
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Cybernetics

Multi-robot Systems

Path Planning with Different
Homotopy Classes in Environment

with Obstacles

Master’s Thesis

Matej Novosad

Prague, May 2023

Study programme: Cybernetics and Robotics
Supervisor: Ing. Robert Pěnička, Ph.D.

ii

iii

Author Statement

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses.

Prague, 26 May 2023 .

Matej Novosad

iv

MASTER‘S THESIS ASSIGNMENT

I. Personal and study details

487012 Personal ID number: Novosad Matej Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Cybernetics

Cybernetics and Robotics Study program:

II. Master’s thesis details

Master’s thesis title in English:

Path Planning with Different Homotopy Classes in Environment with Obstacles

Master’s thesis title in Czech:

Plánování cest s rozdílnou třídou homotopie v prostředí s překážkami

Guidelines:

1. Get familiar with sampling-based motion planning, primarily Probabilistic Roadmaps and similar approaches.
2. Study the state-of-the-art methods for path planning with different homotopy classes.
3. Propose and implement an algorithm for fast planning of multiple paths with different homotopy classes.
4. Verify functionality of the proposed algorithm in different environments.
5. Implement state-of-the-art methods and compare the performance of the proposed algorithm with performance of the
state-of-the-art methods.

Bibliography / sources:

[1] R. Penicka and D. Scaramuzza, "Minimum-Time Quadrotor Waypoint Flight in Cluttered Environments," in IEEE Robotics
and Automation Letters, vol. 7, no. 2, pp. 5719-5726, 2022.
[2] B. Zhou, J. Pan, F. Gao and S. Shen, "RAPTOR: Robust and Perception-Aware Trajectory Replanning for Quadrotor
Fast Flight," in IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1992-2009, 2021.
[3] E. Schmitzberger, J. L. Bouchet, M. Dufaut, D. Wolf and R. Husson, "Capture of homotopy classes with probabilistic
road map," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2317-2322, 2002.
[4] Jaillet L, Simeon T. Path Deformation Roadmaps: Compact Graphs with Useful Cycles for Motion Planning. The
International Journal of Robotics Research. 2008;27(11-12):1175-1188.
[5] C. Nissoux, T. Simeon and J.-P. Laumond, "Visibility based probabilistic roadmaps," Proceedings 1999 IEEE/RSJ
International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence
and Emotional Quotients (Cat. No.99CH36289), Kyongju, Korea (South), 1999, pp. 1316-1321 vol.3

Name and workplace of master’s thesis supervisor:

Ing. Robert Pěnička, Ph.D. Multi-robot Systems FEE

Name and workplace of second master’s thesis supervisor or consultant:

Deadline for master's thesis submission: 26.05.2023 Date of master’s thesis assignment: 24.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
prof. Ing. Tomáš Svoboda, Ph.D.

Head of department’s signature
Ing. Robert Pěnička, Ph.D.

Supervisor’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

III. Assignment receipt
The student acknowledges that the master’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the master’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZDP-2015.1

vii

Acknowledgments

I would like to express my heartfelt gratitude to my supervisor Ing. Robert Pěnička,
Ph.D., for his invaluable guidance, support, and mentorship throughout the course of my
master’s thesis. I am truly grateful for his insightful feedback, constructive criticism, and
constant encouragement that have greatly contributed not only to the successful completion
of this thesis, but my academic growth as well.

I would also like to express my sincere appreciation to Ing. Vojtěch Vonásek, Ph.D.
for his valuable contributions throughout my master’s thesis. His insights and expertise have
greatly enriched this research work.

Last but not least, I would like to thank my family for their unwavering love, encour-
agement, and belief in my abilities.

viii

ix

Abstract

This thesis proposes a new method called Clustering Topological PRM (CTopPRM)
for finding multiple homotopically distinct paths in 3D cluttered environments. Find-
ing such distinct paths, e.g. going around an obstacle from a different side, is use-
ful in many applications. Among others, using multiple distinct paths is necessary
for optimization-based trajectory planners where found trajectories are restricted to
only a single homotopy class of a given path. Distinct paths can also be used to guide
sampling-based motion planning and thus increase the effectiveness of planning in
environments with narrow passages. Graph-based representation called roadmap is a
common representation for path planning and also for finding multiple distinct paths.
However, challenging environments with multiple narrow passages require a densely
sampled roadmap to capture the connectivity of the environment. Searching such
a dense roadmap for multiple paths is computationally too expensive. Therefore,
the majority of existing methods construct only a sparse roadmap which, however,
struggles to find all distinct paths in challenging environments. To this end, we pro-
pose the CTopPRM which creates a sparse graph by clustering an initially sampled
dense roadmap. Such a reduced roadmap allows fast identification of homotopically
distinct paths captured in the dense roadmap. Comparison with the existing meth-
ods shows, that the CTopPRM improves the probability of finding all distinct paths
by almost 20% in tested environments, during same run-time.

Keywords homotopy, motion planning, multi-path planning, guiding path, cluster-
ing

x

xi

Abstrakt

Tato práce představuje novou metodu nazvanou Clustering Topological PRM (CTop-
PRM), která umožňuje naj́ıt v́ıce homotopicky odlǐsných cest ve 3D prostřed́ıch
s překážkami. Nalezeńı v́ıce takových cest, které na př́ıklad obcházej́ı překážku z
opačných stran, má mnoho využit́ı. Např́ıklad u optimalizačńıch metod na plánováńı
trajektoríı, kde nalezené trajektorie jsou omezeny pouze na homotopickou tř́ıdu
p̊uvodńı cesty. Homotopicky odlǐsné cesty mohou být také využity jako naváděćı
cesty pro vysoce dimenzionalńı plánováńı pohybu a zlepšit tak účinnost plánováńı
v prostřed́ıch s úzkými pr̊uchody. Metody pro nalezeńı homotopicky odlǐsných cest
často použ́ıvaj́ı grafovou reprezentaci prostřed́ı, tzv. roadmap. Složitá prostřed́ı s
úzkými pr̊uchody vyžaduj́ı hustě vzorkovanou roadmapu, na to aby zachytila propo-
jitelnost prostřed́ı. Prohledáváńı tak husté roadmapy pro v́ıce cest je však výpočetně
náročné. Navrhovaná metoda CTopPRM vytvář́ı redukovaný graf shlukováńım husté
roadmapy. Tato redukovaná roadmapa umožňuje rychlou identifikaci vysokého počtu
homotopicky odlǐsných cest. Porovnáńı s existuj́ıćımi metodami ukazuje, že CTop-
PRM zvyšuje pravděpodobnost nalezeńı všech cest o téměř 20 % v testovaných
prostřed́ıch při zachováńı stejného času výpočtu.

Kĺıčová slova homotopie, plánováńı pohybu, plánováńı v́ıce cest, naváděćı cesta,
shlukováńı

xii

xiii

Abbreviations

BFS Breadth-first Search

DFS Depth-first Search

ESDF Euclidean Signed Distance Field

FIFO First In First Out

GT Ground Truth

LIFO Last In First Out

MSF Minimum-spanning Forest

MST Minimum-spanning Tree

PRM Probabilistic Roadmap

RL Reinforcement Learning

RRT Rapidly-exploring Random Trees

UAV Unmanned Aerial Vehicle

UVD Uniform Visibilty Deformation

VD Visibilty Deformation

xiv

xv

Contents

1 Introduction 1

2 Preliminaries 5
2.1 Grid-based Representation of the Planning Environment 5
2.2 Graph-based Representation of Free-space . 6

2.2.1 Probabilistic Roadmap . 6
2.2.2 Rapidly-exploring Random Trees . 7
2.2.3 Asymptotically Optimal RRT* and PRM* 8

2.3 Graph-search Algorithms for Path Planning . 9
2.4 Spanning Tree . 11

2.4.1 Minimum-spanning Tree . 11
2.4.2 Shortest-path Tree . 11

3 Related Work 13

4 Problem statement 15
4.1 Topology Equivalence Relation . 16

5 Clustering Topological PRM 19
5.1 Dense Probabilistic Roadmap Construction . 20
5.2 Graph Clustering . 21
5.3 Adding New Centroids . 22
5.4 Multi-path Search . 25
5.5 Path Filtering . 26

6 Results 29
6.1 Windows Environment . 30
6.2 Complex Environments . 35
6.3 Controllable Trade-off in Performance . 39

7 Conclusion 41

References 43

Appendix 47
Attachments . 47

xvi

1. INTRODUCTION 1/47

Chapter 1

Introduction

Path planning is one of the fundamental problems in robotics. It requires finding a
geometrical path for a robot between given start and goal positions while avoiding collisions.
However, there are several applications, depicted in Figure 1.1, that would benefit from having
multiple alternative paths. To address this issue, paths with different homotopy classes should
be considered. Such distinct paths cannot be transformed into each other through a continuous
deformation without crossing obstacles. Therefore, homotopically distinct paths represent the
topological connectivity of a cluttered environment and allow the robot to select different ways
how to navigate through the environment (see Figure 1.3(d) with multiple distinct paths in
building-like environment).

Finding multiple paths with distinct homotopy classes can be used, for example, in
optimization-based [7] or sampling-based [5] trajectory planners (Fig. 1.1a). Trajectories are
time-parametrized paths, that also have to take robot dynamics into consideration. Finding
multiple paths helps to find the optimal trajectory as the trajectory planning is restricted
to a single homotopy class of a given initial path. Similarly, the paths can also be used to
guide Reinforcement Learning (RL) methods for agile flight [4] (Fig. 1.1b). Last but not
least, finding multiple distinct paths is beneficial for guided-based planners (Fig. 1.1c) solving
high-dimensional motion planning problems [2], [8], [9], [12], [17]. These planners sample the
configuration space of the robot around the guiding paths and thus increase the effectiveness
of planning in environments with narrow passages. However, while online trajectory planning
requires fast computation, guided-based planners and reinforcement learning methods often
benefit more from acquiring a higher number of guiding paths. Therefore, when searching
for multiple homotopically distinct paths, a trade-off between computational time and the
number of found distinct paths has to be considered. This was so far the main stumbling
block of existing methods for finding homotopically distinct paths.

(a) trajectory re-planning [7] (b) RL of agile flight [4] (c) guided motion planning [12]

Figure 1.1: Having multiple distinct paths increases effectiveness of trajectory re-planning (a),
reinforcement learning of agile flight (b) and guided-based planning (c).

CTU in Prague Department of Cybernetics

2/47

The majority of existing methods for planning multiple distinct paths use graph-based
roadmap representation. To discover all distinct paths, especially in challenging 3D envi-
ronments, a dense roadmap is required (see Figure 1.2b). A path can be then found in the
roadmap using any standard graph searching algorithm such as Dijkstra’s. However, searching
for multiple paths as proposed in [26] proves to be computationally expensive, even more so
in a dense roadmap. Moreover, many found paths would belong to the same homotopy class,
requiring an exhaustive filtering process. Visibility-PRM [31] introduced a concept that allows
the construction of a sparse roadmap, that was used by [7], [24] and [28]. Yet, Visibility-PRM’s
reliability, i.e., the ability to consistently capture all homotopy classes, is limited, particularly
in environments with narrow passages, as shown in Figure 1.2a. Narrow passages are small
regions of the configuration space and many samples are required to capture paths leading
through them, which results in dense roadmaps. However, finding multiple distinct paths in
the dense roadmaps is computationally very demanding. This motivates us to reduce the dense
roadmaps into a sparse roadmaps that can be searched faster.

