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Abstract

an extension of the

active

We propose
ReDALJI5]
Our extension makes annotations of
dynamic objects in 3D LiDAR point
cloud easier and more effective. It can
create instances of objects in point cloud
and link them through time, without
any manual annotations.  Therefore,
the annotator is able to annotate an
object in a whole sequence just by one
action. Thanks to our pipeline, we can
improve mloU by 1.67 percentage points
over ReDAL[I5], ie. from 92.1% of
performance of fully supervised learning
to 94.7%, with the same amount of
manually annotated data. For our
extension, we create a user interface for
fast labeling that uses the output of our
extension.
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Abstrakt

Vytvorili  jsme  vylepseni metody
ReDAL[I5], kterda se zabyva aktiv-
nim ucéenim. Nase vylepseni zjednodusuje
a zefektiviiuje anotace dynamickych
objektti v 3D mrac¢nech bodi. Dokaze
vytvorit instance dynamickych objektt
a propojit je v case a to bez potfeby
jakékoli manudlni anotace. Anotator tedy
muze anotovat objekt ve vSech Casech
jednou akci. Pomoci nasi metody jsme
zlepsili vysledek uceni o 1.67 procentniho
bodu, oproti ReDALu[I5] a to z 92.1%
vysledku plné supervizovaného uceni na
94.7%, pii stejném mnozstvi manudlné
anotovanych dat. Pro nase rozsireni jsme
také vytvorili uzivatelské rozhrani pro
rychlé anotovani, které vyuziva vysledky
nasi metody.

Klicova slova: Aktivni uceni,
LiDARové data, hluboké uceni

Pteklad nazvu: Aktivn{ uéeni pro
sémantickou segmentaci sekvence mracen

3D bodt



Contents

1 Introduction 1]
2 Method
2.1 ReDAL overview .............. 5]
2.2 Semantically cured regions linked
in time for ReDAL ............... 8
2.3 Creating instances for dynamic
objects ........ ... .o i

2.3.1 Instances based on ground truth [9]
2.3.2 Instance based on motion flow [9l
2.3.2.1 Ground masking ........
2.3.2.2 Motion flow computation .
2.3.2.3 Instance creation ........
2.4 Instance matching ............
2.5 Annotator simulation .........
2.6 User interface ................

3 Training neural network

13l

4 Experiments 19
4.1 Datasets..............oi...
4.1.1 SemanticKITTIL............ 19
4.1.2 Waymo Open Dataset ......
4.2 Neural network . .............. 22l
4.3 Training results...............
4.3.1 SemanticKITTI............ 24
4.3.2 Waymo Open Dataset ......
35

37

5 Conclusion
A Bibliography

B Results of each training run

B.1 SemanticKITTT .............. 139l
B.2 Waymo Open Dataset ........

vii



Figures

1.1 Main idea of active learning . . . ..
2.1 Semantically labeled LiDAR 3D
point cloud ....... ... ... ...

2.2 Example of not ideal behaviour of
VCCS[9] e.g. the yellow region in
subfigure contains three
semantic labels (2.2b)).............

2.3 ReDAL[I5] method overview . ...

2.4 Difference between ReDAL[L5]
region creation and our extension . .

2.5 Visualization of linked regions of a
dynamic object (cyclist). Background
points (black), regions from different
time frames(red to blue). ........

2.6 Segmentation of ground points by
Patchwork++[7]. Ground points
(red), non-ground points (green). . .

2.7 Prediction of SLIM[2]. Dynamic
points of ¢y (red), static points of ¢
(green), points of ¢; (blue), flow
(black lines). ...................

2.8 Dynamic (green) vs static (red)
point SLIM[2] prediction.........

2.9 DBSCANTJ5] clusters. Points in the
cluster have the same color. .. .... 14!

2.10 Dynamic points prediction
adjusted by DBSCAN clusters.
Dynamic instance which is “new”
(red), dynamic instance that is also in
the previous frame (blue), and static
points (black).............. .. ...

2.11 Dynamic instances created by

motion flow . .......... ... ... ... 15
2.12 Visualization of user interface . [16]
4.1 Class distribution and their ration

of training and validation part of

dataset . ... 21l

4.2 Example of walkable annotation
(light blue) in Waymo Open
Dataset[11]

4.3 Automatically labeled points at the
start of the training

4.4 Cropped confusion matrix of
models trained on SemanticKITTI[3]
with 1% of manual annotation. . ..

viii

4.5 Ratio between number of labeled
points in 1¢ selection. ...........

4.6 Ratio between total number of
labeled points after 4" selection . .

4.7 Automatically labeled points at the

start of the training .............
4.8 Ratio between total number of

manually labeled points after 4"

selection ....................... 34



Tables

4.1 Final results of experiments on 5%
of the manually annotated
SemanticKITTI[3] dataset.
Supervised model is trained on the
whole dataset. * means that the class
contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

4.2 Models performance on 1% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

4.3 Precision and recall of models
trained in 1% of manually annotated
SemanticKITTI[3]. ..............

4.4 Models performance on 2% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

4.5 Models performance on 3% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

4.6 Models performance on 4% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

4.7 Number of dynamic objects, which
were are in labeled part of training
dataset. Total number of dynamic
objects in SemanticKITTI[3] is 336.

ix

4.8 Comparison of our extension with
ReDAL[I5] on 5% of manually
annotated SemanticKITTI[3]

4.9 Final results of experiments on 5%
of the manually annotated Waymo
Open Dataset[11]. Supervised model
is trained on the whole dataset. GT
stands for creating dynamic objects
based on ground truth. GT-DS is the
same but training starts by using the
15¢ checkpoint from original
ReDALIJI5]. GT-W uses weighted
Cross entropy loss, GT-WB uses loss
scaling through batch frames, GT-PL
uses pseudolabels for all unlabeled
points, GT-PL-WB uses pseudolabels
on some regions and loss scaling
through batch. MF stands for
creating dynamic objects based on
motion flow.

4.10 Models performance on 1% of the
manually annotated Waymo Open
Dataset[I1]. Our GT-DS and Our
GT-PL is not trained at this point,
but they start from this ReDAL[LH]
checkpoint. ....................

4.11 Precision and recall of models
trained in 1% of manually annotated
Waymo Open Dataset[IT]. .......

4.12 Models performance on 2% of the
manually annotated Waymo Open
Dataset[I1]. ....................

4.13 Models performance on 3% of the
manually annotated Waymo Open
Dataset[IT]. ....................

4.14 Models performance on 4% of the
manually annotated Waymo Open
Dataset[I1]. ....................



B.1 Final results of experiments on 5%
of the manually annotated
SemanticKITTI[3] dataset.

Supervised model is trained on the
whole dataset. * means that the class
contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

B.2 Models performance on 1% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

B.3 Models performance on 2% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

B.4 Models performance on 3% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

B.5 Models performance on 4% of the
manually annotated
SemanticKITTI[3]. * means that the
class contains dynamic objects.
Other-vehicle includes: Other-vehicle,
Bus, On-rails. Road also include
Line-marking. ..................

B.6 Final results of experiments on 5%
of the manually annotated Waymo
Open Dataset[I1]. Supervised model
is trained on the whole dataset. GT
stands for creating dynamic objects
based on ground truth. GT-DS is the
same but training starts by using the
1st checkpoint from original
ReDAL[I5]. GT-W uses weighted
Cross entropy loss, GT-WB uses loss
scaling through batch frames, GT-PL
uses pseudolabels for all unlabeled
points, GT-PL-WB uses pseudolabels
on some regions and loss scaling
through batch. MF stands for
creating dynamic objects based on
motion flow. ................... 42|

B.7 Models performance on 1% of the
manually annotated Waymo Open
Dataset[I1]. Our GT-DS and Our
GT-PL is not trained at this point,
but they start from this ReDAL[15]
checkpoint. ........... ... ....

B.8 Models performance on 2% of the
manually annotated Waymo Open
Dataset[I1]. ................ ...

B.9 Models performance on 3% of the
manually annotated Waymo Open
Dataset[I1]. ....................

B.10 Models performance on 4% of the
manually annotated Waymo Open

Dataset[I1]. ....................



Chapter 1

Introduction

Training of neural networks requires a large number of training frames with a
high variety. Today, it is not a problem to capture a large number of frames
with a wide variety, but the bottleneck is creating annotations for these large
datasets. Annotations are usually created manually, which is time-consuming
and costly, especially for 3D point clouds. One way to handle this problem
is to use active learning[10], which focuses on minimizing the time required
for annotations while trying to maintain the high performance of the neural
network. The main idea of active learning is to select for annotation only
frames (or parts of frames) that have the highest probability of benefiting
from training the most. The suitability for annotation is driven by a value
called information gain or information score, and it is estimated by a wide
range of criteria, which we will mention later. Active learning is a cyclic
algorithm that consists of the following steps.

1. The training dataset is initially divided into two parts: labeled dataset
(Dr) and unlabeled dataset (D). The unlabeled dataset is significantly
larger (90 to 99% of the entire training dataset).

2. The neural network is trained on Dy,.

3. The trained model is used to determine which frames from Dy (or
parts of frames) should be labeled according to specific criteria for the
computation of the information score.

4. The selected data are labeled by the annotator and moved from Dy to
Dy. Annotations are usually manually made by humans.

5. The neural network is then fine-tuned on Dy

Steps 2 to 5 are executed multiple times to ensure that only high-potential
data are annotated. This cycle is shown in figure [1.1.

There are many different approaches to computing the information score.
From simple ones like active learning with least confidence (AL-LC)[14],
margin sampling (AL-MS)[I4], and entropy (AL-Entropy)[14] to more complex
ones such as LiDAL[6], LESS[8], and ReDALI[ILH].

Selection by least confidence[I4] picks the frame with the smallest prediction
confidence. Margin sampling[14] looking for the frame, which has the smallest

1
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Training
dataset
!
T mmmmemees Initial split--------------, i
i
i
i
Sclﬂ{:tnd_,, &_
data
Labeled Meural Unlabeled
dataset network dataset Annotator

Mewly annotated data

Figure 1.1: Main idea of active learning

gap between two most probable classes from a neural network perspective.
Labeling using entropy[I14] (sometimes called softmax entropy), which is a
widely used criterion, means that frames, which have the highest entropy in
frame prediction probabilities, are selected for annotation.

ReDAL [I5] changes the “labeling unit” from the entire frame (point cloud)
to regions (part of point cloud). The underlying idea is that not every part
of the point cloud contributes equally to training. The possible information
gain of each region is computed by multiple criteria. The first criterion is
softmax entropy (similar to AL-entropy[l4]), second is color discontinuity.
This criterion is used only for datasets that include information on the color of
points, e.g. S3DIS[I]. This criterion benefits regions that contain large color
differences, which are usually semantically discontinuous. The last criterion
is structural complexity, which has a higher response on edges and corners,
therefore it also benefits semantically discontinuous regions. This method
also penalized scores of similar regions.

