
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Graphics and Interaction

Interaction of a computing environment
with a 3D scene

Tereza Hlavová

Supervisor: Ing. Jan Houška
Field of study: Open Informatics
Subfield: Computer Games and Graphics
May 2023



ii



BACHELOR‘S THESIS ASSIGNMENT 

I. Personal and study details 

492278 Personal ID number:  Hlavová  Tereza Student's name: 

Faculty of Electrical Engineering Faculty / Institute: 

Department / Institute:    Department of Computer Graphics and Interaction 

Open Informatics Study program: 

Computer Games and Graphics Specialisation: 

II. Bachelor’s thesis details 

Bachelor’s thesis title in English: 

Interaction of the MATLAB computing environment with 3D scene  

Bachelor’s thesis title in Czech: 

Interakce výpočetního prostředí MATLAB s 3D scénou  

Guidelines: 

Familiarize with the current state of open formats for 3D scene description, with an emphasis on formats that are 
internationally standardized. Compare available open-source implementations of these formats in terms of rendering 
quality and speed, availability of advanced features (collision detection, reflections, physics, ...), and licensing terms. 
Explore the possibilities of two-way transfer of information (data and events) between 3D scene and another environment. 
Focus on communication with the MATLAB computing environment and the Simulink simulation tool. Investigate the current 
implementation of 3D scene handling in the Simulink 3D Animation tool and suggest modifications to better support open 
standards and increase rendering quality and speed. Implement the suggested modifications and evaluate their impact 
on rendering performance. To evaluate rendering quality and performance improvements, use the shipping examples from 
the Simulink 3D Animation tool and other virtual scenes supplied by thesis supervisor. 

Bibliography / sources: 

S. Marschner and P. Shirley: Fundamentals of Computer Graphics, 4th edition, CRC Press, 2016. 
M. Pharr, W. Jakob, G. Humphreys: Physically Based Rendering: From Theory to Implementation, 3rd edition, publicly 
online at https://pbr-book.org 
Extensible 3D (X3D) version 3.3, ISO/IEC 19775-1:2013, https://www.web3d.org/documents/specifications/19775-1/V3.3 
Extensible 3D (X3D) version 4.0, Committee Draft, https://www.web3d.org/documents/specifications/19775-1/V4.0 
glTF™ 2.0 Specification https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html 
x3dom https://doc.x3dom.org 
X_ITE X3D Browser https://create3000.github.io/x_ite 
Bullet Collision Detection & Physics Library https://pybullet.org/Bullet/BulletFull/annotated.html 

Name and workplace of bachelor’s thesis supervisor: 

Ing. Jan Houška    HUMUSOFT s.r.o.  

Name and workplace of second bachelor’s thesis supervisor or consultant: 

   

Deadline for bachelor thesis submission:   26.05.2023 Date of bachelor’s thesis assignment:   17.02.2023 

Assignment valid until:   22.09.2024 

___________________________ ___________________________ ___________________________ 
prof. Mgr. Petr Páta, Ph.D. 

Dean’s signature 

Head of department’s signature Ing. Jan Houška 
Supervisor’s signature 

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



III. Assignment receipt 
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce her thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



Acknowledgements
I want to thank my family and friends for
support during my studies and my super-
visor Ing. Jan Houška for consultations
and advice for this work.

Declaration
I declare that I have made this work on
my own and that I have specified all used
literature.

24. 5. 2023, Prague.

v



Abstract
In the field of 3D graphics, various for-
mats describing the 3D scene have been
created and various renderers capable of
working with such formats have been pro-
duced, all with different capabilities in
terms of rendering quality, object physics
and performance.

The goal of this work is to examine
current internationally standardized for-
mats describing the 3D scene, compare
3D graphics libraries that can visualize
the scene with an emphasis on their use
in a MATLAB tool Simulink 3D Anima-
tion and overview the current state of the
software implementation, then provide an
outline of changes to the software which
would lead to overall better visual quality,
object physics simulation capabilities and
speed, and implement proposed modifica-
tions.

Keywords: 3D scene, physical
simulation, physically based rendering,
X3DOM, X_ite, Three.js, Simulink 3D
Animation

Supervisor: Ing. Jan Houška

Abstrakt
V oboru 3D grafiky vzniklo nespočet růz-
ných formátů pro popis 3D scény a po-
dobně tak i mnoho 3D grafických kniho-
ven s nimi pracujících, jejichž schopnosti
s ohledem na kvalitu vykresleného obrazu,
fyziku objektů a výkon jsou různorodé.

Cílem této práce je prostudovat existu-
jící mezinárodně standardizované formáty
pro popis 3D scény, porovnat 3D grafické
knihovny, které dokáží takto reprezento-
vanou scénu zobrazit, s důrazem na je-
jich možné použití v nástroji Simulink 3D
Animation pro software MATLAB, na-
studovat nynější implementaci tohoto ná-
stroje, poté poskytnout návrh jeho úprav
pro zlepšení visuální kvality, schopnosti
simulace fyziky objektů a vyšší rychlost, a
následně navržené změny implementovat.

Klíčová slova: 3D scéna, fyzikální
simulace, physically based rendering,
X3DOM, X_ite, Three.js, Simulink 3D
Animation

Překlad názvu: Interakce výpočetního
prostředí s 3D scénou

vi



Contents
1 Introduction 1
2 Standardized Formats for 3D
Scene Representation 3
2.1 VRML . . . . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Concepts . . . . . . . . . . . . . . . . . . . 3
2.1.2 Rendering . . . . . . . . . . . . . . . . . . 6
2.1.3 Collision detection and physics 6

2.2 X3D3.3 . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.1 Rendering . . . . . . . . . . . . . . . . . . 7
2.2.2 Collision detection and physics 7

2.3 X3D4.0 . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Theory . . . . . . . . . . . . . . . . . . . . 8
2.3.2 Rendering . . . . . . . . . . . . . . . . . 10

2.4 glTF . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Rendering . . . . . . . . . . . . . . . . . 11
2.4.2 Collision detection and physics 11

3 3D Graphics Libraries 13
3.1 X3DOM . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Rendering . . . . . . . . . . . . . . . . . 13
3.1.2 Physics . . . . . . . . . . . . . . . . . . . 17
3.1.3 Communication with External

Software . . . . . . . . . . . . . . . . . . . . . . 19
3.1.4 Licence . . . . . . . . . . . . . . . . . . . 20

3.2 X_ite . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 Rendering . . . . . . . . . . . . . . . . . 20
3.2.2 Physics . . . . . . . . . . . . . . . . . . . 22
3.2.3 Communication with External

Software . . . . . . . . . . . . . . . . . . . . . . 24
3.2.4 Licence . . . . . . . . . . . . . . . . . . . 24

3.3 Three.js . . . . . . . . . . . . . . . . . . . . . 24
3.3.1 Rendering . . . . . . . . . . . . . . . . . 24
3.3.2 Physics . . . . . . . . . . . . . . . . . . . 26
3.3.3 Communication with External

Software . . . . . . . . . . . . . . . . . . . . . . 28
3.3.4 Licence . . . . . . . . . . . . . . . . . . . 28

4 Simulink 3D Animation 29
4.1 Usage of Simulink 3D Animation 29
4.2 Current Implementation . . . . . . . 30

4.2.1 MATLAB Interface . . . . . . . . 31
4.2.2 Internal Scene . . . . . . . . . . . . . 31
4.2.3 Canvases . . . . . . . . . . . . . . . . . . 32
4.2.4 Modification of the scene and

canvas properties . . . . . . . . . . . . . . 33

5 Suggested Modifications and
Implementation 37
5.1 Supported nodes . . . . . . . . . . . . . . 37

5.1.1 Implementation . . . . . . . . . . . . 37
5.2 Communication protocol . . . . . . . 38

5.2.1 Software architecture changes 39
5.2.2 Communication of canvas with

HTML UI component . . . . . . . . . . 39
5.2.3 Data format . . . . . . . . . . . . . . . 40

5.3 Renderer . . . . . . . . . . . . . . . . . . . . 41
5.3.1 Scene export . . . . . . . . . . . . . . 42
5.3.2 Scene import . . . . . . . . . . . . . . 45
5.3.3 Navigation . . . . . . . . . . . . . . . . 53
5.3.4 User Interaction . . . . . . . . . . . 53

6 Results 55
6.1 Communication Protocol . . . . . . 55
6.2 Scene export and import . . . . . . . 56
6.3 X3D 4.0 standard support . . . . . 56
6.4 Collision detection . . . . . . . . . . . . 58
6.5 Scene modification and interaction 59
6.6 Comparison with Java based

renderer . . . . . . . . . . . . . . . . . . . . . . . 60
7 Conclusion 63
7.1 Future work . . . . . . . . . . . . . . . . . . 63
Bibliography 65
A Abbreviations 67
B Attached files index 69

vii



Figures
1.1 Simulink 3D Animation used to

visualize a simulation in a 3D scene
with a new renderer. . . . . . . . . . . . . . 1

3.1 The official example of a
CommonSurfaceShader node of
X3DOM library showing diffuse,
specular, shininess and normal
textures applied to a model. . . . . . . 14

3.2 Roughness and metallic factors
influence on a material in X3DOM. 15

3.3 Usage of PBR textures shown on
two levels of detail of the same X3D
model with X3DOM library. . . . . . 16

3.4 Two levels of detail of the same
glTF model added to a scene and
shown with X3DOM. . . . . . . . . . . . . 16

3.5 glTF model shown in X3DOM
with issues in shadow rendering. . . 17

3.6 Wrongly created convex hull on a
mesh during testing of physics in
X3DOM. . . . . . . . . . . . . . . . . . . . . . . 19

3.7 Collision detection between a
sphere and a non-convex object in
X3DOM. . . . . . . . . . . . . . . . . . . . . . . 19

3.8 Usage of SingleAxisHingeJoint
node in X3DOM. . . . . . . . . . . . . . . . 20

3.9 Roughness and metallic values
influence on a material in X_ite. . . 21

3.10 Usage of PBR textures shown on
an X3D model with X_ite library. 21

3.11 Static tilted platform collisions
with basic shapes in X_ite. . . . . . . 22

3.12 Example of non-convex shape
collision with basic shapes in X_ite. 23

3.13 Usage of SingleAxisHingeJoint in
X_ite. . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.14 Roughness and metallic values
influence on a material in Three.js. 25

3.15 Two levels of detail of the same
glTF model added to a scene and
shown with Three.js. . . . . . . . . . . . . 25

3.16 Static tilted platform collision
with basic shapes in Three.js. . . . . 26

3.17 Multiple static tilted platforms
collide with basic sphere in Three.js. 27

3.18 Bowl created out of many tilted
platforms collides with hundreds of
basic shapes in Three.js. . . . . . . . . . 27

3.19 Swinging pendulum imitation
with btHingeConstraint class in
Three.js. . . . . . . . . . . . . . . . . . . . . . . . 28

4.1 Simplified outline of Simulink 3D
Animation implementation. . . . . . . 30

4.2 Internal scene class hierarchy
design shown on an example. . . . . . 32

4.3 Modification of scene and canvas
properties propagation in Java based
Simulink 3D Animation. . . . . . . . . . 34

4.4 Modification of scene and canvas
properties propagation in
experimental Simulink 3D
Animation. . . . . . . . . . . . . . . . . . . . . . 35

5.1 Modification of scene and canvas
properties propagation in
experimental Simulink 3D Animation,
newly implemented. . . . . . . . . . . . . . 39

5.2 Simulink 3D Animation vrbounce
official example. . . . . . . . . . . . . . . . . 49

6.1 Scene from the official example of
vr_octavia rendered with
experimental viewer before and after
the implementation. . . . . . . . . . . . . . 57

6.2 Car low-resolution X3D model
with PBR textures shown in the new
Simulink 3D Animation viewer. . . . 58

6.3 Simulink 3D Animation vrmaglev
official example shown in the new
viewer. . . . . . . . . . . . . . . . . . . . . . . . . 58

6.4 Simulink 3D Animation vrmaze
official example. . . . . . . . . . . . . . . . . 59

6.5 Simulink 3D Animation
vrcollisions_lidar official example. 59

viii



Tables
5.1 Table presenting the mapping how

X3D nodes are implemented using
Three.js . . . . . . . . . . . . . . . . . . . . . . . 52

6.1 Results of three stress test types
performed on the experimental
version of Simulink 3D Animation 56

6.2 Results of tests done on the main
and the experimental version of
Simulink 3D Animation comparing
performance during a simulation. . 61

ix





Chapter 1
Introduction

In the last 50 years or so, 3D graphics have come a very long way with new
breathtaking improvements in visuals promised every year. It is almost hard
to keep up with, as with most branches of IT. Though one trend has still
stayed and that is a desire for achieving photo-realism in rendering. Apart
from different directions being chosen for artistic reasons, photo-realistic shad-
ing/illumination, realistically behaving physics and collisions are wanted even
for highly stylized objects in the 3D scene. A decent level of photo-realism
has already been achieved, but there is a catch and that would be achieving
such results in a reasonable time.

The goal of this work is to look at existing file formats describing the 3D
scene that are standardized worldwide. Then to go over 3D graphics libraries
capable of working with these file formats and compare their rendering quality
and speed, collision detection and object physics implementation, their license
types and their capabilities in terms of communication with an external
software, mainly with the computing environment MATLAB and simulation
tool Simulink. Then, after studying the current implementation of a tool
Simulink 3D Animation, which can be seen in figure 1.1, depending on the
results of the 3D graphics libraries comparison, and also while taking the
current state of the tool into account, changes to the software enhancing its
rendering quality and performance will be proposed and implemented.

Figure 1.1: Simulink 3D Animation, a tool of MATLAB and Simulink, with a
newly implemented renderer, used to visualize a simulation in a 3D scene.

