
Master Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Cybernetics

Real-Time Teleoperation of a Robot Arm
for Self-Contact

Bc. Adam Rojík

Supervisor: doc. Mgr. Matěj Hoffmann, Ph.D.
Supervisor–specialist: MSc. Jason Khoury
Study program: Cybernetics and Robotics
May 2023

ii

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

466026 Personal ID number: Rojík Adam Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Real-Time Teleoperation of a Robot Arm for Self-Contact

Master’s thesis title in Czech:

Teleoperace robotické ruky pro sebe-kontakt v reálném čase

Guidelines:

The mechanisms of how humans localize touch on their bodies are not fully understood. To increase understanding,
specific manipulations of tactile localization are needed. One possibility is to exploit self-contact when the human is sliding
over its skin surface, but insert a robot arm in the middle [CAT22]. However, state-of-the-art studies lack the ecological
conditions of free movement. A motion capture system (Qualisys) coupled with a teleoperated robotic manipulator [KIN3]
equipped with an artificial finger will bridge the gap and allow more freedom to study the influence of proprioception vs.
touch during self-touch by changing forward kinematics parameters [PAT12].
Instructions:
1. Familiarize yourself with the Kinova Gen3 robotic platform [KIN3], Kortex API [KOR] and Qualisys motion tracking system
[QUA].
2. Familiarize yourself with the psychological experiment procedures [CAT22].
3. Develop an interface for real-time control of the robot end effector position based on the arm joint positions and transform
it into position/speed commands. Optimize the robot’s control so it performs movement with the lowest possible lag.
4. Assess and ensure the safety of this application.
5. Set up a pilot tactile localization experiment and logging of the results.
6. Optionally, conduct and evaluate experiments (with your supervisors).
7. Optionally, create a graphical interface for running the experiments with human participants.

Bibliography / sources:

[1] [CAT22] Cataldo, A., Dupin, L., Dempsey-Jones, H., Gomi, H., & Haggard, P. (2022). Interplay of tactile and motor
information in constructing spatial self-perception. Current Biology, 32(6), 1301-1309.
[2] [PAT12] Patane, L., Sciutti, A., Berret, B., Squeri, V., Masia, L., Sandini, G., & Nori, F. (2012, June). Modeling kinematic
forward model adaptation by modular decomposition. In 2012 4th IEEE RAS & EMBS International Conference on
Biomedical Robotics and Biomechatronics (BioRob) (pp. 1252-1257). IEEE.
[3] [KIN3] Kinova gen3: https://www.kinovarobotics.com/product/gen3-robots
[4] [KOR] https://github.com/Kinovarobotics/kortex
[5] [QUA] Qualisys system - https://www.qualisys.com/cameras/, https://docs.qualisys.com/qtm-rt-protocol/

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Name and workplace of master’s thesis supervisor:

doc. Mgr. Matěj Hoffmann, Ph.D. Vision for Robotics and Autonomous Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

MSc. Jason Khoury Vision for Robotics and Autonomous Systems FEE

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 01.02.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
doc. Mgr. Matěj Hoffmann, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

Acknowledgements
First, I would like to thank my supervi-
sor Matěj Hoffmann for his unwavering
support and guidance throughout my the-
sis. He has provided me with an excellent
topic for the thesis and inspired me with
a passion for science. The years in the
laboratory have been an invaluable gift
that I will always cherish.

I am also very grateful to my super-
visor specialists and co-working psychol-
ogists, Jason Khoury, Valentin Marcel,
and Sergiu Tcaci Popescu. Working with
them was both enjoyable and educational.
Their expertise in the psychological as-
pects of this work and willingness to dis-
cuss technical difficulties greatly enriched
my understanding of the topic.

I am grateful to Krištof Pučejdl for
his instrumental role in designing and 3D
printing an elastic tool for the robot that
simulates self-touch on the participant’s
arm.

My thanks go to Zdeněk Hurák for his
key input on system control. His expert
advice was instrumental in improving sys-
tem performance and minimizing control
delays.

Lukáš Rustler deserves credit for his
critical role in accurately measuring the
robot’s forces and ensuring its safety, el-
ements that were vital to the project’s
success.

I want to extend my gratitude to the
laboratory team. Their camaraderie made
my work experience enjoyable and I’m
fortunate to have had the opportunity to
meet such incredible individuals.

I would be remiss not to acknowledge
the unwavering love and support of my
family. I am deeply thankful for their
sacrifices and for always being there to
cheer me on.

Finally, my sincerest thanks go to ev-
eryone who supported me throughout this
journey. Your collective contributions
have made this accomplishment possible.

Declaration
I declare that the presented work was de-
veloped independently and that I have
listed all sources of information used
within it in accordance with the methodi-
cal instructions for observing the ethical
principles in the preparation of university
theses.

Prohlašuji, že jsem předloženou práci
vypracoval samostatně a že jsem uvedl
veškeré použité informační zdroje v
souladu s Metodickým pokynem o do-
držování etických principů při přípravě
vysokoškolských závěrečných prací.

V Praze, 26. května 2023

v

Abstract
The mechanisms by which humans local-
ize touch on their bodies are not yet fully
understood. Specific manipulations of tac-
tile localization are needed to improve
understanding. One possibility is to ex-
ploit self-contact when humans slide over
their skin surface, but use a robotic arm
in the middle [1, 2]. However, current
state-of-the-art studies lack the ecological
conditions of free movement to investi-
gate the influence of proprioception ver-
sus touch during self-touch by changing
forward kinematic parameters [3]. This
gap can be bridged by using a motion
capture system in conjunction with a tele-
operated robotic manipulator equipped
with an artificial finger.

This thesis focuses on the technical part,
a real-time teleoperation task with the
additional transformation of a motor-to-
touch gain, with latency minimized to
levels indistinguishable for participants of
an experiment as timing is crucial in such
studies.

It further emphasizes safety and usabil-
ity, with thorough risk mitigation and the
creation of a simple to use graphical user
interface. The effectiveness of the tool was
verified through pilot experiments, vali-
dating its potential to advance research
in human sensory perception, which has
a potential impact on the fields of human-
robot interaction, prosthetic design, and
rehabilitation interventions.

Keywords: real-time teleoperation,
kinematics, self-contact, human-robot
interaction, tactile feedback, motion
capture, safety in robotics,
robot-mediated self-touch

Supervisor: doc. Mgr. Matěj Hoffmann,
Ph.D.

Abstrakt
Mechanismy, kterými lidé lokalizují dotek
na svém těle, nejsou dosud zcela objas-
něny. Jedním ze způsobů, jak prohloubit
naše chápání hmatové lokalizace, je za-
vést roboticky zprostředkovaný sebedotek
(tj. dotyk směrem k vlastnímu tělu), aby
se pohyby oddělily od jejich hmatových
důsledků [1, 2]. Dosavadní studie však
postrádají vhodné podmínky volného po-
hybu, aby bylo možné zkoumat vliv pro-
priocepce oproti dotyku při sebedotyku
při změně kinematických parametrů [3].
Tento nedostatek lze překlenout použitím
systému pro snímání pohybu ve spojení s
teleoperovaným robotickým manipuláto-
rem s umělým prstem.

Tato práce se zaměřuje na technickou
část, tedy úlohu teleoperace v reálném
čase s přidanou transformací mezi pohy-
bem a dotykem, s minimálním zpožděním
na úroveň nerozlišitelnou pro účastníky
experimentu, protože čas je v takových
studiích kritický.

V této práci je kladen důraz na bezpeč-
nost a použitelnost s důrazem na zmírně-
ním rizik a na vytvoření uživatelsky jedno-
duchého grafického uživatelského rozhraní.
Efektivita nástroje byla ověřena pilotními
experimenty, které potvrdily jeho poten-
ciál pro rozvoj výzkumu v oblasti lidského
smyslového vnímání, což má potenciální
dopad na oblasti interakce člověka s robo-
tem, navrhování protéz a na rehabilitační
intervence.

Klíčová slova: teleoperace v reálném
čase, kinematika, sebe-kontakt, interakce
člověk-robot, hmatová zpětná vazba,
snímání pohybu, bezpečnost v robotice,
dotyk sám sebe zprostředkovaný robotem

Překlad názvu: Teleoperace robotické
ruky pro sebe-kontakt v reálném čase

vi

Contents
Glossary 1
1 Introduction 3
1.1 Motivation . 3
1.2 Objectives . 4
2 Related work 5
2.1 Psychology behind the experiment 5
2.2 Teleoperation 6

2.2.1 History of teleoperation 7
2.2.2 Studies with similar

experimental setups 8
2.3 Inverse kinematics (IK) 9
2.4 Lag during user interaction 10
2.5 Safety . 11
2.6 Conclusion 11
3 Hardware, Setup and Software
Platforms 13
3.1 Hardware . 13

3.1.1 Cameras – Qualisys 3D Motion
Capture . 13

3.1.2 Robot – Kinova Gen3 with
Robotiq 2F-85 gripper 14

3.2 Setup of the experiments 15
3.2.1 First pilot setup 15
3.2.2 Final setup 16

3.3 Network . 17
3.4 Software . 18

3.4.1 Gathering data from cameras 18
3.4.2 Robot controller 20

4 Implementation 21
4.1 Introduction 21

4.1.1 Implementation strategy 21
4.1.2 Frameworks and Libraries . . . 22

4.2 Code, States and Configuration . 23
4.2.1 Code structure 23
4.2.2 States of the program 24
4.2.3 Configuration 26

4.3 Robot Control 27
4.3.1 Optimizing the robot control 27
4.3.2 Trajectory interpolation. 28
4.3.3 Low-level controller 31

4.4 Experimentation 32
4.4.1 Recording the experiments . . 32
4.4.2 Graphical user interface (GUI) 33
4.4.3 Safety considerations 34

4.5 Summary . 40

5 Assessment of the
implementation 43
5.1 Interface for real-time teleoperation

of the Kinova Gen3 robot 43
5.2 Latency of the whole control loop 44
5.3 Safety of the experiment 47
5.4 Graphical user interface usability 47
5.5 Evaluating the experiments 47
6 Conclusion 49
6.1 Accomplishments 49
6.2 Meeting the Objectives 49

6.2.1 Development of a Real-time
Interface for Teleoperation 50

6.2.2 Optimization of Robot’s
Control . 50

6.2.3 Assessment and Ensurance of
Application Safety 50

6.2.4 Conducting and Evaluating
Pilot Experiments 50

6.2.5 Creation of a Graphical
Interface for Experiments 50

6.2.6 Comparative Analysis with
Cataldo’s Study 50

7 Discussion 53
7.1 Limitations 53

7.1.1 Latency 53
7.1.2 Cameras frequency 53
7.1.3 Flexibility of the robot’s

end-effector tool 53
7.2 Future work 54

7.2.1 Replication of experiment by
Cataldo et al. 54

7.2.2 Following in 2D plane and 3D
space . 54

7.2.3 GUI for setting up the
experiment 54

7.2.4 Improving control and the
network delay 54

Bibliography 55

vii

Glossary

GUI graphical user interface. 15–17, 21–26, 32–34, 40, 42, 43, 47, 49, 54

IK inverse kinematics. 8, 9, 14, 27, 31, 36, 41

1

2

Chapter 1
Introduction

1.1 Motivation

The mechanisms by which humans localize touch on their bodies are not yet
fully understood. Specific manipulations of tactile localization are needed
to improve understanding. One possibility is to exploit self-contact when
humans slide over their skin surface, but use a robotic arm in the middle [1, 2].
However, current state-of-the-art studies lack the ecological conditions of free
movement to investigate the influence of proprioception versus touch during
self-touch by changing forward kinematic parameters [3]. This gap can be
bridged by using a motion capture system in conjunction with a teleoperated
robotic manipulator equipped with an artificial finger.

This work focuses on the technical part, a real-time teleoperation task
with the additional transformation of a motor-to-touch gain; for example,
a gain of 1.5 would mean that a movement of the arm by 1 cm causes the
robot to move 1.5 cm. In this context, minimizing the delay between the
participant’s movements and the robot manipulator’s responses is critical
so that they are virtually imperceptible. This principle is similar to the
rubber hand illusion [4], where the touch sensation on both hands must occur
simultaneously to produce a coherent experience. This synchronization leads
to a perception in which it feels as if the moving hand is the source of the
touch sensation from the other hand.

Applying the same concept should create a seamless and immersive tele-
operation experience where the user’s actions and the robot’s responses feel
like one continuous motion. Furthermore, it should be noted that humans
cannot perceive differences of less than 12.5 ms that appear to them as
synchronous [5].

The program developed as part of this thesis provides psychologists with a
valuable tool to study and gain knowledge about how people perceive and
interpret tactile information. Understanding how humans process touch can
foster the development of technologies and interventions to improve human-
robot interaction, prosthetic design, and rehabilitation approaches. This
research contributes to a deeper understanding of the human sensory system
and its applications in various fields.

3

1. Introduction
1.2 Objectives

The primary goals of this work were to provide a framework for the experi-
mental psychologists working in the team and other cognitive scientists to
conduct an experiment in which the robot acts as a proxy for the self-touch
behavior of the participant. Its functionality was subject to the following
constraints:. It is an interface for real-time teleoperation of a robot arm via feedback

from a motion capture system..The control of the robot is optimized so that the delay is not perceptible
to the participant.. Evaluation and assurance of the safety of the application..Optional execution and evaluation of the experiments with supervisors.. Optional creation of a graphical interface for the execution of the experi-
ments.

