObject
0.x + blackboard: Blackboard +Tree: Behavior Tree

BlackboardProperty<T= + Update): State | ——— " |+ModeUpdateMethods(Node

parameters). State

+name: string

-+ Clone{): Node + NodeStopMethods(Node
+T value parameters). void

~ OnUpdate(): State + ModeStartMethods(Node
+isValid: bool

~ OnStart(): void

~ OnStop(): void

~ Init(): void

Extends fk [% Extends
Extends Extends
| ActionNode ‘ ConditionNode CompositeNode DecoratorNode

~ EvaluateCondition(): bool ~ children: ArrayList<Node= ~ child: Node

Figure 3.1: Class diagram of the behavior tree asset.

B 3.2.1 Blackboard

Blackboards are implemented as a data store for the individual behavior
trees and used for inner communications between the individual nodes and
communication with the game world, as discussed in the previous chapter
2.3.4l

In my project, the blackboard holds five arrays of properties, one for each
of the individual data types: numeric(double), boolean, string, vector, and
game object. Every record within the array stores. Every property stores
the name of the property, which is used for locating the given property, the
value of the given property, and a validation boolean property. The validation
property indicates if the given property has a valid value and if it should be
used.

The blackboard has four functionalities. Each node (or an object within the
game world with access to the blackboard) can retrieve a property by a given
name. If the property doesn’t exist within the blackboard, the blackboard
doesn’t return a default value (set for individual types) and a boolean false
value, signaling that the property search has failed. Nodes can also create
new properties or update the value of existing ones. When a node tries
to update a value of a non-existing property, the blackboard creates a new
property with the given name and value. Lastly, nodes can invalidate or delete
individual properties within the blackboard. When a property is supposed to
be invalidated or deleted, its validation property is false. This way, individual

26



3.3. Task Nodes

nodes can signal to other nodes that the value of a certain property needs to
be updated.

. 3.3 Task Nodes

As mentioned before, behavior tree nodes or task nodes are also implemented
as scriptable objects. Because of this, they can be easily stored within the
behavior tree asset.

Each node type inherits its behavior from an abstract base class called
Node. As we can see in figure (3.1 this class contains the node’s current
state (as explained in the Behavior tree section [2.3), a reference to the agent
attached to the behavior tree, a reference to a blackboard, and an update
(also called tick [I]) method used for the execution of the task node. The
class also has four abstract methods:

® OnStart

This method is executed at the beginning of the node execution.

8 OnUpdate

This method is executed on each update call during the execution and
returns the node’s current state.

® OnStop

This method is executed at the end of the node execution when the node
returns either a Success or Failure state during the update call.

® Initialize

This method is executed within the node’s constructor and is meant to
be used for initializing non-changing variables within the node and for
initializing data for visualization (explained in the following chapter).

B 3.3.1 Composite Nodes

Composite task nodes connect other nodes in the behavior tree to create
more complex behaviors, as explained in the previous chapter 2.3.1. Each
composite task node inherits from an abstract class called CompositeNode.
This class contains a list of child nodes.

Figure |3.2| shows the implementation of a sequence task node. The node
implements the three abstract methods of the base Node class. At the start
of the node execution, the index(current) of a current child is set to zero
to reset the node. The method OnUpdate shows the implementation of the
behavior of the sequence node explained in the composite task section [2.3.1.
The method OnStop is not needed, so it stays empty.

Other composite task nodes have been implemented similarly and according
to the definition explained in the previous chapter [2.3.1L My project contains
several different implementations of the commonly used composite nodes:

27



3. Behavior Trees in Unity

SequenceNode : CompositeNode
current; =
onStart()

current = @;

’

onStop()

State OnUpdate()

Node child = children[current];

State childState = child.Update();
(childstate)

State.Running:
State.Running;
State.Failure:
State.Failure;
State.Success:
current++;

7

rent >= children.Count)
State.Success;

State.Running;

Figure 3.2: Implemetation of the sequence task node.

B Sequence
® Parallel Sequence

® Selector

B 3.3.2 Action Nodes

Action nodes are implemented as leaf nodes of the behavior tree as explained
in the previous chapter [2.3.1.

Individual actions can have a single implementation or implementation
through the agent interface. Single implementation is good for generic actions
with the same implementation for every agent, like moving the agent or
searching for the closest target. Implementation through the agent’s interface
is good for agent-specific tasks. Several agents can then share the same
behavior but have a different implementation for certain actions (for example,
attacks, target selection, etc.).

28



3.3. Task Nodes

AttackNode : InputActionNode
[Header("Input")] [SerializeField] targetGameObjectProperty = "AttackTarget"; =

GameObject _target;
State OnUpdate()

if (_target != )
State.Failure;

Agent.AttackUpdate(_target);

onstart()

(!blackboard.TryGetProperty (targetGameObjectProperty, _target))

(_target == )

Agent.AttackStart(_target, targetGameObjectProperty);

onstop()

(_target == )

Agent.AttackStop(_target, targetGameObjectProperty);

Figure 3.3: Example of implementation of the attack action task node.

Figure 3.3 shows an example of an attack action task node implementation
through the agent interface. The agent interface has to define three methods,
one for each node execution method of the attack action. Since the attack
action depends on a blackboard property, the property’s value has to be
passed as an argument of the interface methods. Alternatively, the agent
could only pass the name of the required property, and the agent could fetch
the value himself.

Figure |3.4] shows a single implementation of a move to action. This way,
every agent shares the same implementation of the action. The agent’s
interface contains a reference to the agent’s game object. With this reference,
the action can access other components connected to the agent. In this
example, the move to node uses a navmesh agent component, which needs to
be present on the agent’s game object.

B Conditions

The condition node can then test the given property value as explained in
the previous chapter [2.3.1|

In the project, every condition task node inherits from an abstract class
called ConditionNode. This class defines an abstract method for evaluating
the condition and returns a boolean value. If the defined evaluation check
passes (i.e., returns a true value), the node returns a success state. Otherwise,

29



3. Behavior Trees in Unity

MoveToNode : InputActionNode

("Input")] [SerializeField] vectorPropertyName = "target
lizeField] closeToValue = 1.5Ff; =

Vector3 _t

Na

Onstart()

ped =
onStop()

tate.Succe
i.DeleteVector3Property torPropertyName);

State OnUpdate()

rectorPropertyName,

etPosition);

NavMeshPathStatus.PathInvalid ||
= NavMeshPathStatus.PathPartial)

State.Success;

State.Running;

Figure 3.4: Example of implementation of the move action task node.

the condition node fails.