1



1. Introduction .....................................
This work is divided into 7 chapters. Chapter 2 introduces the file formats

and their standards. Chapter 3 deals with the comparison between chosen
3D graphics libraries. Then, chapter 4 explores the current implementation
of Simulink 3D Animation and in chapter 5 modifications to it are proposed
and their implementation is described. The results are presented in chapter
6. Finally, chapter 7 summarizes all work done and proposes future work on
the project.

2



Chapter 2
Standardized Formats for 3D Scene
Representation

This chapter will go over format specifications for 3D scene representation. For
long-term usability and compatibility, it will be focused on format specifica-
tions standardized by the International Organization for Standardization and
the International Electrotechnical Commission (ISO/IEC), which currently
are VRML, X3D and glTF formats.

2.1 VRML

VRML, a shortened term for The Virtual Reality Modeling Language (before
1995 known as Virtual Reality Markup Language), is a declarative file format
describing 3D objects and scenes. Its design allows a 3D content editing
software to implement tools for the creation and editing of VRML files, to
combine dynamic 3D objects of predefined or new object types and to compose
them in a 3D scene. It also makes compatibility with a wide range of systems
and working with large scenes possible.[1]

VRML was designed by the Web3D Consortium, previously known as the
VRML Consortium. The first version of the specification was finished in
1994. It was then followed by VRML2.0 in 1996 with its draft submitted
for standardization. Next year, Part 1 of VRML97 was accepted as an
international standard by ISO/IEC. Part 2 of the specification that focuses
on describing communication of an external environment with the VRML
scene through the VRML event model became part of the standard in 2004.

2.1.1 Concepts

A VRML file represents a 3D scene and its behavior through a header, a
scene graph and event routing. The scene graph is a directed acyclic graph
of nodes. It describes a transformation hierarchy and specifies its behavior
under an event system.

A node is an abstraction of a real-life object or concept. It contains a
type name, a set of events it can generate or receive, an implementation, and

3



2. Standardized Formats for 3D Scene Representation ....................
a set of properties and attributes called fields, plus optionally also a name.
A field can be so-called single-valued, containing a single value, such as a
numeric value, whole image or even another node. Multi-valued fields contain
an ordered list of values. If a node’s field contains another node or nodes, a
descendant and ancestor relationship is created between them.

VRML files are to be viewed by a VRML browser which is a computer
program capable of presenting their content and allowing interaction with
the 3D scenes through UI, user interface.

An example of how a red ball object, scaled up uniformly to the value of
1.5, and positioned 20 base units on a Y axis of the global coordinate system,
would be represented in a VRML file, can be seen on the following snippet:

DEF Ball Transform {
translation 0 20 0
scale 1.5 1.5 1.5
children Shape {

appearance Appearance {
material DEF Ball_material Material {

diffuseColor 1 0 0
}

}
geometry Sphere {
}

}
}

Prototypes

Although VRML specification offers a wide range of built-in node types, user
is able to define new node types through prototypes. A prototype is defined
by its own fields and one or more nodes, which are copied and inserted in all
places where the prototype is instantiated in the scene, with fields filled by
either default values or those passed to it upon instantiation.

DEF/USE Statements

A DEF keyword may be used to give a node a name, giving a user a tool
for reusing the node with a USE keyword or referencing the node in event
routing. When a USE keyword with an already defined name is present in
the scene graph, the original node with the DEF keyword is not copied, but
rather gains one more ancestor and is reinserted at a new place in the scene
graph.

Grouping nodes

A node that contains a field of multiple so-called children nodes is considered a
grouping node and a parent to all its children nodes if such field is non-empty.

4



....................................... 2.1. VRML

Grouping nodes partake in the creation of a transformation hierarchy of the
3D scene, which affects most of the node types of the VRML specification.
Built-in grouping nodes of VRML specification are: Anchor, Billboard,
Collision, Group, Inline, LOD, Switch and Transform nodes.

A grouping node’s transformation defines a local coordinate system of its
children, and does so relative to its ancestors’ coordinate systems. A 3D
scene is usually built from various combinations of grouping nodes, mainly
Transform nodes, which provide the user the ability to directly modify
the transformation matrix applied to its children through its attributes of
translation, rotation and scale.

Light sources

VRML standard defines PointLight, SpotLight and DirectionalLight
nodes. They too are influenced by the transformation hierarchy and thus
their lighting properties are considered in their local coordinate systems.

Shapes and geometry

Virtual 3D objects are mostly represented by so-called Shape nodes. They
would usually contain a node describing the geometry of the object and an
Appearance node, under which a Material node and/or texture node would
be described.

VRML standard offers the following geometry nodes: Box, Cone, Cylin-
der, ElevationGrid, Extrusion, IndexedFaceSet, IndexedLineSet,
PointSet, Sphere and Text node.

Defined texture nodes - ImageTexture, PixelTexture and MovieTex-
ture nodes are applied to the shape based on a TextureTransform node if
specified under Appearance.

VRML standard then specifies how the finished object’s appearance should
be rendered, taking its geometry, its appearance, and surrounding light nodes
in the scene into account.

Viewpoints

Viewpoint nodes in the scene are influenced by the transformation hierarchy
as well. When a Viewpoint node is bound, a scene camera gets parented
by it and the node defines the camera’s local coordinate system in which the
camera’s movement may be realized.

Events

Events can serve as a link of nodes with other nodes making communication
through messages via routes possible. Nodes can create and receive events if
such behavior is specified for the node type.

5



2. Standardized Formats for 3D Scene Representation ....................
Events can be also generated and received by Script nodes, which are not

a part of the transformation hierarchy but can indirectly influence it through
the events.

The event model and delivery of events should be handled by the VRML
browser.

Sensors

Interaction with the user can be enabled through sensor nodes. Upon user’s
clicks, device movement or even movement in space, events are produced by
the sensors for further processing in other nodes or scripts.

2.1.2 Rendering

VRML specification does not include the name of the lighting model used,
but what it does describe corresponds to Blinn-Phong lighting model almost
perfectly with minimal deviations. VRML does not specify anything about
shadow casting or shading.

VRML does not offer an in-built solution for normal mapping or any other
mapping outside of diffuse texturing.

2.1.3 Collision detection and physics

VRML describes only very basic collision detection between objects and the
viewer’s avatar. Upon such collision, the avatar’s position should be influenced
accurately. Terrain following implementation is hinted at there, but there is
no mention of rigid body physics or even collision detection between defined
objects.

2.2 X3D3.3

VRML standard has since been superseded by X3D, a short form for "Ex-
tensible 3D", and stays as a direct subset of X3D. The latest currently
standardized version is version 3.3, which was finished in 2015. It improves
upon VRML with new features, advanced application programmer interfaces,
additional data encoding formats, stricter conformance, and a componentized
architecture that allows for a modular approach to supporting the standard.[2]

X3D introduces the concept of abstract nodes, seemingly simplifying node
type definition by creating an inheritance hierarchy. Thus, creating new node
types is made easier when one can derive them from abstract nodes.

X3D specification defines distinct sub-specifications called Profiles. Choos-
ing one of them, an application or an X3D browser can limit which features
it supports.

6



....................................... 2.2. X3D3.3

As previously shown with the VRML file format, the same example red
ball object, now represented by X3D XML file format, can be seen on the
snippet below:

<Transform DEF=’Ball’ translation=’0 20 0’ scale=’1.5 1.5 1.5’>
<Shape>

<Appearance>
<Material DEF=’Ball_material’ diffuseColor=’1 0 0’>
</Material>

</Appearance>
<Sphere>
</Sphere>

</Shape>
</Transform>

2.2.1 Rendering

Like in VRML, the illumination model described for lighting objects is again
Blinn-Phong model. There is still no mention of casting shadows. X3D
3.3 does however support multiple textures on one object with blending
specifications needed. This does allow the use of pre-calculated lightmaps.
However, a direct specification of normal maps or textures for specular
reflection is still not included. Their use can be achieved with a custom
shader node that for example X3DOM specifies and offers to its users.

2.2.2 Collision detection and physics

In the X3D 3.3 specification, a whole new component Rigid body physics is
dedicated to collision detection and object physics. A physics model, if used,
is added to the execution model of the X3D browser at the end of every frame.

To ensure the physical simulation works correctly, additional nodes must
be provided. Apart from the visual itself contained within a Shape node,
CollidableShape node is needed as well as a RigidBody node.

CollidableShape node should serve as a link between the simulation and
the rendering. It contains a geometry proxy, a Shape node. The Shape
node should represent the colliding object and allow the physics model to
move it.

In the geometry field, RigidBody node describes attributes of its Coll-
idableShape that are needed for simulations of the physics model. Most
important is mass, whether to use gravity or not, damping factor, whether
it is fixed or not, which forces it is influenced by, and what are its starting
properties of linear and angular velocity. RigidBody nodes should be placed
inside a RigidBodyCollection node, the content of which is not rendered. It
is implied that the geometry used for physics might be less detailed than the
one used for rendering. The RigidBodyCollection node may also include

7



2. Standardized Formats for 3D Scene Representation ....................
joints.

Joints link together two bodies and create constraints in their movement
relative to each other. Each joint usually has a possible range of motion
defined in terms of linear distance and radial angles.

Collision detection is also used in a Picking Component and Pointing
Device Component which both specify various sensor nodes with ray and
shape casting abilities. Most notable for this work is a LinePickSensor
node from the Picking Component. It is to be inserted in the scene graph
with line geometry defining the rays to be cast and a shape or a grouping
node with which the intersections of the rays shall be tested. Every time its
segment does intersect with the given group, it generates and isActive event
with additional information, mainly the nodes it hit and the point in space it
hit in.

2.3 X3D4.0

New X3D standard version 4.0 currently exists as a draft. It is under review
to be added to international standards as well. Although at this moment its
specifications might not yet be stable, its additions and changes might be
crucial for this and future work.

2.3.1 Theory

X3D 4.0 includes more lighting models than the previous versions. Possibly
the most important addition is the inclusion of physically based rendering,
PBR.

It also introduces image-based lighting and shadow casting.

Physically based rendering

Physically based rendering describes a method of shading and rendering that
aims to represent an interaction between light and a surface of an object more
accurately than empirical local illumination methods. [4] Under such model,
objects with defined materials should be rendered to look consistent under
any lighting setup in the scene.

For a lighting model to be considered physically based, three conditions
have to be met:. the model must comply with the energy conservation law. it must be based on the microfacet theory. its used BRDF, Bidirectional Reflectance Distribution Function, must

also be physically based.

8



....................................... 2.3. X3D4.0

For every point of an object’s surface, the BRDF takes as parameters the
direction of incoming light, the direction of the camera in the scene, the
normal of the surface in the given point, and material parameters in the point
- the roughness of the surface.

Outgoing light from the object’s surface must never exceed the amount of
light that illuminates it, except for light emission. Upon hitting the surface,
light can reflect, refract, or do a combination of both. Refracted part of
the light is either absorbed or will scatter, resulting in getting absorbed
later, re-emerging through the surface, or passing through the object and
re-emerging there.

Re-emerged light defines what’s considered a diffuse color. PBR introduces
a metallic parameter, which approximates the surface’s behavior based on the
conductor-insulant differentiation. Metallic objects absorb all of the refracted
light.

One of the PBR illumination models is Cook-Torrence illumination model,
which uses the following reflectance equation:

C⃗ = kdC⃗D + ksC⃗Cook−T orrence (2.1)

C⃗D = C⃗b

π
C⃗L(L⃗N⃗) (2.2)

C⃗Cook−T orrence = 1
π

C⃗L
DGF

(V⃗ N⃗)(L⃗N⃗)
(2.3)

C⃗, a color resulting from a ray traced from one light source, is a sum of
refracted diffuse color, C⃗D, and reflected specular color, C⃗Cook−T orrence. Sum
of parameters kd and ks cannot be greater than 1. C⃗b is the base color of the
material, C⃗L represents the color of the light, vecV and L⃗ are the directions
of view vector and light ray and N⃗ is the normal vector.

D stands for a distribution function, which models the roughness of the
surface, G is a geometry function which modeling shadowing and masking
of surface microfacets and F is a Fresnel function which models the Fresnel
effect.

Image based lighting

Image-based lighting, or IBL for short, is a method of illuminating the 3D
scene which treats an environment cube texture map as a light source. It
usually specifies both diffuse indirect lighting and specular indirect lighting
for the scene.

The diffuse indirect lighting map is usually pre-computed with the use of a
convolution method. During the computation of the reflectance equation, this
map gets sampled as an environment map and its sampled point is treated as
a light source specifying the diffuse portion of incoming light.

9



2. Standardized Formats for 3D Scene Representation ....................
Meanwhile, the indirect specular map gets applied upon computation of a

reflected eye vector. The value of the indirect specular map at the point of
direction of this reflected vector is then treated as a specular light source.

Shadow casting

Cast shadows in the scene are a result of a light ray being occluded by an
object from reaching the surface of another object. A very common technique
for rendering shadows is shadow mapping

The idea behind shadow mapping is to have a so-called shadow camera
in place of a light source - an orthographic camera for directional light, a
perspective camera for a spotlight, and 6 perspective cameras for point light.
During a so-called shadow pass of rendering, a depth map is generated from
the used shadow camera. Then, during the rendering using the scene camera,
now referred to as a lighting pass, every fragment is tested whether its depth
value is bigger than one in the generated depth map. If so, the fragment is in
shadow and this light does not illuminate it.

2.3.2 Rendering

Material node has been expanded with the possibilities to specify not only
diffuseTexture, but also ambientTexture, emissiveTexture, normalTexture, oc-
clusionTexture, shininessTexture and specularTexture.

Apart from the Material node, PhysicalMaterial can be used in its place.
Its attributes consist of baseColor, emissiveColor, normalScale, roughness,
metallic, occlusionStrength, and textures with texture mappings for all of
the above. Properties roughness and metallic are the only exception to the
textures, as they share the same texture file, but read different color channels.