4

Chapter 2
Related work

2.1 Psychology behind the experiment

The basis of this work was to replicate the experimental paradigm that was
used in two experimental studies by Cataldo et al. [2, 1]. The studies aimed
to determine what most influences our spatial perception of the extent of a
touch, in this case specifically of a self-touch: the sensations of proprioception
(perception of the relative positions of one’s body parts) and extent of tactile
sensation or the extent of our motor actions. They used robot-mediated
self-touch to touch the participant’s left arm, as in Figure 2.1. This setup
is similar to natural self-touch, for example, when the right hand touched
the left arm, where the spatial coupling between movement and touch is
fixed, but decoupling of these movements is possible. Two conditions were
studied: passive and active. In the passive case, the researchers moved the
participant’s right hand, which controlled the robot; in the active case, the
participant moved it. These movements were in sync with the arm of the
robot to which a brush was attached; this brush touched the participant’s
left arm. The relationship between the the right arm’s movement and the
touch felt on the left arm was altered by introducing five motor-to-touch gain
conditions.

The participants were consistently and automatically affected by the other
signal in all conditions. The active movement has more influence on the
judgement of the touch extent and is more immune to external influence
in case of the movement extent than passive movement. Interestingly, the
precision of movement length evaluation seems worse in active compared to
passive condition. This suggests that when we move voluntarily, our brain
uses several signals to help us perceive the space around us.

In our daily experiences, we frequently adjust our handling of different tools
or pointing devices of various sizes and types without requiring extensive
experience. These adjustments, as exemplified by the findings of Cataldo’s
studies [2, 1], can influence our perception of the extent of touch and have a
notable impact on our spatial awareness. Patanè’s study [3] further comple-
ments this understanding by suggesting that humans manage the calculations
involved in forward kinematics, specifically the position and orientation of an
object based on joint angles and link lengths, by initially learning individual

5

2. Related work.....................................

Figure 2.1: The setup of the replicated experiment: (A) shows the leader robot
moved by the participants’ right hand while feeling a corresponding stroke on
the left forearm from a brush attached to the follower robot. A black screen
covered the participants’ arms and the robotic setup throughout the experiment.
(B) The physical extent of the right arm movement was controlled by the position
of two programmable “virtual walls” that defined unpredictable start and end
positions for each trial. The spatial relation between the extent of movement
and touch depended on the gain of the leader: follower robot coupling, which
was randomized across trials. From Cataldo [2].

modules, then subsequently adjusting the interrelationships among these
modules.

However, this process exhibits varying learning speeds. While the adjust-
ment of the parameters that orchestrate the interaction among the modules
is fast, the learning process for individual modules is slower. This could be
explained by the presence of intra-module adjustments in our day-to-day
activities, which come naturally and are quickly adapted to. On the contrary,
inter-module adjustments, which involve coordination between different mod-
ules, are harder to encounter naturally and hence take longer to master. This
aligns with Cataldo’s finding [2, 1] that active movements, or intra-module
adjustments, have more influence on our perception and are more resistant
to external influence than passive movements.

Moreover, DiMercurio [6] emphasizes the role of self-touch for infants as
a critical foundation for developing future behaviors. Given the importance
of self-touch and the primary groundwork for this thesis, it was crucial to
see how the robot’s end-effector could be moved in coordination with the
participant’s moving arm. The control of the robot is related to teleoperation,
described in the next section.

2.2 Teleoperation

This section is divided into two subsections, where the first focuses on the
history of teleoperation, and the other on studies with similar experimental

6

.................................... 2.2. Teleoperation

setups.

2.2.1 History of teleoperation

Teleoperation comes from the combination of two words, tele and operation.
Tele is a prefix from the Greek word “tēle,” that means “far off” or “at a
distance”, and in English it is used as a prefix to denote something related to
distance, remote communication, or transmission over a distance, such as in
words such as “television” [7]. The operation has its roots in the Latin word
“operātiō,” meaning “application of effort, functioning (of natural forces)” [8].
Here, it refers to controlling or manipulating a machine, system, or process.
Combined, it represents the act of remotely controlling or operating a machine,
system, or process from a distance.

Figure 2.2: The first modern master-slave pantograph made by Goertz at
Argonne National Laboratory, from [9].

The first modern master-slave teleoperated system came in the 1940s when
Goertz at Argonne National Laboratory made the first pantograph shown
in Figure 2.2. Later on, in 1954, they made the first electromechanical
manipulator with feedback servo control. Between 1965 and 1971, there was
the first attempt to build an exoskeleton by General Electric. Even though
it did not succeed, such developments eventually led to the creation of a
teleoperated robot arm for wheelchairs, controllable by tongue or other motor
signals. The next application was by the US Navy, where they built the
CURV, a vehicle to retrieve an accidentally dropped nuclear bomb from the
deep bottom of the ocean. In the 1970s, the Soviet’s LUNOCHOD project
explored instability problems in teleoperation with time delays. Later, devices
were built for oil and gas operations under the sea. [9]

This section was a brief introduction to the teleoperation field, which is
now expanding much faster. Thus, the next part aims to explore studies only
with a similar experimental setup.

7

2. Related work.....................................
2.2.2 Studies with similar experimental setups

A study by Chotiprayanakul [10] in 2009 explored using a sizeable remote robot
in hazardous environments with haptic-based force-feedback. Liarokapis [11]
in 2013 developed a human-to-Mitsubishi PA-10 robot motion mapping
scheme that guarantees anthropomorphism, the attribution of human-like
characteristics and behaviors to non-human entities, such as robots. However,
their published study does not go into much detail. A year later, Reddivari [12]
published an experiment where they controlled a Baxter robot using input
from Kinect, which is similar to the goal of this study. To control the robot,
they used Python rospy; however, they mention the appearance of lag in the
robot’s motion due to a nonexistent inverse kinematics solution given some
combination of the inputs.

In 2016, Maric [13] made RGBD palm tracking working at 125 FPS program
for Kinova Jaco 6DOF robot, where they controlled the robots end-effector
velocity at 100 Hz using high-level control in ROS provided by Kinova robotics.
Although the robot used in this work is Kinova, it cannot be controlled at
100 Hz, as it is a different robot arm with a different API.

Rakita [14] in 2017 used different controllers to control a robot arm in
real-time while relaxing constraints on the mapping between a user and the
robot’s arm. They used the literature for animation, as retargeting motion
between characters is a well-studied problem. In their study, they were able
to reliably measure the delay to be around 130 ms and 140 ms. Based on the
literature they reviewed, it was noted that latency does not become a factor
until it becomes much worse than the system’s performance. However, their
application may not have been as time-critical since their focus was relaxed
control for novice users.

In 2018 a study by Zhang [15] made a real-time whole-body task-oriented
imitation program with the robot Nao. They had to solve a quadratic pro-
gramming problem, on average taking 20 ms, with very fast inverse kinematics.
But they did not mention lag of the whole system. Similar study, focusing
more on the teleoperation and less on IK conducted by Prota [16] in 2022,
they controlled a Pepper robot in healthcare settings. The delays induced
by the control loop around 200 ms and for the visual feedback it was 100 ms.
However, since both studies mention different delays, they are not comparable.
For the first study, they did not mention it as a problem and for the latter,
they mention it did not cause any problems during the experiments.

Gutzeit [17] had a similar setup to the one used in this work. They used
motion capture system to track arm movements and transform those into
robot motion by having three markers on the hand in triangular shape, one on
the elbow, one on shoulder and three markers on the back as synchronization.
The arm was representing the end-effector. However, their main focus was
segmenting the movements into a block, where the participant would create
the blocks using imitation learning, then motion plan refinement and creating
a template from it, thus it was not real-time operation.

Qualisis was also utilized in a study by Sandoval [18], where they created
a robot-assisted camera stand during surgery in combination with a Franka

8

................................ 2.3. Inverse kinematics (IK)

robot controlled at 1 kHz using torque control, controlled via input from the
motion capture system at 100 Hz, which is lower than the robot’s control
frequency. They do not mention the safety of such application, but the robot
joints were roughly within ±10◦ during the whole experiment.

In addition, Darvish [19] conducted a teleoperation survey, in which they
made studies comparable by joint-level control, torque, or position, which
may help select the appropriate controls and parameters of the setup. For
example, most studies used the joint position when comparing the joint-level
control. They also mentioned the variety of teleoperation applications, such
as telepresence, teleoperation in hazardous environments, manufacturing &
research, telenursing, space applications, and service robotics. However, none
of the studies addressed the safety of the application, primarily because
there was no direct contact between humans and robots, or the motion was
somewhat limited. Another part of a study by Darvish [19] summarizes the
findings on latency. Low latency can lead to strong telepresence, also known
as tele-embodiment, which is one of the goals of this work. In the studies in
this section, the delay averaged about 100 ms. In some studies, the source
of the delay was divided into the control delay and the delay of the sensors,
such as cameras. The primary source of control delay usually results from
the computation of the inverse kinematics, which is highly dependent on the
computational speed.

2.3 Inverse kinematics (IK)

The robot’s goal position is in Cartesian coordinates. However, the robot is
controlled by joint angles, thus there is a need to convert the goal position
to robot’s joint angles. The process of calculating them is called inverse
kinematics. The robot has two groups of control modes that deal with it,
high-level and low-level control modes. When controlling a robot in high-level
control mode, the robot calculates IK by itself at 40 Hz and the calculation
takes place inside the robot. Therefore, any delay affects only the goal
position, but not the joint angles, which is better from the safety perspective.
However, when faster 1 ms low-level joint control is activated, it no longer
uses the robot’s end-effector position as a goal. Instead, the robot uses joint
angles, leading the robots end-effector to the desired position, which have
to be calculated. It is necessary to look at current studies that solve the IK
problem.

In 2019, Carpentier [20] made a whole framework, Pinocchio, where they
achieved very fast, 1 µs-10 µs computation speed by unrolling most of the
calculations during the build of the program. For the computation itself,
they used the recursive Newton method. The laptop they used for the speed
measurement was equipped with an Intel Core i7 CPU @ 2.4 GHz.

Lloyd [21] in 2022 used a novel approach to solving IK using Halley’s
Method. In the study, they compared their method with open-source Orocos
Kinematics and Dynamics Library (KDL), which is arguably the most popular
library used in ROS libraries, ML-BFGS and ML-LMA, which are part

9

2. Related work.....................................
of Mathworks’ Matlab Robotics Toolbox and outperformed all of them in
robustness and speed. This novel approach is slower when compared to
Pinocchio, 50 µs-100 µs, on faster Intel Core i9 CPU @ 2.3 GHz- However,
since Pinocchio uses the Newton method as in KDL-NR, which was less robust
closer to singularities, it is likely the same for Pinocchio library. Furthermore,
the computation speed is below 1 ms, making it sufficient as the robot cannot
be controlled any faster.

Given the safety perspective, it makes sense to see what kind of delay is
acceptable during a user interaction scenario and if it is possible to utilize
high-level control.

2.4 Lag during user interaction

Most of these works were described in Section 2.2, but their main focus
was on teleoperation. The quality of interaction with a participant during
the experiment is strongly influenced by the delay of the robot during the
interaction, as in the case of the rubber hand illusion [4], where synchrony
between the touch felt by both arms is required to produce coherent experience.
In the replicated study [2], the delay was approximately 2.5 ms.

A study by Jay [22] showed that participants only detect time latencies of
25 ms or longer when haptic feedback is involved. A greater delay in haptic
feedback resulted in a greater performance degradation than with visual
feedback. Moreover, the more difficult the task, the greater the impairment
due to latency.

In a later study by Kaaresoja [23], in which they tested touchscreen display
delay, they found that the delay acted as if the button had a weight - the
lower the delay, the lower the weight. The consequences of having a delay
can have unprecedented effects, thus for unbiased study, the delay must be
negligible.

In a study by Kuroki [5], they tested people’s ability to distinguish touch
sensations that were 12.5 ms apart, and found that they were correct only
75 % of the time.

In applications such as the tactile internet studied by Junior [24], the
maximum delay ranges from 1 ms to 10 ms, depending on the requirements of
the application.

As described in a survey by Darvish [19], low latency can lead to strong
telepresence, as mentioned in Section 2.2 on teleoperation. This leads to a
conclusion, that consequences of can be unprecedented and the smaller the
delay the better, but it heavily depends on the application. Since the robot
in high-level control mode contains 25 ms control delay and the study by
Jay [22] mentions it as a treshold, it is a good target to aim at. However, the
newer studies mention smaller delays up to detectable 12.5 ms or even lower
for the tactile internet.

The following essential aspect is safety.

10

....................................... 2.5. Safety

2.5 Safety

Safety is a critical aspect of human-robot interaction, especially in applica-
tions where the robot is in close proximity to humans or interacts directly
with them. Ensuring the safety of both the human user and the robot is
paramount. Haddadin and Croft [25] discuss cooperative proximate human-
robot interaction and emphasize the importance of considering the worst-case
scenarios in the design process. In particular, they highlight the distinction
between constrained impact or clamping and unconstrained design, with the
latter being preferable for safety reasons.

To accurately measure the forces exerted by the robot and ensure safe
interaction, it is necessary to have a model of the robot and measure external
forces. International Organization for Standardization (ISO) has developed
standards to guide the design and operation of robots with respect to safety.
ISO 10218 focuses on identifying hazards and managing risks [26, 27], while
ISO/TS 15066 provides complementary guidelines for designing collaborative
robot systems, including maximum limits on tissue pressure to ensure human
safety [28].

One approach to enhancing safety in human-robot interaction is through
lightweight design, which results in lower inertia, which is the case for the
robot used. This design philosophy minimizes the potential damage caused by
the robot in case of unintended contact or collisions with humans. The reduced
inertia allows for quick stops and changes in direction, further enhancing the
safety of interactions.

However, the robot alone is unsafe and the application must be considered.
Furthermore, if the robot is considered collaborative, it provides safety guar-
antees. However, it is not the case for the used robot here. One possible
measure is using a passive skin on the robot, working as a cushion or active
skin detecting the touch and acting on it [29]. Next is the end-effector’s
position, where the position affects the robot’s applied forces [30].