Figure|3.5/shows an implementation of a Close to condition node. This node
uses two blackboard properties, a game object property target and a numeric
property boundary (in code called "closeToDistance"). The node calculates
the distance to the target game object (obtained from the blackboard) and
checks if the distance is smaller than the given boundary(also obtained from
the blackboard).

30



3.3. Task Nodes

ConditionCloseTo : ConditionNode

gameObjectPropertyName

numericCloseToPropertyName = "distance";

valuateCondition()

(!blackboard.TryGetProperty(gameObjectPropertyName, GameObject target))

(target ==

(!blackboard.TryGetProperty(numericCloseToPropertyName, _closeToDistance))
_closeToDistance = default seToDistance;

Vector3 agentPosition = ent.Go.transform.position;
distance = Vector3.Distance(a: target.transform.position, agentPosition);

distance <= _closeToDistance;

Figure 3.5: Example of implementation of the condition close to task node.

B 3.3.3 Decorator Nodes

As explained in the previous chapter [2.3.1, The decorator is used to modify the
return state of the child node. Each decorator inherits from a DecoratorNode
class and has exactly one child node.
My project contains several different implementations of decorator nodes:
8 Repeat
Repeat node has been implemented according to the definition of a
Repeater decorator which can be found in previous chapter 2.3.2

B Repeat Until Fail
Repeat Until Fail node has been implemented according to the definition
of a Repeat Until Fail decorator which can be found in the previous
chapter 2.3.2

B Limiter
Limiter node has been implemented according to the definition of a
Limiter decorator which can be found in the previous chapter [2.3.2

8 Inverter
Inverter node has been implemented according to the definition of a
Inverter decorator, which can be found in the previous chapter 2.3.2l

8 Pre Condition

Pre Condition node works as a condition decorator 2.3.2l This node
holds a name of a blackboard property. The node then performs a check
of the node’s condition with the value of the blackboard property. If

31



3. Behavior Trees in Unity

the condition is met, then the child node is executed. If not, the node
always returns a Failure state.

B 3.3.4 Sub-tree Node

The sub-tree node holds a separate behavior tree, which can be created using
any combination of nodes that make sense for the specific task. With this
node, the user can create a nested behavior tree that can be reused in various
parts of the main behavior tree, thus increasing the modularity and readability
of the overall tree. This allows users to create complex behavior trees that
can be easily reused and modified for different scenarios.

SubTreeNode : ActionNode
[SerializeField] BehaviourTree subTreeSource; ®

_subTreeIsValid

onstart()

if (!_subTreeIsValid && subTreeSource != )

{
subTreeSource = subTreeSource.Cli Agent, blackboard);
subTreeSource.blackboard = blackboard;

_subTreelIsValid =

state OnUpdate()

if (!_subTreeIsValid)

Debug.Log( $"Subtree: {subTreeSource.name} is not valid.");
State.Failure;

subTreeSource.rootNode.Update();

Figure 3.6: Example of implementation of the sub-tree task node.

Figure 3.6/ shows the implementation of the sub-tree node. When a sub-tree
node is executed for the first time (In Figure 3.6 when the OnStart method
is called for the first time), the node creates a personal working copy of the
supplied behavior tree and stores it within itself. This cloned tree is then
used in every following execution of the node.

On later calls for execution (i.e., when an OnUpdate method in figure
3.6 is called), the node runs its own behavior tree and returns the state
of the nested root node. This means that the state of the nested behavior
tree is propagated up to the main behavior tree, allowing the agent to make
decisions based on the current state of the game. This also allows for greater
flexibility in creating behavior trees, as designers can create sub-trees for
specific scenarios and conditions and reuse them as necessary throughout the
main tree.

32



3.4. Behavior Tree Agent

B 3.3.5 Root Node

The root node is a node in which every behavior tree starts. The node doesn’t
have any special functionality. Its purpose is purely to distinguish the root
node from other nodes. It’s also created for easier implementation of the
behavior tree editor.

B 3.4 Behavior Tree Agent

The behavior tree agents are a mono-behavior script component. To create a
behavior tree agent class, a class must implement an interface called IBTAgent.
The agent is connected to the behavior tree with an interface. This interface
defines the agent’s actions. As explained in the actions section [3.3.2, thanks
to the interface, each agent action set can be implemented differently. To
implement a new action for the given action node, three new methods need
to be created:

B Starting method

Starting methods are called when the action node is first executed. This
method should be used for initialization if the action requires one.

® Update method

Update methods are executed on each update call. This method is used
for the main functionality of the action.

B Stopping method

Stopping methods are called when the node returns either a Success or
Failure state. This method should be used to update the agent’s data or
to end certain processes.

These are then called from the behavior tree during the simulation.

The agent also contains a behavior tree asset. This asset must be instanti-
ated or cloned at the start of the game. This way, each agent that shares the
same behavior tree definition can have their own copy of the behavior tree
asset for simulating the defined behavior. Each agent also creates a personal
copy of the blackboard.

The agent can also use other components for executing the actions.

33



34



Chapter 4

Behavior Tree Editor

Behavior trees are frequently used with custom editors [I]. Editors help with
the debugging process of the Al decision-making system. Since the structure
of the behavior trees is usually very intuitive, even non-programmers can
assist in creating complex behaviors for the game agents with a custom editor.

Since Unity doesn’t support any behavior tree system or an editor, I had
to create my own that uses the data from the behavior tree assets. The
editor was created with Unity’s Ul toolkit and other tools for creating custom
editors in the engine.

B 2.1 Ul Toolkit

UI toolkit [§] is a collection of features, resources, and tools for developing
a user interface (UI). The toolkit can create an in-game UI system, custom
extensions for the Unity Editor, or run-time debugging tools.

This toolkit provides a Ul system based on commonly used web technologies.
It supports the creation of complex interactive views. Each Ul can be created
with three main types of files:

s UXML

Unity Extensible Markup Language (UXML) files are text files defining
the overall structure of the elements within the UL They offer a more
intuitive way of creating the layout for UI than the other methods
supported by the Unity engine.

m USS

Unity Style Sheet (USS) files used to apply visual styles and behaviors
of the elements in the Ul structure defined in the UXML files. The
USS files are inspired by the Cascading Style Sheets (CSS) from HTML.
Because of this, USS shares a lot of similarities with CSS.

| CS

Each element of the UI can be connected to a CS script. This script
contains the logic of the Ul structure or individual elements. The CS

35



4. Behavior Tree Editor

script can also create or modify the Ul structure and apply visual styles
and behaviors.

