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Abstrakt:
Atmosférické spršky kosmického záření jsou komplexními kaskádami částic, které
vznikají při srážkách kosmického záření s jádry prvků v atmosféře. Prostřed-
nictvím mionů vytvořených v takových sprškách lze získat důležité informace o
chemickém složení kosmického záření a hadronových interakcích, ke kterým dochází
na počátku vývoje spršek. Tyto informace lze získat skrze rekonstrukci Mionové Pro-
dukční Hloubky (MPD). Současný model rekonstrukce MPD je přizpůsoben sprškám
šířených pod vysokými zenitovými úhly a mionům detekovaným daleko od jádra
spršek. V této práci je představena nová metoda rekonstrukce MPD, využívající
miony detekované v zakopaných detektorech a algoritmy strojového učení. Rozsah
rekonstrukce je zde rozšířen na spršky šířené pod nižšími zenitovými úhly a miony
dopadající blíže k jádru spršky. Použitelnost modelu pro různé energie a částice kos-
mického záření a odlišné modely hadronických interakcí je prozkoumána. Nakonec
je představen druhý model strojového učení, jehož cílem je rekonstruovat spektrum
energie mionů ve sprškách kosmického záření.

Klíčová slova: Kosmické záření, atmosférická sprška, mionová produkční hloubka,
strojové učení, CORSIKA





Title:
Reconstruction of the muon production depth of extensive air showers

Author: Bc. Antonín Kravka

Field of study: Nuclear and Particle Physics

Thesis type: Diploma Thesis

Supervisor: Dr. Eva Maria Martins dos Santos
Institute of Physics of the Czech Academy of Sciences

Consultant: Dr. Alexey Yushkov
Institute of Physics of the Czech Academy of Sciences

Abstract:
Extensive Air Showers (EAS) are complex cascades of particles, emerging from colli-
sions of cosmic rays with atmospheric nuclei. Muons created in EAS convey relevant
information about the mass composition of cosmic rays and hadronic interactions
occurring early in the EAS development. We can extract this information by recon-
structing the Muon Production Depth (MPD). The existing method of the MPD
reconstruction is tailored to EAS with high zenith angles and muons arriving far
from the shower core. In this thesis, a new method of reconstructing the MPD is
proposed, utilizing muons detected underground and machine learning algorithms.
The reconstruction range is extended to low-zenith EAS while considerably reduc-
ing the present radial cut. We explore the model’s applicability to different energies
and species of cosmic rays and various models of hadronic interactions. Lastly, a
second machine learning model is introduced, with the aim of reconstructing the
long-evading muon energy spectrum in EAS.

Keywords: Cosmic Rays, Extensive Air Shower, Muon Production Depth, Ma-
chine Learning, CORSIKA





Contents

Introduction 17

1 Cosmic Rays & Extensive Air Showers 21
1.1 Cosmic-Ray Energy Spectrum . . . . . . . . . . . . . . . . . . . . . . 21
1.2 Extensive Air Showers . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.2.1 Electromagnetic Cascades . . . . . . . . . . . . . . . . . . . . 26
1.2.2 Hadronic Cascades . . . . . . . . . . . . . . . . . . . . . . . . 27
1.2.3 Muonic Component . . . . . . . . . . . . . . . . . . . . . . . . 29
1.2.4 Superposition Model . . . . . . . . . . . . . . . . . . . . . . . 30
1.2.5 Atmospheric muons . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3 EAS Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
1.4 Mass Composition of Cosmic Rays . . . . . . . . . . . . . . . . . . . 34
1.5 EAS Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2 Reconstruction of the Production Depth of Muons in EAS 39
2.1 The Arrival Time Model . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.1.1 Geometric Delay . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.1.2 Kinematic Delay . . . . . . . . . . . . . . . . . . . . . . . . . 43
2.1.3 Further Sources of Delay . . . . . . . . . . . . . . . . . . . . . 43
2.1.4 The Process of MPD Reconstruction . . . . . . . . . . . . . . 44
2.1.5 Applications and Limitations . . . . . . . . . . . . . . . . . . 45

3 Machine Learning 47
3.1 Basic Concepts of Machine Learning . . . . . . . . . . . . . . . . . . 47

3.1.1 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . 48
3.1.2 The Bias-Variance Trade-off . . . . . . . . . . . . . . . . . . . 50

3.2 Gradient-Boosted Decision Trees . . . . . . . . . . . . . . . . . . . . 52
3.2.1 Decision & Regression Trees . . . . . . . . . . . . . . . . . . . 52
3.2.2 Gradient Boosting . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.3 The LightGBM Library . . . . . . . . . . . . . . . . . . . . . 58

4 MPD Reconstruction 61
4.1 Simulations and Data Preparation . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Domain Transformations & Data Cuts . . . . . . . . . . . . . 62
4.1.2 Machine Learning Setup . . . . . . . . . . . . . . . . . . . . . 65
4.1.3 Feature & Target Selection, Feature Engineering . . . . . . . . 65
4.1.4 Final Data Pre-processing . . . . . . . . . . . . . . . . . . . . 66

XV



XVI CONTENTS

4.1.5 Training Procedure & Model Evaluation . . . . . . . . . . . . 67
4.2 Model’s Performance Results . . . . . . . . . . . . . . . . . . . . . . . 68

4.2.1 EAS with Fixed Values of θ and Eprim . . . . . . . . . . . . . 68
4.2.2 EAS with Continuous Values of θ and Fixed Eprim . . . . . . . 80
4.2.3 Continuous EAS library . . . . . . . . . . . . . . . . . . . . . 85

5 Muon Energy Reconstruction 91
5.1 Data Preparation & Training Performance . . . . . . . . . . . . . . . 91
5.2 Energy Reconstruction Results . . . . . . . . . . . . . . . . . . . . . . 92

Conclusions 97

Bibliography 100



Introduction

Cosmic rays are a fascinating and mysterious phenomenon that has puzzled genera-
tions of scientists for over a century. These highly energetic particles are considered
to be one of the most energetic occurrences in the Universe, and despite being stud-
ied intensively with increasingly complex instruments, their origins and acceleration
mechanisms still remain open questions. Starting with their discovery in 1912 by
Victor Hess, the increasingly deeper understanding of cosmic rays has led scientists
to construct ever-evolving cosmic-ray detectors operating in space, the Earth’s at-
mosphere, and both on and under the Earth’s surface. We now live in a time period
where it is possible to detect cosmic rays of energies higher than 1020 eV (or ∼ 16
J), energies typically associated with macroscopic objects. As an example, the most
energetic cosmic ray ever detected, the so-called "Oh-my-god particle", was regis-
tered on the 15th of October, 1991, by the Fly’s Eye camera [1] in Utah and had an
energy of approximately (3.2± 0.9)× 1020 eV. However, since such highly-energetic
particles are extremely rare, we are only able to detect them indirectly through the
so-called Extensive Air Showers (EAS), cascades of secondary particles arising from
collisions of cosmic rays with air molecules in the Earth’s atmosphere. Due to the
steeply falling spectrum of cosmic rays, where for E ≃ 1018 eV, we only expect to
detect less than one particle per square kilometer per year, giant detector arrays
comprising a few thousand square kilometers are required to accumulate relevant
statistics at the highest energies, considering an operation period of a few decades.
Such experiments have been built on the Earth’s surface, the most prominent being
the Pierre Auger Observatory [2] and the Telescope Array [3]. Both experiments
detect EAS using a hybrid detection technique, utilizing extensive ground-based de-
tector arrays and fluorescence telescopes, resulting in the most precise cosmic-ray
measurements currently available.

Extensive efforts are currently engaged in finding answers to the three major open
questions of ultra-high energy cosmic ray physics, namely: what is the origin of the
observed features of the cosmic ray spectrum, what is their nuclear mass composi-
tion, and, lately, what are the sources and acceleration mechanisms of such extremely
energetic particles. Investigating the mass composition of cosmic rays is particularly
important, as it can provide key information about their sources and propagation
mechanisms, as well as for the improvement of our knowledge of hadronic interac-
tions at energy scales above the LHC, which govern our most advanced simulations
of EAS and are our best means of interpreting cosmic-ray data.

As of now, one of the key methods of inferring the cosmic-ray mass composition is the
determination of a mass-sensitive observable called the depth of shower maximum
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18 INTRODUCTION

Xmax, which is defined as the atmospheric slant depth at which the number of
particles in an EAS reaches its maximum. This observable can be directly measured
by fluorescence telescopes, and it is the least model-dependent variable, i.e., the one
with the lowest systematic uncertainties stemming from hadronic interaction models
in mass composition studies. However, it suffers from low statistics (particularly at
the highest cosmic-ray energies), as the duty cycles of fluorescence telescopes are
typically about ∼ 15%. While other methods of inferring the mass composition or
even Xmax via ground detector arrays exist, utilizing their almost 100% duty cycle,
the resulting observables need to be calibrated, since the signals from the ground
detectors and fluorescence telescopes contain different composition of particles. See,
for instance, [4, 5].

As an alternative to the classical Xmax analyses, a reconstruction of the longitudinal
profiles of muons in EAS was proposed in [6, 7]. Muons are the primary decay
products of most hadrons in EAS and propagate through the atmosphere almost
unattenuated, meaning that they carry information about their point of origin. The
muonic longitudinal profile is defined as the distribution of the production points
of muons in units of atmospheric slant depth, called the Muon Production Depth
(MPD) distribution. The corresponding mass-sensitive observable, analogous to the
Xmax analyses, is the maximum in the MPD distribution Xµ

max.

The current method of the MPD reconstruction in EAS utilizes the relative arrival
times of muons at the detectors, which are recorded with respect to the fastest EAS
particles impacting the air shower ground epicenter and are therefore registered
by the surface detector arrays. These time delays are predominantly caused by the
geometric path traveled by muons in the atmosphere, and also by their energy, which
is typically not measured by the ground detectors. As a consequence, the estimation
of the energy-dependent part of the muon arrival time, called the kinematic delay,
represents the method’s largest source of systematic uncertainties, as it is currently
parametrized from Monte Carlo simulations and only applicable to certain subsets
of muons in EAS.

The objective of this thesis is to propose a new model of the MPD reconstruction
based on machine learning algorithms, which are particularly suited for data-driven
analyses and finding complex, high-dimensional relationships between related ob-
servables, which would otherwise be hard to find using traditional statistical meth-
ods. The proposed model setup is aimed at a future implementation at the AMIGA
(Auger Muons and Infill for the Ground Array) upgrade, where muon detectors are
currently being deployed at the Infill region of the Pierre Auger Observatory at a
depth of 2.3 m. This depth provides a vertical overburden of ∼ 540 g/cm2, allowing
for a pure measurement of the muonic signal. We aim to simultaneously improve
and extend the MPD reconstruction to phase-space regions where the current re-
construction performs poorly or outright fails. To develop the model, we use Monte
Carlo simulations of EAS, in which we study the performance of several machine
learning algorithms on the reconstruction of the MPD. This allows us to select and
investigate the best-performing model for the MPD analysis, a crucial step before
applying the reconstruction to real-world data. As a second goal, we aim to use the
reconstructed MPD for predictions of muon energies. If successful, this will allow us
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to infer relevant information about the long-evading muon energy spectrum in EAS,
and it might also shed more light on the hadronic interactions governing the EAS
evolution.

The structure of this work proceeds as follows:

Chapter 1: As the introductory part of this work, an overview of basic cosmic ray and EAS
features is outlined, covering the topics of the cosmic ray energy spectrum,
mass composition and the behavior of various EAS components. Additionally,
various detection techniques of EAS are mentioned, along with a brief summary
of the current simulation methods.

Chapter 2: Focusing on the muonic component of EAS, the second chapter describes the
features of the muonic longitudinal profiles and the underlying structure of
the current MPD reconstruction method, alongside its applications and limi-
tations.

Chapter 3: This chapter is dedicated to explain the machinery behind machine learning,
its core concepts and the application possibilities of such algorithms. A signifi-
cant portion of the chapter is aimed towards elucidating the Gradient-Boosted
Decision Trees algorithm [8], the basis of the proposed MPD reconstruction
model.

Chapter 4: In this chapter, we present the details of the proposed MPD reconstruction
model and its performance on various samples of simulated EAS. We compare
the model’s reconstruction quality to the current MPD model and discuss its
prediction capabilities in detail.

Chapter 5: The final chapter concerns the application of the proposed MPD model on
predicting individual muon energies, implemented via construction of a second
machine learning model. The results are briefly discussed and the prospect of
such approach is evaluated.

Conclusion: In the summary part of this work, we discuss the overall performance of the
proposed reconstruction models, along with their advantages and weaknesses,
and outline the possible outlooks regarding their implementation to an array
of buried muon detectors, as it is the case of AMIGA.
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Chapter 1

Cosmic Rays & Extensive Air
Showers

Cosmic rays are ultra-relativistic particles that propagate through outer space,
reaching the Earth from outside the Solar System. For the majority of cosmic rays,
their energies are predominantly in the GeV-TeV range, but, what scientists are
mostly interested about, they can reach values exceeding 1020 eV, making cosmic
rays one of the most energetic phenomena in the Universe. Nowadays, cosmic rays
are classified to be predominantly atomic nuclei and, in much less numerous cases,
particles as neutrons, electrons, and various antiparticles. The most abundant cos-
mic rays are protons (∼ 86%) followed by helium nuclei (∼ 12%), with heavier
nuclei and the remaining particles accounting for only about 1%. Cosmic rays, to-
gether with gamma rays, neutrinos and gravitational waves, form the emerging field
of Multi-messenger Astronomy, which is becoming one of the most exciting topics
in modern astrophysics. In order to understand the fundamental origins of cosmic
rays, astroparticle physicists have been studying their energy spectrum and mass
composition for decades, delving ever deeper into their respective features. At the
highest energies, both the energy spectrum and mass composition must be studied
through cascades of particles, known as Extensive Air Showers (EAS), produced by
interactions of cosmic rays with air molecules in the Earth’s atmosphere. In this
chapter, we summarize the main features of both the energy spectrum and mass
composition subfields, and explore the EAS mechanisms, along with the detection
and simulation techniques used in EAS measurements.

1.1 Cosmic-Ray Energy Spectrum

The energy spectrum of cosmic rays is one of the best-known characteristics in
cosmic-ray physics, thanks to the combination of numerous experiments using com-
plementary and independent detection techniques used for its measurement. The
energy spectrum ranges from GeV-like energies to over 1020 eV or about 16 J, i.e.,
approximately the same energy carried by a baseball thrown at about 100 km/h.
The cosmic-ray spectrum, comprised of various measurements from many cosmic-
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22 COSMIC RAYS & EXTENSIVE AIR SHOWERS

ray experiments, is shown in Fig. 1.1. Even though it extends for about 12 orders
of magnitude in energy and 10 orders of magnitude in flux, it can be approximately
described by a power-law as

N(E)dE ≈ E−γdE, (1.1)

where the spectral index γ hardly deviates from the value of 2.7 over a wide energy
range. Specifically, there are five energy regions where the spectral index changes its
value, namely:

Figure 1.1: The energy spectrum of cosmic rays, composed of data from several
experiments, taken from [9]. For comparison, nominal energies of major particle
accelerators are highlighted.
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• The knee: Between 1015 and 1016 eV, where the energy spectrum steepens
=⇒ γ ∼ 2.7 → 3.1

• The second knee: At E ≈ 1017 eV, a further steepening of the spectrum is
observed =⇒ γ ∼ 3.1 → 3.3

• The ankle: Located at E ≈ 1018.5 eV, the spectrum flattens, recovering its
initial value =⇒ γ ∼ 3.3 → 2.7

• The instep region: An area between 1019.1 and 1019.5 eV, representing the
beginning of the cosmic ray flux suppression at the highest energies =⇒ γ ∼
2.7 → 3.3

• The toe: Located at 1019.5 eV, where a strong suppression of the cosmic ray
flux is observed =⇒ γ ∼ 3.3 → 5.1

Presently, the reasons for the observed features in the cosmic ray spectrum are
still largely unknown. The most accepted theories assume that these breaks arise
due to changes in the cosmic ray nuclear mass composition, cosmic ray sources,
acceleration and propagation mechanisms, or a combination of several factors. It is
believed that the origin of the knee and second knee is linked to the acceleration
limits of cosmic ray sources in our Galaxy. The most widely accepted explanation
for this phenomenon is the Peters cycle [10], which attributes the knee steepening
to the maximum energy at which cosmic ray protons can be accelerated by an
astrophysical source, such as a supernova remnant shock. Similarly, the second knee
indicates the maximum energy for heavier nuclei (such as iron) can reach through
these mechanisms. Furthermore, cosmic rays with energies at this level should begin
to leak out from our galaxy, causing a decrease in the cosmic-ray flux [11]. On the
other hand, the ankle in the cosmic ray spectrum is typically attributed to the shift
from a galaxy-dominated to an extragalactic-dominated population of cosmic rays.
The reason for the suppression of the cosmic ray flux at the highest energies is
still an unresolved issue, with two potential explanations. One proposes that the
Greisen-Zatsepin-Kuzmin (GZK) cutoff [12, 13], caused by the interaction of cosmic
ray protons with photons from the Cosmic Microwave Background (CMB) radiation,
is responsible for the observed suppression. Protons with energies above 5× 1019 eV
lose energy when interacting with CMB photons over a mean free path of around 13
Mpc [12], meaning that the highest-energy particles would have to originate from
nearby sources. The other proposition, supported by the Pierre Auger Observatory
data [14], explains the suppression as a lack of nearby cosmic-ray sources with the
ability to accelerate cosmic rays, with a mixed nuclear mass composition, up to the
highest energies [15].