LiDAL[6] proposes two novel criteria. First is inter-frame divergence and
second is inter-frame entropy. Inter-frame divergence computes inconsistency
of the object predicted from different viewpoints. This is evaluated on the
augmented frame (by global translation, rotation, scaling, and jittering),
but also on the neighboring frames. Matches between points in different
time frames are obtained just by the odometry transformation, but there
is no special method for points that belong to dynamic objects, where this
method does not have to work properly. Inter-frame entropy works similarly
to softmax entropy, but it works with mean of all prediction distributions



1. Introduction

that are used to compute inter-frame divergence (prediction on augmented
point cloud and neighboring frames). Also, they implement the self-training
method based on pseudo-labeling. To select which parts of the dataset use
pseudo-labels, they use the same two criteria as are mentioned above, but
they are looking for regions, which have the lowest values in this criteria.

LESS [8] aims to divide the point cloud into semantically pure components.
For pure components annotator needs to annotate just one point and to the
rest of the component is label propagated. However, for a semantically impure,
the annotator is supposed to label one point for each semantic label that is
located in the component. The presence of different semantic labels among
the remaining points in the component, which do not match the annotated
ones, is forbidden and results in penalization during training through the loss
function.

We create an extension of the ReDAL[15] method. Our extension focuses
on an easier annotation of dynamic objects, where reliable predictions are
most crucial in the real application of autonomous driving, and any modern
method does not provide any special treatment for these objects. Our pipeline
creates semantically pure regions for each dynamic object in the point cloud
and links regions of the same object through a point cloud sequence. The
annotator can then annotate the object in a complete sequence with just one
action.






Chapter 2
Method

Our method is an extension of the ReDAL method[I5], which is oriented to
make semantic annotations of dynamic objects in the 3D point cloud easier
and more efficient. It gives a proposal of regions that contains only a single
object in different time frames. The annotator can then annotate this object

in a whole sequence by one action. An example of a semantically annotated
LiDAR 3D point cloud is shown in figure [2.1]

Figure 2.1: Semantically labeled LiDAR 3D point cloud

Our codes are available at:
https://github.com/sebekpel/ReDAL-extension-by-motion-flow/tree/
mainl

. 2.1 ReDAL overview

ReDAL[IH] divides the point cloud into regions using VCCS[9], which is an
unsupervised over-segmentation method. However, this method struggles
to create regions that are semantically pure (i.e., regions that contain only
points with just a single semantic label) on complex outdoor point clouds, as
shown in figure

The final region information score, computed for each region separately, is

5


https://github.com/sebekpe1/ReDAL-extension-by-motion-flow/tree/main
https://github.com/sebekpe1/ReDAL-extension-by-motion-flow/tree/main

2. Method

(a) : Regions created by VCCS[9] (b) : Semantic labels

Figure 2.2: Example of not ideal behaviour of VCCS[9] e.g. the yellow region in

subfigure contains three semantic labels (2.2b)).

the weighted sum of three main components, as in equation (2.1).
©n = oy, + /BCn + ")/Sn, (2.1

where H,, stands for softmax entropy (2.2), C,, is color discontinuity (2.3), and
Sy means structural complexity . Parameters «, 3, and v are constants
that the authors set. a and 7 have the same value for all datasets in the
ReDAL[I5] paper (SemanticKITTI[3], S3DIS[I] and Scannet[4]). « being 1
and 7 being 0.05. § is set on SemanticKITTI[3] to 0, because this dataset
does not include information about the color of the points, but for the rest of
the datasets is set to 0.1.

Softmax entropy measures how uncertain the model is in its prediction by
following a formula (2.2):

~—

1

Hy=——
| B

> —Plog(P), (2.2
1€ER,

~—

where R, represents set of points in n'® region, |R,,| is number of points in

the region and P is softmax probabilities of region points.
Color discontinuity measures how rapidly the color changes in the region.
It is computed by equation (2.3).

1

Cp= —
k[R,|

>3 = L, (2.3

1€ERy jEd;

~—

where I stands for color intensity, and k is number of k-nearest neighbor
between which the color discontinuity is computed.

Structural complexity measures how much is the region geometrically
diverse by equation .

1

Sp =

> i, (2.4

|R”| i€Ry,

~—

where o is surface variation, which is computed by equation (2.5)).

- )\0+)\1+/\2,
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o
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2.1. ReDAL overview

Color Difference  Surface Variation

(@) Region . . .
Inference Region r\] : * Information Score Diversity-Aware Selection
i L . + S Iter1 Tter2 Tter3 Tter4 «-+ TterN
; - | ‘ ¢1 ¢N core er er er er er
P (ﬂ?
Trained Model Softmax Entropy Color Structure p
Discontinuity Complexity P [
b) : . oG @)
Point Cloud Feature (V) . Region Fejature - '.'. o pm | I
Scans Extraction Region A Clustering o e "; ;
g Average ® Qs
Training Point Features Region Features ¥
- Label TopK  egy
Unlabeled Labeled Annotation = Acquisition Regions n ok
D D I where @, = @p P =Py N
v L Annotators

Dataset

Figure 2.3: ReDAL[15] method overview

where As are eigenvalues of 3 x 3 covariance matrix of 50 nearest neighbors
of point k and Ag < A1 < Ao.

Final adjustment of region score is done by penalizing score of similar
regions in order to prevent manual annotation of multiple similar regions
(e.g. the same place in different time frames), when possibly annotating one
could be sufficient. To determine which reasons are similar to each other,
regions are described by their features before the final classification layer in
the neural network. These features of all regions are then clustered by the
k-mean algorithm. Information scores of regions in the same cluster are then
penalized (region with highest information score is not, the second one is
penalized one time, third is penalized two times, etc.).

o5 =n-n"", (2.6)

where ¢} is region final score, ¢, is region information score, n is decay rate
(set to 0.95) and k is region information score position in k-mean cluster
(decreasing).

Then the top-k numbers (based on the final score) of the regions are
humanly annotated. Parameter k is in implementation determined by how
many points you want to annotate, for example, k is the number of top
regions, where the sum of points is equal to 1% of all points in the training
part of the dataset.

The overview of the ReDAL[L5] method is shown in figure

7



2. Method

. ) Semantically cured regions linked in time for
ReDAL

From our point of view, the biggest weakness of the ReDAL[I5] method
is that its regions are not semantically pure. Pure region contains points
that belong to only one semantic class (as shown in figure [2.2)). Due to this,
the annotator still has a lot of work with annotating the region because
the annotator needs to separate different objects in the region to be able to
annotate them separately. We want to help with this problem by creating
an extension that will be able to obtain semantically pure regions. We are
focused on creating regions that would belong to dynamic objects in the point
cloud sequence for two reasons. The first is that we could use one labeling
action to annotate an object in all time frames. The second reason is that
reliable detection of “dynamic classes” is, from our perspective, one of the
most critical tasks in autonomous driving.

Our extension adjusts the VCCS[9] regions in such a way that it creates a
new region for each dynamic object in the point cloud (visualized in figure
2.4) and links them through different time frames (visualized in figure 2.5). So
when the annotator selects the label for the region in any time frame, which
should be just one “click” due to the semantic purity of these new regions,
the label will be propagated to all linked regions. In order to address this
problem we devided it into tree steps:

® Create instances for dynamic objects in all time frames. Details for
method that uses ground truth annotations in subsection 2.3.1 and with
use of motion flow model in subsection [2.3.2

® Link these instances through time frames. Details for motion flow in
subsection (2.4

® Adjust regions, which contain dynamic object, by separating dynamic
object to new region. This enables the possibility to link regions in the
same way as dynamic objects through time, which can provide an easy
way for annotator to label dynamic object in a whole sequence in one
action.

B 23 Creating instances for dynamic objects

Obtaining instances of dynamic objects is crucial for our method. Therefore,
we conducted experiments where instances are based on ground truth (details
in subsection [2.3.1)). This will be the upper bound of the performance of our
method. Then we run experiments that use instances that are created by our
method and do not need any manual annotations (details in subsection 2.3).

8
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Figure 2.4: Difference between ReDAL[I5] region creation and our extension

B 2.3.1 Instances based on ground truth

SemanticKITTI[3] contains per-point instance annotations, which are the
same for a single object through the whole sequence. So we use all these
annotations, which belong to the dynamic class (semantic labels with indexes
252 and higher, e.g., moving car, moving person, etc.).

Waymo Open Dataset[I1] does not have per-point instance annotations.
However, it has bounding boxes for vehicles, pedestrians, and cyclists. All
bounding boxes also contain the object ID, which is fixed for each object in
all time frames. We are able to decide if an object is dynamic or static based
on its bounding box location in different time frames and odometry between
frames (which is provided in the dataset). All objects that move at least by
0.5m are denoted as dynamic. We obtain per-point instances of the dynamic
object by cutting its bounding box from the frame (point cloud) and then
filtering points based on their semantic label.

B 2.3.2 Instance based on motion flow

We used a neural network, which is trained to estimate motion flow to
determine which points are dynamic and where they are in the next frame.
We also needed an approach that is self-supervised, i.e., a neural network

9



2. Method

Figure 2.5: Visualization of linked regions of a dynamic object (cyclist). Back-
ground points (black), regions from different time frames(red to blue).

does not need any annotation for training. Therefore, we use SLIM[2]. For
optimal run of SLIM[2], we needed to satisfy a few conditions for input point
cloud:

#8 Point cloud should not contain any ground points. We address this
problem in subsection [2.3.2.1

® Point cloud should be limited in the XY plane (horizontal) to square
70m by 70 m, so any point which has a larger absolute value of x or y
than 35 m is masked.

B 23.2.1 Ground masking

For the removal of ground, we consider two approaches. First is naive, it is just
cropping point clouds by setting the minimal value of the points Z coordinate.
We set the minimum value as the value that corresponds to the level, which is
20 cm above ground in the position of the ego (LiDAR). This method creates
usable results on the SemanticKITTI dataset[3], however, the ground in the
Waymo Open Dataset[11] is much more diverse, so a different approach needs
to be used. The second approach is the use of Patchwork++[7]. Patchwork++
is a method that segments points into two classes: ground or non-ground.
This method performs well on all types of surfaces, e.g. road, sidewalk, curbs,
grassy hills, etc. The output of this method can be seen in figure [2.6l
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2.3. Creating instances for dynamic objects

Figure 2.6: Segmentation of ground points by Patchwork++[7]. Ground points
(red), non-ground points (green).

B 2.3.2.2 Motion flow computation

SLIM[2] is an unsupervised method that uses two sequential frames (point
clouds) ¢y and ¢; and predicts the motion of each point in the frame ¢y. This
model simultaneously computes two flows (dynamic and static). For the
computation of dynamic flow, the model divides the point cloud into pillars
and for each pillar the flow is computed separately by RAFT[13]. Static flow
is computed on the whole point cloud by using weighted Kabsch’s algorithm.
Finally, the neural network determines which flow to use on each pillar by
predicting whether the points in the pillar are static or dynamic. An example
of the output can be found in figure

B 2.3.2.3 Instance creation

SLIM[2] gives us its prediction of flow for each point for the next frame (from
to to t1) and a prediction of whether the point is static or dynamic. However,
these static/dynamic predictions are noisy as can be seen in figure

To determine whether the instances are static or dynamic, we used DBSCAN[5],
which divides the masked point cloud into instances/clusters. Visualization
of these clusters is shown in figure

For each DBSANJ5] cluster, we decide if it is dynamic based on SLIM[Z].
To denote the cluster as dynamic, it must meet at least one of the two
criteria. The first is that at least 50% of the points that create the cluster
are predicted to be dynamic. The second one is that some dynamic cluster
from the previous frame is fitted to this one. The second criterion is for cases
where the object was not moving in all frames in a sequence, e.g. a pedestrian
walks to crosswalk and waits for a green light. Also, to cover inverse cases
where, e.g. at the start of the sequence, a pedestrian standing and then starts
moving, we evaluated the second criterion later once again but in backward
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2. Method

Figure 2.7: Prediction of SLIM[2]. Dynamic points of ¢y (red), static points of
to (green), points of ¢; (blue), flow (black lines).

order of the frames. The output after this step is visualized in figure [2.10.

