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Abstract

This thesis investigates the applicability
of semi-supervised machine learning al-
gorithms for forest land cover segmen-
tation in satellite images. Instead of di-
rectly evaluating satellite imagery, the
CityScape dataset is utilized for result ver-
ification and reproducibility. We review
the semi-supervised machine learning al-
gorithms, introduce MixMatch as a refer-
ence method and a novel algorithm based
on symmetric learning of variational au-
toencoders, along with a self-contained
introduction to variational autoencoders.
The research aims to compare the segmen-
tation potential and capabilities of both
the new and the reference algorithms us-
ing a U-net network-based model archi-
tecture. The results show that MixMatch
effectively enhances segmentation perfor-
mance to supervised baseline, particu-
larly in scenarios with limited labeled
data. Although the symmetrical learning
does not exceed the supervised baseline,
the experiments still serve as a proof of
concept, highlighting areas for further in-
vestigation.

Keywords: Image segmentation, SSL,
VAE, hiearchical VAE, ladder
VAE,symmetric equilibrium learning,
MixMatch, CityScape
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Abstrakt

Tato prace zkoumd pouzitelnost algo-
ritmt ¢aste¢ného strojového uceni s ucite-
lem pro segmentaci lesnich ploch ze sate-
litnich snimkdi. Namisto p¥imého vyhod-
nocovani na satelitnich snimcich budeme
pouzivat CityScape dataset pro ovéfeni
vysledkii a reprodukovatelnost. Poskytu-
jeme piehled algoritmti v oblasti ¢astec-
ného strojového uceni a predstavujeme
vyhodnocované algoritmy: referenéni Mi-
xMatch a novy algoritmus zaloZeny na
symetrickém uceni varia¢nich autoenko-
dérti. Uvadime také ndhled do varia¢nich
autoenkodérti, zahrnujici jejich teoretické
zéklady a rozsifeni, aby ¢tenat porozu-
mél zakladnim principtim. Hlavnim ci-
lem je porovnat segmentacni schopnosti
obou algoritmt. V obou piipadech vyu-
zivame stejnou architekturu modeli za-
loZenou na U-net siti. MixMatch Géinné
zvySuje presnost segmentace, zejména ve
scénafich s velmi malym mnoZstvim do-
stupnych dat. PfestoZe symetrické ucent
hierarchického autoenkodéru nepieko-
nava zédkladni model s ucitelem, experi-
menty prokazuji pouZitelnost symetric-
kého uceni a zdroven identifikuji oblasti
pro zlepSeni.

Klicova slova: Segmentace obrazu,
SSL, hiearchicky VAE, ladder VAE,
symmetric equilibrium learning,
MixMatch, CityScape

Pteklad nazvu: Castecné ucenis
ucitelem pro ¢asové-prostorovou
segmentaci satelitnich snimk
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Chapter 1

Introduction

Satellite imagery provides a wealth of information about our planet and has become a
standard tool for monitoring, predicting and understanding the change in vegetation,
agriculture and human environmental impact. With advances in satellite technology, it
is now possible to collect considerably large amounts of high-resolution multispectral
images over time, enabling researchers to perform complex spatiotemporal analyses
of these datasets. However, the magnitude of the raw data makes it challenging to
process and analyze it effectively. Moreover, remote sensing still faces further challenges,
which are rare in other areas of computer vision. Those are, in particular, partial mea-
surements (i.e. cloud cover, electromagnetic (EM) interference), geolocation, different
quality of measurement (spatial resolution, different EM bands) and calibration (issue
of atmospheric reflectance).

From a machine learning perspective, the main challenges are considerable amounts
of unannotated data and partially missing measurements. To address the first, semi-
supervised learning (SSL) [5]] has shown promise in leveraging the abundance of unla-
beled data to improve model performance. SSL algorithms are designed to learn from
labeled and unlabeled data, using the labeled data to guide the learning process and
the unlabeled data to regularize the model. Regarding the issue of partially missing
measurements, generative models, such as variational autoencoders (VAEs) [[18], have
shown the potential to fill in the missing data gaps. By learning a generative model of
the data distribution, VAEs can be used to impute missing values in a dataset, making it
possible to fully utilize the available data.

The thesis topic is motivated by the real-world problem of segmenting the satellite
imagery of a national park to monitor and predict its forest development. The forest
development prediction could allow national park rangers to respond proactively to
protect forest vegetation and thus improve national park preservation. The thesis aims to
create an approach that could be used in data preprocessing to obtain segmentation for
many images and generate inpainting for partially missing measurements. The project is

1



1. Introduction

funded by the European Space Agency (ESA) "

The authors of [40]] proposed a novel SSL algorithm that employs symmetrical learn-
ing with hierarchical VAEs, capable of handling exponential families of distribution,
not just multivariate Gaussians for the latent variable. We adapt this algorithm to the
land-cover segmentation task, where the learning process from only partially available
inputs is necessary. This unavailability issue is due to missing measurements, which
are mainly caused by clouds or snow cover. Our approach combines a reasonably sized
model inspired by the U-net architecture and its skip connections[[37]] with hierarchical
VAEs, Such an approach would enable us to obtain a latent space distribution that repre-
sents the desired segmentation. Additionally, this setup will allow us to generate both
segmentation from images and images from segmentation.

We compare our approach with the MixMatch [2]] algorithm, which unifies consistency
regularization methods with proxy-labeling methods [33]] and is the cornerstone for other
algorithms such as ReMixMatch [3]] and FixMatch [[42]]. To our knowledge, the MixMatch
algorithm has only been used for classification tasks (CIFAR10, SVHN). We adapt it
so that it applies to the segmentation task. To verify its suitability and compare it with
our method, we use the CityScape dataset and standard metrics used in segmentation,
such as plain accuracy, intersection over union (IoU), and others. We also validate the
generative capabilities of the novel approach (e.g., inpainting of missing data).

We briefly introduce SSL and its methods in chapter 2. We discuss the main ideas
and cornerstones of MixMatch and the novel symmetrical equilibrium learning, namely
consistency regularization with proxy labelling methods and VAE framework, respec-
tively. This chapter also provides the hierarchical models (HVAE) and ladder variational
autoencoders (LVAE) as a foundation for the novel algorithm. The segmentation task,
dataset, metrics and models architecture are described in chapter 3. The experiments and
results are available in chapter 4 with a summary of the main findings and contributions
in/5. We make all code publicly available|'.

“https://eodsociety.esa.int/projects/spatiotemporal-sen2vhr/
fAthttps://github.com/hruskani/SSL-diploma-thesis
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Chapter 2

State of the art of SSL

In this chapter, we will present a brief introduction to semi-supervised learning in
section 2.1, We will discuss the key concepts and principles underlying semi-supervised
learning and its significance in machine learning. Furthermore, we will classify the
algorithms used in semi-supervised learning into various groups based on the different
ideas and paradigms they employ.

Next, we will delve deeper into two specific approaches: MixMatch and Variational
Autoencoders (VAEs). Section 2.2 will provide an in-depth introduction to MixMatch,
while section 2.3 will focus on the basics of Variational Autoencoders, introducing the
topic, its achievements, and recognized shortcomings. Following that, in section 2.4,
we will explore advanced variants of VAEs that partially overcome the aforementioned
shortcomings and represent the state-of-the-art in the field of VAE.

These sections serve as a foundation for comprehending a novel algorithm based on
symmetric equilibrium learning in VAEs, which will be introduced in section 2.6, Addi-
tionally, section 2.5 provides an introduction to the family of exponential distributions,
which are extensively used in VAE and its advanced variants.

. 2.1 SSL introduction

Semi-Supervised Learning (SSL) is an essential subfield of Machine Learning (ML) that
aims to improve model performance by leveraging both labeled and unlabeled data. In
many real-world scenarios, obtaining labeled data is expensive and time-consuming,
whereas unlabeled data is abundant and relatively easy to acquire. Therefore, SSL
algorithms seek to learn from both labeled and unlabeled data to improve model gener-
alization and achieve higher accuracy. Unlike supervised learning, where models rely

3



2. State of the art of SSL

entirely on labeled data, SSL algorithms use a small amount of labeled data to guide
the model’s learning process while exploiting the vast amounts of unlabeled data to
extract useful features and improve its predictions. In recent years, there has been a
growing interest in developing novel SSL algorithms that can tackle complex problems
and achieve state-of-the-art performance, making SSL a rapidly evolving field of research.

Typically the training dataset D can be divided into two subsets D = D; U D,;:

D, = {(thl)v R (Xlayl)}7 D, = {(Xl+1)7 R (XU)}7

In this standard setting, SSL can be viewed as supervised learning, where the unlabeled
data provide additional information on the underlying distribution of the examples x.
We will refer to this setting in this thesis. However, there are also different formulations
of the SSL problem, such as SSL with constraints and others [5] p. 1].

“A natural question arises: is semi-supervised learning meaningful? More precisely:
in comparison with a supervised algorithm that uses only labeled data, can one hope to
have a more accurate prediction by taking into account the unlabeled points? ... Yes,
however there is an important prerequisite: that the distribution of examples, which the
unlabeled data will help elucidate, be relevant for the classification problem. ...One
should thus not be too surprised that for semi-supervised learning to work, certain
assumptions will have to hold.” — Chappele et al [5, p. 4]

B 2.1.1 Assumptions in SSL

As stated in the quote above, several assumptions are necessary for SSL algorithms to
work [5] p. 5]. Some of them are well-known from unsupervised learning:

® The Smoothness Assumption: If two points x; and x3 lies nearby in high-density region,
then the desired outputs y, and yo should be similar. This assumption generalizes the
supervised learning assumption, where the same holds if x; and x3 are close (not
necessarily in the high-density region). Due to transitivity, the assumption clusters
the data into high-density clusters, and many clusters can share the same output
value.

® The Cluster Assumption: Points in one cluster are likely to be of the same class, or in
other words, the decision boundary should be located in the low-density region. This
assumption is a special case of the previously mentioned assumption, as clusters
are often considered regions with a high data density. However, it is independently
presented as it is easier to understand and has motivated several unsupervised
algorithms such as K-means and others.