Thus during the robot design, it is essential to consider possible hazards
and eliminate them as much as possible during the design phase.

2.6 Conclusion

Various presented studies from different fields lead to the importance of low
latency for strong telepresence and the impact of it on user interaction. In
conclusion, the choice of control mode, as described in Section 4.3.1, for the
robot will need to be carefully considered, balancing safety and speed. The
first proposed goal is to use high-level control, as it is safer by design and its
control delay is 25 ms, which was a threshold of detectable delay in study by
Jay [22]. Low-level control is faster but does not retain many safety features;
thus, it is the subject of testing. The hardware used determines those limits
and is given as a constraint. It is described in the next chapter.

11

12

Chapter 3
Hardware, Setup and Software Platforms

This chapter describes the hardware, the experiment setups and the software
platforms used, with their interaction over a local network.

3.1 Hardware

This section focuses on the cameras, the robot and the laptops used.

3.1.1 Cameras – Qualisys 3D Motion Capture

The cameras used are part of the Qualisys 3D Motion Capture system. The
system includes 8x Miqus M3 with resolution 2 MP (1824x1088) and a capture
rate of 340 Hz in full resolution, which was used, and 650 Hz in reduced 0.5 MP
resolution. Additionally, a Miqus video camera with a resolution of 2 MP
(1920 x 1080) and a capture rate of 85 Hz, or 1 MP and 180 Hz in reduced
resolution was included, but not used for the experiments. The faster modes
with reduced resolution come at the price of detection accuracy, which was
the reason for not selecting them.

The camera setup in the laboratory room can be seen in Figure 3.1. The
cameras are positioned around the room to capture a full view of the space.

Figure 3.1: 8x Miqus M3 cameras in the laboratory room.

The data captured by the cameras were processed using a Dell Latitude
7490 laptop running Windows 10 Pro. This computer was equipped with an
i7-8650U CPU running at 1.9 GHz and 16 GB RAM. Two Ethernet ports are
needed to connect the cameras and a local network. The second Ethernet port
was not available on the laptop; alternatively, it was provided via a docking
station that powers it. The software controlling the cameras, Qualisys Track
Manager, is described in Section 3.4.1. The software mainly calculates 3D

13

3. Hardware, Setup and Software Platforms.........................
positions of motion capture markers and streams the positions to another
laptop controlling the robot.

3.1.2 Robot – Kinova Gen3 with Robotiq 2F-85 gripper

In addition to the cameras, a Kinova Gen3 robot with a Robotiq 2F-85 two-
finger gripper was utilized as in Figure 3.2. The robot was controlled through
another laptop, MacBook Pro 16 inch, 2019, with an i9 CPU running at
2.3 GHz and 16 GB RAM. This laptop was running MacOS Ventura. The main
focus of this work, software controlling the robot, described in Section 4.1.2,
was running inside a docker container on this machine.

Figure 3.2: Kinova Gen3 robot in the laboratory.

The Kinova Gen3 robotic platform is commonly used in research and
education as it is ultralightweight and built for human-robot interaction [31].
Its Kortex API includes high-level control containing a solver for inverse
kinematics, taking care of additional safety, such as limiting the velocity of
the end effector. It also includes a low-level controller, which does not have
those features. The control modes are described in Section 4.3.1.

The following section will explain how these devices worked together during
the experiments.

14

............................... 3.2. Setup of the experiments

3.2 Setup of the experiments

There were two pilot experiments. The first pilot experiment took place in
March, while the final experiment was conducted in May (video). The final
experiment was different from the first, as some problems had been discovered
in the first experiment. The source code used for both experiments is marked
with the appropriate date as a tag [32]. There was an additional experiment
in March, but only minor changes were made.

3.2.1 First pilot setup

The first pilot experiment is shown in Figure 3.3. As described before, the
robot’s purpose was to slide over the participant’s left arm according to the
movements of the participant’s right arm, which controlled the robot motion.
During this first experiment, the participant was supposed to move his arm
by a distance represented by a line on a screen. The gain applied to the
robot’s movements between each trial varied.

On the right arm, there were three markers during the pilot experiment
and two additional markers on the robot. A calibration triangle with four
markers was used as a fixed point in the corner of the table. The Qualisys
Track Manager captured those points, as described in Section 3.4.1. The line
was displayed by an additional laptop, since no graphical user interface (GUI)
was implemented on the laptop that controls the robot. Thus, the experiment
required two operators synchronizing the two laptops for the participant,
marking start and stop of each trial, while the participant was only moving
their hand.

Figure 3.3: The first pilot experiment setup, where the robot slides over the
participant’s left arm according to the movements of the right arm. There are
three Qualisys markers on the right arm, two on the robot, and four on the
calibration triangle.

The synchronization of those computers was very focus-intensive for the

15

https://youtu.be/R7eFBe2cnUw

3. Hardware, Setup and Software Platforms.........................
operators when running the experiment. Furthermore, this experiment was
evaluated on internal personnel only as a way to check the basics of the setup;
it’s functionality was limited. The final setup reflected those points and is
described in the following subsection.

3.2.2 Final setup

During the final setup, the participants were seated in front of a 65 inch
Samsung television screen with their right arm on a sponge to support the
arm and their left arm placed in an articulated arm support Ergorest, series
330 011, Finland [33] held a Bluetooth mouse as in Figure 3.4a. As a remark,
the arms are now flipped in comparison to the previous setup, limiting the
shared workspace between the participant and the robot. The right arm was
the touched one, while the left arm was the moving arm. It also differed in the
task. The participants freely moved their arm, given only basic instructions,
such as going further than in the previous trial. Subsequently, they estimated
the length of the movement of the left arm or the length of the touch on
the right arm, represented by a line on a screen that they controlled by
pressing pedals placed under their feet (Figure 3.5). The pedals were made
from keypads, where all keys except one were removed, a cushion was added
acting as a spring and all covered by a cut in half sponge. The GUI was now
running in the robot controller program, thus it required no input from the
experimenter during the trials.

Moreover, the participant’s direction was no longer perpendicular to the
table as shown in Figure 3.3 and Figure 3.4, to prevent an accidental collision
with the robot by minimizing the shared workspace with the robot and
farther from the participant’s head. More about the safety is provided in
Section 4.4.3.

(a) (b)

Figure 3.4: Final experiment setups. (a) Robot slides over participant’s right
arm mimicking the movements of the left arm. Markers on arm, robot, and table
captured by Qualisys Track Manager. Arm support table houses a mouse. (b)
Robot touching participant’s arm, participant wears noise-canceling headphones
and tunnel-vision blinders.

During the trials, participant wore noise-canceling headphones with a white

16

.......................................3.3. Network

noise on and tunneling-vision blinders limiting the participants’ field of view
to the screen and concealed the robotic setup and their arms (Figure 3.4b).
The tunneling-vision blinders were hand made from bottles, tape, spring and
a piece of fabric made by Jason Khoury.

(a) (b)

Figure 3.5: Final experiment setups. (a) Pedals used as controllers to judge
moved distance by the participants. (b) The pedal underneath the cut in half
sponge is a keypad with removed buttons except one.

The robot provided tactile stimulation on the right arm congruent with
the hand movement of the left arm thus emulating self-touch, as if the left
hand was touching the right arm. There were three markers on the robot and
four on the participant’s hand, where the extra marker was to measure the
arm’s length. The triangle on the table was replaced with one marker as the
other markers were unnecessary.

A flexible 3D printed elastic stick with a holder for the robot, made by
Krištof Pučejdl, was used to stroke the right forearm. The ratio between
the movements of the participant and the robot was manipulated, as in the
Cataldo study [1, 2] with configurable ratios. The gains used were 1.5

1 , 1, 1
1.5

producing various combinations of motor and tactile displacements.
The controller program behind the robot is described in Section 4.1.2 and

GUI in Section 4.4.2. The hardware part connections were described here; the
next section is about software connections, specifically network connections.

3.3 Network

In the setups, there were four devices communicating and one virtual as
shown in Figure 3.6.

The Qualisys notebook communicated with the cameras and the notebook
running the robot controller. The laptop running the robot controller was a
proxy for a virtual Docker machine running it. Although the virtual machine
introduced a slight delay of a few milliseconds, it enabled the controller
program to function across multiple operating systems. It allowed replacing
the notebook as a proxy with just about any other performant laptop. The
robot program inside the Docker container communicated with the cameras

17

3. Hardware, Setup and Software Platforms.........................

Qualisys notebook Qualisys cameras

Notebook running robot control

Robot Kinova3

340 Hz

40 Hz with high-level
control

or
1 kHz with low-level

control

Virtual Docker machine

2 ms network delay

340 Hz

Figure 3.6: Networking scheme: green blocks represent a machine, dark green is
a virtual machine, yellow are the cameras, blue is the robot.

and the robot. It translated the position of 3D keypoints into the motion of
the robot.

Data from the camera and the robot were coming through the network
in both directions every millisecond. All of this had to be reliable and fast
for real-time interaction. Thus, the communication was happening over the
Ethernet network. However, the software itself did not distinguish this as
it is a matter for the operating system to solve. The software was provided
just with the IP addresses of the corresponding end-points. Although Docker
had its benefits, it had a downside by adding a significant delay to the
communication up to a few milliseconds when measured via ping command,
which is significant when the robot is controlled at rate of 1 kHz, but still
possible to deal with, since the cameras are working at 340 Hz anyway. The
software for processing data from the cameras is in the next section.

3.4 Software

This section describes the software for gathering the data from cameras and
introduces the robot controller program.

3.4.1 Gathering data from cameras

The Qualisys Track Manager was used for data acquisition and analysis. It
can be used in animation, and here, it was used to track the movements of
the participant and the robot using the Qualisys reflective markers as shown
in Figure 3.7, which the program then translated into 3D keypoint positions
as shown in Figure 3.8. It comes with real-time streaming and capturing of
the data. This program was controlled from the robot controller code using
Qualisys SDK. As a side note, Windows 10 machine was required to run
the Qualisys Track Manager, making it cumbersome to run it all on a single
machine.

18

...................................... 3.4. Software

Figure 3.7: Four Qualisys markers attached to a left arm.

The cameras required calibration to establish a coordinate system. Once
the calibration was done, it was saved and reused across the experiments.
Next, Automatic Identification and Measurement (AIM) model calibration
was needed to label keypoints in space, such as the center of the hand or
joints in motion capture systems. This model helped to track specific body
parts during the experiment. The model was flexible, making it possible for a
single model to be used by all participants. The keypoints were reconstructed
from reflected light by the spherical markers from Qualisys as in Figure 3.7. It
was possible to adapt the tracking settings, set the exposure and threshold for
the detection, or have a mask to select the tracked area for each camera. The
masks were useful in eliminating reflective light from other objects inside the
room, which would otherwise influence the measurements by adding “ghost”
keypoints.

Figure 3.8: Screenshot from Qualisys interface during recording playback.

One of the features of the program was the ability to replay a measurement
as in real-time and even change the playback sped, which made it possible to
debug or measure the forces produced by certain movements. It further al-
lowed analysis of the movements, such as computing the velocities, smoothing
out trajectories and with specialized tools it can even measure forces, however

19

3. Hardware, Setup and Software Platforms.........................
those tools were not available. Mainly the program was used to stream the
detected labeled keypoints to the program controlling the robot, introduced
in the next section.

3.4.2 Robot controller

The development of the main application has gone through many iterations
and even in programming language changes. The first language of choice
was Python, which is quite simple to read and write. From a performance
perspective, Python is often sufficient, although interpreted language. And
with the benefit of readability and a large community, where it can solve many
tasks using libraries, it was the first choice of programming language. However,
for this application, it turned out to be too slow, as the communication with
the robot reached only about 20 Hz, despite the documentation for the robot
stated it would run at 40 Hz [34]. Later discovering that having 50 ms delay
does not work for this application, because the delay would influence the
experiment too much led to rewriting the code to C++.

It is a much faster, compiled language, also with a large community. Even
though the code is not as readable as the one in Python, having the Python
code made the rewriting process much faster and simpler. The same loop in
C++ runs at the declared 40 Hz. The lag was two times lower, but it was
still a noticeable delay for a task where the robot has to go at the speed of a
moving arm while touching the non-moving arm and ideally start and stop
at the exact moment as the moving arm.

The robot had several control modes described in Section 4.3.1, with the
final solution using a low-level controller running at 1 kHz. Defining the
precise and optimal method the final method for optimal control of the robot
was the largest part of this work, which is described in the next section.

20

Chapter 4
Implementation

This chapter deals with the whole implementation process of the final code [32].
It covers the implementation strategy process, the frameworks, and libraries
used in the code. Then it describes the code itself, its structure, and its
configuration. The next part is about the optimization options for the robot
controller and the trajectory interpolation for the low-level controller. The
penultimate section deals with the experiments, how and what data was
recorded during the experiment, the graphical user interface (GUI), and
safety considerations.

Everything is summarized in the last section of this chapter.

4.1 Introduction

This section explains the implementation strategy and the frameworks and
libraries used in the code.

4.1.1 Implementation strategy

In planning the implementation strategy for the project, the process was
guided by agile principles. The idea was to keep development flexible and
responsive to change, focusing on iterative development and continuous
feedback. This section provides an in-depth look at key elements of the
implementation strategy...1. Iterative Development: An iterative process was adopted, each it-

eration involving first a prototype, then feedback from the supervisors,
and after that, the complete implementation was done. After each itera-
tion, working software was produced, which was improved in the next
iteration. The advantage of this approach is that it enables changes and
improvements to be made continuously as the software evolves while
keeping the time cost of prototypes low. For example, during the first
pilots, the application had a separate program on a separate computer
to navigate the participant. It was found to be too exhausting for the
experimenters that the time cost of developing GUI was justified.