The observed steeply falling flux in the cosmic ray energy spectrum results in a
need for various experimental methods to detect cosmic rays within certain energy
ranges. Values of the cosmic ray flux at several energies are shown in Table 1.1.
Below 1014 eV, the flux is large enough to allow for a direct detection of cosmic rays
(realised by various complex detectors placed on either a high-altitude balloon or
a spacecraft). The knee of the cosmic ray spectrum marks the transition between
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direct and indirect cosmic ray detection (illustrated by the gap in measurements in
Fig. 1.1), with the indirect detection realised by measuring Extensive Air Showers.

ECR Flux
109 eV 10000 particles/m2/s
1012 eV 1 particle/m2/s
1016 eV 1 particle/m2/yr
1019 eV 1 particle/km2/yr
1020 eV 2 particles/km2/millennium

Table 1.1: Approximate values of the cosmic ray flux for different cosmic ray energies.

1.2 Extensive Air Showers

From the interaction of a cosmic ray in the Earth’s atmosphere, typically with a
Nitrogen or an Oxygen molecule, many millions of secondary particles are generated
in a cascading process, called an Extensive Air Shower. In the first interaction (a
nucleon-nucleus or a nucleus-nucleus collision), a handful of hadrons is generated,
initiating a hadronic cascade, which, in its turn, will ignite the whole development
of the EAS. Depending on the particle’s type and energy, different processes (mostly
re-interaction, decay, and bremsstrahlung) will contribute to the production of more
secondary particles. Each secondary particle carries a fraction of the initial energy of
the incident cosmic ray and, as the shower develops, the number of secondary parti-
cles increases, while the average energy per particle decreases. The shower maximum
occurs when the EAS reaches the maximum number of particles. After the shower
maximum, the number of secondary particles attenuates, primarily due to absorp-
tion in the atmosphere and ground. This effect is magnified if an EAS propagates
under a non-zero zenith angle θ1, as shower particles lose more of their energy by
traversing a larger distance through the atmosphere.

We can divide an EAS into four main components: The electromagnetic (EM), the
hadronic, the muonic and the neutrino (with the neutrino component not being mea-
sured in classical EAS experiments and thus not taken into account in the following
discussions). The individual components differ both in their development (i.e. are
governed by different interaction processes) and their sizes (i.e. number of particles,
fraction of the total EAS energy). Typically, following the interaction of a cosmic
ray with an air molecule, the newly formed hadrons either interact with different
air molecules, producing more hadrons (constituting the hadronic component), or
decay, producing muons, electrons, or photons. This way, all the other components
are fed from the hadronic component, as depicted in Fig. 1.2.

The development of an EAS in the atmosphere can be reasonably well described
by the Heitler-Matthews model [17]. This model assumes that the only hadrons

1The angle between the direction of the cosmic ray and a direction perpendicular to the Earth’s
surface, at which the EAS propagates through the atmosphere.
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Figure 1.2: Illustration of an EAS development, taken from [16].

created are pions, which draws from the fact that pions are the dominant hadron
species in an EAS, with roughly 10 times less-frequent kaons [11] being the next most
abundant hadrons. The model further assumes that positive, negative, and neutral
pions are created in equal numbers, the ratio of charged to neutral pions thus being
2 to 1, respectively. In the following sections, we will describe the individual EAS
components and underlying mechanisms, complemented by the predictions of the
Heitler-Matthews model.

The development of particle showers is typically expressed in units of traversed
matter density per unit area, called the slant atmospheric depth X. In cosmic ray
physics, the slant atmospheric depth yields the total matter traversed by the shower
particles, and it is defined as follows:

X =

∫ ∞

h

ρ(z)dz, [X] = g cm−2, (1.2)

where ρ is the atmospheric density measured from an altitude h along the distance
z traversed by the shower particles. The slant depth is the natural unit used in
measurements of the longitudinal profiles of air showers and expresses quantities such
as the number of particles, or the energy deposited by the shower particles in the
atmosphere as a function of X. The longitudinal profiles are heavily utilized in mass
composition studies, since different cosmic rays give rise to different longitudinal
profiles, as can be seen from Fig. 1.3.
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Figure 1.3: Example of longitudinal profiles of air showers initiated by various pri-
mary particle types. The data points represent the measurements from the fluores-
cence detectors of the Pierre Auger Observatory and the lines stand for simulated
showers (see [18] for data citations).

1.2.1 Electromagnetic Cascades

The EM component consists of electrons, positrons, and photons. It is mostly fed
by the decay of neutral pions, which, having a mean lifetime of around 8 × 10−17

s, almost immediately decay into two photons. In the vicinity of air molecules (or
rather their respective nuclei), photons with enough energy can create electron-
positron pairs, which, in turn, create additional photons by bremsstrahlung. In far
less-occurring cases, the EM particles can feed the hadronic and the muonic com-
ponent by photoproduction and muon pair production, respectively.

During the EAS development, around 90% of the cosmic ray energy is transferred
to the electromagnetic cascade and is subsequently dissipated in the atmosphere.
The EM component is also, by far, the most numerous of the three components,
representing up to 99% of all particles produced in an EAS (with a ratio of roughly
9 photons to one electron/positron) [19]. By the time an EAS reaches the ground
level, this number can severely change, depending on the incident zenith angle: For
very large zenith angles (θ > 70◦), the EM component gets exponentially attenuated2

in the atmosphere, becoming almost absent at the ground level.

The main features of the EM cascades can be relatively well described by the Heitler
model [20]. According to this model, the EM particles undergo n two-body splittings,

2Assuming the Earth’s atmosphere is flat, X grows with sec θ.



1.2. EXTENSIVE AIR SHOWERS 27

each after traversing a particle’s radiation length λr (see Fig. 1.4). Each particle
inherits half of the parent particle’s energy and after n splittings, the number of
particles reaches 2n. The particle creation ceases when the particles’ energies drop
to a critical energy ξEM

c . For EM cascades, this is a threshold where radiation losses
of the EM particles become less important then collisional losses. In air, ξEM

c ≈ 85
MeV.

n=l 

n=2 

n=3 

n=4 

Figure 1.4: Schematic illustration of the Heitler model of the EM cascade develop-
ment, taken from [17].

The model does not treat particles after reaching the critical energy, but, neverthe-
less, it still uncovers two important features of EM cascades:

• The maximum number of particles in an EM cascade Nmax is proportional to

the energy of the cosmic ray E0 =⇒ Nmax =
E0

ξEM
c

• The depth of the EM cascade maximum XEM
max is proportional to the logarithm

of the energy of the cosmic ray =⇒ XEM
max = λr ln

( E0

ξEM
c

)

1.2.2 Hadronic Cascades

Charged hadrons may either interact several times with atmospheric nuclei, feeding
the hadronic cascade with more hadrons and other secondary particles, or decay.
As for the EM case, the number of particles in a hadronic cascade increases until a
critical energy is reached, marking a maximum in the development of the hadronic
component. For hadrons, the critical energy is defined as the threshold, below which
the probability of a hadron to decay surpasses the probability of a further interaction.
The probability of a hadron decaying is also dependent on the atmospheric depth
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- since the air density decreases exponentially with altitude, the probability for a
hadron to decay before interacting is higher in the upper atmosphere. After reaching
the critical energy, the hadronic cascade thins out, transferring its energy into the
EM and the muonic components. The main decay modes of pions and kaons (as the
most numerous hadrons), along with their branching rations, are shown in Tab. 1.2.

π± (τ ≈ 2.6× 10−8 s) BR K± (τ ≈ 1.238× 10−8 s) BR

−→ µ± + νµ/νµ 0.99988 −→ µ± + νµ/νµ 0.6351
−→ e± + νe/νe 0.00012 −→ π± + π0 0.2116

−→ π± + π± + π∓ 0.0559
−→ π0 + e± + νe/νe 0.0482
−→ π0 + µ± + νµ/νµ 0.0318
−→ π± + π0 + π0 0.0173

Table 1.2: Decay modes of charged pions and kaons, along with their rounded branch-
ing rations (BR) and mean lifetimes τ .

The Heitler-Matthews model provides an extension to the Heitler model, with the
goal of describing the main features of hadronic cascades in EAS. The model divides
the atmosphere into layers of thickness λ ln(2), where λ is the pion interaction length.
After traversing one layer, a proton of energy E0 produces k new pions (with the same
energies), from which two thirds are charged and one third neutral (as shown in Fig.
1.5). Neutral pions immediately decay into two photons, feeding the EM component,
while the charged pions traverse another atmospheric layer and repeat this process.
After n generations, the amount of energy transferred to the EM component is:

E→EM = E0

[
1−

(2
3

)n]
. (1.3)

Thus, after only four interactions (with four interaction lengths corresponding to
roughly half the vertical height of the atmosphere), about 80% of the shower energy
is transferred into the EM component. Charged pions are created until their energy
drops below the critical energy ξc, subsequently decaying into muons. The critical
energy decreases with the primary hadron energy, corresponding to 30 GeV at E0 =
1014 eV and 10 GeV at E0 = 1017 eV. Generally, at higher altitudes, the values of
the critical energy are higher than the ones mentioned, so very inclined showers (i.e.,
θ > 70◦), which develop in a less dense atmosphere for a prolonged time, have more
energetic muons as a result of the decay of higher-energy pions.

The description above only applies for a simplified case, where the inelasticity of
the collisions is not taken into account. To remedy this, the model introduces a
parameter κ < 1, which represents a fraction of the available energy for particle
production. Therefore, at each interaction, only κE0 is distributed between new
pions, modifying the relations accordingly.
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Figure 1.5: Schematic illustration of the Heitler-Matthews model, depicting the de-
velopment of the hadronic cascade, taken from [17]

1.2.3 Muonic Component

As previously mentioned, practically all charged pions and a large portion of kaons
ultimately decay into muons, creating a distinct shower component. A muon is a
second generation lepton, with a rest mass of approximately 105.66 MeV, about 207
times heavier than the electron. Similarly, muon interactions are governed by Quan-
tum Electrodynamics, interacting with other particles through the electromagnetic
and weak forces. On the other hand, muons are unstable particles, with a mean
lifetime of roughly 2.2 µs. At the speed of light, this would result in them travelling
on average for about 660 m before decaying. However, due to the relativistic effects,
namely, the time dilation (of the muon lifetime from the Earth’s reference frame)
and the length contraction (of the Earth’s atmosphere from the muon’s reference
frame), many muons can traverse through the entire atmosphere, reaching detectors
at the ground level and even several meters underground for the case of the most
energetic muons.

Muons are the direct decay products of the shower hadrons and carry relevant in-
formation about the hadronic interactions in EAS. In the decay processes, muons
receive, on average, about 79% of the parent pion or 52% of the parent kaon energy
[21], while having two to three orders of magnitude longer decay lengths, as shown
in Table 1.3. Although both the EM and the muonic components originate from the
hadronic cascades, they differ significantly in their development. Since a muon is
significantly heavier than an electron, its radiative losses by bremsstrahlung radia-
tion are much smaller than those for electrons3. Additionally, muons have a smaller

3The intensity of bremsstrahlung radiation is inversely proportional to the square of the parti-
cle’s mass.
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cross-section for pair production and suffer less from multiple scattering than elec-
trons, leading to a virtual non-existence of muonic cascades in air showers. While
the EM cascade does not further influence the muonic component (apart from a
rare photon conversion into a muon-antimuon pair), the lowest-energy muons, on
the other hand, decay into electrons and positrons, marking another contribution to
the EM cascade.

γ [] λdecay [m]
Pion - Epion = 1 GeV 7,16 55,7
Pion - Epion = 100 GeV 716,49 5 570
Kaon - Ekaon = 1 GeV 2,03 7,5
Kaon - Ekaon = 100 GeV 202,56 753
Muon - Emuon = 1 GeV 9,46 6 234
Muon - Emuon = 10 GeV 94,64 62 337

Table 1.3: Rounded Lorentz factors γ =
E

mxc2
and mean decay lengths λdecay ≈ γτxc

for pions, kaons and muons of different energies.

According to the Heitler-Matthews model, all charged pions, whose energy falls
below the critical energy, decay into muons. The number of muons produced in a
hadronic cascade, as predicted by the Heitler-Matthews model, is expressed as:

Nµ =
(E0

ξc

)β

, (1.4)

where β = lnnch/ lnntot represents a fraction of logarithms of the number of charged
pions over the total number of pions produced in the hadronic cascade. The default
value of β is assumed to be 0.85, while Monte Carlo simulations predict a shift of
this parameter to higher values (0.92-0.95). This discrepancy in the β values can be
remedied by the model by including the inelasticity of collisions and a slight tuning
of its parameters. In any case, the number of muons grows slower than linearly with
the cosmic ray energy, which is important for the treatment of air showers initiated
by a heavier nuclei, as described below.

1.2.4 Superposition Model

The superposition model is a further extension to the Heitler-Matthews model and is
used to describe the development of hadronic cascades for nucleus-induced showers,
i.e., cosmic rays with atomic mass A > 1. According to the model, the energy E0 of
a cosmic ray is distributed equally among all of its A nucleons. The development of a
hadronic cascade is then treated as a superposition of A independent showers, each

with an initial energy of
E0

A
, developing simultaneously in the atmosphere. This is

a reasonable approximation, as for any nuclei, the binding energy per nucleon does
not exceed 9 MeV, far less than average pion interaction energies in an air shower
(∼ 100 GeV). An EAS is then treated as a sum of A showers initiated by protons.
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The number of muons NA
µ in this air shower is thus modified to

NA
µ = A1−βNp

µ, (1.5)

where Np
µ is the number of muons in a proton shower, governed by (1.4). This means

that, for β = 0.85 (0.95), an air shower initiated by an iron nuclei is going to have
1.8 (1.2) times more muons than a proton-initiated shower of the same cosmic ray
energy.

1.2.5 Atmospheric muons

Naturally, muons lose energy during their propagation through the atmosphere.
The muon’s critical energy in air, defined as the energy at which the ionization
losses of muons are equal to their radiative losses, amounts to 1114 GeV (the value
being averaged over the corresponding gasses) [22]. Comparing this value to the
average muon energies at the sea level, depicted in Fig. 1.6, it can be seen that in
the atmosphere, muons predominantly lose their energy by ionization. Additionally,
most muons have energies between hundreds of MeV to tens of GeV, and, thus, they
can be considered as minimum ionizing particles (MIP), losing on average around
1.8 MeV every g/cm2. This can be formally written as:

dEµ

dX
= −a, (1.6)

where a ≈ 1.8MeV/g cm−2. Accordingly, a muon propagating vertically throughout
the whole atmosphere and reaching sea level loses approximately 1.8 GeV.

It is worth mentioning that the spectrum shown in Fig. 1.6 applies for all muons
detected from an average of EAS with the same zenith angles, resulting in an av-
erage spectrum of muons. Muons from this spectrum are called atmospheric muons
and are not correlated with muons from individual air showers. In all cases, atmo-
spheric muons are considered as a background for individual EAS measurements.
On the other hand, they can also be used to calibrate the trigger rates of air shower
detectors.

After traversing through the atmosphere, particles from air showers continue to
lose energy as they propagate through the ground. Roughly four meters of rock
provide the same column depth as the whole atmosphere [24], resulting in a quick
absorption of hadrons and EM particles, statistically leaving only energetic muons
and neutrinos, which can be detected by underground detectors. The critical energy
of muons in standard rock amounts to 693 GeV [22] and, therefore, ionization still
remains the main process of energy loss for most muons traversing through the
ground.

In more detail, the main processes, by which the underground muons dissipate their
energy, are shown in Fig. 1.7. Ionization losses represent the most relevant process for
muons with energies up to 100 GeV. Above this energy, radiative losses become rel-
evant. These are bremsstrahlung (short dashed curve), direct pair-production (long



32 COSMIC RAYS & EXTENSIVE AIR SHOWERS

Figure 1.6: Average momentum spectra of muons at sea level, taken from [23]. All
markers, except for ⋄, represent measurements of showers with θ = 0◦, while ⋄ stands
for showers of θ = 75◦.

dashed curve), and photoproduction (dotted curve). Bremsstrahlung photons are
emitted as a result of muons being deflected in the EM fields of the atomic electrons
or nuclei. During photoproduction and direct pair-production, a muon emits a vir-
tual photon, which either hadronically interacts with surrounding matter, creating
new hadrons (photoproduction), or produces an electron-positron pair (direct pair-
production). These radiation processes are relevant only for very energetic muons
that reach deep into the Earth’s crust, and therefore are not relevant in our next
discussions.

1.3 EAS Detection

The detection of EAS can be performed using various techniques and detector types.
The most common technique is to deploy an array of surface detectors, which mea-
sure the lateral density and arrival time distribution of the shower particles that
reach the ground level. The footprint of an EAS grows with the cosmic-ray energy
and, thus, at the highest energies, the lateral spread of the shower particles can be
in the order of several kilometers. Given the strong suppression of the cosmic-ray
flux at the end of the cosmic-ray spectrum, detection areas in the order of thousands
of kilometers are required to gather relevant statistics. As more recent techniques,
experiments have been exploiting the Cherenkov and fluorescence light, emitted by
the shower particles in the atmosphere, to measure the longitudinal development of
EAS.
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Figure 1.7: Ionization and radiation losses of muons underground with respect to
the muon energy, taken from [24]. The dotted lines in the upward order represent
photoproduction, bremmstrahlung and direct pair-production.

Below, the different detection techniques and types of detectors are described in
greater detail.