B 2.4 Instance matching

Matching instances that are based on ground truth is simple because, as
mentioned above, SemanticKITTI[3] contains instance indexes which are
fixed for each object through the whole sequence. Waymo Open Dataset[11]
contains bounding box ID, which can be used in the same way as indexes in
SemanticKITTI[3].

Matching instances created in subsection above are more complicated.
We match the dynamic clusters with the clusters in the next frame (¢1). It is
done by moving all the points in the tg cluster by their flow. Then we are
looking for all points in #; that are maximally 10 cm from any moved point
from ty3. Then we are looking for a cluster in ¢;, that contains the most points
in ¢1, which satisfy the mentioned criterion. This cluster is then matched
with the one from ty if their volumes (in terms of the number of points) are
similar (we set the threshold as £40% of the number of points in tg cluster).
To prevent any false matching and isolate cases where e.g. a pedestrian comes
to the traffic light and DBSCAN includes them in the same cluster, but it
has one drawback, which is that clusters of one real object are not matched
together if the occlusion of the object highly varies between frames.

The time difference between frames is 0.1s, but not every frame in Waymo
Open Dataset[I1] contains semantic labels. Usually every 5 frame (time
difference 0.5s) contains semantic labels. However, this gap could be even
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2.5. Annotator simulation

Figure 2.8: Dynamic (green) vs static (red) point SLIM[2] prediction

55 frames (5.5s) which is too large for a motion flow model. Therefore, we
applied this pipeline to all frames, but in order to have fair comparison,
we used results only on originally labeled frames. Visualization of matched
frames can be seen in figure [2.11

. 2.5 Annotator simulation

In order to conduct our experiments, we needed to simulate human labeling
on our extension. For that we created the assumption that the annotator
would label our new regions if they are at least 90% semantically pure and the
region does not contain more than 99 points that have a different semantic
label. If these two conditions are met, the annotator would assign the same
semantic label to all points in the region. If not, the proposed region would
not be used.

. 2.6 User interface

For real application, we design the user interface, which shows the annotator
all linked clusters from different time frames in a single visualization and a
visualization of the cluster with the most points (for easier recognition of the
object). The annotator then has the option to exclude clusters from time
frames, where they are not semantically pure, and then select semantic label
to correct clusters. Visualization of this interface can be seen in figure [2.12
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Figure 2.9: DBSCAN[5] clusters. Points in the cluster have the same color.
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Figure 2.10: Dynamic points prediction adjusted by DBSCAN clusters. Dynamic
instance which is “new” (red), dynamic instance that is also in the previous

frame (blue), and static points (black).
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Figure 2.11: Dynamic instances created by motion flow
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Chapter 3

Training neural network

One of the main challenges in our experiments is to solve training on an
unbalanced dataset. Unbalanced datasets are common in terms of autonomous
driving, and neural networks can handle this imbalance to a certain level.
However, our extension added a large number of points to the training, which
belongs to just a few classes and imbalances the dataset even more. We
think that the main problem is that large number of automatically annotated
points, which belong to “dynamic classes” (e.g. vehicles, pedestrians, etc.)
unbalance beyond some threshold, where it worsens training. To address
this problem we implemented a few different training approaches (beside
automatically annotation all points of annotated dynamic object):

B Weighing Crossentropy loss: The original implementation does not
use class weights into Crossentropy loss. This is a pretty common
approach to dealing with an imbalanced dataset. We add class weights
into the loss function and update them every time when new data is
added to the labeled part of the dataset. The weight of each class is
calculated by equation (3.1)

Cl

Welass = 75— 1 (3.1)
Pclass ZCGC %c ’

where wgqss is the weight of a certain class, P, is the percentage of n”
class in the labeled dataset. and C represents all segmentation classes.
In experiments, this method is denoted by subfix -W (as weighted).

® Starting from ReDAL[15] 1% checkpoint: In this approach we
just delay the start of our extension. So, the model is trained only on
initially annotated points at the beginning, and all points, which can be
annotated automatically, are enabled after selecting new data for manual
annotation. We hoped that newly annotated data will help to balance
the dataset without any additional action. In experiments, this method
is denoted by subfix -DS (as delay start).

® Loss scaling by number of labeled points: Our method adds many
frames to the labeled dataset, where only a few points belonging to some
dynamic class are labeled, and the rest of the frame is not. However, each
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3. Training neural network

frame has the same impact on the final value of the loss function and
therefore on the direction of the gradients. Therefore, these additional
data can push the model into prediction “dynamic classes” much more
frequently. In experiments, this method is denoted by subfix -WB (as
weighted batch).

We address this problem by scaling the loss of each frame by the per-
centage of points, which are labeled in the whole point cloud. The final
loss value is calculated by equation (3.2)

A
L= 5,2l 3.2

where L is the value of the loss function. B is training batch, p represents
points and ! means labeled. In experiments, this method is denoted by
subfix -WB (as wei).

8 Pseudolabeling of unlabeled points: This approach addresses the
same problem as is described in the point above, but instead of scaling
loss, we used pseudolabels to achieve that every point in the frame has
a semantic label. Training started from 15 ReDAL[T5] checkpoint, and
pseudolabels are created/updated with each expansion of the labeled
dataset, by the best performing model on the validation part of the
dataset, which was trained on old labeled dataset. But with this approach,
there is danger of some kind of label drift, because pseudolabels are at
the beginning of the training created by a model with relatively low
performance. In experiments, this method is denoted by subfix -PL (as
pseudolabels).

® Partial pseudolabeling of unlabeled points with loss scaling:
This approach combines two previous approaches together. Pseudolabels
are used for every 40" unlabeled region, which is selected randomly.
This should lower the risk of label drift that is mentioned in the previous
point and provide equal impact of each point on the final loss value. In
experiments, this method is denoted by subfix -PL-WB (as a combination
of pseudolabels and weighted batch).
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Chapter 4

Experiments

In our experiments, we want to improve the performance of the model as
much as possible. Our extension adds more annotations of “dynamic classes”,
therefore, the model should have a similar or even better performance of
these classes with fewer manual annotations. These spared annotations could
then be used to improve performance of other classes.

. 4.1 Datasets

For our experiments, we need to use datasets, which are focused on the
semantic segmentation task and are captured in sequences. Therefore, we
choose SemanticKITTI[3] and Waymo Open Dataset[11].

B 4.1.1 SemanticKITTI

SemanticKITTI[3] dataset was captured in rural parts of Karlsruhe (Germany)
and on the highway, resulting in a small number of dynamic objects. The
dataset was captured by a 64-beam LiDAR with a maximum range of 120 m
and a vertical field of view 26.9°, which spins at a frequency of 10 Hz. The
average point cloud contains 100,000 points.

The dataset contains 10 training sequences (19,130 frames) and 1 validation
sequence (4,071 frames). From the dataset, we use point clouds, per-point
semantic labels, and instances. The dataset divides points to 32 semantic
classes (without “Unlabeled” and “Outlier”) which are then combined to 19
classes (by commonly used learning map) in training, e.g. Lane marking is
combined with Road and Moving cars are merged with Car.

Bl 4.1.2 Waymo Open Dataset

Waymo Open Dataset[11] was captured in San Francisco, Mountain View,
Los Angeles, Detroit, Seattle, and Phoenix (all in the USA). The dataset was
captured by 5 LiDARs, however we are using only points from the “TOP”
LiDAR, which has 64 beams, maximum restricted range of 75 m and a vertical
field of view 20.0°. The dataset also provides two returns for each laser pulse,
but we decided to use only the first return.

19



4. Experiments

Semantic labels were not included in the first version of Waymo Open
Dataset[I1] and were added in version 1.3.0 and improved in version 1.3.2,
which is the version we are using in our experiments. But even in this
version only usually every 5 frame contains semantic labels, which slightly
complicate our application of motion flow, as discussed in subsection [2.4.

This dataset is one of the largest publicly available LIDAR datasets, there-
fore we decide to use only the subset, which will have a number of frames
similar to the SemanticKITTI dataset[3]. We used all frames with semantic
labels from the training part of the official dataset. In total it is 23,691 frames,
these frames we split into a training and a validation part. The training
part contains 19,526 frames and the validation part 4,165. For creating a
training and validation part of a dataset, it is important to ensure that both
parts have a similar class distribution, without tearing sequences apart. For
solving this problem, we need to determine which sequences to put into the
training/validation part. We did it by this steps:

1. We randomly added sequences to validation part until validation dataset
contains at least 4,150 frames. The rest of the sequences would create a
training dataset.

2. We compute a per-point class distribution for validation and training
dataset.

3. We divide these distributions (element vise) to compute the ratio between
class percentages in different parts of datasets.

4. These values we put in logarithm to scale the ratio “correctly” (ratio 0.5
and 2 represent the same error) and then to the absolute value.

5. The score of these splits is determined by the sum of values from the
previous step. We want to minimize this value. The optimal value is 0,
which would mean that the class distribution is identical for the training
and validation part of the dataset.

Whole formula for score computation is shown in equation (4.1))

trn
ln(@iﬁss> ’ (4.1)
Pclass

where '™ stands for class distribution of training dataset and ¢! represents
class distribution of validation dataset.

score = E

class

trn

We run the algorithm above multiple times (in millions) and obtain a split,
which has a score of 0.8. Its class distribution in the training and validation
part and their ratio is shown in figure [4.1]
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4.1. Datasets

Class distribution in training and validation part of dataset
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Figure 4.1: Class distribution and their ration of training and validation part of
dataset

ReDAL[I5] method is designed so that the labeled part of the training
dataset contains 1% of fully annotated frames from the whole training dataset
at the beginning. These frames are fixed for all experiments, and their selection
on SemanticKITTI[3] appears to be random. Therefore, we randomly selected
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4. Experiments

Figure 4.2: Example of walkable annotation (light blue) in Waymo Open
Dataset[11]

1% of frames from the training part of the dataset, but we aim for frames that
are in the middle of the sequence and one frame from the sequence is selected.
From this selection of initially annotated frames our method should benefit
the most, because in the middle of the sequence, from our point of view, is the
highest probability that the frame contains the highest number of dynamic
objects. Our extension can propagate these objects to other frames from the
beginning. This selection should not negatively influence ReDAL[IH].