(a) sparse Visibility-PRM proposed in [7] (b) dense Probabilistic Roadmap

Figure 1.2: Comparison of free-space captured by sparse and dense roadmaps, with the same
number of sampled configurations. Even though the sparse roadmap (a) can be searched more
efficiently, it fails to capture all homotopy classes that a dense Probabilistic Roadmap (PRM)
(b) captures.

To this end, we propose a novel sampling-based method called Clustering Topological
PRM (CTopPRM)1, that clusters a densely sampled roadmap, to construct a sparse graph
with cluster centroids as vertices, greatly reducing their number. This reduced roadmap allows
fast path searching while capturing all homotopy classes that the initial dense roadmap had
captured, including those that require traversal of narrow passages. Moreover, the algorithm
allows adjusting trade-off between computational time and the number of paths found through
a single parameter, making it suitable for both online planning within tens of milliseconds,
and for offline planning with narrow passages. Main steps of the method are visualized in
Figure 1.3.

1Video providing a step by step description and visualization of the CTopPRM algorithm is available at
https://youtu.be/azNrWBU5cAk.

CTU in Prague Department of Cybernetics

https://youtu.be/azNrWBU5cAk

1. INTRODUCTION 3/47

(a) (b)

(c) (d)

Figure 1.3: Illustration of the proposed CTopPRM method which starts by creating a dense
PRM clustered around the start and goal positions (a). New cluster centroids are then iter-
atively added to promising places in the roadmap (b) to create a sparse graph (c), which is
finally used to find distinct paths (d). Video available at https://youtu.be/azNrWBU5cAk.

Contributions of this thesis are as follows. We introduce an efficient method for identi-
fying homotopically distinct topological paths, with a controllable balance between computa-
tional time and quantity of identified paths. We demonstrate that our approach, called CTop-
PRM, outperforms other existing methods in a variety of challenging cluttered environments.
In scenarios with an easily determinable number of distinct homotopy classes, CTopPRM is
shown to successfully identify 94% of all distinct paths while the other methods manage to
find less than 80% of paths. In more complex environments, with a high number of distinct
homotopy classes, we improved the average number of homotopy classes detected within the
same run-time between 30% and 300%, depending on the scenario. A short version of this
thesis was submitted to the IEEE Robotics and Automation Letters (RA-L) and the preprint
is available at arXiv [1].

CTU in Prague Department of Cybernetics

https://youtu.be/azNrWBU5cAk

4/47

CTU in Prague Department of Cybernetics

2. PRELIMINARIES 5/47

Chapter 2

Preliminaries

This chapter serves as the foundation for this master’s thesis, providing essential back-
ground information and establishing the groundwork for the subsequent chapters. It summa-
rizes data structures, methods and algorithms used in this thesis.

2.1 Grid-based Representation of the Planning Environment

Grid-based methods are frequently used to represent the planning environment, because
they are simple to use and implement. In these approaches, the environment is divided into a
grid of cells, with each cell being assigned a value to indicate its occupancy or other relevant
information, e.g. distance from closest obstacle.

An often utilized grid-based representation is the occupancy grid [36]. Each cell in an
occupancy grid contains a probability of it being occupied. If the probability is higher than a
threshold value, that cell is considered occupied, making occupancy grids easy to implement
and use. However, occupancy grids are sensitive to the grid resolution, which can impact the
accuracy of collision detection and lead to the inability to capture narrow passages. They can
also be computationally and memory expensive, particularly for large environments. Further-
more, since they contain only the occupancy of individual cells, occupancy grids struggle to
represent continuity of space.

Euclidean Signed Distance Field (ESDF) is a grid-based representation that manages to
represent the continuity of space to a certain degree. Each cell contains a value representing
the distance to the nearest obstacle. Therefore, ESDF can be used to create gradient in the
distance to obstacles which is valuable for planning. For this reason, we use ESDF for collision-
checking and for shortening of paths, while maintaining their homotopy class, as explained in
Section 5.5. Some of the popular approaches for building ESDF are Voxblox [15], FIESTA [10]
and iSDF [3].

Despite their ability to effectively capture continuity of space, ESDF, just like all
other grid-based representations of the planning environment, struggle with representation
of high-dimensional motion planning problems. As the dimensionality of the planning en-
vironment increases, grid-based methods become exponentially more computationally and
memory-intensive. Additionally, their simplicity, which is one of their main strengths, is lost
for dimensions higher than three, rendering them impractical in the high-dimensional motion
planning problems.

CTU in Prague Department of Cybernetics

6/47 2.2. GRAPH-BASED REPRESENTATION OF FREE-SPACE

2.2 Graph-based Representation of Free-space

To efficiently represent high-dimensional continuous free-space Cfree in the planning en-
vironment, graph-based representation called roadmap (G = (V,E), with vertices V and
edges E) is commonly used. Two types of approaches are used to solve motion planning
problems: combinatorial and sampling-based [25].

Combinatorial approaches find paths through the continuous environment without re-
sorting to approximations of the object, obstacles, or collisions. All combinatorial approaches
are complete, which means they will either find a solution or will correctly report that
no solution exists. Visibility graphs [37] and Voronoi diagrams [35] are commonly used as
roadmaps for combinatorial approaches. However, combinatorial motion planning requires oc-
cupied space Cobs to be represented explicitly (e.g. by polygonal obstacle regions). Creation
of such representation is usually unreasonable in practical applications, especially in complex
high-dimensional environments.

The main idea of sampling-based motion planning methods [25] is to avoid the explicit
representation of Cobs. Search of the planning environment is instead conducted with a sam-
pling scheme, enabled by a collision detection module, which uses approximations to evaluate
object collisions. The collision detection module takes a configuration as an input and returns
whether the manipulated object in this configuration collides with the obstacles. This allows
motion planning in complex environments, without the need for particular geometric models.
To save memory and time space is sampled randomly and a roadmap is created from collision-
free configurations, which are connected by a local planner method. Two most commonly used
sampling-based planners are the Probabilistic Roadmap (PRM) [34] and Rapidly-exploring
Random Trees (RRT) [33].

2.2.1 Probabilistic Roadmap

The PRM algorithm is divided into two phases. First is called construction phase, where
configuration space C is randomly sampled for configurations, also called samples, which are
added to the roadmap, if they are collision-free. After a predetermined number of collision-
free samples is generated, they are connected to their neighbours, defined by neighbourhood
method in Line 3 of Algorithm 1. Original PRM implementation [34] didn’t allow creation of
cycles, thus a modified variant sPRM [22] is more popular nowadays. Most commonly used
variant is k-sPRM, in which each sample is connected to its k-nearest neighbours. Pseudo-code
for construction phase of sPRM is in Algorithm 1.

Once the roadmap is constructed, query phase follows. During the query phase, start
and goal configurations are connected to the roadmap and a collision-free path from the start
to the goal is found by any standard graph-search algorithm, such as Dijkstra’s algorithm or
A*.

One of the most significant advantages of PRM is re-usability. The PRM algorithm
is a multi-query method, which means that the same constructed roadmap can be used for
multiple start/goal queries. This leads to usually slower roadmap construction because a
roadmap that covers entire Cfree is required, but makes PRM suitable for methods requiring
frequent planning or re-planning.

CTU in Prague Department of Cybernetics

2. PRELIMINARIES 7/47

Algorithm 1: Simplified PRM (sPRM)

Input: N desired number of samples, C configuration space
Out: G=(V,E) roadmap with vertices V and edges E

1 V ←− sample free(C, N); E ←− ∅
2 for each v ∈ V do
3 Vn ←− neighbourhood(v)
4 for each u ∈ Vn, u ̸= v do
5 if can connect(u, v) then
6 E ←− E ∪ {(u, v)}

7 G ←− (V,E)

2.2.2 Rapidly-exploring Random Trees

The RRT algorithm [33], in contrast to PRM, starts with the start configuration as
the root of a tree graph. It then repeatedly generates a random configuration qrand in the
workspace and attempts to connect it to the existing tree. To do this, the node in the tree
qnear nearest to the random configuration is found. New configuration qnew is generated in the
neighbourhood of the nearest node and in the direction of the random configuration. This new
configuration is then connected to the nearest node through a collision-free path, creating an
edge between them and adding the new configuration to the tree. Once the tree grows close
enough to the goal configuration, a collision-free path between qstart and ggoal is built. This
can be done easily and efficiently due to the tree structure of the roadmap. Algorithm 2
summarizes the RRT algorithm.

Algorithm 2: Rapidly-exploring Random Tree (RRT)

Input: C configuration space, qstart starting configuration, ggoal goal configuration
Global params.: Imax maximum number of iterations
Out: π path from qstart to ggoal

1 initialize tree T (qstart)
2 for i = 1, . . . , Imax do
3 qrand ←− random sample(C)
4 qnear ←− nearest point(T , qrand)
5 qnew ←− steer(qrand, qnear)
6 if can connect(qnear, qnew) then
7 T .add vertex(qnew)
8 T .add edge(qnear, qnew)
9 if is near(qnew, qgoal) then

10 construct path π from qstart to ggoal
11 return π

RRT is a single-query method. This means each tree is built to answer a single start/goal
query. The sampling of C is terminated if the query can be answered, making it practically
faster. However, any subsequent planning requires the entire algorithm to start over, and build
a new tree, making it impractical for repeated planning.

CTU in Prague Department of Cybernetics

8/47 2.2. GRAPH-BASED REPRESENTATION OF FREE-SPACE

2.2.3 Asymptotically Optimal RRT* and PRM*

Although k-sPRM and RRT algorithms excel in quick graph construction, they do
not consider any optimality criteria, even though both are probabilistically complete. Path
planning algorithm is probabilistically complete if probability p of finding a solution to the
path planning problem P converges to one, as the number of samples n increases:

lim
n→∞

p(algorithm finds a solution to P) = 1. (2.1)

However, among the mentioned methods, only sPRM is asymptotically optimal. Asymptotic
optimality refers to the property of a planning algorithm to converge towards an optimal
solution, with the increasing number of samples n:

lim
n→∞

c(τ) = c∗, (2.2)

where c is a cost function that admits optimal solution with the finite cost c∗ and τ is the
best solution found by the planning algorithm.