1. Surface detector arrays: Most commonly comprised of scintillation detec-
tors, but other experiments, like the Pierre Auger Observatory, opted for water-
Cherenkov detectors (WCD). They are sensitive to charged shower particles,
mostly electrons, positrons, and muons, and also to very high-energy photons
that can convert to electron-positron pairs inside the WCD detectors. These
detectors are deployed over large areas, forming a geometrical grid, from which
the arrival time distributions and the particle density of the lateral distribu-
tion of EAS are measured. The reconstruction of the shower geometry (zenith
and azimuthal angles) and the position of the shower core, i.e., the intersection
point of the shower axis4 with the ground, is obtained through different trigger
times and the total signal measured by each detector.

Examples of experiments utilizing ground arrays of scintillation and water
Cherenkov detectors are the Telescope Array and the Pierre Auger Observa-
tory, respectively. The latter is the world’s largest cosmic ray detector, imple-
menting a water-Cherenkov detector array comprising an area of 3000 km2.
Currently, the Pierre Auger Observatory is enhancing its surface detector ar-
ray with complementary detectors, which will allow disentangling the electro-
magnetic from the muonic component of EAS. Namely, each WCD is being
equipped with a scintillation detector on top and a radio antenna. Additionally,
as part of the AMIGA (Auger Muons and Infill for the Ground Array) upgrade
[25], scintillation detectors are being buried next to nearby WCD detectors in
a smaller grid, which will allow a direct and independent measurement of the

4A continuation of the cosmic ray arrival direction in the atmosphere.
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muon component of EAS. In the past, experiments like AGASA [26] used lead
shielding on their scintillation detectors to absorb the electromagnetic compo-
nent and directly measure the muonic component in the GeV-TeV range.

2. Fluorescence telescopes: Fluorescence light is produced in the atmosphere
following the excitation of nitrogen molecules by the shower electrons and
positrons. The fluorescence light is emitted isotropically and its detection by
the telescopes depends on the atmospheric conditions. Fluorescence telescopes
are used for the measurement of the longitudinal electromagnetic profiles of
EAS, providing an almost calorimetric estimation of the EAS energy, provided
that the fluorescence yield, which depends on the atmospheric conditions, is
well estimated. Fluorescence telescopes are a part of hybrid observatories like
the Pierre Auger Observatory or the Telescope Array, which can detect EAS
using both techniques. Both experiments use the so-called hybrid events, i.e.,
EAS detected simultaneously by both techniques, to provide a complete pic-
ture of the EAS development, encompassing the lateral and longitudinal EAS
profiles.

3. Cherenkov telescopes: Cherenkov light is produced whenever a charged
relativistic particle propagates faster than the phase velocity of light in a
medium. In EAS, the emission of Cherenkov light happens primarily due to the
shower electrons and positrons, which comprise the bulk of the cascade. Unlike
the fluorescence light, the Cherenkov light is collimated, and the detector must
be aligned with the shower axis. Typically, the detection of EAS at the lowest
energies is done via the Cherenkov light, as only above 1017 eV showers start
to produce enough fluorescence light to be detected by this technique.

While the lateral development of EAS is measured by the ground arrays, their lon-
gitudinal development can be detected by Cherenkov or Fluorescence telescopes.
Contrarily to the ground arrays, which have nearly 100% duty cycle, Cherenkov
and Fluorescence telescopes can only operate during clear nights with only a small
fraction of moonlight, which reduces their duty cycle to a maximum of ∼15%.

1.4 Mass Composition of Cosmic Rays

As opposed to the cosmic-ray energy spectrum, the relative abundances of various
cosmic-ray nuclei are still unclear. To assess how various nuclei contribute to the
overall mass composition, it is convenient to show the cosmic ray energy spectrum
for individual cosmic ray species. Conventionally, the base spectrum is multiplied by
a factor of E2.6, which aids to enhance the distinct spectral features. We show this
scaled spectrum, comprised of data from several experiments, for individual cosmic
ray nuclei groups in Fig. 1.8.

The spectrum is shown for four elemental groups: proton, helium, oxygen, and iron,
where, typically, intermediate and heavy mass elements are grouped into the oxy-
gen and iron groups, respectively. While the lowest-energy cosmic rays are primarily
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Figure 1.8: The energy spectrum of cosmic rays, comprised of experimental measure-
ments (data points) and the data-driven Global Spline Fit model (lines and bands),
see [27] for details and the data citations. The all-particle spectrum is in black,
while colored objects stand for spectra of different elements/elemental groups: Red
for protons, yellow for helium, green for oxygen/oxygen group and blue for iron/iron
group. For oxygen and iron, fluxes of these nuclei and combined fluxes of nuclei with
similar atomic number are depicted (combined fluxes have bands around the lines,
which represent a model variation of one σ).

light nuclei, their mass composition evolves with increasing energy. Fig. 1.8 sug-
gests that, with accordance to the Peters cycle, the proton and helium fluxes dip
at the knee area, while the second knee is accompanied by a dip in the iron group.
Another visible feature indicates the proton flux having a maximum and then drop-
ping right before the ankle, such that the toe predominantly consists of heavier
elements. At the highest energies, before the flux suppression, the mass composition
seems to change dramatically, while the all-particle spectrum remains featureless.
We note that, at the lowest energies, the nuclear mass composition of cosmic rays
can be directly measured by space experiments. On the other hand, for EAS, the
mass composition must be inferred from comparisons of air-shower observables with
Monte Carlo simulations, which must precisely treat the development of EAS in the
atmosphere and detectors’ responses. The largest source of systematic uncertainties
arises from the predictions of high-energy hadronic interaction models, which are
extrapolated several orders of magnitude above the energies achieved at man-made
particle colliders.

Currently, one of the most widely used observable for determining the mass compo-
sition of cosmic rays is the depth of the shower maximum, denoted as Xmax, i.e., the
atmospheric slant depth at which the development of EAS reaches its maximum.
The determination of the mass composition using ⟨Xmax⟩ and σXmax observables in
the energy range 1016 - 1020 eV, as measured by different experiments, is shown
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in Fig. 1.9. There, it can be seen that both the ⟨Xmax⟩ and σXmax measurements
suggest, first, a transition from a heavy to a light-dominated cosmic ray mass com-
position between the knee and the ankle regions, and again a shift towards a heavier
composition for E > 1019 eV. Complementary to Fig. 1.8, the observed transition of
the cosmic ray mass composition between the knee and the ankle seems to indicate
the exhaustion of the sources to accelerate, first, protons, then helium, and then
successively heavier nuclei, as suggested by the Peters cycle.

Figure 1.9: Measurements of ⟨Xmax⟩ (left) and σXmax (right) compared to the pre-
dictions for proton and iron nuclei made by hadronic interaction models Sibyll-2.3c,
EPOS-LHC and QGSJET-II.04, taken from [28].

Due to the limited duty cycle of the fluorescence telescopes, the number of events
collected at the E > 1019.5 eV is not yet statistically significant to accurately de-
termine the mass composition using the Xmax measurements. It is possible to infer
the mass composition from the lateral distribution of the shower particles, measured
by the surface detector arrays. Having duty cycles of nearly 100%, and much less
strict event selection criteria, allows scientists to utilize about one order of magni-
tude larger statistics than from fluorescence telescopes. However, the interpretation
of the mass composition using these observables is often not consistent with the
Xmax measurements, as the high-energy hadronic interaction models account for the
largest source of systematic uncertainties in the current analyses. Thus, to gain ad-
ditional insight into the mass composition of cosmic rays, it is desirable to measure
different mass-composition sensitive observables, which come with their own sets
of statistics and systematic uncertainties. One example is the reconstruction of the
longitudinal profiles of muons and their maxima Xµ

max, which will be the topic of
the following chapters.
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1.5 EAS Simulation

Data collected from EAS experiments can only be interpreted by resorting to air
shower and detector simulations. These simulations are based on the Monte Carlo
method and exploit all the relevant knowledge of Quantum Electrodynamics (QED)
and Quantum Chromodynamics (QCD), combined with phenomenological modelling
of the air shower development. While there is good agreement between data and
theory in the description of the EM component (governed mostly by QED), the
hadronic processes in EAS are not precisely described and cannot be calculated
from the first principles. Consequently, various models of hadronic interactions need
to be implemented in air shower analyses. Current high-energy models of hadronic
interactions, most notably EPOS-LHC [29], QGSJET-II.04 [30] and Sibyll-2.3d [31],
are calibrated to the data from man-made particle accelerators, particularly the
Large Hadron Collider (LHC). However, in the context of high-energy hadronic
interactions in EAS, it is not sufficient due to several reasons, namely:

• The highest center-of-mass energy currently reached at man-made colliders is
13.6 TeV in proton-proton collisions at the LHC. However, the center-of-mass
energies in the highest-energy cosmic ray collisions are in the order of 100 TeV
(the "Oh-My-God" particle registering more than 650 TeV), at least one order
of magnitude above those of particle colliders.

• There is a significant lack of data regarding interactions where, in the energy
range of interest, the bulk of particles are created in the very forward regions.
Additionally, data from collisions of nuclei with oxygen or nitrogen are also
scarce.

The hadronic interaction models must therefore be extrapolated in multiple ways,
resulting in relatively large systematic uncertainties. Furthermore, differences be-
tween the models themselves, arising from different foundations upon which they
are built, lead to different interpretations of experimental data. Therefore, an im-
provement of the current models of hadronic interactions is another major goal in
the field of cosmic-ray physics.

One of the most known software for simulating the development of air showers is
CORSIKA [32]. The cosmic ray community has been using and actively updating
it for over 30 years. It incorporates much of the available knowledge regarding air
shower propagation in the atmosphere, enabling studies of EAS initiated by almost
any cosmic ray with energies ranging from 1012 eV to values larger than 1020 eV.
Carefully tracking every particle in an EAS along its trajectory, the simulation pro-
cess is comprehensive, albeit time-consuming, as the computing time scales approx-
imately with the cosmic ray energy. To counteract the large computing time typical
for modeling EAS, the process of "thinning" is implemented. It effectively selects
only one particle from a subset of particles whose energies fall below an adjustable
threshold, assigning it a corresponding weight and discarding the rest of the subset.
This significantly decreases the required computing time, making it a widely used
tool in EAS studies (more details are given in [32]).
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In CORSIKA, positional and timing observables are described with the use of a
Cartesian coordinate system, where the positive x -axis points to the magnetic north,
the positive y-axis to the west, and the positive z -axis in the upward direction. In
this configuration, the x -axis and y-axis define the so-called detector plane, while
the zero-point of the z -axis is located at sea level. The zenith angle θ of an EAS is
given by an angle between the primary particle momentum vector and the z -axis,
while the azimuthal angle is measured between the positive x and the horizontal
component of the primary particle momentum vector. For clarity, the coordinate
system is shown in 1.10.

Figure 1.10: Default CORSIKA coordinate system.

The modelization of the atmospheric profiles in CORSIKA is represented by five
atmospheric layers of varying density, resulting in five relations that connect the
atmospheric altitude with the mass overburden T (h), specifically:

T (h) = ai + bie
− h

ci , i = 1, 2, 3, 4 (1.7)

and
T (h) = a5 − b5

h

c5
, (1.8)

where the parameters aj, bj and cj, j ∈ 5̂, are inferred from balloon and satellite
measurements at several sites across the globe, where the main EAS experiments
are installed. Relation (1.8) represents the last layer of the atmosphere, where the
mass overburden vanishes at h = 112.8 km. The mass overburden T is related to
the slant atmospheric depth X, given by (1.2), by the following relation:

X =
T

cos θ
, (1.9)

where we neglect the Earth’s curvature (a reasonable assumption for θ < 70◦) and
thus can assume that X rises with sec θ.



Chapter 2

Reconstruction of the Production
Depth of Muons in EAS

The depth of the shower maximum, retrieved from the measurements of the electro-
magnetic longitudinal profiles of EAS, is one of the most-utilized mass-composition-
sensitive observables in cosmic-ray physics. Similarly, we can acquire relevant infor-
mation about cosmic-ray nuclear mass composition from the maxima of the longi-
tudinal profiles of the production depths of muons.

Although the electromagnetic and muonic profiles originate from two distinct shower
components and reflect different physics processes, their development is intrinsically
connected to the hadronic cascade, which might explain why their shape is similar,
as shown in Fig. 2.1. While the electromagnetic longitudinal profiles are a mea-
surement of the almost calorimetric energy deposited by the shower electrons and
positrons in the atmosphere, the muonic longitudinal profiles reflect the production
rate of muons in the atmosphere (i.e., the number of muons produced at each slant
depth X). Also, they are measured differently. While the longitudinal profiles of
the electromagnetic component can be directly detected by fluorescence telescopes,
the muonic longitudinal profiles can only be reconstructed from the arrival time of
muons measured by ground and underground detectors.

The motivation for this thesis is two-fold. Namely, we want to investigate the possi-
bility of inferring the mass composition of cosmic rays from the muonic longitudinal
profiles and, additionally, of gaining deeper insight into the hadronic interactions
taking place in EAS. The grounds for this work can be found in [6, 7, 33]. All of the
previous results are based on the following observations:

1. Muons deviate little from their mother particles: As shown in [33], 10
GeV (50 GeV) muons deviate only by 0.1◦ (0.03◦) from their parent pions.
Similar values are found for kaons and other hadrons.

2. Muons propagate in nearly straight lines to the ground: Muon tra-
jectories are very little affected by bremsstrahlung or multiple scattering. Ad-
ditionally, the Earth’s magnetic field only plays a role for very inclined air
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showers (θ>80◦), during which muons traverse significantly larger distances
and where the Earth’s curvature cannot be neglected.

These observations imply that muons carry relevant information about their produc-
tion points and, consequently, their parent hadrons. Thus, muons (and their longitu-
dinal production profiles) can, to some extent, reveal the mechanisms of high-energy
hadronic interactions occurring in the higher parts of the atmosphere, which would
otherwise be unavailable to us.

Figure 2.1: Illustration of the longitudinal profiles of the EM (red) and the muonic
(blue) components, taken from [34].

Due to the fashion it is defined, the muonic longitudinal profile is conventionally re-
ferred to as the Muon Production Depth (MPD) distribution, which will be adopted
from now on.

We distinguish two kinds of MPD distributions. The first one, called the true MPD
distribution, is defined as the longitudinal profile of the production depth of all
muons produced in an EAS above some energy Eµ

kin. This distribution is not affected
by the effects of muon propagation and decay. Therefore, it faithfully reflects the
parent hadronic component and, ideally, its shape would not be affected by the
detector effects, as we will explain below. However, the true MPD distribution cannot
be directly reconstructed without resorting to Monte Carlo simulations to estimate
the fraction and distribution of the muons that decay before reaching the ground
detectors. Thus, we define a second MPD distribution, called the apparent MPD
distribution, which consists of only those muons that reach the ground level, and
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that can be effectively detected. However, the apparent MPD distribution depends
on the shower geometry, muon propagation effects, and observation conditions. In
the following chapters, we will solely focus on the apparent MPD distribution, which
we will call the MPD distribution from now on.

We note that the the Muon Production Depth is fundamentally a feature of indi-
vidual muons, i.e., its reconstruction is performed on a muon-by-muon basis. We
introduce this reconstruction process in the next section.

2.1 The Arrival Time Model

The current method of the MPD reconstruction is thoroughly described in [6, 7,
33]. Here, we summarize its main ideas. We first introduce the following notation
regarding the geometry of an air shower (as illustrated in Fig. 2.2):

• Shower axis: An extrapolation of the incident cosmic ray’s trajectory into the
atmosphere.

• Shower core: The point where the shower axis intersects the ground.

• Shower plane: A hypothetical plane, perpendicular to the shower axis, prop-
agating along the shower axis at the speed of light. It is where the shower
particles are contained, which is why we also call it the (plane) shower front.
The air-shower coordinate system used in our work is defined on the shower
plane.

The model uses a Cartesian coordinate system, with the origin centered at the
shower core. The x -and y-axes define the shower plane, with the y-axis parallel to the
ground, and the z -axis coincides with the shower axis. Alternatively, a corresponding
cylindrical coordinate system may be utilized, defined by:

r =
√

x2 + y2, (2.1)

and
ξ = arctan

(x
y

)
, (2.2)

where r represents the distance from the shower core and ξ the polar angle in the
shower plane.

When a muon is produced in the atmosphere, the corresponding z -coordinate indi-
cates its production distance (called the Muon Production Distance) measured along
the shower axis. Since muons are massive particles and do not propagate parallel
to the shower axis, they will arrive delayed with respect to the arrival time of the
shower front at the detector coordinates (r, ξ). We call this delay the muon arrival
time. This is the only quantity measurable by the arrays of particle detectors and
is the main idea behind the MPD reconstruction. It can be decomposed into several
components, caused by various effects. Below, we will detail on the several caused
of muon delay.
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Figure 2.2: The geometry used in the standard MPD analysis, taken from [35].

Additionally, the basis of the reconstruction of the MPD depends on two assump-
tions: First, muons are created in the shower axis. This assumption was adopted
in [35], arguing that the transverse production position of muons is confined to a
few tens of meters from the shower axis, a small distance compared to the span of
current EAS experiments. As a second simplification, we assume that muons travel
along straight lines, as mentioned above.