21

4. Implementation......................................2. Incremental Feature Addition: Rather than trying to create a full
system in one go, the approach was to build the system incrementally,
adding one feature at a time. It was beneficial in maintaining control over
the project’s complexity and ensuring that each feature was appropriately
integrated before moving on to the next. It was achieved by having
multiple objects that could run as a thread while having shared memory
in between...3. Continuous Testing and Integration: A vital part of the implemen-
tation strategy was maintaining a strong focus on testing. Each feature
was tested to ensure that the different parts of the system worked well
together. Testing sometimes required disabling other parts of the code
or keeping only specific hardware connections, such as the cameras or
the robot, so it was done manually...4. Adaptive Planning: The project planning was flexible and adaptive. It
was understood from the beginning that the design details could change
as the project evolved. As a result, project planning was continuously
reviewed and updated throughout the implementation phase. However,
the big picture of having a robot controlled by a motion of a hand
remained the same during the process...5. Feedback Loops: Feedback sessions were held to improve the setup of
the experiment and to check with the objectives continuously. Feedback
was collected from both experimenters and participants during the pilot
phases. This feedback was then used to guide future iterations of the
software.

This agile development strategy was integral in addressing challenges and
efficiently achieving the project goals. As an example already mentioned, the
first language of the project was Python, but it ended up being rewritten in
C++. The following section discusses the frameworks and libraries used in
the final code.

4.1.2 Frameworks and Libraries

The robot was controlled by a C++ application running inside a Docker
container, a lightweight, portable, self-contained unit that runs software
applications consistently in different environments [35]. The application used
the X Window System, also known as X11 or X, to display a graphical
interface. Through this interface, the user could interact with the application
inside a Docker as if it were running on the local machine using the X
client [36]. For the GUI, the C++ library wxWidgets was used because it
provides high-level platform-independent classes and functions. It supports
event callbacks to detect keystrokes or mouse clicks that can be processed
further.

The application could be configured using an ini file. To facilitate the
parsing of the ini file, the mINI library was used [37]. Within the configuration,

22

............................ 4.2. Code, States and Configuration

there was a JSON string that required parsing. To handle this, the Lohmann’s
JSON library was used [38].

The code uses multiple threads to split tasks into several logical parts,
e.g., UI thread for processing user input that may come from GUI or the
console. One of the threads for communicating with the robot was provided
by KortexAPI [39]. It provided several control modes – mainly high-level and
low-level modes. The chosen mode, low-level position control necessitated the
computation of joint velocities. In the calculation of the velocity Proportional-
Integral-Derivative (PID) controllers were used. PID controllers were using
Bradley’s implementation [40]. To obtain the 3D position of the hand from
Qualisys Track Manager, Qualisys SDK [41] was used.

Therefore, Docker was required on the machine to run the program. If the
X client was set up properly, it could run seamlessly. The next section is
about the code structure, program states and configuration of the program.

4.2 Code, States and Configuration

This section describes how multiple threads were used and why, the states in
the program, and finally configuration of the program.

4.2.1 Code structure

For the program to handle multiple inputs and outputs in parallel, multiple
threads were used. The main thread was the GUI thread, as required by the
wxWidgets plugin [42]. During its initial process, it initialized all the other
threads, except the low-level controller that ran 1 kHz communication with
the robot.

The low-level controller is represented by a class KortexController, as
can be seen in Figure 4.1. It was initialized by RobotController, which
took care of computing goal position for the robot’s end-effector, immediate
goal position during low-level control, and setting up the robot, including
calibration if necessary.

KortexController can act as a class and as a thread. When used as a
class, it has commands for the robot such as “set the end-effector’s velocity”,
“set the end-effector’s position”, etc. which used the robot’s high-level control
described in Section 4.3.1.

However, when started as a thread, it started controlling the robot in
the low-level joint position control mode, sending joint angle positions and
velocities at 1 kHz. Joint positions were read from shared memory. When the
robot was operated in low-level mode, it could not be operated in high-level
mode, which would have been useful when going to the robot’s home position.
This was solved by computing linearly interpolated trajectory between the
robots initial position and the goal position within configured time.

Making the threads communicate with each other required having shared
data structures, and mutex locks. If a thread wanted to read the data, it had
to wait for a free lock, locked access to the memory, read the data, and unlock

23

4. Implementation....................................

Graphical user
interface (GUI)

Camera reading
process

(CameraReader)

Robot control
(RobotController)

User input
processing (UI)

Low-level robot
controller

(KortexController)

SharedMemory Keypoints
 & joint
angles

Keypoints

Thread

Shared structures

Spawn
thread

Keypresses & experiment
statusKeypresses and exp. status

Spawn
thread

Joint
angles

Spawn
thread

Main thread

Figure 4.1: Program diagram: blue arrows represent communication through
shared memory and the gray arrows represent which thread spawns which.

it for other threads. There were multiple shared structures, depending on the
needs of each thread. There was a lot of data being communicated across the
threads when the program was running, such as robot’s joint angles, position
data from the camera, user input, etc.

KortexController read the goal joint angles every millisecond. These
were being written by the RobotController thread and computed based on
the data from the cameras. But none of those processes had access to the
cameras directly. Instead, another thread, CameraReader, was reading the
data from the cameras and storing them in the shared memory.

The user input could come from two sources, GUI or the console. To
process them, the UI thread was specialized to do so in one place. It also
acted as the main controller, taking care of the robot’s gain, measuring the
arm’s length, and taking care of the current state of the program, which are
be described in the next section.

Consequently, having it all separated made it structurally understandable
and modular. For instance, if an update would make the robot’s high-level
API communicate at 100 Hz, it might be worth replacing the current low-level
controller with a high-level velocity controller and omit the immediate goal
computation. Another use case might be to replace cameras with different
types of sensing.

4.2.2 States of the program

For the final experiments it was necessary to add states to the program as it
contained too many variables. The states were designed to accommodate the
experiment scenarios and variants of them. In the experiment, there were four
scenarios in total and three variants. The variants represented the current
objective of the experiment:..1. Familiarisation: this was the default variant when the program started.

24

............................ 4.2. Code, States and Configuration

Here, the participant got to know the robot and its movements...2. Tactile: the participant focused and evaluated the length of touch
provided by robot’s tool...3. Movement: the participant was focusing on and evaluating the length
of the arm movement.

The scenarios were as follows:..1. Introduction: when the application was opened, this was the first state.
It described the instructions for the selected variant. This was the only
state that allowed changing the variants...2. Push to start: this state was only for the tactile and movement variants,
it contained a shorter version of the instructions shown between each
trial...3. 321+: in this state the robot started touching the participants arm and
started following the hand...4. Judgement: here the participant was judging the length of touch or
movement based on the instructions. This was exclusive to tactile and
movement variants only.

The scenarios depended on the selected variant, where the user was switch-
ing between the states by clicking the mouse held in the left arm. The
interaction flow diagram is shown in Figure 4.2.

Introduction

321+

(a)

Introduction

321+

Judgement

Push to
start

Stop
Last trial?

YES

NO

(b)

Figure 4.2: Scenarios diagram for different variants. The participant goes
through them by click the mouse. (a) When familiarisation is active, the
program loops between the two scenarios. (b) For variants tactile and movement,
the scenarios loop until the participant goes through all trials.

Given the combination of variation and state, GUI was changing its layout.

25

4. Implementation....................................
UI thread, which was the processing unit for the user input, changed the

function of buttons. In addition, it was in charge of triggering the logging of
the experimental data, changing the states and variants, and more. All of
which depended on the current state, variant combination.

The RobotController thread, which takes care of the robot’s end-effector
position, changed between following the hand, going to the initial position,
and the idle state. When the 321+ scenario was on, it went towards the hand
and started tracking the hand. When this scenario was changed, the robot
went to its initial position away from the hand. In the next trial the initial
position was randomized based on a given configuration. The configuration
is described in the following section.

4.2.3 Configuration

Operation of the robot contained configurable parameters; therefore, it was
useful to have a separate configuration file. Inside the “settings.ini” file, there
were sections determined by the class names.

First, there was the configuration of the GUI, containing settings of the
screen height in centimeters, pixels, and a denominator. Inside the code, the
screen height in pixels was divided by the height of the screen in centimeters
and by the denominator multiplier. The denominator multiplier would usually
be 1, but for retina screens it was 1.5.

Next, there was the KortexController class that communicates with the
robot. It contains settings for the robot’s IP, required ports, timeouts, and
parameters for the PIDs, including the maximal speed for the joints. Although
each joint had a separate PID, all shared the same parameters, since only
proportional gain of 1 was used.

Continuing to the RobotController class, it contained the transformation
from the cameras to the robot, the number of positions measured to calculate
a calibration transformation if it is not set, the parameters of the moving
window to limit the speed of the robot, the initial position of the robot during
the experiment, the velocity limits, the calibration constants, the boundary
box in terms of the minimum and maximum values for each axis, and the
random offset between the trials.

.
When changing the boundary box, it is important to make sure it
is set correctly by checking the corner coordinates, by moving the
robot to corner coordinates with the controller or the robot’s web
controller.

Lastly, there was the CameraReader class, which reads position keypoints
from the cameras. It contained only basic connection information such as IP,
port, version info, endian and password.

The next section describes the steps taken to find the optimal robot control.

26

.................................... 4.3. Robot Control

4.3 Robot Control

Controlling the robot with a delay imperceptible to the participant while
ensuring safety played a vital role. Originally, the delay threshold was set
to be 25 ms, as studies had shown that it was a detectable treshold for some
application, while achievable when using high-level control mode. However,
it was shown through pilot experiments, that it was not the case for this
application.

Thus it was necessary to use the low-level controller running at 1 kHz.
However, the low-level controller itself does not take the 3D position as input
but rather the joint angles. Moreover, the robot’s target position had to be
split into smaller steps for this controller to work. The next part will describe
how all this works.

4.3.1 Optimizing the robot control

The first iteration in Python was made with the high-level Kortex API [39].
It allowed controlling the position and speed of the robot’s end-effector
without worrying about the inverse kinematics (IK) and offered built-in
safety features. For example, it was cheking joint speeds, self-collision, and
workspace boundary box, which was configurable through a robot’s web
interface. However, those safeties were not guaranteed for the Kinova Gen3
robot.

Despite a low-level API could operate at 1 kHz, it was not selected for
the first few iterations because it seemed too high for the task. However,
the high-level control was too slow when examined in pilot testing. With
low-level control modes, there are no safety features or the calculation of IK.
They only accept joint angles, joint velocities, torques or currents.

Calculating the joint angles for the IK itself is not trivial. Fortunately, there
are libraries that can be used to solve it very quickly. In 2022, Lloyd et al. [21]
published a novel approach to solve it using Halley’s method. They also
provided the algorithm in C++ and a Matlab wrapper, publicly available on
GitHub [43]. The algorithm can compute IK for the Kinova Gen3 robot on
average in 16 µs while having a strong performance near singularities. There
is also the Pinocchio library by Carpentier et al. [20] from 2019, in which
they unroll most of the computations directly at compile time, achieving
even better performance in terms of computation speed, but it may not be as
robust near singularities as Halley’s method, since it uses Newton method,
which was outperformed.

Calculating joint angles for the low-level 1 kHz control loop was now possi-
ble. The robot offered a variety of control modes. The first recommended
mode for controlling the robot, which was joint position control, did not work
well initially. The initial trials were problematic because the robot needed
joint velocities in addition to joint angles, which was not mentioned in the
documentation. Without them, the robot seemed to brake every millisecond
and sometimes the joints would get stuck and stop moving during startup.

27

4. Implementation....................................
Other modes were explored as options, but none of them worked. The low-
level velocity control mode has a bug, so the developers of the firmware
recommended not using it. Torque control would not be practical for control-
ling the robot’s arm position and lastly, controlling motor currents goes far
beyond this task.

Servoing
mode Control mode Frequency Advantages Disadvantages

High-level Position control
(end-effector) 40 Hz

+ End-effector
position as
input

- Works only at 40 Hz
- Stops after reaching
goal position
- Blocking

High-level Velocity control
(end-effector) 40 Hz + Continuous

+ Non-blocking - Works only at 40 Hz

Low-level
Position control
(joint angles &
joint velocities)

1 kHz + Works at 1 kHz

- Inverse kinematics
to be solved in 1 ms
- Positions must be
continuous
- Uses maximal
torque

Low-level
Joint velocity
control (internal
velocity loop)

1 kHz + Works at 1 kHz
- Inverse kinematics
to be solved in 1 ms
- Gravity not compensated

Low-level Torque control
(joint torques) 1 kHz + Works at 1 kHz

- Inverse kinematics
to be solved in 1 ms
- Robot dynamics
computation

Table 4.1: Comparison of different control modes for the Kinova Gen3 robot.
Low-level position control was used.

In Table 4.1, there is a comparison of all possible modes with their ad-
vantages and disadvantages, except for the current mode, which is not docu-
mented. The selected mode was the position control mode since it worked at
1 kHz, because turned out to be the most important factor.

However, this required to split the movements into smaller steps using
trajectory interpolation.

4.3.2 Trajectory interpolation

When controlling the robot in position low-level control mode, the robot used
joint angles and joint velocities to move to the target position. If the joint
angles were too far from the current values, the robot would go into joint
fault mode and stop moving.

Thus, the goal position had to be close to the current position of the robot.
If the position was too distant, an immediate goal was used instead, as can
be seen in Figure 4.3. Both the goal and the immediate goal position were
always limited by a configurable boundary box as a safety measure.

Calculating the immediate goal position was tricky because all sources of
information had different timestamps.