UI toolkit was created for easier creation of UI systems [9]. With this
toolkit, even less technical users can easily define a layout and visual style in
the UXML and USS files while the developers can focus on the more technical
tasks, such as creating the logic for the Ul system.

. 4.2 Custom Editor

I created a custom Behavior tree editor with a Ul toolkit and other custom
editor tools supported by the Unity engine. The editor is used to create or edit
new behavior trees and visualize the agent’s decision-making process during
the game runtime. The first main issue was to create a way of displaying
an oriented graph on the screen. This was solved by using the graph view
feature from the UI toolkit. The graph view is a visual element that offers
a way to create a visualization for graphs. An example of the use of graph
view is shown in figure |4.1.

Figure 4.1: Example of a Ul toolkit graph view

The graph view also holds a definition for the individual graph nodes stored
in the graph. Each node can be created with input and/or output ports.
These ports can then be connected to other nodes to create edges.

I created a custom behavior view by inheriting from the graph view. This
behavior tree view can process the data from any behavior tree asset and
display it as a graph, as shown in figure 4.2l

36



4.2. Custom Editor

SwordAndShieldBehavior

Figure 4.2: Behavior tree editor.

To display the node data from the behavior tree, I also created a custom
behavior tree node view by inheriting from the graph view node view. The
behavior tree node views hold data from the node of the behavior tree asset.
This data is then displayed with the node view. Each node view can have
output ports and/or input ports depending on the type of node. For example,
an action node can have only input ports because it’s always a leaf node.
They also show the node name and a description of the node functionality.
Each description and name can be changed in the editor for better readability.
Each main type of node is also color-coded as seen in figures 4.2

® Green - Root nodes.

Yellow - Decorator nodes.

Blue - Composite nodes.

Red - Action nodes.

Orange - Condition nodes.

Teal - Sub-tree nodes.

The behavior tree view is the main part of the custom editor. After that,
I added a way for the user to create individual nodes. With the help of
the Unity custom editor toolset, I added a simple menu that appears when
the user right-clicks anywhere within the behavior tree view. This menu is
organized by the available types of nodes. After the user selects a node, the
selected node type is created on the cursor’s position, and a new node is
stored with the behavior tree asset.

Along with the view, I created a custom inspector view for more detailed
editing of individual nodes. The inspector is created with an Immediate Mode
Graphical User Interface (IMGUI) [9] system from the unity editor toolset.

37



4. Behavior Tree Editor

This system offers an easy way of displaying and editing variables of custom
classes.

Figure 4.2/ shows the whole editor in edit mode with a behavior tree view,
inspector, and a blackboard view.

The Editor also contains a separate behavior tree view called sub-tree view,
visible in figure 4.3 This view is used for visualizing sub-trees stored within
the sub-tree nodes. When a user selects a certain node within the behavior
tree view, the view checks if the selected node is a sub-tree node. If yes, the
sub-tree view becomes visible and shows the structure of a tree found within
the sub-tree node.

SwordAndShieldBehavior

Figure 4.3: Behavior tree editor with a sub-tree view visible.

The editor is usable even during runtime. Users can also select a game
object with an attached behavior tree agent to display the agent’s behavior
tree. The execution of the behavior tree is visualized with color borders. Each
node starts without a color border. When the agents interact with nodes, the
nodes change their color depending on their state, as seen in figure [4.4:

® QOrange border

The node is still running and hasn’t finished executing.

® Green border

The node has executed the action without a problem and returned to
the Success state.

® Red border

The node has failed to execute its action and returned to the Failure
state.

For readability, the colored borders fade to a transparent color over time.
With this approach, it is much clearer which node is currently running, which

38



4.2. Custom Editor

node has recently finished executing, and which node has not been executed
in a while.

BT- Ally Agent (7)

Figure 4.4: Behavior tree editor during runtime with a selected in-game agent.

The sub-tree view also visualizes the current state of the sub-tree, which is
visible in figure 4.4

Also, during runtime every node which is using a blackboard property or
properties as input and/or as output, the node view shows the currently used
blackboard property (visible in figure 4.4). Each action node dependent on
a blackboard property inherits from either an abstract class InputAction,
OutputAction, or InputOutputAction. These abstract classes define a list
of used blackboard properties. InputAction is used for nodes that require
data from a blackboard property as input. OQutputAction is used for nodes,
which upon completion, update the value of a certain blackboard property.
InputOutpuAction combines the behavior of an InputAction and an Out-
putAction. The node has to update these lists to visualize the property in
the node view. This way, the user can quickly and easily see which action
node uses which blackboard property and the properties value.

39



4. Behavior Tree Editor

. 4.3 Blackboard View

As explained in the previous chapter 2.3.4), blackboards are a significant part
of the behavior tree. Because of this, I created a custom behavior tree view
for editing and visualizing the individual blackboard properties.

Figure 4.5: Blackboard view.

The blackboard view, visible in figure |4.5, is an essential part of the editor
window, and it plays an important role in the visualization and editing of
blackboard properties. The view is designed with the UI toolkit, and it is
implemented as a separate view to ensure maximum clarity.

40



4.3. Blackboard View

The left panel of the blackboard view contains buttons that enable users
to switch between different lists of blackboard properties quickly. The right
panel displays the properties of the currently selected list, enabling users to
visualize and edit the properties with ease.

Each blackboard property within the view is divided into four parts. Firstly,
a checkmark is present, indicating if the property is valid or invalid. Secondly,
the property name is displayed, making it easy for users to identify each
property. Thirdly, the property value is shown. After that, the value of a
property is visible (figure 4.5 shows the values of a vector property list). Lastly,
a delete button is present, allowing users to delete a property completely
from the blackboard instead of merely setting it invalid.

All parts of a property can be edited within the blackboard view window,
enabling users to modify the values of real blackboard properties quickly. The
view also includes a creation button, visible as a circle button with a plus
sign in the figure 4.5. This button enables users to create new properties
within the currently selected list of properties with ease.

41



42



Chapter 5

Results

To show how my decision-making system works, I created a demo game
project in the Unity engine. Figure [5.1 shows an in-game screenshot from
the game. The game is a simple game where the player controls a party of
warriors a tries to defeat all enemies in his path.

Figure 5.1: Screenshot from the demo game.