2.1.1 Geometric Delay

Muons inherit the transverse momentum pt of their parent hadrons, deviating from
the shower axis by an angle α = arcsin

( pt
ptot

)
, where ptot is the muon total momen-

tum. Consequently, muons will arrive at the ground with some delay with respect
to the arrival time of the shower plane. Assuming, initially, that muons travel at the
speed of light, the origin of this delay is only related to their trajectories. Therefore,
we call it the geometric delay, and define it as

τg =
1

c
[l2 − (z −∆)2], (2.3)

where ∆ = r tan θ cos ξ is the distance from the muon impact point at the ground to
the shower plane and l =

√
(z −∆)2 + r2 is the total distance traversed by a muon.
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The relation can be inverted to get

z =
1

2

( r2

cτg
− cτg

)
+∆, (2.4)

which represents a one-to-one mapping between the Muon Production Distance z
and the geometric delay. In a final step, we compute the Muon Production Depth
X from Eq. (1.2), namely:

X =

∫ ∞

z

ρ(z′)dz′. (2.5)

2.1.2 Kinematic Delay

Since muons are massive particles, they cannot propagate at the speed of light.
Thus, muons accumulate a further source of delay, called the kinematic delay, which
is directly linked to their kinetic energy. The kinematic delay of a muon traveling
over a distance l is given by

τkin =
1

c

∫ l

0

dl′
( 1

β(l′)
− 1

)
, (2.6)

where β = v/c, and v is the velocity of the muon. Since muons lose energy during
their propagation, β will vary along the muon’s path. As mentioned in Chapter 2,
in the range of energies of interest, muons behave as minimum ionizing particles,
i.e., suffer constant energy losses in the medium by ionization. The energy of muons
at the detector Ef can be written as a function of their energy at production Ei,
as Ef = Ei − ρal, where ρ is the traversed density, and a ≃ 1.8 MeV/g cm−2 is the
electronic stopping power of muons. Evaluating the integral, the kinematic delay
then reads as:

τkin =
1

cρa

(√
E2

i −m2
µc

4 −
√

E2
f −m2

µc
4
)
− l

c
. (2.7)

2.1.3 Further Sources of Delay

Apart from the geometric and the kinematic delays, which are the dominant sources
of delay, several other effects contribute to the total arrival time of muons. Here, we
mention two other types of delay. The first one, called the geomagnetic delay τB,
arises from the deflection of muons in the Earth’s magnetic field. In [36], a model for
the geomagnetic treatment of muons has been described, while in [35], it was applied
to the delay analysis. There, it was shown that this delay only becomes important
for very long muon trajectories, corresponding to very inclined, almost horizontal
(θ ≥ 80◦) air showers.

The second delay results from the multiple scattering of muons on nuclei. In [35],
it was shown that for r > 100 m, this contribution, denoted as τMS, is deemed
negligible, with a comment that if muons are treated separately, this effect might
occasionally become important.
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Additional sources of delays might be introduced by the approximations made by
the Arrival Time Model, but their contributions are negligible with respect to the
mentioned ones. To illustrate the contributions by the individual delays, we show
their dependence on the distance from the shower core in Fig. 2.3.

Figure 2.3: The contributions of different types of delay with respect to the distance
from the shower core, depicted for 3 showers with different zenith angles. The "Rem"
label corresponds to τMS and the remaining sources of delay combined. Taken from
[35].

2.1.4 The Process of MPD Reconstruction

The total delay of muons can be expressed as

τ = τgeom + τkin + τB + τMS + ... ≈ τgeom + τkin, (2.8)

which, within the scope of the model, can be reasonably approximated as a sum of
the geometric and the kinematic delays. We can substitute (2.8) into relation (2.4)
to get

z =
1

2

( r2

cτ − cτkin
− (cτ − cτkin)

)
+∆. (2.9)

Thus, to determine the Muon Production Distance/Depth, a precise estimation of
the kinematic delay is crucial. This has proven to be a difficult task, since the kine-
matic delay is intimately related to the muon energy spectrum in EAS, which is
largely unknown, given the difficulties and cost of such enterprise. Therefore, in
this and the previous works, the kinematic delay estimation was obtained from
parametrizations of the energy spectrum of muons obtained from Monte Carlo sim-
ulations of EAS.
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In the standard MPD analysis ([6]), the mean kinematic delay is given by the fol-
lowing parametrization:

< τkin >=
1

2c

r2

l
ε(r, z −∆), (2.10)

where the function ε is given by

ε(r, z) = p0(z)
( r

[m]

)p1
, (2.11)

with p0 being parametrized as

log10(p0(z)) =− 0.6085 + 1.955 log10(z/[m])− 0.3299 log210(z/[m])+

+ 0.0186 log310(z/[m])
(2.12)

and p1 as
log10(p1) = −1.176. (2.13)

The expression (2.10) is then substituted into (2.9), replacing the kinematic delay
with the average kinematic delay. Due to the shape of the parameter p0, the equation
for the Muon Production Distance cannot be solved analytically. Therefore, the
reconstruction of the Muon Production Distance z consists of an iterative process:
First, we get an estimation of z from equation (2.9), neglecting the contribution of
the kinematic delay, i.e., τkin = 0. We then use this value of z in equation (2.10) to
estimate the average kinematic delay, which we again plug into (2.9). This can be
done several times, but the convergence of the method is quick such that only two
iterations are necessary. After the final value of z is calculated, we transform it into
the correspondent atmospheric depth X using the relation (1.2).

2.1.5 Applications and Limitations

The method is applicable for the MPD reconstruction only if a detector or a subse-
quent analysis is able to distinguish muon signals from contributions of other EAS
particles. Additionally, while the method could, in principle, be applicable for air
showers with a wide range of zenith angles, it was only implemented for air showers
with θ ∈ (55◦, 65◦), utilizing the water-Cherenkov detectors of the Pierre Auger Ob-
servatory [37]. It was the only way to acquire an almost pure muonic signal in the
detectors, as, for lower zenith angles, the contribution of the electromagnetic to the
total signal measured by the WCDs was too high to allow a reliable reconstruction.
Furthermore, it was shown in [33] that the relation between the uncertainties of the
Muon Production Distance δz and the intrinsic time resolution of a given detector
δt depends on the distance from the shower core r, namely:

δz

z
= 2c

(z −∆)2

zr2
δt. (2.14)

For distances close to the shower core, the uncertainty of the production distance

diverges, therefore, a cut in r has to be applied. For a given precision ez of
δz

z
, the
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value of the cut rc is given by:

rc =

√
2zmaxcδt

ez

1 +
√

2cδt
ezzmax

tan θ cos ξ
, (2.15)

where zmax is the highest possible production point of muons in a particular shower.
For example, in [37], where the MPD was reconstructed using data from the Surface
Detector of the Pierre Auger Observatory, a cut of rc = 1700 m was imposed (given
by the features of WCDs). The value of this cut decreases with decreasing zenith
angle, as for lower θ, muons are created deeper in the atmosphere and thus zmax is
smaller. The cut also has an impact on the contribution of the kinematic delay, as
far from the shower core, it can be considered as a correction to the geometric delay
(see Fig. 2.3). This is a helpful feature of the imposed cut, because it justifies the
reasoning of assuming zero kinematic delay in the first iteration during the MPD
reconstruction process. On the other hand, the number of muons in the reconstruc-
tion is drastically reduced by this cut. In [37], about 50 muons were left for EAS
with cosmic ray energies of 1019.5 eV after applying all cuts. The r-cut is considered
as one of the main setbacks of the current MPD reconstruction model and also one
of the main motivation points for this thesis, as our proposed model will try to lower
the cut to desirable values.



Chapter 3

Machine Learning

Machine Learning (ML) is a rapidly growing field in computer science that enables
computers to learn from data without being explicitly programmed. This technology
has been gaining popularity in recent years, as it has shown to have significant
potential in a wide range of applications, including image and speech recognition,
natural language processing, recommendation systems, and autonomous vehicles,
among others. The increasing availability of large datasets, along with advances in
hardware and software technologies, have contributed to the growth of ML, making
it one of the most promising fields in (computer) science. With the ability to learn
from vast amounts of data, ML can provide insights, predictions, and solutions that
would otherwise be difficult or impossible to obtain using traditional programming
techniques.

In recent years, machine learning has emerged as a powerful tool in cosmic-ray
physics, allowing researchers to process large amounts of data and extract mean-
ingful insights [5, 38]. Machine learning algorithms can help identify patterns and
correlations in cosmic-ray data that may not be apparent using traditional statis-
tical methods, while improving the efficiency and accuracy of the data analysis.
The objective of this chapter is to provide an overview of machine learning and the
algorithm at the heart of the proposed MPD reconstruction method, the Gradient-
Boosted Decision Trees (GBDT).

3.1 Basic Concepts of Machine Learning

Machine learning is an application of the field of Artificial Intelligence that encom-
passes various, albeit all data-driven, algorithms. Based on their methodology of
learning from data, ML algorithms can be broadly classified into three categories:
supervised, unsupervised and reinforcement learning. Supervised learning algorithms
are trained on labeled data, i.e., independent variables are supplied to the algorithm
alongside the corresponding dependent variables we wish to model. Typical super-
vised learning applications are classification or regression problems. As the name
suggests, unsupervised learning algorithms are, on the other hand, applicable for
unlabeled data, being often used for clustering methods. The concept of reinforce-

47



48 MACHINE LEARNING

ment learning is different, as the algorithm tries to learn by interacting with a chosen
environment and receiving feedback in a form of rewards or punishments. In this the-
sis, we aim to reconstruct a quantity from different observables acquired by Monte
Carlo simulations and study the final model’s quality on various datasets. Therefore,
we will focus on supervised learning and its characteristics.

3.1.1 Supervised Learning

The main goal of supervised learning is finding a function f : X −→ Y that maps
given input variables (called features) x ∈ X to the correct output (called label
or target) y ∈ Y . In other words, a supervised learning algorithm tries to solve the
equation

y = f(x). (3.1)

The essence of supervised learning lies in the method of finding a solution to (3.1):
An algorithm tries to find a model f̂(x) that best fits the target function f(x) by
minimizing the expected value of a so-called objective function O :

f̂ = argmin
F

E[O(f, F )]. (3.2)

The optimization of O is done iteratively in a number of steps, hence the "learning"
label. The form of O varies with respect to the problem at hand: For example, de-
pending on the type of the target variable, supervised learning can be distinguished
into two categories: classification- and regression-type problems. While classification
involves predicting a discrete target, regression involves predicting continuous target
values. Objective functions are different for each of these categories, and since this
work focuses on a 1D regression-type problem, we will prefer explaining the charac-
teristics of machine learning on regression examples from now on. We will also set
x ∈ Rm and y ∈ R, where m is the number of features.

In order to acquire f̂ , a general structure of implementing a supervised learning
model is typically followed:

1. Problem definition:
The first step is to define a problem to be solved. This means selecting the de-
sired target and assessing the state of the available features, be it the relations
to the target variable or their type, such as text, images, or numerical data.

2. ML algorithm selection:
Depending on the aim of the problem, there are many different types of super-
vised learning algorithms to choose from, such as GBDT or Neural Networks
[39]. Various machine learning algorithms have their own advantages and dis-
advantages and are suitable for different data structures. For example, Neural
Networks are suitable for problems in computer vision, language processing or
speech recognition, while algorithms based on Decision Trees have upper hand
in dealing with tabular data [40].
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3. Data pre-processing:
In order for the model to learn from the features, they must be pre-processed
to ensure they are in a format that can be utilized by the algorithm. Differ-
ent algorithms require different data pre-processing, but, generally, the task
involves:

• Data cleaning : Identifying and handling missing or erroneous data values,
such as outliers, noise, or incorrect data types. This is done by either
removing them or replacing them with appropriate values.

• Feature & Target Engineering : Selecting and transforming features in a
way that captures the underlying patterns and relationships in the data.
The model’s performance can be significantly impacted by the quality of
the features, as well as the form of the target variable. It also includes
encoding of categorical variables (converting them to numerical forms)
and formatting data types such as dates, times, and currencies to ensure
the consistency of the data.

• Data transformation: Transforming data into a format that is appro-
priate for analysis. This includes scaling, normalization, and optionally
converting continuous data into discrete data by grouping values into cat-
egories or bins. This is sometimes done to simplify the analysis of complex
datasets.

• Data reduction: Reducing the size of the dataset while retaining its im-
portant features. This is done through feature selection, or data under-
or over-sampling.

4. Data splitting:
A ML model first has to learn patterns in the given data in order to be able
to make predictions on another dataset. Thus, the available data need to be
split into two parts - the training dataset and the testing dataset . The
training dataset is used for the model to learn the corresponding underlying
data patterns, while the testing set is used to evaluate the model’s performance
after the training has concluded.

5. Training and evaluating the model:
Training a model involves a feedback loop where the model makes predictions
on the input data, and the output is compared to the corresponding label.
The model then adjusts itself based on the error between the two in order
to minimize it. This feedback loop helps the model improve its performance
over time. After the model has been trained, its performance is evaluated by
using the testing dataset. This involves measuring various metrics between the
predicted output and target, which generally depend on a given problem type.

6. Tuning the model:
If the model’s performance is not satisfactory, the model’s tunable parameters,
called hyperparameters, need to be adjusted, either by hand or optimization
algorithms. During the optimization process, models are trained with different
sets of hyperparameters, choosing the best performing one. After a satisfactory
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optimization, the model is ready to be implemented in predictions on other
(possibly unlabeled) datasets.

During the training phase, a model needs to quantify the error between the predicted
output and the corresponding target. This is done via a so-called loss function ,
which takes the predicted output and the target as inputs and outputs a single
number (or a vector) as a measure of error. The most commonly used loss function
in regression problems is the Mean Squared Error

MSE(a, b) = E[(a− b)2] =
1

n

n∑
i=1

(ai − bi)
2, (3.3)

where n is the number of datapoints in a given dataset.

3.1.2 The Bias-Variance Trade-off

An important quality measure for a newly constructed ML model is its ability to
learn a function that can make accurate predictions on new, unseen data. The gen-
eralization ability of a model is closely related to the concepts of underfitting and
overfitting , and the phenomenon of the so-called bias-variance trade-off .

Bias and variance are two sources of error that can affect the performance of a
machine learning model. An illustration of the concept is depicted in Fig. 3.1.

Figure 3.1: An illustration of the Bias-Variance Trade-off, taken from [41].
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Bias refers to an error introduced by approximating the problem at hand with a
simpler model. If f̂(x) is the approximate solution to (3.6), then

bias[f̂(x)] = E[f̂(x)]− f(x). (3.4)

Models with high bias fail to capture the complexity of the data and thus lead to
higher errors on both training and testing datasets. On the other hand, models with
low bias correspond to a good fit to the training dataset.

Variance, on the other hand, describes an error introduced by the model being too
sensitive to the training data, or, alternatively, it represents the amount by which
the model output would change if different training data were used. Variance of a
model is described as

var[f̂(x)] = E[f̂ 2(x)]− (E[f̂(x)])2. (3.5)

A model with high variance is overly complex and captures noise in the training
data, which implies that it will not perform well on previously unseen (testing) data.
Correspondingly, low variance indicates that the model has the ability to generalize
to other datasets.

Additionally, in most real-world applications, due to various sources of noise accom-
panying the data, a random error term ε is present in (3.1), called the irreducible
error . Therefore, most of the time, a function to be learned has the following form:

y = f(x) + ε(x), E[ε] = 0, var(ε) = σ2
ε . (3.6)

Considering all three sources of errors and taking the MSE as our error measure,
the equation for the bias-variance trade-off reads as:

MSE(f̂(x), f(x)) = (bias[f̂(x)])2 + var[f̂(x)] + σ2
ε . (3.7)

From (3.7), we see that optimally, both bias and variance should be as low as possible.
In most cases, however, it is not possible to achieve both, as one of them tends to
increase as the other decreases (as depicted in Fig. 3.1). Instead, the model needs to
be optimized so to prevent both underfitting (high bias, low variance - model fails to
infer fundamental information from data) and overfitting (low bias, high variance —
over-complicated model, does not generalize to unseen data). While underfitting can
be caused by having too few features, using a model that is too simple or training
the model for too short a time, overfitting is often caused by exactly the opposite,
having too many features, using a model that is too complex, or training the model
for too long.

To prevent underfitting and overfitting, a separate dataset, called the validation
dataset , is often used to evaluate the performance of a ML model during training. It
acts as a separate testing dataset, but its error is evaluated before each adjustment
of the model during the training, rather than at its end. This way, the change in
the validation error can be monitored, letting the model be trained as the validation
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error decreases, preventing underfitting. On the other hand, when the validation
error stops decreasing, the training of the model can be stopped to prevent overfit-
ting (which is the principle of the so-called early-stopping algorithm). Like this, an
optimal model, given the selected hyperparameters, is found. The validation dataset
can also be used for evaluating a model for a given set of hyperparameters when
tuning the model, allowing us to select the right combination of hyperparameters in
order to get an optimal model.

3.2 Gradient-Boosted Decision Trees

Gradient Boosted Decision Trees (GBDT) is a powerful machine learning algorithm
used for regression and classification problems, particularly standing out when deal-
ing with tabular datasets. GBDT has gained widespread popularity in recent years
due to its ability to handle complex, high-dimensional data and non-linear relation-
ships, while producing highly accurate predictions. The basic object in the GBDTs
algorithm is a so-called decision tree, a hierarchical model that maps out possible
decisions and their consequences using a flowchart-like structure. The process of gra-
dient boosting then combines multiple decision trees (also labeled weak-learners),
creating one strong-learner. Apart from being an interpretable and versatile al-
gorithm, GBDT is readily available in popular machine learning libraries such as
XGBoost [42], and LightGBM [43], which makes it easy for developers and data
scientists to implement it in their projects. The next subsections are dedicated to
describe GBDTs in more detail.