The cameras sent the keypoints at 340 Hz, while the robot was controlled
at 1 kHz. On top of that, those timestamps were rarely in phase as they are

28

.................................... 4.3. Robot Control

Initial offset

Goal position
for the robot

Tracked position
of the participant’s

hand

Boundary box
Followed line
Transformation

Immediate
goal

Robot’s
end-effector

position

Figure 4.3: One frame from trajectory following process computed every 1 ms.
The robot is following participant’s hand, but it is too far, thus the robot uses
immediate goal instead of the goal. Distances are exaggerated for more clarity
of the drawing.

not multiples of each other and there was delay in the network. When the
robot sent its joint angle positions, it sent them as a callback after setting
the future joint angles and joint velocities with an additional delay. Since
the network, described earlier in Section 3.3, contained a delay higher than
1 ms, it always made the control loop lag behind. A very basic model that
represents this can be seen in Figure 4.4.

Figure 4.4: Simple model of control loop for the robot with the added delay.

On top of the delay, it was necessary to ensure that the robot’s end-
effector does not move too fast. In ideal case, the robot would send its joint
angles every millisecond, but the end-effector speed had to be limited to
a configurable speed. Let us say that it is configured to 0.4 m/s, which is
equivalent to 0.04 cm/ms.

However, changes of 0.04 cm cannot be accurately measured due to the
delay and precision of the measurements. Instead, if the robot’s position is
within 1 cm after 25 ms, its speed is within limits, and its position can be
measured. The robot’s previous measured positions, for example, up to 50 ms
ago, can be used to limit the robot’s end-effector speed.

29

4. Implementation....................................
This was implemented as a moving window that stores the robot’s positions

and timestamps from the measurements. If the robot’s immediate goal
position would be outside the limits of the moving window, the robot would
be going too fast and thus had to slow down. Pseudocode of the Algorithm 1
shows explains this in more detail.

Algorithm 1 Compute intergoal
1: procedure cmpIntergoalPos(mw, goal, measT ime, wasLimited)
2: interGoal← goal
3: robot← mw.points.back ▷ get robot’s last position
4: dt← currT ime−measT ime ▷ ∆t in seconds
5: avgV el← Average velocity over valid historical points in mw

6: dist← norm(robot− interGoal)
7: maxDist←MAX_V EL_MULTI ∗MAX_V EL_NORM ∗ dt

▷ max distance robot can travel
8: if wasLimited then
9: maxDist← maxDist ∗MAX_DIST_RECOV ERY _MULTI

10: end if

11: if (dist < maxDist and avgV el < MAX_V EL_NORM then
12: wasLimited← false
13: else
14: wasLimited← true
15: distMulti← maxDist ∗MAX_V EL_DECREASE_MULTI

16: interGoal← Position based on robot, goal and distMulti
17: end if
18: interGoal← keep inside boundary box(interGoal)
19: return interGoal, wasLimited
20: end procedure

First, the target position was checked to determine whether it stayed within
a threshold distance maxDist (m), which depended on whether the previous
iteration was already limited.

The initial threshold distance was calculated as the maximum velocity
MAX_V EL_NORM (m/s) times the time difference dt (s) between now
and the time the joint angles were received to calculate the position of the
end-effector. On top of that, there had to be “compensation multiplier”
constant 0 < MAX_V EL_MULTI, to compensate for the errors in the
real measured speed versus the configured speed. MAX_V EL_MULTI
was empirically derived to match the measured robot’s speed from Qualisys
cameras with the configured speed.

If the goal position was within the limit of maxDist, the robot was imme-
diately sent to that position.

On the contrary, if the participant went too fast, either by breaking the

30

.................................... 4.3. Robot Control

maxDist limit or the moving window limit, the robot’s goal position was
moved closer to the robot, thus decreasing the speed. It was done by shortening
the length of the step size by 0 < MAX_V EL_DECREASE_MULTI < 1,
making the step size following:

distMulti = MAX_V EL_DECREASE_MULTI ·maxDist

= MAX_V EL_DECREASE_MULTI·
MAX_V EL_NORM ·
MAX_V EL_NORM ·
dt

Once the robot got outside those limits, it had to get closer to the hand than
initial MAX_V EL_MULTI ·MAX_V EL_NORM ·dt to start going to the
goal position immediately again. The new allowed distance was multiplied by
another constant, 0 < MAX_DIST_RECOV ERY _MULTI ≤ 1, which
required the robot to be at least MAX_DIST_RECOV ERY _MULTI ·
maxDist meters from the goal position. This ensured that the robot would
not move by jerky movement.

Once the immediate goal was computed, its position was limited to be
within a configured boundary box. IK computation followed, which calculated
the joint angles of the goal, and if there was no error in the IK, they got
stored in shared memory. The next section is about what was done with
them afterwards.

4.3.3 Low-level controller

During the startup, the low-level controller set its goal joint angles in shared
memory to its current joint angles. Subsequently, the shared memory was
read every millisecond. Next, those joint angles were checked to see whether
they are within the robot’s joint angle limits, and if not, it would not send
the command and stop the robot instead as seen in the Algorithm 2, Line 9.

Otherwise, the difference between the current joint angle positions and the
goal joint angle positions was calculated and used as input for PID, which
was used to compute each joints velocity.

Each joint had its own configurable PID for controlling the joint velocities,
limited by configurable maximum. However, in the experiment, only the
proportional gain was used, and thus the configuration was shared for all
joints.

The PID’s outputs had a shared configurable limit, which was 4 ◦/s as it
prevented the robot from entering joint fault modes; however, 50 ◦/s was
stated in the official documentation [34].

The following section contains the implementation details related closely
to the experiments.

31

4. Implementation....................................
Algorithm 2 Update Actuator Positions and Velocities

1: procedure UpdateActuators(rob, pid)
2: ik_angles← read goal joint angles from shared memory in degrees

3: send_command← true
4: if robot is connected and ik_angles are ready then
5: for i = 0 to actuator_count− 1 do
6: goal_angle← ik_angles(i) mod 360

▷ wrap the goal joint angle
7: if goal_angle is inside the forbidden angle for joint i then
8: send_command← false
9: Log error, command will not be sent, robot stops

10: end if

11: rob.set_position(goal_angle)

12: ang_error ← substracted actual from goal angle
▷ angles are subtracted and wrapped around 2π

13: rob.set_velocity(i)← pid[i].calculate(ang_error)
14: end for
15: end if
16: end procedure

4.4 Experimentation

In this section, there is information about the data that were recorded during
the experiments, graphical user interface used by the participants and the
safety of the implementation.

4.4.1 Recording the experiments

During the experiment, all trials were recorded using the Qualisys Track
Manager, described in Section 3.4.1. The laptop controlling the robot runs a
thread CameraReader, communicating with the cameras using the Qualisys
SDK. The SDK allowed sending an event with a text label, which got stored
directly inside the Qualisys recording with the corresponding timestamp.
This method was used to label all the necessary events during the experiment,
such as current trial started, trial stopped, current trial number, current gain,
arm’s length, robot started moving, current selected variant, judged length,
and number of total trials.

These files were stored on the laptop, controlling the cameras, making it
convenient since all the data was stored only on one computer, while all the
events were synchronized directly with the recording. Furthermore, if the
controller crashed, the data would still be kept. Using the Qualisys Track
Manager also made it possible to replay of the participant’s movements, which

32

................................... 4.4. Experimentation

was used during development as a way of debugging and tweaking parameters
in the configuration of the application.

Figure 4.5: Example of the exported data in Matlab.

Within the Qualisys Track Manager, it was possible to export the recorded
data containing positions and events to Matlab format “.mat” as in Figure 4.5
or “.tsv”, which could be processed in Python or even Excel, although it may
be too slow for the amount of data. Processing itself was not part of this
work, but there were multiple ways for the experimenters to process the data
further.

During the experiments, the participant used GUI to interact with the
robot controller application. Any of those events could be recorded using the
method above. In the following section, the GUI is described and how the
participant used it.

4.4.2 Graphical user interface (GUI)

It was certain that GUI was needed after doing the first pilots described in
Section 3.2.1, as it was a focus intensive task for the experimenters. For the
final pilots (Section 3.2.2), GUI was implemented within the robot controller
program using the wxWidges library, taking care of displaying, i.e., a line or
text on a screen.

Without scenarios and variants, it would be hard to keep up with the logic
of the experiments. It was the main impulse to create them and rewrite the
whole base logic behind all the other components (UI and RobotController)
in the first place, as they were stateless before creating the GUI.

The GUI itself was quite simple, there were three “placeholder” elements
as in Figure 4.6. There was a logical switch for each element: whether to
show the current trial number, or the line, whether the line should be on the
left or right side, or whether to have some text in the center. This was found
to be sufficient to satisfy all possible combinations of variants and scenarios.

33

4. Implementation....................................

Figure 4.6: Three basic elements of the GUI.

The line had to be drawn in a way that 1 cm was always shown as 1 cm on a
screen, as the participant was evaluating a length and not a scaled proportion
of it. The length of the line was allowed to be between 1 cm and the height
of the display. Therefore, the display had to be higher than the length of the
arm. The screen used in the final experiment was 81.5 cm, so there was no
problem.

For the text, it had to be possible to contain Czech characters, since the
text was in the Czech language. Luckily, wxWidgets has a way of passing
Unicode characters to its strings.

For interaction, the participant had only three buttons available, of which
two were pedals and one was the Bluetooth mouse click. The pedals were only
for the judgement of the line length, and the mouse click worked similarly to
mouse click in a presentation.

When the 321+ scenario was on, there was a countdown and during which
the screen and controls would be locked, so the robot could finish its trajectory
motion. It was timed in a way so that even when the participant would just
skip everything, the robot would be ready. This was related to safety, which
is described in the next section.

4.4.3 Safety considerations

Safety during the experiment was crucial as the participant was in direct
contact with the robot. Furthermore, the robot was controlled in real-time
by the participants’ hand movements, which adds risks, such as unexpected
movements, when the participant might want to scratch their nose, for
example. To mitigate risks, safety measures were taken at multiple levels
from a control point of view.

34

................................... 4.4. Experimentation

Implemented safety features

Let’s assume a worst case scenario and go through the control loop, what
were the measures taken:..1. Issue with Qualisys: The path of the data would begin in the

CameraReader, where if the received data were wrong, they would be
sent further...2. Robot’s current state: Then, the RobotController will read them.
The robot would be either executing some trajectory, is idle, or follows
the hand. Unless the robot follows the hand, it would be ignored...3. Computing goal position a): For the robot to execute some wrong
trajectory is impossible, as the trajectory is pre-programmed and the
program keeps track of the previous and current trajectory. Furthermore,
the trajectories are allowed to be only in certain order for the robot
to start executing them. However, if this fails, the robot will set the
position as a goal...4. Computing goal position b): Return to the case where the robot
follows the hand. The robot reads the wrong position, computes the goal
position, and tries to send the robot it. However, the goal will keep only
the followed X-axis, since all other axes are fixed...5. Computing goal position: Next, the goal position is limited to being
within the configured boundary box. If the configuration was wrong, it
would be possible for the robot to go to places where it shouldn’t...6. Computing immediate goal: The position of the limited goal is sent
to calculate the immediate goal. In short, it uses a moving window to
check whether the robot’s speed would exceed the configured speed limit
given the current goal position and an additional check uses robot’s
current position, but it has to use “magic” constants, since the signal is
noisy and delayed. This was explained in more detail in Section 4.3.2...7. Computing immediate goal a): If the robot was in slow mode, the
new immediate goal would be calculated from the previous measured
position and the current position, and again, the axes are limited, so
only the X-axis could be changed. If that happens when the robot is
following a trajectory, it will go into joint fault mode and stop. Thus, the
trajectory has to be designed already with the limits taken into account...8. Computing immediate goal b): Otherwise, if it is within the limits,
the goal position is used as next goal immediate goal position...9. Computing immediate goal: The calculated immediate goal is again
limited to being within the boundary box.

35

4. Implementation.......................................10. Validation before computing IK: Before calculating IK for immediate
goal, it is first verified that it lies within the boundary box. If not, this
position is ignored....11. IK: joint angles are thereafter calculated from the limited immediate
goal position and the last measured robot joint angles. This makes the
library find the closest solution to the current robot position; however,
this is not guaranteed. If the library reports an error, such as max
iterations exceeded, it is not proceed further. Otherwise, they are stored
in shared memory....12. Low-level controller: the calculated joint angles are read by the
KortexController. It checks whether the joint angles lie within the
joint limits for each joint. If that is the case, the robot will stop moving
and exit, as this should never happen....13. Sending commands: Otherwise, the joint angles are sent directly to
the robot’s own controller with the calculated joint velocities, where the
velocity limit is from the configuration....14. Inside the robot’s controller: Now, if the robot receives the setpoint
of the joint angle, which is not within 3◦ to 5◦ of the current angle, the
joint fault mode is triggered and the robot stops. This could happen
in a case where the delay is too big and the robot does not follow fast
enough.

To sum up, the safety measures were taken by limiting the position to
be within a boundary box on multiple layers, the robot follows only in one
direction, and other directions are fixed. These measures limit the robot’s
workspace. Then, the speed of the robot’s end-effector is limited by the
moving window and the current position, which can be noisy. If the robot
would exceed the speed limit, there was a mechanism that prevented the
robot from going back to fast following quickly. The joint angles are then
calculated and sent to the low-level controller only if IK did not report an
error. In the low-level controller, those joint angles are checked to be within
the limits of the robot. If the joint angles are too far from the current robot’s
joint angles, the robot will stop moving and go into joint fault mode.

Risk assessment

In addition, a risk assessment was performed to check for potential hazards,
which is shown in Table 4.2. In summary, all the threads ended up being neg-
ligible, mainly because the experimental setup was changed, so participant’s
head is outside the robot’s workspace and having the boundary box on the
end-effector helped further.