To this end, new planners PRM* and RRT* [22], with proved asymptotic optimality,
were introduced. PRM* is an improved variable-radius variant of sPRM, were neighbourhood
(see Line 3 of Algorithm 1) of a sample is defined by an “optimal” radius, dependent on
number of sampled configurations n:

r(n) = γPRM

(
log n

n

) 1
d

, (2.3)

where

γPRM > γ∗PRM = 2

(
1 +

1

d

) 1
d
(
µ(Cfree)

ζd

) 1
d

, (2.4)

d is dimensionality of C, µ(Cfree) is the volume of Cfree and ζd is the volume of the unit ball
in the d-dimensional Euclidean space. Another variant, k-nearest PRM*, based on previously
mentioned k-sPRM, can also be considered. Here, k is not a constant but rather a function
dependent on n:

k(n) = kPRM log n, (2.5)

where

kPRM > k∗PRM = e

(
1 +

1

d

)
. (2.6)

RRT* is an extension of RRT that addresses the optimality issue by introducing a new
cost function to the algorithm. The key innovation of RRT* is a method called “rewiring”. In
traditional RRT, once a node is added to the tree, its connection to the existing tree is fixed.
However, in RRT*, nodes are allowed to rewire the tree by checking if there are other nodes
that can be reached with a lower cost through the new node. If there is such a node, the tree
is rewired to use the new, cheaper path instead. The rewiring step is what allows RRT* to
gradually converge to an optimal solution over time, as it enables the algorithm to constantly
update the tree with new, shorter paths as they are discovered.

PRM* and RRT* offer notable enhancements in path quality and optimality compared
to their initial implementations, PRM and RRT. However, achieving these improvements
comes at the cost of increased computational and memory resources. Furthermore, PRM*
and RRT* solely optimize a single path, regardless of its homotopy class. As a result, in tasks

CTU in Prague Department of Cybernetics

2. PRELIMINARIES 9/47

where optimal solution is not strictly required or when the objective is to find one path from
each homotopy class, as is in this thesis, RRT and k-sPRM prove to be more efficient alter-
natives. Moreover, fast post-processing techniques can be deployed to enhance path quality.
For these reasons, proposed method uses Informed-PRM [6], which uses biased sampling of
the environment through and ellipsoid subset defined by start and goal configurations, to
construct a roadmap representing the planning environment.

2.3 Graph-search Algorithms for Path Planning

Graph search is a problem that involves finding a path between two vertices in a graph.
It is often used in problems such as finding a way out of the maze or determining the shortest
path between two cities. Two popular graph search algorithms are Depth-first Search (DFS)
and Breadth-first Search (BFS).

DFS works on a Last In First Out (LIFO) concept. It explores a graph by visiting the
deepest unexplored node first and backtracking when it reaches a dead end. On the other
hand, BFS, based on First In First Out (FIFO) concept, explores a graph by visiting all
nodes at a given depth level before moving on to nodes at the next depth level. The difference
between DFS and BFS is illustrated in Figure 2.1. Since the objective of this thesis is to find
multiple homotopically distinct paths, DFS algorithm with augmented visited list is deployed
to search for all paths in a roadmap, as described in Section 5.4.

1

2

3

4 5

6

7

8 9

(a) DFS

1

2

4

8 9

5

3

6 7

(b) BFS

Figure 2.1: The order in which nodes are expanded.

Time complexity of both DFS and BFS is O(V + E), where V is number of vertices
and E is number of edges. However, the choice between DFS and BFS depends on the specific
problem being solved. DFS is faster and requires less memory, but found path is not guaranteed
to be the shortest path. BFS will find the shortest path, but only in graphs with uniform edge
cost. In weighted graphs, a generalization of BFS called Dijkstra’s algorithm [40] is used.

Dijkstra’s algorithm works by iteratively expanding the node with the smallest distance
from source and updating the distances of its neighbours. This process continues until the
shortest path to all nodes has been found. At the end of the algorithm, the distances to all
nodes from the source node are known, and the shortest path can be reconstructed by tracing
back from the target node to the source node using the recorded predecessors. Dijkstra’s algo-
rithm is guaranteed to find the shortest path in a graph with non-negative edge weights, and
has a time complexity of O(E log V), when implemented using a binary heap, as summarized
in Algorithm 3.

CTU in Prague Department of Cybernetics

10/47 2.3. GRAPH-SEARCH ALGORITHMS FOR PATH PLANNING

Algorithm 3: Dijkstra’s Algorithm

Input: G = (V,E) graph with vertices V and edges E, s source
Out: V set of vertices with known parent and shortest distance from source

1 for each v ∈ V do
2 v.value←−∞
3 v.parent←− None

4 s.value←− 0
5 heap ←− {V }
6 while heap ̸= ∅ do
7 v ←− heap.pop()
8 for each neighbour n of node v do
9 valuenew ←− v.value + cost(v, n)

10 if valuenew < n.value then
11 n.value ←− valuenew
12 n.parent ←− v

A* [39] is a graph-search algorithm closely related to Dijkstra’s algorithm, but with
a added heuristic component to efficiently search for the shortest path between a starting
node and a goal node in a weighted graph. As shown in Figure 2.2, A* explores significantly
less nodes than Dijkstra’s algorithm, making it particularly suitable for large graphs where
exploring all nodes is not feasible. However, developing a feasible heuristic function can be
challenging, particularly for complex problems.

(a) Dijkstra’s (b) A*

Figure 2.2: Visualization of search history of Dijkstra’s and A* Algorithm. Dark green is the
starting node, blue cell is the goal and light green are cells explored by a given algorithm.

In this thesis, graph-search algorithm is used after roadmap construction to ensure
existence of a solution for start/goals queries, or determine more samples are required for the
query to be solvable. Because multiple waypoint planning can be taken into consideration,
Dijkstra’s algorithm is used over A*.

CTU in Prague Department of Cybernetics

2. PRELIMINARIES 11/47

2.4 Spanning Tree

In graph theory, a spanning tree T of an undirected graph G = (V,E) is a sub-graph
that is a tree which includes all of the vertices V of G. Proposed method, in order to cluster a
roadmap, divides the roadmap into multiple spanning trees, also called spanning forest, where
each cluster is a distinct spanning tree.

2.4.1 Minimum-spanning Tree

A Minimum-spanning Tree (MST) is a spanning tree that connects all the vertices of
a weighted undirected graph with the minimum total weight. In graph theory, well-known
algorithms for constructing Minimum-spanning Trees are Bor̊uvka’s algorithm [29], [44], [45],
Prim’s algorithm [42], both with time complexities of O(E log V), and Kruskal’s algorithm [43]
with time complexity O(E logE), where E is the number of edges and V is the number of
vertices in the graph. In the case of disconnected graphs, the mentioned algorithms construct
a Minimum-spanning Forest (MSF), which is a collection of disjoint trees, with each tree
containing a subset of the graph’s vertices. It is worth noting that these algorithms do not
require the definition of a root for each tree. However, in this thesis, pre-defined roots are
utilized, thereby making a shortest-path tree the appropriate choice.

2.4.2 Shortest-path Tree

Shortest-path tree [40] rooted at a vertex v of a connected, undirected graph G = (V,E)
is a spanning tree T of G, such that the path distance from root v to any other vertex u ∈ V
in T is the shortest path distance from v to u in G. This definition also allows creation of
a shortest-path forest [38] even in fully connected graphs, by defining a set of root nodes.
In shortest-path forest, each vertex v is belongs to a shortest-path tree, that minimizes the
length of path from v to the root node. Figure 2.3 visualises the transformation of weighted
undirected graph with defined set of roots into a shortest-path forest.

(a) weighted undirected roadmap (b) shortest-path forest

Figure 2.3: Illustration of transformation of weighted undirected graph into shortest-path
forest.

CTU in Prague Department of Cybernetics

12/47 2.4. SPANNING TREE

The construction of shortest-path tree (or forest) can be implemented using algo-
rithms such as Bellman-Ford algorithm [41] or Dijkstra’s. Algorithm 3 essentially constructs
a shortest-path tree, by assigning a parent node to each vertex. To generate a shortest-path
forest, the algorithm can be adapted by specifying a set of multiple source nodes, rather
than just one. In Section 5.2, we present the algorithm employed to partition a roadmap
into a shortest-path forest, which subsequently aids in identifying suitable candidates for new
centroids (roots).

CTU in Prague Department of Cybernetics

3. RELATED WORK 13/47

Chapter 3

Related Work

A complete solution to the problem of finding all homotopically distinct paths in clut-
tered environments relies on combinatorial motion planning approaches. However, these meth-
ods [16], [20] use representations (e.g., Voronoi diagram [35]) that require an explicit represen-
tation of occupied space. An optimization-based approach described in [14] proposes to use
Gaussian processes to construct a factor graph representing a distribution of multiple trajec-
tories, which are then optimized and filtered. However, the functionality of this method was
verified only in 2D. Additionally, some of the trajectories found belong to the same homotopy
class. Therefore, the resulting paths must be pruned by identifying homotopically equiva-
lent paths. The method [30] uses a concept of elastic strip, proposed in [32], for trajectory
re-planning. Yet, it is only able to represent a single homotopy class and requires an initial
feasible trajectory to begin with. Authors in [21] introduce homotopy relation in the form of
h-signatures, applicable in both 2D and 3D, but only with time and memory-consuming space
discretization. Moreover, the discretized space often fails to capture narrow passages.

To approximate the continuous configuration space, a graph-based representation called
roadmap, e.g. PRM [34], is commonly used. Many existing methods for finding distinct ho-
motopy classes [5], [7], [13], [19], [24], [28] take one of the PRM variants as a starting point.
The Probabilistic Roadmap algorithm is a widely used sampling-based method for motion
planning that consists of two main phases. In the construction phase, the PRM algorithm
generates a set of random feasible configurations, also known as samples. These samples are
then connected to each other using a local planner.

The original PRM implementation in [34] did not allow cycles in the roadmap, which
limited its connectivity, completeness and the ability to capture more than one homotopy
class. To address this, [22] introduced a version called sPRM that allows cycles in the graph,
and is more widely used nowadays. The author of Informed-PRM [6] proposes to only sample
an ellipsoid space between start and goal configurations. Method in [18] aims to generate PRM
that guarantees to capture all homotopy classes in an environment, by using an obstacle biased
sampler, but relies on explicit representation of occupied space, which is unreasonable for 3D
environments.

After PRM is constructed, query phase follows where a path between two samples is
found using any standard graph searching algorithm such as Dijkstra’s or A*. However, these
algorithms only find the shortest path in the roadmap. Method [26] proposes an approach
that uses Dijkstra’s algorithm to find all paths between start and goal node by finding a path
to each node from start and from goal, resulting in total number of paths equal to number of
nodes. Method then proceeds to prune any redundant paths, which is an exhaustive process,
especially in dense graphs with a high number of nodes, which are necessary in challenging
environments that contain multiple narrow passages. Depth-first search algorithm, followed
by pruning of redundant paths according to equivalency relation introduced in [23], proposed
in [19] is also affected by this issue. For graph search to be efficient, a sparser roadmap, with

CTU in Prague Department of Cybernetics

14/47

reduced number of nodes has to be constructed. Authors in [13] propose a method to delete
certain edges from a dense roadmap to construct a sparse near-optimal graph. However, even
though created graph is sparser, it still contains the same amount of nodes, thus still resulting
in high number of redundant paths being found.