Upon adding a PhysicalMaterial node to an object’s appearance, the
object is rendered with PBR. Otherwise, without it, Blinn-Phong lighting
model is used.

This standard also touches on the topic of cast shadows. Rendering shadows
is now possible with parameters newly added to light sources. Those are
shadows and shadowIntensity, together with a Shape node’s new parameter
castShadow. Details of shadow rendering are not specified and are left up to
an X3D browser’s implementation.

And finally, a new light source has been added - the EnvironmentLight
node. It defines both specular indirect light cubemap and diffuse indirect
light cubemap.

10



........................................ 2.4. glTF

2.4 glTF

In 2022, a new format became a part of the ISO standard and that would be
glTF™ 2.0, a short form of "Graphics Language Transmission Format". It
was standardized as a "specification for the efficient transmission and loading
of 3D models" and developed by Khronos® Group. The standard describes a
format represented in JavaScript Object Notation format, JSON. glTF asset
in JSON might also require binary files containing geometry, animations, and
other buffer-based data, and textures in image formats. glTF files are not
designed to be human-readable but are developer friendly.[6]

A glTF asset file might contain more than one scene with its individual
root nodes and its own node hierarchy with a parent-child relationship similar
to VRML/X3D standard. A mesh can have a material property and such
material can include various texture properties.

2.4.1 Rendering

In contrast with VRML/X3D, the glTF standard relies on PBR only, allowing
the user to specify values or textures of base color, roughness property, metallic
property, emissive property, occlusion, and normal property. Roughness and
metallic properties are again contained within one image but in separate color
channels.

Lights specification is a part of a glTF extension KHR Lights Punctual.
An image-based lights’ specification like the one in X3D 4.0 is to be found in
an EXT Lights Image Based extension.

How exactly the scene gets rendered is up to the implementation as long
as it follows the rules of mixing BRDFs as defined in this standard. In other
words, if rendering speed is preferred, accurate simulation of light transport
is not required.

2.4.2 Collision detection and physics

This specification and its extensions currently do not examine the problematics
of physical simulations.
On the other hand the standard can contain data for other features like figure
data needed for animations, and animations themselves.

11



12



Chapter 3
3D Graphics Libraries

This chapter will focus on three main open-source 3D graphics libraries:
X3DOM, which is capable of presenting X3D files and including glTF2.0 files
into the scene, X_ite, which can present X3D files, and Three.js, which has
an official glTF loader available.

3.1 X3DOM

X3DOM is an open-source framework and runtime for 3D graphics on the
Web. It is very easily integrated into a webpage by simply adding the desired
version of X3DOM JavaScript file into the webpage and writing the scene
directly into the HTML markup - inside <X3D> element.[7]

While X3D standards already brought a concept of Profiles that limit the
supported Components and nodes described in them, X3DOM declared a
new profile. This new HTML Profile extends the X3D-defined Interchange
Profile. And for the purpose of an easier implementation, X3DOM does not
support X3D’s Script nodes and it is encouraged to do the desired scripting
from the DOM (Document Object Model)/HTML side.

3.1.1 Rendering

Apart from supporting most of the X3D 3.3 visual features, X3DOM also adds
a lot of its own functionality and support. That includes similar concepts to
what can be seen in the X3D 4.0 draft.

High-resolution models can take a long time to load, but in terms of per-
formance, once they are in the scene, FPS moves around 60 without problems.

During testing, rendering of scenes with models that use textures with
transparent parts has shown significant issues, the underlying problem being
that objects do not reorder correctly for rendering.

13



3. 3D Graphics Libraries .................................
CommonSurfaceShader

As a part of the HTML Profile and not any X3D specification, the Com-
monSurfaceShade node can be used instead of the Material node, to
allow multiple different-use textures. It makes concepts like normal map-
ping possible even without PBR, demonstrated in a following example code
snippet:

<CommonSurfaceShader diffuseFacor=’1 1 1’
specularFactor=’1 1 1’ shininessFactor=’1’>

<ImageTexture containerField=’diffuseTexture’
url=’diffuseMap.jpg’></ImageTexture>

<ImageTexture containerField=’specularTexture’
url=’specularMap.jpg’></ImageTexture>

<ImageTexture containerField=’shininessTexture’
url=’shininessMap.jpg’></ImageTexture>

<ImageTexture containerField=’normalTexture’
url=’normalMap.jpg’></ImageTexture>

</CommonSurfaceShader>

Usage of this code can be seen in the official X3DOM CommonSurface-
Shader tutorial and example [9]. Results of this official example are show in
figure 3.1.

Figure 3.1: The official example of a CommonSurfaceShader node of X3DOM
library showing diffuse, specular, shininess and normal textures applied to a
model.[9]

PBR

Usage of the PBR illumination model during the rendering process can be
achieved by adding a PhysicalMaterial node under the object’s appearance,
as it is specified in the 4.0 version of the X3D standard, with a few differences
in the node’s parameters.

X3DOM’s PhysicalMaterial node accepts baseColorFactor, metallicFac-
tor, etc. as the names of its attributes for PBR, whereas X3D 4.0 standard

14



.......................................3.1. X3DOM

requires them named as baseColor, metallic, etc. This issue should hopefully
be solved with X3DOM possible future support of the X3D 4.0 standard.

Different settings of metallic and roughness parameters can be seen in
figure 3.2.

Figure 3.2: Roughness and metallic factors influence on a material in X3DOM.
Object in the top corner is smooth and non-metallic, it has value of both
roughness and metalness of zero, while the object on the bottom has both set
to one, the maximum, which makes it fully metallic and rough. The object in
the left corner is fully rough but non-metallic, and the object on the right is
completely smooth and metallic.

The PhysicalMaterial node does accept texture maps and PBR attributes
defining textures when assigned to the correct containerField, as shown in
the following example code snippet:

<PhysicalMaterial baseColorFactor="1 1 1"
metallicFactor="1" roughnessFactor="1">

<ImageTexture containerField=’baseColorTexture’
url=’"base_diffuse.png"’></ImageTexture>

<ImageTexture containerField=’roughnessMetallicTexture’
url=’"base_metallic_roughnesss.png"’</ImageTexture>

</PhysicalMaterial>

Usage of this code can be seen in figure 3.3a and 3.3b. Car model used
was exported from Blender software[11] and then manually adjusted to fit
X3DOM’s scene format.

Normal map is not included in the example, because X3DOM was not able
to apply it.

It is to be noted that loading can take up to a few seconds on the low-poly
model and around a minute on the high-resolution model (it has over 1.2
million vertices), plus additional few seconds for the texture loading.

A PhysicalEnvironmentLight node is X3DOM’s version of the En-
vironmentLight node from X3D 4.0 standard but with slight deviations.
PhysicalEnvironmentLight has fields of an abstract light node, plus

15



3. 3D Graphics Libraries .................................

(a) : Low-resolution car X3D model. (b) : High-resolution car X3D model.

Figure 3.3: Usage of PBR textures shown on two levels of detail of the same
X3D model with X3DOM library.

additional diffuse and specular fields, which support only an URL to a pre-
computed HDR .dds file (DirectDraw Surface). X3D 4.0 specification actually
did add the diffuse field into their specification, following X3DOM’s imple-
mentation, but currently no specular field. Instead, the specification requires
X3DEnvironmentTextureNode for fields diffuseTexture and specularTex-
ture. Together with textured background, this setup is implemented in all
examples created for this work. Texture sources that were chosen as default
by X3DOM were used.

PBR is switched on automatically for included glTF models. Compared to
X3D models, glTF models tend to be loaded into the scene a lot faster.

In figures 3.4a and 3.4b the same car model as in figures 3.3a and 3.3b
can be seen, but it was exported to glTF instead of X3D and it was added
to the X3D scene as a glTF model. The most noticeable change was the
difference in loading speed, even the high-resolution model took at most just
a few seconds. Visual quality seems also overall better.

(a) : Low-resolution car glTF model. (b) : High-resolution car glTF model.

Figure 3.4: Two levels of detail of the same glTF model added to a scene and
shown with X3DOM.

Shadows

While X3D 4.0 introduces shadows with castShadow on the Shape node and
shadows with settings in shadowIntensity in light source nodes, X3DOM’s
shadow casting requires only shadowIntensity on a light source node to be
greater than zero for shadows to render. X3DOM also offers a lot of other

16



.......................................3.1. X3DOM

different fields for setting desired shadow quality.

While shadows do indeed get rendered, they often create undesirable
artifacts and their setting for an acceptable outcome can be quite difficult.

Loaded glTF models do not have cast shadows implemented at all. Fur-
thermore, the inclusion of glTF models brings in rendering errors when other
X3D objects have the casting of shadows turned on as shown in figure 3.5.
Shadows of models loaded from X3D files can be seen through the models
loaded from glTF files, while those models do not cast shadows at all.

Figure 3.5: Loaded glTF model of a dog causes errors in shadow rendering.
Behind the model is an X3D defined sphere above ground, casting a shadow that
can be seen through the glTF dog model. The glTF model itself does not cast
shadows.
Model used for demonstration is freely available, credit goes to zixisun02 [10].

3.1.2 Physics

X3DOM provides a script version with an experimental implementation of
X3D’s rigid body physics, but it is currently lacking and not very user-friendly.
Furthermore, the LinePickSensor node is not included in the HTML Pro-
file of X3DOM at all.

For the physics to work at all, the whole 3D scene must be a part of the
original page, meaning no objects that shall be affected by physical simulation
can be added through an Inline node. This causes the page source to be
disorienting and messy.

There is no user documentation of this component on the X3DOM website
other than that of the individual nodes, but a paper on its development was
published and it describes the principles and concepts behind the implemen-
tation as well as a few performance tests.[12]

It also reveals that the implemented physics run on ammo.js which is a
direct port of Bullet Physics Engine into JavaScript.

17



3. 3D Graphics Libraries .................................
Concepts

Every rendered Shape node that shall be affected by the physical simulation
must be parented by a Transform node. This node will be controlled by the
simulation and will move the Shape node accordingly.

For every such Shape, a CollidableShape outside of the transformation
hierarchy should exist. A CollidableShape must contain a Transform node
in a containerField of value physics, and a Shape node that best describes
the object’s physical shape for the physical simulation. This Transform
node must be connected with the rendered Shape node’s Transform parent
through USE/DEF statement.

The CollidableShape node is then inserted with the help of USE/DEF
statements into a containerField of value geometry in a RigidBody node.
The RigidBody node resides inside of a RigidBodyCollection node outside
of the transformation hierarchy, in a containerField of value bodies. Slightly
different from X3D’s standard, if the RigidBody node has a mass of value
zero, it acts as a static object not affected by physical forces.

Finally, the CollidableShape node should be included in a CollisionCol-
lection node with USE/DEF statement through the containerField of value
collidables. Such CollisionCollection resides in a collider containerField of
a CollisionSensor node.

With this setup, physical simulation can be tested. Rendered Shape node
is set up truly only for rendering, while the CollidableShape node sets the
geometry for collision detection and links rendered Shape node’s transform
into the simulation. The RigidBody node sets the needed attributes for the
physical simulation itself.

Testing

Very simple scenes containing only translated built-in shapes work fairly
well. The initial translation in the Transform parenting node and in the
CollidableShape node must be of the same value.

Problems do arise when the desired initial transformation includes rotation
to a non-default value. That is the case for most X3D files exported from
Blender software, because of different coordinate axes’ orientation. The
CollidableShape indeed rotates and functions as it should, but the rendered
result is rotated with a nonsensical value.

Another big issue is not taking complex geometries under the Collidable-
Shape into account, even those with just tilted top faces. Instead, X3DOM
probably chooses an axis-aligned bounding box to work with, even for convex
models, as shown in figure 3.6, testing a non-novex model’s behavior can be
seen in figure 3.7, which also did not give satisfactory results.

Physical constraints do work to some extent. X3DOM does have a few
examples working with simple objects on their page, but with the limited

18



.......................................3.1. X3DOM

Figure 3.6: Spheres should have collided with the tilted platform, but instead
both collided with an invisible block, resulting in the left sphere being partly in
the tilted platform and the right one levitating on top of it.

Figure 3.7: Collision detection between a sphere and a non-convex object in
X3DOM. The colliding geometry of the bowl shown was not created correctly
and let the sphere pass through its walls.

knowledge of how exactly the scene should be set up, a simple pendulum
scene demonstrated in other implementations was not achieved in X3DOM
for this work, as can be seen in figure 3.8.

3.1.3 Communication with External Software

Scripting and direct modification of the 3D scene are made very easy with
X3DOM because the 3D scene is directly pasted in the HTML tree inside the
<X3D> tag. Addition and deletion of nodes is detected and the scene gets
rerendered automatically, although issues were encountered with trying to
set fields directly after node addition.

Redirection of messages about collisions and user interaction is possible.

19



3. 3D Graphics Libraries .................................

Figure 3.8: Broken pendulum created with usage of SingleAxisHingeJoint
node. Satisfactory result was not achieved. Although the bottom sphere is
swinging correctly, the pendulum imitation as a whole breaks.

3.1.4 Licence

X3DOM is dual-licensed under MIT and GPL licenses.
MIT license, otherwise known as Expat license, is a permissive free software

license giving users the freedom to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the software licensed under it as long as the
license text included in it is included also in the software used in the final
product.

A dual license allows users to choose to follow the rules of one of the two
licenses included. For commercial use, in this case for MATLAB and Simulink,
the MIT license is more suitable, as GPL, General Public License, would
require sharing the whole project freely to the public.

3.2 X_ite

X_ITE is a 3D JavaScript library which uses WebGL for 3D rendering.[13]
Similarly to X3DOM, no plugin installation is needed, the user shall just
include X_ite’s script in their page and position the element <x3d-canvas>.