36

................................... 4.4. Experimentation

R
is

k
ev

al
ua

ti
on

E
va

lu
at

io
n

af
te

r
m

it
ig

at
io

n
ID

R
is

k
T

hr
ea

t
Se

ve
ri

ty
P

ro
ba

bi
lit

y
R

at
in

g
M

ea
su

re
s

Se
ve

ri
ty

P
ro

ba
bi

lit
y

R
at

in
g

1

W
ro

ng
po

sit
io

n
fro

m
th

e
ca

m
er

a
in

pu
t

(e
.g

.
m

ism
at

ch
ed

po
in

ts
,

w
he

n
so

m
e

hi
dd

en
)

R
ob

ot
m

ov
in

g
in

un
ex

pe
ct

ed
wa

y
Lo

w
Pr

ob
ab

le
M

od
er

at
e

Bo
un

da
ry

bo
x

wa
s

ad
de

d
on

th
e

ro
bo

t’s
go

al
en

d-
eff

ec
to

r
po

sit
io

n
N

eg
lig

ib
le

Pr
ob

ab
le

N
eg

lig
ib

le

2

M
iss

in
g

po
sit

io
n

fro
m

th
e

ca
m

er
a

(e
.g

.
ca

m
er

as
/c

om
pu

te
r

di
sc

on
ne

ct
ed

)

R
ob

ot
no

t
m

ov
in

g,
or

je
rk

y
m

ov
em

en
ts

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le
N

on
e,

ro
bo

t
st

op
s

m
ov

in
g.

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le

3
R

ob
ot

re
st

ar
ts

du
rin

g
th

e
ex

pe
rim

en
t

R
ob

ot
op

en
s/

cl
os

es
th

e
ar

m
,

w
hi

ch
ch

an
ge

s
Z-

po
sit

io
n

N
eg

lig
ib

le
O

cc
as

io
na

l
N

eg
lig

ib
le

R
ob

ot
m

us
t

be
re

bo
ot

ed
,

ex
pe

rim
en

t
re

pe
at

ed
Lo

w
O

cc
as

io
na

l
N

eg
lig

ib
le

4
R

ob
ot

s
sh

ut
s

do
w

n
R

ob
ot

st
ar

ts
slo

w
ly

fa
lli

ng
us

in
g

its
re

cu
pe

ra
tio

n
br

ea
ks

N
eg

lig
ib

le
O

cc
as

io
na

l
N

eg
lig

ib
le

R
ob

ot
m

us
t

be
re

bo
ot

ed
,

ex
pe

rim
en

t
re

pe
at

ed
N

eg
lig

ib
le

O
cc

as
io

na
l

N
eg

lig
ib

le

5
R

ob
ot

st
op

s
re

ce
iv

in
g

da
ta

fro
m

co
nt

ro
lle

r
la

pt
op

R
ob

ot
ke

ep
s

jo
in

t
ve

lo
ci

tie
s,

bu
t

br
ea

ks
af

te
r

jo
in

t
an

gl
e

di
ffe

re
nc

e
is

ab
ov

e
3

de
gr

ee
s

Lo
w

R
ar

e
Lo

w
U

pd
at

ed
ex

pe
rim

en
t

se
tu

p,
sm

al
le

r
sh

ar
ed

wo
rk

sp
ac

e
N

eg
lig

ib
le

R
ar

e
N

eg
lig

ib
le

6
C

on
tr

ol
le

r
se

nd
s

w
ro

ng
jo

in
t

an
gl

es

R
ob

ot
st

op
s

an
d

go
es

in
to

fa
ul

t
st

at
e,

bu
t

m
ig

ht
go

lit
tle

lo
we

r
in

Z-
ax

is

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le
R

ob
ot

m
us

t
be

re
bo

ot
ed

,
ex

pe
rim

en
t

re
pe

at
ed

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le

8

C
on

tr
ol

le
r

se
nd

s
lo

w
jo

in
t

ve
lo

ci
tie

s,
w

hi
le

th
e

jo
in

t
an

gl
e

di
ffe

re
nc

e
is

hi
gh

R
ob

ot
st

ar
ts

sh
ak

in
g,

ev
en

tu
al

ly
go

es
in

to
fa

ul
t

st
at

e
N

eg
lig

ib
le

R
ar

e
N

eg
lig

ib
le

R
ob

ot
m

us
t

be
re

bo
ot

ed
,

ex
pe

rim
en

t
re

pe
at

ed
N

eg
lig

ib
le

R
ar

e
N

eg
lig

ib
le

9
R

ob
ot

st
op

s
be

in
g

in
co

nt
ro

lo
ft

he
co

nt
ro

lle
r

(e
.g

.
us

in
g

we
b-

in
te

rfa
ce

)

Ze
ro

jo
in

t
an

gl
es

ar
e

re
ce

iv
ed

fro
m

th
e

ro
bo

t
an

d
th

e
ro

bo
t

is
co

nt
ro

lle
d

by
th

e
we

b-
in

te
rfa

ce

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le
R

ob
ot

m
us

t
be

re
bo

ot
ed

,
ex

pe
rim

en
t

re
pe

at
ed

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le

10
C

on
tr

ol
le

r
se

nd
s

th
e

ro
bo

t
to

w
ro

ng
po

sit
io

n
R

ob
ot

go
in

g
to

pl
ac

es
w

he
re

it
sh

ou
ld

no
t

be
Lo

w
R

ar
e

Lo
w

R
ob

ot
’s

go
al

is
w

ith
in

bo
un

da
ry

bo
x

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le

11
Fa

st
m

ov
in

g
en

d-
eff

ec
to

r,
un

ex
pe

ct
ed

m
ov

em
en

t
by

th
e

pa
rt

ic
ip

an
t

R
ob

ot
hi

tt
in

g
th

e
pa

rt
ic

ip
an

t
Lo

w
Pr

ob
ab

le
M

od
er

at
e

Ve
lo

ci
ty

lim
it,

ch
an

ge
d

la
yo

ut
.

If
ro

bo
t

is
to

o
fa

r,
th

e
ro

bo
ts

fo
llo

w
s

slo
w

ly
.

N
eg

lig
ib

le
Pr

ob
ab

le
N

eg
lig

ib
le

13

T
he

pa
rt

ic
ip

an
t

ge
ts

in
to

ro
bo

ts
op

er
at

io
n

sp
ac

e.
Po

ss
ib

ly
he

ad
or

th
e

ot
he

r
pa

rt
s.

C
ol

lis
io

n
of

th
e

ro
bo

t
an

d
th

e
pa

rt
ic

ip
an

ts
he

ad
M

ild
R

ar
e

Lo
w

C
ha

ng
ed

la
yo

ut
of

th
e

ex
pe

rim
en

t,
ro

bo
t

no
w

ca
n

no
t

re
ac

h
th

e
pa

rt
ic

ip
an

t

N
eg

lig
ib

le
N

ev
er

N
eg

lig
ib

le

14
M

et
al

en
d-

eff
ec

to
r

G
et

tin
g

hi
t

by
th

e
en

d-
eff

ec
to

r
m

ig
ht

be
th

e
m

os
t

pa
in

fu
l

Lo
w

R
ar

e
Lo

w
Lo

we
r

sp
ee

ds
of

th
e

en
d-

eff
ec

to
r

N
eg

lig
ib

le
R

ar
e

N
eg

lig
ib

le

15
If

th
e

ro
bo

t
ge

ts
st

uc
k,

it
ha

s
to

be
al

wa
ys

re
bo

ot
ed

af
te

rw
ar

ds
.

R
ob

ot
m

ov
in

g
in

un
ex

pe
ct

ed
wa

y
Lo

w
O

cc
as

io
na

l
Lo

w
R

eb
oo

tin
g

th
e

ro
bo

t
al

wa
ys

.
Lo

w
N

ev
er

N
eg

lig
ib

le

Ta
bl

e
4.

2:
R

isk
as

se
ss

m
en

t
of

th
e

ap
pl

ic
at

io
n.

37

4. Implementation....................................
Measuring the impact forces

To further assess the risks, the forces were measured to see if they are within
the limits of the ISO/TS 15066 [28] technical specification. The maximum
exerted force can be 135 N on the hands and fingers for quasi-static contact.
The hands and fingers have the lowest threshold of all parts that could come
into contact. The lower legs and abdomen have lower limits, 125 N and 110 N
respectively. The head is part of the critical zone that cannot be touched by
the robot at all.

Forces were measured using a certified measurement device, CBSF-75-Basic,
which is a force transducer. It measures forces up to 500 N and the maximal
error is 3 N. The setup of the measurements was the same as in [30], with
the help of Lukáš Rustler. All cases measured worstcase scenario, where the
part hitting the participant would be the metalic end-effector.

There were two measured directions, one from the top, that is, if the
robot would go into joint fault mode. During this measurement, the robot
was turned off and the forces of a passive falling robot were measured as in
Figure 4.7. There were 10 measurements, where the maximal force was 97 N.
After the collision, the applied force remained at 34.4 N on average, as shown
in Figure 4.8.

The next measured direction was towards the participant. It was measured
by replaying a prerecorded movement of a participant and sped up 1.3×.
There were 11 measurements and the maximal measured force was 110 N.
Since there was no clamping, which would be a situation in which the hand
or any part gets constrained from both sides, the force was just a fast bump
as in Figure 4.9. The setup is shown in Figure 4.10.

It was also interesting to see the forces when clamping was present, although
in the real experiment there was no clamping. The setup was the same as in
the previous measurement, but the string that holds the measurement device
was tightened. There were 25 measurements and the maximal force applied
by the robot was 187 N, which was much higher. In Figure 4.11, it shows that
there were measurements in which the robot lost contact with the measuring
device. That was because the prerecorded movements just moved away from
the robot.

In conclusion, safety guards were implemented within the robot’s controller
code, the safety of the application was assessed, and possible hazards were
eliminated by changing the design of the experiment and adding safety guards
to the code. Lastly, if the robot would come in contact, the applied forces
would stay within the limits of ISO 15066 [28] technical specification, if there
would be no clamping involved. The application is safe, but one has to make
sure that there is no clamping, be vigilant, ready to stop the program or, if
necessary, press the stop button, and hold the robot so it does not fall, in
case it is needed.

38

................................... 4.4. Experimentation

Figure 4.7: Passive robot falling onto the measuring device from the top.

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

0

20

40

60

80

100

Fo
rc

e
[N

]

Average Force
Max Envelope
Min Envelope

Figure 4.8: Measurements of the force, when the robot fell on the device from
the top.

39

4. Implementation....................................

0.0 0.2 0.4 0.6 0.8 1.0
Time [s]

0

20

40

60

80

100

Fo
rc

e
[N

]

Average Force
Max Envelope
Min Envelope

Figure 4.9: Measurements of the force, when the robot hits the device from the
direction of the participant without clamping.

Figure 4.10: Setup for measuring the forces in the direction of the participant.
Device was hitted by the metalic end-effector.

4.5 Summary

This chapter covered a wide variety of topics, thus a quick recapitulation of
all the main points from each section follows:..1. Implementation strategy: agile development was used, due to the

nature of the experiment, as it required frequent changes and there were
many unknowns at the beginning...2. Frameworks and Libraries: robot was in C++, the wxWidgets library
was used for the GUI and all run inside Docker container, so X client

40

...................................... 4.5. Summary

0 1 2 3 4 5
Time [s]

0

25

50

75

100

125

150

175
Fo

rc
e

[N
]

Average Force
Max Envelope
Min Envelope

Figure 4.11: Measurements of the force, when the robot hits the device from
the direction of the participant with clamping.

was used to tunnel the interface into the host machine. KortexAPI was
used to communicate with the robot and Qualisys SDK to communicate
with the Qualisys Track Manager...3. Code structure: the program was running multiple threads, allowing
flexibility and interoperability between them...4. States of the program the state of the program had a variant and
scenario. They represent the current state within an experiment, which
makes it easier to react to changes of them...5. Configuration: the configuration was stored in a “ini” file, which was
divided by class names. An important note is that one should be careful
when changing the boundary box limits as they affect the safety of the
experiment...6. Optimizing the robot’s control different modes were discussed, but
low-level API was used, running at 1 kHz, which required computing IK.
It was done using the public algorithm on GitHub [43]...7. Trajectory interpolation: the control loop contained a delay, which
made speed measurements harder. That was important for safety, so
there were multiple ways to tackle this, such as using moving window
and constants that would allow for a noise in the signal...8. Low-level controller: the joint angles were restricted to be within
hardware limits and maximal joint velocity was also limited...9. Recording the experiments: the experiments were recorded using
the Qualisys Track Manager, where all the important information would

41

4. Implementation....................................
be stored inside one Qualisys file. Exporting to other formats is also
possible directly from the Qualisys Track Manager....10. Graphical user interface GUI: creation of it led to the need to have
the state of the program. It displays three basic elements, determined
by the current scenario and variant....11. Safety considerations: there were multiple safety guards at multiple
levels of the code, potential hazards were evaluated and mitigated, and
lastly, the impact forces were measured, where all would be within the
limits of standards, except for the clamping scenario, which does not
occur.

42

Chapter 5
Assessment of the implementation

5.1 Interface for real-time teleoperation of the
Kinova Gen3 robot

One of the main goals was to build an interface for the real-time control of
the robot. This part focused on the problem of taking arm joint positions
and transforming them into position or speed commands for the robot.

The quality of the solutions was checked with the supervisors’ psychol-
ogists by performing multiple pilot experiments. From the first trial of
tests conducted in the beginning of March 2023, it was certain that the
high-level control, even in C++, was not sufficient due to high delays and
low-level control was necessary. More about the control methods is provided
in Section 4.3.1.

By the end of March, there was a second run of the experiments using
low-level joint position control. This time the latency was unnoticeable and
sufficient for the first pilot experiments to be conducted. It was also found
that having a GUI for the participant included in the C++ code would make
running the experiment a lot easier as for the pilots it required two people to
control two computers in sync. One computer was running the GUI for the
participants written in Python and the other was running the controller for
the robot. Both computers had to be in sync, which was a focus-intensive
task for the two operators.

