
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Creating a plugin for managing partners on
the web

Margarita Gorbatenko

Supervisor: Ing. Tomáš Vondra, Ph.D.
Field of study: Software Engineering and Technology
May 2023

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE

495570 Osobní číslo:​Margarita Jméno:​Gorbatenko Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:​

Tvorba pluginu pro správu partnerů na webu

Název bakalářské práce anglicky:​

Creating a plugin for managing partners on the web

Pokyny pro vypracování:​
Czech-American TV (CATVUSA) is a non-profit TV promoting the Czech Republic in the USA. They need help editing​
their website to support marketing/fundraising campaigns.​
1. Familiarize yourself with the Wordpress CMS and creating plugins for it.​
2. In cooperation with the TV producer, collect requirements for the administration and displaying of partners on the website.​
3. Implement a plugin that will manage all spaces for the promotion of partner organizations.​
4. Design and implement a new API for this plugin as well as the older radio station plugin, so that their content can be​
displayed on mobile and Smart TV applications.​
5. Properly test the plugin and API using code validators and perform user testing of the functionality of both parts.​
6. Create documentation and a user manual for the created work.​

Seznam doporučené literatury:​
1. WordPress Plugins [online]. WordPress.org. [Cit. 2021-01-25]. Dostupné z: https://wordpress.org/plugins/.​
2. Plugin Developer Handbook [online]. WordPress.org. [Cit. 2021-03-02]. Dostupné z:​
https://developer.wordpress.org/plugins/.​
3. MESSENLEHNER, B. a COLEMAN, J. Building Web Apps with Word-Press, 2nd edition. Sebastopol, CA: O-Reilly​
Media, Inc., 2019. 546 s. ISBN 9781491990087.​

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

Ing. Tomáš Vondra, Ph.D. katedra počítačových systémů FIT

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

Termín odevzdání bakalářské práce: 26.05.2023 Datum zadání bakalářské práce: 14.02.2023

Platnost zadání bakalářské práce: 22.09.2024

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
podpis vedoucí(ho) ústavu/katedry​Ing. Tomáš Vondra, Ph.D.​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ
Studentka bere na vědomí, že je povinna vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studentky

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank Ing. Tomas Von-
dra, Ph.D. for his professional advises and
John Honner for his time and help. I
would also like to thank my family and
friends for their support.

Declaration
I hereby declare that the presented the-

sis is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

I acknowledge that my thesis is sub-
ject to the rights and obligations stipu-
lated by the Act No. 121/2000 Coll., the
Copyright Act, as amended. In accor-
dance with §2373 paragraph 2 of Act No.
89/2012 Coll., Civil Code, as amended,
I hereby grant a non-exclusive authoriza-
tion (license) to use this work of mine,
including all computer programs that are
part or appendices thereof and all their
documentation (hereafter referred to as
the "Work"), to all persons who wish to
use the Work. Such persons are entitled
to use the Work in any manner that does
not diminish the value of the Work and
for any purpose (including use for profit).
This authorization is unlimited in terms
of time, territory and quantity.

In Prague, May 26, 2023

v

Abstract
Czech-American TV organisation needs
help with editing its website to support
marketing/fundraising campaigns. This
project presents an analysis and solution
of the problems found.

Keywords: plugin, requirements
analysis, PHP, WordPress,
Czech-American TV

Supervisor: Ing. Tomáš Vondra, Ph.D.

Abstrakt
Organizace Czech-American TV potře-
buje pomoc s úpravou svých webových
stránek pro podporu marketingovych/-
fundraisingovych kampaní. Tento projekt
představuje analýzu a řešení nalezených
problémů.

Klíčová slova: plugin, analýza
požadavků, PHP, Wordpress,
Czech-American TV

Překlad názvu: Tvorba pluginu pro
správu partnerů na webu

vi

Contents
1 Introduction 1
2 Theory 3
2.1 HTML, JavaScript, CSS 3
2.2 PHP . 3
2.3 Programming and testing tools . . 4

2.3.1 XAMPP 4
2.3.2 PhpStorm 4

2.4 WordPress . 4
2.4.1 Post Type 5
2.4.2 Taxonomy 5
2.4.3 Plugins . 5
2.4.4 Themes . 5
2.4.5 Hook . 6

2.5 API . 7
2.5.1 HTTP Statuses 7
2.5.2 REST API 7
2.5.3 WordPress REST API 7

3 Analysis 9
3.1 Goals of the project 9
3.2 Sponsor . 9
3.3 Current state 10

3.3.1 Website 10
3.3.2 Partners banners 11
3.3.3 Radio manager plugin 15
3.3.4 AndroidTV application 18

3.4 Desired outcome 19
3.4.1 Customer requirements for

administration of partners banners 19
3.4.2 Customer requirements for

applications-plugins communication
problem . 20

4 Suggested solution 21
4.1 Administration of partners

banners . 21
4.2 Communication between custom

plugins and applications 22
4.2.1 Description and reasoning of

the proposed solution 22
5 Implementation 23
5.1 Partner Banner Administration . 23

5.1.1 Frontend 23
5.1.2 Backend 28

5.2 API plugin 32
5.2.1 Radio Manager API 33

5.2.2 Partner Banner Administration
API . 34

5.2.3 Endpoints 35
6 Testing 39
6.1 Testing code with a validation

service . 39
6.2 User Testing 39

6.2.1 Pre-testing questions 40
6.2.2 Test scenario 40
6.2.3 Feedback 41
6.2.4 Result . 42

7 Conclusion 43
7.1 Conclusion 43

7.1.1 Partner Banner Administration
plugin . 43

7.1.2 API for custom plugins 44
Bibliography 47
Attachment 51
1.1 Partner Banner Administration

User Manual 51
1.1.1 Installation and launch 51
1.1.2 Administration Page 53

1.2 Extended API User Manual 59
1.2.1 Installation and launch 59
1.2.2 Endpoints 60

vii

Figures
2.1 Most popular content management

systems. Source: w3techs.com 4

3.1 Czech-American TV logo 10
3.2 Homepage 10
3.3 Banners with partners 11
3.4 Broadcast Partners on Homepage 12
3.5 Custom Sidebars Administration

user interface 12
3.6 A sidebar that contains partner

banners . 13
3.7 HTML sctructure of a page. A div

element with a sidebar for partners
banners and a div with the content of
the page . 13

3.8 HTML structure of banner’s
container . 14

3.9 Administration is not
user-friendly 14

3.10 Audio program on the website . 15
3.11 Radio station’s playlist settings 16
3.12 getData() function in Radio

Manager plugin 17
3.13 AndroidTV application 18
3.14 Player in TV application 18
3.15 Hard coded names of radio

stations: "cultural", "classical", "folk" 19

5.1 Administration of Partner’s
banners. 24

5.2 Request to the server to get data
about all banners to display them in
the table. 24

5.3 The process of creation of the each
row in the table. 24

5.4 Popup with form to add a new
banner . 25

5.5 End of popup with form to add a
new banner. 25

5.6 Categories in form 26
5.7 The process of getting list of pages

from server. 26
5.8 The process of creating a list of

banner’s checked categories. 26
5.9 Warnings in form. 27
5.10 Warnings in form. 27

5.11 Popup with form to edit a
banner. 27

5.12 Confirmation window to delete a
banner. 28

5.13 Banner’s preview. 28
5.14 The hook that adds the main

page of the plugin. 29
5.15 Activation and deactivation

hooks. 29
5.16 Inserting Logo to the WP media

library . 29
5.17 Inserting Post to the WP

database. 30
5.18 Getting attachment URL. 30
5.19 Saving Post metadata to the WP

database. 31
5.20 The process of creating HTML of

the banner . 32
5.21 Registration of scheduled event. 32
5.22 The process of registration of the

REST route. 33
5.23 The process of getting data from

Radio Manager plugin. 34
5.24 Get all data (Postman). 35
5.25 Get the data for a TV player
(Postman). 36

5.26 Get playlist data (Postman). . . 36
5.27 Get warning data (Postman). . 37
5.28 Get settings data (Postman). . . 37
5.29 Get banners’ data (Postman). . 38

6.1 Markup validation result. 39

viii

Tables

ix

Chapter 1
Introduction

In this chapter I am introducing the reader to the issues that this thesis is
dealing with.

Czech-American TV is a non-profit organization that promotes culture
and traditions of Czech Republic in the USA. Czech-American TV has a
website (catvusa.com [1]), which provides educational programs about the
Czech Republic, articles about traditions, language lessons, radio stations.

Czech-American TV has an AndroidTV application with videos, radio
stations and podcasts. Application was written by a CTU student Ing.
Viktor Sinelnikov [2]. Also, there is another Smart TV application created by
CTU student Bc. Matúš Viščor as his Master’s thesis (Smart TV application
development for a nonprofit TV).