X_ite currently fully supports X3D’s Immersive Profile, as well as 94%
of X3D specified nodes.

3.2.1 Rendering

Like X3DOM, X_ite also implements most visual features of X3D 3.3 stan-
dard, with few new features from the X3D 4.0 draft. A significant drop in
performance even with more complex scenes has not been noticed.

Considering that X_ite follows the standard far more strictly than X3DOM,
features like CommonSurfaceShader, RenderedTexture or other exclu-
sive parts of X3DOM’s HTML Profile are not supported. Though the user
is free to program their own custom shader.

20



........................................3.2. X_ite

PBR

While X_ite does support turning on the PBR illumination model for ob-
jects with a specified PhysicalMaterial node under Appearance, the
desired effect cannot currently be achieved, because the implementation of
the EnvironmentLight node is missing.

Thus, X_ite does not reach the same goals in this matter as X3DOM does.
This difference with X3DOM can be seen together with different settings of
metallic and roughness parameters in figure 3.9.

Figure 3.9: Roughness and metallic values influence on a material in X_ite.
The scene is the same as shown in figure 3.2. Note that EnvironmentLight
node is not yet implemented in X_ite.

Hopefully, this crucial node’s functionality will be added with the release
of the standardized X3D version 4.0.

While there is no prepared shader for material textures when it comes
to Blinn-Phong lighting model, adding PBR material textures under the
PhysicalMaterial node into a correct containerField does result in them
getting applied, as can be seen in figure 3.10.

Figure 3.10: Usage of PBR textures shown on an X3D model with X_ite
library. Note that the environment mapping and image based lighting is not yet
implemented.

21



3. 3D Graphics Libraries .................................
Shadows

X_ite turns on the functionality for the shadow rendering when light nodes
have a field shadows set to true. After that, the only influence user has on
shadows’ rendering is shadowIntensity field on the light node and castShadow
field on individual shape nodes, which is set to true by default.

3.2.2 Physics

Concepts

Although the use of RigidBodyComponent is not documented in X_ite
either, its use seems easier compared to X3DOM.

The user does not need to make a Shape node inside a Transform node
that would get linked to a CollidableShape node. Creating a Collidable-
Shape node by itself is enough for both rendering and physical simulation.
Its reference should then be given into a collidables field of the Collision-
Collection node, as well as geometry field of the RigidBody node through
USE/DEF statements and containerField fields.

Unlike X3DOM, X_ite has a CollidableOffset node implemented and
functional, and it is used to reposition the collision geometry within a Rigid-
Body node.

Testing

Basic shape collisions work without many problems. That can be seen in
many examples on the X_ite site.

User-defined shapes also work in collision simulation. However, a collision
between two non-basic shapes is not detected unless one of them is static.
However, this is not unusual for physics engines. Figure 3.11 shows such
working example.

Figure 3.11: Static tilted platform collisions with basic shapes in X_ite.

Same applies to non-convex shapes. X_ite does not create a convex hull
collision shape for them, but simulates collision with a non-convex shape as

22



........................................3.2. X_ite

shown in figures 3.12a and 3.12b.

(a) : Torus model collision with X3D
spheres.

(b) : Bowl model collision with an X3D
sphere, same scene as in figure 3.7.

Figure 3.12: Example of non-convex shape collision with basic shapes in X_ite.

Physical constraints are also working. Example in figure 3.13 is a demon-
stration made possible with following code snippet:

<SingleAxisHingeJoint
anchorPoint=’0 6 0’
axis=’0 0 1’>

<RigidBody USE=’top’ containerField=’body1’/>
<RigidBody USE=’bottom’ containerField=’body2’/>

</SingleAxisHingeJoint>

SingleAxisHingeJoint limits the movement of the two given rigid bodies
to only a rotation around a specified axis centered on an anchor point. In
this example, CollidableOffset was used for the bottom sphere, so that
it is under the same RigidBody node as the stick shape in the middle. It
stays on the bottom of it, even though it is a basic sphere shape with a local
coordinate system originating at its center.

Drop in FPS can be noticed in around 100 basic shape objects colliding in
a scene. For all three tested browsers, Mozilla Firefox, Google Chrome, and
Opera, FPS dropped to 30-40.

Figure 3.13: Swinging pendulum realized with the SingleAxisHingeJoint
node in X_ite, fully functional.

23



3. 3D Graphics Libraries .................................
3.2.3 Communication with External Software

X_ite takes a different approach than X3DOM when it comes to the modifi-
cation of the scene from an outside source. It is done through X3D standard’s
Script nodes and their user-defined field nodes. They can be read from
inside the script as values or even call functions from the scene in the script.
The supported language of Script nodes in X_ite is ECMAScript.

X_ite offers predefined methods for modification of the X3D scene through
the script and predefined classes corresponding to X3D field types standard.

3.2.4 Licence

X_ite is published under the GNU General Public License v3.0, which makes
it free software in terms of usage, modifications, or redistribution, and adding
it into a project makes the whole project also licensed under the same terms.
That makes it unsuitable for MATLAB and Simulink’s commercial use.

3.3 Three.js

Three.js is a JavaScript 3D graphics library using WebGL [15]. It takes a
very different approach to the building of a scene compared to X3DOM or
X_ite. Through JavaScript alone, the user defines a camera, renderer, lights,
shapes, and animation loop to get a simple scene image.

The Three.js script itself does not include crucial things like viewpoint
movement control or loading background textures, but its repository of
examples, loaders, utility functions, and additional classes is fairly big and
mostly documented [16].

3.3.1 Rendering

Due to countless contributors to the library, rendering options and features
are very vast. This chapter will limit itself to PBR illumination of imported
glTF models and will compare features that can be found to some extent in
X3DOM/X_ite.

Performance-wise, during the testing of visual features, excluding the time
during the loading of models, FPS stayed consistent at 60.

PBR

Mesh in Three.js is defined by geometry and material. Geometry can be
a Three.js basic shape like a cube, sphere, cone, etc., or a loaded model
mesh. The main material types are MeshLambertMaterial or Mesh-
PhongMaterial which loosely correspond to X3D’s Material, and Mesh-
StandardMaterial or MeshPhysicalMaterial which are used in PBR.
MeshPhysicalMaterial is an extension of MeshStandardMaterial and
its use in rendering precedes X3DOM’s current features. For example, it
supports clearcoat property or transparency that is physically based with

24



.......................................3.3. Three.js

a customizable index of refraction, IOR. Different settings of metallic and
roughness parameters can be seen in figure 3.14.

Figure 3.14: Roughness and metallic values influence on a material in Three.js.
The scene is the same as shown in figure 3.2, but exported to glTF instead of
X3D.

A glTF loader is included in Three.js example loaders. It allows the user
to add glTF models to the scene. Models created for this work were exported
from Blender and needed to be corrected manually in order to be rendered
without problems.

Upon load, their material characteristics are automatically assigned and
the illumination model used for their rendering is switched to PBR. A similar
setting to environment light’s effect defined in X3D 4.0 can be achieved by
assigning environment texture to Three.js scene’s environment property.

(a) : Low-resolution car glTF model. (b) : High-resolution car glTF model.

Figure 3.15: Two levels of detail of the same glTF model added to a scene and
shown with Three.js.

Shadows

Turning on rendering of shadows cast by objects is achieved by setting the
properties castShadow and receiveShadow on desired objects to true.

Also, loaded glTF models exported from Blender need to have their material
edited. The property doubleSided must be set to false and side of material
must be described as FrontSide.

25



3. 3D Graphics Libraries .................................
Then shadows are set up and working, contributing to similar or better-

looking results compared to X3DOM/X_ite.

3.3.2 Physics

Concepts

For this work, ammo.js JavaScript library, a direct port of Bullet Physics
Engine into JavaScript, is used for testing physics. It is the same one X3DOM
uses.

Its integration into Three.js starts by specifying rigid bodies with mass,
motion state, and local inertia for every desired object. Colliding shape
set is then added to a defined physical world. The simulation changes
transformations of those colliding shapes with discrete simulation steps the
user must set up and control. For the rendered result to also move, the user
has to apply the transformation change from simulation to rendered shapes.

Testing

Ammo.js allows the user to create not only basic collision shapes but also
convex hulls or even full collision non-convex meshes. While defining basic
collision mesh corresponding to Three.js counterparts is straightforward, cor-
rect geometry processing needs to be implemented by the user to be able to
pass it to a convex hull collision shape constructor.

Loaded glTF models need to be processed in such way if the user does not
wish to approximate them by basic shapes. This work uses a method [18]
which reconstructs a triangle mesh of single vertices of the original geometry
into ammo.js-defined structures. Then ammo.js constructor is used to create
a convex hull collision mesh. Finally, correct world and local transforms are
applied to a rigid body.
The basic physics test is shown in figure 3.16.

Figure 3.16: Static tilted platform collision with basic shapes in Three.js.

26



.......................................3.3. Three.js

Compared to X_ite, a significant drop in FPS can be seen at around 1000
colliding basic shape objects, down to 20-30 FPS.

Due to an easy export of glTF from Blender compared to X3D, even more
complex collisions could be tested. The tests are shown in figures 3.17 and
3.18.

Figure 3.17: Multiple static tilted platforms collide with basic sphere in Three.js.

Figure 3.18: Bowl created out of many tilted platforms collides with hundreds
of basic shapes in Three.js.

Ammo.js also supports physical constraints. A pendulum example in figure
3.19 demonstrates once again the use of a hinge constraint. Apart from the
features that X3D specifies, ammo.js is also able to simulate cloth and soft
body to some extent.

27



3. 3D Graphics Libraries .................................

Figure 3.19: Swinging pendulum imitation with btHingeConstraint class in
Three.js.

3.3.3 Communication with External Software

Considering the whole scene is created, set and run from JavaScript code,
communication with external software is without any limitations other than
those of JavaScript and the external software itself.

3.3.4 Licence

Three.js is licensed under the MIT license, therefore same restrictions as
X3DOM’s MIT part of its dual license are applied.
Ammo.js has its own license which allows free use, redistribution, modification,
and commercial use without the need to acknowledge the use of it in the
final product. If the library gets modified, it shall be specified as such and
not pose as the original distribution. Given license has to be added to all
redistributions.

28



Chapter 4
Simulink 3D Animation

This chapter will overview the current implementation state of the tool
Simulink 3D Animation.

MATLAB is a computing environment as well as a programming language
developed by The MathWorks, Inc. It is widely used together with Simulink, a
block diagram environment used to design systems with multidomain models,
simulate before moving to hardware, and deploy without writing code.[19]

Simulink® 3D Animation™ is a tool under MATLAB software that links
Simulink models and MATLAB algorithms to 3D graphics objects in virtual
reality scenes.[20] With this tool, the user is able to load a 3D scene from a
VRML or X3D version 3.3 file, supporting the Immersive Profile of the
X3D version 3.3 specification.

4.1 Usage of Simulink 3D Animation

To open a scene from file of for example vrbounce.x3d in a viewer or edit its
content in an editor, the user should use one of the following commands:

% open a viewer
vrview(’vrbounce.x3d’);
% open an editor
vredit(’vrbounce.x3d’);

For direct modification of the scene from code, the scene’s reference can be
obtained through:

% get currently opened worlds’ references
w = vrwho;

Through the scene’s reference, named nodes and their fields can be then ac-
cessed. In the following example, the file needs to describe a Transform node
called Ball containing a sphere shape with Material node of Ball_material
for the following code to work properly.

29



4. Simulink 3D Animation ................................

% set ball’s diffuse color to yellow
w.Ball_material.diffuseColor = [1 1 0];
% create a cone object in the scene
coneShape = vrnode(w.Ball, ’children’, ’NewShape’, ’Shape’);
coneGeometry = vrnode(coneShape, ’geometry’, ’Cone’, ’Cone’);
% delete ball
delete(w.Ball)

To work with a 3D scene in Simulink, a VR Sink block can be used to
write data into the scene and a block VR Source to read data from the scene.
Under the block’s parameters, desired scene file can be selected together with
named nodes’ fields that the Simulink model should have access to. Upon
running the model, the scene gets updated on changes in those fields in a
desired sample time, which is also adjustable in the block’s parameters.

4.2 Current Implementation

The software can be divided into 4 main implementation parts: MATLAB
interface, internal scene, canvases and editor/viewer as can be seen in the
simplified software architecture outline in figure 4.1. It is important to note,
that the current implementation maintains two main branches - main version,
which is based on Java and OpenGL, and an experimental version which
uses JavaScript for rendering. This work will be focusing on enhancing the
experimental version.

Figure 4.1: Simplified outline of Simulink 3D Animation implementation. Blue
components indicate changes done for the purposes of this work.

30



................................ 4.2. Current Implementation

4.2.1 MATLAB Interface

Simulink 3D Animation comes with a collection of MATLAB functions mainly
for scene opening, visualization, modification and closing. These are written
mostly in MATLAB, but they use underlying C++ code for any data exchange
with the scene.

In MATLAB, C++ programs can be called through MEX functions, MEX
standing for MATLAB executable, which behave like built-in MATLAB
functions. Simulink 3D Animation works with MATLAB’s C matrix API
functions rather than the now recommended modern C++ matrix API.[21]
In Simulink 3D Animation, MEX functions are used for communication with
the internal scene, through vrclimex which serves as a main module of MEX
interface for Simulink 3D Animation.

Using MATLAB functions from C++ program is also possible, through
mexCallMATLAB function, which is able to call MATLAB’s built-in
functions or even user-defined functions based on their name, pass parameters
to them and get return values, both in the form of a pointer to a mxArray
object that MATLAB works with.

4.2.2 Internal Scene

All opened scenes are handled by the C++ portion of the software and their
states are kept and updated there through vrclimex regardless of the chosen
renderer.