Visibility-PRM [31] is a variant of PRM that constructs a sparse roadmap, while dis-
carding some of the nodes as well, resulting in a roadmap more efficient and compact compared
to traditional PRM. It does so by introducing a concept of visibility domains. Each visibility
domain is defined by a “guard” and covers a space “visible” to the guard. No guards are
allowed to be visible to each other, therefore, they are connected through additional sam-
ples called “connectors”. The method in [28] extends the original Visibility-PRM by allowing
creation of cycles but keeping the roadmap simply connected, making the method suitable
for distinct path searching. However, it may not capture all homotopy classes, especially in
challenging environments containing multiple narrow passages. In this scenario a connector
node has to be sampled exactly inside a narrow passage, but only after two guard nodes have
already been created in specific locations.

Authors in [24], modify original Visibility-PRM by iteratively adding a limited number
of useful cycles. This is done by connecting visible sub-roadmap components, which are sub-
graphs visible from a new configuration. If there is more than one component, two of them
are connected through this new configuration, creating a useful cycle, and therefore a new
distinct path. Unfortunately, determining a visible sub-roadmap and its separate components
gets progressively more computationally expensive in complex environments.

Algorithm in [7] was designed for fast trajectory re-planning, but includes the sub-
task of finding homotopically distinct paths. It modifies Visibility-PRM algorithm to make
it computationally efficient. This is done by discarding many generated samples, unless there
are no guard nodes visible from it, in which case it becomes a new guard, or there are exactly
two guard visible, becoming a connector. Additionally, if there already exists a connection
between a given pair of guards with the same homotopy class, the longer one is removed.
This method achieves great results in scenarios with good visibility, where long edges can
be created. However is very susceptible to initial placement of new guard nodes in scenarios
where visibility is limited, which affects both computational speed and functionality.

Method in [5] tackles minimum-time trajectory planning problem, but contains a unique
solution for finding multiple paths with distinct homotopy classes. Algorithm starts by con-
structing Informed-PRM [6] which is then iteratively searched for the shortest path using
Dijkstra’s algorithm. For each path, the algorithm identifies a node with the smallest clear-
ance from obstacles, and removes region around it from the roadmap. This process is repeated
until no new path can be found. To address cases where multiple distinct paths pass through
a deleted region, algorithm is recursively called from the start to the deleted regions and from
the deleted regions to the goal. Limitation of this method is lack of information required to
optimally select a region to remove, failing to find some of the paths as a result. Additionally,
recursion may lead to combinatorial explosion, drastically increasing run-time.

The main limitation of existing methods is their inconsistency across different environ-
ments, leading to significant variations in their performance, especially in challenging environ-
ments that contain multiple narrow passages. CTopPRM is capable of efficiently reducing a
dense roadmap, required to accurately represent such environment, by dividing it into clusters.
This significantly reduces both number of edges and nodes, while maintaining the same con-
nectivity of free space, as the initial roadmap. This allows it to both effectively and consistently
identify a large number of homotopically distinct paths, even in challenging environments.

CTU in Prague Department of Cybernetics

4. PROBLEM STATEMENT 15/47

Chapter 4

Problem statement

The goal of this thesis is to tackle the problem of efficiently finding multiple homotopi-
cally distinct paths, e.g. paths between same endpoints going around an obstacle from different
sides. By identifying multiple such paths, the robot has greater flexibility when planning its
movements.

We study the path planning problem [25], in which we are given an object and search for
a way for it to move through an environment without colliding with obstacles. Manipulated
object, also called agent or robot, is denoted by A. It operates in a space referred to as the
world W, usually a subset of R2 or R3. The obstacles within the planning environment are
denoted by O ⊆ W.

The robots’s position in the world is determined by configuration q. Configuration
is a vector that represents a specific arrangement of the robot’s degrees of freedom q =
(q1, q2, . . . , qn). The set of all possible robot configurations is called configuration space C,
which in this thesis, we consider to be R3 with elements q = (x, y, z). We also define two
configurations, start position qstart and goal position qgoal. The set of all points occupied by
the robot A in configuration q is denoted by A(q) and the set of all configurations q where
A(q) intersects with the obstacles O is called occupied space Cobs ⊆ C

Cobs = {q ∈ C|A(q) ∩ O ≠ ∅}. (4.1)

Conversely, the free space Cfree = C\Cobs is the set containing all non-colliding configurations.

A continuous curve that connects two configurations qstart and qgoal is called a path
π(s) ∈ C, s ∈ [0, 1]. A collision-free path is a path that is entirely contained within the free
space Cfree

π : s ∈ [0, 1] −→ π(s) ∈ Cfree∀s ∈ [0, 1], (4.2)

where π(0) = qstart and π(1) = qgoal. A trajectory is a time-parametrized path that describes
the motion of a moving object over a period of time, taking into account the robot’s dy-
namics. Specifically, given a path π(s) connecting the start configuration qstart and the goal
configuration qgoal, a trajectory is a function

τ : s ∈ [0, 1]× t ∈ [0, T]→ C, (4.3)

that maps time to a point in the configuration space C, where T is the time horizon. The
trajectory τ(t) must satisfy constraints such as collision avoidance, feasibility as well as con-
strained posed by robot dynamics, and must follow the path π(s) such that τ(0) = qstart and
τ(T) = qgoal.

To mutually differentiate between topological paths or trajectories, a topology equiva-
lence relation has to be defined.

CTU in Prague Department of Cybernetics

16/47 4.1. TOPOLOGY EQUIVALENCE RELATION

4.1 Topology Equivalence Relation

(a) As per the definition of homotopy, green, pink,
and orange paths are considered to be equivalent.
However, it is important to acknowledge that they
embody considerably different motions.

(b) Illustration of UVD equivalency check. Blue and
yellow paths are determined to be equivalent, while
the purple path belongs to a distinct UVD class. By
the classical definition of homotopy, all three paths
are equivalent

Figure 4.1: Topology equivalence relation.

A homotopy class is commonly used to define a set of topologically equivalent paths.
In [27], homotopy is defined as a concept in topology where two continuous functions from one
topological space to another are considered homotopic if one can be smoothly deformed into
the other. This definition, applied on paths, was summarized in [24]. Homotopy of two paths
π(s) and π′(s) in C is said to exist if there is a continuous map h : [0, 1] × [0, 1] −→ Cfree such
that h(s, 0) = π(s), h(s, 1) = π′(s) for all s ∈ [0, 1], and h(0, t) = h(0, 0) and h(1, t) = h(1, 0)
for all t ∈ [0, 1].

While homotopy is a widely used concept, it has been found to be inadequate for cap-
turing a sufficient number of useful paths in R3 space, as shown in Figure 4.1a. To address
this limitation, authors in [24] introduced the concept of Visibilty Deformation (VD) which
captures more useful paths. Unlike homotopy, which allows for complex, high-dimensional
transformations to be applied during path deformation, visibility deformation focuses on pre-
serving certain visibility-related properties of the path, such as the ability to evade obstacles,
effectively reducing dimensionality of deformation between the paths. However, the approach
is still computationally expensive. Therefore, [7] proposes an extension to VD called Uniform
Visibilty Deformation (UVD), which is more efficient.

Definition 1 Two paths π(s), π′(s) parameterized by s ∈ [0, 1] and satisfying π(0) = π′(0),
π(1) = π′(1), belong to the same uniform visibility deformation class, if for all s, line-segment
from π(s) to π′(s) is collision-free.

Three paths belonging to two distinct UVD classes, and an illustration of UVD equiv-
alency check is depicted in Figure 4.1b, while Figure 4.2 shows the difference between VD
and UVD. Both define a continuous map between two paths π(s) and π′(s) in which a point
π(s1) is transformed to a point π′(s2) through a straight line-segment, where s1, s2 ∈ [0, 1].
However, while in UVD s1 = s2, this is not necessarily true for VD. Because of this, UVD
is less general and captures more UVD classes in practice. Additionally, it performs better
when the paths π(s) and π′(s) are of similar length, and its performance deteriorates as the
difference in length increases. On the other hand, when it comes to equivalency checking,
UVD exhibits significantly higher computational efficiency compared to the VD.

CTU in Prague Department of Cybernetics

4. PROBLEM STATEMENT 17/47

(a) visibility deformation (b) uniform visibility deformation

Figure 4.2: Difference between VD (a) and UVD (b). Each red point on one path is transformed
to a green point on the other path through a straight-line. Each pair of points correspond to
the same parameter s in UVD, but not necessarily in VD, where corresponding pair of points
is found through a more time-consuming process described in [24].

The aim of this thesis it to propose a method which would allow fast and efficient search
for a set Π of topological paths each representing a distinct UVD class. To accomplish this,
a combination of topological and motion planning methods, along with graph-based search
algorithms, is utilized to systematically transform a densely sampled Probabilistic Roadmap
(PRM) into a sparser, low-order graph. Smaller graph should enable a more efficient search
for multiple paths, and reduce the number of redundant paths found, i.e. paths belonging to
the same UVD class. By reducing the size of the graph, the search for multiple paths becomes
more efficient and minimizes the number of redundant paths discovered, i.e. paths belonging
to the same UVD class.

CTU in Prague Department of Cybernetics

18/47 4.1. TOPOLOGY EQUIVALENCE RELATION

CTU in Prague Department of Cybernetics

5. CLUSTERING TOPOLOGICAL PRM 19/47

Chapter 5

Clustering Topological PRM

The proposed method we named Clustering Topological PRM (CTopPRM) finds distinct
topological paths using a hierarchical approach that starts by constructing a dense roadmap
using Informed-PRM [6]. The nodes in the roadmap are divided into two initial clusters
(that are defined by qstart and qgoal), and more clusters are iteratively identified. In each
iteration, new cluster centroid is created between two neighbouring clusters. Cluster centroids
are then used as vertices of new sparse roadmap, which is then searched for paths with diverse
uniform visibility deformation classes. Finally, found paths are shortened and filtered. The
algorithm uses Euclidean Signed Distance Field (ESDF) for collision checking. The method
is summarized in Algorithm 4 and its visualization is shown in Figure 5.1. Each step of the
CTopPRM algorithm is explained in more detail in the following sections.

(a) roadmap clustered with initial centroids (b) fully clustered roadmap

(c) connections between clusters (d) shortened distinct paths

Figure 5.1: Visualization of individual stages of the algorithm. Generated PRM is first divided
into two clusters with qstart and qgoal as centroids (a). Minimum and maximum connections,
marked by green and red line, are compared and new centroids are iteratively created at one
of the maximum connections until roadmap is fully clustered (b). Connections between cluster
centroids are found and a low-order, sparse graph (c) is constructed and then searched for
distinct paths (d).

CTU in Prague Department of Cybernetics

20/47 5.1. DENSE PROBABILISTIC ROADMAP CONSTRUCTION

Algorithm 4 starts with Informed-PRM constructing a roadmap G=(V , E) with ver-
tices V and edges E, which is then divided into clusters by clusterGraph method, trans-
forming the roadmap into a shortest-path forest (V , EC). Method addCentroids iteratively
adds new centroids and ultimately constructs a low-order graph (CV , CE). This graph is then
searched, by findDistinctPaths method, for a set of paths Πd, which are then filtered by
filterPaths method, resulting in the set Π, where each path π ∈ Π represents a distinct UVD
class.