4



2.1. SSL introduction

® The Manifold Assumption: The data lie along low-dimensional latent manifolds inside
that high-dimensional space. This assumption tries to overcome the curse of dimension-
ality. Simply put, as the dimension grows, the sparsity of data increases, which
makes clustering impossible, as there are no clusters to be found. If the manifold
assumption holds, we can search for a mapping into such a low-dimensional mani-
fold in which clustering is possible. Several unsupervised algorithms utilize this
assumption, such as PCA, MDS, ISOMAP, and t-SNE.

B 2.1.2 SSL methods

SSL algorithms can be categorized into the following groups based on their motivation,
making it easier to navigate and understand them [33]]:

® Consistency Regularization: According to the smoothness assumption, if the input
x and its perturbed version X, are close to each other, their corresponding outputs,
y and y, should also be similar. By minimizing the distance between the model
outputs fy(x) and fy(x), where the distance can be measured using a variety of
techniques, such as mean square error (MSE) or Kullback-Leibler (KL) divergence,
we can train the model to make consistent predictions on both the original and
perturbed inputs [23| 39]. We can also use other divergence techniques, such as
Jeffreys divergence or Jensen-Shanon (JSD) divergence, which have the advantage
of being symmetric with respect to the inputs. This requirement is transformed into
an expanded loss objective with a new term for consistency regularization:

L= Z l(X, y) + Z d(f9<x)7 fg(f())
X,yGDl XEDy,
where [(x, y) corresponds to the standard supervised loss for given task and d(-, -)
corresponds to the one of the mentioned metrics.

® Proxy-label Methods: These methods are based on an (iterative) scheme, where
the model generates the proxy label on unlabeled data (or parts thereof) using the
prediction function itself or some variant of it [24]]. These labels are then taken as
targets for the next iteration. Although the proxy labels are often weak, the methods
can provide additional information for training. We can divide these methods into
two groups: Self-training, where the model produces the proxy label itself, and
multi-view learning, where the proxy labels are produced by (multiple) models
trained on different views of the training data. The idea of multi-view learning is
exactly the same as bootstrapping.

® Generative Models: The generative models try to model the feature density p(x) or
even joint density p(x, y) by some unsupervised learning procedure (i.e. maximum
likelihood estimation (MLE)). An inference can be then obtained by Bayes inference
rule (for a given loss [):

f*(x) = argmin > _ (y|x)I(y,y")

VeV yey
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2. State of the art of SSL

where conditional probability p(y|x) can be obtained through Bayes theorem:

p(x,y) p(x|y)p(y)
)

PX—

p(ylx) = — fyp(xly)p(y)dy

After training a model, we can use it to generate new samples from a modelled
distribution py(x) at any time. This procedure allows us to obtain features that
were not present in the original training set, but the quality of these new features
depends on how closely our model approximates the true underlying distribution
p*(x) represented by the training set distribution pp(x), which is also known as the
evidence. Therefore, the quality of the generated samples depends on the accuracy
of the model’s approximation to the true distribution.

Generative models are used in SSL because they can easily incorporate the unlabeled
data points (compared to discriminative models, which only focus on estimating
p(y|x) and cannot directly exploit the infromation in p(x)). On the other hand, the
discriminative models fulfil Vapnik’s principle and can provide comparable results
even without using the unlabeled data. In a broader context, SSL can be viewed in the
field of generative models as either classification with supplementary information
on the marginal density or unsupervised clustering with additional information,
i.e., labels of a subset of points. A reasonable requirement on SSL would be that any
valid SSL technique should surpass baseline methods by a significant margin across
various practical and relevant scenarios.

® Graph-Based Methods: Semi-supervised methods that are based on graphs estab-
lish a graph structure where the labeled and unlabeled examples in the dataset
constitute the nodes, and the similarity between examples is reflected by edges
that may be weighted. Typically, these methods smooth the label values across the
graph structure, obtaining the proxy label for unlabeled examples. Graph-based
approaches are characterized as nonparametric, discriminative, and transductive in
nature [53]].

When talking about consistency regularization, one should also mention Entropy min-
imization [[12]] as it shares the same underlying concept of smoothness assumption and
aims at the same result: Moving the decision boundary into the low-density region.
The entropy minimization encourages the network to make confident (i.e., low-entropy)
predictions on unlabled data regardless of the predicted class, thus moving the decision
boundary away from any point in the dataset. We obtain this behaviour by adding an
entropy minimization term:

C
H(p) = =Y po(ylx)i log po(y|x)k
k=1

Nevertheless, the neural networks (NN) can quickly overfit to low confident points
early on in the learning process. Such overfitting is caused by their high capacity [32]].
The Entropy minimization alone does not lead to strong results. However, it is often
combined with different approaches to improve their performance [33]].

6



2.2. MixMatch

B 2.2 MixMatch

We have selected the MixMatch algorithm as a reference algorithm for the comparison
as it yielded state-of-the-art results. This holistic approach David Berthelot et al. pro-
posed in 2019 [2] and combined several ideas and components from classical dominant
paradigms of SSL. It is the cornerstone for new algorithms such as ReMixMatch [3]] and
FixMatch [42]]. Namely, it combines consistency reqularization and proxy-labeling with
entropy minimization.It also utilizes other forms of regularizations, such as data augmen-
tation, exponentially weighted average of network weights (45, weight decay [[25]] and MixUp
procedure [52]]. The consistency regularization is obtained through a loss term. The
proxy-labeling occurs in the stage of the label guessing (2), and the entropy minimization
is applied in the form of a sharpening procedure (3).

The algorithm comprises several steps and provides augmented inputs to the model
with guessed labels. The batched augmented inputs are propagated through the network,
and the standard semi-supervised loss containing the supervised and unsupervised
term is computed from the outputs of the model and the (guessed) labels. The gradient
is backpropagated to the network’s weights, meaning the MixMatch is applicable in the
Deep Learning (DL) setting. Assume we have batch of labeled inputs X' (with labels
encoded as one-hot vectors with L possible classes) and batch of unlabeled inputs ¢/
(without labels), both with the same number of examples n. The SSL loss is defined as:

X' U" = MixMatch(X,U, T, K, «)

1
Ly = / Z H(p,,fg(l',))
|X ’ :L;I,p/GX/
1
Ly =~ q — fo(u)][3
L=Ly+ Ly

where H (p, q) is cross-entropy loss between distributions p and ¢:

C
H(p,q) = — Y pr(z)log qi(x),
k=1

T, K, o and Ay are hyperparameters, and fy(-) represents the model output in the form
of a probability distribution. 7" is the temperature in the probability sharpening procedure,
K is the number of augmentations applied to unlabeled input u, and the « is the Beta
distribution parameter for MixUp. The )y replaces the original normalizing factor and
provides a tuning knob for weighting the loss terms.

B 2.2.1 MixMatch algorithm

The MixMatch algorithm consists of the following steps:

7



2. State of the art of SSL

1. Data Augmentation: Given the (stochastic) augmentation A, we transform each
labeled features z; € X" into #; while keeping the original label p unchanged. For
unlabeled feature u; € U, we produce K augmented views 1, . Through this, we
obtain n labeled features and nK unlabeled features.

2. Label Guessing: For each of K views of unlabeled feature @, ; we make the predic-
tions with the current model §; . = fs(;1). We then compute the average

1 K
q4j = — Z Gj.k
K k=1
for each unlabeled feature u;.

3. Sharpening: We sharpen the averaged prediction g; to reduce its entropy through
the operation:

FRNE S,
gj,c = Sharpen(q;, T'). = qf@/ Z (jfk
k=1

where ¢; . corresponds to c-th element of vector ¢;, representing the probability
of c-th class. The hyperparameter T € R is the temperature. As T — 0, the
Sharpen(p, T') approaches Dirac (one-hot) distribution, therefore lowering the T
minimizes the entropy of p. We obtain the sharpened ¢; and replicate it to each of
K views of feature u;.

4. MixUp: Before further describing, we define the slightly alternated version of
the vanilla MixUp [52]]. For a pair of two features with their corresponding class
probabilities (z1,p1) and (z2, p2), we define MixUp operation as follows:

A ~ Beta(a, a)

N =max(\,1—\)

' =Nrp+ (1= N
pr=Np1+(1-X)p

where « is hyperparameter. Vannila MixUp omits the second equation (i.e. ' = \),
but it is crucial in MixMatch as you will see later. We define MixUp operation for
(equally sized) sets*|as a MixUp per elements, i.e.

MiXUp(DCm Db) :{MiXUp((xai, yai), (xbi> ybl)) | (S ]-7 ceey |Da‘}

Going back to MixMatch, the previous steps resulted in two batches with different
sizes:

x* = {(i'hpi) |Z S {17 s an}}7 ’X*| =n

U= {(a]7kaqj) |.7 € {17 : '7n}7 k€ {L '7K}}7 ’u*| = Kn

“We should rather speak about sequences, as the sets do not have ordering. Nevertheless, in the field of
ML, we often neglect this difference. In reality, computer memory always has the implicit ordering, which
is used.
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Figure 2.1: Data augmentation, label guessing and sharpening procedure visualized for
unlabeled datapoint. The unlabeled image is at first K times augmented, each augmentation
is then classified by the current model. The predictions are then averaged and sharpened.
Source [2]]

First, we concatenate those two batches and shuffle them :

W = Shuffle(Concat(X™*,U*))

we then slice the W into two: W, of the same size as X* and W, of the same size as
U*, and we compute MixUp for both labeled and unlabeled sets:

X' = MixUp(X*, W)
U = MixUp(U*, W»)

The definition of )\ in alternated MixUp ensures, that the (z’,y’) is always closer
to the (z1,y1) then to (x2, y2), which is important as it may happen, that the W,
will contain features from ¢/ Furthermore, we need to compute individual loss
components appropriately. In other words, the X’ and U/’ are always closer to the
X*, resp. U* so the computed loss corresponds to the original inputs, i.e. batches X,
resp. U.
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Algorithm 1 MixMatch
1: Input: Batch of labeled examples and their one-hot labels X = ((z;,pi); ¢ €
(1,...,n)), batch of unlabeled examples U = (u;;i € (1,...,n)), sharpening temper-
ature 7', number of augmentations K, Beta distribution parameter o for MixUp.