Upon load of the scene file, the scene gets parsed into an internal rep-
resentation of a VRMLScene class loosely based on OpenVRML Library.
The implementation follows VRML and X3D specification in terms of an
inheritance hierarchy, but being originally built for VRML only, the inclusion
of X3D nodes is done through a DynamicX3DNode, while all supported
VRML nodes are represented by their own classes.

DynamicX3DNode is derived from a VRMLNodeProto class, which
represents implementations of VRML prototypes, here defined under a class
VRMLNodeType. DynamicX3DNode instantiated in a scene either
encapsulates a VRML node instance, having its own implementation added
in type definition or a mixture of both. A difference between a Shape node
containing a Geometry node loaded under the VRML specification versus
one loaded under the X3D specification can be seen in figure 4.2.

Every scene has an assigned id, which is used during communication with
the MATLAB interface. For similar reasons, every loaded valid node of the
scene holds an attribute of name - internal name, which is either defined in
the scene file or generated to be unique during the scene load.

For the purpose of updating renderers, events and scene state, an internal
timer is started upon any successful scene opening. This timer repeatedly
calls drawnow function in vrclimex, which manages these tasks. Drawnow
function can also be called from MATLAB, with a function called vrdrawnow
there, and it is usually very frequently called by a Simulink model to update
the rendered frame.

31



4. Simulink 3D Animation ................................

Figure 4.2: Internal scene class hierarchy design shown on an example.

4.2.3 Canvases

Java based canvas

To render scene view into MATLAB figure, vr.canvas, otherwise called
"virtual reality canvas", is used. Each canvas comes with a set of its canvas
properties, which influence the rendered result - for example whether to render
the geometry as wireframe or not or which viewpoint to choose from. These
properties do not influence the state of the internal scene, but their initial
values are set from the internal scene as well as from the renderer.

The virtual reality canvas uses a renderer written in OpenGL and encapsu-
lates rendered frames in MATLAB figures through Java. For the purposes
of rendering with OpenGL, all geometry in the scene can be triangulated
and represented as IndexedFaceSet of triangles with re-computed normals,
texture coordinates, indexing, and vertex colors.

Experimental canvas

Experimental canvas, referred to as jscanvas, is used in a MATLAB uifig-
ure, which does not heavily rely on Java compared to the figure object used
with the main canvas. The experimental canvas contains an HTML UI
component capable of displaying HTML5 and JavaScript content.

Internally, the HTML UI component uses Chromium browser and to allow
communication with MATLAB, offers a communication channel through a
Data variable provided by MATLAB on both sides. Callbacks can be used
to react to changes in the variable.

The conversion between MATLAB values and JavaScript objects is done
by MATLAB through encoding into and decoding from JSON on both sides.
Although communication with the component through websockets could be
technically possible, it is closed off for security reasons. Similarly, the loading
of resources, media or source code is intentionally very limited. Everything
has to be saved locally in the directory where the main HTML source file

32



................................ 4.2. Current Implementation

is opened from and other resources loaded at runtime have to be of specific
allowed file format.

The experimental renderer takes a completely different approach to render-
ing the displayed frame. The HTML UI component used in the experimental
virtual reality canvas runs a modified version of X3DOM 1.8.2. Upon canvas
creation, the internal scene produces a string of valid X3D scene description
which is sent over to HTML UI component and added into the HTML markup
to be registered by X3DOM and fully loaded there. Thus from that moment
on, the HTML UI component renders the scene independently on the internal
scene and has to receive information on scene modifications and send back
information on user interaction.

In its current state, the capabilities of the experimental canvas are very
limited. All the limitations that X3DOM has apply here. Communication
protocol between the experimental canvas and HTML UI component is not
implemented at all, which results in mainly two issues.

Firstly, the scene is frequently not being loaded, because its representation
is sent to the component sooner than the scripts in it are loaded.

And secondly, upon changes in the internal scene or requests to the canvas,
the canvas does not wait for the resulting change in canvas properties from
the HTML UI component and instead offers out-of-date values.

4.2.4 Modification of the scene and canvas properties

Most common modifications of the scene come in forms of node addition,
node deletion and node field value setting. Those calls are executed in the
internal scene immediately, but the visual propagation of the changes is not
and it differs between the main and experimental version of the tool, together
with the setting of canvas properties.

Java based Simulink 3D Animation

In the main version of Simulink 3D Animation software, drawnow call
redraws the scene if any visible changes were made and it propagates a new
frame to all canvases connected to it.

Values of canvas properties are held within a ViewerOpenGL class, they
are updated from within the scene and from the virtual reality canvas to be
always up-to-date. Retrieving the value in the MATLAB interface through
the virtual reality canvas calls into the C++ code and returns the wanted
value directly from ViewerOpenGL.

The scene modification propagation to the viewport can be seen in figure
4.3.

33



4. Simulink 3D Animation ................................

Figure 4.3: Modification of scene and canvas properties propagation in Java
based Simulink 3D Animation.

There is no asynchronicity in the run of the software, thus there has never
been any need for a communication protocol.

Experimental Simulink 3D Animation

As stated above, the experimental version of Simulink 3D Animation renders
the scene separately once loaded, because it does not have direct access to
the internal scene representation and has to be simultaneously updated on all
visible changes through the HTML UI component communication channel.

Upon scene modification, the internal scene gets immediately updated as in
the Java-based version, but the information on the changes gets at the same
time pushed into queues for the renderer to receive later on. The update
messages come in a form of a string, where keywords are separated by a hash
symbol. An example of such message string can be seen down below:

1#MESSAGE_ID_ADD_NODE#N0000021153D2DFB0#
<Sphere id=’Sphere1’ name=’N0000021153D2C5B0’ DEF=’N0000021153D2C5B0’ >
</Sphere>#

The number at the beginning is in code referred to as a message ID but
is never assigned a number other than 1. It is ignored on the HTML UI
component’s side during parsing. The next keyword specifies the incoming
change and it is followed by parameters specific to that change. For node
addition that would be a name of a desired parent node and then a description
of the node that is to be added, already printed out in X3D format, prepared
to be inserted directly into the HTML markup.

The drawnow function does not have any effect on the propagation of
the changes to the renderer, instead, a second timer was added directly into
the virtual reality canvas implementation, which makes the canvas repeatedly
check the internal scene for updates in the update queues in hard-coded inter-
vals. Upon fetching them, they get sent through the HTML UI component
communication channel where they are parsed and processed.

Because the HTML UI component runs separately from the MATLAB
code, issues arise.

34



................................ 4.2. Current Implementation

The main one that comes with the approach explained above is the inde-
pendence on Simulink’s or user’s vrdrawnow calls, which could serve as
the way to ensure similar behavior to synchronous execution of the code. In
a situation, where a currently used virtual reality canvas gets deleted and
information about the new current viewpoint is required immediately from
the canvas, it does give out an outdated value even if vrdrawnow, which
is supposed to guarantee up-to-date values, is called before the information
request.

Furthermore, Simulink calls vrdrawnow after every simulation step, but
because it has no effect on the message retrieval, several calls for gradual
visual changes get frequently sent together with only the last one having any
effect.

The scene modification propagation to the viewport in experimental version
can be seen in figure 4.4.

Figure 4.4: Modification of scene and canvas properties propagation in experi-
mental Simulink 3D Animation. Note the existence of the second timer.

35



36



Chapter 5
Suggested Modifications and
Implementation

Based on the review of JavaScript renderers, communication capabilities of
MATLAB with HTML UI component and current implementation of the
Simulink 3D Animation tool, changes in the supported nodes, communication
protocol and experimental renderer are suggested, and implemented. This
chapter will go over the most important decisions, reasoning behind them
and the will describe the principles of their implementation.

5.1 Supported nodes

In order to massively enhance the visual capabilities of the tool, defining
new node types for the internal scene representation was suggested. Those
nodes include mainly those of the 4.0 version of X3D specification - Physi-
calMaterial and EnvironmentLight. Furthermore, enhancing the current
definitions of Material, Shape and all light nodes with new fields would
allow the use of PBR features, advanced texturing of models and shadow
casting if implemented in the used renderer.

5.1.1 Implementation

Before new node definitions and enhancement of current node definitions of
new fields could take place, version control had to be solved. Because Simulink
3D Animation supports scene export after modification, newly added nodes
and fields require a flag of they fall under the X3D 4.0 version, so they do
not get saved upon export, because the resulting file would not be a valid
one under the X3D 3.3 version of the specification. In the future, export of
X3D 4.0 content will be desired, but while the specification draft is not yet
approved, the software does not support this feature yet.

37



5. Suggested Modifications and Implementation.......................
Example of node enhancement source code - enhancing Material node

with a specularTexture field and setting its 4.0 version flag, can be seen on
the following source code snippet:

// specular texture
MaterialType->addExposedField("specularTexture",

VrmlField::SFNODE,
VrmlSFNode(),
"X3DSingleTextureNode");

MaterialType->setFieldVersion("specularTexture",
X3DVersion::X3D_40);

Because the software aims to support the Immersive profile of the X3D
specification, all node definitions and fields were updated to version 4.0 as
specified for the profile in this version with the exception of the Environ-
mentLight node, which still has an unstable definition and is left out in
official XML schemes for X3D file parsing. To get similar results, the En-
vironmentLight node type was still added to the software, but for easier
implementation and use, the definition deviates from the current draft of
X3D 4.0 standard by having topUrl, bottomUrl, frontUrl, backUrl, leftUrl and
rightUrl fields for cube map texture of the environment similarly to Back-
ground node fields. The XML schemes did need to be manually changed
accordingly.

After these modifications, the software is now capable of loading nodes and
fields required for the Immersive profile of X3D 4.0 specification into the
internal scene.

5.2 Communication protocol

The current implementation of the experimental canvas frequently does not
load the scene at all, misses the first incoming scene modification calls, and
does not offer up-to-date virtual reality canvas properties. The string format
of the messages currently used also heavily complicates the possibility of
screen capture or any binary data transmission.

The suggested approach was to implement a new communication protocol,
between the virtual reality canvas and the code running in the HTML UI
component, with a message confirmation system, which would ensure that
all requested properties are not outdated. Such protocol could also use the
native MATLAB objects as the content to be sent because the HTML UI
component’s communication channel is able to automatically convert them
into JavaScript objects and vice versa, and thus there would be no need for
manual string parsing. The removal of the second timer operating in the
experimental canvas and using the internal one through the drawnow calls
instead could also enhance the performance and fix the synchronization issues
explained earlier.

38



............................... 5.2. Communication protocol

5.2.1 Software architecture changes

For the removal of the second timer, changes needed to be made in the
concept of connecting the experimental canvas to the internal scene. When
an experimental virtual reality canvas gets created, it registers into a chosen
scene for updates. These get stored in update queues and upon a drawnow
call, an update message is produced from all of them and that is sent back to
MATLAB canvas through a MEX callback function.

The scene modification propagation to the viewport in the new experimental
version can be seen in figure 5.1.

Figure 5.1: Modification of scene and canvas properties propagation in experi-
mental Simulink 3D Animation, newly implemented.

5.2.2 Communication of canvas with HTML UI component

Because the communication channel the HTML UI component offers is not
well documented from the technical standpoint, tests needed to be done to
ensure that this channel is reliable and does deliver all inserted messages in
the order that they were sent. This functionality was confirmed.

MATLAB natively does not support a general wait function, because
MATLAB without specific extensions is not multi-threaded. The experi-
mental virtual reality canvas does need to block execution during html and
script loading, during scene loading, upon requests to the renderer from the
canvas, e.g. requesting a screen capture, and upon synchronization of canvas
properties.

MATLAB does, however, offer a pair of uiwait and uiresume functions,
which were originally designed for blocking the execution until a certain input
is received from the user, for example, the user closes a modal window or
clicks a button on it. For this reason, they have to be always associated with
an uifigure, that, when closed, would unblock the execution as with the modal
window example.

The uiwait function blocks the execution, but in the meantime, callbacks,
like the one that can be added to the HTML UI component’s communication
channel, stay fully functional, and thus when a condition is met during the
processing of a callback, uiresume function can be called and execution

39



5. Suggested Modifications and Implementation.......................
resumes where it was stopped.

With these functions, waiting for HTML and script loading to finish is
implemented through a confirmation, then the scene representation gets sent
over to the component and canvas again waits for confirmation of scene
loading.

To ensure the delivery of up-to-date canvas properties, a system for message
confirmation was implemented as well.

Upon every drawnow call in the scene, when update queues get flushed
into the canvas, even if they’re empty, a refresh method is called on the
canvas. This method sets the WaitedForID property, which starts at a value
of zero upon canvas creation and 1 is gradually added to it for every sent
message during refresh or from other canvas methods.

With every received message, the renderer running in the HTML UI com-
ponent confirms the message with the highest ID number it received and
processed the message it belongs to. While the messages get processed by
the code, dirty flags are set upon modifying anything that canvas properties
depend on and those changes are sent back to the canvas together with
confirmation.

When a property is required from the canvas and the property depends on
scene modification updates, using vrdrawnow beforehand is recommended,
because it sends over any yet unsent changes from the update queues together
with a higher message ID than is currently confirmed. When, in this state,
the canvas is requested to provide a value of such dependent property, it
instead waits on the condition of:

while (obj.WaitedForID > obj.ConfirmedID || ~obj.SceneReady)
uiwait(obj.mfigure);

end

5.2.3 Data format

As was mentioned earlier, the suggested format of data being sent to the
HTML UI component from the canvas was a MATLAB object and JavaScript
object the other way around. The HTML UI component’s communication
channel’s implementation ensures the conversion of these data representations.

Every valid message from canvas to HTML UI component’s code is a MAT-
LAB object with properties type, data and messageID. There are currently 18
implemented types of messages, most notable being refresh, then those setting
canvas properties, e.g. headlight or wireframe, those controlling viewpoint
with the options like gotoNextViewpoint or gotoDefaultViewpoint, and
then there is also a message of type capture for screen capture request. The
data property differs from type to type.