3.2.1 Decision & Regression Trees

A decision tree is a model used in decision-making processes, implemented via a
tree-like structure. From the simplest illustration point, we can imagine it as a
visual tool used to make decisions by mapping out all possible choices and their
likely consequences (see Fig. 3.2). It effectively operates by partitioning a given
parent dataset into small subsets of datapoints that share some key characteristics.
A decision tree consists of the following components:

• Node:
A "point" where a decision is made on how to split a given dataset into subsets,
based on the values of one of the input features. Each node contains a set to be
split, a splitting criterion based on one of the input features and two or more
branches, each corresponding to a possible outcome of the split. Depending on
a node’s position in a tree, we can label it as:

– Root Node: The topmost node in a decision tree, where a first decision is
made. It is often labeled as the level 0 node, where levels, counted from
the root node downwards, represent the depth of a tree

– Decision/Internal Node: A node belonging to level 1, 2, ..., n− 1, where n
is the overall depth of a tree
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– Leaf (Node): A final node in a tree (level n node), at which a label or
a value is assigned to datapoints satisfying all criteria that lead to this
node.

• Branch:
A "line" connecting two nodes, corresponding to a possible outcome of the
split made in the node above it. Branches of a decision tree can be interpreted
as a set of if-then rules which explain how the input features are related to the
output variable, with each path through the tree corresponding to a different
set of conditions that lead to a specific outcome. The number of branches
emanating from a decision node depends on the chosen split conditions and
the number of possible values the corresponding feature can take. In all of the
following text, we will assume only two branches growing from each node.

Figure 3.2: An illustration of the structure of a decision tree, taken from [44].

In mathematical terms, we first assume a dataset D = {(xk, yk)}nk=1 of independent
identically distributed tuples (xk, yk), where xi ∈ Rm, yi ∈ R, m is the number of
features and n the overall number of datapoints. A decision tree can be expressed
as a function f̂ of input features x as

f̂(x) =
J∑

j=1

vj1Rj
(x), (3.8)

where J is the total number of leaves in the tree, Rj is the j-th leaf (i.e., a set bounded
by all splitting criteria through which the leaf arose), vj is the value assigned to all
datapoints belonging to Rj (depending on the target) and 1 is the indicator function
defined as
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1Rj
(x) =

{
1 if x ∈ Rj

0 if x /∈ Rj.
(3.9)

Assuming a subset S ⊆ D present at a given node, a split s is defined as a pair of
subsets {S1, S2}, S1 ∪ S2 = S, which can be written as

s =
{
{(x, y)|xj < t, (x, y) ∈ S}, {(x, y)|xj ≥ t, (x, y) ∈ S}

}
, (3.10)

where xj, j ∈ {1, ...,m}, is the feature according to which the split is made, and t is
the threshold which defines the split. We define the pair (xj, t) as the "criterion".
In the process of building a decision tree, splits are made on newer and newer nodes
until some terminal condition is met, e.g., when the set in each leaf contains only
one class of data or when a tree reaches a pre-determined depth level.

The output value vj, corresponding to the j-th leaf, depends on whether we deal
with a classification or a regression, hence regression trees, problem:

• Classification: The target variable y is discrete, i.e., Rj contains datapoints
with targets corresponding to classes of data (e.g., 1, 2, ...). When there is
only one class present in Rj, the decision tree predicts this class as the output
vj for each datapoint satisfying the split conditions leading to Rj. If there are
multiple classes present in Rj, the majority class is taken as the output.

• Regression: The target variable y is continuous. Therefore, for a given leaf Rj,
vj is chosen as the mean value of all target values in Rj.

The main goal of a decision tree is to find the optimal splitting decisions throughout
the tree that maximize the overall information gain. If, at a given node, we choose
some specific criterion A, then the information gain, IG, is defined as

IG(S,A) = I(S)−
∑
i

|Si|
|S|

I(Si), (3.11)

where |S| and |Si| denote the number of datapoints in S and Si, respectively, and
where I is the so-called impurity metric, whose form depends on the type of problem
to be solved. For regression analysis, we usually take

I(S) = MSE(S) =
1

|S|
∑
j

(yj − ȳ)2, (3.12)

where yj are the target values in S and ȳ is their mean value (similarly for the
subsets Si).

The basic algorithm for finding the best splitting decision at each node, correspond-
ing to the maximal information gain, proceeds as follows:

1. Separately, for each feature xj, a given dataset is sorted such that the values
of the respective feature are sorted in ascending order. Therefore, we end up
with m separate datasets.
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2. In each newly created dataset, we sequentially select the threshold t to be the
average value between each pair of adjacent values of the sorted feature, i.e.,

t =
xj
k + xj

l

2
, with xj

k and xj
l adjacent. Combined with the condition above, we

end up with a total of m · (n− 1) thresholds.

3. For each t, we calculate the information gain from (3.11) and select the criterion
with the maximum value of IG to do the splitting at the given node.

For large datasets, this "greedy" algorithm does not scale well, which is why, in ad-
vanced GBDTs libraries, the so-called histogram splitting algorithm is implemented.
The algorithm first bins a feature according to which a split is to be made, and then
proceeds according to the basic algorithm. By considerably reducing the number of
potential splitting points to be investigated, the algorithm speeds up the splitting
process at the price of losing some of its flexibility (a risk which is largely mitigated
when dealing with large datasets).

A regression tree is built node-by-node, until user-specified criteria are met. Various
GBDT libraries vary in the order by which the nodes are constructed, the two
most commonly used strategies being depth-wise and leaf-wise tree growths. While
depth-wise expansion splits all nodes at a given depth before adding more levels,
the leaf-wise approach always splits the node that maximizes the information gain,
which can lead to unbalanced trees (see Fig. 3.3). If there is not a specific criterion to
stop the construction of a tree (i.e., complete trees are built), the two approaches will
produce the same result. Generally, depth-wise growth performs better for smaller
datasets, where leaf-wise-built trees tend to overfit. In comparison, leaf-wise growth
tends to excel when dealing with larger datasets, outperforming the level-wise growth
[45].

Figure 3.3: Illustrations of Growing Strategies used in creating decision trees, taken
from [45].

As for the algorithm’s advantages, a single regression tree is easily interpretable.
Unlike neural networks, often seen as a "black box" model, we can consider single
regression trees as a "white box" model, requiring less intense data pre-processing
than other machine learning models. On the other hand, it has significant disad-
vantages: It is prone to extreme overfitting, as, without any stopping mechanism, a
tree could just create a leaf for each of its training datapoints, which is why decision
trees are generally high-variance models. Additionally, decision trees are not robust
models, since small variations in data may give rise to completely different trees.
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Both these disadvantages can be mitigated by combining multiple regression trees
into one model, one such method being the gradient boosting.

3.2.2 Gradient Boosting

Gradient boosting is one example of the so-called ensemble learning, a type of su-
pervised learning method based on combining many weak models (or weak learners)
into a single powerful one. A weak learner is, in classification settings, defined as
any model that performs better than a simple coin toss (i.e., a random guess). The
gradient boosting method combines weak learners sequentially, as each subsequent
learner attempts to learn relevant information from the previous one. In the GBDT
algorithm, a weak learner is a decision/regression tree that has not been fully grown.
Each tree tries to improve upon the errors made by the previous trees, being the
errors quantified by a loss function L. The final prediction is made by combining the
predictions of all the weak trees. Consequently, the GBDT, as opposed to a single
tree, is a significantly more robust algorithm. It is less prone to overfitting and can
model more complex relationships between features and a target with significantly
better accuracy.

As it was written earlier in this chapter, a supervised learning algorithm learns by
optimizing a problem-specific objective function O, trying to find a "good-enough"
model f̂(x) of the target function f(x). In the GBDT algorithm, O is in the form

O = L+ Ω, (3.13)

where Ω stands for the so-called regularization terms, which control the complexity
of individual trees. We first look at a simplified case where Ω = 0. Since the GBDT
algorithm works by sequentially adding decision trees to an ensemble model, we can
write f̂ as

f̂ (K) =
K∑
k=1

γk, γk ∈ T , (3.14)

where K is the total number of trees used in the ensemble (not known beforehand)
and T is the set of all possible decision/regression trees. γk is an output of a re-
gression tree, defined by (3.8). The algorithm is first initialized by a constant value,
typically the mean value of the target, and then, the training itself proceeds in an
iterative manner: After each tree is added at a step t, the overall model is updated
via the relation

f̂ (t) =
t∑

k=1

γk = f̂ (t−1) + γt. (3.15)

The aim of each new tree γt is to optimize (i.e., to minimize) the given objective
function. Therefore, at each step t, we want to add a tree which satisfies

γt = argmin
γ

O(f, f̂ (t)) = argmin
γ

L(f, f̂ (t−1) + γ). (3.16)

Depending on the specific form of the chosen loss function, (3.16) is relatively difficult
to solve. Thus, as a common practice (see [42]), a second order Taylor expansion of
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L is made so that

γt ≈ argmin
γ

[
L(f, f̂ (t−1)) +

n∑
i=1

(
giγ(xi) +

1

2
hiγ

2(xi)
)]

, (3.17)

where

gi =
∂L(f(xi), f̂

(t−1)(xi))

∂[f̂ (t−1)(xi)]
,

hi =
∂2L(f(xi), f̂

(t−1)(xi))

∂[f̂ (t−1)(xi)]2

(3.18)

are the gradient and the diagonal elements of the Hess matrix of the loss func-
tion, respectively. If we substitute the tree structure (3.8) into (3.17) and drop the
L(f, f̂ (t−1)) term, as it does not contribute to the minimization process, for each leaf
Rj of the t-th tree we get

vj ≈ argmin
v

[
(
∑
i∈Rj

gi)v +
1

2
(
∑
i∈Rj

hi)v
2

]
= −

∑
i∈Rj

gi∑
i∈Rj

hi

(3.19)

and finally

γt ≈ −
J∑

j=1

∑
i∈Rj

gi∑
i∈Rj

hi

1Rj
(x). (3.20)

The relation (3.20) provides a general method of determining which tree to add at
each step t. If we take L = MSE, then

gi = 2
[
f̂ (t−1)(xi)− f(xi)

]
,

hi = 2,
(3.21)

and

γt ≈
J∑

j=1

∑
i∈Rj

ri

|Rj|
1Rj

(x), ri = f(xi)− f̂ (t−1)(xi). (3.22)

The value of each leaf is the mean value of the negative gradient r, also called the
residual. Therefore, the method is clear: We train a regression tree with the original
features x, but where the target variable is the negative gradient r, and we take
this tree to be γt. This means that each new tree tries to learn on the residuals
from the old ensemble and adds its newly predicted residuals to the overall model.
Together, the trees form a strong ensemble model, capable of predicting complex
and high-dimensional relationships with state-of-the-art accuracy. For illustration
purposes, an example of how a GBDT model fits a 1D function is depicted in Figure
3.4.

As another method of preventing overfitting, the GBDT algorithm can be imple-
mented with regularization terms which punish overly complex trees so that the al-
gorithm will tend to select a model which employs simpler trees. In modern GBDT
libraries such as XGBOOST or LightGBM, the basic tree complexity term can be
expressed as

Ω(γ) =
J∑

j=1

α|vj|+
λ

2
v2j , (3.23)
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where the α and λ parameters are called the L1 and L2 regularization hyperparam-
eters, respectively. If we substitute (3.23) into (3.13) and subsequently solve for γt,
then for each leaf vj, j ∈ {1, ..., J}, we get

vj ≈ −
∑

i∈Rj
gi ± α∑

i∈Rj
hi + λ

, (3.24)

where the plus sign applies if the nominator is larger than zero and the minus sign
otherwise, bringing the optimal leaf value closer to 0. It can be seen that each
regularization parameter lowers the value of the leaf in a different fashion, which is
why both hyperparameters are used frequently in model tuning.

The last regularizing hyperparameter we mention is the learning rate ε ∈ (0, 1⟩,
which scales the output of all trees, resulting in a slower but ultimately more accurate
training sequence. If this hyperparameter is implemented, we can generally write the
whole GBDT model as

f̂ (K) = ε

K∑
k=1

γk, γk ∈ T . (3.25)

There is a large number of tunable hyperparameters available in large GBDT li-
braries, all of which controlling some part of the tree-building process. It is therefore
important to precisely investigate which hyperparameters to tune, as it allows the
model to better generalize to new data, which is the ultimate goal of machine learn-
ing.

3.2.3 The LightGBM Library

LightGBM is a high-performance gradient-boosting framework that has gained pop-
ularity in recent years. Developed by Microsoft, it is designed to be memory-efficient,
fast, and scalable. One of the key features of LightGBM is its ability to handle large
datasets efficiently. It uses a technique called Gradient-based One-Side Sampling
(GOSS) to reduce the computational cost of gradient calculations by retaining the
instances with large gradients and undersampling those with smaller gradients. This
reduces the memory and computation requirements, enabling LightGBM to han-
dle datasets that are too large for other algorithms. Another unique feature of the
framework is the Exclusive Feature Bundling (EFB), which groups together highly
correlated features to further reduce the memory usage and speed up the training
process. Additionally, LightGBM supports parallel processing, allowing it to take ad-
vantage of multi-core CPUs and distributed computing environments. All of these
features, with the addition of its native use of the histogram splitting algorithm,
makes LightGBM often significantly faster than many other popular machine learn-
ing algorithms.

The algorithm has many hyperparameters to be set before the training process
begins. They control the behavior of the algorithm and play a crucial role in de-
termining the accuracy of the model. The hyperparameters can be divided into two
categories: tree-based and boosting-based.
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• Tree-based:

– Number of leaves: Assigns the maximum number of leaves in a tree. A
higher value will lead to a more complex model, which can result in
overfitting.

– Maximal depth of tree: Controls the maximum depth of a tree. Similarly
as for the number of leaves, a higher value will result in a more complex
model, which is prone to overfitting.

– Fraction of features used: Decides the fraction of features to be randomly
sampled for each tree, which may help to prevent overfitting by reducing
the correlation between trees. It is also called Colsample by Tree.

– Fraction of data used: Decides the fraction of data to be randomly sam-
pled for each tree, which might help to reduce overfitting by creating
more diverse trees. It is also named Subsample.

• Boosting-based:

– Learning rate: Controls the step size at each iteration of the training
process. A smaller learning rate will result in slower convergence but can
result in better generalization. Corresponds to the hyperparameter ε in
(3.25).

– Minimal Child Weight: Is used to control the minimum sum of instances
(hessian) required to continue splitting a node in a decision tree. It cor-
responds to the sum

∑
i∈Rj

hi in (3.24). If this sum in a node is less than a

predefined number, then a split at this node will not be made, and the
node will become a leaf node. It can help to prevent overfitting by reduc-
ing the number of unnecessary splits in the tree, especially when dealing
with noisy data.

– L1 (L2) Regularization: Involves adding a penalty term to the objective
function that is proportional to the absolute value (square) of the leaf
values in the model. This penalty term encourages the model to use fewer
features by shrinking the coefficients of less important features towards
zero. Corresponds to the hyperparameter α (λ) in (3.24).
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Figure 3.4: Illustrative process of a GBDT model fitting the function sinx.



Chapter 4

MPD Reconstruction

In this chapter, we introduce a new approach for the reconstruction of the MPD,
based on the aforementioned Gradient-Boosted Decision Trees (GBDT) algorithm,
using the LightGBM library. We first describe the data used in the reconstruction
process, the technical details of the machine learning (ML) model and its hyper-
parameters, and pre-processing applied to the data to obtain improved reconstruc-
tion performance. In the second part of this chapter, we apply the model to EAS
datasets with different characteristics. Initially, we analyze an EAS simulation li-
brary using fixed energy and zenith angle and later transition to a more realistic
scenario, considering libraries with continuous zenith angle and energy. We test the
accuracy of the GBDT model, first to the muon-by-muon reconstruction of the MPD
and then to the reproduction of the overall MPD distribution. While the first gives
us key information about the method’s accuracy, the latter is the observable, which
we can effectively measure with an array of particle detectors. After validating the
method, we apply it to different primary particle species, hadronic interaction mod-
els, and higher cosmic ray energies and investigate the corresponding effects.

4.1 Simulations and Data Preparation

The analysis is conducted with Monte Carlo simulations of EAS, using the COR-
SIKA v.7.7402 software. The particle transport and interactions of the shower par-
ticles below 80 GeV, what we call the "low-energy hadronic interactions model",
was handled by the FLUKA v. 2020.0.6 package [46], interfaced within CORSIKA.
A summary of the simulation libraries used in this study is given in Table 4.1. We
divide the MPD analysis into three phases, each testing the proposed ML model on
increasingly real-situation datasets:

1. EAS with fixed values of zenith angles θ and primary particle energy Eprim,

2. EAS with continuous values of θ, sampled from a uniform distribution in
sin2(θ), and fixed primary particle energy Eprim,

3. EAS with continuous values of θ and Eprim.

61
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Eprim [eV] θ [◦] Primary1 Model Thinning2 # showers

Fixed:
= 1017.0

Fixed:
= {0◦, 60◦}

Proton
QGSJET-II.04 Yes 200
EPOS-LHC 200

SIBYLL-2.3d No 40

Iron
QGSJET-II.04 Yes 200
EPOS-LHC 200

SIBYLL-2.3d No 40

Continuous:
∈ (0◦, 65◦)

Proton QGSJET-II.04

Yes

1000
EPOS-LHC 500

Iron QGSJET-II.04 1000
EPOS-LHC 500

Continuous:
∈ (1018.5, 1019.0)

Continuous:
∈ (0◦, 65◦)

Proton
QGSJET-II.04

Yes

500
EPOS-LHC 500

SIBYLL-2.3d 500

Iron
QGSJET-II.04 500
EPOS-LHC 500

SIBYLL-2.3d 500

Table 4.1: A summary of all air showers implemented in the MPD analysis.