Organisation uses WordPress and plugins written by students to manage
its website. The WordPress content management system is well-known for its
simplicity, compatibility and adaptability on computers and mobile devices. It
is a tool that allows user to create web applications and easily manage websites
[3]. Currently, the TV application has problems with the plugins functionality.
Also, there are some things to be improved in website’s functionality. This
project presents an analysis and solution to these problems.

Goals of this thesis are:.Get to know CMS WordPress and the process of creating plugins.To analyse current state of the website and application, get the details
about requirements from the sponsor (Czech-American TV).To propose the administration for managing the partners’ promotions
on the website and applications. Implement a plugin that will ensure the management of the promotion
of partner organizations.Design and implement a new API for this plugin as well as for older
plugins (Radio Station).To test the result with validators and user testing.To create a documentation and a user manual

1

1. Introduction
The theoretical part [2] of the project includes all needed theory about

technologies such as WordPress, API and other.
Analysis part [3] contains information about sponsor. It also describes

current status and desired outcome of web pages and application.
Solution part [4] contains proposed solution, based on customer require-

ments.
Implementation part [5] includes description of the implementation and

the outcome, based on proposed solution.
Testing part [6] describes the process and results of code tests and user

testing.
And, in the end, Conclusion part [7] summarizes the work done and

compares the final result with the initial requirements.

2

Chapter 2
Theory

In this chapter I describe technologies that will be required for deployment of
solution.

2.1 HTML, JavaScript, CSS

HTML, JavaScript and CSS are the three main technologies used to create
interactive and stylish web pages. They work on the client side, also known
as the frontend. They run directly in the user’s browser and are responsible
for displaying and interacting with the web page.

HTML (stands for HyperText Markup Language) is a markup language
used to define the structure and content of a web page. It is the most basic
building block of the Web [4].

HTML5 is the latest version of the HTML standard. It is a set of web
technologies, which are the HTML Living Standard, along with JavaScript
APIs to enhance storage, multimedia, and hardware access [5].

JavaScript is one of the most popular interpreted programming language
that runs on the client side (web browser) and is widely used to create
dynamic web pages, web applications, games, mobile applications, etc. [6]
Generally, JavaScript is used to add interactivity and functionality based on
events and user actions. JavaScript can change the content of the web page
and structure of an HTML document using the DOM (Document Object
Model). It can change the content dynamically, without the need to reload
the page. There are many JavaScript libraries and frameworks such as React,
Angular, jQuery, and others that make it easy to develop web applications
and provide many ready-made solutions and tools.

CSS (Cascading Style Sheets) is a style language that is used to define the
appearance of web pages [7]. It defines the style of HTML elements.

2.2 PHP

PHP is a scripting programming language that is widely used for developing
web applications and dynamic websites [8]. PHP code is executed on the

3

2. Theory
server (backend). The server processes requests from clients and generates
HTML pages that are sent back to the client side for display [9].

2.3 Programming and testing tools

2.3.1 XAMPP

XAMPP (Cross-Platform, Apache, MySQL, PHP, and Perl) is a software
that provides an environment for developing, running and testing web appli-
cations on a local server. It includes Apache web server, MySQL database
management system, PHP interpreter and other tools [10].

2.3.2 PhpStorm

PhpStorm is an integrated development environment (IDE) by JetBrains [11].
It allows to develop and debug applications in PHP, HTML, CSS, JavaScript,
and other web development languages. PhpStorm also has version control
systems, such as Git, built-in code analysis, web development frameworks
and tools, remote development and other features that allow developers to
code, test and debug web applications efficiently.

2.4 WordPress

WordPress is free open-source Content Manager System (CMS) written in
hypertext preprocessor language (PHP) and MySQL [3]. WordPress is used
to create websites, blogs or other applications. According to official statistics,
WordPress is used on 43 percent of websites worldwide, surpassing open
source CMS such as Joomla or Drupal [12].

Figure 2.1: Most popular content management systems. Source: w3techs.com

Built-in system of plugins allows to construct projects with wide function-
ality. The core structure of WordPress website is similar to a set of building
blocks. The page content is located in main containers: header, sidebar/menu,
content, footer, and other optional elements. In the WP root directory there
are three core folders: wp-content, wp-includes, and wp-admin. [13]

4

......................................2.4. WordPress

2.4.1 Post Type

Post type is the way in which WordPress can sort content. [14] It is used to
create archives with thematically similar posts. Post type is one of the main
areas in WordPress that developers work with. In WordPress blog posts and
pages are all post type and developer needs to add new post type to extend
functionality. Using the register_post_type() function you can register
your own post type. WordPress by default offers several post types:. Posts. Pages.Attachments. Revisions. Navigation Menus. Custom CSS. Changesets

2.4.2 Taxonomy

Taxonomy is a way of grouping things, such as post and custom post types,
together. [15] For example, default taxonomies are tags and categories. Word-
Press stores taxonomies in a term_taxonomy database table. Developers
can register their own taxonomies in the same table along with existing ones.

2.4.3 Plugins

There are more than 50000 free WordPress plugins to expand project’s
functionality [16]. The most popular are, for example, Yoast SEO, Akismet,
Imagify, WP Rocket. Plugins allows you to expand the functionality of
the website and modify its inner logic. Using plugins, you can add to your
project galleries, forums, social media widgets, spam protection, search engine
optimization, etc. You can also create complex plugins by yourself with
HTML, CSS and JS, as well as PHP. A WordPress plugin should have
a required unique header and should be located in wp-content/plugins
directory. A plugin applies to all WordPress themes, executes on page load
when activated and serves one main purpose. [17]

2.4.4 Themes

WordPress themes are templates that define the look, structure and style of
website pages. Themes could be found in wp-content/themes directory.
[18] They composed of a set of files, that define a layout of web pages. Such
files are written on PHP and HTML and include header.php, page.php,

5

2. Theory
sidebar.php,footer.php, etc. The template files may include calls to Word-
Press core functions such as get_header(), get_footer(), get_sidebar(),
etc. This allows to display content dynamically. Administration of themes
is possible through the WordPress admin panel, where user can activate or
deactivate themes.

Sidebars and widgets

Sidebars and widgets are theme features. Sidebar is a feature provided
for displaying side information on a web page, they are located in theme’s
directory, usually in sidebar.php file [19]. Sidebars are placed on the
side, bottom or top of the page, depending on design settings of the theme.
Administrator of the website can customize sidebars, for example, using
Custom Sidebars plugin. Sidebar area usually contain widgets. Widgets
are small blocks of content or functionality, for example, calendar, search,
banner, etc. Usually, they could be found in functions.php file in theme’s
directory [20]. WordPress allows users to create custom widgets as well.

2.4.5 Hook

Hook is the main mechanism of interaction, communication between the core
of WordPress and plugins, themes [21]. To use a hook, you need to write a
Callback function. There are two types of hooks:.Actions allow you to add data or change the behavior of WordPress

[22]. They are activated at a specific point of WordPress core code flow.
Actions step into the code flow to perform their action. After the action
is executed, the flow returns to its normal course. Callback functions for
actions don’t return anything.. Filters allow you to modify data during the execution of a WordPress
core flow [23]. A filter Callback function takes a variable, modifies it,
and returns it back.

There are three the most important hooks for creating a plugin for WordPress
[24]:.The activation hook (register_activation_hook()) runs when plugin

is activated. It is usually used for setting up some settings..The deactivation hook (register_deactivation_hook()) runs when
plugin is deactivating. It may be used, for example, to provide functions
to delete temporary data..The uninstall hook (register_uninstall_hook()) runs after plugin is
deleted. It may be used to clean all data created by plugin.

6

...2.5. API

2.5 API

API (Application Programming Interface) is a description of how one com-
puter program interacts with other programs [25]. It is an interface for
communication between applications. API contains a collection of classes,
methods, functions, and protocols that allow one application to communicate
with another, mutually synchronize user or system data. API simplifies the
programming process when creating applications by abstracting the basic
implementation and providing only the objects or actions developer needs.
In a web environment, the API is used to communicate between a web solu-
tion and a remote API. Both parties usually communicate through standard
communication protocol HTTP/S with platform-independent formats such as
XML, CSV or JSON. These formats send data in a standardized notation and
both sides are able to read these notations (parse) and create new (generate).

2.5.1 HTTP Statuses

The statuses are sent with the response to the request through the API. The
response statuses and their decoding are listed below. HTTP status is a part
of the first line of the server response for HTTP requests. A set of statuses
is a standard, they are described in the relevant RFC documents. A status
contains three symbols. The first one indicates the status class:. 1xx - Informational;. 2xx - Success;. 3xx - Redirection;. 4xx - Client Error;. 5xx - Server Error.