The project contains several scenes that showcase the functionalities of the
present features.

. 5.1 Camera movement

To look around the scene in a game view easily, I created a simple script for
camera control. This camera is implemented in a strategy game-style way.
This means that the camera is looking at the scene from above at a 45-degree
angle. The camera can be moved either by pressing the keys W, A, S, and
D, by pressing the arrow keys, or by holding the middle mouse button and
dragging the mouse. The camera can also zoom in and out by scrolling with
the mouse wheel and rotating around the scene with the keys Q and E.

43



5. Results

B 52 Characters Agents

Characters within my project are all implemented as NPC agents or, specif-
ically, behavior tree agents. These characters are created as game objects
with many useful components. For example, I have used the navMeshAgent
component. The navMeshAgent is part of the unity pathfinding system, which
uses the NavMesh (present in the scene) to move characters in the game world.
This allows characters to move around the game world realistically (avoiding
obstacles and etc.) and without any issues. The characters themselves are
also marked as obstacles with the Nav Mesh Obstacle component. This stops
the character from moving through each other or getting stuck in each other.

PlayerPartyController EnemyPartyController

- HandleMovement(): void - waypoints: ArrayList=GameObject= i}

+ TreeUpdateCoroutine(): IEnumerator

Extends
Extends

BasePartyControlier

+ unitSpacing: float

+ units: ArrayList=UnitController= ==<interface==1BTAgent

+ MoveUnits(Vector3): void + Go: GameObject

+ Tree: Behavior Tree
+ AddUnit{UnitController): void e
. . . + NodeUpdateMethods(Node

+ RemoveUnit(UnitController): void parameters): State

+ NodeStopMethods(Node
parameters): void

+ NodeStartMethods({Node

- GenerateUnitPositions(). ArrayList=Vector3=

1 L parameters): void
HealthManager
VA - maxHealth: int
1.+ BaseCharacrer
- currentHealth: int
+isStunned: bool
UnitController +igAlive: bool
+isDead: bool
+ character. BaseCharacter 1 . - healthbar: Slider
controis + OnCharacterDied(). void it _ characterDied: Action

+ SetControl(bool). void
+ OnCharacterGotHit(): void i - characterGotHit: Action

+ Move{Vector3l). void

+ OnHitCoroutine(). IEnumerator
+ DealDamage(int): void

+ TreeUpdateCoroutine(): IEnumerator

ﬁ [ﬁ K - UpdateHealth(int): void

Extends Extends Extends

| TwoHandedCharacter | | SwordAnd ShieldCharacter ‘ BowCharacter

+ ArrowPrefab: GameObject

Figure 5.2: Class diagram of implemented character components.

Figure 5.2 shows the class diagram of all created components present or
used by the character (unity components such as the navMeshAgent are not
shown in the diagram).

Each character has a health manager script and a character script com-
ponent that implements the behavior tree agent’s interface, shown in figure
5.2. Characters also have a child object with a mesh renderer component, an
animator component and another child object with a Ul canvas. This canvas
contains a health bar.

44



5.2. Characters Agents

Additionally, we can see in figure [5.2] that each character can be controlled
by a unit controller. This unit controller is then a part of a party controller.
The party controller can then decide where the units should move to. These
controllers can be either driven by the player input (PlayerPartyController
in figure |5.2)) or by a behavior tree (EnemyPartyController in figure 5.2).

Every character component and possible character actions, along with party
controllers, will be explained in the following sections.

B 5.2.1 Health manager

The health manager is a script component responsible for managing all health-
related matters, such as health bar display, damage calculation, etc. This
enables easy modification of properties of individual characters and separates
the health-related logic from other systems connected or used by the specific
character.

Each character has a set number of maximum hit points. At the start of the
game, the character’s current health is set to the maximum hit points. The
manager is also responsible for updating the health bar child object each time
the character is hit. It also contains a boolean variable to tell if a character is
still alive and two events: characterGotHit and characterDied (the two
variables of type Action in HealthManager class in figure [5.2)). The first event
is invoked when a character is hit, and the second event is invoked when a
character has died. The character script is subscribed to these events and
handles them with methods OnCharacterGotHit and OnCharacterDied.

B 5.2.2 Character Actions and Conditions

Each character simulates the behavior defined by their behavior tree. Every
behavior tree is composed of generic task nodes shown in the previous chapter
3| and specific actions and conditions created for this game project. The
project currently contains several types of actions:

m Attack

This is an agent-specific action that needs to be implemented through the
agent’s interface. The action uses one game object blackboard property
as an input. The main purpose of this action is for the agent to face
the target and try to attack him. Since this is an agent-specific action,
the attack can be implemented in any way. For example, the sword and
shield character attacks the target with a sword, and the bow character
shoots an arrow toward the target when this action is executed. This
action should always be either in a state of running or success unless the
target is not targetable or dead, in which case the action should fail.

® Block

This is also an agent-specific action, which has to be implemented through
the agent’s interface. The action uses one game object blackboard
property as an input. The purpose of this action is for the agent to try

45



5. Results

to block incoming attacks from the current target (the blackboard input
property) for a small period of time. This action should always be either
in a state of Running or Success (unless the agent requires a different
implementation)

® Get Next Waypoint

This agent-specific action is used for fetching a new game object waypoint.
When the next waypoint is found, the waypoint is stored in the blackboard
as a game object property.

B Get Position From Game Object

This action takes one game object blackboard property as an input
property. Then it takes the current position within the game world of
the game object acquired from the blackboard and stores it in a separate
output vector blackboard property.

® Move to Position

This action uses one vector blackboard property as an input (this is the
target destination). The action also expects the agent’s game object to
contain a NavMeshAgent component. This component is used within
this action to move the agent to the target destination (acquired from
the blackboard). When the agent is still moving toward the target
destination, the action returns a running state. If the target destination
has been reached, the action returns a successful state. If the target
destination is unreachable, the Move to Position action fails.

# Move to Game Object

This action works similarly to the Move to Position action. Just like
the Move to Position, this action uses one blackboard property, except
instead of a vector, this action uses a game object. The action is also
agent-specific, which must be implemented through the agent’s interface.
The main difference between this action and Move to Position action
is that this action should move the agent to the target game object’s
current position. This way, the agent can move to a different moving
object. The action changes its state in the same way the Move to
Position action does.

B Select Closest By Tag

This action finds the nearest game object to the agent using a specific tag,
such as "Player" or "Enemy". The tag can be the same for all behavior
trees or specified through a string value in a string blackboard property.