From the point of quality, it was working very well, with the exception of
some jerkiness of the end-effector during the trials. There was still room for
improvement from the perspective of safety, as the velocity limits were only
partially implemented.

In May, the final pilots were conducted. For these pilots, a GUI was
implemented, and there were no problems with it, or with the robot following
the hand during the experiment. It made the experiment much easier as
the participant was in charge of all necessary actions. Furthermore, the
experiment changed a bit in the setup, which was explained in Section 3.2.2.

Overall, the interface was built with safety in mind and the latency was
not noticeable. In the next part, the latency is evaluated.

43

5. Assessment of the implementation
5.2 Latency of the whole control loop

The total latency was evaluated using Qualisys recording from a dedicated
experiment, where 11 trials with a gain of 1 were examined from the point
of delay and position error in the direction of followed movement. Motion
mainly resembled standard trials, but varied in having additional motion up
and down, as shown in Figure 5.2. The first and last second of each trial were
removed, as there would be added lag from the synchronization period where
the robot synchronizes with the participants’ hand and the event sent from
the robot controller. The latter should be much smaller. The accuracy was
limited by the capture rate of the cameras, which was 340 Hz.

−10 0 10
Lag [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ab
so

lu
te

 C
ro

ss
-c

or
re

la
ti

on

1e9

(a)

−10 0 10
Lag [s]

−1000

−500

0

500

1000

Ab
so

lu
te

 C
ro

ss
-c

or
re

la
ti

on

(b)

Figure 5.1: Cross-correlation of (a) the hand and robot position in followed
direction, (b) speeds of the hand and the robot in the followed direction.

Finding the delay between two signals can be solved by looking at the
maximal value of cross-correlation between the signals. When the position
data were examined, as shown in Figure 5.1a, it was found that the maximal
cross-correlation was with zero offset, meaning the delay in the position was
less than 3 ms in all trials.

To examine further, Figure 5.2 shows the trajectories of each trial with
their corresponding error in the position difference. Table 5.1 shows the
average of these absolute errors in position and the maximum absolute error.
Trial number 7 had a 0 ms error between the speed of the hand and the speed
of the robot on the axis followed. When examined closer, which was because
the hand was going at almost constant speed most of the time. The weighted
average of the position error when following the hand was (1.45± 0.60) mm
with a maximum of 5.8 mm, which proved to be very small.

Another important characteristic was the speed cross-correlation, giving
insight into how fast the robot reacts to changes. This is shown in Figure 5.1b
and Table 5.1. The delay between the speed of the hand and the speed of
the robot on the axis followed was (16.70± 3.82) ms on average, which was
little above the detectable threshold [5].

44

........................... 5.2. Latency of the whole control loop

To conclude, the delay of the loop was very low, while the controller was
proved robust as the error in position difference was also very small.

Trial Time
lasted [s]

Delay in
speed [ms]

Avg. position
error [mm]

Max. position
error [mm]

1 15.38 17.65 0.7 4.9
2 2.5 14.71 1.0 2.6
3 6.85 14.71 1.6 4.3
4 11.05 17.65 2.4 5.8
5 1.6 23.53 0.4 5.3
6 3.36 23.53 1.0 3.9
7 2.15 0.0 1.1 2.9
8 2.96 14.71 1.3 3.0
9 2.3 17.65 1.0 4.0
10 3.42 11.76 1.2 3.4
11 17.37 17.65 1.9 5.2

Table 5.1: Statistical data from each trial, showing delay in speed, which
represents how well does the robot reacts to acceleration and the position error
between the hand and the robot.

45

5. Assessment of the implementation

0
10

20
30

40
50

60
70

Tim
e [s]

−200

−100 0

100

200

Centered Position [mm]

1

15.38 s

2

2.5 s

3

6.85 s

4

11.05 s

5

1.6 s

6

3.36 s 7

2.15 s 8

2.96 s 9

2.3 s 10

3.42 s

11

17.37 s

H
and - Trial 1

Robot - Trial 1
Error - Trial 1

Figure
5.2:

Trajectories
from

the
trials,delim

itered
by

a
line.

T
he

num
ber

above
each

trajectory
is

the
trialnum

ber,and
on

the
bottom

it
is

the
length

ofthe
trial.

Each
trajectory

show
s

the
robot’s

position,hand
position

and
the

absolute
error

between
those

positions.

46

............................... 5.3. Safety of the experiment

5.3 Safety of the experiment

The safety of the experiments was checked by going through the worstcase
scenarios, that is, sending wrong joint angles to the controller or unsafe
positions while there were no participants. During this phase, a bug was
found that would allow the robot to enter forbidden joint angles, and it was
fixed thereafter. The next test was conducted by running a test trial, where
the tracked hand position would be moved in unexpected directions, using
an artificial hand, made from a plastic tube with the markers. Sometimes
this led to the robot entering joint fault mode, which could sometimes result
in the robot moving unexpectedly. The forces at which the robot could hit
even in these situations were measured using a certified device. It was found
that if there is no clamping, or the robot goes into fault mode, the forces are
small.

Since the design eliminates clamping in the motion towards the participant,
which is the only direction in which it could happen as all the other axes are
fixed, it was concluded that this application is safe. With that being said,
experimenters should always be vigilant during experiments and be ready to
stop the program or, if necessary, press the stop button, and hold the robot
so it does not fall.

5.4 Graphical user interface usability

The usability of the user interface was tested during the final pilot experi-
ments. There were no problems with it, and the participants had no problem
controlling it. One suggestion during the pilots was that the improvised
pedals could have provided more support and could have been harder to press.
On the positive side, they felt very soft since they were literally made from
sponges.

For the experimenters, it was a nice feature to have a help ready on the
console by pressing “h”. Starting the experiment was sometimes harder as it
uses the X client and on MacOS it does not act as a standard application.
The windows had to be set up in a very specific way to see on one monitor
the console and on the other the GUI.

5.5 Evaluating the experiments

There were two pilot experiments, where the first iteration of the experiments
led to many changes from the preliminary experimental setup. In the first
experiment, there were 4 participants. It had the main feature where the
robot follows the hand done. The results have been used for a abstract for
International Multisensory Research Forum 2023.

The final pilot experiment (video) included GUI, which changed changing
the whole control of the experiment. This experiment had 3 participants
and its main purpose was to test the final setup. In this setup, it was now

47

https://youtu.be/R7eFBe2cnUw

5. Assessment of the implementation
the participant who was in charge of it, by having the pedals and a mouse.
Furthermore, safety of the application has improved greatly and it was now
ready to get the ethical approval and have the framework ready for future
experiments.

48

Chapter 6
Conclusion

6.1 Accomplishments

The journey of this thesis was defined by careful planning and management of
unexpected challenges. The reality of software development and research was
met head on with diligent time management and a four-week reserve plan that
compensated for unexpected delays. Throughout the process, tasks such as
developing a graphical user interface (GUI) and implementing low-level C++
code for robot control served as obstacles that were successfully overcome.

The constant need for communication with supervisors during the final-
ization of the experimental design and the high stakes of developing a safe
application for direct robot-human interaction contributed to healthy pres-
sure. This challenging environment honed skills such as project planning,
communication, and reliability, having a profound impact on both the project
and personal development.

6.2 Meeting the Objectives

The objectives established at the beginning of the project serve as a benchmark
to measure the success of this study. Let’s evaluate the project based on
these objectives:

. It is an interface for real-time teleoperation of the Kinova3 robot via
feedback from the Qualisys motion capture system..The robot’s control is optimized, so the lag is unnoticeable for the
participant..Assessed and ensured the safety of the application..Optionally, conduct and evaluate the experiments with the supervisors.. Optionally, create a graphical user interface for running the experiments.

49

6. Conclusion......................................
6.2.1 Development of a Real-time Interface for Teleoperation

The interface for real-time teleoperation of the Kinova3 robot was successfully
built using feedback from the Qualisys cameras.

6.2.2 Optimization of Robot’s Control

A significant accomplishment of this project was optimization of the robot
control. The delay between the speed of the hand and the speed of the robot
on the axis followed was (16.70±3.82) ms on average. When the robot followed
the hand, the error in position tracking was (1.45 ± 0.60) mm on average
and its maximum was 5.8 mm. Thus, the objective was achieved through
many iterations of trying different control modes and finally optimizing the
low-level joint position control mode.

6.2.3 Assessment and Ensurance of Application Safety

Given the direct contact between the participant and the robot, safety was
a paramount concern. The application was rigorously tested and evaluated,
ensuring that the potential hazards were known and reduced to a negligible
degree. The application is safe, yet as it includes a human in the loop, the
experimenters should always proceed with vigilance and be ready to stop the
program or, if necessary, press the stop button and hold the robot so it does
not fall, in case it is needed.

6.2.4 Conducting and Evaluating Pilot Experiments

Optional pilot experiments were conducted and their results were recorded.
Data from the first pilots were already submitted in a conference abstract
to International Multisensory Research Forum 2023. The final pilots (video)
were to ensure that the experiment setup is prepared for future experiments.
The successful execution and evaluation of these experiments demonstrated
the system’s readiness and ability to be a helpful interface allowing to explore
our biological wirings of our senses.

6.2.5 Creation of a Graphical Interface for Experiments

An additional achievement was the creation of a graphical interface to run
the experiments. This feature not only enhanced the user experience but also
allowed the experimenters to focus on the experiment itself rather than the
execution of it.

6.2.6 Comparative Analysis with Cataldo’s Study

Given the fact that study by Cataldo et al. [2, 1] has been an important
reference point for this study, a comparison is indispensable. In the final pilots,
the hand was flipped due to safety concerns about the robot’s workspace. Due
to time constraints, the participant was not seated on the right side of the

50

https://youtu.be/R7eFBe2cnUw

................................ 6.2. Meeting the Objectives

robot, as it was not known whether the cameras would catch the participants’
movements properly. In their study, the participant held a joystick-like handle,
which is not the case here. The participant was holding a mouse in one hand
and the other hand was empty.

Next, by changing the robot, it makes the experiment more flexible and
allows for 3D in the future. The delay was higher with this setup, 16.7 ms
when compared to Cataldo’s 2.5 ms. Here the robot carried an elastic flexible
tool, but not a paintbrush, as the ending was too sharp.

In the original study, there were two virtual walls with force-feedback, which
was not possible here. There was a limit on the robot’s movement, constrained
by its boundary box, and a tape on the table with the mouse acting as a
physical barrier. However, the movement of the robot was controlled and
decided by the participant, which could be more natural.

Furthermore, the experimental design contained only the active movement
scenario, but not the passive as Cataldo did. In their design, they used two
robot arms to achieve passive movement which would not be possible here.

In summary, the designs vary at multiple levels but are similar in others.
The degree of it may change in the future, and the final decision whether the
study is comparable is not conclusive. It is possible to argue on both sides as
the setups were not intended to be the same.

51

52

Chapter 7
Discussion

7.1 Limitations

7.1.1 Latency

As mentioned in Section 3.3 about the network setup, the program controlling
the robot was running on a MacOS machine with a Docker inside. There was
additional lag added by the Docker container, even though it was setup to use
the hosts network, which should have limited the added delay. However, the
delay added by this was around 2 ms, which might have made the control of
the robot at 1 kHz further complicated. There was a possible workaround by
removing the Docker from the loop, but that would have made the program
work only on a specific Ubuntu version and made it more cumbersome to
workout the correct versions of libraries that work together.

7.1.2 Cameras frequency

The cameras were running at 340 Hz, which is very fast, but the controller
was able to run at 1 kHz. It was possible for the cameras to run at 500 Hz,
however, they did not properly mark the 3D keypoints. If there was a faster
way to measure the keypoint positions, it could have improved the following
error and made the tracking simpler, as there could have been only one
timestamp for all the keypoints, robot’s end-effector included.

7.1.3 Flexibility of the robot’s end-effector tool

The robot’s end effector flexible tool is very bendable. This can result in
position errors when following the participants’ hand, making the felt touch
delayed and lag behind. This has to be taken into account when placing the
participant’s hand during the beginning of the experiment.

The next possible improvement might be done by having a stiffer tool, but
flexible enough, not hurting the participants arm.

53

7. Discussion
7.2 Future work

7.2.1 Replication of experiment by Cataldo et al.

With the setup ready, the most straight forward direction is to replicate
the experiment done by Cataldo et al. [2] and compare the results by the
psychologists.

7.2.2 Following in 2D plane and 3D space

One of the future directions of the project is to expand the hand following
the experiment to 2D to accommodate small movements made in the other
direction. This expansion is highly probable and is likely to be a follow-
up project. The next expansion would be into 3D space. That would allow
having complex transformation between the arm and the robot. In the project
code, it was already taken into consideration; however, the safety of such
experiment would require additional testing for safety and there would have
to be a different model of instructions given to the participant. On top of
that, the Z-axis direction was a little more problematic, as the robot tends to
act slower in the Z-axis in comparison to the other axes most likely due to
gravity.

7.2.3 GUI for setting up the experiment

Another possibility for expansion could be having a graphical user interface
for scientists to set up the experiment, where it would be possible to write an
arbitrary transformation using the 3D keypoints and converting it into the
robot goal position. However, it is currently unclear, how the setup of the
instructions for the participant would look like and what capabilities would
be needed. One of the possible paths might be having GUI for that, similar
to creating a presentation or an API allowing it to communicate with more
accessible languages, such as Python.

7.2.4 Improving control and the network delay

There are possible improvements for tracking the hand and tracking the
position of the joint angles of the robots. The hand position and its speed
can be modeled by either constant velocity or constant jerk motion model,
and then it is possible to applay Kalman filter to it. Tracking of the robot’s
position could also be improved by using the Kalman filter.