4.1.1 Domain Transformations & Data Cuts

The data structure implemented in the proposed ML model is based on the current
MPD reconstruction method and, therefore, we follow the initial data pre-processing
and muon selection according to the Arrival Time model, described in Chapter 2.

First, we are interested in reconstructing muons that can reach ground detector
arrays, i.e., that do not decay in the atmosphere. Thus, for the EAS simulations
in CORSIKA, we set the ground altitude of 1452 m, corresponding to the average
altitude of the Surface Detector of the Pierre Auger Observatory, and instruct COR-
SIKA to output only those muons that reach the set altitude. In this work, we also
assume an ideal detector response.

Second, the coordinate system used by CORSIKA refers to the plane of the detector,
which we call the Detector Plane system - DP. However, we use the so-called Shower
Plane system - SP in standard cosmic-ray analyses. Therefore, we must perform the
necessary coordinate transformations from the DP to the SP on our data. This
procedure is done in three stages, described as follows:

1. In CORSIKA, by definition, the shower core, i.e., the point where the shower
axis intersects the ground, is set at the DP coordinates (0, 0, zground), where
zground = 1452 m.

1From now on, we will call the EAS-initiating cosmic ray the primary particle or simply the
primary.

2Given the huge number of secondary particles generated in an EAS, typical Monte Carlo
simulations apply the "thinning" algorithm, which significantly aids in reducing the required CPU
time. See Chapter 1, section 1.5.
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2. The transformation between the DP and the SP system (xSP , ySP , zSP ), where
zSP is the Muon Production Distance, is performed via the following relations
(utilizing the corresponding DP coordinates Φ and θ - see Fig. 1.10):

φ = Φ+ π

xSP = xDP cosφ cos θ + yDP sinφ cos θ

ySP = −xDP sinφ+ yDP cosφ

zSP =
zDP

cos θ

(4.1)

3. A final transformation into a corresponding cylindrical coordinate system is
performed:

rSP =
√

x2
SP + x2

SP

ξSP = arctan
(xSP

ySP

)
,

(4.2)

where rSP is usually called the distance from the shower core. Additionally, we
construct two additional variables:

∆ = rSP tan θ cos ξSP

l =
√
r2SP + (zSP −∆)2,

(4.3)

with ∆ representing a distance between the muon ground impact point and
its projection in the shower plane, and l is the total distance traversed by a
muon in the atmosphere.

Since we only perform our analysis in the SP system, we will omit the SP index in
the subsequent formalism. A simplified illustration (for ξ = 0◦) of the SP coordinate
system is displayed in Figure 4.1 for clarity.

Figure 4.1: An illustration of the Shower Plane system, depicted for ξ = 0◦.
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The second modification to the raw CORSIKA data concerns the reference time
system. On our simulations, the origin of our time reference system is set at the first
interaction of the cosmic ray with an air molecule. Therefore, the timing information
of the particles arriving at the ground level reflect the absolute time tabs elapsed since
the first interaction, at z = zfirst. In the standard MPD analysis, however, we work
in the Shower Plane coordinate system, in which the time origin tref is set by the
impact of the shower core at the ground, with the shower particles arriving with a
given delay with respect to the arrival time of the shower-plane front. The reference
time tref is the time required for a hypothetical particle propagating at the speed
of light, parallel to the shower axis, to travel from the first interaction point with
(tabs, z) = (0, zfirst) to the ground. At the ground level, the reference time is given
by

tref =
zfirst
c

(4.4)

and our respective time delay t for each muon reads

t = tabs − (tref −
∆

c
), (4.5)

where the
∆

c
term arises from the asymmetrical propagation of an air shower with

θ ̸= 0◦ (for each muon, we shift the z-coordinate by ∆ so the shower plane coincides
with the ground impact point - see Fig. 4.1). As is common jargon in the MPD field,
we will refer to the total delay of muons t as the arrival time.

Lastly, we apply specific cuts for the aims of our work:

1. In the previous work, the reconstruction of the MPD was applied to the sur-
face detector array of the Pierre Auger Observatory [37]. However, it could
only be used for detectors at radial distances larger than 1700 m, due to the
reconstruction quality requirements given by the relation (2.14). This resulted
in the necessity of selecting EAS with energies above 20 EeV, which would
contain enough muons to reconstruct the MPD profiles. Our objective is to
dramatically reduce the applied radial cut from rcut ≥ 1700m to rcut ≥ 200m,
allowing us to reconstruct EAS with lower energies.

2. In order to reconstruct the MPD, it is necessary to distinguish the muonic
component of EAS from the EM background. In [37], EAS with zenith angles
ranging from 55◦−65◦ were used to satisfy this requirement, as in such inclined
events, the EM contamination was largely absorbed in the atmosphere. We aim
to extend the MPD reconstruction to lower zenith angles, which can be done
by tailoring the MPD reconstruction setup to arrays of buried scintillation
detectors, as in the case of AMIGA [25]. In this case, the 2.3 m of soil above
the detector provides a vertical mass overburden of ∼ 540 g cm2, allowing for
a complete shielding from the EM component of EAS and acquiring a pure
muonic signal. As muons also lose energy while propagating underground, a
lower threshold Eth on the muon energies needs to be imposed that quantifies



4.1. SIMULATIONS AND DATA PREPARATION 65

the required energy to reach 2.3 m below ground. We can find this limit by
solving the equation (1.6):

Eth = aρglg, (4.6)
where ρg is the ground density and lg is the distance a muon traverses in the

ground. Following the AMIGA setup, we arrive to Eth ≈ 1GeV
cos θ

, which, from
now on, we implement in our analysis.

4.1.2 Machine Learning Setup

As mentioned at the beginning of the chapter, we use the GBDT algorithm via the
LightGBM library as our machine learning (ML) model of choice. While GBDT
models are known to perform well "out of the box", to fully unlock their potential,
a thorough hyperparameter tuning and feature engineering must be implemented in
the pipeline. In our case, the hyperparameters were optimized using the Hyperopt
library [47], an open-sourced Python package designed to find the hyperparameters
which best optimize a custom objective function fO. The objective function was
chosen to reflect our goals: reconstruct the MPD muon-by-muon and reproduce the
shape of apparent MPD distribution. The form of our objective function is as follows:

fO = MSE(X) ·MSE(fX), MSE(y) =
1

n

n∑
i=1

(
(ypredi − ytruei )2

)
, (4.7)

where X denotes the MPD values and fX represents frequencies of binned X values,
with a constant bin width of 20g cm−2. The superscripts pred and true represent the
model predictions and the target values, respectively. The search range of individual
hyperparameters and their optimal values found by Hyperopt are displayed in Table
4.2.

Hyperparameter Tuning Range Optimal Value
Learning Rate [0.001, 1] 0.695

Number of Leaves {2, 3, ..., 1000} 987
Maximal Depth of Tree {1, 2, ..., 20} 11
Minimal Child Weight {0, 1, ..., 5000} 1376

L1 Regularization [0, 100] 5.0
L2 Regularization [0, 100] 55.1
Colsample by Tree [0, 1] 0.279

Subsample [0, 1] 0.218

Table 4.2: A summary of the optimal values of hyperparameters (of the MPD ML
model) found by Hyperopt, alongside the respective search ranges.

4.1.3 Feature & Target Selection, Feature Engineering

Due to the Arrival Time model being the basis of our MPD model, we choose its
core variables as the base input features to our ML model. Our base set of features
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consists of {sec θ, cos ξ, r, t}. On the other hand, choices of targets for our model
consist of the Muon Production Depth X, the Muon Production Distance z, the
kinematic delay τk, or some transformation of the aforementioned targets. From the
results of various optimization trials, log10(z) was chosen to be the optimal candidate
for the target.

As any ML model, the GBDT algorithm benefits from feature engineering. Due
to the partitioning nature of regression trees and their step-wise output, effectively
outputting piece-wise functions, the GBDT algorithm specifically might have trouble
combining features in arithmetic operations such as addition or multiplication [48].
Thus, we make new features for the GBDT model to reach its full potential. We
again used the Hyperopt package to create and select features that boost the model’s
performance the most. New features were chosen to be created from the base features
by either or both:

1. Transforming individual features through elementary functions
=⇒ x −→ {xy,

√
x, log10(x), exp(−x)}, y ∈ {2, 3}

2. Combining individual features through arithmetic operations (+,−,×, /)

In the optimization process, up to 10 new features could be created. However, in most
of our trials, creating more than 5 features did not improve the model’s performance.
By minimizing the objective function (4.7), the best performing model was found

to contain the following set of additional features:
{ct

r
, log10(r),

log10(r)

log10(ct)

}
, where c

is the speed of light. The reason of utilizing logarithms might reflect the fact that
the r and t distributions are typically skewed with a right tail, i.e., the majority of
muons are registered close to the shower core and arriving early [35]. The logarithmic
transformation changes the shape of a left-skewed distribution into a one closer to a
normal distribution, which might help to boost the performance of the ML model.

4.1.4 Final Data Pre-processing

As described in Chapter 3, we need to separate our data into training, validation
and test datasets. As the training dataset, we chose 450 proton- and 450 iron-
initiated thinned air showers from the second batch, i.e., with continuous zenith
angle values and a fixed primary energy of 1017 eV. We chose the QGSJET-II.04 as
the underlying hadronic interaction model. From this batch, we used 50 proton- and
50 iron-initiated showers as the validation dataset, defining the training-validation
ratio to be 90%/10%. The remaining showers serve as various test datasets.

As a final step in the pre-processing pipeline, we perform data undersampling on
the training dataset. The reason behind this decision is to reduce the ML model’s
bias to prioritizing heavier primary cosmic rays, iron-initiated showers in our case,
and their MPD distribution characteristics. The MPD distributions of proton- and
iron- initiated air showers have different depths of the shower maxima Xµ

max and
number of muons (see the Heitler-Matthews model in Chapter 2), which could in-
troduce additional bias to the model. Therefore, our goal is to undersample the
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target distribution so that the corresponding MPD distribution is almost uniformly
distributed. With this procedure, we risk losing important information that may
be contained in the discarded data, but, on the other hand, we mitigate the risk by
having a large training dataset to begin with. For the undersampling process, we use
the Imbalanced-learn library [49], which is designed to handle imbalanced datasets
by under- and over-sampling the available data. We use the Random-Undersampler
algorithm, which finds the most under-represented category, the bin of the MPD
distribution in our case, and randomly selects data from all other categories to dis-
card, resulting in a uniform distribution of the target data. At larger zenith angles,
the MPD distributions have a long right tail towards large values of X (or small z),
implying that we have a smaller amount of data for higher MPD values. To mitigate
this effect, we set an upper limit in X above which the undersampling is not per-
formed. The resulting MPD distribution is a uniform distribution up to the upper
limit, followed by a right tail, as depicted in Fig 4.2. The upper limit was optimized
using the Hyperopt package and was found to be 800 g cm−2.

Figure 4.2: An illustration of the undersampling technique implemented in the MPD
analysis data pre-processing.

4.1.5 Training Procedure & Model Evaluation

The training procedure is based on an iterative decision tree creation, explained
in Chapter 3. The loss function was chosen to be the MSE (see (3.3)), which is
evaluated for both the training and validation datasets after each subsequent tree.
To counter the overfitting risk, we implement the early-stopping callback, which halts
the training after 10 non-improving iterations in the validation dataset MSE. The
training for our model stopped after 53 created trees, registering MSEtraining = 0.02
and MSEvalidation = 0.145. The difference between the two values is a consequence
of the undersampling of the training dataset.
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4.2 Model’s Performance Results

In this section, we show the performance of our trained model on the remaining
showers, yet to be seen by the GBDT: First, our model is applied to the first batch
of air showers with fixed zenith angles and a single primary particle energy. Then,
we make predictions on the rest of the second batch, showing results for air show-
ers following a continuous distribution of zenith angles, ranging between 0 and 65
degrees, uniform in sin2 θ, and fixed primary particle energy. Lastly, we study the
model performance applied to a continuous energy and zenith angle distribution of
air showers, the dataset which is closer to reality.

We investigate the model’s reconstruction performance both from the individual
muon perspective (from now on the muon-by-muon treatment) and via the shower-
wise treatment, where we compare the shape of the reconstructed MPD distributions
with the one from the Monte Carlo and also the depth at which the maximum of
the production rate of muons Xµ

max takes place. As explained in Chapter 2, Xµ
max is

also a mass-composition-sensitive variable that could be used as an independent and
complementary measurement of the nuclear mass composition of cosmic rays in the
same fashion as the flagship analyses of the depth of air shower maximum Xmax. We
determine the value of Xµ

max by fitting the MPD distribution with the Gaisser-Hillas
function [50], defined as:

dN

dX
=

dNmax

dX

( X −X0

Xµ
max −X0

)X
µ
max−X0

λ
e

X
µ
max−X

λ . (4.8)

This function has 4 parameters, namely: Xµ
max, N

µ
max, X0, and λ, of which we are

only interested in the value of Xµ
max. Since this function does not describe the tails of

the longitudinal profiles, and those are of no use to us, we restrict ourselves to fitting
a smaller region around the maximum of the distribution. To find the optimal range
where to fit the profiles, we made a scan around the maximum of the distribution
and chose the region where we achieved the best reduced χ2 distribution from the fit.
We determine the model’s performance shower-wise by comparing the reconstructed
and Monte Carlo value of Xµ

max.

4.2.1 EAS with Fixed Values of θ and Eprim

We start the evaluation of the model’s quality using a single primary particle energy,
Eprim = 1017 eV, and only two zenith angles, 0◦, and 60◦. This way, we are able to
study the model’s sensitivity to reconstructing air showers of the "same type", inves-
tigating only the physical shower-to-shower fluctuations. Additionally, by studying
two very different zenith angles, we are able to see the effects of shower geometries
on the model’s performance. For each zenith angle, we explore the reconstruction’s
quality on 100 distinct air showers, both muon-by-muon and shower-wise.

First, we apply the reconstruction to EAS governed by the QGSJET-II.04 model,
which allows us to investigate the MPD model’s performance without additional
systematic uncertainties, which could stem from using a different model of hadronic
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Figure 4.3: Superimposed reconstructed (blue lines) and Monte Carlo (orange lines)
MPD distributions for θ = 0◦ and Eprim = 1017 eV. Left: Examples for the recon-
struction of individual showers. Right: Average of 100 showers.

interactions. Figures 4.3 and 4.4 show samples of MPD reconstructions on individual
air showers, followed by "averaged" MPD reconstructions on all 100 air showers for
both zenith angles and the proton- and iron-induced showers. The muon-by-muon
reconstruction characteristics are depicted in Figure 4.5. It can be seen that in
the low-zenith case, the reconstruction fares well, correctly matching the shapes of
the Monte Carlo MPD distributions, both for the cases of individual air showers
and for the averaged one. We assess the model’s performance in reconstructing
the production depth of each muon through the distribution given by the relation
∆X = Xpredicted−XMC . From inspection of Figure 4.5, we can see that the muon-by-
muon of the MPD reconstruction is practically unbiased, ⟨∆X⟩ < 10 g cm−2, while
the precision of the reconstruction amounts to σ∆X < 80 g cm−2. As we will see,
these results comprise a slight upgrade with respect to the current method of MPD
reconstruction. For the high-zenith angle showers, the quality of the reconstruction
worsens, and a small bias of ∼ 20 g cm−2 is observed for iron-induced showers. Our
findings are in agreement with previous studies. However, since we are focused on
the zenith angle range of θ < 50◦, such studies lay outside the scope of our work.
We further observe a degradation of the method’s resolution of σ∆X ≃ 165 g cm−2,
which may be caused by the longer muon trajectories, roughly scaling with sec θ.

In Figures 4.6 and 4.7, we compare the performance of our method with the standard
one. By inspecting of the Figures, it can be seen that our method provides a better
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Figure 4.4: Superimposed reconstructed (blue lines) and Monte Carlo (orange lines)
MPD distributions for θ = 60◦ and Eprim = 1017 eV. Left: Examples for the recon-
struction of individual showers. Right: Average of 100 showers.

reconstruction of the MPD, considering both the muon-by-muon precision and the
reproduction of the overall shape of the MPD distribution. Let us keep in mind that
the current method was tuned for zenith angle showers θ ∼ 60◦ and radial distances
of r ≳ 1000 m. Its main objective was to be applied to a surface detector array of
water-Cherenkov stations as the one used by the Pierre Auger Observatory. It is,
therefore, not surprising that, when using it at very-low zenith angles, θ = 0◦, and
r > 200 m, the reconstruction fails in most cases.

Even in the case when we restrict ourselves to a subset of muons properly recon-
structed by the current MPD model, it still makes biased predictions, with |⟨∆X⟩|
being as much as ≈ 55 g cm−2, while our ML model remains almost unbiased. Our
earlier reasoning on a slight upgrade in σ∆X originates here, where we register an
improvement in σ∆X of ∼ 8− 23 g cm−2.

Overall, we can make a case for the proposed ML model to have certain advantages
over the current MPD reconstruction method. However, its worse reconstruction
quality in the high-zenith case needs to be addressed and investigated. A standard
way of achieving a better reconstruction is to increase the r ≥ 200 m cut. The
reconstruction of the MPD close to the shower core is not trivial, as, at such small
distances, the energy spectrum is more varied than at larger distances (of the order of
r ≳ 1000 m), which makes the estimation of the kinematic delay more challenging.
Additionally, the arrival time distribution of the muons close to the shower core
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Figure 4.5: Distributions of ∆X for Eprim = 1017 eV, for 0◦ (left) and 60◦ (right)
zenith angles, for proton- (top), and iron-induced showers (bottom).
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Figure 4.6: Comparison of the MPD distributions, depicting the current model
(pink), our ML model (blue), and the Monte Carlo profile (orange) for reference.
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Figure 4.7: Evaluation of the current (green lines) and ML (red lines) reconstruction
methods’ performances, denoted as ∆Xcurrent, and ∆XML, respectively.

is more compact, which also brings limitations to the reconstruction methods. An
alternative to achieve a better reconstruction is to increase the radial cut to 500 or
even 1000 m, at the cost of losing a significant fraction of the available muons. We
investigate the same reasoning for our ML model in Fig. 4.8.