This dataset contains 22 semantic labels (without “Undefined”). But
similarly as in SemanticKITTI[3] we merged some classes together. However,
we cannot find a commonly used learning map, so we created our own. We
merged classes Curb, Road, Lane marking and Other ground (bumps, cat’s
eyes, railtracks) to Road. Also we moved Walkable to Undefined, because
it includes, e.g. grassy hill, pedestrian walkway stairs, which is somewhere
between classes Vegetation and Sidewalk and even for humans it would be
very challenging to determine between these classes. Example of Walkable
annotation is shown in figure |4.2

. 4.2 Neural network

LiDAR data creates a challenge for the architecture of neural networks. The
data are sparse and without any structure, therefore, using some kind of
voxelization is one of the commonly used approaches. For our experiments,
we used the SPVCNNJ[I2] neural network, which came up with the type of
convolution on point clouds, called Sparse Point-Voxel Convolution (SPV-
Conwv), which is much more efficient on sparse point clouds in terms of memory
and computation efficiency. Also, it is one of the neural networks that the
authors of ReDAL[I5] used to evaluate their method.
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4.3. Training results

B a3 Training results

We performed experiments on two datasets, and the results shown in the
following tables are the performance on the validation part of each dataset.
We trained three models with each method, and recorded average scores to
create a more meaningful and robust comparison between methods (results of
each run can be found in the appendix B)). The tables contain results of the
original implementation of ReDALJIH], results of fully supervised training
(i.e. training on the whole training dataset) compared to our methods, where
instances are based on the ground truth (GT) annotation or based on the
prediction of the motion flow model (MF).

We use the same ReDAL[I5] training parameters as the authors mention
in the article, i.e. the initially labeled dataset contains 1% of training data,
training contains 4 rounds of additional annotations, where in each round 1%
of the training data would be humanly annotated and added to the training.

Our metric for evaluating the performance of the model is Intersection over
Union (IoU). It is a commonly used metric for object detection and semantic
segmentation, which penalizes false positive prediction along side with false
negative prediction. The highest value of this metric is 1 and the minimum
value is 0. However, it is usually presented as a percentage, which we do
as well. It means that the value we want to achieve is 100. This metric is
computed by equation (4.2]).

True Positives
IoU = — — - (4.2)
False Positives + True Positives 4+ False Negatives

In same cases, we also use Recall and Precision. It is usually when we want
to know whether the model tends to over-predict some class. This can be
deduced by a high value of Recall and low value of Precision, because Recall
means: how many points are positively predicted from all the points from a
certain class. Precision means: how “reliable” is the positive prediction on
certain class. The ranges of these two matrices are the same as for IoU and
are computed by equation (4.3)).

Recall — True Positives

True Positives + False Negatives

4.3
True Positives ( )

Precision =

True Positives + False Positives

Our extension of the ReDAL[I5] method does not have to improve per-
formance on “dynamic classes”, which could be intuitive. This is due to
the fact that labeling occurs during training multiple times. So the neural
network could be confident with prediction on these classes sooner and the
ReDAL[I5] method would start selecting different regions, which does not
include “dynamic classes”, for manual annotation.
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4. Experiments

B 4.3.1 SemanticKITTI

On SemanticKITTI[3] dataset we are able to slightly outperform the ReDAL[I5]
method as you can see in figure 4.1/ and from training on the dataset with
3% of humanly annotated data we achieve a higher mIoU than ReDALJ[I]
on the same volume of annotation.
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Trunk

Terrain

Pole

Traffic sign

Supervised 63.43 96.12 36.20 64.06 81.51 55.47 68.78 84.35 0.01

93.14 45.68 80.39 1.12 90.93 63.04 87.90 68.14

74.09 63.80 50.45

ReDAL[I5] 55.67 94.76 11.36 46.76 55.17 39.52 57.74 71.53 1.54 89.44 31.20 75.54 0.84 88.94 53.71 87.34 66.20 74.44 62.13 49.49

Our GT 56.01 93.73 20.08 44.44 64.51 38.87 59.98 73.71 0.45 89.38 26.78 75.33 0.83 88.98 53.64 86.92 64.29 72.51 60.63 49.07

Table 4.1: Final results of experiments on 5% of the manually annotated
SemanticKITTI[3] dataset. Supervised model is trained on the whole dataset. *
means that the class contains dynamic objects. Other-vehicle includes: Other-
vehicle, Bus, On-rails. Road also include Line-marking.

As you can see in table 4.2/ additional annotations of dynamic objects worsen
the overall performance of the neural network. The number of automatically
annotated points can be seen in figure 4.3, It helped in all “dynamic classes”
by separating them (compared to ReDAL[I5]), as shown in figure 4.4. The
only “dynamic class” where extension does not improve performance is Car.
Additional annotation of cars probably unbalance the dataset in favor of this
class and the model starts to predict this class much more, which worsens
the precision on this class, as you can see in table |4.3. This claim, that the
model trained on our extension is overconfident on “dynamic classes”, is even
supported by the fact that regions which are selected to annotation contain
much fewer points which belong to these classes, as is visualized in figure [4.5.

mlIoU

*

=
<

O

Bicycle
Motorcycle
Truck *
Other vehicle *
Person *
Bicyclist *
Motorcyclist *
Road

Parking
Sidewalk
Other ground
Building
Fence
Vegetation

Trunk

Terrain

Pole

Traffic sign

ReDALJ[I5] 32.30 87.47 0.00 0.00 4.85 2.07 0.00

0.00 0.00 79.01 10.49 62.61 0.00 79.71 33.95 84.54 46.08 72.29 46.11 4.65

Our GT 28.39

71.18 0.00 0.00 7.79 9.23 6.62 12.92 0.26 69.05 1.38 47.85 0.00 71.56 27.70 78.45 24.43 67.52 35.95 7.39

Table 4.2: Models performance on 1% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.
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Automatically labeled points at the start of the training
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Figure 4.3: Automatically labeled points at the start of the training
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Confusion matrix
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(b) : Cropped confusion matrix of model trained with ReDAL[15]

Figure 4.4: Cropped confusion matrix of models trained on SemanticKITTI[3]
with 1% of manual annotation.
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Classes Our GT ReDAL[1LS] Classes Our GT ReDAL[ILH]
Car * 0.73 0.90 Car * 0.96 0.96
Truck * 0.13 0.21 Truck * 0.17 0.10
Other vehicle * 0.13 0.30 Other vehicle * 0.22 0.02
Person * 0.07 1.00 Person * 0.77 0.00
Bicyclist * 0.13 0.00 Bicyclist * 0.96 0.00
Motorcyclist * 0.00 0.00 Motorcyclist * 0.01 0.00
(a) : Models precision (b) : Models recall

Table 4.3: Precision and recall of models trained in 1% of manually annotated
SemanticKITTI[3].
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ReDAL[I5] 44.58 90.86 5.00 12.06 34.11 23.76 44.52 54.44 0.00 78.58 9.47 60.97 0.25 84.48 40.84 83.02 60.13 65.09 56.01 43.48

Our GT 43.87 88.74 0.45 11.24 44.45 20.84 41.73 53.66 0.16 78.29 5.55 61.67 0.30 84.83 39.32 84.98 55.83 69.68 52.55 39.18

Table 4.4: Models performance on 2% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.
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Bicyclist *
Motorcyclist *
Road

Parking
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Other ground
Building
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Vegetation

Trunk

Terrain

o
=

o
A

Traffic sign

ReDAL[I5] 51.00 93.66 9.45 27.72 59.80 34.71 48.78 64.39 0.00 83.69 13.05 67.64 0.67 87.02 52.17 87.17 63.56 72.84 57.73 44.92

Our GT 51.46 91.61 13.28 31.67 67.21 34.09 50.32 66.21 0.36 83.31 15.93 68.02 0.26 87.44 49.04 86.09 61.65 70.64 58.30 42.39
Table 4.5: Models performance on 3% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.
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ReDAL[I5] 53.98 94.52

5.67 44.96 62.32 42.19 54.64 64.07 0.22 87.21 26.25 73.05 1.25 89.08 55.74 85.98 63.13 69.12 59.77 46.38

Our GT 54.21 93.09 16.81 37.77 62.62

41.62 54.35 74.47 0.19 86.10 20.79 72.24 1.00 87.41 52.67 87.43 62.36 75.06 59.94 44.12

Table 4.6: Models performance on 4% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.

We analyze how many dynamic objects are added throughout the experi-
ments, and we find that above 90% of the dynamic objects have been used
at the end of the experiments (specific numbers can be found in table 4.7)).
Therefore, we conducted future experiments on Waymo Open Dataset[11],
which contains much more dynamic objects.

runj | rung | runs
beginning 83 83 83

selection 1 | 216 | 175 | 215
selection 2 | 289 | 316 | 304
selection 3 | 310 | 319 | 314
selection 4 | 314 | 321 | 315

Table 4.7: Number of dynamic objects, which were are in labeled part of training
dataset. Total number of dynamic objects in SemanticKITTI[3] is 336.

)

With our extension model achieves, similar results on “dynamic classes’
(table 4.8) with a lower amount of manual annotation (figure 4.6)) of these
classes.
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4.3. Training results

Dynamic classes mIoU  Static classes mloU
ReDAL[IE] 53.38 56.72
Our GT 55.21 56.38

Table 4.8: Comparison of our extension with ReDAL[I5] on 5% of manually
annotated SemanticKITTI[3]
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Figure 4.6: Ratio between total number of labeled points after 4" selection

B 4.3.2 Waymo Open Dataset

Waymo Open Dataset[11] is a much more interesting dataset for our extension,
because it includes much more dynamic objects. On the other hand, the large
number of dynamic objects enlarges the main disadvantage of our method,
which is that it increases imbalance of the dataset towards “dynamic classes”.
We are not able to adjust training and fine-tuning of the neural network to
use the benefit, which our method can provide, when we use ground truth
annotations for adjusting regions (table . However, when we adjust regions
with use of motion flow and DBSCANS, pipeline creates even semantically
pure instances of static objects. It was not our intention, and it could only
happen due to wrong SLIM static vs. dynamic segmentation. These instances
are used in training and added more automatically annotated points, but
what is more important, they helped to balance the dataset. Therefore, the
model that is trained with our extension, which uses motion flow model and
our pipeline for region adjustment and matching, outperform ReDAL[I5| in
all checkpoints in training (tables 4.10} 4.12, |4.13, 4.14)).
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Supervised 64.30 96.00 65.04 68.09 27.94 7.22 69.36 87.26 69.11 30.29 69.83 45.15 43.18 54.65 93.26 91.08 63.88 95.39 80.67
ReDAL[I5] 59.24 95.07 61.97 68.11 26.23 0.00 54.03 81.06 67.13 31.95 66.29 42.59 26.62 45.61 91.48 88.91 59.84 91.74 67.75
Our GT 58.90 93.16 63.33 60.23 21.16 0.14 54.89 76.64 65.78 31.11 65.76 44.41 32.77 48.08 92.03 89.32 59.92 92.05 69.50
Our GT-DS 58.01 92.09 61.81 54.62 28.71 0.09 50.91 73.47 66.05 32.47 66.27 39.03 30.21 50.51 91.42 89.00 60.42 90.26 66.86
Our GT-W 46.25 90.16 49.25 49.28 25.43 0.02 33.98 58.80 53.48 22.00 56.41 18.04 14.50 10.43 86.32 83.79 52.06 80.01 48.56
Our GT-WB 54.51 91.05 58.59 54.63 25.86 0.00 40.79 71.56 62.62 23.90 59.53 39.34 25.53 36.66 90.07 87.27 54.01 91.87 67.82
Our GT-PL 51.01 92.47 63.56 61.69 33.16 0.00 37.21 75.40 58.06 22.46 56.59 29.44 2.22 22.72 89.57 85.79 49.78 88.08 49.95
Our GT-PL-WB 56.42 92.26 63.43 57.57 23.95 0.00 39.79 72.27 63.29 27.17 63.27 43.30 26.15 43.30 91.10 88.42 58.61 92.25 69.54
Our MF 60.91 95.33 63.10 59.14 19.62 18.46 63.13 81.35 65.88 29.40 64.95 45.00 34.80 55.56 91.56 89.03 57.72 92.37 69.98

Table 4.9: Final results of experiments on 5% of the manually annotated Waymo
Open Dataset[I1]. Supervised model is trained on the whole dataset. GT stands
for creating dynamic objects based on ground truth. GT-DS is the same but
training starts by using the 15 checkpoint from original ReDAL[I5]. GT-W uses
weighted Cross entropy loss, GT-WB uses loss scaling through batch frames,
GT-PL uses pseudolabels for all unlabeled points, GT-PL-WB uses pseudolabels
on some regions and loss scaling through batch. MF stands for creating dynamic

objects based on motion flow.