2: fori=1tondo

3: z; = Augment(x;) > Apply data augmentation to x;

4: for k = 1to K do

5: u;;, = Augment(u;) > Apply kth round of data augmentation to w;

6: end for

7: G = % S Pmodel (Y| Ui k3 0) > Compute average predictions across all
augmentations of v;

8: ¢i = Sharpen(q;, T)) > Apply temperature sharpening to the average prediction

9: end for

100 X* = (@, pi);i € (1,...,n)) > Augmented labeled examples and their labels

11: U* = (g, q);i€ (1,...,n),ke(1,...,K)) > Augmented unlabeled examples,
guessed labels

12: W = Shutffle(Concat(X*,U*)) > Combine and shuffle labeled and unlabeled data

13: X' = MixUp(z;, w;);i € (1,...,|X*])) > Apply MixUp to labeled data and entries
from W

14: U’ = (MixUp (i, wiq x+|);4 € (1,...,|U*])) > Apply MixUp to unlabeled data and
the rest of W

15: return X', U’

B 2.3 Variational Autoencoders (VAEs)

The Variational Autoencoder or VAE for short, is a generative model that falls into gen-
erative modelling (page ). It is a neural network architecture capable of learning a
low-dimensional representation of complex high-dimensional data such as images, text,
or audio. The VAE is a probabilistic model that learns to approximate the true data
distribution by using an encoder network to map input data into a latent space and a
decoder network to map the latent space back to the original data space. Nevertheless,
before we delve into the details of VAE, let us explain the term “Variational Autoencoders”
itself and what it represents. The explanation comes in two parts: first, we explain au-
toencoders in subsection 2.3.1/and then variational inference in subsection 2.3.2. The
experienced reader can skip those introductory parts and go right to subsection 2.3.3,

B 23.1 Autoencoders

An autoencoder was first introduced in the 1980s by Hinton [38]. However, it was
only with the advent of deep learning and the availability of large amounts of data and
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Reconstructed
Input <---—---—---—-- Ideally they are identical. ------------------ > input
x ~x
Bottleneck!

Encoder Decoder ,
X
9¢ fo X

An compressed low dimensional
representation of the input.

Figure 2.2: Illustration of autoencoder network with two networks: Encoder and Decoder,
each parametrized by learnable parameters. Source [47]]

computational resources in the 2000s and 2010s that autoencoders became widely used
and achieved state-of-the-art results in various tasks [[14]. An autoencoder is a neural
network designed to learn identity mapping in an unsupervised manner to reconstruct
the original input while compressing the information in the “bottleneck” layer to obtain a
compressed representation (see2.2). Through this, we obtain an efficient dimensionality
reduction: The low-dimensional latent representation can be used as an embedding
vector in various applications, such as search or data compression [47]].

B Plato alegory

The concept of latent variables in generative modelling can be explained using Plato’s
Allegory of the Cave [48]. In the allegory, people are confined to a cave and can only see
two-dimensional shadows of three-dimensional objects projected onto a wall. Similarly,
the objects we observe in the world may be generated by higher-level abstract concepts
that we can never directly observe. These abstract concepts may represent properties
such as colour, size, and shape. Even though we never see and can not fully comprehend
these higher-level concepts in all details, we can still reason and draw inferences about
them through their manifestation in our lives. Similarly, we can approximate the latent
representations, which encode the observed data [26]].

However, in generative modelling, we typically seek to learn lower-dimensional latent
representations rather than higher-dimensional ones. This is because attempting to learn
a representation of a higher dimension than the observation is often difficult without
strong priors. Learning lower-dimensional latent can also be viewed as a form of com-
pression, which can uncover semantically meaningful structures describing observations.

11
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The autoencoder’s architecture is composed of two networks:

® Encoder network, which takes (high-dimensional) input  and maps it into low-
dimensional latent code z. We denote it as a function g(-) parametrized by ¢. Its goal
is to reduce dimensionality, like any other approaches such as principle component
analysis (PCA) or t-SNE.

® Decoder network, which takes the code z and recovers the data . We donte it as an
function f(-) parametrized by 6.

The parameters € and ¢ are learned simultaneously using stochastic gradient descent
(SGD). We encode the input, decode it, and compute the mean squared error (MSE) loss
for each feature in the batch to train the model. By minimizing this loss, we encourage
the model to produce output as close as possible to the input.

z' = fo(gys(x)) = fo(2)
Lymsg = %Z(azé — x;)?

i=1

Vanilla autoencoders can be prone to overfitting if their capacity is too high relative to the
dataset size. To improve their robustness, Vincent et al. proposed a denoising autoencoder
in 2008 [46]]. This approach involves adding random noise to the input and then training
the model to reconstruct the original signal. Denoising autoencoders can achieve better
generalization performance by forcing the model to learn the underlying structure of
the data rather than just memorizing the training examples. The idea of adding noise is
today known as the dropout technique [|44]].

Since then, other architectures have been proposed to improve robustness and prevent
overfitting. These include sparse autoencoders [31]], k-sparse autoencoders [28]], and
contractive autoencoders [36]]. The novel approach was defined in 2013 by Kingma and
Welling [[17]], and VAEs were introduced. The key idea was to assume that latent space
is not deterministic but stochastic with some distribution p(z) over it. The goal of the
VAE is to model this distribution by variational bayes.

B 2.3.2 Variational Bayes

The idea of autoencoder was described above, but what does the “variational” in “varia-
tional autoencoder” stands for? Calculus of variations is a branch of mathematics that
deals with finding the optimal solution of a functional, which is a mathematical function
that maps a set of functions to real numbers. The optimal solution is the function that
minimizes or maximizes the functional. The calculus of variations has many applica-
tions in physics [[13]], engineering [21]], economics, and other fields. Its development

12
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dates back to the 17th century. The Euler-Lagrange equations [9] play a crucial role in
variational calculus by providing the stationary points of a given functional that needs
to be minimized or maximized.

Now we know what variations are, but how do we apply them in the context of Bayesian
inference? Let us assume we have a probabilistic graphical model (PGM) or Bayesian
network [49] with some hidden (or unobserved) nodes H and some observed nodes
(evidence) E. The goal of Bayesian inference is to compute posterior probability p(H | E):

p(H.E)  p(E| H)p(H)
PHEIB) == = wm)

where p(F) is the marginal density of the evidence:

p(E) = /H p(H,E)dH (2.1)

For most of the models, computing the evidence is intractable due to the integral in eq. 2.1,
The interactability might be an issue even for a case with the sum of a large number
of discrete random variables (even if they were from simple categorical distribution),
as it would take too much time to compute. The intractability of p(E) is related to the
intractability of the posterior distribution p(H | E). Note that the joint distribution
p(H, E) is efficient to compute as it is specified through the model (PGM). The Bayes
formula relates the densities:

_ p(H,E)

p(H, E)
P =)

p(E)

Since p(H, E) is tractable to compute, a tractable marginal likelihood p(E) leads to a
tractable posterior p(H | E), and vice versa [18,16]].

or p(H|E)=

Variational Bayes (VB) is a technique for approximating complex probability distribu-
tions by simpler ones and was introduced by Jordan et al. in 1999 [16]]. VB provides a
way to approximate the posterior distribution by a simpler one that belongs to a tractable
family of distributions and to do so by minimizing the Kullback-Leibler (KL) divergence
between the true posterior and the approximate one. The KL divergence is a functional
with respect to approximate tractable distribution ¢(H) since the true posterior p(H | E)
is given, hence the connection with variational calculus. The KL divergence is a measure
of the dissimilarity between two probability distributions:

q¢"(H) = argmin KL(q(H)||p(H | E))

qeQ
q(H)

KL((H)|p(H | E)) = [ a(H)los [ ] d

where Q is the family of tractable distributions, and KL is the KL divergence. It should be
noted that there are other non-optimization-based methods to make such approximate
inferences, such as MCMC [50]].
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(a) (b) (©

Figure 2.3: Illustration of forward vs reverse KL-divergence on a bimodal distribution.
The blue and the red contours represent the target p and the unimodal approximation ¢,
respectively.In (a), the forward KL-divergence minimization is visualized with ¢ trying to
cover up p. The (b) and (c) show the reverse KL-divergence where ¢ locks on to one of the
two modes. Source [[10]]

As the KL divergence is not symmetrical, one could ask why we have defined the
optimization task as the reverse KL-divergence and not the other way around, i.e. forward
KL divergence KL(p(H | E) | ¢(H)). Both cases are illustrated in figure 2.3, The reverse
KL divergence minimization results in ¢ under-estimating p, which can be perceived as a
safe choice. This choice ensures that sampling from found ¢ provides plausible values
under original p; in other words, we do not want to obtain samples from ¢ that the
original p does not support. For a thorough explanation, we refer to the literature [[10].
We will now relabel our variables to follow the standard notation used in deep learning
literature, where hidden variables H are known as latent z and observed F as features x.
In this setting, we want to optimize:

' (7) = argmin KL(g(2)|[p(2 ] %) (22)
KL(g(2)||p(z | %)) = [ q(z)log [p(qz(,z)x)] dz (2.3)

:/z[q(z) logq(z)}dz—/z[q(z) logp(z | x)|dz (2.4)

=E, [logq(z)] — E, [logp(z | x)] (2.5)
— £, [log ()] ~ E, [10s ("2)] 26)
=E, [logq(z)] — E, [logp(x,2)] + E, [log p(x)] (2.7)
=E, [logq(z)] — E, [log p(x,2)] + log p(x) (2.8)

where the E, [log p(x)] = log p(x) because the p(x) does not depend on ¢(x). We can
not optimize the KL divergence directly since the evidence p(x) is intractable. However,
it is constant (for the given dataset). If we rearrange the last equation, we obtain

log p(x) — KL(q(2)||p(z | x)) = E [log p(x,2)] — Eq [logq(z)] (29)
= ELBO(q) (2.10)

where the left-hand side (LHS) of the equation is called evidence lower bound (ELBO)
since it is truly a lower bound on the logarithm of evidence p(x). This is clear to see, as
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the KL divergence is always positive. As the log p(x) is constant, maximizing the RHS is
equal to minimizing the KL-divergence:
q"(2) = argmin KL(q(2)||p(z | x))
q€eQ
= argmax ELBO(q)
q€eQ

= arg;enéax[]Eq [logp(x,2)] — Eq [logq(z)]]

A commonly made assumption regarding the variational distribution ¢(z) is that it
factorizes over a partition of the latent variables, such that the latent variables can be

partitioned into subsets z1, ..., z,,. Specifically, we can write:
m
q(z) = [ ai(zi | x)
i=1

This assumption is known as a mean field approximation. It can be shown (see [29]]) that
the following the equation holds for optimal ¢}:

log ¢} (z; | x) = Eiz; log p(x, z) + constant

where [E;;[log p(z,x)] represents the expected value of the logarithm of the joint prob-
ability of the observed data and latent variables, taken over all variables that are not
included in the current partition. The constant is only a normalizing constant, so ¢; is
truly a probability distribution. This leads to an iterative algorithm of block-coordinate
ascent on ELBO with an initial random guess (see algorithm 2)). Furthermore, Neal and
Hinton have shown in [30] that the Expectation Maximization (EM) alogrithm (proposed
by Dempster et al. [§]]) can be seen as such ascent on ELBO.