Algorithm 4: CTopPRM

Input: qstart, qgoal
Global params.: M max clusters, κp DFS termination condition, κs pruning

parameter
Out: Π = (π1, π2, ..., πn) found topological paths

1 (V , E), l ←− Informed-PRM(qstart, qgoal) // [6]
2 CV ←− {qstart, qgoal}
3 (V , EC) ←− clusterGraph((V , E), CV) // Alg. 5
4 (CV , CE) ←− addCentroids((V , EC), CV) // Alg. 6

5 Πd ←− findDistinctPaths(CV , CE , κp · l)
6 Π ←− filterPaths(Πd)

5.1 Dense Probabilistic Roadmap Construction

The goal of this step of the CTopPRM algorithm is to densely represent free-space Cfree
which is realized using Informed-PRM [6]. Each vertex is connected to its 14 neighbours
using a straight-line, if possible. The shortest path in the constructed roadmap is then found
using Dijkstra; let l denote its length. Created dense roadmap accurately represents connec-
tivity of Cfree, but is inefficient for multi-path searching, due to a high number of both vertices
and edges. As a result, search in the dense roadmap would not only require large computa-
tional resources, but also return a high number of redundant paths, belonging to the same
UVD class. Therefore, we aim to greatly reduce number of nodes and edges, while keeping
the accurate representation of free-space connectivity.

CTU in Prague Department of Cybernetics

5. CLUSTERING TOPOLOGICAL PRM 21/47

5.2 Graph Clustering

The clusterGraphmethod described in Algorithm 5 divides roadmap into clusters with
shortest-path tree [40] structure, with each cluster centroid being root of its shortest-path tree.
All clusters together form a shortest-path forest [38].

The division of the roadmap into clusters is implemented using a min-heap, making the
time complexity O(E log V). Initial cluster centroids are qstart and qgoal. Each shortest-path
tree (cluster) is expanded from its centroid, creating connections to minimize the total cost of
a path from each vertex to the nearest cluster centroid. This result is achieved using Lines 12-
16 of Algorithm 5. If two neighbouring vertices belong to different clusters, total cost of path
connecting two cluster centroids over these two vertices is calculated, as shown in Line 18. For
each pair of neighbouring clusters i and j, the method maintains paths P ij

min and P ij
max that

represent the shortest and the longest paths connecting the two clusters, respectively, with
a prospect they might represent different UVD classes. Edges that do not belong to either
cluster, but are a part of these paths are called minimum and maximum cluster connection,
and they are crucial for selecting new cluster centroids in the steps to follow. An example of
these connections is shown in Figure 5.1a, where green line represents minimum and red line
represents maximum cluster connection.

Algorithm 5: clusterGraph

Input: (V , E) roadmap, CV set of cluster centroids
Out: (V , EC) clustered roadmap

1 for each v ∈ V do
2 v.value ←−∞
3 v.cluster ←− -1

4 cluster id ←− 0
5 for each c ∈ CV do
6 c.value ←− 0
7 c.cluster ←− cluster id, cluster id ←− cluster id + 1

8 heap ←− V ∪ CV

9 while heap ̸= ∅ do
10 v ←− heap.pop()
11 for each neighbour n of node v do
12 valuenew ←− v.value + cost(v, n)
13 if valuenew < n.value then
14 n.value ←− valuenew
15 n.cluster ←− v.cluster
16 n.parent ←− v

17 else if v.cluster ̸= n.cluster AND n.cluster ̸= 1 then
18 costnew ←− v.value + cost(v, n) + n.value

19 update P ij
min and P ij

max if necessary

CTU in Prague Department of Cybernetics

22/47 5.3. ADDING NEW CENTROIDS

5.3 Adding New Centroids

The motivation behind division of PRM into multiple clusters is to create an easily
searchable graph with cluster centroids as vertices which will have significantly lower order
than the inital densely sampled roadmap. To capture all UVD classes, while minimizing order
of the graph, vertices have to be placed methodically. CTopPRM’s approach to create new
cluster centroids is depicted in Algorithm 6 and visualized in Figure 5.2.

(a) clustered roadmap with two clusters (b) paths P ij
min (green) and P ij

max (red)

(c) new centroid (d) re-clustered roadmap with three clusters

Figure 5.2: Visualization of new centroid selection process. In (a) are the clusters at the start
of an iteration. Paths P ij

min (green) and P ij
max (red) are found for each pair of neighbouring

clusters (b) and new centroid is created at a non-deformable connection with highest ratio of
lengths of paths P ij

min and P ij
max (c). Roadmap is then re-clustered (d).

CTU in Prague Department of Cybernetics

5. CLUSTERING TOPOLOGICAL PRM 23/47

It starts by comparing connections P ij
min and P ij

max for each pair of connected clusters

(i, j). In Figure 5.2b, P ij
min is colored green and P ij

max is red. The method Deformable in
Line 6 of Algorithm 6 then checks if these two paths belong to the same UVD class. Each
path is discretized to n = ⌈P ij

max.length/∆d⌉ steps. Each line-segment between the points
P ij
max[k] and P ij

min[k], k = 0, . . . , n, is tested for collisions with the resolution ∆d. If they are
not deformable, creating a new centroid at the border of these two clusters is beneficial in
capturing more UVD classes, as there are two distinct paths connecting two existing cluster
centroids. The ratio of their lengths is then calculated and saved. The connection with the
highest ratio is selected and one of the two neighbouring nodes belonging to its maximum
connection, is determined as a new centroid (colored blue in Figure 5.2c), and roadmap is then
clustered again, using the method described in Section 5.2. The clustering ends if P ij

min and

P ij
max are deformable into each other for all neighbouring clusters, or a predefined maximum

number of clusters M is reached. The fully clustered roadmap is shown in Figure 5.1b.

Algorithm 6: addCentroids

Input: (V , EC) clustered roadmap, CV set of cluster centroids
Global params.: ∆d collision-detection resolution, M max clusters
Out: (CV , CE) simplified roadmap

1 can add ←− true
2 while can add AND num clusters < M do
3 can add ←− false
4 ratio ←− ∅
5 for each (i, j) ∈ connected clusters do

6 if not deformable(P ij
min, P

ij
max, ∆d) then

7 ratio ←− ratio ∪{P
ij
max.length

P ij
min.length

}

8 can add ←− true

9 new centroid ←− getCentroid(max(ratio))
10 CV ←− CV ∪ new centroid
11 (VC , EC)←−ClusterGraph((V, E), CV)

12 CE ←− ∅
13 for each (i, j) ∈ connected clusters do

14 Enew ←− shorten(P ij
min)

15 CE ←− CE ∪ Enew

After clustering ends, new simple low-order graph is created with cluster centroids as
vertices. Edges connecting them are found by a sequence shown in Lines 12-15. For each pair
of connected clusters, an edge connecting the corresponding pair of clusters is created from
saved path, P ij

min. Each of these edges are then shortened using a method similar to shortening
in [7] and [5], further explained in Section 5.5. As a result, these edges together with a set of
cluster centroids finalize the construction of the simple low-order graph, which can be seen in
Figure 5.1c. Entire roadmap reduction process is illustrated in Figure 5.3.

CTU in Prague Department of Cybernetics

24/47 5.3. ADDING NEW CENTROIDS

Figure 5.3: Illustration of the roadmap reduction process through iterative clustering. New
centroids are created at path P ij

max between neighbouring clusters (i, j) for which P ij
min and P ij

max

are not deformable and have the largest length ratio, up until all connections are deformable.
A reduced graph is then constructed with cluster centroids as vertices and shortened P ij

min as
edges.

CTU in Prague Department of Cybernetics

5. CLUSTERING TOPOLOGICAL PRM 25/47

5.4 Multi-path Search

The method findDistinctPaths in Line 5 of Algorithm 4 searches the graph using
Depth-first search (DFS) algorithm with visited list, similar to [16]. In this depth-limited
DFS, the expansion on the current node is terminated if the current path length is greater
than κp times the length of best solution l. This way, parameter κp directly controls the
trade-off between the number of paths found and computational time. By lowering κp, long
and convoluted paths are not explored further, preventing potential combinatorial explosion,
as well as reducing the run-time of both DFS and the following filtering process, due to the
reduced number of paths found. Contrarily, increasing the value of κp may result in increased
number of identified paths, but with a corresponding increase in computational time. Method
findDistinctPaths is summarized in Algorithm 7.

Algorithm 7: findDistinctPaths

Input: (CV , CE) simplified roadmap, qstart, qgoal, l length of shortest path
Global params.: κp DFS termination condition
Out: Πd = (πd

1 , π
d
2 , ..., π

d
n) found distinct paths

1 Πd ←− ∅
2 pd ←− {qstart.cluster}
3 visited←− {qstart.cluster}
4 Function findPathsRecurse(pd, visited):
5 if pd.length() > l · κp then
6 return

7 last id ←− pd.last()
8 for each node id ∈ connected clusters(last id) do
9 if node id == qgoal.cluster then

10 pd.push back(node id)

11 Πd ←− Πd ∪ pd

12 return

13 if node id /∈ visited then
14 visited←− visited ∪ node id

15 pd.push back(node id)

16 findPathsRecurse(pd, visited)

CTU in Prague Department of Cybernetics

26/47 5.5. PATH FILTERING

5.5 Path Filtering

To accommodate future applications, e.g. planning high-speed trajectories for
Unmanned Aerial Vehicles (UAVs) along the paths, CTopPRM uses a series of methods,
included in filterPaths function in Line 6 of Algorithm 4, summarized in Algorithm 8, to
augment and filter found paths. Method similar to shortening in [7] and [5] is first used to
shorten all found paths. Method, illustrated in Figure 5.4 and depicted in Lines 2-12 of Al-
gorithm 8, begins by discretizing each path πd

k ∈ Πd found in the previous step (Section 5.4),
using a resolution of ∆d, into a set of waypoints P d. An UVD equivalent shortcut P s is then
initialized with the first waypoint in P d. For the first waypoint pd ∈ P d that cannot be seen
from the last point ps ∈ P s, the algorithm searches for a voxel obstructing the view, and
moves it away from obstacles in the direction orthogonal to the line segment ld, while remain-
ing co-planar to both ld and the ESDF gradient at the obstructing voxel. Point pushed away
from the obstacle is added to P s and process is repeated until P d and P s connect the same
two endpoints.

Figure 5.4: Illustration of the shortening process. Obstacles are colored black and occupied
cells are grey. Detoured path (green) found by findDistinctPaths method is shortened to
the red path. Yellow lines are not collision-free, thus the voxel obstructing the view has to be
pushed away from obstacles (blue arrow), resulting in a new waypoint (red) belonging to the
shortened path.

Any shortened paths longer than a threshold defined as length of the shortest found
path multiplied by the parameter κs are then pruned away (see Lines 13-16 of Algorithm 8).
Doing this filters out any paths that either take a unreasonably long detour or include sub-
optimal movement, e.g. looping around obstacles. Finally, one last UVD equivalency check is
performed on shortened paths to filter out any paths belonging to the same UVD class, as
depicted in Lines 17-20 of Algorithm 8.