In table [4.10] you can see similar repercussions of our extension, which
is based on ground truth data, as on SemanticKITTI[3] dataset, but here
the difference is even larger (here it is 6.16 vs 3.91 points of mIoU on
SemanticKITTI[3]). The model is same as on SemanticKITTI[3], overcon-
fident on “dynamic classes”, as can be seen in figure 4.11].
automatically labeled points can be seen in figure |4.7. However, training
with weighted batch (GT-WB and GT-PL-WB) can at this point outper-
form ReDALJI5] by 2.75 and 2.41 points of IoU, along with models trained
with our extension based on the motion flow model (MF), which outperform
ReDALIIH] by 2.69 points.
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1e7 Automatically labeled points at the start of the training
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Figure 4.7: Automatically labeled points at the start of the training
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ReDAL[I5] 35.22 85.68 26.74 23.50 0.32 0.00 5.37 49.03 40.63 0.00 46.90 21.33 0.00 0.00 83.76 80.11 39.25 86.14 45.17
Our GT 29.06 68.16 18.46 20.32 0.18 0.00 0.02 27.35 34.17 0.03 38.64 9.88 0.00 0.00 73.87 76.33 31.26 83.04 41.37
Our GT-DS 35.22 85.68 26.74 23.50 0.32 0.00 5.37 49.03 40.63 0.00 46.90 21.33 0.00 0.00 83.76 80.11 39.25 86.14 45.17
Our GT-W 28.34 69.34 11.38 13.92 0.80 0.00 12.65 28.05 35.32 6.57 41.25 19.71 0.77 2.17 55.58 69.03 30.95 76.55 36.04
Our GT-WB 37.97 87.84 35.22 34.57 0.00 0.00 8.45 55.51 41.06 6.82 47.60 21.33 0.04 0.01 84.17 81.70 39.31 87.40 52.38
Our GT-PL 35.22 85.68 26.74 23.50 0.32 0.00 5.37 49.03 40.63 0.00 46.90 21.33 0.00 0.00 83.76 80.11 39.25 86.14 45.17
Our GT-PL-WB 37.63 86.09 34.28 35.32 0.00 0.00 9.24 56.83 40.65 7.43 46.32 18.35 0.02 0.00 83.98 82.06 40.30 87.06 49.45
Our MF 37.91 86.32 31.11 39.06 4.84 0.00 32.21 54.20 29.37 0.03 40.67 18.88 1.53 16.04 82.38 80.47 37.12 84.17 43.91

Table 4.10: Models performance on 1% of the manually annotated Waymo Open
Dataset[I1]. Our GT-DS and Our GT-PL is not trained at this point, but they
start from this ReDAL[I5] checkpoint.
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4. Experiments
Classes Our GT  ReDAL[I5|
Car 0.70 0.92
Truck 0.19 0.43
Bus 0.24 0.36
Pedestrian 0.28 0.82

Classes Our GT ReDAL[I5]
Car 0.97 0.92
Truck 0.78 0.42
Bus 0.54 0.41
Pedestrian 0.93 0.55

(a) : Models precision (b) : Models recall

Table 4.11: Precision and recall of models trained in 1% of manually annotated
Waymo Open Dataset[I1].
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ReDAL[I5] 43.10 88.20 32.39 34.33 9.46 0.00 22.72 69.99 61.18 25.91 55.99 35.68 2.95 1.24 84.28 82.13 49.69 84.65 34.97
Our GT 40.37 86.94 31.45 30.47 1.60 0.00 0.02 54.43 58.27 27.07 56.25 23.60 5.12 0.68 84.52 84.93 53.81 84.79 42.64
Our GT-DS 40.66 83.06 36.26 28.97 5.71 0.00 10.37 56.04 59.49 25.75 57.26 30.56 4.89 1.75 82.88 81.99 46.70 83.43 36.84
Our GT-W 35.19 84.09 16.15 25.61 5.01 0.07 20.01 35.78 48.40 15.76 49.35 15.18 3.53 2.32 70.96 75.67 45.07 79.69 40.78
Our GT-WB 41.71 84.88 41.58 45.13 5.09 0.00 10.91 54.08 52.67 13.44 53.48 16.79 3.85 4.54 86.15 82.80 48.15 89.17 58.07
Our GT-PL 41.18 89.67 48.90 47.57 0.71 0.00 3.78 68.76 50.05 5.50 51.49 25.23 0.00 0.00 87.15 83.31 43.98 87.34 47.74
Our GT-PL-WB 43.08 85.05 39.15 45.40 12.60 0.00 12.08 56.69 52.83 16.19 53.51 32.67 0.55 7.56 85.03 83.09 48.19 88.96 55.96
Our MF 50.27 92.54 47.12 43.59 14.04 0.24 50.60 72.69 59.94 20.54 57.73 36.25 16.14 36.30 87.08 84.19 51.65 86.97 47.22
Table 4.12: Models performance on 2% of the manually annotated Waymo Open
Dataset[IT].
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ReDAL[I5] 52.06 93.01 53.46 54.20 23.62 0.00 41.55 73.86 63.32 28.29 61.32 37.94 16.41 28.51 89.24 86.09 54.16 86.48 45.57
Our GT 51.54 89.79 56.39 54.28 11.37 0.01 18.70 69.54 62.45 28.29 62.10 40.06 18.11 34.98 90.52 88.05 56.62 88.37 58.05
Our GT-DS 50.68 89.35 53.12 55.88 16.11 0.00 21.52 64.75 63.72 26.96 61.37 42.59 11.10 30.60 89.39 86.68 57.49 86.62 55.06
Our GT-W 40.75 88.48 37.24 41.88 7.96 0.03 23.42 51.47 48.61 18.12 49.12 15.24 8.46 7.80 82.39 82.59 47.95 79.85 42.89
Our GT-WB 48.36 88.40 50.14 52.66 12.11 0.00 25.93 61.58 58.32 22.30 56.95 33.00 15.01 19.72 88.35 85.54 51.36 89.41 59.66
Our GT-PL 44.46 90.75 58.55 54.04 14.50 0.00 9.46 72.94 53.27 11.25 53.08 27.39 0.04 0.01 88.27 84.48 45.79 87.68 48.88
Our GT-PL-WB 49.46 88.76 52.87 50.67 15.72 0.00 23.62 68.21 57.35 22.64 55.47 33.20 12.65 26.27 88.73 85.92 51.71 91.00 65.43
Our MF 54.55 93.27 53.78 52.66 13.39 7.96 53.85 75.63 63.02 23.82 60.61 43.84 27.84 38.80 88.75 85.79 52.76 88.65 57.52
Table 4.13: Models performance on 3% of the manually annotated Waymo Open
Dataset[11].

All our different training approaches (from chapter [3) perform below our
expectation on our extension that uses ground truth data (GT). Only training
with the weighted batch (-WB and -PL-WB) can improve training at the
15t checkpoint, as mentioned above. However, with a larger dataset all our
training approaches perform below ReDAL[I5] and the original training with
our extension (Our GT).
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ReDAL[I5] 56.22 94.37 57.29 63.82 23.72 0.00 50.26 78.15 65.37 28.42 63.57 41.42 22.79 35.61 90.80 88.31 59.81 89.28 59.04
Our GT 56.73 92.17 58.95 56.34 26.94 0.00 46.71 73.24 65.33 28.30 64.86 43.06 26.37 43.62 91.38 88.67 58.60 90.77 65.84
Our GT-DS 55.79 91.53 59.83 57.44 25.00 0.00 42.73 69.00 65.18 27.80 62.94 41.90 23.19 43.88 90.84 88.35 60.04 90.37 64.21
Our GT-W 44.93 91.30 52.29 47.92 20.03 0.02 24.71 58.81 51.55 18.64 52.94 20.53 11.19 6.22 86.40 83.98 49.75 82.98 49.39
Our GT-WB 51.94 90.51 55.52 57.55 16.77 0.00 31.09 65.53 60.30 23.19 59.94 37.25 20.27 31.65 88.83 85.46 54.33 90.97 65.70
Our GT-PL 48.25 91.50 61.80 58.99 27.92 0.00 29.17 74.84 55.24 20.62 54.68 28.48 0.34 6.93 88.88 85.06 47.22 87.82 49.00
Our GT-PL-WB 53.68 90.51 56.99 55.61 19.08 0.00 34.76 69.10 62.16 24.40 61.49 40.67 19.96 36.70 90.10 87.48 57.11 91.72 68.45
Our MF 58.35 94.53 58.44 59.85 18.87 6.59 61.20 79.40 64.43 26.88 62.54 44.91 32.68 47.83 90.63 88.08 58.32 90.41 64.77
Table 4.14: Models performance on 4% of the manually annotated Waymo Open
Dataset[I1].

The ratio between the total number of manually annotated points at the
end of the experiments can be found in figure [4.8] from this visualization we
can see that with our extension the model needs much less manual annotation
of “dynamic classes”.
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Ratio between total number of labeled points after 4" selection
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Figure 4.8: Ratio between total number of manually labeled points after 4"
selection
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Chapter 5

Conclusion

In this thesis, we created an extension for the ReDAL[I5] method. This
extension can create semantically pure regions that contain dynamic objects
and other well separated objects in 3D point cloud and link them through a
sequence of point clouds with the same objects without any manual annotation.
Therefore, the annotator will be able to annotate an object in a whole sequence
by one action. This is much more efficient than with original regions which
could contain many semantic classes, which the annotator needs to manually
separate and label.

For this extension, we create a user interface, where the annotator can see
an object from all time frames at ones, along with the visualization from one
time frame (where the object contains the most points) for a more detailed
look at the object. Then the annotator can adjust time frames selection in
case of mistakes of the new regions prediction and select the semantic label.