Algorithm 2 Coordinate Ascent Variational Inference (CAVI) Source: [29]]

Input: A model p(x,z), a dataset x
Initialize: Variational factors ¢;(z;)
while the ELBO has not converged do
forje {1,...,m} do
exp{Eiz;[logp(z,x)]}
fzj exp{E#j [logp(z7x)]}dz]-

Set q; (Zj) “—

end for

Compute ELBO(q) + E[log(p(x,2))] — E[log ¢(z)]
end while
return []72, ¢;(z;)

B 233 VAE

Kingma and Welling first introduced the variational autoencoders in 2013 [17]]. Since its
introduction, the VAE has been widely used in research and industry and has inspired
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many other generative models. It continues to be an active area of research, with ongoing
efforts to improve its performance and applicability to different domains. This subsection
was mainly inspired by [[18§]].

B Deep Latent Variable Models

A deep latent variable model (DLVM) is a probabilistic graphical model or Bayesian net-
work where some variables are hidden or latent [[18]]. These models use neural networks
to parameterize the distributions of their variables, enabling very complex marginal
distributions (evidence) pg(x) even if each factor in the directed model (prior pg(z) or
conditional pg(x | z)) is relatively simple. This expressivity makes them attractive for
approximating complicated true distributions p*(x). The simplest DLVM is one that is
factored as with the following structure:

po(x,2) = pe(2)pe(x | 2)
where pg(z) or pg(x | z) is specified, i.e. their family of distribution is fixed and its
distribution parameters 7 are parametrized by neural network:
1n = NeuralNetg(Pa(x))
po(x | Pa(x)) = pg(x | n) = pe(x | NeuralNetqy(Pa(x)))

or even both their family and distribution parameters are fixed, e.g.

pg(Z) :p(z) = N(Z,O,I)

The Pa(x)) corresponds to all parents of node x in Bayesian Network. Such DLVM is
visualized in picture 2.4 as a Bayesian network. We will later see that it is precisely this
model that is under consideration when talking about VAE.

Example 2.1 (DLVM for multivariate Bernoulli data). A simple example of DLVM for
binary model x € {0, 1} used in [[19] has following structure: The latent space z is
fixed as a spherical Gaussian distribution and conditional probability is modelled as a
factorized Bernoulli:

p(z) = N(z,0,1)
p = DecoderNetg(z)

D D
logp(x | z) = Y log(z; | z) = Y log Bern(;, p;)
i=1 i=1

D
=Y wilogp; + (1 — z;)log(1 — p;)
i=1

where p € {0,1}? and Bern(-, p) is the probability mass function (PMF) of the Bernoulli
distribution.
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-t z jat—0p

Figure 2.4: Illustration of VAE as Bayesian Network. Solid lines denote generative capabilities
peo(x | z)pe(z), dashed lines denote the variational approximation g¢(z | x) to the intractable
posterior pg(z | x). The variational parameters ¢ are learned jointly with the generative
model pa- rameters 8. Source [[17]]

Until now, we have only discussed DLVMs, which involve using neural networks in
Bayesian networks. However, DLVMs face the same issues as other Bayesian models
discussed in the Variational Bayes section, such as the inability to compute the evidence
p(x) due to intractabilities. To overcome this, approximate inference techniques such
as Expectation Maximization (EM) (see 2)) or Monte Carlo Markov Model (MCMC)
can be used to approximate the posterior pg(z | x) and the marginal likelihood pg(x)
[[18, appx. A2]. However, these traditional inference methods are computationally ex-
pensive, often requiring per-datapoint optimization loops and are not well-suited for
datasets with a large number of examples N. Moreover, they tend to yield poor posterior
approximations. Thus, there is a need for more efficient procedures.

B Approximate Posterior

The VAEs framework introduces two models, encoder and decoder (see figure 2.4) and
also proposes a computationally efficient algorithm for optimizing the parameters jointly
using SGD.

To address the intractabilities of DLVM, VAEs utilize the recognition model q4(z | x), also
known as an inference model or an encoder, to approximate the intractable pg(z | x). While
the encoder, similar to DLVM, can be any Bayesian network, in vanilla VAE, it is typically
a simple network with x as input, which produces the parameter for the distribution
for the latent z. We denote the parameters of this network with ¢ to differentiate them
from 6, and refer to them as variational, as the goal of the encoder is to approximate the
conditional distribution pg(z | x):

qs(z | x) = pe(z | x).

It is important to note that, unlike the approximate posterior in mean-field variational
inference, the encoder is not necessarily factorial, and its parameters ¢ are not computed
from a closed-form expectation [17]]. Instead, VAEs” framework introduces a method for
jointly learning the recognition model parameters ¢ and the generative model parameters
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0. This approach is known as amortized variational inference [[11]], which avoids a per-
datapoint optimization loop and leverages the efficiency of SGD [[18]].

B ELBO objective

The objective to minimize is an ELBO (defined in2.9)), like in any other Bayes variational
method. For any selection of recognition model g4(z | x), we can write:

log pe(x) = By, z)x) [l0gPe(x,2)] — By, (z)x) [l0ge(z | x)] +KL(g4(z | x)[|pe(z | x))
(2.11)

log pe(x) = ELBO(gy(z | x)) +KL(g¢(z | x)|lpe(z | x))
(2.12)

This equation provides important insight into the divergence KL(q4(z | x)||ps(z | x)).
Firstly, it measures how well the approximating distribution ¢4(z | x) fits the intractable
distribution of decoder model pg(z | x). Secondly, it quantifies the gap between the
ELBO and the log-likelihood of the marginal likelihood log pg(x), also knwon as tightness
of the bound. A tighter bound indicates a better fit between the approximate and model
posterior distributions. Therefore maximizing the ELBO w.r.t to @ and ¢ can be seen as a
concurrent task of improving the log evidence pg(x) under the model and also improving
the fit of variational ¢4(z | x) to pg(z | x):

argmax ELBO(gg(z | x)) = argmax|[log pg(x) — KL(ge(z | x)||pe(z | x))] (2.13)

) )

In order to use SGD, we need to compute the derivatives of the ELBO objective with
respect to the model parameters 8 and ¢. The ELBO objective of a (mini)-batch is
defined as the sum of terms for each data point in the (mini)-batch B:

ELBO(B) = »  ELBO(gy(z | x))
xEB

where the data point term is defined as

ELBO(gg(z | X)) = Egy(zlx) [log pe(x,z)]| — By (alx) [log gp(z | x)].

This term depends on the data point x and the network parameters 6 and ¢ that cor-
respond to the distributions pg and g, respectively. The ELBO is sometimes rearranged
into:

ELBO(gg(z | x)) = Eq, (z)x) [log pe(x | 2) +log pe(z) —log ¢4 (z | x)]

49(2 | X)
=E, (zx) |lo x| 2z)| —E,, (zx) |log —————
44 (7] )[ gpe( | )} qe (2] )[ g pe(z) ]
= By (alx) [logpo(x | 2)] = KL(gg(z | X)llpo(2)) (2.14)
recognition term variational regularization term
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Although the individual data point ELBO and its gradient Vg 4 ELBO(x, 6, ¢) are gen-
erally not tractable, VAEs provide means and assumptions under which we can perform
minibatch SGD. Namely we will show that good unbiased estimators @g,dj ELBO(x, 0, ¢)
exist under the assumption that we know how to reparametrize the ¢4 distribution to
remove the ¢ influence on sampling. This is also known as reparametrization trick and is
a key achievement of VAEs frameworks.

Say we want to compute gradient w.r.t. to decoder parameters 6, i.e.

Vo ELBO(x, 0, ¢) = Vo Ey, (4x) [logpe(x,2) — log ge(z | x)]

=Ey,(zx) Vo [logpe(x,2z) —log gy (z | x)] (2.15)
>~ Vo[ log pe(x,2z) — log q¢(Z | x)]
~ Vg[logpe(x,2)] (2.16)

The ~ symbol means that one of the two sides is an unbiased estimator of the other
side. The RHS is a random variable with some source of the noise and two sides are
equal when averaged over the noise distribuion. In this case, the noise distribution is
44(z | x) and z is sampled from it. In other words, the last line (eq.2.16) is a Monte
Carlo estimator of the second line (eq.2.15|) [[18]].

The unbiased gradient w.r.t. to the encoder parameters ¢ is slightly difficult to obtain
as the expectation of the ELBO is taken w.r.t. the variational distribution ¢4(z | x), which
is a function of ¢, i.e.

Ve ELBO(x,0,9) = Vy Ey, (41x) [log pe(x,2z) — log gy (z | x)] (2.17)
# Eqy(alx) Vo logpa(x,2) — log ge(z | x)] (2.18)

Nevertheless, in the case of continuous latent variables, we can use reparametrization
trick [|35]] as we will show now [[18].

B Reparametrization trick

By parametrizing the random variable z ~ ¢4 (z | x) as a differentiable and invertible
mapping of another random variable e that is independent of both the data x and the
variational parameters ¢, we can obtain an unbiased gradient and differentiate the
evidence lower bound (ELBO) objective with respect to ¢. Specifically, we have

z = g(eﬂ ¢? X)?
where € is randomly sampled from some distribution p(€). Using this mapping, we can
separate the noise source from the variational parameters and obtain the Monte Carlo
estimator of the gradient. i.e.