If the action locates a game object with the specified tag, it will store a
reference to the object in a game object blackboard property and return
a success state. However, if the action cannot find any corresponding
objects, it will return a failure state.

46



5.2. Characters Agents

® Select Target

This is an agent-specific action. The purpose of this action is to select
a new target game object. This game object can be used in other
actions, such as Attack or Block action. When a target has been found,
a reference to the target’s game object is stored within a blackboard

property.
® Set Movement Speed

This agent-specific action is used to change the agent’s movement speed.
The movement speed is changed based on the selected movement speed
enum. The enum has four values: Crawling, Walking, Running and
Sprinting. When the action is executed, the enum value is passed as a
parameter to the agent’s implementation. Then the agent can change its
own movement speed based on the selected enum value.

8 Flee

This action is an agent-specific action that uses a game object blackboard
property as an input. This game object is a danger source from which
the agent should run away.

® Generate Random Position

This action generates a random vector position and stores it inside a
vector blackboard property. This random position is generated around
the agent’s current position within a given range.

B2 Wait

This action takes a numeric blackboard property as input. This input is
a waiting duration. When a blackboard property is not found, a default
value (which can be set in the behavior tree editor) is used. When the
node is executed, it stores the current time and then checks on every
update if the time passed is bigger than the duration. If the action
should still wait, a running state is returned. If the action waited for the
given duration, it returns a success state. This action is generally used
to delay decision-making. For example, when a character is patroling,
we can make the character wait at his patrol destination before he moves
to the next one.

8 Set Animator Trigger

This action assumes that the agent’s game object contains an Animator
component. The action sets an animator’s trigger inside of the animator.
The trigger is accessed by the trigger’s name, which can be set as input
inside the editor.

® Custom Action

This action contains a unity event. This event takes a game object and
calls a method from a component attached. After the call is made, the

47



5. Results

node returns a success. This method can be used to directly call any
method from the agent or any child game objects of the agent.

® Debug Log

As the name suggests, this action is used only for debugging purposes.
The node simply logs a given message. This message can be set inside
the behavior tree editor.

The project also contains several conditions:

® Can See Target?

This condition takes a game object blackboard property as an input.
This game object is the target. The condition then performs a ray cast
from the agent’s position toward the target’s position. If the ray cast
hits the target without being blocked, the condition returns a successful
State. Otherwise, it returns a failure state.

® Is Property Valid?

This condition takes property from a blackboard and checks if the
property has a valid value (if the property has a validation value set to
true). If the given property is valid, it returns a success state. Otherwise,
it returns a failure state.

® Is Target Close?

This condition uses two blackboard properties as input. One is a game
object property, and the other is a numeric property. The agent then
calculates the distance of the given game object. If the distance is smaller
or equal to the distance limit (given numeric value), the condition returns
a success state. Otherwise, the condition fails.

B Is Target Alive?

This condition uses a game object blackboard property as an input.
This game object is the selected target. The condition tries to find a
health manager script component connected to the target game object.
If the condition fails to find the component, the condition fails. If the
component is found, the condition checks if the target is still alive. If the
target is still alive, the condition returns a successful state. Otherwise,
it returns a failure state.

® Boolean Condition

This condition simply reads the value of a boolean blackboard property.
If the property’s value is true, the condition returns a success state.
Otherwise, if the value is false or the boolean property is not found, the
condition returns a failure state.

48



5.2. Characters Agents

B 5.2.3 Common Behavior

Common behaviors are behaviors that any character can use. Each of these
behaviors is created as a separate behavior tree. These behavior trees are not
intended to be used as the main behavior trees used by the NPC characters
within the project. Instead, these behaviors should be used inside the sub-tree
node |3.3.4. The game project contains several common behaviors:

8 Select Target

This simple behavior is composed of a sequence with a Is Property
Valid condition and a Select Target action as seen in the figure |5.3.
The Behavior simply checks the currently selected target, which is a game
object blackboard property, is valid. If the property is valid, the behavior
returns a failure state and ends, signaling that the current target is still
valid. If the current target is not valid, the sequence continues to execute
the Select Attack Target action, which tries to find a new valid target
game object and returns a state based on the result of the action.

Select Attack Target

Is Property Valid
fa given pr

Figure 5.3: Select Target behavior tree.

49



5. Results

® Approach Target

This behavior is composed of a sequence with two conditions and two
actions, as shown in figure [5.4] Additionally, for this behavior to work
properly, the blackboard has to contain a specific game object blackboard
property, which serves as the target that should be approached. This
property is set to all actions and conditions present in the behavior,
which require the property to execute properly.

Figure 5.4: Approach Target behavior tree.

The behavior first checks if the current target (the game object blackboard
property) is valid in the Is Property Valid condition. This also tests
if the property exists within the blackboard. Next, the behavior tests
whether or not the target is alive by executing the Is Target Alive
condition. If both of these conditions are met, the behavior changes the
movement speed of the agent to a running speed and starts executing
the Move to Game Object action. Otherwise, if the conditions are
unmet or the Move to Game Object actions fail, the behavior returns
a Failure state.

® Attack Target

This behavior is composed of a sequence with two conditions and two
actions, which are visible in figure [5.5. Just like the Approach Target
behavior, this behavior that the blackboard contains a game object
blackboard property, which is used as the target. The behavior also uses
an optional numeric blackboard property.

First, the behavior checks to see if the target blackboard property exists
and is valid. Then tests if the currently selected target is still alive by
running the Is Target Alive condition. If both of these conditions
are met, the agents start performing an attack. If the attack has been
successful, the sequence starts executing the Wait action. The Wait
action can use the optional numeric blackboard property for the duration
or use the default value set in the editor. This creates a delay after
an attack. The delay can be used for modifying the character’s attack
speed.

50



5.2. Characters Agents

Figure 5.5: Attack Target behavior tree.

8 Check for Danger

This behavior is composed of a sequence, three conditions, and a single
action which is shown in figure |5.6 The behavior can use two optional
blackboard properties. One numeric property is the distance limit of a
character’s safe area. The other one is a string property, which holds the
name of a tag.

Figure 5.6: Check for Danger behavior tree.

First, the behavior finds the nearest game object by a given tag. This
tag can be acquired from a blackboard or be set as the default value
in the editor. If an object is found, the sequence continues to test the
conditions. The behavior checks if the found object is close to the agent
by executing the condition Is Target Close. Then we check if the target
is visible to the agent and, finally, if the target is alive. If all of these
conditions are met, the behavior returns a success state. Otherwise, it
returns a failure state.