From experiments we find out the main disadvantage of using our extension
is unbalancing of the dataset, which occurs with usage of our method based
on ground truth data. However, when we used our whole pipeline, the method
is able to automatically propagate labels even to static objects, which reduces
the imbalance of the dataset (this was not our intention and it could be
suppressed by usage of dataset odometry). By using the whole pipeline,
we are able to improve mloU by 1.67 percentage points, that is, from a
value equal to 92.1% of performance of the fully supervised model, which
ReDALJIS)] achieves, to 94.7% with usage of our extension.

Our extension can be used on all sensors that output a sequence of point
clouds. Therefore, it can be used even for stereo cameras. In future work, it
would be interesting to add a criterion which would focus on predictions of a
neural network on linked regions.
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Appendix B

Results of each training run

. B.1 SemanticKITTI
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Supervised,,,, 1 63.24 95.94 38.69 60.72 82.05 53.54 70.49 86.44 0.01 93.01 44.61 80.26 1.36 90.91 64.17 86.78 66.52 71.36 63.26 51.52
Supervised,,, o 63.23 95.81 36.47 65.65 79.85 49.81 69.15 83.67 0.00 92.81 46.43 79.77 1.08 90.49 61.14 89.05 69.81 76.65 63.92 49.79
Supervised,,, 3 63.82 96.62 33.45 65.81 82.63 63.05 66.70 82.95 0.03 93.59 46.00 81.15 0.93 91.39 63.81 87.88 68.08 74.26 64.23 50.04

ReDALrun 1 54.64 94.11 9.42 44.52 57.03 26.68 52.83 71.81 0.04 88.91 29.58 75.00 1.10 89.76 55.52 87.60 66.81 76.11 62.06 49.19
ReDALpun 2 56.08 95.08 15.95 41.72 54.55 47.66 63.68 68.73 0.22 89.71 31.56 75.59 0.63 87.76 51.36 88.96 64.76 77.52 60.74 49.42
ReDALrun 3 56.28 95.10 8.70 54.04 53.93 44.21 56.72 74.06 4.36 89.70 32.45 76.03 0.80 89.31 54.26 85.45 67.02 69.68 63.59 49.85

Our GTrun 1 56.28 93.97 23.12 43.86 67.25 43.14 64.45 77.12 0.85 88.33 21.21 73.99 0.25 89.10 54.13 86.46 62.42 71.42 60.43 47.77
Our GTrun 2 55.75 93.47 21.14 37.57 69.87 39.12 55.28 69.51 0.27 90.39 33.49 76.31 1.41 88.14 53.18 86.45 63.94 70.10 59.72 49.92
Our GTrun 3 55.99 93.74 15.97 51.89 56.40 34.35 60.22 74.50 0.24 89.42 25.63 75.69 0.82 89.69 53.60 87.85 66.52 76.01 61.73 49.52

Table B.1: Final results of experiments on 5% of the manually annotated
SemanticKITTI[3] dataset. Supervised model is trained on the whole dataset. *
means that the class contains dynamic objects. Other-vehicle includes: Other-
vehicle, Bus, On-rails. Road also include Line-marking.
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ReDAL;un 1 32.18 86.16 0.00 0.00 0.01 0.52 0.00 0.00 0.00 79.11 11.49 62.86 0.00 80.58 35.49 84.92 48.56 72.94 45.51 3.36
ReDALyyn 2 32.22 87.41 0.00 0.00 0.59 0.50 0.00 0.00 0.00 78.68 11.22 62.33 0.00 79.95 36.07 84.95 48.65 73.17 45.26 3.40
ReDAL;un 3 32.51 88.85 0.00 0.00 13.94 5.18 0.00 0.00 0.00 79.23 8.75 62.65 0.00 78.60 30.28 83.74 41.03 70.75 47.55 7.19
Our GTyyn 1 29.20 71.75 0.00 0.00 11.49 8.21 7.59 11.74 0.06 69.07 1.71 53.93 0.00 73.20 27.05 79.10 27.01 68.46 36.89 7.52
Our GTyun 2 28.83 67.72 0.00 0.00 5.95 10.40 5.63 13.25 0.08 69.56 0.53 48.04 0.00 75.20 34.45 79.24 26.46 65.55 39.65 5.96
Our GTrun 3 27.13 74.06 0.00 0.00 5.94 9.08 6.63 13.78 0.64 68.53 1.89 41.59 0.00 66.27 21.61 77.02 19.83 68.55 31.30 8.70
Table B.2: Models performance on 1% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.
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ReDALyun 1 44.52 91.00 9.57 8.47 29.83 27.20 45.17 52.64 0.00 78.16 11.00 61.75 0.06 84.07 41.00 82.24 59.76 63.33 57.45 43.22
ReDALyun 2 45.17 91.48 3.52 17.86 47.87 20.91 47.74 59.43 0.00 79.54 0.60 61.94 0.38 84.15 38.20 82.62 59.08 63.93 56.08 42.94
ReDALyun 3 44.05 90.09 1.90 9.85 24.64 23.17 40.65 51.25 0.00 78.04 16.81 59.21 0.31 85.21 43.31 84.19 61.55 68.00 54.49 44.27
Our GTrun 1 43.87 88.67 0.07 10.82 47.78 20.07 37.47 55.45 0.21 80.22 5.93 63.67 0.32 82.98 31.11 85.18 58.21 68.17 54.97 42.14
Our GTyyn 2 41.83 88.22 0.56 1.62 34.27 17.78 43.80 45.36 0.15 77.99 4.35 61.07 0.25 85.00 37.21 84.33 54.09 72.24 49.22 37.34
Our GTrun 3 45.90 89.32 0.73 21.28 51.30 24.66 43.91 60.18 0.12 76.67 6.38 60.27 0.34 86.50 49.64 85.44 55.19 68.62 53.47 38.06

Table B.3: Models performance on 2% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.
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ReDALpun 1
ReDALrun 2
ReDALrun 3

51.48 93.98 4.06 33.31 70.25 35.75 44.68 60.20 0.01 84.70 11.55 68.68 0.52 86.99 53.73 88.24 61.20 74.53 59.45 46.33
50.88 93.93 10.00 16.13 66.56 35.40 55.17 74.60 0.00 82.48 8.53 65.67 0.41 87.48 49.53 85.71 63.40 69.68 56.77 45.31
50.63 93.08 14.30 33.72 42.60 32.97 46.48 58.36 0.00 83.88 19.06 68.56 1.08 86.58 53.24 87.57 66.07 74.31 56.97 43.11

Our GTrun 1
Our GTrun 2
Our GTrun 3

50.91 91.25 24.25 18.80 62.82 37.45 45.80 61.68 0.96 84.32 17.65 68.76 0.38 87.65 47.14 85.90 62.86 69.18 58.15 42.38
51.77 91.86 3.69 39.29 69.81 36.35 50.31 70.82 0.12 82.35 17.15 66.85 0.23 87.49 50.73 86.03 62.51 71.23 57.06 39.74
51.71 91.72 11.91 36.91 69.00 28.47 54.86 66.13 0.00 83.26 13.00 68.44 0.17 87.18 49.24 86.33 59.59 71.51 59.70 45.04

Table B.4: Models performance on 3% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.
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B.1. SemanticKITTI

*
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mloU ©

Other vehicle *
Motorcyclist *
Other ground

Bicycle
Motorcycle
Truck *
Person *
Bicyclist *
Road
Parking
Sidewalk
Building
Fence
Vegetation
Trunk
Terrain
Pole
Traffic sign

ReDAL;un 1 53.99 94.30 3.73 44.39 66.20 45.90 50.06 68.02 0.10 86.82 25.35 72.33 0.49 89.77 58.25 84.23 65.09 63.06 61.63 46.15
ReDALpun 2 54.70 94.93 7.51 45.29 67.79 45.38 58.59 55.63 0.35 87.63 26.35 73.47 0.69 89.44 55.94 86.86 60.53 71.42 60.99 50.50
ReDALyun 3 53.24 94.34 5.76 45.20 52.96 35.29 55.26 68.56 0.20 87.18 27.04 73.35 2.58 88.04 53.04 86.84 63.77 72.87 56.70 42.49

Our GTrun 1 55.00 92.90 14.11 41.42 74.95 40.12 56.79 69.73 0.34 88.12 24.79 73.91 0.19 86.67 51.46 87.61 63.05 75.93 60.60 42.27
Our GTrun 2 53.47 93.33 12.23 29.92 53.01 43.08 55.25 76.82 0.23 84.56 23.87 71.97 2.60 87.20 53.69 87.65 63.43 75.35 58.79 42.87
Our GTrun 3 54.17 93.04 24.09 41.96 59.91 41.66 51.01 76.86 0.00 85.63 13.70 70.84 0.21 88.36 52.85 87.03 60.59 73.91 60.42 47.21

Table B.5: Models performance on 4% of the manually annotated
SemanticKITTI[3]. * means that the class contains dynamic objects. Other-
vehicle includes: Other-vehicle, Bus, On-rails. Road also include Line-marking.
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B. Results of each training run

B B2 Waymo Open Dataset
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Supervised
Supervised
Supervised

run 1
run 2

run 3

62.62 95.20 67.16 67.95 19.69
65.56 96.33 63.51 71.52 31.39
64.72 96.46 64.45 64.79 32.75

2.91 67.04 86.71 69.37 32.36 69.07 47.27 38.38 43.13 93.07 90.51 62.40 95.19 79.74
8.78 71.15 87.56 68.60 28.84 70.29 44.85 47.04 63.77 93.33 91.38 64.95 95.49 81.25
9.97 69.90 87.50 69.36 29.67 70.14 43.33 44.13 57.06 93.38 91.36 64.28 95.48 81.02

ReDALrun 1
ReDALyun 2
ReDALpun 3

59.20 95.44 60.30 69.23 25.76
59.53 94.85 62.64 70.83 23.81
58.99 94.93 62.98 64.28 29.11

0.00 49.45 81.59 67.25 31.80 66.93 41.85 30.12 46.29 91.80 89.37 60.19 91.46 66.81
0.00 60.77 80.70 66.30 32.49 64.90 44.65 23.10 45.89 91.08 88.22 60.51 92.16 68.71
0.00 51.88 80.88 67.83 31.55 67.04 41.28 26.64 44.65 91.56 89.14 58.82 91.61 67.73

Our GTyyun 1
Our GTrun 2
Our GTyun 3

59.65 92.86 61.79 61.46 29.43
58.39 92.40 65.33 62.93 13.80
58.67 94.23 62.86 56.30 20.24

0.00 59.40 76.42 66.83 30.25 66.30 45.68 30.10 50.01 91.83 89.08 60.79 92.11 69.33
0.02 57.14 76.63 64.35 30.53 64.53 40.57 35.27 47.64 92.11 89.16 58.61 91.75 68.34
0.41 48.12 76.86 66.15 32.55 66.44 46.98 32.93 46.58 92.16 89.72 60.37 92.29 70.84

Our GT-DS;un 1
Our GT-DS;un 2
Our GT-DSyun 3

58.41 91.52 63.68 56.31 31.99
58.22 93.28 61.06 59.48 29.91
57.41 91.48 60.68 48.06 24.23