B(Xa Z)

Vo Eqy(alx) [108 %] = V4 Ep) [logpe(x, g(€, ¢, %)) — log g (g(€, ¢, %) | x)]

4¢
= ]Ep(e) vd)[logpe(xv g(€7 ¢a X)) - 10g Q(i)(g(ea ¢7 X) | X)]
~ Vg [logpe(x,z) —logge(z | x)],
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Original form Reparameterized form
f Backprop f
- 4o(zlx) vy  — glpxe)
") x Vot (@ X ~p(e)

: Deterministic node — : Evaluation of f

. : Random node =3P : Differentiation of f

Figure 2.5: Illustration of reparametrization trick. The encoder parameters ¢ affect the
objective f indirectly through the random variable z ~ g4(z | x). We can not compute the
gradient V4 f in the original setting (left), as we can not propagate the dependency of ¢
through the sampling process. Thanks to the reparameterization trick, we can first sample the
e and then compute g(€, ¢, x) which enables us to compute the gradients V¢ f. Source [[18]]

where z = g(€, ¢, x) for randomly sampled € ~ p(e). With this procedure, we can now
differentiate the ELBO objective with respect to ¢, which was not possible before. The
situation is visualized in figure 2.5, The limitations of this procedure are that we have
to know the mapping g. For the Gaussian distribution, the particular mapping is the
following;:

Z=pu+e0o

where pu and o are the mean and standard deviation of the Gaussian distribution, re-
spectively, € is a vector of independent samples from a standard normal distribution,
and © denotes element-wise multiplication. The final algorithm for computing SGD for
the ELBO loss is provided in 3.
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Algorithm 3 Stochastic gradient descent for VAE. (a.k.a. Auto-Encoding Variational
Bayes (AEVB) Algorithm )

1: Input: Dataset D, Inference model ¢4(z | x), Generative model pg(x, z)

2: Return: Learned parameters 0, ¢

3: (0, @) < Initialize parameters

4: while SGD not converged do

5: M ~D > Random minibatch of data
6: I~197¢ =0
7: for m in M do
8: Sample € ~ p(e)
9: Apply encoder 1 = NeuralNety(m)
10: Reparametrize to obtain sample Z = g(n, m, €) > Via reparametrization trick
11: Apply decoder on z and compute log(pg(x =m |z = 2)) + logpe(z = 2)
12: Compute negative log: —loggy(z = 2 | £ = m) > See subsection 2.3.3
13: Loy +=log(pe(x = m,z = 2)) —logqs(z = 2 | x = m) > Accumulate loss

14: end for

15:  Compute gradients Vg 4 Ly 4(M, €)
16: Update 6 and ¢ using SGD optimizer
17: end while

B Evaluation of log gy(z | x)

The evaluation of the estimator of the ELBO requires computation of the density log:
(see algorithm 3))
logge(z =2 | £ =m).

The z is reparametrized through the reparametrization trick
2:g(é7¢7x)7 ENP(E)

and as long as the g(+) is invertible, we can express the density of z through the density
of e

q¢(z | x) = logp(e) —logdy(x, €)
where dy(x, €) is the log of the absolute value of the determinant of the Jacobian ma-
trix [[18]]:

dg(@,€) = | det J(z,€)|

021 9= ... Oz
Oeq Oeo Oey,
Oz Oz Oz ... Oz
Oer Oeo Oeg,
J(z,€) = De = . .
Oz Oz, .. Oz
Oeq Oeo Oey,

This transformation g(-) can also help obtain a more expressive inference model. Namely,
even though the decoder and encoder networks would be very complex and could
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learn the true data distribution, the ELBO optimization prohibits them from doing so,
as it enforces the consistency between the encoder and decoder. If the decoder and
encoder are from an exponential family, the simple affine mapping is enough to ensure
the encoder and decoder consistency for any exponential distribution [41]] and ELBO
maximization forces the model to be simple. It has been shown that flexible and invertible
transformation g(-) can overcome this issue [41,|7]]. Between such transformations belong
Normalizing flows (NF) [34]] or Inverse autoregressive transformations and Inverse
autoregressive flows (IAF) [20]]. Another possibility how to overcome this consistency
issue is to extend the latent space with auxiliary latent variables [27]] which leads to
hierarchical variational autoencoders (HVAE) first introduced in [[43]].

B 2.3.4 Issues with VAEs

As with any method, the vanilla VAEs also have weak points, which have been identified
and pose an open question with active research:

® Bluriness of the images: If the VAE model does not have enough capacity to model
the underlying true distribution properly, the variance of decoder py(x | z) will end
up larger then the variance of the encoder

q6,p(x, 2) = qp(z | X)pp (%)

where pp(x) represents the true underlying distribution of data (however, only
represented by the samples). This is due to the direction of the KL divergence:
The generative model is only slightly penalized when putting probability mass on
values of (x, z) with no support under ¢4 p [[18]]. This corresponds to forward KL
divergence visualized in (a) in 2.3

® Posterior collapse: It has been observed that part of the latent variable can collapse
during the training and become inactive [[43} 20, 4], i.e. the optimization gets stuck
in an undesirable stable equilibrium. This phenomenon is because the objective
ELBO comprises the reconstruction error and the variational regularization term
(see eq.2.14). The reconstruction error is initially relatively weak, and the variational
term forces the approximate posterior towards its prior. This can result in many
latent units collapsing before learning a proper representation. The [43]] alleviate
the problem by scheduling the optimization objective such that the variational
regularization term is forced to 0 at the beginning of the optimization and then
slowly linear ramped up to its value through the optimization. The [20]] proposes the
method of free bits, which ensures that, on average, a certain minimum information
is encoded per (group of) latent variable.

® Disentangling latent factors: Vannila VAEs often learn a tangled representation of
the latent space, making it difficult to interpret or control individual factors in the
data. This can limit their usefulness in applications such as image editing or style
transfer.
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2.4. Hiearchical VAE

B 2.4 Hiearchical VAE

A hierarchical variational autoencoder (HVAE) is a generalization of the VAE that intro-
duces multiple layers of latent variables. The first proposal to address the limitations of
the vanilla VAE was the use of auxiliary latent variables, as introduced in [27]], which
were followed up by truly hierarchical structure in [43]] and [20]]. Standard vanilla VAE
contains only one layer of latent variables (fig.|2.6a)) in contrast to HVAE, where each la-
tent variable depends only on the previous one (fig.2.6b). The HVAE can be represented
as (almost) any directed acyclic graph and can be represented as DLVM or Bayesian
Network with the following joint and posterior distributions:

po(x, z1.7) = po(T | 21.7) H po(zt | 2>1)|pe(zT) (2.19)
=

4p(z17 | ®) = qp(z1 | ®) [[ o2t | 2, 2<1) (2.20)
t=2

where z.; = z14—1 represents the sequence of all latent variables z; up to z;. We can
derive the ELBO objective for the HVAE:

log pg(x) log/ po(x, z1.7)dz1T

log/ po(x, z1.7)q¢ (217 | w)dzlzT
q¢(z1.1 | )
pa(iE,Zl:T)
=108 E gy (21 oy | L ELT)
& gy (21.7|) [Q¢(21;T | m)]
pe(w,zlzT)
>E log ——2| = ELBO ) 221
Z Bgp(z1.7]2) log Q¢(21:T | m)] (Q¢(ZI.T | x)) ( )

We can plug the joint and posterior distribuions from eq.2.19 and eq. 2.20 into the ELBO
term (eq.2.21)) and obtain:

pe(zr)pe(x | 21.7) [T po (2t | 251)
%(Zl | x) HtT:2 Q¢>(zt | @, z<¢)

ELBO((]¢(Z1 T ‘ :13)) Q¢(Z1T|w) [log (222)

B 2.4.1 Markov HVAE

The special case of the HVAE is Markov HVAE, where each variable z; depends only on
the previous variable z;1. This can be seen as multiple VAEs stacked on each other as
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(2] 21) p(z1]22) p(zr_1|zr)
plx]z) f
o = 606 6 o
© @ ©9 O
~—7 a(1lz) a(zal ) a(zrlzr)

(b) : Markov HVAE with T layers, each varible z; depends
(a) : Vanilla VAE only on previous z;1, creating a Markov chain.

Figure 2.6: Visualization of vanilla VAE and Markov hiearchical VAE (MHVAE) architecture.
Source [226]]

represented in fig 2.6bl The joint and posterior distribution of HVAE is then

T-1
po(x,z1.1) = po(x | z1) [] [po(2t | ze41)]po(21)
t=1
T
gp(z1r | ®) = qg(z1 | ) [[ 02t | 20-1)
t=2

with objective ELBO(qg(21.7 | @)):

(zr)po( | 21) TT/2)' po(2t | Ze41)

Do
log 7
qp(z1 | ) [Ti=2 qp (2t | 2e-1)

E

Qd)(zl:T'm)

While MHVAES can express complex distributions and overcome the issue of blurriness,
optimizing them for deep hierarchies can be challenging because of their multiple condi-
tional stochastic layers. This was partially overcome with ladder VAE, which proposes
different ordering of the variational encoder to improve the learning.

B 2.4.2 Ladder VAE

The standard HVAEs (used in [[17, 20, 35]), which use a bottom-up encoder and top-
down decoder, are difficult to train due to the lack of interaction between the encoder and
decoder during inference, as shown in (a) of fig. 2.7, However, the recently proposed
ladder VAE (LVAE) by Senderby et al. [43]] addresses this issue by introducing a new
inference model that leverages top-down dependencies, similar to the generative model,
as depicted in (b) of fig. 2.7, This approximate posterior distribution merges information
from a bottom-up approximate likelihood and top-down prior information. By sharing
information and parameters with the generative model, the inference model gains access
to the current state of the generative model at each layer. The top-down pass recursively
corrects the generative distribution with a data-dependent approximate log-likelihood.
This inference model can be formally expressed as follows:
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a) b)
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Figure 2.7: Illustration of bottom-up and top-down approaches of the encoder (inference
model) and decoder (generative model). In (a), we can see the standard HVAE and in (b),
the newly proposed LVAE. Source [43]]

4p.0(2t | z51,®) ~ po(21 | 251)Gp(2i | ) (2.23)

where §4(z; | ) represents the probability distribution from given family Q parametrized
by (deterministic) encoder:

d; = NeuralNety(d;—1), dg = x
Gp(zi | ) = Gp(zi | d;)

The multiplication in eq. 2.23|is a choice of authors but is favourable in case the distribu-
tions are members of the exponential family (see 2.5)

B 25 Exponential family

An exponential family is a parametric set of probability distribuions, whose probability
densities or masses can be expressed in form:

p(x [ n) = h(z) exp(T (x) - n — A(n)) (2.24)

where h(x) is a base measure, 1) is vector of natural parameters, T'(x) are suffient statistics
and A(n) is cumulant function also known as log normalizer (see eq.2.25 for explanation).