2.5.2 REST API

REST (REpresentational State Transfer) is an architectural style, a set of
concepts and principles [26]. REST implements client and server indepen-
dently. Services in the REST API interact via HTTP (Hypertext Transfer
Protocol).

2.5.3 WordPress REST API

The WordPress REST API is the application interface for interacting with
a WordPress site. The API provides REST endpoints (URLs) representing
built-in WordPress data types, for instance, Taxonomies and Post Types.
Using API, an application sends and receives data in JSON (JavaScript Object
Notation) format to endpoints to create, modify, or query content on the
website.

7

8

Chapter 3
Analysis

In this chapter I recall main goals of the project, then describe the original
state of website and application from a visual and implementation points of
view, as well as the desired outcome with customer’s requirements.

3.1 Goals of the project

As I mentioned in the Introduction [1], main goals of this thesis are as
following:.To understand the structure of the sponsor’s website, applications, plug-

ins, etc..To analyze sponsor’s requirements..To propose and implement a WordPress plugin for managing the partners’
promotions on the website and applications. This plugin’s user interface
will be more user-friendly. Also, it should provide more options than the
current one..To design and implement a new API for this plugin as well as for older
plugins.

The desired result is described in more detail at the end of the chapter.

3.2 Sponsor

Czech-American TV also known as CATV USA is a non-profit organization
founded in 2003. The main purpose of this organization is to spread knowledge
about Czech culture and traditions in the United States. The founder and
director of CATV USA is John Honner, an American producer of Czech
descent. CATV USA website (catvusa.com [1]) offers Czech language lessons,
articles on Czech traditions, recipes of Czech cuisine, ancestry searches for
Americans with Czech roots, facts about the Czech Republic, three internet
radios with Czech folk, classical music and cultural podcasts. Same content is
in CATV USA AndroidTV application. Professionals, students and teachers

9

3. Analysis

Figure 3.1: Czech-American TV logo

from the USA and the Czech Republic participate on the improvement
of website and application as volunteers. They maintain web pages, create
content for videos and lessons, etc. Students from Czech universities, including
CTU, have been working on the development and management of the website,
content, etc. for more than ten years. As a result, application for AndroidTV,
plugins and WordPress templates have been developed.

3.3 Current state

3.3.1 Website

Figure 3.2: Homepage

CATVUSA website is located on catvusa.com [1]. It has posts with lessons,
traditions, information about Czech cities, as well as three radio stations

10

.................................... 3.3. Current state

and broadcasts. The internal data structure is managed through WordPress
admin page. Content (videos and pictures) is gathered into different post
types. Each post type has its own taxonomy. Users’ membership are managed
through the S2Member Pro plugin. This plugin allows you to assign a
level of access to each user [27]. Video content is managed in the WPlyr
plugin, created by a student of UWB Jakub Vaverka [28]. Usually, videos are
uploaded to the WordPress media storage, from which they go to the web.
However, on CATVUSA pages videos are uploaded to the plugins directory.
WPlyr plugin integrates uploaded video into the content on the page. Each
video post has an intro, a video itself and an outro. This plugin helps to
create and maintain that structure. Radio stations are managed by a Radio
Manager plugin, created by a CTU student Karel Vrabec [29].

3.3.2 Partners banners

On many pages of the website there are banners with information about the
partners of the organization. CATVUSA is a non-profit organization, therefore
it is important to represent and thank sponsors and partner organizations.

Figure 3.3: Banners with partners

Also, there are partners representation on homepage in the Broadcast
Partners section and Partners’ Stories section.

Management of these banners is performing by the user in admin panel.
Administrator can manage banners’ settings through the Custom Sidebars
plugin [30]. However, this process is very inconvenient. Admin must rewrite
a part of a pre-written code to add a new partner banner (the process is
described in more detail in the next section 3.3.2). The customer is not
a programmer and, despite the fact that this process is described step by

11

3. Analysis

Figure 3.4: Broadcast Partners on Homepage

step in the manual, he complains about the complexity and not user friendly
interface.

The Smart Slider plugin [31] controls the display and scrolling of banners
with partner logos in the carousel on Homepage and Our Partners page. The
plugin provides a convenient and intuitive dashboard interface for managing
banners.

Custom Sidebars

Custom sidebars is a WordPress plugin by the WebFactory Ltd [30]. It is a
flexible widget area manager that allows user to move, add, edit and delete
classic widgets and sidebars on website pages. Administration of the Custom
Sidebars for the CATVUSA website is available through the admin menu.

Figure 3.5: Custom Sidebars Administration user interface

As stated in the theme written for the CATVUSA website, each page of
the post or page type contains a div class="broadcast-content" and a
div class="broadcast-partners-container".

12

.................................... 3.3. Current state

The "broadcast-content" div has the content of the page itself, whether it
is text, video player, pictures, etc.

The div class="broadcast-partners-container" contains a sidebar with a
widget with partner’s banner. It includes a div with the title Page partners
and a div containing a banner with the partner’s name, description, link to
the website and logo.

Figure 3.6: A sidebar that contains partner banners

Figure 3.7: HTML sctructure of a page. A div element with a sidebar for
partners banners and a div with the content of the page

This page’s structure is declared in the website theme, in the files wp-
content/themes/tv/singular.php and wp-content/themes/tv/custom-
page-class.php (fig. 3.8).

13

3. Analysis

Figure 3.8: HTML structure of banner’s container

To add a new banner to a web page, user goes to the Custom Sidebars
administration, copies and pastes into the desired field HTML-code, adding
there all the necessary data about the partner (name, link to the site, descrip-
tion and link to a logo picture). Then user sets, on which pages he wants to
see this banner.

After, the plugin takes the entered HTML code of and inserts it into a
div class="broadcast-partners-container" on the desired page/pages.
Deletion and editing takes place on the admin page of the Custom Sidebars
plugin.

Figure 3.9: Administration is not user-friendly

14

.................................... 3.3. Current state

Problems with Custom Sidebars

The Custom Sidebars plugin, however, does not fully satisfy all the wishes
of the customer. The main complaints are that adding new banners is
inconvenient for the user who is not familiar with HTML. The customer needs
to edit the partner’s data in the HTML code himself.

Also, on each page, where the banners are, he would like to see them
randomly changing their order among themselves, once in a while. These
functions are not available in the Custom Sidebars.

Despite the fact that the Custom Sidebars plugin allows you to select
categories and Post Types on which the banner will be displayed, the customer
would like to expand this selection so that he can add banners to selected
single pages and to all pages of the website.

3.3.3 Radio manager plugin

Figure 3.10: Audio program on the website

Radio manager plugin, developed by CTU student Karel Vrabec [29], manages
radio stations on CATVUSA web pages. The plugin allows to create and
manage playlists, genres, musicians, shuffle playlists etc. On WordPress ad-
ministration page it has three important sections: Radio Stations, Musicians,
Genres.

Every radio station in Radio Stations section is represented as a custom
created post type called rm_radio_station. In the Radio Stations section
you can edit, delete or add radio station.

Musicians section is another list where you can add, edit or delete posts
with musicians. Each musician is represented as a post named rm_musician.
Each post contain a title (musician’s name), content (description) and a cover
photo. Also, musician can be assign to a specific genre. The listed media are
uploaded to the media library and shuffled for playback.

Genres section is a list of posts where you can add, edit or delete taxonomy
terms rm_genre. You can assign musicians to different genres, from which

15

3. Analysis
a playlist of the radio station is created.

Shortcode

Every radio station contains a shortcode, which is used for connecting
frontend and backend parts. Shortcode has an identification number of the
radio contribution station. Admin can copy a shortcode and insert it into
any post. For example, this way admin can insert a radio station to the web
pages. WordPress function add_shortcode() runs after the init hook. It has
following parameters: a tag (rm_radio_station) and a callback function to
run if the shortcode is found. Callback returns HTML code <div data-rm-
output-id="<cislo>"></div>. During parsing, shortcode is replaced by
this HTML code with the post ID of the radio station. Thus, after loading
the web page, instead of the shortcode, the player of the radio station is
displayed.

Radio station settings

Radio station settings are available on the WordPress admin page. This
section contains important playlist settings: you can change image duration
and permalink, set music genres, as well as number of musicians and number
of recordings for each genre. This way admin sets all the necessary preferences
to compose a playlist. This functionality was created by Karel Vrabec, using
the Advanced Custom Fields plugin, as a part of his work on the Radio
Manager plugin [29].