0.26 47.15 72.20 66.44 33.08 66.59 39.73 30.81 49.17 91.85 89.13 59.83 91.42 70.15
0.00 58.13 72.58 66.21 32.79 66.01 31.00 33.39 52.78 91.30 89.30 61.36 88.03 61.38
0.00 47.45 75.64 65.50 31.55 66.20 46.36 26.43 49.57 91.12 88.56 60.08 91.34 69.06

Our GT-Wyun 1
Our GT-Wyun 2
Our GT-Wyun 3

46.92 91.82 47.12 43.55 20.98
44.11 87.49 48.48 46.97 29.65
47.72 91.18 52.14 57.31 25.66

0.05 33.80 61.43 53.64 20.50 56.99 22.32 8.36 14.16 86.51 85.30 54.66 87.44 55.96
0.00 33.05 56.96 55.85 23.17 56.52 13.05 13.18 8.16 86.95 82.42 48.89 67.31 35.87
0.01 35.08 58.01 50.95 22.34 55.73 18.75 21.97 8.97 85.50 83.64 52.64 85.27 53.84

Our GT-WByun 1
Our GT-WBrun 2
Our GT-WBrun 3

53.34 92.95 52.89 48.76 24.09
53.89 89.05 60.78 54.59 19.53
56.29 91.15 62.11 60.53 33.97

0.00 35.33 67.21 62.43 20.95 58.14 39.10 26.96 36.00 89.79 87.06 57.07 91.96 69.34
0.00 41.67 76.19 62.22 24.36 58.47 37.13 29.94 31.75 89.63 87.21 49.60 91.58 66.39
0.00 45.36 71.29 63.22 26.38 61.99 41.78 19.68 42.24 90.78 87.55 55.36 92.07 67.72

Our GT-PLyun 1
Our GT-PLyun 2
Our GT-PLyun 3

51.74 92.29 63.38 58.09 31.65
50.68 92.81 63.23 63.80 34.73
50.60 92.30 64.08 63.19 33.10

0.00 42.15 75.16 59.67 24.73 57.43 33.25 2.27 26.04 89.20 85.38 49.94 88.53 52.21
0.00 35.55 76.11 58.63 17.99 56.14 33.95 3.69 15.36 89.95 86.01 49.94 87.63 46.77
0.00 33.94 74.92 55.89 24.66 56.20 21.11 0.71 26.75 89.57 85.98 49.47 88.08 50.88

Our GT-PL-WByun 1
Our GT-PL-WBpun 2
Our GT-PL-WByun 3

57.72 92.56 65.08 64.91 25.63
57.43 93.18 64.70 59.58 21.71
54.11 91.04 60.52 48.21 24.51

0.00 43.18 72.98 63.68 25.99 63.65 44.48 27.02 46.02 91.16 88.53 60.57 92.40 71.21
0.00 44.26 77.15 63.75 28.39 63.85 43.00 29.46 44.69 91.36 88.82 59.38 92.18 68.41
0.00 31.92 66.67 62.43 27.13 62.32 42.41 21.96 39.18 90.79 87.90 55.88 92.16 69.00

Our MFyun 1
Our MFrun 2
Our MFun 3

59.97 94.38 59.41 56.21 18.21
61.31 95.59 65.28 58.63 28.71

12.44 63.40 81.26 66.18 30.23 65.09 43.65 34.02 56.20 91.78 89.34 57.77 91.72 68.21
17.63 61.88 81.00 65.33 29.49 64.40 48.73 35.80 51.99 91.28 88.78 55.09 92.83 71.17

61.45 96.02 64.62 62.59 11.95 25.32 64.12 81.80 66.14 28.49 65.37 42.62 34.57 58.49 91.61 88.98 60.31 92.57 70.56

Table B.6: Final results of experiments on 5% of the manually annotated Waymo
Open Dataset[II]. Supervised model is trained on the whole dataset. GT stands
for creating dynamic objects based on ground truth. GT-DS is the same but
training starts by using the 1st checkpoint from original ReDAL[I5]. GT-W uses
weighted Cross entropy loss, GT-WB uses loss scaling through batch frames,
GT-PL uses pseudolabels for all unlabeled points, GT-PL-WB uses pseudolabels
on some regions and loss scaling through batch. MF stands for creating dynamic
objects based on motion flow.
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B.2. Waymo Open Dataset
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ReDALpun 1 35.38 86.62 28.56 22.11 0.11 0.00 4.77 49.64 40.87 0.00 47.63 21.76 0.00 0.00 83.67 79.65 38.64 86.38 46.43
ReDALpun 2 35.38 85.50 27.46 23.17 0.46 0.00 6.97 49.97 40.74 0.00 46.75 21.33 0.00 0.00 84.13 80.68 40.07 86.03 43.58
ReDAL;un 3 34.89 84.92 24.21 25.22 0.39 0.00 4.36 47.49 40.29 0.00 46.31 20.89 0.00 0.00 83.47 80.00 39.05 86.01 45.49
Our GTrun 1 28.89 66.24 20.48 21.26 0.13 0.00 0.07 25.98 37.82 0.02 34.44 6.20 0.00 0.00 73.75 76.10 32.32 83.24 41.90
Our GTrun 2 29.57 68.07 18.35 20.82 0.28 0.00 0.00 31.37 31.56 0.06 43.87 12.86 0.00 0.00 76.11 76.96 29.02 82.37 40.48
Our GTrun 3 28.73 70.16 16.56 18.89 0.14 0.00 0.00 24.71 33.12 0.00 37.62 10.59 0.00 0.00 71.74 75.94 32.44 83.52 41.72
Our GT-DSrun 1 35.38 86.62 28.56 22.11 0.11 0.00 4.77 49.64 40.87 0.00 47.63 21.76 0.00 0.00 83.67 79.65 38.64 86.38 46.43
Our GT-DSrun 2 35.38 85.50 27.46 23.17 0.46 0.00 6.97 49.97 40.74 0.00 46.75 21.33 0.00 0.00 84.13 80.68 40.07 86.03 43.58
Our GT-DSrun 3 34.89 84.92 24.21 25.22 0.39 0.00 4.36 47.49 40.29 0.00 46.31 20.89 0.00 0.00 83.47 80.00 39.05 86.01 45.49
Our GT-Wyyn 1 28.52 66.05 11.39 14.35 0.85 0.00 15.72 28.96 34.50 6.20 41.98 18.35 0.67 3.14 56.59 69.20 29.80 81.71 33.88
Our GT-Wyun 2 28.62 72.50 11.72 13.76 0.66 0.00 11.02 27.78 36.58 6.96 41.72 20.78 0.93 1.61 56.39 69.70 31.97 73.93 37.17
Our GT-Wyun 3 27.87 69.48 11.02 13.64 0.90 0.00 11.22 27.41 34.88 6.54 40.06 19.99 0.71 1.75 53.75 68.20 31.07 74.02 37.08
Our GT-WBrun 1 38.12 87.95 32.41 33.02 0.00 0.00 7.65 55.82 43.31 10.06 48.99 21.48 0.00 0.00 83.84 81.99 40.47 87.52 51.70
Our GT-WBrun 2 37.69 87.81 35.75 34.09 0.00 0.00 9.75 54.36 38.53 4.91 47.17 22.09 0.02 0.00 84.14 81.48 39.48 87.24 51.61
Our GT-WBrun 3 38.09 87.77 37.51 36.59 0.00 0.00 7.94 56.35 41.34 5.48 46.63 20.41 0.09 0.04 84.54 81.64 37.98 87.44 53.84
Our GT-PLyun 1 35.38 86.62 28.56 22.11 0.11 0.00 4.77 49.64 40.87 0.00 47.63 21.76 0.00 0.00 83.67 79.65 38.64 86.38 46.43
Our GT-PLyyn 2 35.38 85.50 27.46 23.17 0.46 0.00 6.97 49.97 40.74 0.00 46.75 21.33 0.00 0.00 84.13 80.68 40.07 86.03 43.58
Our GT-PLyun 3 34.89 84.92 24.21 25.22 0.39 0.00 4.36 47.49 40.29 0.00 46.31 20.89 0.00 0.00 83.47 80.00 39.05 86.01 45.49

Our GT-PL-WBrun 1 37.98 87.06 35.03 35.60 0.01 0.00 7.48 56.83 40.43 9.12 48.70 19.40 0.00 0.00 84.45 82.38 38.40 87.53 51.26
Our GT-PL-WBryn 2 37.10 85.51 31.25 34.62 0.00 0.00 9.32 58.59 39.44 7.97 44.14 15.78 0.04 0.00 83.31 81.83 41.69 86.64 47.64
Our GT-PL-WBrun 3 37.82 85.71 36.56 35.73 0.00 0.00 10.91 55.07 42.07 5.21 46.13 19.87 0.02 0.01 84.18 81.96 40.80 87.01 49.46

Our MFrun 1 38.43 86.99 32.78 42.74 4.91 0.00 32.88 53.54 29.98 0.02 41.43 21.70 1.22 15.50 82.34 80.49 37.34 84.32 43.58
Our MFrun 2 37.52 85.87 29.34 32.80 3.78 0.00 29.73 54.43 31.06 0.08 40.64 19.92 2.06 17.78 82.51 80.30 37.37 83.93 43.68
Our MFrun 3 37.77 86.09 31.20 41.64 5.84 0.00 34.01 54.64 27.07 0.00 39.93 15.01 1.31 14.83 82.30 80.63 36.64 84.27 44.46

Table B.7: Models performance on 1% of the manually annotated Waymo Open
Dataset[II]. Our GT-DS and Our GT-PL is not trained at this point, but they
start from this ReDAL[I5] checkpoint.
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B. Results of each training run
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ReDALpun 1 42.72 89.73 28.58 34.98 9.77 0.00 18.45 69.06 61.38 26.94 57.29 34.63 0.47 1.25 82.75 81.76 47.00 85.07 39.81
ReDALpyun 2 42.56 85.67 35.76 26.51 13.91 0.00 21.10 70.40 60.18 25.94 55.78 32.27 2.80 2.48 84.58 82.19 48.66 84.42 33.49
ReDALyun 3 44.01 89.19 32.83 41.49 4.71 0.00 28.60 70.51 61.97 24.85 54.89 40.13 5.58 0.00 85.52 82.43 53.42 84.46 31.62
Our GTrun 1 41.17 86.34 35.78 33.75 0.96 0.00 0.06 53.20 57.08 29.50 54.75 24.99 4.18 0.00 85.45 85.22 55.58 84.45 49.78
Our GTrun 2 40.42 87.57 26.98 30.54 1.47 0.00 0.00 51.03 59.25 25.86 58.11 28.56 7.24 2.04 83.63 84.77 51.41 85.66 43.45
Our GTrun 3 39.51 86.91 31.59 27.13 2.36 0.00 0.00 59.05 58.49 25.84 55.90 17.26 3.94 0.00 84.48 84.81 54.45 84.25 34.68
Our GT-DSrun 1 42.39 84.30 43.13 30.32 6.56 0.00 6.61 56.01 60.00 28.05 56.68 39.84 8.11 4.86 83.66 81.31 44.16 84.39 45.03
Our GT-DSrun 2 40.10 84.65 32.99 26.47 3.57 0.00 10.32 53.04 59.40 27.01 58.71 27.56 0.36 0.25 82.62 82.80 52.79 83.78 35.51
Our GT-DSrun 3 39.50 80.22 32.67 30.13 7.00 0.00 14.17 59.08 59.06 22.20 56.39 24.28 6.19 0.15 82.35 81.85 43.15 82.13 29.98
Our GT-Wiun 1 35.69 85.79 16.35 28.74 4.51 0.00 23.65 33.42 51.01 19.07 50.11 18.24 2.89 2.36 67.10 78.21 45.14 77.00 38.79
Our GT-Wyun 2 34.44 82.56 12.05 19.65 6.86 0.18 17.71 38.13 47.83 12.39 50.02 17.08 1.94 1.57 71.22 71.95 45.64 80.89 42.32