Finally, it is possible to reduce the network delay by running the Docker
container on a Linux host machine that supports using the host network. On
other platforms, such as MacOS or Windows, it is not supported, and the
alternative adds delay up to a few milliseconds, which is a lot when the robot
is controlled at 1 kHz.

54

Bibliography

[1] A. Cataldo, L. Dupin, H. Gomi, and P. Haggard, “Sensorimotor signals
underlying space perception: An investigation based on self-touch,”
Neuropsychologia, vol. 151, p. 107729, 2021.

[2] A. Cataldo, L. Dupin, H. Dempsey-Jones, H. Gomi, and P. Haggard,
“Interplay of tactile and motor information in constructing spatial self-
perception,” Current Biology, vol. 32, pp. 1301–1309.e3, Mar 2022.

[3] L. Patane, A. Sciutti, B. Berret, V. Squeri, L. Masia, G. Sandini, and
F. Nori, “Modeling kinematic forward model adaptation by modular
decomposition,” in 2012 4th IEEE RAS & EMBS International Con-
ference on Biomedical Robotics and Biomechatronics (BioRob), (Rome,
Italy), p. 1252–1257, IEEE, Jun 2012.

[4] T. Dummer, A. Picot-Annand, T. Neal, and C. Moore, “Movement and
the rubber hand illusion,” Perception, vol. 38, no. 2, pp. 271–280, 2009.
PMID: 19400435.

[5] S. Kuroki and S. Nishida, “Human tactile detection of within- and inter-
finger spatiotemporal phase shifts of low-frequency vibrations,” Scientific
Reports, vol. 8, p. 4288, Mar 2018.

[6] A. DiMercurio, J. P. Connell, M. Clark, and D. Corbetta, “A naturalistic
observation of spontaneous touches to the body and environment in the
first 2 months of life,” Frontiers in Psychology, vol. 9, p. 2613, Dec 2018.

[7] “Definition of TELE.” https://www.merriam-webster.com/
dictionary/tele. Accessed: 2023-4-23.

[8] “Definition of OPERATION.” https://www.merriam-webster.com/
dictionary/operation. Accessed: 2023-4-23.

[9] M. Raul, “History of telerobotics.” http://alvarestech.com/
temp/raul/CursoRobotica2016/Class2_HistoryTelerobotics_
RaulMarin_UJI_06.ppt.pdf, 2016. Accessed: 2023-4-28.

[10] P. Chotiprayanakul and D. Liu, “Workspace mapping and force control
for small haptic device based robot teleoperation,” in 2009 International
Conference on Information and Automation, pp. 1613–1618, 2009.

55

https://www.merriam-webster.com/dictionary/tele.
https://www.merriam-webster.com/dictionary/tele.
https://www.merriam-webster.com/dictionary/operation.
https://www.merriam-webster.com/dictionary/operation.
http://alvarestech.com/temp/raul/CursoRobotica2016/Class2_HistoryTelerobotics_RaulMarin_UJI_06.ppt.pdf
http://alvarestech.com/temp/raul/CursoRobotica2016/Class2_HistoryTelerobotics_RaulMarin_UJI_06.ppt.pdf
http://alvarestech.com/temp/raul/CursoRobotica2016/Class2_HistoryTelerobotics_RaulMarin_UJI_06.ppt.pdf

7. Discussion
[11] M. V. Liarokapis, P. K. Artemiadis, and K. J. Kyriakopoulos, “Mapping

human to robot motion with functional anthropomorphism for teleop-
eration and telemanipulation with robot arm hand systems,” in 2013
IEEE/RSJ International Conference on Intelligent Robots and Systems,
(Tokyo), p. 2075–2075, IEEE, Nov 2013.

[12] H. Reddivari, C. Yang, Z. Ju, P. Liang, Z. Li, and B. Xu, “Teleoperation
control of baxter robot using body motion tracking,” in 2014 Interna-
tional Conference on Multisensor Fusion and Information Integration
for Intelligent Systems (MFI), pp. 1–6, 2014.

[13] F. Marić, I. Jurin, I. Marković, Z. Kalafatić, and I. Petrović, “Robot arm
teleoperation via rgbd sensor palm tracking,” in 2016 39th International
Convention on Information and Communication Technology, Electronics
and Microelectronics (MIPRO), pp. 1093–1098, 2016.

[14] D. Rakita, B. Mutlu, and M. Gleicher, “A motion retargeting method
for effective mimicry-based teleoperation of robot arms,” in Proceedings
of the 2017 ACM/IEEE International Conference on Human-Robot In-
teraction, HRI ’17, (New York, NY, USA), p. 361–370, Association for
Computing Machinery, 2017.

[15] Z. Zhang, Y. Niu, Z. Yan, and S. Lin, “Real-time whole-body imitation
by humanoid robots and task-oriented teleoperation using an analytical
mapping method and quantitative evaluation,” Applied Sciences, vol. 8,
p. 2005, Oct 2018.

[16] F. Porta, C. T. Recchiuto, M. Casadio, and A. Sgorbissa, “Towards
a framework for the whole-body teleoperation of a humanoid robot in
healthcare settings,” in Social Robotics: 14th International Conference,
ICSR 2022, Florence, Italy, December 13–16, 2022, Proceedings, Part II,
(Berlin, Heidelberg), p. 288–298, Springer-Verlag, 2023.

[17] L. Gutzeit, A. Fabisch, M. Otto, J. H. Metzen, J. Hansen, F. Kirchner,
and E. A. Kirchner, “The besman learning platform for automated robot
skill learning,” Frontiers in Robotics and AI, vol. 5, p. 43, 2018.

[18] J. Sandoval, M. A. Laribi, J. Faure, C. Breque, J.-P. Richer, and
S. Zeghloul, “Towards an autonomous robot-assistant for laparoscopy
using exteroceptive sensors: feasibility study and implementation,” IEEE
Robotics and Automation Letters, vol. 6, no. 4, pp. 6473–6480, 2021.

[19] K. Darvish, L. Penco, J. Ramos, R. Cisneros, J. Pratt, E. Yoshida,
S. Ivaldi, and D. Pucci, “Teleoperation of humanoid robots: A survey,”
IEEE Transactions on Robotics, pp. 1–22, 2023.

[20] J. Carpentier, G. Saurel, G. Buondonno, J. Mirabel, F. Lamiraux,
O. Stasse, and N. Mansard, “The pinocchio c++ library – a fast and
flexible implementation of rigid body dynamics algorithms and their

56

..................................... 7.2. Future work

analytical derivatives,” in IEEE International Symposium on System
Integrations (SII), 2019.

[21] S. Lloyd, R. A. Irani, and M. Ahmadi, “Fast and robust inverse kinematics
of serial robots using halley’s method,” IEEE Transactions on Robotics,
vol. 38, no. 5, pp. 2768–2780, 2022.

[22] C. Jay, M. Glencross, and R. Hubbold, “Modeling the effects of delayed
haptic and visual feedback in a collaborative virtual environment,” ACM
Transactions on Computer-Human Interaction, vol. 14, p. 8, Aug 2007.

[23] T. Kaaresoja, E. Hoggan, and E. Anttila, Playing with Tactile Feedback
Latency in Touchscreen Interaction: Two Approaches, vol. 6947 of Lecture
Notes in Computer Science, p. 554–571. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2011.

[24] J. C. V. S. Junior, S. N. Silva, M. F. Torquato, T. Mahmoodi, M. Dohler,
and M. A. C. Fernandes, “Fpga applied to latency reduction for the
tactile internet,” Sensors, vol. 22, no. 20, 2022.

[25] S. Haddadin and E. Croft, Physical Human–Robot Interaction, pp. 1835–
1874. Cham: Springer International Publishing, 2016.

[26] ISO Central Secretary, “Robots and robotic devices - safety requirements
for industrial robots - part 1: Robots,” ISO Standard ISO 10218-1:2011,
International Organization for Standardization, Geneva, Switzerland,
2011.

[27] ISO Central Secretary, “Robots and robotic devices - safety requirements
for industrial robots - part 2: Robot systems and integration,” ISO Stan-
dard ISO 10218-2:2011, International Organization for Standardization,
Geneva, Switzerland, 2011.

[28] ISO Central Secretary, “Robots and robotic devices - collaborative
robots,” ISO Standard ISO/TS 15066:2016, International Organization
for Standardization, Geneva, Switzerland, 2016.

[29] P. Svarny, J. Rozlivek, L. Rustler, M. Sramek, Özgür Deli, M. Zillich,
and M. Hoffmann, “Effect of active and passive protective soft skins on
collision forces in human–robot collaboration,” Robotics and Computer-
Integrated Manufacturing, vol. 78, p. 102363, Dec 2022.

[30] P. Svarny, J. Rozlivek, L. Rustler, and M. Hoffmann, “3d collision-force-
map for safe human-robot collaboration,” in 2021 IEEE International
Conference on Robotics and Automation (ICRA), pp. 3829–3835, IEEE,
2021.

[31] Clearpath Robotics, “Kinova Gen3.” https://store.
clearpathrobotics.com/products/kinova-gen-3, 2023. Accessed:
2023-4-23.

57

https://store.clearpathrobotics.com/products/kinova-gen-3
https://store.clearpathrobotics.com/products/kinova-gen-3

7. Discussion
[32] A. Rojík, “Teleoperation of Kinova3 Robot using Qualisys Mo-

tion Cameras.” https://gitlab.fel.cvut.cz/body-schema/
qualisys-kinova-interface/, 2023.

[33] “Ergorest 330-series.” https://www.ergorest.fi/products/
330-series/, 9 2021. Accessed: 2023-5-8.

[34] Kinova Robotics, “Kinova3 User Guide.” https://www.kinovarobotics.
com/uploads/User-Guide-Gen3-R07.pdf, 2022. Accessed: 2023-3-11.

[35] “Docker - what is a container?.” https://www.docker.com/resources/
what-container/, 2 2023. Accessed: 2023-5-8.

[36] “X.org.” https://www.x.org/wiki/, 5 2023. Accessed: 2023-5-8.

[37] D. Durakovic, “mINI.” https://github.com/pulzed/mINI, 2018. Ac-
cessed: 2023-05-26.

[38] N. Lohmann, “JSON for Modern C++.” https://github.com/
nlohmann/json, 2013. Accessed: 2023-05-26.

[39] Kinova Robotics, “KINOVA® KORTEX™ API.” https://github.com/
Kinovarobotics/kortex, 2021.

[40] B. J. Snyder, “PID C++ implementation.” https://gist.github.com/
bradley219/5373998, 2019. Accessed: 2023-05-26.

[41] Qualisys AB, “Qualisys Realtime SDK.” https://github.com/
qualisys/qualisys_cpp_sdk, 2 2022.

[42] wxWidgets Development Team, “wxwidgets.” https://www.wxwidgets.
org, 2018. Accessed: 2023-4-28.

[43] S. Lloyd, R. A. Irani, and M. Ahmadi, “QuIK Codebase.” https://
github.com/CarletonABL/QuIK, 2022.

58

https://gitlab.fel.cvut.cz/body-schema/qualisys-kinova-interface/
https://gitlab.fel.cvut.cz/body-schema/qualisys-kinova-interface/
https://www.ergorest.fi/products/330-series/
https://www.ergorest.fi/products/330-series/
https://www.kinovarobotics.com/uploads/User-Guide-Gen3-R07.pdf
https://www.kinovarobotics.com/uploads/User-Guide-Gen3-R07.pdf
https://www.docker.com/resources/what-container/
https://www.docker.com/resources/what-container/
https://www.x.org/wiki/
https://github.com/pulzed/mINI
https://github.com/nlohmann/json
https://github.com/nlohmann/json
https://github.com/Kinovarobotics/kortex
https://github.com/Kinovarobotics/kortex
https://gist.github.com/bradley219/5373998
https://gist.github.com/bradley219/5373998
https://github.com/qualisys/qualisys_cpp_sdk
https://github.com/qualisys/qualisys_cpp_sdk
https://www.wxwidgets.org
https://www.wxwidgets.org
https://github.com/CarletonABL/QuIK
https://github.com/CarletonABL/QuIK

	Glossary
	Introduction
	Motivation
	Objectives

	Related work
	Psychology behind the experiment
	Teleoperation
	History of teleoperation
	Studies with similar experimental setups

	Inverse kinematics (IK)
	Lag during user interaction
	Safety
	Conclusion

	Hardware, Setup and Software Platforms
	Hardware
	Cameras – Qualisys 3D Motion Capture
	Robot – Kinova Gen3 with Robotiq 2F-85 gripper

	Setup of the experiments
	First pilot setup
	Final setup

	Network
	Software
	Gathering data from cameras
	Robot controller

	Implementation
	Introduction
	Implementation strategy
	Frameworks and Libraries

	Code, States and Configuration
	Code structure
	States of the program
	Configuration

	Robot Control
	Optimizing the robot control
	Trajectory interpolation
	Low-level controller

	Experimentation
	Recording the experiments
	Graphical user interface (GUI)
	Safety considerations

	Summary

	Assessment of the implementation
	Interface for real-time teleoperation of the Kinova Gen3 robot
	Latency of the whole control loop
	Safety of the experiment
	Graphical user interface usability
	Evaluating the experiments

	Conclusion
	Accomplishments
	Meeting the Objectives
	Development of a Real-time Interface for Teleoperation
	Optimization of Robot's Control
	Assessment and Ensurance of Application Safety
	Conducting and Evaluating Pilot Experiments
	Creation of a Graphical Interface for Experiments
	Comparative Analysis with Cataldo's Study

	Discussion
	Limitations
	Latency
	Cameras frequency
	Flexibility of the robot's end-effector tool

	Future work
	Replication of experiment by Cataldo et al.
	Following in 2D plane and 3D space
	GUI for setting up the experiment
	Improving control and the network delay

	Bibliography