CTU in Prague Department of Cybernetics

5. CLUSTERING TOPOLOGICAL PRM 27/47

Algorithm 8: filterPaths

Input: Πd distinct paths found by findDistinctPaths method
Global params.: ∆d collision-detection resolution, κs pruning parameter, clearance
Out: Π set of shortened paths each representing different UVD class

1 Πs ←− ∅
2 for each πd ∈ Πd do
3 P d ←− discretize(πd, ∆d)

4 P s ←− {P d.first()}
5 for each pd ∈ P d do
6 ld ←− Line(P s.last(), pd)

7 if not collision-free(ld, ∆d) then
8 pb ←− collisionPoint(ld)

9 ps ←− pushFromObstacle(pb, clearance)
10 P s.push back(ps)

11 P s.push back(P d.last())
12 Πs ←− Πs ∪ P s

13 lengthmin ←− shortest(Πs)
14 for each πs ∈ Πs do
15 if πs.length > κs · lengthmin then
16 Πs.remove(πs)

17 for each (πi, πj) ∈ Πs do
18 if deformable(πi, πj , ∆d) then
19 Πs.remove(longest(πi, πj))

20 Π←− Πs

shorten paths

remove too long paths

remove equivalent paths

The final output of filterPaths method, and therefore of the entire CTopPRM algo-
rithm (Algorithm 4), is a set of paths Π, where each πi ∈ Π represents a different UVD
class.

CTU in Prague Department of Cybernetics

28/47 5.5. PATH FILTERING

CTU in Prague Department of Cybernetics

6. RESULTS 29/47

Chapter 6

Results

The performance of the CTopPRM is evaluated in three different environments shown in
Figure 6.1. The purpose of having multiple thematically different environments is to evaluate
robustness of our and related methods. The most important evaluation metric is the number
of UVD classes each method is able to find in form of a path within such a UVD class. We
also consider computational time and quality of found paths, represented by their respective
lengths.

π1

π2π3

(a) windows in 1-3-1 scenario (proposed in [11]) (b) poles

top view

side view

(c) building

Figure 6.1: Maps of the environments used for evaluating CTopPRM and related algorithms
with paths found by CTopPRM.

CTU in Prague Department of Cybernetics

30/47 6.1. WINDOWS ENVIRONMENT

CTopPRM is implemented in C++, and experiments are run on AMD Ryzen 7 6800HS
CPU. Values of parameters used in the test is shown in Table 6.1.

Table 6.1: Algorithm parameters & map size
windows poles building

map size 27x26.7x8 10x10x2.8 30x20x6.3

All methods

clearance 0.3 0.3 0.2
∆d 0.1 0.2 0.2

PRM samples 500 300 1000
κs 1.5 1.2 1.5

CTopPRM
M 9 20 20
κp 1.8 1.6 1.7

The computational time of all methods examined in this study is primarily influenced
by two key parameters: ∆d — the resolution of collision detection, and the number of samples
used to build the dense roadmap (PRM samples). The size of the spherical robot is specified by
the clearance parameter. Notably, the CTopPRM algorithm includes two exclusive parameters:
M (maximum number of clusters) and κp (DFS termination condition). Both parameters affect
the trade-off in performance of the method, reducing computational time, but at a cost of
quality and quantity of found paths. Pruning parameter κs is used to remove any long and
convoluted paths from the final output of the CTopPRM method.

We evaluate the performance of CTopPRM by comparing it with three other methods
that tackle the same challenge. These include the method we call RAPTOR from [7], which
solves the sub-task of identifying distinct topological paths, the Distinct Path Search algorithm
proposed in [5], referred to as B. spheres, and an approach based on [24] called P-D-PRM,
adapted slightly to ensure reasonable run-time.

6.1 Windows Environment

The first set of experiments is performed in environments called windows which contain
a small number of narrow passages (windows) placed on one to three parallel walls, making
maximum number of distinct UVD classes, Ground Truth (GT), easily determinable. Name
of the maps in Tables 6.2 and 6.3 indicates number of windows on each wall. For example,
scenario 1-3-1 shown in Figure 6.1a contains one window on the first wall, three on the second
and one on the third. Zero indicates a given wall is missing completely and ’s’ for ’side’
indicates that a specific window is not in the middle of the wall. These scenarios are tested
in R2 space with a circular robot. Each algorithm is evaluated on 100 runs in every scenario.
We report computational time (c.t.) and success rate of each algorithm in finding every single
distinct path that exists in a given scenario.

The results of this experiment are shown in Tables 6.2 and 6.3 as well as Figures 6.2-6.9.
They indicate that CTopPRM algorithm manages to find all but one path, across all testing
scenarios, with highest success rate. Additionally, CTopPRM finds most paths with a success
rate close to 100%, with lowest success rate being 70%, proving its effectiveness and reliability,
both absolutely and relatively to other methods.

All the methods performed better in simpler scenarios where only one window is re-
quired to be passed (0-2-0 and 0-3-0 shown in Figures 6.2 and 6.6), and their performance

CTU in Prague Department of Cybernetics

6. RESULTS 31/47

deteriorates as the number of narrow passages increases. Visibility-based methods P-D-PRM
and RAPTOR demonstrate the most significant decline in performance, with success rates
dropping below 10% for multiple paths in different scenarios. Most notably in scenario 1-2-1,
shown in Figure 6.4, where these methods fail to detect any of two paths in over 90% runs.

Table 6.2: Success rate of finding each distinct path πi ∈ Πenv in scenarios where GT=2
scenario

0-2-0 1-2-0 1-2-1 1s-2-1s

CTopPRM
c.t.[ms] 41 54 51 48
π1[%] 100 99 99 98
π2[%] 100 99 99 97

RAPTOR [7]
c.t.[ms] 75 65 35 42
π1[%] 80 51 4 40
π2[%] 64 42 7 26

B. spheres [5]
c.t.[ms] 36 55 51 86
π1[%] 99 89 95 87
π2[%] 94 94 58 91

P-D-PRM [24]
c.t.[ms] 39 52 43 40
π1[%] 54 35 9 42
π2[%] 46 24 8 9

Table 6.3: Success rate of finding each distinct path πi ∈ Πenv in scenarios where GT=3
scenario

0-3-0 1-3-0 1-3-1 1s-3-1s

CTopPRM

c.t.[ms] 70 51 47 54
π1[%] 94 100 100 100
π2[%] 100 71 89 99
π3[%] 96 70 89 81

RAPTOR [7]

c.t.[ms] 148 101 43 46
π1[%] 94 100 41 86
π2[%] 100 0 12 16
π3[%] 92 0 10 14

B. spheres [5]

c.t.[ms] 53 41 51 85
π1[%] 98 95 90 88
π2[%] 98 2 78 89
π3[%] 93 3 52 68

P-D-PRM [24]

c.t.[ms] 49 38 41 21
π1[%] 86 100 41 89
π2[%] 98 0 9 9
π3[%] 81 0 5 7

Interesting results arise from scenario 1-3-0 (Figure 6.7) where P-D-PRM and RAPTOR
find the shortest path π1 in every run, due to qgoal being visible from qstart, but fail to ever
identify any of the remaining paths π2 and π3. Due to the layout of the map, we can assume
that Visibility-PRM blocks itself off by placing a guard node in an unfavorable position.
Additionally, B.spheres method, which otherwise shows more competitive results, is also able
to detect these paths with less than 10% success rate. Contrarily, CTopPRM detects both
paths in 70% of runs, proving its robustness in more challenging scenarios.

CTU in Prague Department of Cybernetics

32/47 6.1. WINDOWS ENVIRONMENT

(a) scenario (b) success rate (c) computational time

Figure 6.2: Algorithm performance in windows 0-2-0 scenario.

(a) scenario (b) success rate (c) computational time

Figure 6.3: Algorithm performance in windows 1-2-0 scenario.

(a) scenario (b) success rate (c) computational time

Figure 6.4: Algorithm performance in windows 1-2-1 scenario.

CTU in Prague Department of Cybernetics

6. RESULTS 33/47

(a) scenario (b) success rate (c) computational time

Figure 6.5: Algorithm performance in windows 1s-2-1s scenario.

(a) scenario (b) success rate (c) computational time

Figure 6.6: Algorithm performance in windows 0-3-0 scenario.

(a) scenario (b) success rate (c) computational time

Figure 6.7: Algorithm performance in windows 1-3-0 scenario.

CTU in Prague Department of Cybernetics

34/47 6.1. WINDOWS ENVIRONMENT

(a) scenario (b) success rate (c) computational time

Figure 6.8: Algorithm performance in windows 1-3-1 scenario.

(a) scenario (b) success rate (c) computational time

Figure 6.9: Algorithm performance in windows 1s-3-1s scenario.

The run-time of all methods depends not only on the size of the input roadmap, but
also on number of paths detected, as most of computational time is taken by filtering process
described in Section 5.5. This is why scenario 0-3-0 is interesting to us, since all tested methods
identify similar amount of paths. As already mentioned, the performance of the methods
depends on the number of random samples used to create the initial roadmap. We show the
performance with the increasing number of random samples in Figure 6.10.

They indicate that with the lower number of samples, the methods B. spheres and
CTopPRM manage to find more paths, but are clearly slower than both P-D-PRM and RAP-
TOR. Additionally, it is important to note that P-D-PRM finds significantly fewer paths than
the other methods, because it consists of two phases, which have to share the total amount
of samples. With a growing number of samples, the performance of all algorithms in terms
of the number of paths found converges towards three, which is the ground truth in this
scenario. However, unlike B. spheres and CTopPRM, which record just a minor increase in
computational time, both P-D-PRM and RAPTOR become significantly slower.

Overall, CTopPRM shows computational speed competitive with other related methods,
while clearly outclassing them in terms of path detection success rate. Therefore, CTopPRM

CTU in Prague Department of Cybernetics

6. RESULTS 35/47

Figure 6.10: Effect of increasing number of samples on performance.

proves to be the most efficient and effective in scenarios with smaller number of distinct UVD
classes.

6.2 Complex Environments

The second set of experiments was conducted in complex environments, containing a
high number of distinct UVD classes. The first environment, called ”poles” and depicted
in Figure 6.1b, resembles a small forest-like area, while the second environment, shown in
Figure 6.1c and called ”building”, requires a robot to traverse a closed, multi-level building
area through doors and windows. For each of these environments, we tested the performance
of the methods in three different scenarios with different start and goal configurations. Each
method was tested in 100 runs in each scenario. The poles scenarios are tested in R2 space
with a circular robot and building scenarios are tested in R3 space with a spherical robot.

Table 6.4 summarizes performance of the methods in terms of computational time,
quantity of found paths represented by highest number of paths found in a single run (best)
and average number of found paths across all 100 runs. Quality of paths is evaluated as an
average length of n-shortest paths found over all 100 runs, where n is indicated in the table.

n-short. =

∑n
i=0 πi.length

n
,

πi.length < πj .length ∀πi, πj ∈ Π, i < j.

(6.1)

This metric is supposed to show if a method is able to consistently find k shortest paths in
each scenario.

The results show that CTopPRM performs the best in terms of quantity of paths found,
identifying the most paths in a single run in every scenario, as well as significantly outscoring
other methods in average number of paths found in all scenarios. Additionally, CTopPRM
also outperforms other methods in terms of quality of found paths in all but one scenario in
poles environment, where it records a score just 1% worse than RAPTOR. CTopPRM is also

CTU in Prague Department of Cybernetics

36/47 6.2. COMPLEX ENVIRONMENTS

the only method to find at least n paths across 100 runs in every single scenario. Failure to
do so is denoted by N/A in Table 6.4.