Many common distributions, such as normal distribution, categorical distribution,
Bernoulli distribution, gamma distribution, Dirichlet distribution, etc., are the exponen-
tial family. We show the reparametrization of some distributions so they correspond to
eq.2.24/in table 2.1}
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Distribution | 6 n h(z) T(x) A(n) A(6)
Bernoulli P log 1%}) 1 x log(1 + ") —log(1 — p)
p1 | |logp [z =1]
Categorical : : 1 : 0 0
Dk log py; [z = k]
i
Gaussian M2 ‘721 = :c2 —% — 71%(;2”2) % +logo
g T 352 T

Table 2.1: Some members of the Exponential family.  represents the standard parameter.
Other symbols are described in eq.[2.24]

Il Cumulant function

Because the p(x | n7) is a probability density, the integral of it equals one:

| p@ | mda = [ h@)exp(T(@) -0~ Alm)da

[, h(@) exp(T(@) - m)
op(Am) O

A(n) = log / h(x) exp(T(x) - 1) (2.25)

and therefore the name log normalizer. Another interesting property is that the derivative
of cumulant function w.r.t. natural parameters is:

r=1

this is easy to see since:

i [p@imde =0 [ @) exo(T(@) -1 - Am)da

anp(:c\n) [T(x)] = Emwp(wm) [diA(n)] - 714(77)'
The second derivative of the cumulant function with respect to natural parameters is the
variance of sufficient statistic [[15]]:
d2
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2.5. Exponential family

Another important theorem about the convexity of the exponential family [[15] states:

Theorem 2.2. The natural parameter space N is convex (as a set), and the cumulant function
A(m) is convex (as a function). If the family is minimal, then A(n) is strictly convex.

B Kullback Leibler divergence

The KL divergence for two distribuions p and ¢ is defined as:
p(x)

-~ p(x) , p(x)
KL(p(@)lla(x)) = [ pla)1og ! dw = Byio)log

however for the distributions of the family, one can obtain a closed formula:

KL(p(z)l|q(x)) = Epa)(n, — 1) - T(x) — A(n,) + A(n,)
=(n, —my) - 1, — Alny) + Any)

where 1), = E), ) [T ()] is the mean parameter and can be obtained through differentiat-
ing the cumulant function.

We define the empirical data distribution

pp = ’D‘Zéww

z'eD

where §(z, «')is Kronecker delta. This distribution places a point mass at each datapoint
in dataset D. We can utilize it for writing the log-likelihood (in discrete case):

" pologp(z | 8) = Z|,§| " b(z.2) logp(x | 0)

x'eD

ZZéww logp(x | 0)

weDl’

Z log p(x

:EED

0| D
= 51017)
where [(0 | D) = logp(D | 0) is the log likelihood. So computing the cross entropy
between empirical data distribution and the model provides us with log-likelihood. If
we compute the KL divergence of the empirical data distribution and model p(x | 8), we
obtain

1
KL(pp||p(z | 6)) ZPD =E,, logpp — NZ(O | D)

the empirical data distribution is not dependmg on the model parameters 8 and thus by

minimizing the KL divergence to the empirical distribution, we maximize the (log) likelihood (of
data under the model).
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B 26 Symmetric leaning in VAE

The authors of [40]] present an alternative approach to maximizing the evidence lower
bound (ELBO) in Variational Autoencoders (VAEs). The traditional ELBO optimiza-
tion imposes restrictions on the architectures of VAEs, as it requires the latent distribu-
tions to be in closed form while only providing data samples. This asymmetry in the
ELBO formulation contributes to the issue of blurriness in generated images (discussed
in2.3.4)), which has been partially addressed by methods like normalizing flows [[34]]
and LVAE [43]].

The proposed symmetric learning approach relaxes these restrictions and enables
VAE learning when both the data and latent distributions are accessible only through
sampling. This approach also applies to more complex models, such as Hierarchical
VAEs (HVAEs), and leads to simpler algorithms for training. The experiments provided
in the paper show that models obtained from this training approach are comparable to
those achieved through ELBO learning.

In the standard VAE framework, we train the encoder and decoder through maximizing
the ELBO objective, i.e. given the true underlying distribution of data 7(x),xz € A and
underlying the distribution in latent variable 7(z), z € Z, we maximize ELBO:

,CB = ELBO = Eﬁ(m) [Eqd,(z\m) 1ng9(m | Z) - KL(Q¢(Z | m)Hw(z))]

in order to obtain the pair of encoder g4(z | ) and decoder pg(x | z). It is necessary
to define the model distribution p(z) in closed form to keep the computation of KL
divergence tractable. This is an issue in case the 7(z) is complex, and we cannot model
it by a simple distribution family. Another necessity is that the ¢4(z | x) allow the
reparametrization trick.

The authors propose a new algorithm for learning the encoder ¢4(z | ) and decoder
po(x | z) in case of semi-supervised and unsupervised learning:

® Semi-supervised learning: We can draw i.i.d samples from underlying unknown
distributions (x, z) ~ 7(x, z) and its marginals:  ~ w(x), 2z ~ 7(2).

® Unsupervised learning: We can draw only « ~ 7(x). The latent space is modelled
through the choice of model p(z).

The encoder and decoder belong to the exponential family and allow for tractable
computation of log density and its derivatives.

po(x | z) < exp[O(z) - f4(2)]
Pe(x | 2) o exp[®(z) - g4 ()]
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2.6. Symmetric leaning in VAE

where ©(x) € R” and ®(z) € R™ are sufficient statistics. The variables  and z can
be either discrete or continuous depending on the choice of an exponential family (e.g.
Bernoulli or Gaussian).

The authors provide a new optimization function, which is motivated by finding a
Nash equilibrium for a two-player game where players’ strategies are represented through
the encoder and decoder distributions, respectively and the utility function is a sum of
the player expectation w.r.t his strategy [[40]. The objectives are

L,(6,0) = Erz) [logpe(x, 2)] + Er (. [logpe(2)] + Erq) Eqy(zlo) [log pg(x, z)]
Ly(0,¢) = Er(o,2)[10866(2 | )] + Er(z) Epg(af) [log 06(2 | )]
for semi-supervised training and
Ly(0,8) = Er(z) B, (z]0) [log pe(z, z)] (2.26)
Ly(6,8) = Bpy(a,) [log 4p(2 | @)] (2.27)
for unsupervised training with the following interpretation: We maximize the decoder
and encoder likelihood of the training data simultaneously. The mixed terms reinforce

the encoder-decoder consistency. This corresponds to the maximization of the ELBO
objective since we can rewrite the ELBO into:

Er (o) [log po (@) — KL(gg(2 | 2)||pe(= | 2))]
After inspecting the terms, we see that the ELBO goal is the same as above: To max-

imize the data likelihood and reinforce the consistency of the decoder-encoder pair
simultaneously.

B 2.6.1 Hiearchical VAEs

The algorithm can also be adopted for hierarchical VAE. Let us assume that we have
HVAE with M + 1 layers, i.e. z consists of 2o, z1,. .., 2y, where the encoder models
correspond to the LVAE, and we can sample  ~ 7(x). The encoder and decoder factorize
(the ordering is in reverse to the one in eq. 2.19|and eq. 2.20):

po(z, z) = pe(2o) H po(zi | z<t)|pe(x | 2)

qp(®, z) = m(x)qe(20 | ) H Go(2t | 2<1, )
t=1

where the encoder shares the parameter as described in [2.23, the objectives remain as
in unsupervised case (eq.2.26/and eq.[2.27)). The terms can be decomposed due to the
factorization of decoder and encoder and are thus tractable. If there is access to the
samples (x, zo) ~ 7(x, 20), e.g. segmentation task with target masks, we can utilize
them by adding terms

Ew(m,zo) IEq(z>0|zo,m) log pg (iL‘, Z) and Ew(w,zo) log Q(Z)(ZO ‘ m)

to the decoder and encoder, respectively.
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Chapter 3

Methods

. 3.1 Problem definition

Our main objective is to develop an effective approach for segmenting satellite imagery
using a limited number of accessible images and a smaller number of expert-provided
annotations. The segmentation task involves assigning a specific label to each pixel in
the image, effectively partitioning the image into distinct regions based on their semantic
or visual characteristics.

To achieve this objective, we will employ the U-Net architecture, which has been proven
to be effective for image segmentation [37]. The U-Net architecture will serve as the core
model for evaluating the proposed algorithms. We will use the plain accuracy and average
“intersection over union” (IoU) metrics to evaluate the quality of the segmentation. The
IoU measures the overlap between the predicted segmentation and the ground truth
segmentation, i.e.:

area of intersection
area of union
where the area of intersection corresponds to the area where the model predicts the
given class and the class is in the ground truth segmentation. The union area is then
composed of an area where either model predicts the class or the class is in the ground
truth segmentation (or both). This can be rephrased to binary classification terminology
as:

ToU =

B TP

- TP +FP+FN’

where the TP is true positive, FP is false positive and FN is false negative. The average IoU
is then the simple average of the class IoU over all classes.

ToU

To evaluate our methods and ensure reproducible experiments, we will utilize the
CityScape dataset [|6] as a benchmark. The CityScape dataset is almost publicly available,
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with a fee-less registration required to access. Although the dataset primarily consists
of urban street scenes, we believe that the complexity of segmentation in this dataset
is comparable to, or even higher than, the challenges encountered in land-coverage
segmentation of forests.

By leveraging the CityScape dataset and employing the U-Net architecture, we can thor-
oughly evaluate our methods and provide meaningful results that others can replicate
and validate.

The U-Net is a feed-forward convolutional neural network (FF CNN), and its ar-
chitecture consists of an encoder and a decoder part, which work together for image
segmentation tasks. (We would like to point out to the reader that in this context, the
“encoder” and “decoder” are not referring to the VAE networks but to the structure of
the U-Net architecture):

® Encoder: The encoder part of U-Net is responsible for downscaling the spatial
resolution of the input image while increasing its channel capacity. This is achieved
through a series of convolutional blocks and downsampling. Each block typically
consists of one or more convolutional layers, followed by non-linear activation
functions (such as ReLU) and batch normalization. The encoder acts as a feature
extractor for image classification tasks.