Figure 3.11: Radio station’s playlist settings

While loading radio player, this information goes from WordPress web page
to the Radio manager plugin. Using getData($radioStationID) function

16

.................................... 3.3. Current state

Radio Manager takes the following data and then processes it to compose a
playlist:. radioName.musicianCaption. recordCaption. imgDuration. logo.warningData. postData. playlistData

Figure 3.12: getData() function in Radio Manager plugin

17

3. Analysis
3.3.4 AndroidTV application

The AndroidTV application was created a year ago by a CTU student Viktor
Sinelnikov [2]. The application was developed to provide the same functional-
ity as the website. There are several plugins that help TV application interact
with WordPress core. One of the most important of them is WP REST
API. This plugin provides REST endpoints to access data from WordPress
media storage. The application gets data from WordPress media storage and
saves them to the local storage using Room library. In order to send content
to the application, admin adds necessary post types to the android_tv
taxonomy.

Figure 3.13: AndroidTV application

Figure 3.14: Player in TV application

18

................................... 3.4. Desired outcome

AndroidTV application partly fulfills the requirements. However, there are
some problems.

Problems in TV application

Some parts of the website’s functionality are provided by custom plugins, for
example, managing radio stations by Radio manager. However, this plugin
does not offer the ability to fully interact with its logic, because there is only
an API with limited functionality that is not adapted to work with custom
plugins. This way, TV application had to use its own business logic in this
part of application’s functionality. This has resulted in a noticeable difference
between the operation of the radio stations on the website and in the TV
application. It also led to a limited radio functionality in the application.
CATVUSA TV application’s logic is not able to adapt dynamically to the
changes, that are made on WordPress admin page. If there will be any
changes, someone has to go to the source code of the application to make the
change also for AndroidTV. For example, names of radio stations are hard
coded into the application code. That way, if any radio station will be added
to the WordPress admin panel, it will not appear in the TV application.

Figure 3.15: Hard coded names of radio stations: "cultural", "classical", "folk"

Therefore the application differs from the website in its behavior in some
places.

3.4 Desired outcome

Customer requirements can be divided into two main parts: 1) requirements
for the administration of partners and 2) solution to the the problem of
communication between applications and plugins.

3.4.1 Customer requirements for administration of partners
banners

Functional requirements.Administration page of the solution should allow user to:.Add a banner to all pages of the website;.Add a banner to all pages of a specific category;

19

3. Analysis
.Add a banner to the specific page;. Remove a banner from all pages of the website;. Remove a banner from all pages of a specific category;. Remove a banner from the specific page;. Edit a banner;. Solution should make possible to randomly change the order of displaying

banners, for example, once every 24 hours;.The banner must contain a name, a description, a link to the website of
the partner organization and a logo. Logo picture should work as a link
to a partner’s website as well.

Non-functional requirements. User-friendly administration page;. Compatibility with the latest version of WordPress;. Correct work in all popular browsers such as Chrome, Firefox, Edge;. Efficient use of the WordPress database.

3.4.2 Customer requirements for applications-plugins
communication problem

Functional requirements. Solution should provide information about radio stations and recordings,
including information configured in settings of the Radio Manager plugin;. Solution should provide information related to the breaks between music
in the form of advertisements or announcer messages, which is not
currently in the application, but is on the site;. In application, radio stations should use the same media files (pictures,
songs) that are used on the web pages;. Solution should provide information about partner banners;. Solution should provide proper documentation.

Non-functional requirements.The solution must be designed to work with whatever applications the
organization plans to deploy in the future (AndroidTV, Android for
smartphones, Samsung, LG etc.);.The solution must be designed to be easy extendable for the future
developed plugins;

20

Chapter 4
Suggested solution

Based on analysis in previous chapter, I propose a solution.

4.1 Administration of partners banners

The decision that meets the customer’s requests 3.4.1 is the new WordPress
plugin for the partners’ banners administration. The plugin will provide
banner management in the admin panel and display banners on the site.

After analyzing customer’s requirements and the current plugin that dis-
plays and manages banners, I realized that there are two ways of resolving
the problem: 1) a plugin with user-friendly administration, that will use the
Custom Sidebars’ functionality on the backend; 2) a new plugin made from
scratch. I have decided to create the new plugin from scratch. This decision
was made for the following reasons:.The customer needs not only better user interface, but also more func-

tionality, that Custom Sidebars does not have. For instance:. It would be very difficult to add a shuffle of banners to the pages,
using Custom Sidebars.. Custom Sidebars does not have such a functions to add a banner
to selected page/pages. In the Custom Sidebars, it is possible to
add banner only to selected categories or selected Post Types..With a standalone plugin there is no dependency on the Custom Sidebars

version. Therefore, if the version of the Custom Sidebars changes, new
Administration plugin will not be affected.

Adding, deleting or editing banners on the website will be performed by
modifying the content of the posts. I will add a script to the page’s code that
will insert an HTML element with a banner to the page. With this solution,
user will need to simply fill the form to create a new banner or click the
button to delete a banner. Thus, it will be more convenient for the user to
interact with the banners’ administration. Structure, appearance and style
for banners will be the same as in the current Custom Sidebars’ version.

21

4. Suggested solution
4.2 Communication between custom plugins and
applications

4.2.1 Description and reasoning of the proposed solution

The most relevant solution that fulfills customer’s requirements 3.4.2 is to
create a WordPress plugin, that will create a possibility to communicate
with other plugins developed for the CATVUSA. New plugin should focus on
supplying access to the data.

One of the important plugins is the Radio Manager. Using its example, I
will describe solution.

The AndroidTV application [2], as it was written earlier, does not use
Radio Manager plugin for compiling playlists. It does not have access to the
radio station settings and to the data entered by the admin.

One of the biggest advantages of that solution is the new plugin will provide
the data that can not be accessed through the WP REST API, such as plugin-
specific settings, information, and the results of some methods. There will
be no need to get into the application code to manually change, for example,
the names of radio stations or station’s settings.

As the customer notes, in the future, new plugins with more complex logic
may appear. For these future plugins, it is possible to extend the API and
add new endpoints, which will give an access to call their functions.

In the course of analyzing the structure and operation of WordPress sites,
I found out that authorization is not necessary.

22

Chapter 5
Implementation

In this chapter I describe the implementation of the solutions that were
outlined in the previous chapter (Chapter 4).

Implementation and launch of the project were carried out on a local
server using technologies XAMPP, FileZilla and PHPStorm as a development
environment.

5.1 Partner Banner Administration

The Partner Banner Administration plugin is implemented using PHP, JavaScript,
CSS and HTML languages. The work of the API was tested and checked on
a local server.

5.1.1 Frontend

Administration main page page consists of a header, a button to add a new
banner, and a table with all banners (fig. 5.1).

The table consists of the following columns:. Banner ID. Partner’s name. Partner’s website. Partner’s logo. Description.Actions:. Delete. Edit. Preview

The table is filled dynamically by sending AJAX request to the server (code
snippet 5.2), receiving data about banners in JSON format and processing
them (code snippet 5.3).

23

5. Implementation....................................

Figure 5.1: Administration of Partner’s banners.

fetch(’/catvusa_wp/wp-admin/admin-ajax.php?action=get_banners’)
.then(response => response.json())
.then(data => {
updateTableWithNewData(data);
}).catch(error => console.error(error));

}

Figure 5.2: Request to the server to get data about all banners to display them
in the table.

tr.innerHTML = ‘
<td>${banner.id}</td>
<td style="max-width: 100px; max-height: 100px;"><img

src="${banner.img}" alt="" style="max-width: 100%;
max-height: 100%;"></td>

<td>${banner.name}</td>
<td>${banner.website}</td>
<td>${banner.description}</td>
<td>${allPages} ${categoriesList} ${pagesList}</td>
<td>

<button class="button viewButton" data-id="${banner.id}">
<i class="dashicons dashicons-visibility"></i>Preview

</button>
<button class="button editButton" data-id="${banner.id}">

<i class="dashicons dashicons-edit"></i>Edit
</button>

<button class="button deleteButton" data-id="${banner.id}">
<i class="dashicons dashicons-trash"></i>Delete

</button>
</td>‘;
tbody.appendChild(tr);

Figure 5.3: The process of creation of the each row in the table.

24

............................. 5.1. Partner Banner Administration

Admin can add a banner by clicking on the "Add new" button. After, user
fills in the information about the banner and selects a location, where he
wants to see the banner: "All pages" or "Certain Pages" (Categories and/or
Pages) in the Add new banner popup (fig. 5.4, 5.5).

Figure 5.4: Popup with form to add a new banner

Figure 5.5: End of popup with form to add a new banner.

25

5. Implementation....................................
The list with categories and pages in the form (fig. 5.6) is built dynamically

by calling JQuery functions to make AJAX GET requests to the server (code
snippet 5.7).