From the inspection of Fig. 4.8, we verify that the reconstruction quality increases
with increasing distance from the shower core. In our case, it may indicate that
the ML model is missing a feature that would boost its performance close to the
shower core, e.g., the muon energy. However, ground detector arrays of cosmic-
ray observatories do not have the ability to measure muon energies and, therefore,
making cuts in the distance from the shower core might be an option for a better
reconstruction performance3. While for r ≥ 500 m, the improvement in σ∆X is by
one third, for r ≥ 1000 m, it is by around one half of σ∆X . This is particularly
noticeable for air showers with θ = 0◦, where the improvement goes up to almost 90
g cm−2. We also stress that the radial cut has an impact on the shape of the MPD
profiles. This effect is more noticeable for low-energy showers, i.e., θ < 60◦. However,
this improvement is achieved at a price of losing ≳ 80% of muons, depending on
the zenith angle. Thus, it is imperative to find a balance between the method’s
precision and the amount of discarded muons. A better-explaining relationship of
this phenomenon will be shown in the continuous-zenith subsection.

Next, we investigate the ML model’s performance concerning the three main ob-
servables at the underground level: the distance from the shower core r, the muon

3We note that in the current MPD reconstruction method, r ≥ 1700 m.
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Figure 4.8: Top panel: Monte Carlo and ML reconstructed MPD profiles for the
average MPD distribution of 1017 eV and proton-initiated showers at θ = 0◦ (left),
and 60◦ (right), when applying radial cuts of 200 m (blue), 500 m (orange), and
1000 m (red). Bottom panel: The distribution of ∆X = Xpredicted −Xtrue for each
radial cuts, shown in the panel above.

arrival time t, and the muon energy E. Here, it is also desirable to compare the
model’s performance on air showers initiated by different primary cosmic-rays. To
get an idea about the differences between proton- and iron-initiated air showers, we
show the Monte Carlo MPD distributions for both primary particles in Fig. 4.9. As
predicted by the Heitler-Matthews model, iron-initiated showers give rise to ∼ 1.8
times more muons than proton-initiated showers. Additionally, the maxima of the
respective distributions are different, which is why Xµ

max is the main observable in
muon-related mass-composition studies. We note that these two facts are behind
our reasoning for applying undersampling to our training data. Otherwise, the ML
model might get biased towards the MPD characteristics of iron-induced showers.

In Figures 4.10, 4.11, and 4.12, we show the method’s reconstruction bias and preci-
sion, (⟨∆X⟩, σ∆X) for proton-, and iron-initiated showers, as a function of the shower
core, muon arrival time, and muon energy, respectively. We can immediately observe
that the method’s reconstruction performance is generally better for iron-initiated
showers than for protons. Another observation concerns the "erratic" behavior of
⟨∆X⟩ with respect to r and t, which might be the consequence of the partitioning
nature of the GBDT algorithm. Both observables are used as features in the ML
model and, therefore, the predicted target is a multi-dimensional step-wise function
of these features. We can see that this behaviour is not replicated in the muon-energy
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Figure 4.9: Comparison of the Monte Carlo MPD distributions for proton and iron
primary particles, Eprim = 1017 eV.

dependence, shown in Fig. 4.12. On the other hand, the values of σ∆X , whose rela-
tionships mostly resemble smooth curves, predominantly drop with increasing values
of the independent variables. This behavior is due to the fact that the observables
are correlated into some extent: For example, muons that land close to the shower
core also typically arrive earlier than muons landing far from the shower core. Most
of the shower muons also land close to the shower core, arrive earlier rather than
later and have smaller energies, which is the reason for insufficient statistics at larger
values of those observables.

In Fig. 4.12, we can observe that the ML reconstruction is biased with respect to
the entire muon energy spectrum. For small muon energies, ⟨∆X⟩ can be as high
as 130 g cm−2, while at high energies, ⟨∆X⟩ goes down to -110 g cm−2. This is an
undesirable effect, which might be caused by the model not having any information
about the muon energies. We will investigate this effect in the next chapter, where
we build a second ML model that predicts the muon energies from the available
features.

To further investigate the model’s generalization capacity, we introduce air showers
simulated with different models of hadronic interaction, specifically EPOS-LHC and
Sibyll-2.3d. As an additional comparison, we have simulated the subset of Sibyll
2.3d showers without activating the thinning algorithm and used these showers to
investigate the impact of the thinning algorithm on our results. In Figure 4.13, we
show the average Monte Carlo MPD distributions for proton-, and iron-initiated
showers, for the three hadronic interaction models. From inspection of Figure 4.13,
we observe that both EPOS-LHC and Sibyll 2.3d predict approximately the same
Xµ

max for both primary species. However, QGSJET-II.04 is known for predicting
shallower values for Xµ

max. These observations are in agreement with the results
presented by the Pierre Auger Observatory [37] and make us conclude that Xµ

max

is an observable which is sensitive to the hadronic interactions occurring in the
shower development. We chose QGSJET-II.04 as our model for training basis since,
in the analysis made in [37], QGSJET-II.04 was the model that allowed for a more
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Figure 4.10: Bias (top) and resolution (bottom) of the MPD reconstruction as func-
tions of the shower core distance r, comparing proton and iron primary particles.
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Figure 4.11: Bias (top) and resolution (bottom) of the MPD reconstruction as func-
tions of the muon arrival time t, comparing proton and iron primary particles.
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Figure 4.12: Bias (top) and resolution (bottom) of the MPD reconstruction as func-
tions of the muon energy E, comparing proton and iron primary particles.

consistent interpretation between the estimation of the mass composition of cosmic
rays using Xµ

max, and Xmax from the electromagnetic profile. On the other hand,
the interpretation of the nuclear mass composition of cosmic rays for Xµ

max, when
using EPOS-LHC, yielded an unphysical mass composition heavier than Uranium.
We will, nevertheless, study all three models to infer whether our ML model can
make similar predictions regardless the hadronic interactions model.

Figures 4.14, 4.15 and 4.16 show similar relationships for the reconstruction’s bias
⟨∆X⟩ and resolution σ∆X as in the proton-iron comparison. From the Figures, we
can conclude that the method’s performance for all three models is very similar. The
differences are subtle, with the method’s bias almost predominantly ranging from 0
to 10 g cm−2 (the largest being approximately ⟨∆X⟩ = 15 g cm−2 between QGSJET-
II.04 and Sibyll-2.3d close to the shower core). The resolution σ∆X is almost identical
in all respective relations. As a last note, we do not observe any significant deviation
of the Sibyll-2.3d model from the others, which suggests that the thinning algorithm
does not significantly impact the ML model’s quality of reconstruction.

We now switch from the muon-by-muon treatment of MPD to the shower-wise treat-
ment of individual MPD distributions, through which we are able to infer the mass-
composition-sensitive variable Xµ

max. By fitting the Gaisser-Hillas function to the
MPD distribution, we acquire Xµ

max as detailed in section 4.2. We apply this proce-
dure to the Monte Carlo and reconstructed MPD profiles of proton- and iron-induced
showers, with θ = 0◦, and 60◦, and plot their Xµ

max distributions. Our results are
shown in Figure 4.17. From a closer inspection, we see that the Xµ

max distributions
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0 500 1000 1500 2000 2500 3000 3500 4000
r [m]

5−

0

5

10

15

20

25

30

]2
X

> 
[g

/c
m

∆<

X_EPOS∆X_Sibyll, r_EPOS_∆X_QGSJET, r_Sibyll_∆mean__r_QGSJET_

0 500 1000 1500 2000 2500 3000 3500 4000
r [m]

20−

15−

10−

5−

0

5

10

15

]2
X

> 
[g

/c
m

∆<

0 500 1000 1500 2000 2500 3000 3500 4000
r [m]

0

10

20

30

40

50

60

70

80

90

]2
 [g

/c
m

X∆σ

0 500 1000 1500 2000 2500 3000 3500 4000
r [m]

0

50

100

150

200

250]2
 [g

/c
m

X∆σ

Figure 4.14: Bias (top) and resolution (bottom) of the MPD reconstruction as func-
tions of the shower core distance r for the three models of hadronic interactions.

are wider and occur deeper in the atmosphere for proton-induced showers than for
iron, two features which we expect from the superposition model. We further ob-
serve that, for the Monte Carlo profiles Xµ

max distributions, for θ = 0◦, the σ (Xµ
max) is

∼ 60g cm−2 for proton species, and of 25g cm−2 for iron, values which go inline with
the values observed for the shower-to-shower fluctuations observed for Xmax, which
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Figure 4.15: Bias (top) and resolution (bottom) of the MPD reconstruction as func-
tions of the arrival time t for the three models of hadronic interactions.
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Figure 4.16: Bias (top) and resolution (bottom) of the MPD reconstruction as func-
tions of the muon energy E for the three models of hadronic interactions.



4.2. MODEL’S PERFORMANCE RESULTS 79

are of ∼ 60g cm−2 for proton species, and of ∼ 20g cm−2 for iron, respectively. How-
ever, for θ = 60◦, we observe slightly higher values which may be connected to the
details of hadronic interactions in the shower cascade. Regarding the distributions
of the reconstructed profiles, we observe slight biases towards shallower values of
⟨Xµ

max⟩. We also see larger values for σ (Xµ
max), more pronounced for proton-induced

showers at ∼ 60 g cm−2, which may indicate a poorer quality of the reconstruction.
The reconstruction performs (as expected) much better for the low-zenith angle
cases, but to be certain, a larger sample of showers will have to go into the analysis.
Fig. 4.18 shows the individual Xµ

max differences between the ML model’s predictions
and the Monte Carlo MPD distributions. We see that, while the ML model fares
well for showers with θ = 0◦, the reconstruction of showers with θ = 60◦ is biased
by almost a factor of two for both primary species. On the other hand, ⟨∆Xµ

max⟩
accounts to only about 2% of the total range of X values for the respective zenith
angles, with σ∆Xµ

max
being even less than that. This is a good sign for the model’s

quality of reconstruction moving forward.
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max from the Monte Carlo (orange) and reconstructed

(blue) MPD distributions.
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Figure 4.18: Distributions of the ∆Xµ
max = Xµ,pred

max −Xµ,true
max differences.

4.2.2 EAS with Continuous Values of θ and Fixed Eprim

To further our investigation into a more real-case dataset, we will next investigate a
sample of air showers with continuous values of zenith angle θ, uniformly distributed
in sin2 θ. This way, we can clearly see the model’s reconstruction capability with
respect to distinct zenith angles, which, as a variable, is one of the most important
quality-deciding criterion in the MPD reconstruction. In this section, we present the
ML model’s aggregate results as functions of θ.

In Fig. 4.19 and 4.20, we present the mean value and standard deviation of the muon-
by-muon reconstruction difference ∆X = Xpredicted−Xtrue as functions of θ and how
they differ by changing the primary particle and the model of hadronic interactions,
respectively. It can be seen that, up to 50◦, the reconstruction remains relatively
unbiased (⟨∆X⟩ < 15 g cm−2), independently of the chosen primary particle type
or the hadronic interaction model. For higher zenith angles, however, the model’s
predictions for the iron primary are biased by up to ∼ 37 g cm−2. We, however,
have to take into account that the range of possible MPD values increases with
sec θ. The bias differences between proton- and iron-induced air showers is mostly
small, within 10 g cm−2. However, for θ > 60◦, the largest bias accounts to almost
30 g cm−2. We also add that the model consistently predicts higher MPD values
for iron-initiated showers. Similarly to what was observed in the previous section,
a comparison between QGSJET-II.04 and Sibyll 2.3d, yields similar results, where
⟨∆X⟩ < 10g cm−2, except for the last zenith angle bin. The corresponding standard
deviation rises approximately with sec θ, corresponding to the broadening of the
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phase-space of the MPD values. In both cases, the difference in σ∆X does not exceed
10 g cm−2. This is a hint of the ML model’s consistency, while the non-smooth
behavior of ⟨∆X⟩ is a consequence of the model’s GBDT-based structure, as argued
in the previous section.
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Figure 4.19: Bias (left) and precision (right) of the MPD reconstruction as a function
of the zenith angle for Eprim = 1017 eV proton- (blue) and iron-initiated showers
(orange). The showers are uniformly distributed in sin2 θ within the zenith angle
range 0◦θ < 65◦.
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Figure 4.20: Bias (left) and precision (right) of the MPD reconstruction as a function
of the zenith angle for Eprim = 1017 eV proton-initiated showers using QGSJET-
II.04 (red) and Sibyll 2.3d (green) as hadronic interaction models. The showers are
uniformly distributed in sin2 θ within the zenith angle range 0◦θ < 65◦.

With the continuous library in zenith angle, intriguing relationships between the
three characteristic muonic observables (r, t and E) and the zenith angle can be
studied. These dependencies are displayed, in the aforementioned order, in Figures
4.21, 4.22, 4.23. We can observe a few similarities in all three behaviors: First, for
a given value of the three observables on the y-axes, the reconstruction biases tend
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to worsen4 as we increase θ, as expected. The behaviors of the observables copy the
ones from section 4.2.1, magnified approximately by the sec θ factor. This effect is
particularly visible for the standard deviation plots, which are not affected by the
GBDT’s "erratic" behavior regarding the model’s biases.
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Figure 4.21: The MPD reconstruction characteristics ⟨∆X⟩ and σ∆X as functions of
the zenith angle θ and the shower core distance r, QGSJET-II.04, Eprim = 1017 eV.

0 10 20 30 40 50 60
]° [θ

210

310

t 
[n

s]

40−

20−

0

20

40

60

]
2

X
>

 [
g
/c

m
∆

<

 and tθX> vs ∆<

0 10 20 30 40 50 60
]° [θ

210

310

t 
[n

s]

50

100

150

200

250

]
2

  
[g

/c
m

X
∆σ

 and tθ  vs X∆σ

Figure 4.22: The MPD reconstruction characteristics ⟨∆X⟩ and σ∆X as functions of
the zenith angle θ and the arrival time t, QGSJET-II.04, Eprim = 1017 eV.

In the transition to the model’s shower-wise performance, we first merge the con-
tributions from all zenith angles and show the zenith-averaged Xµ

max distributions
in Fig. 4.24. We see that the Xµ

max biases are ∼ 20 g cm2, a value inline to the one
which was obtained in section 4.2.1, where we analyzed showers with fixed zenith
angles of 0◦, and 60◦. The method’s performance is on average biased by less than
25 g cm−2, with a resolution of σ∆Xµ

max
∼ 30− 33 g cm−2.

4We note that as θ increases, the distributions of r, t and E each broaden in range. Thus, for
low zenith angles, there are very few muons at large values of the three observables (or none, as
we see in 4.23), hence the brighter spots at the right-left corners.
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Figure 4.23: The MPD reconstruction characteristics ⟨∆X⟩ and σ∆X as functions of
the zenith angle θ and the muon energy E, QGSJET-II.04, Eprim = 1017 eV.
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Figure 4.24: Upper panel: Distribution of Xµ
max from the Monte Carlo (orange) and

reconstructed (blue) MPD distributions for proton- (left) and iron-initiated showers
(right). Lower panel: Resolution of the Xµ

max reconstruction, ∆Xµ
max = Xµ,pred

max −
Xµ,MC

max for Eprim = 1017 eV proton- (left) and iron-induced showers (right). The
showers are uniformly distributed in sin2 θ within the zenith angle range 0◦θ < 65◦.

The biases and resolution of the reconstructed Xµ
max exhibit similar behavior with

the zenith angle as the one observed for the muon-by-muon reconstruction. Our
results are shown in Figures 4.25 and 4.26. We observe a tendency of a worsening
bias and resolution of the reconstructed Xµ

max for θ > 50◦. Below this zenith region,
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which is the region of interest for our method, we observe ⟨∆Xµ
max⟩ < 30 g cm−2,

and σ∆Xµ
max

< 35g cm−2. Our findings were found to be independent of the type of
primary particle and the hadronic interaction model used, allowing us to conclude
that our ML model can successfully generalize new data and nicely reconstruct Xµ

max.
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Figure 4.25: Bias (left) and resolution (right) of Xµ
max as functions of the zenith

angle for Eprim = 1017 eV proton- (blue), and iron-initiated showers (orange), using
QGSJET-II.04 as hadronic interaction model. The showers are uniformly distributed
in sin2 θ within the zenith angle range 0◦θ < 65◦.
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Figure 4.26: Bias (left) and resolution (right) of Xµ
max as functions of the zenith

angle for Eprim = 1017 eV proton-initiated showers, comparing the QGSJET-II.04
(red) and Sibyll-2.3d (green) hadronic interaction models. The showers are uniformly
distributed in sin2 θ within the zenith angle range 0◦θ < 65◦.
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4.2.3 Continuous EAS library

As a final test, we apply our ML model to the most realistic case used in cosmic-
ray physics. In addition to a continuous zenith angle distribution described in the
previous section, this last library has a continuous energy spectrum. To further test
the ability of the ML algorithm to reconstruct unseen data, we simulated showers
in the energy range 1018.5 eV ≤ E ≤ 1019 eV. According to the Heitler-Matthews
model from Chapter 2, one corresponding effect is an increase of muons by a factor
of 10β − 102β. Additionally, by increasing Eprim, the models of hadronic interactions
must further and further extrapolate their predictions, which are based on data from
man-made particle colliders. It is, therefore, desirable to test our model at higher
energies than the nominal energy at the LHC. If our model performs well, we hope
to provide relevant information about hadronic interactions occurring in EAS at√
s > 14 TeV, the nominal energy at the LHC.