® Decoder: The decoder part of U-Net is connected to the encoder and performs the
opposite operation of the encoder. It upscales the feature maps while reducing the
number of channels. This is done through a series of upsampling and convolutional
blocks. Like the encoder, each block consists of convolutional layers, activation
functions, and batch normalization.

® Skip Connections: U-Net incorporates skip connections between the encoder and
decoder. These connections allow information from the encoder to be directly
propagated to the corresponding decoder block at the same spatial resolution. By
sharing this information, U-Net helps to preserve spatial details and enables more
precise segmentation.

® Convolutional Blocks: The convolutional blocks in U-Net typically consist of con-
volutional layers, activation functions, and batch normalization. The number of
convolutional layers in each block can vary but is usually up to 2 or 3. These blocks
are responsible for learning and extracting features from the input data. Their
parameters are typically chosen such that they retain the spatial resolution

® Spatial Resolution: U-Net can maintain the spatial resolution of the input or perform
downsampling and upsampling operations at specific layers, depending on the
chosen parameters. This flexibility allows U-Net to capture both local and global
information.

Overall, the U-Net architecture is designed to effectively capture contextual information

32



3.2. Mixmatch adaptation

and spatial details for image segmentation tasks. It has been widely used and has shown
promising results in various applications.

B 3.2 Mixmatch adaptation

The current implementation of the MixMatch algorithm is limited as it only allows for
augmentations that do not alter the labels of given features. However, this limitation poses
a problem for image segmentation tasks because most commonly used augmentations
apply spatial transformations that affect image segmentations. To address this issue,
we propose an extension of the MixMatch algorithm specifically designed for image
segmentation tasks.

Our approach involves adapting the data augmentation and proxy-labeling procedure
to allow for augmentations that modify the corresponding segmentation masks. Specifi-
cally, we suggest using affine transformations for the data augmentations, as they are
easily invertible and widely applicable.

To combine predictions across multiple views of an image, we align the predictions
with the original image by applying the inverse augmentation and then apply the original
augmentation to assign the averaged predictions to each view. However, it is important
to note that care must be taken while averaging because a part of the original image may
be cropped while keeping the spatial dimensions. Thus, the segmentation prediction is
only valid on the uncropped region of the image.

Finally, the MixUp procedure requires adaptation to ensure that cropped images are
correctly mixed without propagating the empty parts further down the stream while
keeping the output of MixMatch (x’, p) closer to the first argument (x!, p!).

The proposed changes have been incorporated into algorithm [4/and are commented
on there. In MixUp, we ensure that the cropped-out parts of the images are suppressed
so that they do not influence the MixUp process. Additionally, we aim to keep the output
image closer to the first argument. The modified MixUp procedure is as follows:

A ~ Beta(a, a)
N =max(\,1—\)
N N if x ; and x7 ; are valid (31)
"7 |1 ifx];isnot valid or x7 ; is not valid
X =XNox'+1-XN)ox?
pP=XNop'+1-X)op’.
Here, © represents element-wise multiplication, and the upper index is used for indexing.
The alternation of X’ ignores the invalid parts of the second input and retains the original
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Algorithm 4 MixMatch adapted for segmentation

1: Input: Batch of labeled examples and their segmentation masks X = ((x;, pi); @ €
(1,...,n)), batch of unlabeled examples U = (u;;¢ € (1,...,n)), sharpening temper-
ature 7', number of augmentations K, Beta distribution parameter « for MixUp.

2: fori=1tondo

3: X, p; = Augment(x;, p;) > We apply augmentation both to x; and p;
4: fork =1to K do

5: u;;, = Augment, (u;)

6: (_li,k: = pmodel(y‘ai,k; 0)

7 end for

8: q; , = Inverse Augment, (q; ;) > Align prediction with original image
9:

aQ =% Sy Q;
10: q; = Sharpen(q;,T")
11: fork=1to K do

12: q;r = Augment, (q;) > Rematch the average prediction to augmented image
13: end for
14: end for

15: X* = ((x4,pi);i € (1,...,n))

16: U* = ((Wp,qik);t € (1,...,n),ke(1,...,K))

17: W = Shuffle(Concat(X™*, U*))

18: X' = MixUp(x;, w;);i € (1,...,]X*])) > Apply MixUp described in 3.1
19: U’ = (MixUp (1, Wiy x+|);i € (1,...,[U*]))

20: return X', U’

picture with its invalid parts. This modification aims to keep the output of the MixMatch
procedure close to the input, as we have inputs of uneven quality, i.e., labeled and
unlabeled data.

B 33 Symetric learning for HVAE

We implement a hierarchical variational autoencoder (HVAE) that aims to provide a
segmentation s for a given image x and reconstruct the image if a ground truth segmen-
tation is provided. In our scenario, we only have access to samples from the unknown
underlying distribution of images and segmentations, denoted as x,s ~ 7(x,s).

The hierarchical VAE consists of M + 1 layers of latent space:
z = (20,21,...,2m), 2o=(s,1),2zn=x

Here, z,, corresponds to the image, and z is the composition of the segmentation s and
the latent code 1, which follows a uniform prior distribution. The latent code is expected
to encode global information in the image (e.g., weather, texture), while the segmentation
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provides local information (e.g., road shape, surrounding types, pedestrians, cars, etc.).
The hierarchical model consists of an encoder and a decoder with a common factorization:

po(x, z) = pa(2o H po(zt | z<t)]po(x | 2)

M
4p(x, 2) = (@) qp(20 | ) [[ 09(2¢ | 2<t, )
t=1
Both the encoder g4 and decoder pg have a U-Net-like architecture. Since the U-Net is a
feedforward network, sampling from the decoder is tractable, and we can construct the
HVAE. The conditional models in the HVAE belong to different distributions within the
exponential family, depending on the specific case. The hidden layers zi, ..., z,_1, as
well as the latent code 1, are modeled using a Bernoulli distribution. For the image and
segmentation, we utilize Gaussian and categorical distributions, respectively.

We utilize the U-net architecture’s standard building blocks, consisting of convolutional
layers and rescaling layers. These blocks are applied up to the last (first) layer of the
encoder (decoder), due to the zy choice. We wish the segmentations s to contain the
local information corresponding to its spatial position and the latent code 1 to contain
global information at the same time. To achieve this, we adapt the architecture of the last
block of both the encoder and decoder:

® Thelastblock of the encoder in our architecture comprises a shared core network, which
is common to both the segmentation and latent code branches. Following the core
network, there are two independent heads (networks) with separate parameters,
each tailored to produce the desired outputs.

The network architectures for heads and core networks follow the standard convo-
lutional block structure. In the segmentation head, the final layer is a convolutional
layer with output channels corresponding to the number of classes in the segmenta-
tion task. This layer generates the segmentation predictions.

On the other hand, the latent code head concludes with an adaptive average pooling
layer. This layer reduces the spatial dimensions of the output to 1, resulting in a
compact latent code representation that captures global information.

® The first block of the decoder is composed of a single convolutional block. Initially,
we replicate the latent code activations in the spatial dimension to match the seg-
mentation’s spatial dimensions. Next, we concatenate the replicated latent code and
the segmentations along the channel dimension, creating a compact block, which
serves as the input to the aforementioned convolutional block in the decoder.

By replicating the latent code in the spatial dimension and combining it with the
segmentations, we ensure that the latent code 1 possesses complete information
about the image and has a global influence.

The overall architecture of both the encoder and decoder is inspired by the U-net
architecture, incorporating skip connections. The architecture exhibits a "symmetry"
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between the encoder and decoder, defined as follows: a skip connection exists from z; to
z; in the decoder if and only if there is a skip connection from z; to z; in the encoder.

This architecture is our choice. In fact, HVAE permits any set of skip connections
between the z layers for the decoder, as long as a topological ordering exists for such a set.
In other words, the corresponding directed graph formed by the m nodes representing
layers z1, ..., z,, should be acyclic. Moreover, it is worth noting that the encoder and
decoder architectures are independent of each other up to the fact that the encoder
should supply the appropriate activations to the decoder layers, following the LVAE
paradigm.

In the case of semi-supervised learning, the HVAE is trained using block-wise maxi-
mization of the following objective functions:

Ep(av ¢) = ETI’(X,S) qu’¢(z>0,l|x,s) [logpﬂ (Xv Z)] + ]Eﬂ(x) Eq9,¢(z|x) [logpg (Xa Z)] (32)
Eq(07 ¢) = ETI’(X,S) Dog Q¢(S | X)] + ]Err(s) IE’p(l) ]Epg(x,z>o|z0) [IOg QH,¢(Z>O‘X)] (33)

Here, 7(x, s) represents the underlying distribution with marginals 7(x) and 7 (s). The
distribution p(1) is a uniform prior distribution for the latent code (model choice). The
first terms in both objectives correspond to supervised learning, while the second terms
correspond to unsupervised learning.

During training, we sample from the corresponding distributions and compute the
stochastic gradient as in the standard VAE framework. The samples from 7(x, s) and
7(x) are provided in the labeled dataset D; and unlabeled dataset D,,, respectively. If
there is available segmentation information, we can incorporate it in the unsupervised
learning term of the encoder. In our case, we have access to segmentation information.
However, it is often not available in practice, requiring the introduction of the model
distribution p(s) from which we can sample.

In the case of unsupervised learning, we drop the terms corresponding to supervised
learning from eq. 3.2|and eq. 3.3
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Chapter 4

Experiments & Results

B 4.1 Mixmatch experiments

As the original implementation of MixMatch is written in TensorFlow we have re-
implemented it in PyTorch. To verify the correctness of our implementation, we have
run tests on CIFAR10 [22]] and compared our results with those reported in [_2]] and
[51]]. The comparison is shown in table 4.1. For details of reported results, see respective
papers. The specific hyperparameters of all experiments are provided with the code and
are available. We will not report any of them here.