For reasons explained in detail later in this work, all portions of refresh
messages that describe a scene or part of the scene are encoded into JSON for-

40



...................................... 5.3. Renderer

mat directly in the C++ portion of the code using a library called RapidJSON.

Every valid message from the HTML UI component renderer back to canvas
in MATLAB is a JSON object with properties type and data. The main three
types of messages are confirm, canvasEvent and response. Data property is
again dependent on the type of the message.

Confirm type of message contains together with data that include updates
for renderer-dependent canvas properties, sensor updates and also the highest
processed message’s ID.

CanvasEvent informs the canvas of the loading status of the HTML page,
source codes and then the scene itself.

Response message is currently used for the transmission of screen capture
data.

5.3 Renderer

While the renderer currently used, X3DOM 1.8.2, offers many features, its
main advantage compared to X_ite is its license, and compared to Three.js
is its ability to directly work with X3D file format. Other than that, both of
these two other libraries surpass its capabilities significantly. There has not
been a new stable release of X3DOM since June 13th of 2021 with little over
50 contributors on its github repository, while Three.js gets updated almost
daily, has over 1700 contributors, is widely used and has an active user forum.

To add to that, in a long-term perspective, because the goal of the work
on the experimental version of the software is for it to have all the important
features of the main version and more, many significant problems can already
be expected if X3DOM stays as the used renderer, mainly the support of
LinePickSensor for simplified collisions, which X3DOM does not implement
at all, while also not having any user-friendly methods for ray casting into
the scene. Another big issue would be the use of a stereo camera, which is
also not supported in X3DOM.

Being a library designed to display contents of an X3D scene, all features
and modifications needed by Simulink 3D Animation had to be done directly
in the library’s source code, which is not very well documented, and combining
singular features of the library to achieve the desired capability can pose as a
fairly difficult task.

The suggested modification for the rendering component of the experimental
version of the software was a transition to the use of the Three.js library.
Although there are significant differences between the approach to scene
representation and interaction between Three.js and the X3D specification,
it still offers much more features and an easier way of implementing needed
ones, because of its imperative nature.

This transition required export of the scene description from the internal

41



5. Suggested Modifications and Implementation.......................
scene into the HTML UI component renderer, in a form that would be con-
vertible to Three.js objects and principles, together with the implementation
of loading of the content, management of scene modifications and implemen-
tation of user interaction.

Taking the vast amount of features that need to be implemented for a full
transition into consideration, this work focused mainly on the implementation
of core mechanisms for scene loading, scene modifications and support of
rendering features explored in chapter 3.

5.3.1 Scene export

Because the internal scene representation is stored in a module that does not
have access to the C Matrix API of MATLAB and Three.js is not able to load
the X3D printout string that the scene is currently able to produce, a different
approach had to be taken. Considering that JavaScript natively works with
the JSON format, upon performance, usability and license consideration of
libraries JSONCpp, nlohmann/json and RapidJSON, RapidJSON was chosen
and used, mainly because of its performance and its SAX style API.

The term "SAX" originated from Simple API for XML. It is borrowed for
RapidJSON’s JSON parsing and generation.[22] While most JSON libraries
for C++ require building a document with objects, which can be then stringi-
fied, SAX API is event-based and the objects are created based on a sequence
of Key and Value events generated by a Writer object, which can be passed
between scene nodes as a pointer during scene traversal.

Upon experimental virtual reality canvas creation, the internal scene is
traversed and a method called printThree is executed on every scene node.
A VRMLNode class is the base class of all scene nodes and thus class
inheritance could be used for, in principle fairly simple, implementation of
scene export into the desired format. Because not all node types that the
internal scene is able to load are supported or need to be loaded into the new
renderer, the VRMLNode class printThree method writes a null value
through the given writer and all derived classes which should give out an
output are expected to override this method.

The starting point of the scene traversal for scene export can be seen in
the following source code snippet, the first node processed is a Group node
serving as the scene’s root.

Part of source code of VRMLScene class method producing loadable

42



...................................... 5.3. Renderer

scene represenation for JavaScript code can be seen down below:

using namespace rapidjson;
StringBuffer jsbuffer;
Writer<StringBuffer> jswriter(jsbuffer);
jswriter.StartObject();
// clear temporary flags for all nodes,
// we’ll use them for marking USEd nodes
d_nodes.clearFlags();
// scene graph description
jswriter.Key("scene");
d_nodes.printThree(&jswriter);
jswriter.EndObject();

Before the contents of any node get processed, a node type is noted into
the new representation of the node and then a flag is checked, whether the
node has been processed already, indicating the DEF/USE relationship on the
node. If the node has indeed been processed already, a Key of use is added
with a Value corresponding to an ID of the node, that would otherwise get
added to the representation together with all supported fields representation.

The ID currently used for the nodes takes inspiration from the X3D string
export for X3DOM, being the text representation of the node’s pointer’s
address. Field representing classes also implement a printThree method
according to the values they are able to store and are usually executed from
a printFieldThree method defined in the VRMLNode class, which checks
whether the field exists and is of non-default value. If these conditions are
passed, it sets Key to their name and calls their printThree methods to
produce Value. An example of a node printThree method can be seen in
the following source code:

void VrmlNodeShape::printThree
(rapidjson::Writer<rapidjson::StringBuffer> *writer)

{
writer->StartObject();
if (this->printIdentifiersThree(writer, true))
{

this->printFieldThree(writer, "appearance");
this->printFieldThree(writer, "geometry");
this->printFieldThree(writer, "castShadow");

}
writer->EndObject();

}

Because the Java-based version of the software processed and triangulated
all inserted geometry for use by OpenGL, methods covering this feature
could be reused to avoid the need to process the geometry in the JavaScript
renderer in the exact same way, which would otherwise be needed because

43



5. Suggested Modifications and Implementation.......................
apart from BoxGeometry and SphereGeometry, the built-in Three.js
geometries are not flexible enough to fit the X3D specification, and the base
BufferGeometry expects triangulated input only.

The following example shows how the red ball object used to demonstrate
the representation of the objects in formats of VRML and X3D in chapter 2
is represented as a JSON object, if the file describing it gets loaded in the
internal scene and exported for the new renderer (line breaks and spacing
was added for readibility):

{"node":"Transform",
"name":"000001997F0DB020",
"internalName":"Ball",
"children":[
{"node":"Shape",
"name":"000001997F0DDDD0",
"internalName":",0000000000000008",
"appearance":
{"node":"Appearance",
"name":"000001997F0DC340",
"internalName":",0000000000000009",
"material":
{"node":"Material",
"name":"000001997F0DD880",
"internalName":"Ball_material",
"diffuseColor":[1.0,0.0,0.0]}},

"geometry":
{"node":"Sphere",
"name":"000001997F0DEA90",
"internalName":",000000000000000A"}}],

"scale":[1.5,1.5,1.5],
"translation":[0.0,20.0,0.0]}

Processing of prototype nodes definitions is also not needed, because it is
already done during the internal scene creation, so during the scene traversal,
VRMLNodeProto classes are encountered and they encapsulate nodes that
implement them, which can be traversed and processed as any other scene
node. It is important to note that every node loaded from an X3D file is
encapsulated in the DynamicX3DNode. This class does not have any
effects on the exported scene representation by itself directly, it only passes
the process onto all the nodes it encapsulates.

Scene modification

The drawnow call for the internal scene produces an object in JSON format
to be sent to the renderer through the canvas as well. While the scene is
being modified through the MATLAB interface or on its own by running

44



...................................... 5.3. Renderer

Script nodes, information on those changes is saved into the update queues.
Currently, there are three of them, one for node addition, deletion, and field
synchronization. Other updates sent to the renderer include also reload
requests and current scene time information.

In the JSON update object, an array of all changes is created for each
update queue.

The representation of node addition is produced in the same way as it
would during the initial scene export process, but only the added node’s
representation is prepared, together with an ID of the parent node. The
contents of the node do not get processed during the creation of the update
object but in the moment of the node addition to the scene itself. It is
done so in order to avoid producing duplicates if another node is added to
this new node and both are included in the update queue at the same time.
RapidJSON does support the insertion of RawValue as a Value, so this kind
of pre-processing does not pose any issues.

Needed information on field synchronization includes the ID of the modified
node, the field’s name and a new value, which is printed in the same way it
would during the initial scene export through the printThree method as
well.

Deletion of nodes produces only an ID of the affected node.

However, there is an issue that arises with the fact that the export mecha-
nism uses pre-processed geometry by the internal scene.

When a field value is changed, a node is deleted or added and such mod-
ification affects any node representing geometry, it has to be recalculated
and resend to the renderer. Hovewer, with the DEF/USE mechanism, the
information on where all the affected nodes are in the scene is completely
missing.

Such changes require additional scene traversal of modified branches to
locate those nodes, process their geometry again and send this information
over to renderers.

5.3.2 Scene import

As the call for the build of the scene from provided JSON representation is
noticed, not only is the scene graph that Three.js uses for rendering being
produced but so is a map of all loaded nodes. This map accepts node IDs as
key values and stores reference to all instantiated nodes with the same ID in
an array under the the key.

In contrast with the X3D principle of DEF/USE mechanism, Three.js does
not provide a way to merely reference an object and process its existence
only during rendering. All nodes that are directly used for rendering need to
be individual objects added to the scene graph, and as a result, the map of
nodes holds references to all instances under every node ID.

45



5. Suggested Modifications and Implementation.......................
Scene class

A scene class encapsulates the scene object used by Three.js for rendering,
while also managing scene navigation, user interaction, rendering settings
propagation to the scene nodes and holding the map of node IDs.

It also provides a buildFcnMap, a map of functions for node building
and updating out of the JSON representation, with node types as keys.

Node classes

Similarly to the internal scene class inheritance hierarchy, the JavaScript
renderer’s code now defines a class for every supported scene node. Each
node always implements a constructor, clone method possibly with copy
method, init method, set method and delete method, while also including a
reference to the scene object, a property that indicates its ID, internal name
and node type. Names of the node classes always start with "X3D" and these
classes were all newly implemented for this work.

The class constructor always takes in the scene instance reference and
optionally additional ones specific to the individual node type. It usually also
sets default values to all properties representing supported fields.

Nodes that are added to the scene graph for Three.js are represented by
derived classes from those provided by Three.js that represent the same
feature. Other nodes are either represented by new base classes or derivations
of those.

Upon instantiation of a node through the constructor, the init method
should be called, which takes the JSON representation of itself as the pa-
rameter. Among additional steps specific to individual node types, the init
function always includes setting the ID, calling the set function with the
JSON object passed to it from the argument, and registration into the scene
node map.

The set method is used for both node building in node addition and in
field values synchronization. It checks the passed JSON representation for
supported properties as its keys and upon retrieving their values updates its
state accordingly. When a new node is built, the JSON representation passed
to this method sets all the non-default properties, and then with every field
value synchronization sets only those affected.

For cases when the node is marked as used, the clone method is provided.
It takes in the same arguments as the constructor. If the node has to be
instanced again to be added to the scene graph, this method calls the con-
structor, uses a defined copy method that copies all the properties, and
children nodes in some cases, and returns a new reference. In case when the
node does not need to be represented in such way, the method returns the
old reference and internally stores a reference to the node that contains it

46



...................................... 5.3. Renderer

and needs to be updated on changes in the added node. Reference to the
node added this way does not get reinserted into the map of nodes in the
scene object as it does in those re-instantiated during the execution of the
copy method.

The delete method is called either on a deletion call of a given node or
from its parent node, which could originate in scene reloading as well, by
calling this method on a root node.

It is responsible for disposing of all used GPU-related resources allocated by
its instantiation, executing delete method on all its children nodes or nodes
in its properties, removing references to itself from its parents or removing
itself from the scene graph and unregistering itself from the scene node map.

For nodes that do not get instantiated anew during cloning, they need to
check whether their list of parents is not empty upon the removal of a parent
every time. If it is, it calls the delete method on itself, disposing of itself
accordingly.

Shape Node

The biggest difference between the X3D standard principles and the Three.js
approach to the representation of the scene comes in the form of the Shape
nodes. While the X3D Shape node can exist independently on its geometry
and appearance, Three.js provides different scene objects for different geometry
types they are able to present - all polygonal mesh can be presented with
Mesh objects, but lines should be presented with LineSegments objects
and points with Points objects.

Those native object classes can be assigned with a suitable geometry and
a class-specific material, while the X3D standard specifies a Shape node
capable of holding any kind of geometry node and Appearance, which also
is not dependent on the type of geometry assigned.

This means, that the Shape node cannot be represented with a native
scene object unless it is given a geometry, or rather the type of geometry it
will be using. Changing the geometry type also implies a needed change of
the object using it, as in disposing of the old one and instantiating a new one
that is able to present the geometry correctly.

The Appearance, if defined, needs to be applied to the newly created
object as well, being converted to values that the new material suitable for
the new geometry can use.

For the reasons stated above, it is necessary for the renderer to remember
values specified by the internal scene export rather than those converted for
and used by Three.js.

47



5. Suggested Modifications and Implementation.......................
X3DShape class

A direct representation of the X3D Shape node is implemented through a
new X3DShape class, which is derived from the Three.js class Object3D. It
is able to be added to the scene graph and be influenced by the transformation
hierarchy.

This class holds properties of, among others, geometry and appearance.
And these two together directly influence the state of a _shape property,
which, if the geometry is defined and valid, holds the real object defined for
Three.js to render, which is added to the scene graph under the instance of
the X3DShape.

Through this class, changes in both its geometry and its appearance are
propagated to the real object, reacting to their addition, modification and
deletion accordingly.

Canvas property setting has also an effect on this class, as global shadows
setting, conversion to PBR setting, and wireframe setting all get propagated
through it into the _shape object if present.