Naturally, we will first study the ML model’s performance on the muon-by-muon
basis. The dependencies of ⟨∆X⟩ and σ∆X on θ and Eprim for proton and iron
primary particles are shown in Figures 4.27 and 4.28, respectively. We observe that
the ⟨< ∆X⟩ > and σ∆X behavior as a function of the zenith angle is similar to the
one observed in the previous subsection for showers with a fixed energy of 1017 eV.
The method’s performance, as a function of the energy of the primary particle, was
found to be relatively constant up to θ = 50◦, which, again, is not surprising, as we
already know that the ML model underperforms for high zenith angles. Additionally,
even though we have trained the ML model at lower energies, we obtain comparable
values of ⟨< ∆X⟩ > and σ∆X for 1018.5 ≤ eV Eprim ≤ 1019.0 eV. This is a hint
that the model truly performs the reconstruction muon-by-muon and is not biased
towards distribution characteristics such as mean value or median, as is sometimes
the case for underdeveloped machine learning models.

Following the structure of the previous sections, we now comment the shower-wise
performance regarding the current dataset. In Figures 4.29-4.34, we supply all rele-
vant information on the Xµ

max observable for every available primary particle (proton,
iron) and model of hadronic interactions (QGSJET-II.04, Sibyll-2.3d, EPOS-LHC).
We show the reconstructed and Monte Carlo Xµ

max distributions, the ∆Xµ
max distri-

bution and relationships between ⟨∆Xµ
max⟩, σ∆Xµ

max
and θ and Eprim.

The Xµ
max bias and resolution follows the behavior of its muon-by-muon counterpart

∆X: With respect to Eprim, they are almost constant, while σ∆Xµ
max

rises almost
like sec θ. We report improved biases for the QGSJET-II.04 model by almost 20 g
cm−2, making ∆Xµ

max almost unbiased, which also applies for Sibyll-2.3d and less
for EPOS-LHC. The resulting values of bias and resolution are summarized in Table
4.3.
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Figure 4.27: The MPD reconstruction bias ⟨∆X⟩ and resolution σ∆X as functions
of the zenith angle θ and the primary energy, proton, θ ∈ (0◦, 65◦), Eprim ∈
(1018.5, 1019.0) eV.
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Figure 4.28: The MPD reconstruction bias ⟨∆X⟩ and resolution σ∆X as functions of
the zenith angle θ and the primary energy, iron, θ ∈ (0◦, 65◦), Eprim ∈ (1018.5, 1019.0)
eV.

had. model +
primary particle

⟨Xµ
max⟩

pred
⟨Xµ

max⟩
true

σXµ
max

pred
σXµ

max

true ⟨∆Xµ
max⟩ σ∆Xµ

max

QGSJET-II.04 proton 428 423 68 63 5 31
QGSJET-II.04 iron 356 352 44 31 5 35
Sibyll-2.3d proton 466 467 68 61 -1 29
Sibyll-2.3d iron 385 386 41 28 -1 35

EPOS-LHC proton 477 461 62 57 16 31
EPOS-LHC iron 400 387 36 25 13 30

Table 4.3: Summarized results of the Xµ
max biases and resolution values for all avail-

able data from the dataset with continuous values of θ and Eprim.
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Figure 4.29: Upper left: Superimposed Xµ
max distributions. Upper right: ∆Xµ

max

distribution. Lower left: ∆Xµ
max characteristics as functions of θ. Lower right:

∆Xµ
max characteristics as functions of Eprim. QGSJET-II.04, proton.
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Figure 4.31: Upper left: Superimposed Xµ
max distributions. Upper right: ∆Xµ

max

distribution. Lower left: ∆Xµ
max characteristics as functions of θ. Lower right:

∆Xµ
max characteristics as functions of Eprim. Sibyll-2.3d, proton.
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Figure 4.33: Upper left: Superimposed Xµ
max distributions. Upper right: ∆Xµ

max

distribution. Lower left: ∆Xµ
max characteristics as functions of θ. Lower right:

∆Xµ
max characteristics as functions of Eprim. EPOS-LHC, proton.
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Chapter 5

Muon Energy Reconstruction

In this chapter, we test the predictive power of the previously introduced ML model
by attempting to predict the energy of air shower muons. To achieve our goal, we
constructed a second ML model, whose target is the muon energy E, with one of
the input features being the Muon Production Distance z. We would like to stress
that all of our modelings have roots in the original Arrival Time model, which only
contains information on the observables at the ground level. However, in this section,
we are trying to predict the energies of muons that reach a depth of 2.3 m. Since
CORSIKA does not model the particles below the ground, we must approximate the
relevant observables underground. From now on, we assume that the geometrical and
timing observables, i.e., the distance from the shower core r, the polar angle ξ, and
the arrival time t, are unaffected by the underground muon propagation.

In contrast, the propagation underground will affect the muon energy, as described
at the beginning of Chapter 4. We proceed as follows: we use the values of our
geometrical and timing variables and estimate the muon energy at 2.3 m depth by
subtracting from the muon energy given by CORSIKA a given value calculated
according to (4.6), assuming a continuous energy loss per unit of traversed matter.
As proof of concept, we will present our results for proton-initiated showers using
the model of hadronic interactions QGSJET-II.04.

5.1 Data Preparation & Training Performance

Our procedure in creating the energy ML model is similar to the one implemented
in Chapter 4. The choice of algorithm is again the Gradient-Boosted Decision Trees,
utilized through the LightGBM library. All values of hyperparameters and new fea-
tures were again found via the Hyperopt library, with a change in the implemented
objective function. Now, as we only care about the precision of the reconstructed
energy of individual muons, we define the objective function to be

fO = MSE(Epred, Etrue), (5.1)

where the superscripts pred and true represent the target values predicted by the
model and the values of the target itself. Table 5.1 summarizes the searching range
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and the optimized values of hyperparameters:

Hyperparameter Tuning Range Optimal Value
Learning Rate [0.001, 1] 0.393

Number of Leaves {2, 3, ..., 1000} 308
Maximal Depth of Tree {1, 2, ..., 20} 9
Minimal Child Weight {0, 1, ..., 5000} 85

L1 Regularization [0, 100] 21.2
L2 Regularization [0, 100] 81.1
Colsample by Tree [0, 1] 0.443

Subsample [0, 1] 0.570

Table 5.1: A summary of the optimal values of hyperparameters (of the energy-
reconstructing ML model) found by Hyperopt, alongside the respective search
ranges.

Our basic set of features consists of sec θ, cos ξ, r and t, this time supplemented by
the Muon Production Distance z. We supply the true CORSIKA values of z into
the training data and when we predict the muon energy on test datasets, we use the
MPD ML model from the previous chapter to provide the z values. Additionally,
the following set of new features was created by Hyperopt for the energy model to

yield better results:
{ r2

(ct)2
,

√
r√
ct
,
1

t
,
log10(ct)

r

}
.

The optimal target form was found to be log10(Eground). As discussed above, the
final muon energy E at the 2.3 m depth is calculated by subtracting the assumed
energy losses throughout the muon propagation in the soil from Eground, according
to (4.6). We train the model on 450 proton- and 450 iron-initiated thinned showers
with the energy of the primary cosmic ray of 1017 eV and continuous zenith angle
values, reserving additional 50 showers of each primary as the validation set. 200
proton- and 200 iron-initiated showers with the same characteristics are then used
as the test dataset. Since we are interested in the muon-by-muon energy precision,
we do not include the undersampling method in the final data pre-processing.

The loss function in model training was again chosen as the MSE. During training,
we implemented the early-stopping algorithm, which stopped the training after 43
iterations, recording the train MSE value of 0.296 and validation MSE value of
0.2971.

5.2 Energy Reconstruction Results

Our results for a sample from the zenith library ({0◦, 12◦, 25◦, 35◦, 45◦, 60◦}) are
displayed in Figures 5.1 and 5.2. In Fig. 5.1, we show the distributions for:

1The train and validation MSE values are almost identical, since we did not use data under-
sampling - the reader can compare these values with the corresponding values in the previous
chapter.
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• True muon energy given by CORSIKA Etrue

• Muon energy predicted by the ML model Ez=true
ML , using true CORSIKA values

of z

• Muon energy predicted by the ML model Ez=pred
ML , using predicted values of z

(by the first ML model from the previous chapter).

We show the full muon spectra, alongside additional figures focusing on the low-
energy part of the respective spectra, where most of the muons land.

First, it can be seen that the "true" and "ML" distributions match well for low-to-
middle energies (3-20 GeV). The behavior at the lowest and high energies depends on
the zenith angle: As the zenith angle increases, the reconstruction quality decreases
for the lowest-energy muons with E < 2 GeV and increases for high-energy muons
with E > 20 GeV. The reason for this might be related to emergence of more ener-
getic muons as zenith angle increases, which broadens the muon energy spectrum. At
high zenith angles, there is enough statistics (relative to the shower population) for
the model to learn about the high-energy muons and thus reconstruct their energy
more easily. Another important factor is that, for inclined showers, i.e., θ ∼ 60◦,
the dominant contribution comes from the geometric delay of muons, which can be
almost precisely estimated.

By taking a look at the characteristics of the muon-by-muon energy reconstruction in
Fig. 5.2, the mean value and the standard deviation of the difference ∆E = Ez=pred

ML

- Etrue, we see that the overall reconstruction is relatively unbiased for all zenith
angles, with σ∆E rising with increasing zenith angle, as expected. On the other hand,
σ∆E accounts to less than 4% of the given energy spectrum range, which is a good
sign for this model in terms of its predictive power.

Lastly, we look at how the energy reconstruction bias ⟨∆E⟩ and resolution σ∆E

evolve with the observables r, t, and E. These dependencies are depicted in Figures
5.3, 5.4 and 5.5, respectively. For the relations between the moments and r and
t, the situation is similar and by now well known. Generally, muons impacting far
from the shower core and/or late in the shower tend to be less biased and their
reconstruction varies less from the respective mean value. As we increase the zenith
angle, the quality of the reconstruction worsens. For example, for the model to
achieve the same performance for showers with θ ∼ 60◦ as it is with θ ∼ 0◦, we
would need to consider muons at least ∼ 600 m from the shower core and/or cut all
muons arriving earlier than 50 ns after the shower core particles.

Regarding the dependence on muon energies, Figure 5.5 confirms what was said
above: Low energy muons are reconstructed better than high energy muons, while
there is an almost linear dependency between the worsening performance of the
ML model and the muon energy. As the zenith angle increases, more high energetic
muons are present in the training and the reconstruction for the same muon energies
gets better. All-in-all, since low-energy muons dominate the energy spectrum, we can
consider the model to be in a relative agreement to a large portion of the data and
a hopeful proof of concept for muon energy reconstruction.
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Figure 5.1: Superimposed Etrue, Ez=true
ML and Ez=pred

ML distributions for a sample from
the continuous zenith library. Both the whole muon energy spectrum and a close-up
to first energy bins are depicted.
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Figure 5.3: The energy reconstruction characteristics ⟨∆E⟩ and σ∆E as functions of
the zenith angle θ and the distance from the shower core r.
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Figure 5.4: The energy reconstruction characteristics ⟨∆E⟩ and σ∆E as functions of
the zenith angle θ and the arrival time t.
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Figure 5.5: The energy reconstruction characteristics ⟨∆E⟩ and σ∆E as functions of
the zenith angle θ and the muon energy E.



Conclusions

In this work, a new model of reconstructing the Muon Production Depth, based
on the Gradient-Boosted Decision Trees algorithm, was introduced. With the aim
of improving the current reconstruction method described in [6, 7], the proposed
machine learning model was designed and analyzed with the use of Monte Carlo
simulations of Extensive Air Showers. The desired areas of improvement included
a drastic lowering of the applied radial cut and an application of the method to
lower zenith angles, while boosting the overall reconstruction quality. With these
improvements in mind, the proposed model was designed to reconstruct the MPD of
muons arriving at r ≥ 200 m within EAS propagating under a wide range of zenith
angles θ ∈ (0◦, 65◦). In order to simulate a more realistic setup of buried detectors
measuring a pure muonic signal, we imposed an energy cut to all muons, with
the form Eth ≃ 1 GeV/ cos θ, and discarded all muons not fulfilling this condition.
The minimum vertical energy of 1 GeV is derived from the soil density and the
depth of the AMIGA muon detectors at the Pierre Auger Observatory. The newly
introduced model of MPD reconstruction was applied to EAS simulations, assuming
different hadronic interaction models, types of primary particles, energies, and zenith
angles, allowing us to make relevant conclusions about the method’s performance
and generalization capabilities. As a proof of concept, a second machine learning
model was built to reconstruct the energies of muons in EAS, utilizing the predictions
of the MPD model in the training process. We summarize the performance results
of the models below.

In the first part of the analysis, we explained our reasoning behind the design of the
proposed MPD model, which was based on a combination of the Arrival Time Model
structure and standard machine learning procedures. We argued that for the model
to reconstruct the MPD correctly, both muon-by-muon and the MPD distributions,
we should tune the model’s parameters to minimize the objective function in the
form of (4.7). This way, we prevented the model from overpredicting values close
to the mean value of the MPD distributions, which is a common problem for many
machine learning models and which also happened multiple times in our attempts
to design a competitive model. We also created new features for our model through
feature engineering, which helped to boost the model’s performance. Lastly, we
performed a specific undersampling of our data to mitigate fundamental differences
between EAS induced by various cosmic rays.

The second part of our study concerned the proposed model’s performance on var-
ious EAS samples. At the lowest energies, Eprim = 1017 eV, we observed that the
reconstruction performed well for zenith angles below 50◦. We recorded an almost
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unbiased muon-by-muon reconstruction of
(
|⟨∆X⟩| < 15 g cm−2

)
. Regarding the re-

construction of the mass-composition sensitive observable Xµ
max, we observed a re-

construction bias of |⟨∆Xµ
max⟩| ≲ 30 g cm−2. On the other hand, the reconstruction

quality generally decreases for θ > 50◦, both muon-by-muon and distribution-wise.
However, if we compare our proposed model to the current MPD method, we observe
a clear upgrade in the reconstruction capability. Additionally, as expected, an im-
provement was recorded in the reconstruction performance when discarding muons
close to the shower core. The dependence of the model’s behavior with respect to
relevant muon observables, the distance from the shower core r, the arrival time
t and the muon energy E, was also investigated, revealing that the MPD recon-
struction improves, with some exceptions, for higher values of the aforementioned
(r, t, E) parameters. The energy dependence, however, shows that the MPD model
can reasonably well reconstruct only the most-represented energies in the muon
spectrum, a clear consequence of the muon energy not being a feature of the MPD
model. Additionally, while the MPD model performed overall evenly for all models
of hadronic interactions, it generally performed worse on the MPD reconstruction of
iron-induced showers. On the other hand, the reconstructed proton and iron Xµ

max

distributions seemed clearly distinguishable from each other and were satisfactorily
reconstructed to allow for mass-composition analyses. At higher cosmic-ray energies
Eprim ∈ (1018.5, 1019) eV, while the muon-by-muon reconstruction performed simi-
larly to the one for Eprim = 1017 eV, the overall performance of the reconstruction
of the Xµ

max distributions was better than in the previous case. Also, we found that
the reconstruction of ⟨∆Xµ

max⟩ was unbiased for the QGSJET-II.04 and Sibyll 2.3d
models, while a small bias of ∼ 15 g cm2 was recorded for EPOS-LHC. The depen-
dences on zenith angles copy the ones at the lower cosmic ray energy, while the Xµ

max

reconstruction characteristics register an almost constant dependence on Eprim for
both proton- and iron-induced EAS and all models of hadronic interactions. This is
a promising result, which will be built upon in the following studies.

Lastly, a second model, designed to reconstruct the energy of muons in EAS was
introduced in Chapter 5. Also based on the GBDT algorithm, it was trained us-
ing the Muon Production Distance as one of its features. We found that the best-
reconstructed energies were in the range of roughly 3-20 GeV, while the behavior
at the lowest and high muon energies varied with zenith angle. The reconstruction,
though, is virtually unbiased (|⟨∆E⟩| < 0.4 GeV), while its resolution σ∆E rises with
rising zenith angles.

All-in-all, both models represent proofs that machine learning algorithms can be
beneficial in the MPD field. That being said, there is still considerable room for
improving the proposed MPD reconstruction model in this regard. Specifically, in
the data undersampling part of the process, there are other methods than Random
Undersampling, more computationally expensive but also more powerful. There is
also a possibility of using data undersampling for the energy reconstruction model,
which will be a topic of the future works. Considering this, the proposed MPD re-
construction model is ready, with the necessary modifications, to be implemented
in further studies, including an application of the model to advanced simulations
with simulated detector responses and, subsequently, real data from buried particle
detectors. This will allow us to gain additional insight into the mass composition of
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cosmic rays and, with the help of the muon energy reconstruction, will let us under-
stand the muon energy spectrum in EAS better. Additionally, by reconstructing the
MPD for a large portion of muons in an EAS, we might be able to refine the current
models of hadronic interactions, which will allow us to learn relevant information
about the hadronic interactions governing the EAS evolution.
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