8 Flee from Danger

This behavior is composed of a sequence, Boolean Condition, two
actions, and a Limiter decorator. The behavior requires a boolean

o1



5. Results

blackboard property, indicating if the agent should run away.

Figure 5.7: Flee from Danger behavior tree.

The behavior also uses a sub-tree task. This sub-tree contains the
common behavior Check for Danger. The sub-tree is used for finding
the closest valid game object, which is the danger source.

The behavior first checks the Boolean Condition if the agent should
run away. This task uses the boolean blackboard property. The property
can be set in the behavior tree or by another script with access to the
agent’s blackboard. In the project, this property signals that the agent is
low on health and is set by the health manager component attached to the
agent’s game object. Then the Check for Danger behavior is executed
to find the closest source of danger. Then the behavior sets changes the
movement speed for running away in the Change Movement Speed
and executes the Flee action. The Flee action also has a Limiter
decorator attached to it. This decorator ensures that the agent, after a
set number of tries, returns a failure state. This makes the agent choose
a different action from time to time (for example, attacking the danger
source) when he is supposed to be running.

® Patrol

The behavior shown in figure |5.8|is composed of a main sequence and
two other composite tasks, two conditions, and three actions. and also
a sub-tree task. This sub-tree contains a Check for Danger common
behavior. The behavior also requires a boolean blackboard property. If
the property is true, it indicates that a different behavior tree or a script
component controls the agent. This is tested in the Boolean Condition
task. If the agent is not controlled by someone else, the decision-making
process continues.

Next, the behavior executes the sub-tree with Check for Danger
behavior to test if the agent sees any enemies nearby. The result of the
sub-tree is then inverted by the Inverter decorator. Now if the agent
does not see any enemies in his vicinity, he continues his patrol.

52



5.2. Characters Agents

Figure 5.8: Patrol behavior tree.

The behavior then runs a selector. This selector is tasked with acquiring
a target position to which the agent should move. It does this by checking
if the target position blackboard property is valid and, if not, generates a
new one with the Generate New Position action. Then the behavior
moves to a sequence (the nested sequence in figure |5.8). This sequence
is tasked by moving the agent to the target position. First, it sets
the movement speed of the agent to the walking speed with the Set
Movement Speed action. Then the Move To Position action is
executed to move the player to the target position. And finally, a Wait
action is run to make the agent stay at the target position for a while.

Controlled Patrol Movement

The behavior Controlled Patrol Movement, shown in figure |5.9 works
the same way as the common behavior Patrol with two exceptions.

Figure 5.9: Controlled Patrol Movement behavior tree.

Firstly, unlike the Patrol behavior, this behavior expects to be controlled
by another entity. Because of this, the first Boolean Condition task
doesn’t have a Inverter decorator attached. And Secondly, since the
behavior expects to be controlled, it does not contain a Generate New

53



5. Results

Position action. Instead, the behavior expects that the target position
is present in the blackboard as a vector property. If the property is not
valid or doesn’t exist, the behavior always fails.

B 5.2.4 Character behavior types

As mentioned before, characters are implemented as non-player characters.
Every character contains a character script component that uses my Al
behavior tree decision-making system explained in chapter [3. To simplify the
development process and ensure consistency, every character script has been
implemented as a MonoBehavior class that inherits from a base abstract class
called BaseCharacter. This base class implements the behavior tree agent’s
interface and provides a set of shared functionalities and actions that are
common to all characters in the game. The game contains three basic types
of characters: A sword and shield character, a two-handed weapon character,
and a bow character. Each character has their own behavior defined by a
separate behavior tree. Each of these behavior trees starts with a Repeater
decorator. Without this decorator, the tree would stop when the
first composite node connected to the root node completes its execution.
The following sub-section explains the individual behaviors of the mentioned
characters.

Il Sword and Shield Character

Figure 5.10: Sword and shield character.

The sword and shield character is a melee fighter equipped with a sword
and a shield. Figure shows how this character looks in the game. As
mentioned, the character has its own behavior defined by a behavior tree
visible in figure [5.11

This character’s behavior starts with a selector to choose an appropriate
task depending on the importance. First, the selector tries to execute his
left child task. this child task contains a sequence that performs a test to
see if there are any visible enemies in the vicinity by executing the common
behavior Check for Danger.

o4



5.2. Characters Agents

Figure 5.11: Behavior tree of the sword and shield character.

If there are no nearby enemies, the agent should start to patrol. The agent
can patrol either individually by running the sub-task with a Patrol behavior
or, if another entity is controlling the character, run the Controlled Partol
Movement behavior.

If the character can see a nearby enemy, the behavior continues with another
selector task to decide what to do next. First, the character checks to see
if he should run away in the sub-task with the Flee behavior. If not, the
behavior continues with the sub-task containing Select Target behavior. If
the character already has a valid target stored as a property in the blackboard,
the selector moves the following sub-task. This sub-task first checks if the
selected target is within the attack range with the condition Close To, and if
the target is too far away, the character starts moving towards the target with
the Approach Target behavior. When the target is in the attack range,
the character runs the Attack behavior to attack the target. If the attack
is successful, the character then starts the blocking behavior by running the
Block action.

55



5. Results

B Two-handed weapon character

Figure 5.12: Behavior tree of the two-handed character.

Like the sword character, the two-handed weapon character, shown in the
figure is also a melee fighter. The character behaves to the behavior
defined by his behavior tree, which is visible in figure As we can see,
the behavior tree is very similar to the behavior tree shown in figure [5.11].
Because of this, the character behaves, in the same way, the sword and shield
character does. The only difference is that this character cannot block attacks
and holds a different implementation of the Attack action. Because of this,
the character doesn’t use the Block action after an attack.

Figure 5.13: Behavior tree of the two-handed character.

56



5.2. Characters Agents

B Bow character Character

Figure 5.14: Behavior tree of the bow character.

The bow character shown in figure is a ranged fighter. Because of
this, his behavior, defined by the behavior tree in figure |5.15| is different from
the sword and shield character or two-handed weapon character. Just like
the other characters, this character also first decides if he should pick an
appropriate action to handle a nearby enemy or to continue patrolling. It
also checks if another entity controls him to pick the correct patrol behavior
while testing with the Pre Condition decorator if the character has been
hit.