Figure 5.6: Categories in form

$.get(’/catvusa_wp/wp-admin/admin-ajax.php’, {
action: ’get_pages’

}, function (data) {
// Processing data

});

Figure 5.7: The process of getting list of pages from server.

When user chooses the checkbox in one of the dropdown lists, checkbox
label (which is a name and ID of the page or category) is pushed to the
special array indicating the future location of the banner (code snippet 5.8).
This array then will be delivered to the server.

checkbox.addEventListener(’change’, function (event) {
if (event.target.checked) {

banner.categories.push({
name: event.target.value,
id: event.target.id,

});
} else {

const elIndex = banner.categories.findIndex((el) => el.name
=== event.target.value);

banner.categories.splice(elIndex, 1);
}

});

Figure 5.8: The process of creating a list of banner’s checked categories.

26

............................. 5.1. Partner Banner Administration

After clicking "Save" button, the form is checked for completeness, and if
there is any empty field, the user sees a notification about this (fig. 5.10).

Figure 5.10: Warnings in form.

If the fields are correctly filled, the formData object is created, filled with
data from the form and sent to the backend using jQuery AJAX POST
request. Then the backend processes the data (described in the next section
5.1.2).

After clicking an Edit button, a popup appears with pre-filled data about
the banner (fig. 5.11). User can easily edit this data the way he filled the
form when created the banner.

Figure 5.11: Popup with form to edit a banner.

27

5. Implementation....................................
After clicking a Delete button, administrator must confirm his action in

the modal window that appears (fig. 5.12). After confirmation, fronted sends
AJAX request with the banner’s ID to delete this banner, then reloads the
page content without deleted element.

Figure 5.12: Confirmation window to delete a banner.

Preview popup appears by clicking a Preview button (fig. 5.13). The
preview is made by inserting inner HTML code into the container of the
Preview popup. Innter HTML contains banner’s HTML structure and filled
data from the chosen banner. It uses same CSS ctyles, as the actual banners
as well.

Figure 5.13: Banner’s preview.

5.1.2 Backend

Plugin Set Up

The main class of the plugin is the PartnerBannerAdministration.php. It
has functions for adding and rendering the plugin administration page in the

28

............................. 5.1. Partner Banner Administration

admin panel. These functions are called with WordPress add_action hooks.
Rendering of the page is activated with the WordPress hook (code snippet
5.14).

add_action(’admin_menu’, \$callback)

Figure 5.14: The hook that adds the main page of the plugin.

This hook calls function that processes the render of the page, creates HTML
structure, and also adds styles and scripts using the wp_enqueue_script and
wp_enqueue_style WordPress functions.

The plugin is initialized using the WordPress hook at the stage of loading
plugins, when all the necessary resources and functions of the plugin are
already available.

Activation and deactivation hooks (code snippet 5.15) are registered during
plugin activation. These hook ensures correct registration of ’banner’ Post
Type on activation and deleting this Post Type during deactivation.

register_activation_hook(__FILE__, ’partnerBanner_activation’);
register_deactivation_hook(__FILE__, ’partnerBanner_deactivation’);

Figure 5.15: Activation and deactivation hooks.

Saving banners’ data to the database

The process of saving data to the database can be split into three steps:. 1. To add a logo image.
In order to save a logo image, backend adds a new attachment with the
image to the WordPress Media Library (code snippet 5.16).

// Creating attachment
$attachment = array(

’guid’ => $upload_dir[’url’] . ’/’ . $filename,
’post_mime_type’ => $file[’type’],
’post_title’ => preg_replace(’/\.[^.]+$/’, ’’, $filename),
’post_content’ => ’’,
’post_status’ => ’inherit’

);

//Saving attachment
$attachment_id = wp_insert_attachment($attachment, $filepath);

Figure 5.16: Inserting Logo to the WP media library

By doing this, we can receive attachment ID, which will be used to save
image path to banner metadata.

29

5. Implementation....................................
. 2. To create and add a post with banner’s data

Application saving banners to the wp_post database table (code snippet
5.17) with built-in WordPress methods. Each banner is a unique post
with the type ’banner’, post name and post description.

// Set up the post data
$post_data = array(

’post_title’ => $_POST[’name’],
’post_content’ => $_POST[’description’],
’post_type’ => ’banner’,

);

// Insert the post into the database
$post_id = wp_insert_post($post_data);

Figure 5.17: Inserting Post to the WP database.

. 3. To create and add a post meta data

After banner is saved, we need to save its metadata:. banner_website
URL of the partner’s website.. banner_image
URL of the partner’s image, which is saved to the WP Media
Library. We can get it by calling specified WordPress function with
attachment ID in arguments (code snippet 5.18).

$attachment_url = wp_get_attachment_url($attachment_id);

Figure 5.18: Getting attachment URL.

. banner_image_attachment_id
The attachment ID of the partner’s image. It was received when
image was saved to the WP Media Library.. banner_categories
Categories where the banner will be added.. banner_pages
Pages where the banner will be added.. banner_allPages
A boolean indicator, if the banner should be added to all pages of
the website.

All post metada are added in the same way (code snippet 5.19).

30

............................. 5.1. Partner Banner Administration

update_post_meta($post_id, ’banner_website’,
$_POST[’website’]);

Figure 5.19: Saving Post metadata to the WP database.

After, attachment ID and URL are saved to the banner meta data in
database (code snippet 5.18).

At this point banners’ information is successfully added to the database,
however, there are no banners on the webpages yet.

Adding banners to the webpages

As was mentioned in the Analysis chapter 3.3.2, almost every page has
a container for banners declared in the CATVUSA Theme. The Custom
Sidebar plugin worked with this page’s structure. However, in order to display
banners on a page with my plugin, it was necessary to change this structure
in the Theme and remove the banners’ container. The new plugin inserts the
banners’ container dynamically only to the pages where banners should be.

The main principle of adding a banner to a page has several aspects:. 1. Receiving a list of pages on which the banner should appear.. 2. Creating an HTML element of a banner.. 3. Checking if there is an already created container for banners on the
page.. If yes, attaching the HTML to a special script and adding the script

to the content of the page. Banner will appear in the first free space
in the banners’ container.. If not, adding the container for banners. Then attaching the HTML
to a special script and adding the script to the content of the page.

These steps are described in more detail below:
To add banners to their locations, server gets their categories and pages

arrays, as well as the Boolean value indicating if the banner should be on all
pages. Server goes through these data and for the each page evaluates if it
should contain specific banner.

Then, on every page it takes the page’s ID and a page’s content. Server
checks if the page has a container for the banners. If not, then this container
is created, filled with data and the the banner’s container.

The HTML (code snippet 5.20) is added to the script that appends the
custom HTML to the DOM.

If the banners’ container already exists, function finds the next available
place for a new banner, fills it with new banner and updates the page’s
content.

31

5. Implementation....................................
$html = <div class="broadcast-partners-container">

<h4>Page Partners</h4>;
$html .= get_partner_html($website,

wp_get_attachment_url($attachment_id),
$name,
$description,
$attachment_id);

$html .= </div> ;

Figure 5.20: The process of creating HTML of the banner

Shuffle

One of the customer’s requirements was to change the order of displaying
banners on each page once in a while. To create such a shuffle, it was necessary
to set a scheduled event (code snippet 5.21).

if (! wp_next_scheduled(’pb_shuffle’) && ! wp_installing()) {
wp_schedule_event(time(), ’daily’, ’pb_shuffle’);

}
add_action(’pb_shuffle’, ’pb_shuffle’);

Figure 5.21: Registration of scheduled event.

This function runs if the hook, that is responsible for the shuffle, is not
scheduled and if the WordPress is not running through initial installation or
system upgrade.

If these two conditions are fulfilled, the function registers an event that will
happen every hour, thus calls the Action hook. This hook helps to execute
a function that do the shuffle. It takes all the banners from the database,
and finds all the pages that have banners. For each such page, the program
finds all the banners one by one in the content of the page. Then it removes
everything related to banners from the content, generates it again and re-add
it in random order.

5.2 API plugin

The API plugin is implemented in the PHP language. The work of the
API was tested and checked on a local server with the help of the Postman
application.

The plugin performs the work of the API, providing rest-endpoints that
return JSON arrays with data. For that purpose WordPress Action hook
links the core and the plugin. This hook is called when preparing to serve
a REST API request: during initialization of the REST API in WordPress,
after all REST API files are loaded and before processing REST requests.