Geometry classes

The naive approach would be to just instantiate a new geometry object
for every new Shape node that has one defined, but with the DEF/USE
mechanism of X3D standard, geometries can be re-used once defined.
Every instance of the newly implemented geometry classes keeps track of
X3DShapes that hold it, through a list. When X3DShape gets cloned,
it only acquired a reference to this node and thus the geometry is shared
between all the X3DShape using it.
Upon addition of the X3DShape node to the list, a new _shape, which
class is dependent on the geometry type, is produced and inserted under the
X3DShape and it calls for updates of newly instantiated Three.js material it
is using if appearance and appearance’s material are defined. When geometry
gets modified or deleted, needed changes get propagated into all dependent
_shapes as well.

There are three important methods implemented to further solve the
differences between the Three.js approach and X3D specification: update-
MaterialColors, updateMaterialSide and UpdateMaterialAll, which
executes both previous methods.

Because Three.js material implementation required the indication of whether
to use vertex colors information specified in the geometry, this property needs
to be set on all _shapes’ materials from the geometry.

Similarly, a setting of Three.js material’s side property is dependent on the
X3D value of ccw field - whether the geometry is defined counter clock-wise
and value of solid field - whether the surface of the geometry should be

48



...................................... 5.3. Renderer

one-sided or double-sided. Combinations of those two fields result in a setting
of the real material of _shape to be back-sided, front-sided, or double-sided.

Appearance

The X3D Appearance node is represented by a class X3DAppearance
which can hold references to classes X3DMaterial, X3DPhysicalMaterial,
X3DTextureTransform and X3DTexture, while it itself keeps track of all
X3DShapes that contain it. It also provides a method getRealMaterials
to retrieve all references to real materials of _shapes. It is used by material
and texture classes to propagate their changes.

Both material classes keep track of all appearances that use them as well
as a list of real materials in the scene that they currently influence. This list
gets updated through the previously mentioned getRealMaterials method.
The material itself then automatically propagates individual changes to this
list right on any modifications of its properties through setters. An example
of a simple property setter can be seen in the following code snippet:

// setting the emissiveColor field on a material
set emissiveColor(val)
{

this._emissiveColor = val;
for (const mat of this._materials)

if (mat.emissive)
mat.emissive.setRGB(...val);

}

The red ball object previously shown in a VRML, X3D and exported
JSON representation is a part of a vrbounce official example of Simulink 3D
Animation. This example, loaded into the internal scene, exported and then
imported into the new renderer can be seen in figure 5.2.

Figure 5.2: Simulink 3D Animation vrbounce official example showing import of
the scene into the new renderer.

Three.js texture objects cannot be directly shared, because their mapping
onto the meshes is influenced by a TextureTransform node, but the under-

49



5. Suggested Modifications and Implementation.......................
lying image data can be shared and are shared between all materials that use
it.

The X3DTexture class keeps track not only of all the appearances and
materials that use it but also of how they are used specifically, whether that
is a normal map, diffuse texture, and so on. When the texture is first created,
it loads the actual Three.js texture into its _texture property, searches for
all appearances using it, even if it is through a material, clones the _texture
for every single appearance, calls for TextureTransform node application
on the cloned texture, requests all real materials on the appearances and
updates those with the cloned and transformed texture. This process allows
for texture used under different appearances to have different transformations
set, while at the same time sharing the texture between all real materials
dependent on one appearance. And all of this does not make a deep copy of
the underlying image data.

A source code example for such update can be seen down below, it imple-
ments base/diffuse texture addition to all required real materials:

// go through all registered x3d materials
// with base or diffuse texture
for (const x3dmat of array)
{

const newmap = this._texture.clone();
// go through all appearances that use them
for (const app of x3dmat._x3dappearances)
{

// apply appearance’s texture transform
app.setTextureTransform(newmap);
const materials = app.getRealMaterials();
// and apply it to all real materials
// linked to that appearance’s shape
for (const mat of materials)
{

if (mat.map) // remove old texture
mat.map.dispose();

mat.map = newmap.clone();
mat.needsUpdate = true;

}
}
newmap.dispose();

}

Because texture loading is handled as an asynchronous task in Three.js,
the process explained above does not happen until the texture is fully loaded,
but directly after the loading is finished.

50



...................................... 5.3. Renderer

X3DLinePickSensor

The LinePickSensor node of X3D specification was implemented through
Three.js’s Raycaster class. On every simulation step, update method is
called on all enabled sensors in the scene. The line pick sensors thus activate,
and prepare collision data to be sent back to MATLAB and Simulink with
together with the message confirmation.

Because the line geometry specified for the LinePickSensor does not have
to come in a form of individual straight lines for every sensor, but instead as
a general line geometry with many line segments, every segment is processed
individually. Source code for processing of an individual segment can be seen
below:

// apply parent transform to ray start and end points
this._parent.localToWorld(startPoint);
this._parent.localToWorld(endPoint);

// get segment length
const length = startPoint.distanceTo(endPoint);

// get segment direction
const direction = endPoint.clone().sub(startPoint).normalize();

// set raycaster
this._scene._raycaster.set(startPoint, direction);
this._scene._raycaster.far = length;

// get all intersecting objects
const intersects =

this._scene._raycaster.intersectObjects(...this._pickTarget);

51



5. Suggested Modifications and Implementation.......................
Mapping of X3D nodes to Three.js classes

X3D Node Three.js class relationship status
Networking Component

Anchor Group inheritance implemented
Inline Group inheritance implemented

Grouping Component
Group Group inheritance implemented
Switch Group inheritance implemented

Transform Group inheritance implemented
Rendering Component

IndexedFaceSet BufferGeometry inheritance implemented
IndexedLineSet BufferGeometry inheritance implemented
IndexedPointSet BufferGeometry inheritance not supported yet

Shape Component
Material MeshPhongMaterial encapsulation implemented
Material LineBasicMaterial encapsulation implemented
Material PointsMaterial encapsulation not supported yet

PhysicalMaterial MeshStandardMaterial encapsulation implemented
PhysicalMaterial LineBasicMaterial encapsulation implemented
PhysicalMaterial PointsMaterial encapsulation not supported yet

Shape Mesh encapsulation implemented
Shape LineSegments encapsulation implemented
Shape Points encapsulation not supported yet

Geometry3D Component
Box BoxGeometry inheritance implemented

Sphere SphereGeometry inheritance implemented
Text Component

Text BufferGeometry inheritance not supported yet
Font BMFont inheritance not supported yet

Lighting Component
DirectionalLight DirectionalLight inheritance implemented

SpotLight SpotLight inheritance implemented
PointLight PointLight inheritance implemented

Texturing Component
ImageTexture Texture encapsulation implemented
PixelTexture Texture encapsulation not supported yet
MovieTexture VideoTexture encapsulation not supported yet

Navigation Component
Billboard Group inheritance not supported yet

LOD LOD inheritance not supported yet
Viewpoint Object3D inheritance implemented

Navigation Component
Background Mesh encapsulation implemented

Table 5.1: Table presenting the mapping how X3D nodes are implemented using
Three.js. Other supported nodes do not derive from or encapsulate any objects
of Three.js

52



...................................... 5.3. Renderer

5.3.3 Navigation

Navigation in the scene was one of the minor reasons for transitioning the
renderer from the modified X3DOM renderer to a Three.js-based one. Both
the main and experimental versions of Simulink 3D Animation implemented
the navigation in a fairly outdated way for today’s standards.

The navigation principles that were requested include: the camera can
orbit around a selected target in the scene, the camera can rotate around the
center of its local coordinate system, the camera can zoom in and out on a
selected target in the scene proportionally based on a distance to the target,
the camera movement can be controlled by keyboard input and the camera is
grounded under the WALK navigation type of X3D specification.

While X3DOM does not provide any documented method of ray-casting
into the scene for retrieving the target point used for the navigation, Three.js
does, thus implementation of the navigation system with the latter library
was easier.

A viewpoint binding mechanism was also implemented directly according
to the X3D specification.

5.3.4 User Interaction

Although the current state does not support any Sensor nodes yet, basic
user interaction can be done through the editor, where the user can select
nodes by simply clicking on them.

This functionality was implemented through Three.js provided ray-casting
abilities, upon clicking on a valid visible mesh object, the internalName of a
the object is read and sent back to MATLAB as an event for node selection.
Selection of nodes is then visualized through Three.js’s OutLinePass post-
processing feature.

Another implemented interaction feature comes with the Anchor node
implementation in X3DAnchor class, which bounds the camera to a specified
viewpoint upon clicking on its child nodes.

53



54



Chapter 6
Results

This chapter presents the results of the work on implementation explained
in the previous chapter. Most of the examples used for testing, comparisons
and showcase are the official examples of Simulink 3D Animation.

6.1 Communication Protocol

With no adjustments to the official examples, the experimental viewer before
proposed and implemented changes was not guaranteed to offer up-to-date
information on its virtual reality canvas properties. It was also very prone to
stop functioning as a result of scene modification information being passed to
it, while the scene has not been loaded yet. Furthermore, being independent
on drawnow calls from the scene meant that modifications of multiple simula-
tion steps were applied at the same time, resulting in the loss of visible changes.

The newly implemented communication protocol does guarantee waiting on
page load, scene load and confirmation of messages when a renderer-dependent
property value is requested.

Due to the object nature of the new protocol, rather than the string format
used before, screen capture image data transfer from the renderer to the
canvas was made possible and implemented as well.

Communication stress tests, which failed before the implementation with a
very high frequency, all passed with this new implementation. Results can be
seen in the table 6.1.

Testing of the correct opening of multiple canvases failed immediately as
the scene representation was not even received by more than one opened
canvas before the implementation.

Test on the correctness of the viewpoint index was executed by repetition of
creating an experimental canvas, accessing the canvas property for viewpoint
information and closing the canvas.

Repeated node addition and its followed deletion caused MATLAB to crash
before the new protocol every time the canvas timer called for a scene update
message in the moment of node addition being registered and having to be
printed out, but the node itself was actually deleted in the internal scene.

55



6. Results .......................................
Testing on repeated object translation, moving an object on a circular path

before the new protocol implementation proved that the update messages
did get sent in groups of steps that should have been individual because of a
used vrdrawnow.

Testing for Number of rounds Failed before Failed now
Creating new canvas 10 10 1

Viewpoint index after scene load 50 50 0
Deleting and creating an object 100 100 0
Setting translation of an object 2000 1633 0

Table 6.1: Results of three stress test types performed on the experimental
version of Simulink 3D Animation showing a comparison between the number of
failed rounds before new implementation and after.

6.2 Scene export and import

Current scene export and import for the experimental renderer supports most
of the nodes the internal scene by itself does with the exceptions of a Text
node, a Font node, points nodes, fields specific to ambient light, a Billboard
node, a MovieTexture node, a PixelTexture node, sound nodes and sensor
nodes, which have not been implemented yet.

On the other hand, for example, nodes TriangleStripSet, IndexedTri-
angleFanSet and TriangleFanSet are not supported by X3DOM’s HTML
Profile and thus were not rendered even with modified X3DOM viewer, but
can be loaded into the Three.js based viewer and rendered now.

Most of the scenes used by Simulink 3D Animation official examples are
able to fully load with minor visual differences, as can be seen in figure 6.1a
as it was rendered before the implementation of proposed modifications in
comparison with the figure 6.1b, which is produced by the new renderer.

Loading times of the scenes vary, the official examples taking at maximum
of seconds, but scenes heavy on detail with millions of vertices do not get
loaded in reasonable time, similar to how the modified X3DOM version per-
formed, or even the main version based on Java in some cases does.

6.3 X3D 4.0 standard support

Upon modification and enhancement of the internal scene’s supported node
types and implementing support for given scene nodes representation in the
Three.js-based renderer, visual features explored in chapter 3 are now possible
to use.

56



............................... 6.3. X3D 4.0 standard support

(a) : Scene rendered with modified X3DOM, before implementation.

(b) : Scene rendered with Three.js based renderer, after implementa-
tion.

Figure 6.1: Scene from the official example of vr_octavia rendered with experi-
mental viewer before and after the implementation.

Added support of PhysicalMaterial node and modified Environment-
Light node allows the creation of 3D scenes that get rendered using PBR.
The previously used car model loaded in the new renderer is shown in figure
6.2.

Experimental virtual reality canvas also has a newly implemented function-
ality to force PBR rendering even on old scenes, converting MeshPhong-
Material used in Three.js very roughly into MeshStandardMaterial for
all meshes with this material type as well as adding example background and
environment map to the scene.

Figures 6.3a and 6.3b demonstrate on an official Simulink 3D Animation
example referred to as vrmaglev this functionality, as well as newly imple-
mented support for casting of shadows, which work well with PointLight
and SpotLight but cause rendering and performance issues with Direction-
alLight because Three.js does not natively support shadow cascades.

57



6. Results .......................................

Figure 6.2: Car low-resolution X3D model with PBR textures shown in the new
Simulink 3D Animation viewer.

(a) : Example scene with original mate-
rials and background.

(b) : Example scene with enforced PBR,
example texture background and envi-
ronment.

Figure 6.3: Simulink 3D Animation vrmaglev official example shown in the new
viewer.

Classic Material node now supports the use of advanced texturing with
very similar results to the use X3DOM’s CommonSurfaceShade, with the
exception of shininessTexture.

6.4 Collision detection

LinePickSensor node functionality needed for Simulink 3D Animation
official examples of vrmaze and vrcollisions_lidar is fully implemented in the
experimental version as can be seen in figures 6.4 and 6.5, but it does not
cover the full functionality specified by the X3D specification yet.

58



........................... 6.5. Scene modification and interaction

Figure 6.4: Simulink 3D Animation vrmaze official example showing the func-
tionality of the LinePickSensor node with the new renderer. In a scene with a
maze, there is a robot with two sensors on its body. If a sensor detects a collision
with a wall, the sensor visualisation beam changes its color to red and the robot
acts according to this information.