Table 6.4: Quantity and quality of paths found in poles and building environments
poles, n=400 building, n=300

scenario 1 scenario 2 scenario 3 scenario 1 scenario 2 scenario 3

CTopPRM

c.t.[ms] 19 16 13 142 151 124
best 19 6 11 25 36 11
avg. 15.16±3.76 4.80±0.96 7.85±1.71 7.78±4.43 8.74±5.79 4.77±1.74

n-short. 7.83 7.79 7.52 39.49 35.93 33.16

RAPTOR [7]

c.t.[ms] 14 20 7 29 21 29
best 19 5 9 2 1 1
avg. 13.71±3.03 3.61±0.94 7.28±1.44 0.41±0.58 0.01±0.10 0.06±0.24

n-short. 7.75 N/A 7.54 N/A N/A N/A

B. spheres [5]

c.t.[ms] 10 14 13 93 114 122
best 11 6 8 7 10 7
avg. 7.47±1.48 3.42±1.05 4.06±1.08 3.24±1.18 2.85±2.02 2.26±1.17

n-short. 7.87 N/A 7.60 46.95 N/A N/A

P-D-PRM [24]

c.t.[ms] 55 135 27 39 35 42
best 19 6 8 1 0 1
avg. 14.11±1.82 4.42±1.08 7.18±0.84 0.16±0.37 0.00±0.00 0.02±0.14

n-short. 7.80 7.79 7.52 N/A N/A N/A

Interestingly, P-D-PRM algorithm, which had the worst score, but shortest run-time in
windows environment, achieves results most competitive with CTopPRM in terms of quantity
and quality of found paths, but has the longest run-time in the poles environment. Both
P-D-PRM and RAPTOR achieve results comparable to CTopPRM in poles environment,
while B. spheres method, which was most competitive in windows environment, performs
significantly worse than other related methods. This is caused by the increased visibility in
poles environment, allowing long connections for Visibility-PRM based methods. On the other
hand, P-D-PRM and RAPTOR fail to identify a single path in majority of runs in building
environment. P-D-PRM is even unable to detect a single path across all 100 runs for a whole
scenario. Building environment consists of multiple narrow passages, which was shown in
Section 6.1, to be unfavourable for Visibility-PRM based methods. CTopPRM outperforms
other methods in the complex building environment by a significant margin, showcasing its
ability to deliver consistent results in all environments, verifying its robustness.

Path’s quality evaluation is further shown in Figures 6.11-6.16. These figures depict
cumulative histograms (b) which show the amount of paths found across 100 runs on y-axis,
that are shorter than length on x-axis:

f(x) = |{π ∈ Π | π.length() < x}|, (6.2)

where Π is a set of paths identified by a given method. These results show, that in poles
environment all methods find the shortest paths with similar success rate, but CTopPRM
manages to identify even the longer paths more consistently. On the other hand, in building
environment, CTopPRM completely outclasses other methods, even finding four times the
amount of paths identified by other methods.

CTU in Prague Department of Cybernetics

6. RESULTS 37/47

(a) scenario (b) cumulative histogram

Figure 6.11: Algorithm performance in poles scenario 1.

(a) scenario (b) cumulative histogram

Figure 6.12: Algorithm performance in poles scenario 2.

(a) scenario (b) cumulative histogram

Figure 6.13: Algorithm performance in poles scenario 3.

CTU in Prague Department of Cybernetics

38/47 6.2. COMPLEX ENVIRONMENTS

(a) scenario (b) cumulative histogram

Figure 6.14: Algorithm performance in building scenario 1.

(a) scenario (b) cumulative histogram

Figure 6.15: Algorithm performance in building scenario 2.

(a) scenario (b) cumulative histogram

Figure 6.16: Algorithm performance in building scenario 3.

CTU in Prague Department of Cybernetics

6. RESULTS 39/47

6.3 Controllable Trade-off in Performance

The third and final round of experiments examines how the performance of the CTop-
PRM algorithm is affected by the trade-off parameter κp, the DFS termination parameter.
This set of experiments was conducted in one scenario in poles environment and one scenario
in the building environment. To evaluate the algorithm’s performance, each κp configuration
was run 50 times in each of the two scenarios. The evaluation metrics used in these experi-
ments are the same as those used in the experiments described in Section 6.2: computational
time, the number of paths found (highest number found in a single run and average number
found across all 50 runs), and the quality of paths (measured as the average length of the
n-shortest paths found over all 50 runs, where n is specified in the table, see Equation (6.1)).
The results of these experiments are presented in Table 6.5.

Table 6.5: Effect of trade-off parameter κp on CTopPRM’s performance across 50 runs
poles scenario 1, n=200 building scenario 1, n=150

κp c.t.[ms] best avg. n-short. c.t.[ms] best avg. n-short.

1.2 9 12 5.86±2.68 8.04 88 11 4.50±2.81 46.25
1.4 13 18 13.06±3.33 7.84 93 25 7.26±4.53 43.56
1.6 19 19 16.26±2.30 7.81 97 25 7.46±4.78 43.17
1.8 28 19 16.64±3.42 7.81 102 25 9.24±5.19 42.03
2.0 40 19 16.94±2.00 7.81 109 25 9.84±5.58 41.79

The results demonstrate that increasing the value of κp results in a corresponding in-
crease in computational time, but also an increase in both the quality and quantity of paths
found. This supports the claim that the CTopPRM algorithm can effectively balance these
metrics. However, as κp is further increased, computational time continues to rise steadily
while improvements in path quality and quantity become less significant. This is because the
pruning parameter κs, which removes paths that are too long or convoluted, is still in effect,
which prevents some paths from being included in the final output despite being identified by
CTopPRM. It is therefore advisable to carefully select both κp and κs in order to achieve the
desired trade-off between these metrics.

Overall, CTopPRM algorithm outperformed other related methods in vast majority
of scenarios in quality and quantity of found paths, within the same computational time.
Moreover, it has the best trade-off between computational time and number of paths found.
CTopPRM additionally allows for control of the trade-off between computational time and
number of paths found, making it suitable for both online planning within tens of milliseconds,
and for offline planning with narrow passages.

CTU in Prague Department of Cybernetics

40/47 6.3. CONTROLLABLE TRADE-OFF IN PERFORMANCE

CTU in Prague Department of Cybernetics

7. CONCLUSION 41/47

Chapter 7

Conclusion

This thesis introduced a new sampling-based method named CTopPRM for finding
multiple paths with distinct UVD classes in cluttered environments. The CTopPRM clusters
initially sampled dense roadmap in order to efficiently simplify the search of multiple distinct
paths. Through testing in a variety of environments, we demonstrated that CTopPRM is
both efficient and robust. In majority of test cases, it surpassed other related methods in
number of found distinct paths, and their length, during similar computational time. We
improved the average number of homotopy classes detected within the same run-time by 30-
300%, depending on the scenario. Additionally, the CTopPRM allows controlling the balance
between computational time, quantity and quality of found paths, making it highly adaptable
for online planning. As future work, we aim to extend CTopPRM to enable fast trajectory
re-planning, and to deploy it online on Unmanned Aerial Vehicles (UAVs) to test high-speed
flight in partially unknown environments.

CTU in Prague Department of Cybernetics

42/47

CTU in Prague Department of Cybernetics

REFERENCES 43/47

References

[1] M. Novosad, R. Pěnička, and V. Vonásek, CTopPRM: Clustering topological PRM for planning
multiple distinct paths in 3D environments, 2023. arXiv: 2305.13969 [cs.RO].

[2] D. Belter, “Informed guided rapidly-exploring random trees-connect for path planning of walking
robots,” in 2022 17th International Conference on Control, Automation, Robotics and Vision
(ICARCV), 2022, pp. 709–714. doi: 10.1109/ICARCV57592.2022.10004330.

[3] J. Ortiz, A. Clegg, J. Dong, et al., iSDF: Real-time neural signed distance fields for robot per-
ception, 2022. arXiv: 2204.02296 [cs.RO].

[5] R. Pěnička and D. Scaramuzza, “Minimum-time quadrotor waypoint flight in cluttered environ-
ments,” IEEE Robotics and Automation Letters, vol. 7, Apr. 2022. doi: 10.1109/LRA.2022.
3154013.

[4] R. Pěnička, Y. Song, E. Kaufmann, and D. Scaramuzza, “Learning minimum-time flight in
cluttered environments,” IEEE Robotics and Automation Letters, vol. 7, no. 3, pp. 7209–7216,
2022. doi: 10.1109/lra.2022.3181755.

[6] M. Aria, “Optimal path planning using informed probabilistic road map algorithm,” Journal of
Engineering Research, Dec. 2021. doi: 10.36909/jer.ASSEEE.16105.

[7] B. Zhou, J. Pan, F. Gao, and S. Shen, “RAPTOR: Robust and perception-aware trajectory
replanning for quadrotor fast flight,” IEEE Transactions on Robotics, vol. 37, no. 6, pp. 1992–
2009, 2021. doi: 10.1109/TRO.2021.3071527.

[8] J. Denny, R. Sandström, A. Bregger, and N. Amato, “Dynamic region-biased rapidly-exploring
random trees,” in May 2020, pp. 640–655, isbn: 978-3-030-43088-7. doi: 10.1007/978-3-030-
43089-4 41.

[9] V. Vonásek, R. Pěnička, and B. Kozĺıková, “Searching multiple approximate solutions in con-
figuration space to guide sampling-based motion planning,” Journal of Intelligent & Robotic
Systems, vol. 100, pp. 1527–1543, Dec. 2020. doi: 10.1007/s10846-020-01247-4.

[10] L. Han, F. Gao, B. Zhou, and S. Shen, FIESTA: Fast incremental euclidean distance fields for
online motion planning of aerial robots, 2019. arXiv: 1903.02144 [cs.RO].

[12] V. Vonásek and R. Pěnička, “Sampling-based motion planning of 3D solid objects guided by
multiple approximate solutions,” in 2019 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2019, pp. 1480–1487. doi: 10.1109/IROS40897.2019.8968578.

[11] V. Vonásek, R. Pěnička, and B. Kozĺıková, “Computing multiple guiding paths for sampling-
based motion planning,” in 2019 19th International Conference on Advanced Robotics (ICAR),
Dec. 2019, pp. 374–381. doi: 10.1109/ICAR46387.2019.8981589.

[13] X. Zhang, B. Zhang, C. Qi, Z. Li, and H. Li, “An online motion planning approach of mobile
robots in distinctive homotopic classes by a sparse roadmap,” in Aug. 2019, pp. 722–734, isbn:
978-3-030-27537-2. doi: 10.1007/978-3-030-27538-9 62.

[14] E. Huang, M. Mukadam, Z. Liu, and B. Boots, “Motion planning with graph-based trajecto-
ries and gaussian process inference,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA), 2017, pp. 5591–5598. doi: 10.1109/ICRA.2017.7989659.