Labels [#] 250 500 1000 2000 4000 All
Our code 88.45 89.58 91.83 93.03 93.50 93.54
Reported | 88.92+0.87 | 90.35+0.94 | 92.25+0.32 | 92.97+0.15 | 93.76 £ 0.06 | 94.27
Baseline 38.42 45.77 50.42 60.21 79.57

Table 4.1: Mixmatch accuracy rate (%) on CIFAR10 dataset. Labels row corresponds to a
number of labeled points available during training. The last column ("All") corresponds to
fully-supervised mode performance on the whole dataset (50k images). We additionally
provide the baseline row, which contains the result of supervised training on a given number
of images (Our code). Our results are based only on one run

We have conducted another experiment on CityScape dataset. The classes and labelling
policy of the CityScape dataset are well described in [|6]] and on their website. In our
setting, we want to predict only seven valid classes and one void class corresponding
to the CityScape “categories”. The prediction on the void class is ignored during the
training and evaluation. In tab. 4.2, we report the plain accuracy for the MixMatch and
supervised baseline and in tab. 4.3, we provide the average IoU metric. The MixMatch
hyperparameters were found with the help of Optuna framework [1]]. The applied

37



4. Experiments & Results

augmentation is a simple combination of padding, crop and horizontal flip as in original
paper [2], even though the framework can use any affine transformations. The original
images are rescaled to the 256 x 512 size. We provide a few images for visualization in
fig. 4.1 and fig. 4.2, MixMatch tends to "regularize and smooth" the predictions. However,
this can be a disadvantage for unbalanced datasets like CityScapes, as the network may
ignore classes with a small representation ratio.

Labels [#] 10 100 500 | 1000 | Al
Mixmatch | 84.53 | 90.76 | 93.42 | 94.32 | 94.84
Supervised 76.85 | 87.59 | 93.50 | 94.71 | 95.58

Table 4.2: Mixmatch accuracy rate (%) on CityScape dataset compared to the supervised
baseline. The "Labels" row indicates the number of labeled points available for training
across eight class categories. The last column ("All") represents the performance of the
fully-supervised mode on the entire dataset consisting of 2975 images. In this case, the
MixMatch algorithm utilizes the entire training dataset for labeled and unlabeled data. Our
results are based only on one run.

We can see that the MixMatch improve the results for the small amount of data and
can produce comparable results to the supervised baseline for more images available.
However, it has been observed that the best results achieved were obtained during the
early stage of training for low A, parameter (which is linearly ramped up). This means
that the unsupervised loss term £;; worsens the learning. As its primary role is to
regularize the model, we believe that the worsening effect is mainly caused by the fact
that the model is not yet fully trained on labeled dataset X'. This could also fit well
with better accuracy for the small size of X" as the model has enough capacity to obtain
100% training accuracy. As the MixMatch is a complex model, it is hard to determine
which component was most significant in this task. The paper does provide an ablation
study [2]]. However, I was not able to conduct a similar study for this experiment due to
the limited time available. We would also like to note that the supervised experiment
utilized the same augmentation as the MixMatch (on the labeled dataset only) and that
even a small number of images contain much information, which can be distilled by
the network (contrary to the classification task) since we use the convolutional neural
network (CNN).

Labels [#] 10 100 500 1000 All
Mixmatch | 48.10 | 61.98 | 69.24 | 71.97 | 73.08
Supervised | 41.78 | 54.38 | 68.25 | 71.93 | 73.84

Table 4.3: Mixmatch average IoU (%) on CityScape dataset compared to the supervised
baseline. The "Labels" row indicates the number of labeled points available for training across
8 class categories. The last column ("All") represents the performance of the fully-supervised
mode on the entire dataset consisting of 2975 images. The MixMatch algorithm utilizes the
entire training dataset for both labeled and unlabeled data in this case. Our results are based
only on one run.
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4.2. Symmetric learning for HVAE

Figure 4.1: Evaluation of MixMatch and supervised baseline on CityScape for eight classes.
Models were trained on ten images. The figure contains 12 examples stacked into two
blocks, each containing four rows. The first two rows contain the image and its ground truth
segmentation. The MixMatch predictions are shown in the third row, while the supervised
baseline predictions are in the fourth.

The colors used in the segmentation are as follows: flat (purple), human (red), vehicle (dark
blue), construction (dark grey), object (light gray), nature (green), sky (light blue), and
void (black). The predictions on the "void" class are not penalized nor evaluated.

B a2 Symmetric learning for HVAE

In our experiment on the CityScape dataset, we adopt the following approach. We divide
the available dataset, which consists of images and their corresponding segmentations
into three distinct datasets:

m Labeled dataset D;: This dataset is a subset of the available dataset and contains
both the images and their corresponding segmentations.

® Unlabeled dataset D): This dataset includes the remaining images from the available
dataset that were not included in the labeled dataset.

® Unlabeled dataset D2: This dataset comprises the remaining segmentations from
the available dataset that were not included in the labeled dataset.
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4. Experiments & Results

Figure 4.2: Evaluation of MixMatch and supervised baseline on CityScape for eight classes.
Models were trained on all available images. See the caption of fig. 4.1/ for the legend.

We do not discard the segmentations in our scenario, unlike the MixMatch experiments.
Instead, we utilize the segmentations as described in Section 3.3, The achieved accuracy
for the symmetric learning of HVAE is provided in tab. When comparing the HVAE's
accuracies with the supervised baseline from tab. it is important to note that the
HVAE’s encoder architecture is not the same as the supervised baseline’s. Specifically,
they differ in the number of channels in their respective layers. Also, contrary to the
baseline, the HVAE does not include batch normalization (BN) layers. This BN absence
arises from the experimental observation that batch normalization is unsuitable for the
HVAE. Figure 4.3 presents the cherrypicked visualizations of HVAE segmentations and
reconstructed images. The decoder demonstrates the ability to distinguish the brightness
and shapes of objects. However, it lacks the capability to reconstruct the colors of the
original images.

Labels [#] | 10 | 100 | 500 | 1000 | All
HVAE | 72.33 | 85.42 | 89.77 | 89.77 | 93.01

Table 4.4: HVAE accuracy rate (%) on CityScape dataset for epoch 180. The "Labels" row
indicates the number of labeled points available for training across eight class categories,
e.i. size of the dataset D;. The last column ("All") represents the performance of the fully-
supervised mode on the entire dataset consisting of 2975 images

40



4.2. Symmetric learning for HVAE

Figure 4.3: The cherrypicked reconstructions and segmentations of HVAE on CityScape for
eight classes. The first row contains the original image. The second row is filled with the
reconstructed images from encoding the original image into z¢ and decoding. The third and
fourth rows contain model and ground truth segmentation, respectively. See the caption of
fig.4.1/for the segmentation legend.

B Known issues

During our experiments with symmetric learning on HVAE, we encountered a number
of issues. Specifically, we observed that when the latent variables z had nontrivial spatial
dimensions, the generated images often lacked global spatial coherence. Instead, they
consisted of multiple locally coherent patches that failed to accurately represent the
target images. This issue is visualized in Figure However, we found that the problem
of global coherence could be mitigated by introducing global skip connections, similar
to those used in the U-Net architecture. This observation is supported by the absence of
such patches in the reconstructed images shown in Figure

Additionally, we have encountered issues related to the decoder blocks situated be-
tween the layers, i.e. neural networks predicting the natural parameters:

1 = NeuralNetg(Pa(z<¢))
po(z¢ | z<t) = po(z: | M) = po(z: | NeuralNetg(Pa(z:)))
We have observed that the decoder blocks need to be deep enough and simultaneously
incorporate simple local skip connections (similar to those used in ResNet architectures)
to be able to learn meaningful representations. Specifically, if we introduce too shal-

low networks into first blocks of decoder, the decoder can not provide any reasonable
reconstruction and outputs only the constant noise.
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4. Experiments & Results

Figure 4.4: CIFAR10 experiments for HVAE. The first and third rows contain the original
images. The second and fourth rows contain the reconstructed images. The model used for
the second row has latent variables z with a nontrivial spatial dimension. We can see that the
reconstructed images for this model contain blobs. The spatial resolution in latent variables
prohibits the decoder from learning the overall image., This results in a significant drop
in encoder accuracy and failure of the process. The model in the fourth row has (almost)
identical architecture but without latent variables with a spatial dimension. We can see that
the decoder is able to learn the overall image, which enables the encoder to classify correctly.
This positive feedback allows for the algorithm to be successful.
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Chapter b

Conclusion

Throughout this thesis, we have conducted a thorough investigation and comparison
of two fundamental approaches: MixMatch and the novel symmetrical equilibrium
learning algorithm within the context of segmentation tasks.

We acknowledge that our deviation from the original assignment, specifically the
absence of experiments conducted on the actual time series of multi-spectral satellite
data for the national park Bohemian Switzerland, may raise questions regarding the
validity and applicability of our findings to this specific task. However, we would like to
provide a comprehensive explanation for this decision and offer reasoning as to why our
experiments and obtained results remain valuable and relevant.

Instead of utilizing satellite imagery, we chose to work with the (almost) publicly
available CityScape dataset, which is widely used and established. This decision was
motivated by two factors: ensuring reproducibility and saving time. Although the
CityScape dataset primarily consists of urban street scenes, we believe that the complex-
ity of segmentation in this dataset is comparable to, or even higher than, the challenges
encountered in land-coverage segmentation of forests. Additionally, we consider the con-
volution process, whether in 2D or 3D, to be fundamentally similar from the perspective
of the network and training process. Therefore, we can extrapolate the results obtained
on the CityScape dataset to the task of land cover classification.

In light of these considerations, we focused on exploring and evaluating the effective-
ness of MixMatch and Symmetric Equilibrium Learning for VAE for the segmentation
task in general. We aimed to gain insights into their applicability and performance by
examining their advantages and shortcomings.

Our experiments with MixMatch have demonstrated its efficacy, especially in scenarios
where labeled data are scarce. The integration of consistency regularization and proxy-
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5. Conclusion

labeling methods in MixMatch have proven effective in leveraging unlabeled data to
enhance segmentation performance and promote visually coherent model predictions.

The experiments for symmetrical learning of HVAE have shown that a U-net-like archi-
tecture, with slight adaptations, can be employed for the segmentation task. Specifically,
including global skip connections is crucial in enabling the HVAE decoder to generate
consistent images. The current results do not outperform the best obtainable supervised
baseline, and although there is room for further improvement in the HVAE architecture,
the current results nevertheless serve as proof of concept.

The experiments have also raised questions that warrant further investigation to im-
prove the HVAE architecture. One such question pertains to the observed disregard of
color information in the decoded images. Understanding the underlying reasons for
this phenomenon and its relationship to the performance of the encoder and decoder is
essential to improve the overall performance of the HVAE model.
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