When the character spots an enemy or already has a valid attack target,
the character checks if he should run away because of low health. This is
simulated in the sub-task with a Flee behavior. Then the character checks if
he should run away because the enemy is too close.

If The target is not running away he continues to choose an attack target
in the sub-task with a Select Target behavior. When the character has a
valid attack target he performs a check to see if the given target is in attack
range. If not, the character approaches the target. When the target is in the
attack range he starts to attack the target.

o7



5. Results

Figure 5.15: Behavior tree of the bow character.

B 53 Party Controllers

Characters can also be arranged into a party or a squad. The party is imple-
mented as a separate game object with a party controller script component.
This component holds a reference to all units (characters in the party). It
is responsible for moving and arranging the party in an organized way as
shown in figure The controller also contains a variable for setting the
spacing between each character. For a character to be controlled by a party
controller, he must contain a unit controller script component.

Figure 5.16: Characters in a party.

The unit controller marks the character as being controlled. This means

o8



5.3. Party Controllers

that the character will use a Controlled Patrol Movement behavior instead
of the standard Patrol behavior. The unit controller creates and updates a
blackboard vector property. This property holds the position to which the
character should move.

There are two types of party controllers: a player party Controller and an
enemy (or AI) party Controller. The Player party controller uses the input
from a mouse to choose a new position.

The enemy party controller has a list of game objects which serve the
purpose of waypoints. It also implements the behavior tree agent’s interface.
Because of this, the controller behaves according to his behavior tree shown
in figure [5.17. This simple behavior uses a sub-tree task with a Check for
Danger behavior to test if there are any enemies nearby. The outcome of
the sub-task is then inverted by the Inverter decorator. This way, the task
returns a successful state if there are no visible enemies nearby. If there are
no enemies in the vicinity, the behavior starts to patrol. First, the behavior
moves to the current waypoint with the Move to Game Object action.
When a waypoint is reached, the party waits for a given duration with the
Wait action. After that, a new Waypoint is selected with the Get Next
Waypoint action, and the behavior starts over again.

Figure 5.17: Enemy party controller’s behavior tree.

99



60



Chapter 6

Optimization and Performance Tests

B 6.1 Optimazation

As explained in the previous chapter [5, each character has its own behavior
tree asset that needs to be executed (or updated) in order to simulate the
given behavior. When the behavior tree is executed, we need to traverse the
tree to find a new appropriate action. This creates a performance overhead.
To lower the overhead, I have tried two different approaches to calling the
update method for a behavior tree.

First, I simply called the behavior tree update method in the character’s
Update method, which is called every frame. This approach works well but
creates an unnecessary performance overhead since the tree is updated every
frame.

=
ivate IEnumerator TreeUpdate()

float interval = Random.Range(0.03f, 0.09f);
le (true)

if (!isStunned && !isDead)

{

tree.Update();

eturn new WaitForSeconds(interval);

Figure 6.1: Behavior Tree coroutine update method.

To simulate a believable character, we don’t have to update the behavior
tree as often as every frame. Instead, the tree can be updated every given
interval. This interval can be modifiable and even used as a game design tool
when creating new character behaviors (for example: to simulate a slow or
stupid character, the tree can be updated less frequently). Because of this, I
created a coroutine method within the character base class, visible in figure
6.1 Coroutine is a function that allows pausing its execution and resuming
from the same point after a condition is met. This coroutine is responsible

61



6. Optimization and Performance Tests

for updating the behavior tree.

The method first generates a random number from an interval of very small
values (the float variable interval in figure . This number is the delay
time between the behavior tree update calls. The number is generated from
a random range to spread the update calls across a period of time. To see
the difference between this approach and updating the behavior tree on every
frame, I added an option to switch between these approaches to the base
character class, and I analyzed the CPU usage with a unity profiler.

(a) Updating behavior tree with coroutine with a random interval

(b) Updating behavior tree on every frame

Figure 6.2: Unity profiler showing CPU usage during decision-making simulation
The two sub-figures, shown in figure|6.2 show the CPU usage of the behavior
tree update calls with a large number of characters present in the scene. The

sub-figure (b) shows the CPU usage while the behavior update method

62



6.2. Performance Test

has been called on every frame, and sub-figure (a) shows the usage while
the coroutine with a random interval between 0.03s and 0.09s was being used.
As we can see, the coroutine method offers a small performance improvement.

. 6.2 Performance Test

To test how much the decision-making system impacts the game’s performance,
I created a simple scene for performance testing. This will only contain a
camera, a plane object for the ground, and characters. To make the testing
easier, I created a simple script for spawning a given number of Sword and
Shield characters at the start of the game.

I tested how the system works with 100 (figure and 1000 (figure
characters. Every time I spawned, half of the characters were marked with
the tag "Player" (blue characters in figures and and the other half
marked with the tag "Enemy" (red characters in figures and . Because
of this, the characters can engage in combat.

Figure 6.3: Performance test with 100 characters

63



6. Optimization and Performance Tests

Figure 6.4: Performance test with 1000 characters

Figures [6.3| and [6.4] shows a screenshot from the scene and a unity profiler
window. The unity profiler shows the CPU usage of script components (dark
blue color) and the usage of the behavior tree update call (bright blue color).

As we can see in figure the AI system does not have a significant
impact on the overall performance of the game. On the other hand, figure 6.4
shows that the system can impact performance when a very large number of
characters is present within the game compared to other script components.
This is likely caused by actions that require finding all characters in the scene
(for example, the Select Closest By Tag action). Figure shows the
overall CPU usage of the behavior tree update calls along with rendering,
physics simulation, and animation handling. Compared to the other parts of
CPU usage, the Al system can still impact the overall performance of the
game slightly.

64



6.2. Performance Test

Figure 6.5: Profiler screenshot from a test with 1000 characters

65



66



Chapter 7

Conclusion

In this project, I successfully researched several possible techniques used for
simulating the decision-making of Al characters in games. In unity, I created
an Al decision-making system with behavior trees. This system enables users
to create and modify behavior trees in Unity and later use them in a game.
To show how the system can be used, I created a game project to showcase
the capabilities of the system.

In the following sections, I will review and summarize the work done on
the project and go through possible improvements for the system.

B 7.1 What Was Achieved

I have successfully created a tool for modeling and storing behaviors for
Al characters within games. To use this tool, the user first has to create a
behavior tree asset. This asset stores the model of the behavior tree. To
edit or modify this asset, the user has to use the created custom behavior
tree editor. In the editor, the user can create new nodes, connect existing
nodes, or modify the properties of individual nodes through the inspector.
The editor also contains a blackboard view used to display, create and modify
the values of the properties within the agent’s blackboard.