[15] H. Oleynikova, Z. Taylor, M. Fehr, R. Siegwart, and J. Nieto, “Voxblox: Incremental 3D euclidean
signed distance fields for on-board MAV planning,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), IEEE, 2017, pp. 1366–1373. doi: 10.1109/IROS.2017.
8202315.

[16] C. Rösmann, F. Hoffmann, and T. Bertram, “Integrated online trajectory planning and opti-
mization in distinctive topologies,” Robotics and Autonomous Systems, vol. 88, pp. 142–153,
2017, issn: 0921-8890. doi: https://doi.org/10.1016/j.robot.2016.11.007.

CTU in Prague Department of Cybernetics

https://arxiv.org/abs/2305.13969
https://doi.org/10.1109/ICARCV57592.2022.10004330
https://arxiv.org/abs/2204.02296
https://doi.org/10.1109/LRA.2022.3154013
https://doi.org/10.1109/LRA.2022.3154013
https://doi.org/10.1109/lra.2022.3181755
https://doi.org/10.36909/jer.ASSEEE.16105
https://doi.org/10.1109/TRO.2021.3071527
https://doi.org/10.1007/978-3-030-43089-4_41
https://doi.org/10.1007/978-3-030-43089-4_41
https://doi.org/10.1007/s10846-020-01247-4
https://arxiv.org/abs/1903.02144
https://doi.org/10.1109/IROS40897.2019.8968578
https://doi.org/10.1109/ICAR46387.2019.8981589
https://doi.org/10.1007/978-3-030-27538-9_62
https://doi.org/10.1109/ICRA.2017.7989659
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/10.1109/IROS.2017.8202315
https://doi.org/https://doi.org/10.1016/j.robot.2016.11.007

44/47

[17] J. Denny, J. Colbert, H. Qin, and N. M. Amato, “On the theory of user-guided planning,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016,
pp. 4794–4801. doi: 10.1109/IROS.2016.7759704.

[18] R. Kala, “Homotopic roadmap generation for robot motion planning,” Journal of Intelligent &
Robotic Systems, vol. 82, no. 3, pp. 555–575, 2016, issn: 1573-0409. doi: 10.1007/s10846-015-
0278-z.

[19] C. Rösmann, F. Hoffmann, and T. Bertram, “Planning of multiple robot trajectories in distinctive
topologies,” in 2015 European Conference on Mobile Robots (ECMR), 2015, pp. 1–6. doi: 10.
1109/ECMR.2015.7324179.

[20] M. Kuderer, C. Sprunk, H. Kretzschmar, and W. Burgard, “Online generation of homotopically
distinct navigation paths,” in 2014 IEEE International Conference on Robotics and Automation
(ICRA), 2014, pp. 6462–6467. doi: 10.1109/ICRA.2014.6907813.

[21] S. Bhattacharya, M. Likhachev, and V. Kumar, “Topological constraints in search-based robot
path planning,” Autonomous Robots, vol. 33, no. 3, pp. 273–290, Oct. 2012. doi: 10.1007/s10514-
012-9304-1.

[22] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Inter-
national Journal of Robotic Research - IJRR, vol. 30, pp. 846–894, Jun. 2011. doi: 10.1177/
0278364911406761.

[23] S. Bhattacharya, V. Kumar, and M. Likhachev, “Search-based path planning with homotopy
class constraints,” in Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelli-
gence, ser. AAAI’10, Atlanta, Georgia: AAAI Press, 2010, pp. 1230–1237.

[24] L. Jaillet and T. Siméon, “Path deformation roadmaps: Compact graphs with useful cycles for
motion planning,” The International Journal of Robotics Research, vol. 27, pp. 1175–1188, Nov.
2008. doi: 10.1177/0278364908098411.

[25] S. M. LaValle, Planning Algorithms. Cambridge University Press, 2006. doi: 10 . 1017 /
CBO9780511546877.

[26] Y. Fujita, Y. Nakamura, and Z. Shiller, “Dual dijkstra search for paths with different topologies,”
in 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422),
vol. 3, Oct. 2003, pp. 3359–3364, isbn: 0-7803-7736-2. doi: 10.1109/ROBOT.2003.1242109.

[27] A. Hatcher, Algebraic topology. Cambridge: Cambridge University Press, 2002, pp. xii+544, isbn:
0-521-79160-X; 0-521-79540-0.

[28] E. Schmitzberger, J. Bouchet, M. Dufaut, D. Wolf, and R. Husson, “Capture of homotopy classes
with probabilistic road map,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 3, 2002, pp. 2317–2322. doi: 10.1109/IRDS.2002.1041613.

[29] J. Nešetřil, E. Milková, and H. Nešetřilová, “Otakar bor̊uvka on minimum spanning tree problem
translation of both the 1926 papers, comments, history,” Discrete Mathematics, vol. 233, no. 1,
pp. 3–36, 2001, issn: 0012-365X. doi: 10.1016/S0012-365X(00)00224-7.

[30] O. Brock and O. Khatib, “Real-time re-planning in high-dimensional configuration spaces using
sets of homotopic paths,” in Proceedings 2000 ICRA. Millennium Conference. IEEE Interna-
tional Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
vol. 1, 2000, pp. 550–555. doi: 10.1109/ROBOT.2000.844111.

[31] T. Siméon, J.-P. Laumond, and C. Nissoux, “Visibility-based probabilistic roadmaps for motion
planning,” Advanced Robotics, vol. 14, pp. 477–493, Jan. 2000. doi: 10.1163/156855300741960.

[32] O. Brock and O. Khatib, “Elastic strips: A framework for integrated planning and execution,” in
The Sixth International Symposium on Experimental Robotics VI, Berlin, Heidelberg: Springer-
Verlag, 1999, pp. 329–338, isbn: 1852332107. doi: 10.5555/645626.662219.

[33] S. M. LaValle, “Rapidly-exploring random trees : A new tool for path planning,” The annual
research report, 1998.

CTU in Prague Department of Cybernetics

https://doi.org/10.1109/IROS.2016.7759704
https://doi.org/10.1007/s10846-015-0278-z
https://doi.org/10.1007/s10846-015-0278-z
https://doi.org/10.1109/ECMR.2015.7324179
https://doi.org/10.1109/ECMR.2015.7324179
https://doi.org/10.1109/ICRA.2014.6907813
https://doi.org/10.1007/s10514-012-9304-1
https://doi.org/10.1007/s10514-012-9304-1
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364908098411
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1017/CBO9780511546877
https://doi.org/10.1109/ROBOT.2003.1242109
https://doi.org/10.1109/IRDS.2002.1041613
https://doi.org/10.1016/S0012-365X(00)00224-7
https://doi.org/10.1109/ROBOT.2000.844111
https://doi.org/10.1163/156855300741960
https://doi.org/10.5555/645626.662219

REFERENCES 45/47

[34] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps for path plan-
ning in high-dimensional configuration spaces,” IEEE Transactions on Robotics and Automation,
vol. 12, no. 4, pp. 566–580, 1996. doi: 10.1109/70.508439.

[35] F. Aurenhammer, “Voronoi diagrams—a survey of a fundamental geometric data structure,”
ACM Comput. Surv., vol. 23, pp. 345–405, 1991. doi: 10.1145/116873.116880.

[36] H. Moravec and A. Elfes, “High resolution maps from wide angle sonar,” in Proceedings. 1985
IEEE International Conference on Robotics and Automation, vol. 2, 1985, pp. 116–121. doi:
10.1109/ROBOT.1985.1087316.

[37] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning collision-free paths among poly-
hedral obstacles,” Commun. ACM, vol. 22, no. 10, pp. 560–570, 1979, issn: 0001-0782. doi:
10.1145/359156.359164.

[38] R. Dial, “Algorithm 360: Shortest-path forest with topological ordering [h],” Commun. ACM,
vol. 12, pp. 632–633, Nov. 1969. doi: 10.1145/363269.363610.

[39] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic determination of
minimum cost paths,” IEEE Transactions on Systems Science and Cybernetics, vol. 4, no. 2,
pp. 100–107, 1968. doi: 10.1109/TSSC.1968.300136.

[40] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numer. Math, vol. 1, 1959.
doi: 10.1007/BF01386390.

[41] R. Bellman, “On a routing problem,” Quarterly of Applied Mathematics, vol. 16, no. 1, pp. 87–
90, 1958, issn: 0033569X, 15524485. doi: 10.2307/43634538.

[42] R. C. Prim, “Shortest connection networks and some generalizations,” The Bell System Technical
Journal, vol. 36, no. 6, pp. 1389–1401, 1957. doi: 10.1002/j.1538-7305.1957.tb01515.x.

[43] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling salesman problem,”
Proceedings of the American Mathematical Society, vol. 7, no. 1, pp. 48–50, 1956, issn: 00029939,
10886826. doi: 10.2307/2033241.

[44] O. Bor̊uvka, “O jistém problému minimálńım (About a certain minimal problem),” Práce
Moravské př́ırodovědecké společnosti, vol. 3, pp. 37–58, 1926.

[45] O. Bor̊uvka, “Př́ıspěvek k otázce ekonomické stavby elektrovodných śıt́ı (Contribution to the
solution of a problem of economical construction of electrical networks),” Elektrotechnický obzor
15, pp. 153–154, 1926.

CTU in Prague Department of Cybernetics

https://doi.org/10.1109/70.508439
https://doi.org/10.1145/116873.116880
https://doi.org/10.1109/ROBOT.1985.1087316
https://doi.org/10.1145/359156.359164
https://doi.org/10.1145/363269.363610
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1007/BF01386390
https://doi.org/10.2307/43634538
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.2307/2033241

46/47

CTU in Prague Department of Cybernetics

APPENDIX 47/47

Appendix

Attachments

The attached file topological planning.zip contains a collection of the software used
in this thesis, along with testing environments. To install and use the software, follow the
README.md file in the attached folder. src/ and include/ contain source codes for all im-
plemented methods. Source code for the proposed CTopPRM method is implemented in
the topological prm clustering.hpp file. Files specifying test cases are in config files/.
blender/ contains the testing environments as .obj files, and scripts used for visualization of
results in blender.

The attached file multimediamaterial.zip contains a video which describes the pro-
posed method and shows the experimental results. The same video is available online at
https://www.youtube.com/watch?v=azNrWBU5cAk.

CTU in Prague Department of Cybernetics

https://www.youtube.com/watch?v=azNrWBU5cAk

	Introduction
	Preliminaries
	Grid-based Representation of the Planning Environment
	Graph-based Representation of Free-space
	Probabilistic Roadmap
	Rapidly-exploring Random Trees
	Asymptotically Optimal RRT* and PRM*

	Graph-search Algorithms for Path Planning
	Spanning Tree
	Minimum-spanning Tree
	Shortest-path Tree

	Related Work
	Problem statement
	Topology Equivalence Relation

	Clustering Topological PRM
	Dense Probabilistic Roadmap Construction
	Graph Clustering
	Adding New Centroids
	Multi-path Search
	Path Filtering

	Results
	Windows Environment
	Complex Environments
	Controllable Trade-off in Performance

	Conclusion
	References
	Appendix
	Attachments