Figure 6.5: Simulink 3D Animation vrcollisions_lidar official example showing
the functionality of the LinePickSensor node with the new renderer. In a scene
with a maze, there is a robot with many sensors on its body. If a sensor detects
a collision with a wall, the point of collision is visualized by color of the sensor
beam. Blue beam has not yet hit anything, green part of the beam is occluded
by a wall.

6.5 Scene modification and interaction

Node addition, modification and deletion are fully implemented in the new
Three.js-based renderer on all supported nodes. Upon testing with the
official examples of Simulink 3D Animation, the performance of the renderer
stayed consistent at around 60 FPS, apart from drops during heavy geometry
modifications, which cause a slight drop in performance not only for the
renderer but especially for the main process code during the needed scene
traversal for new geometry export and transmission.

This drop is influenced not only by the number of modified geometries or
the geometry size, but also by the dimensions of the scene itself.

59



6. Results .......................................
Implemented user interaction includes scene navigation, anchor functional-

ity and node selection for the virtual reality editor.
Another set of new features is accessible through virtual reality canvas

properties: anti-aliasing, wireframe rendering, an object outline rendering for
selection visualization and screen capture.

6.6 Comparison with Java based renderer

Although the new Three.js based renderer does not support all the features of
the main Java dependent renderer, the performance of the two could be tested
on the official Simulink 3D Animation shipping examples, that use features
which are already implemented in the new renderer. The following tests were
done on examples vr_octavia, vr_octavia_2cars and vrcollisions_lidar.

The tests were done through Simulink Profiler tool and it measured the
time needed for simulation execution while there was no pacing that would
try to synchronize the simulation time with the real time.

The examples vr_octavia and vr_octavia_2cars both require transforma-
tion modification of a high number of objects in the scene. Java based renderer
performed much better in both of these tests, although it is important to note
that the experimental renderer still performed faster than real time. The
example vrcollisions_lidar requires ray casting in every simulation step and
because Three.js implementation of ray casting is more optimized than the
implementation in the main renderer, the experimental version performed
better than the main version during the testing.

The stop time of the vr_octavia example was set to 111 seconds of simulation
time and it used the sample time of 0.04 seconds. For the vr_octavia_2cars
example, those values were 33 seconds stop time and 0.08 seconds sample
time. The example vrcollisions_lidar had stop time set to 20 seconds and
was sampled by 0.05 seconds.

Test results can be seen in the table 6.2.

60



.......................... 6.6. Comparison with Java based renderer

vr_octavia vr_octavia_2cars vrcollisions_lidar
Main version

Round 1 48.8260 12.2660 19.8500
Round 2 48.5410 12.1900 20.0050
Round 3 48.2830 12.0960 20.2710
Round 4 48.2990 12.2310 20.2920
Round 5 48.3150 11.8050 20.3240
Round 6 48.3680 11.7890 20.2430
Round 7 48.4640 12.3130 20.3950
Round 8 48.3130 11.8670 20.2930
Round 9 48.2310 12.1310 20.3950
Round 10 48.3100 12.1310 20.6540
Average 48.3950 12.0819 20.2722

Experimental version
Round 1 75.2820 15.0090 10.9480
Round 2 75.2060 14.2970 11.0810
Round 3 75.0320 13.9970 11.5490
Round 4 75.5690 13.8020 10.4930
Round 5 74.8880 14.0340 10.3190
Round 6 74.8020 13.9260 10.3180
Round 7 74.0300 13.8230 10.2900
Round 8 75.1330 14.0200 10.2710
Round 9 74.9310 14.1780 10.9080
Round 10 74.7080 13.8610 10.5030
Average 74.9581 14.0947 10.6680

Table 6.2: Results of tests done on the main and the experimental version of
Simulink 3D Animation. Each example was run under a Simulink profiler tool.
Examples used for testing are from official software examples vrcollisions_lidar,
vr_octavia and vr_octavia_2cars. Time measurements are given in real-time
seconds.

61



62



Chapter 7
Conclusion

Firstly, this work went over VRML, X3D and glTF file formats and scratched
the surface of the capabilities of three 3D scene renderers.

X3DOM has shown great visuals, but many features Simulink 3D Animation
needs are missing and its satisfying results with its current physics script
have not been achieved.

Whereas X_ite does not yet have implemented everything needed for the
same visual effect, their physics concepts were easy to get to work. Although
it fully supports the Immersive Profile of X3D standard, that Simulink 3D
Animation requires, it is under an unsuitable license, which makes it unfit for
commercial use.

The most powerful library overall out of those three turned out to be
Three.js, with big user contributions, many additional libraries to choose
from and easy scripting. At the moment, its results in the field of visual
quality and object physics go beyond both X3DOM’s and X_ite’s capabilities.

Upon exploring the current implementation of the software, modifications
were proposed to the communication protocol, supported nodes and renderer
itself.

Proposed modifications were then implemented, compared to the previous
state of the software and results showcased.

The experimental version of Simulink 3D Animation is now able to render
scenes of most of the official examples provided with the software. Its
functionality was significantly enhanced as well as the spectrum of rendering
features. Although throughout the implementation testing was done and the
transition to a Three.js-based renderer has been fairly successful so far, some
issues might still be raised during future development.

7.1 Future work

Transitioning to a Three.js-based renderer opened many possibilities for future
work both in terms of rendering features but also with the collisions and
physics.

63



7. Conclusion......................................
During the implementation of this work, an idea was proposed regarding the

physics engine to use, that it could be integrated either into the renderer or
even directly into the internal scene. Ammo.js is a possibility for the first case,
Bullet Physics, which Ammo.js is a port of, is a possibility for the second case.

Missing implementation of certain node types, mainly the rest of the X3D
sensor nodes that the main version of the software currently supports will
need to be implemented in the new renderer as well.

Support of glTF model loading is highly advised, not only is it a widely
used file format, but it has also shown much better optimization for loading
speed, which currently is a problem for detailed X3D models.

For the purposes of using the Three.js visual capabilities to the fullest
and because the 4.0 version of X3D specification is still not published as a
standard, Simulink 3D Animation will probably allow export of its own file
format of scene description, which will be an enhanced variant of X3D file
format.

64



Bibliography

[1] Web3D Consortium. Information technology – Computer graphics and
image processing – The Virtual Reality Modeling Language (VRML2) –
Part 1: Functional specification and UTF-8 encoding. 1997. https://www.
web3d.org/documents/specifications/14772/V2.0/index.html

[2] Web3D Consortium. Information technology — Computer graphics, image
processing and environmental data representation — Extensible 3D (X3D)

— Part 1: Architecture and base components. 2013. https://www.web3d.
org/documents/specifications/19775-1/V3.3/index.html

[3] Web3D Consortium. Information technology — Computer graphics, image
processing and environmental data representation— Extensible 3D (X3D)

— Part 1: Architecture and base components. 2022. https://www.web3d.
org/documents/specifications/19775-1/V4.0/index.html

[4] Matt Pharr, Wenzel Jakob, and Greg Humphreys. Physically Based
Rendering: From Theory To Implementation https://www.pbr-book.
org/

[5] S. Marschner and P. Shirley. Fundamentals of Computer Graphics, 4th
edition CRC Press, 2016.

[6] The Khronos Group Inc. glTF™ 2.0 Specification. 2022. https://
registry.khronos.org/glTF/specs/2.0/glTF-2.0.html

[7] X3DOM. X3DOM main page. https://www.x3dom.org/

[8] X3DOM. X3DOM Documentation. https://doc.x3dom.org/index.
html

[9] X3DOM. X3DOM Common Surface Shader tutorial and example. https:
//doc.x3dom.org/tutorials/lighting/commonSurfaceShaderNode/
index.html

[10] zixisun02. glTF model "Shiba". https://sketchfab.com/3d-models/
shiba-faef9fe5ace445e7b2989d1c1ece361c

[11] Blender Foundation. Blender. https://www.blender.org/

65

https://www.web3d.org/documents/specifications/14772/V2.0/index.html
https://www.web3d.org/documents/specifications/14772/V2.0/index.html
https://www.web3d.org/documents/specifications/19775-1/V3.3/index.html
https://www.web3d.org/documents/specifications/19775-1/V3.3/index.html
https://www.web3d.org/documents/specifications/19775-1/V4.0/index.html
https://www.web3d.org/documents/specifications/19775-1/V4.0/index.html
https://www.pbr-book.org/
https://www.pbr-book.org/
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://registry.khronos.org/glTF/specs/2.0/glTF-2.0.html
https://www.x3dom.org/
https://doc.x3dom.org/index.html
https://doc.x3dom.org/index.html
https://doc.x3dom.org/tutorials/lighting/commonSurfaceShaderNode/index.html
https://doc.x3dom.org/tutorials/lighting/commonSurfaceShaderNode/index.html
https://doc.x3dom.org/tutorials/lighting/commonSurfaceShaderNode/index.html
https://sketchfab.com/3d-models/shiba-faef9fe5ace445e7b2989d1c1ece361c
https://sketchfab.com/3d-models/shiba-faef9fe5ace445e7b2989d1c1ece361c
https://www.blender.org/


7. Conclusion......................................
[12] Don Brutzman, Andreas Stamoulias, Athanasios G. Malamos, Markos

Zampoglou. Enhancing X3DOM Declarative 3D with Rigid Body Physics
Support. 2014.

[13] CREATE3000. X_ite main page https://create3000.github.io/x_
ite/

[14] CREATE3000. X_ite tutorials https://create3000.github.io/x_
ite/tutorials/overview

[15] github.com/mrdoob. Three.js main page https://threejs.org/

[16] github.com/mrdoob. Three.js documentation and tutorials
https://threejs.org/docs/index.html#manual/en/introduction/
Creating-a-scene

[17] Erwin Coumans. (2012) Bullet 2.80 Physics SDK Manual. http://www.
cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual

[18] oxyn on Three.js forum loading gltf meshes into ammo.js con-
vex hull collision shape https://discourse.threejs.org/t/
how-to-add-ammo-js-physic-to-gltf-file/27539

[19] The MathWorks, Inc. MATLAB documentation https://www.
mathworks.com/help/matlab/index.html?s_tid=hc_panel

[20] The MathWorks, Inc. Simulink 3D Animation Official Doc-
umentation https://www.mathworks.com/help/sl3d/index.html?s_
tid=CRUX_lftnav

[21] The MathWorks, Inc. C Matrix API, MATLAB documentation https:
//www.mathworks.com/help/matlab/cc-mx-matrix-library.html

[22] A Tencent company, and Milo Yip. RapidJSON, Main Page https:
//rapidjson.org/

66

https://create3000.github.io/x_ite/
https://create3000.github.io/x_ite/
https://create3000.github.io/x_ite/tutorials/overview
https://create3000.github.io/x_ite/tutorials/overview
https://threejs.org/
https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
https://threejs.org/docs/index.html#manual/en/introduction/Creating-a-scene
http://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual
http://www.cs.kent.edu/~ruttan/GameEngines/lectures/Bullet_User_Manual
https://discourse.threejs.org/t/how-to-add-ammo-js-physic-to-gltf-file/27539
https://discourse.threejs.org/t/how-to-add-ammo-js-physic-to-gltf-file/27539
https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel
https://www.mathworks.com/help/matlab/index.html?s_tid=hc_panel
https://www.mathworks.com/help/sl3d/index.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/sl3d/index.html?s_tid=CRUX_lftnav
https://www.mathworks.com/help/matlab/cc-mx-matrix-library.html
https://www.mathworks.com/help/matlab/cc-mx-matrix-library.html
https://rapidjson.org/
https://rapidjson.org/


Appendix A
Abbreviations

3D 3-dimensional

IT information technology

ISO International Organization for Standardization

VRML The Virtual Reality Modeling Language

UI user interface

X3D Extensible 3D

XML Extensible Markup Language

PBR Physically based rendering

IBL Image-based lighting

glTF Graphics Language Transmission Format

JSON JavaScript Object Notation

BRDF bidirectional reflectance distribution function

HTML Hypertext Markup Language

DOM document object model

URL uniform resource locator

HDR high dynamic range imaging

IOR index of reflection

FPS frames per second

67



68



Appendix B
Attached files index

/
imgs
src

renderer
study

videos
"README"
"index.html". img - screenshots. src/renderer - source code for attached renderer implementation. src/study - source code for attached examples of JavaScript libraries

study. videos - videos demonstrating newly implemented functionality.README - file containing information about the attached renderer
source code. index.html - page to be run demonstrating the study examples and
basic renderer functionality

69


	Introduction
	Standardized Formats for 3D Scene Representation
	VRML
	Concepts
	Rendering
	Collision detection and physics

	X3D3.3
	Rendering
	Collision detection and physics

	X3D4.0
	Theory
	Rendering

	glTF
	Rendering
	Collision detection and physics


	3D Graphics Libraries
	X3DOM
	Rendering
	Physics
	Communication with External Software
	Licence

	X_ite
	Rendering
	Physics
	Communication with External Software
	Licence

	Three.js
	Rendering
	Physics
	Communication with External Software
	Licence


	Simulink 3D Animation
	Usage of Simulink 3D Animation
	Current Implementation
	MATLAB Interface
	Internal Scene
	Canvases
	Modification of the scene and canvas properties


	Suggested Modifications and Implementation
	Supported nodes
	Implementation

	Communication protocol
	Software architecture changes
	Communication of canvas with HTML UI component
	Data format

	Renderer
	Scene export
	Scene import
	Navigation
	User Interaction


	Results
	Communication Protocol
	Scene export and import
	X3D 4.0 standard support
	Collision detection
	Scene modification and interaction
	Comparison with Java based renderer

	Conclusion
	Future work

	Bibliography
	Abbreviations
	Attached files index