The created behavior tree asset can then be used in the agent script. The
agent is connected with the behavior tree by an interface. This way, each
new type of agent can be easily adapted for many different situations. It also
means that two agents can share the same structure of behavior and have
different implementations for each agent.

Users can also edit the currently active behavior trees in the editor even
while the game is running. The editor also works as a visualization tool
during runtime. While the game runs, each node shows its current state with
different color-coded borders.

To showcase the possibilities of the behavior tree system, I created a game
project. In the project, I created several different common behaviors that are
often used in games. These common behaviors were then used to create three
more complex behaviors. To use these complex behaviors, I created three
types of characters (agents). Each character uses its own behavior tree for
decision-making.

67



7. Conclusion

Lastly, I tested the performance of the decision-making system with varying
numbers of characters present in the scene.

. 7.2 Possible Improvements

There are still things that could be improved in my decision-making system.

The editor is missing an easy way of creating new actions and more user-
friendly functions such as copy and paste. Also, the editor could use a better
way of displaying multiple behavior trees at once and an option for hiding
and showing individual sub-trees.

The behavior tree itself can also still be improved. The tree still can have
problems with simulating interrupting behavior (i.e., moments when we want
to stop with the current task and look for a different one). It is possible
to implement this behavior with a decorator task, but the design can be
challenging in larger, very complex behaviors.

The decision-making system can also still be more optimized. For example,
the performance could be improved by using a more event-driven approach,
where tasks that require a larger amount of time to execute could only send
a message with the task result instead of constantly checking the state of the
task with the update/tick method.

68



[7]

8]

[9]

Bibliography

Tan Millington, John Funge. Artificial Intelligence for Games, 2nd edition.
CRCR Press, 2009.

Petter Ogren. Increasing Modularity of UAV Control Systems using Com-
puter Game Behavior Trees. Alaa guidance, navigation, and control con-
ference, 2012.

Colledanchise, M., and Ogren, P. (2018). Behavior trees in robotics and
Al: An introduction. CRC Press.

Debby Nirwan. Hierarchical Finite State Machine for Al Acting En-
gine. https://towardsdatascience.com /hierarchical-finite-state-machine-
[for-ai-acting-engine-9b24efc66{2.

Marcotte, R., and Hamilton, H. J. (2017). Behavior trees for modeling
artificial intelligence in games: A tutorial. The Computer Games Journal

Colledanchise, M., Parasuraman, R., and Ogren, P. (2018). Learning of
behavior trees for autonomous agents. IEEE Transactions on Games,

Game Developer. Behavior trees for Al: How they work.
https://www.gamedeveloper.com/programming/behavior-trees-for- |
lai-how-they-workl

Unity Manual. UI toolkit https://docs.unity3d.com/Manual /UIElements.html]

Unity Manual. Immediate Mode Graphical User Interface System Basics.
https://docs.unity3d.com/Manual/GUIScriptingGuide.html]

[10] Unity Manual. Scriptable objects https://docs.unity3d.com/Manual/class:

[ScriptableObject.html|

[11] NPC Wikipedia. https://en.wikipedia.org/wiki/Non-player.haracter)

[12] David M. Mount. Game Programming Lecture Notes.

[13] Data Conomy. Artificial intelligence games: What is Al in gaming?.

https://dataconomy.com/2022/04 /29 /artificial-intelligence-games/|

69


https://towardsdatascience.com/hierarchical-finite-state-machine-for-ai-acting-engine-9b24efc66f2
https://towardsdatascience.com/hierarchical-finite-state-machine-for-ai-acting-engine-9b24efc66f2
https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work
https://www.gamedeveloper.com/programming/behavior-trees-for-ai-how-they-work
https://docs.unity3d.com/Manual/UIElements.html
https://docs.unity3d.com/Manual/GUIScriptingGuide.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://docs.unity3d.com/Manual/class-ScriptableObject.html
https://en.wikipedia.org/wiki/Non-player_character
https://dataconomy.com/2022/04/29/artificial-intelligence-games/

7. Conclusion

[14] PC Gamer. GDC 2013: The Al tricks behind XCOM, Assassins Creed 3

and Warframe. https://www.pcgamer.com/gdc-2013-the-ai-tricks-behind+
xcom-assassins-creed-3-and-warframe/ |

[15] Arts Management and Technology Laboratory. How AI Is Used
i Video Games: The Sims 4 and Red Dead Redemption
2. https://amt-lab.org/blog/2023 /4 /how-ai-is-used-in-video-games-the;
[sims-4-and-red-dead-redemption-2|

70


https://www.pcgamer.com/gdc-2013-the-ai-tricks-behind-xcom-assassins-creed-3-and-warframe/ 
https://www.pcgamer.com/gdc-2013-the-ai-tricks-behind-xcom-assassins-creed-3-and-warframe/ 
https://amt-lab.org/blog/2023/4/how-ai-is-used-in-video-games-the-sims-4-and-red-dead-redemption-2
https://amt-lab.org/blog/2023/4/how-ai-is-used-in-video-games-the-sims-4-and-red-dead-redemption-2

	Introduction
	Non-player Character
	Important Games in History of Game AI
	Aim of this thesis

	Decision Making Techniques
	Decision Trees
	Structure of Decision Trees
	Advantages and Disadvantages of Decision Trees
	The Algorithm of Decision Trees

	State Machines
	Structure of State Machines
	State Machine Algorithm
	Advantages and Disadvantages of State Machines
	Hierarchical State Machines

	Behavior Trees
	Types of Tasks in a Basic Behavior Tree
	Common Types of Decorators
	Structure of Behavior Trees
	Blackboards


	Behavior Trees in Unity
	Scriptable Objects
	Behavior Tree Asset
	Blackboard

	Task Nodes
	Composite Nodes
	Action Nodes
	Decorator Nodes
	Sub-tree Node
	Root Node

	Behavior Tree Agent

	Behavior Tree Editor
	UI Toolkit
	Custom Editor
	Blackboard View

	Results
	Camera movement
	Characters Agents
	Health manager
	Character Actions and Conditions
	Common Behavior
	Character behavior types

	Party Controllers

	Optimization and Performance Tests
	Optimazation
	Performance Test

	Conclusion
	What Was Achieved
	Possible Improvements

	Bibliography