32

......................................5.2. API plugin

Callback of the Action hook is a function that registers a route (code snippet
5.22).

add_action(’rest_api_init’, function () use
($RadioManagerAPI_instance) {
register_rest_route(’rm_extended_api/v1’, ’/radio/data/’, array(

’methods’ => ’GET’,
’callback’ => array($RadioManagerAPI_instance,

’getRadioManagerData’),
));

});

Figure 5.22: The process of registration of the REST route.

Functions called in the REST endpoints’ callbacks are contained in the
RadioManagerAPI class and PartnerBannerAdministrationAPI class.

5.2.1 Radio Manager API

The principle of data calling is the same for all endpoints that are related to
the Radio Manager: API plugin’s class gets an instance of the Radio Manager
manager’s class RMShortcodeCreator. Then it calls RMShortcodeCreator’s
function that uploads and generates data for the Radio Manager plugin.

The main endpoint returns all information about radio stations:. Radio name.Musician capture. Record capture. Image duration. Logo (with title, description and link to image).Warning data. Post data (image and text content). Playlist data:.Genres (with musicians: name, description, images, introduction,
records (title and link to MP3)). Number of musicians, number of records per musicians, Boolean
value if it is allowed to show website posts

It provides an access to the information received by the Radio Manager
plugin (code snippet 5.23). API returns data in JSON format.

Also, there are endpoints that return the same data separately. These
endpoints were created due to following reasons:

33

5. Implementation....................................
.To speed up loading of the necessary data. Because of the large amount of

data returned by the previously described endpoint, the loading process
takes longer.. For comfort of developers who may work with this API in the future.

Full list of the endpoints is described in the next section 5.2.3

public function getRadioManagerData(){
require_once WP_PLUGIN_DIR .

’/radio-manager/includes/RMShortcodeCreator.php’;
$result = [];
if (class_exists(’Inc\\RMShortcodeCreator’)) {

$shortcodeCreator = Inc\RMShortcodeCreator::getInstance();

$args = array(
’post_type’ => ’rm_radio_station’,

);

$query = new WP_Query($args);

if ($query->have_posts()) {
while ($query->have_posts()) {

$query->the_post();
$id = get_the_ID();
$result[] = $shortcodeCreator->getData($id);

}
wp_reset_postdata();

} else {
return new WP_Error(’no_posts’, __(’No posts’),

array(’status’ => 404));
}

}

return rest_ensure_response($result);
}

Figure 5.23: The process of getting data from Radio Manager plugin.

5.2.2 Partner Banner Administration API

The main principle of obtaining data about banners is the creation and
sending of a SQL query to the database. The process is implemented inside
the PartnerBannerAdministrationAPI class.

Query results are processed and contain the following information:. Banner’s ID. Partner’s name. Pages, where banner should be located on the website

34

......................................5.2. API plugin

. Image’s attachment ID. Image’s URL. Categories, where banner should be located on the website. Boolean value showing if the banner should be located on all website’s
pages.

5.2.3 Endpoints

In the following endpoints’ description the designation ’baseURL’ is stated
for the URL of the website.

Get all data from Radio Manager. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/data.Response: Returns following data in JSON format: Radio name, Mu-
sician capture, Record capture, Image duration, Logo (with title, de-
scription and link to image), Warning data, Post data (image and text
content), Playlist data: Genres (with musicians: name, description, im-
ages, introduction, records (title and link to MP3)) as well as Number
of musicians, number of records per musicians, Boolean value if it is
allowed to show website posts.

Figure 5.24: Get all data (Postman).

35

5. Implementation....................................
Get the data for a TV player from Radio Manager. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/player_data.Response: Returns following data in JSON format: Radio name, Musi-
cian capture, Record capture, Image duration, Logo (with title, descrip-
tion and link to image).

Figure 5.25: Get the data for a TV player (Postman).

Get playlist data from Radio Manager. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/playlist_data.Response: Returns following data in JSON format: genres (with musi-
cians: name, description, images, introduction, records (title and link to
MP3)), number of musicians, number of records per musicians, Boolean
value if it is allowed to show website posts.

Figure 5.26: Get playlist data (Postman).

36

......................................5.2. API plugin

Get warning data from Radio Manager. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/warning_data.Response: Returns information about warnings in JSON format, in-
cluding title of the warning, message and link to the authorization as a
member.

Figure 5.27: Get warning data (Postman).

Get settings data from Radio Manager. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/settings_data.Response: Returns image and text content in JSON format. This
information is set in the Settings of the Radio Manager plugin.

Figure 5.28: Get settings data (Postman).

37

5. Implementation....................................
Get banners’ data from Partner Banner Administration. Endpoint: baseURL/wp-json/pba_extended_api/v1/banners.Response: Returns banner’s ID, partner’s name, pages where banner
should be located on the website, categories where banner should be
located on the website, Boolean value showing if the banner should be
located on all website’s pages or not, image’s attachment ID, image’s
URL.

Figure 5.29: Get banners’ data (Postman).

38

Chapter 6
Testing

This chapter describes the proccess and result of code testing and user testing.

6.1 Testing code with a validation service

Code testing is an important step in software development. It allows develop-
ers to identify and fix bugs, improve the code and interaction between user
and the website.

Validators are tools that verify code conforms to certain standards and
rules, helping to identify potential problems and bugs. One of the most
popular validator for websites is the Markup Validation Service by W3C [32].

Results of testing my code on the Markup Validation Service website is
following: "Document checking completed. No errors or warnings to show"
6.1.

Figure 6.1: Markup validation result.

6.2 User Testing

User testing, or Usability testing, is a process in which real users test a website
to evaluate its usability and effectiveness: users interact with a website, then
give a feedback. User testing is an important part of the project development,
because it provides valuable insights from real users. It may help developers
to find bugs or make more intuitive and user-friendly interface [33]. Testing
includes three parts:. Pre-testing questions..Testing itself with the test scenario.. Post-testing questions.

39

6. Testing
6.2.1 Pre-testing questions

Pre-testing questions help to understand background information of the users
engaging in the testing session [34].

Before testing, all users were asked the following questions:.What is your occupation?.What is your age?. How would you rate your level of confidence in using web applications?
(Using scale 1 to 10)

6.2.2 Test scenario

Every user is going through the test scenario during user testing...1. Log in to the admin WordPress page using email and password...2. Find the Partner Banner plugin in the left menu and open the it...3. Create a new banner with the following data:. Partner’s name: Test Company..Website: https://www.company.com.. Description: Wealthy company sponsoring projects with great po-
tential.. Logo: choose an image on your computer.. Banner’s location: ’Museums’ category and ’Historie skoly’ page...4. Find your banner in the table and check how it looks like on the website

without going to the webpages (using Preview function)...5. Change a name in your banner to ’The Good Company’, change the
partner’s logo...6. Check if the name and logo were changed...7. Change the location of your banner, make it appear on all website’s
pages...8. Check if location was changed...9. Delete your banner.

After testing, all users were asked the following questions:. How would you describe your experience with the Partner Banner Ad-
ministration?.What did you like the most?.What did you like the least?. Is there anything you would like to change?

40

.....................................6.2. User Testing

6.2.3 Feedback

User 1

Pre-testing questions:.Occupation: Copywriter;.Age: 23;. Level of confidence in using web applications: 7/10.

Post-testing questions:. Experience with the Partner Banner Administration: Positive..The most liked things: Everything is clear and intuitive, except for
the small things..The least liked things: It is not immediately clear what does ’Location’
header mean (in the forms). The plugin section in the WordPress left
menu is far away, it is not clear where to find it. The results of the
selection in Location (in the forms) are not written nearby..Recommended improvement: To add a divider (in the forms) between
the main header and ’Location’; to add an information about required
size of the logo image; to display chosen categories/pages in the forms.

User 2:

Pre-testing questions:.Occupation: Programmer.Age: 25. Level of confidence in using web applications: 10/10

Post-testing questions:. Experience with the Partner Banner Administration: Positive..The most liked things: User interface; simple and clear work with the
plugin..The least liked things: After selecting a category or page in the
Location section, the selected items are not displayed in the form. In
the table, categories and pages are placed in one column..Recommended improvement: To fix written above.

41

6. Testing
User 3:

Pre-testing questions:.Occupation: Doctor.Age: 43. Level of confidence in using web applications: 5/10

Post-testing questions:. Experience with the Partner Banner Administration: Mostly
positive..The most liked things: Intuitive design, it is clear where to find every
option (such as Add, Edit or Delete)..The least liked things: It is not immediately clear what the location
of the banner means (but it became clearer after adding the banner, and
its visual display on the site). Page search in the Add new banner/Edit
banner forms is not noticeable..Recommended improvement: There are a lot of pages in the page
selection in the Add new banner/Edit banner forms, it would be better
to compose them or make a more expressive search field.

6.2.4 Result

The results of user testing make it clear that despite the design details
that can be improved, the implemented plugin is understandable and conve-
nient for users of different ages and different degrees of experience with web
applications.

42

Chapter 7
Conclusion

7.1 Conclusion

In the process of working on this thesis, I figured out how the WordPress
system works [2], as well as how CATVUSA webiste and applications works
[3].

I collected and analyzed customer’s requirements [3.4]. Based on them, I
proposed a solution [4] in the form of a 1) new plugin for the administration
of partners’ banners on website pages, and 2) API for custom plugins.

The proposed solution was implemented [5] and tested [6].
The requirements and their implementation in my solution are analyzed

below.

7.1.1 Partner Banner Administration plugin

Functional requirements.Requirement: Administration page should allow user to add a banner
to all pages of the website, to all pages of a specific category, to the
specific page.

Result: Administration page allows user to add a banner to all pages,
to all pages of a specific category, to the specific page of the website
[5.1.1, 5.1.2]. In addition, after adding a banner, the user can see what
his banner looks like without leaving the admin panel using Preview
option [5.1.1]..Requirement: Administration page should allow user to remove a
banner from all pages of the website, from all pages of a specific category,
from the specific page.

Result: Administration page allows user to delete a banner, which
removes it from its location on the website [5.1.1]..Requirement: Administration page should allow user to edit a banner.

Result:Administration page allows user to edit a banner[5.1.1].

43

7. Conclusion......................................
.Requirement: Solution should make possible to randomly change the

order of displaying banners, for example, once every 24 hours.
Result: Solution provides a shuffle function. It randomly changes the
order of displaying banners once every 1 hour [5.1.2]..Requirement: The banner must contain a name, a description, a link to
the website of the partner organization and a logo. Logo picture should
work as a link to a partner’s website as well.
Result: The banner contains a name, a description, a link to the website
of the partner organization and a logo. Logo picture of the displayed
banner works as a link to a partner’s website [5.1.1].

Non-functional requirements.Requirement: Solution should have user-friendly administration page.
Result: Administration page has simple and intuitive interface [5.1.1].
In the course of work, I contacted the customer to confirm the details
of the work. The customer was satisfied with the result, he noted that
the new user-friendly interface would greatly facilitate his work with
banners..Requirement: Compatibility with the latest version of WordPress.
Result: Solution is compatible with the latest version of WordPress..Requirement: Correct work in all popular browsers such as Chrome,
Firefox, Edge.
Result: The plugin works correctly in all popular browsers..Requirement: Efficient use of the WordPress database.
Result: Solution uses WordPress database efficiently, trying to minimize
the number of requests, which provides faster access to data.

7.1.2 API for custom plugins

Functional requirements.Requirement: Solution should provide information about radio stations
and recordings, including information configured in settings of the Radio
Manager plugin.
Result: Solution provides all needed information [1.2.2]..Requirement: Solution should provide information related to the breaks
between music in the form of advertisements or announcer messages,
which is not currently in the application, but is on the site.
Result: Solution provides information about the breaks between music
in the form of advertisements or announcer messages [1.2.2].

44

..................................... 7.1. Conclusion

.Requirement: In application, radio stations should use the same media
files (pictures, songs) that are used on the web pages.
Result: Solution provides access to the media files (pictures, songs) that
are used on the web pages [1.2.2]..Requirement: Solution should provide information about partner ban-
ners.
Result: Solution provides information about banners [5.2.3]..Requirement: Solution should provide proper documentation.
Result: Solution provides proper documentation [1.2].

Non-functional requirements.Requirement: The solution must be designed to work with whatever
applications the organization plans to deploy in the future (AndroidTV,
Android for smartphones, Samsung, LG etc.).
Result: The API provides data in JSON format, therefore any system
or application can process this data..Requirement: The solution must be designed to be easy extendable
for the future developed plugins.
Result: The solution is extendable for the future developed plugins. For
instance, there are two classes implemented in the current API plugin,
each for one custom plugin (Radio Manager plugin and Partner Banner
Administration) [5.2].

45

46

Bibliography

1. Czech American TV [online]. [visited on 2023-01-19]. Available from:
https://catvusa.com/.

2. SINELNIKOV, Viktor. Smart TV application development for a non-
profit TV [online]. Praha, 2021 [visited on 2023-01-19]. Available from:
https://dspace.cvut.cz/handle/10467/99112?locale-attribute=
en. Master thesis. Faculty of Electrical Engineering CTU in Prague.

3. WordPress [online]. [visited on 2023-01-19]. Available from: https :
//cs.wordpress.org/.

4. HTML [online]. [visited on 2023-05-19]. Available from: https : / /
developer.mozilla.org/en-US/docs/Web/HTML.

5. HTML5 [online]. [visited on 2023-05-19]. Available from: https://
developer.mozilla.org/en-US/docs/Glossary/HTML5.

6. JavaScript [online]. [visited on 2023-05-19]. Available from: https :
//developer.mozilla.org/en-US/docs/Web/JavaScript.

7. CSS [online]. [visited on 2023-05-19]. Available from: https://www.w3.
org/Style/CSS/Overview.en.html.

8. Php [online]. [visited on 2023-05-19]. Available from: https://www.php.
net/.

9. Php [online]. [visited on 2023-05-19]. Available from: https://www.
tutorialspoint.com/php/php_introduction.htm.

10. XAMPP [online]. [visited on 2023-05-22]. Available from: https://www.
apachefriends.org/about.html.

11. PhpStorm [online]. [visited on 2023-05-22]. Available from: https://
www.jetbrains.com/phpstorm/.

12. Most popular content management systems [online]. [visited on 2023-05-
17]. Available from: https://w3techs.com/.

13. WordPress architecture [online]. [visited on 2023-05-17]. Available from:
https://www.hostinger.com/tutorials/wordpress-architecture.

14. Post Types [online]. [visited on 2023-05-17]. Available from: https:
//wordpress.org/documentation/article/what-is-post-type/.

47

https://catvusa.com/
https://dspace.cvut.cz/handle/10467/99112?locale-attribute=en
https://dspace.cvut.cz/handle/10467/99112?locale-attribute=en
https://cs.wordpress.org/
https://cs.wordpress.org/
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Web/HTML
https://developer.mozilla.org/en-US/docs/Glossary/HTML5
https://developer.mozilla.org/en-US/docs/Glossary/HTML5
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.w3.org/Style/CSS/Overview.en.html
https://www.w3.org/Style/CSS/Overview.en.html
https://www.php.net/
https://www.php.net/
https://www.tutorialspoint.com/php/php_introduction.htm
https://www.tutorialspoint.com/php/php_introduction.htm
https://www.apachefriends.org/about.html
https://www.apachefriends.org/about.html
https://www.jetbrains.com/phpstorm/
https://www.jetbrains.com/phpstorm/
https://w3techs.com/
https://www.hostinger.com/tutorials/wordpress-architecture
https://wordpress.org/documentation/article/what-is-post-type/
https://wordpress.org/documentation/article/what-is-post-type/

7. Conclusion......................................
15. Taxonomies [online]. [visited on 2023-05-17]. Available from: https:

//wordpress.org/documentation/article/taxonomies/.
16. Plugins [online]. [visited on 2023-05-17]. Available from: https : / /

wordpress.org/plugins/.
17. Plugins basics [online]. [visited on 2023-05-17]. Available from: https:

//developer.wordpress.org/plugins/plugin-basics/.
18. Theme Development [online]. [visited on 2023-05-17]. Available from:

https://codex.wordpress.org/Theme_Development.
19. Sidebars [online]. [visited on 2023-05-17]. Available from: https://

codex.wordpress.org/Sidebars.
20. Widgets [online]. [visited on 2023-05-17]. Available from: https://

codex.wordpress.org/Widgets_API.
21. Hooks [online]. [visited on 2023-05-17]. Available from: https://developer.

wordpress.org/plugins/hooks/.
22. Actions [online]. [visited on 2023-05-17]. Available from: https : / /

developer.wordpress.org/plugins/hooks/actions/.
23. Filters [online]. [visited on 2023-05-17]. Available from: https : / /

developer.wordpress.org/plugins/hooks/filters/.
24. Activation-deactivation-hooks [online]. [visited on 2023-05-17]. Available

from: https://developer.wordpress.org/plugins/plugin-basics/
activation-deactivation-hooks/.

25. API [online]. [visited on 2023-01-19]. Available from: https://www.
rascasone.com/cs/blog/co-je-api.

26. REST API [online]. [visited on 2023-01-19]. Available from: https:
//www.redhat.com/en/topics/api/what-is-a-rest-api.

27. S2member [online]. [visited on 2023-05-17]. Available from: https://
wordpress.org/plugins/s2member/.

28. Plugin for easy video playback on the web [online]. Plzen, 2020 [visited
on 2023-01-19]. Available from: https://otik.zcu.cz/handle/11025/
41763. diplomová práce. Západočeská univerzita v Plzni.

29. VRABEC, Karel. VÝVOJ NOVÉ SPRÁVY RÁDIOVÝCH STANIC
PRO CZECH-AMERICAN TV [online]. Praha, 2021 [visited on 2023-01-
10]. Available from: https://dspace.cvut.cz/handle/10467/95565.
Bachelor thesis. Faculty of Information Technology CTU in Prague.

30. Custom-sidebars [online]. [visited on 2023-05-17]. Available from: https:
//cs.wordpress.org/plugins/custom-sidebars/.

31. Smart-slider [online]. [visited on 2023-05-17]. Available from: https:
//wordpress.org/plugins/smart-slider-3/.

32. Validator.w3 [online]. [visited on 2023-04-19]. Available from: https:
//validator.w3.org/.

48

https://wordpress.org/documentation/article/taxonomies/
https://wordpress.org/documentation/article/taxonomies/
https://wordpress.org/plugins/
https://wordpress.org/plugins/
https://developer.wordpress.org/plugins/plugin-basics/
https://developer.wordpress.org/plugins/plugin-basics/
https://codex.wordpress.org/Theme_Development
https://codex.wordpress.org/Sidebars
https://codex.wordpress.org/Sidebars
https://codex.wordpress.org/Widgets_API
https://codex.wordpress.org/Widgets_API
https://developer.wordpress.org/plugins/hooks/
https://developer.wordpress.org/plugins/hooks/
https://developer.wordpress.org/plugins/hooks/actions/
https://developer.wordpress.org/plugins/hooks/actions/
https://developer.wordpress.org/plugins/hooks/filters/
https://developer.wordpress.org/plugins/hooks/filters/
https://developer.wordpress.org/plugins/plugin-basics/activation-deactivation-hooks/
https://developer.wordpress.org/plugins/plugin-basics/activation-deactivation-hooks/
https://www.rascasone.com/cs/blog/co-je-api
https://www.rascasone.com/cs/blog/co-je-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://wordpress.org/plugins/s2member/
https://wordpress.org/plugins/s2member/
https://otik.zcu.cz/handle/11025/41763
https://otik.zcu.cz/handle/11025/41763
https://dspace.cvut.cz/handle/10467/95565
https://cs.wordpress.org/plugins/custom-sidebars/
https://cs.wordpress.org/plugins/custom-sidebars/
https://wordpress.org/plugins/smart-slider-3/
https://wordpress.org/plugins/smart-slider-3/
https://validator.w3.org/
https://validator.w3.org/

..................................... 7.1. Conclusion

33. User-testing [online]. [visited on 2023-05-19]. Available from: https:
//mindsea.com/user-testing/.

34. Usability-testing-questions [online]. [visited on 2023-05-19]. Available
from: https://careerfoundry.com/en/blog/ux-design/how-to-
write-usability-testing-questions/.

49

https://mindsea.com/user-testing/
https://mindsea.com/user-testing/
https://careerfoundry.com/en/blog/ux-design/how-to-write-usability-testing-questions/
https://careerfoundry.com/en/blog/ux-design/how-to-write-usability-testing-questions/

50

Attachment

1.1 Partner Banner Administration User Manual

1.1.1 Installation and launch. 1. Download the source code of the catvusa.com website;. 2. Open the wp-content/themes/tv/singular.php file;. 3. Remove the following part of the code:

. 4. Open the wp-content/themes/tv/custom-page-class.php file;

51

7. Conclusion......................................
. 5. Remove the following part of the code:

. 6. Add the Partner Banner Administration plugin through the admin
panel in the Plugins section;

. 7. Click Activate button near the plugin to activate the plugin;

52

....................... 1.1. Partner Banner Administration User Manual

1.1.2 Administration Page

You can get to the Partner Banner Administration page through the left
menu section in the admin panel

Partner Banner Administration page has a table, where you can find
information about all banners.

53

7. Conclusion......................................
How to add a new banner

. 1. Click the Add new button;

. 2. Choose banner’s future location: if it should be on all webpages, click
’All Pages’; if it should be on specific page(s), click ’Certain Pages’;

. 3. In case you have chosen ’Certain Pages’, choose categories of the
website or specific pages, where the banner will be;

54

....................... 1.1. Partner Banner Administration User Manual

. 4. Fill the name of the partner, description of the partner, website of
the partner;

. 5. Add logo image (recommended maximum dimension 260 x 101);

. 6. Click on Save button to save the banner. New banner will appear in
the table on the Partner Banner Administration page;

. 7. If you do not want to save the banner, click the Cancel button.

55

7. Conclusion......................................
How to delete a banner

. 1. Click the Delete button near the banner;

. 2. Confirm that you want to delete the banner;

. 3. Banner is successfully deleted.

56

....................... 1.1. Partner Banner Administration User Manual

How to edit a banner

. 1. Click the Edit button near the banner;

. 2. Edit the fields you want to edit;

. 3. Click on Save button to save changes;. 4. If you do not want to save changes, click the Cancel button.

57

7. Conclusion......................................
How to see a preview

. 1. Click the Preview button near the banner;

. 2. Now you can see a preview in the opened popup;

58

.............................. 1.2. Extended API User Manual

. 3. Click the X to close the preview.

1.2 Extended API User Manual

1.2.1 Installation and launch

. 1. Install Extended API plugin through the admin panel in the Plugins
section;

. 2. Click Activate button near the plugin to activate the plugin;

59

7. Conclusion......................................
1.2.2 Endpoints

In the following endpoints’ description the designation ’baseURL’ is stated
for the URL of the website.

Get all data from Radio Manager

. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/data.Response: Returns following data in JSON format: Radio name, Mu-
sician capture, Record capture, Image duration, Logo (with title, de-
scription and link to image), Warning data, Post data (image and text
content), Playlist data: Genres (with musicians: name, description, im-
ages, introduction, records (title and link to MP3)) as well as Number
of musicians, number of records per musicians, Boolean value if it is
allowed to show website posts.

60

.............................. 1.2. Extended API User Manual

Get the data for a TV player from Radio Manager

. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/player_data.Response: Returns following data in JSON format: Radio name, Musi-
cian capture, Record capture, Image duration, Logo (with title, descrip-
tion and link to image).

Get playlist data from Radio Manager

. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/playlist_data.Response: Returns following data in JSON format: genres (with musi-
cians: name, description, images, introduction, records (title and link to
MP3)), number of musicians, number of records per musicians, Boolean
value if it is allowed to show website posts.

61

7. Conclusion......................................
Get warning data from Radio Manager

. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/warning_data.Response: Returns information about warnings in JSON format, in-
cluding title of the warning, message and link to the authorization as a
member.

Get settings data from Radio Manager

. Endpoint: baseURL/wp-json/rm_extended_api/v1/radio/settings_data.Response: Returns image and text content in JSON format. This
information is set in the Settings of the Radio Manager plugin.

62

.............................. 1.2. Extended API User Manual

Get banners’ data from Partner Banner Administration

. Endpoint: baseURL/wp-json/pba_extended_api/v1/banners.Response: Returns banner’s ID, partner’s name, pages where banner
should be located on the website, categories where banner should be
located on the website, Boolean value showing if the banner should be
located on all website’s pages or not, image’s attachment ID, image’s
URL.

63

	Introduction
	Theory
	HTML, JavaScript, CSS
	PHP
	Programming and testing tools
	XAMPP
	PhpStorm

	WordPress
	Post Type
	Taxonomy
	Plugins
	Themes
	Hook

	API
	HTTP Statuses
	REST API
	WordPress REST API

	Analysis
	Goals of the project
	Sponsor
	Current state
	Website
	Partners banners
	Radio manager plugin
	AndroidTV application

	Desired outcome
	Customer requirements for administration of partners banners
	Customer requirements for applications-plugins communication problem

	Suggested solution
	Administration of partners banners
	Communication between custom plugins and applications
	Description and reasoning of the proposed solution

	Implementation
	Partner Banner Administration
	Frontend
	Backend

	API plugin
	Radio Manager API
	Partner Banner Administration API
	Endpoints

	Testing
	Testing code with a validation service
	User Testing
	Pre-testing questions
	Test scenario
	Feedback
	Result

	Conclusion
	Conclusion
	Partner Banner Administration plugin
	API for custom plugins

	Bibliography
	Attachment
	Partner Banner Administration User Manual
	Installation and launch
	Administration Page

	Extended API User Manual
	Installation and launch
	Endpoints