Our GT-Wyun 3

35.44 83.92 20.04 28.44

3.65 0.04 18.68 35.79 46.37 15.81 47.92 10.23

5.75

3.03 74.55 76.86 44.43 81.18 41.24

Our GT-WBun 1
Our GT-WB,un 2
Our GT-WB,un 3

42.73 84.35 39.88 45.98
41.98 83.82 47.34 46.68
40.41 86.46 37.53 42.74

1.43 0.00 9.74 48.24 55.82 13.63 54.76 29.72
8.07 0.00 12.48 58.36 50.80 13.17 52.92 13.27
5.76 0.00 10.52 55.64 51.39 13.52 52.77 7.39

10.05
1.38
0.12

6.79 85.93 81.95 48.81 89.76 62.36
4.60 86.21 82.84 46.67 89.24 57.87
2.22 86.32 83.60 48.98 88.52 53.98

Our GT-PLyun 1
Our GT-PLyyn 2
Our GT-PLyun 3

41.66 90.75 51.87 48.20
41.04 89.48 50.59 45.96
40.84 88.77 44.25 48.56

0.93 0.00 4.56 69.05 50.49 2.40 52.44 27.29
0.20 0.00 3.69 68.40 51.06 5.61 50.60 25.81
1.01 0.00 3.09 68.82 48.61 8.50 51.42 22.60

0.00
0.00
0.00

0.00 87.22 82.99 43.82 87.80 50.02
0.00 87.46 83.35 44.10 87.04 45.37
0.00 86.77 83.59 44.02 87.19 47.84

Our GT-PL-WBun 1
Our GT-PL-WBun 2
Our GT-PL-WBun 3

45.36 86.62 45.93 47.70
42.09 82.74 36.51 39.32
41.80 85.79 35.02 49.19

18.85 0.00 12.88 56.40 52.68 18.54 54.29 35.90
12.78 0.00 11.83 53.11 54.87 14.41 52.78 35.50
6.16 0.00 11.54 60.56 50.94 15.63 53.45 26.61

0.34
0.42
0.90

15.87 87.29 84.16 50.45 89.62 58.99
4.09 84.48 83.67 48.76 88.48 53.95
2.72 83.33 81.44 45.37 88.79 54.94

Our MFrun 1
Our MFrun 2
Our MFrun 3

49.64 92.82 41.26 32.88 9.31 0.66 52.96 73.36 60.57 19.11 58.85 40.43 17.85 37.24 86.76 84.95 51.83 86.70 45.93
50.82 92.71 50.66 53.06 13.59 0.06 47.31 72.00 59.09 24.90 55.99 34.34 14.90 34.45 88.44 85.42 51.44 87.30 49.10
50.35 92.09 49.45 44.83 19.23 0.00 51.52 72.70 60.17 17.61 58.36 33.97 15.68 37.22 86.04 82.20 51.68 86.92 46.62

Table B.8: Models performance on 2% of the manually annotated Waymo Open

Dataset[11].
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B.2. Waymo Open Dataset
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ReDALpun 1
ReDALmn 2
ReDALyun 3

51.64 92.23 50.10 51.51 22.18
52.93 93.25 56.44 54.23 25.47
51.60 93.56 53.84 56.86 23.22

0.00 43.00 69.28 64.37 28.83 59.74 43.97 17.32 29.51 88.39 84.73 53.07 86.41 44.85
0.00 44.74 76.47 62.13 29.55 61.87 37.10 16.33 32.00 89.75 86.50 54.89 86.68 45.37
0.00 36.91 75.84 63.45 26.50 62.36 32.75 15.59 24.01 89.57 87.05 54.52 86.34 46.50

Our GTyun 1
Our GTrun 2
Our GTyun 3

52.05 89.82 56.45 55.52
50.70 88.92 60.44 56.12
51.87 90.64 52.28 51.19

10.46
9.36
14.28

0.04 22.63 70.58 60.74 27.83 62.82 40.09 22.11 38.29 89.96 87.57 55.87 88.60 57.45
0.00 5.42 68.51 62.66 26.58 61.58 40.79 16.06 34.00 90.74 88.19 56.70 88.36 58.12
0.00 28.04 69.54 63.94 30.47 61.90 39.31 16.15 32.65 90.87 88.38 57.30 88.15 58.58

Our GT-DSyun 1
Our GT-DSyun 2
Our GT-DSyun 3

51.79 89.48 45.74 59.64 13.00
50.23 88.69 56.21 52.02 15.62
50.03 89.87 57.41 55.98 19.70

0.00 30.61 63.44 63.91 27.85 62.74 44.76 18.09 35.81 88.93 86.42 56.82 87.07 57.83
0.00 18.95 64.94 63.79 26.50 61.17 43.38 8.44 26.37 90.18 87.47 58.71 86.39 55.38
0.00 14.99 65.86 63.46 26.52 60.20 39.63 6.77 29.63 89.07 86.15 56.95 86.41 51.96

Our GT-W;yyn 1
Our GT-W;un 2
Our GT-W;un 3

42.08 88.87 37.24 42.86
39.15 87.42 34.51 44.40
41.02 89.16 39.97 38.38

9.74
5.67
8.47

0.07 28.97 56.44 50.99 18.68 49.18 18.35 6.33 5.57 82.58 82.77 49.55 83.25 45.93
0.01 18.89 45.88 47.34 19.85 49.04 8.69 11.24 11.99 82.25 82.42 42.61 72.97 39.54
0.01 22.39 52.09 47.50 15.83 49.15 18.68 7.82 5.84 82.34 82.59 51.68 83.32 43.21

Our GT-WByun 1
Our GT-WByun 2
Our GT-WBrun 3

49.21 90.13 51.91 48.87 11.39
48.54 86.85 52.04 55.91 13.24
47.33 88.21 46.48 53.19 11.69

0.00 19.94 66.72 60.23 21.62 57.91 29.94 18.37 27.41 88.94 86.52 54.10 88.98 62.74
0.00 29.74 56.32 58.35 21.83 56.53 35.81 19.32 14.24 88.29 85.19 52.73 89.45 57.85
0.00 28.10 61.71 56.37 23.44 56.40 33.26 7.35 17.50 87.81 84.91 47.24 89.80 58.40

Our GT-PLyyp 1
Our GT-PLyyn 2
Our GT-PLyyn 3

45.49 91.40 61.86 58.59 23.18
43.95 90.66 58.45 50.32 6.46
43.95 90.20 55.35 53.21 13.85

0.02 0.04 88.09 84.14 45.58 88.05 50.92
0.01 0.00 88.58 84.67 45.41 87.27 45.80
0.08 0.00 88.13 84.63 46.37 87.71 49.92

0.00 7.00 72.86 53.61 11.58 53.19 28.79
0.00 13.28 72.90 54.31 11.51 53.21 28.25
0.00 8.09 73.05 51.90 10.67 52.84 25.12

Our GT-PL-WBun 1
Our GT-PL-WByun 2
Our GT-PL-WBiun 3

50.58 89.63 57.08 55.11 15.97
49.70 87.90 50.41 61.06 13.49
48.09 88.75 51.13 35.85 17.70

0.00 22.22 64.40 57.32 20.77 57.54 37.00 11.49 34.49 89.35 86.36 53.56 91.49 66.70
0.00 24.45 69.41 59.51 23.53 53.25 37.97 18.15 17.65 87.94 85.81 48.52 90.82 64.70
0.00 24.18 70.81 55.23 23.63 55.62 24.62 8.30 26.68 88.91 85.59 53.04 90.70 64.89

Our MFrun 1
Our MFrun 2
Our MFyun 3

52.19 91.74 52.88 53.51 12.46
54.94 94.05 51.97 48.97 14.16

3.67 46.94 72.56 62.35 21.30 60.15 42.65 21.41 35.38 88.55 84.71 51.32 86.91 50.86
3.77 55.50 76.60 62.82 28.08 59.99 43.47 32.30 39.63 88.53 86.15 53.34 89.29 60.34

56.53 94.01 56.49 55.50 13.56 16.45 59.10 77.73 63.90 22.07 61.70 45.39 29.82 41.40 89.17 86.52 53.63 89.74 61.35

Table B.9: Models performance on 3% of the manually annotated Waymo Open

Dataset[L1].
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B. Results of each training run
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ReDALun 1
ReDALrun 2
ReDALyun 3

55.82 94.64 59.24 62.93 21.59
57.15 94.46 56.42 66.05 27.04
55.70 94.01 56.22 62.47 22.52

0.00 50.55 76.17 65.07 30.57 63.72 39.97 25.09 35.18 90.78 88.42 59.66 87.83 53.41
0.00 51.08 78.00 64.80 28.51 63.13 43.35 23.79 40.81 90.52 87.90 59.42 90.02 63.36
0.00 49.16 80.28 66.24 26.18 63.87 40.95 19.50 30.85 91.11 88.62 60.36 89.98 60.35

Our GTyun 1
Our GTrun 2
Our GTyun 3

57.76 92.87 62.57 56.58 29.71
56.32 90.94 57.84 57.98 25.15
56.11 92.70 56.45 54.46 25.97

0.00 51.44 74.57 65.15 29.08 65.40 44.09 24.79 46.96 91.30 88.55 58.31 91.45 66.92
0.00 43.60 73.48 64.56 29.52 64.43 42.87 25.59 42.89 91.41 88.62 58.29 90.83 65.84
0.00 45.10 71.66 66.29 26.30 64.75 42.22 28.72 41.01 91.44 88.84 59.20 90.03 64.76

Our GT-DSyun 1
Our GT-DS;un 2
Our GT-DS;un 3

55.18 91.22 56.41 56.42 24.34
56.49 93.20 61.45 62.75 24.99
55.70 90.16 61.64 53.15 25.68

0.00 41.96 69.40 65.64 25.23 63.11 41.73 18.62 44.81 90.36 88.16 59.50 90.78 65.58
0.00 42.74 68.45 64.82 30.46 63.27 40.36 23.65 45.99 91.07 88.57 60.70 90.48 63.85
0.00 43.49 69.14 65.08 27.72 62.44 43.62 27.31 40.83 91.09 88.31 59.93 89.85 63.21

Our GT-Wyun 1
Our GT-Wyun 2
Our GT-Wyun 3

46.26 91.51 56.92 55.20 24.29
43.79 91.79 49.06 43.01 18.94
44.73 90.61 50.89 45.54 16.86

0.03 29.80 59.23 47.46 18.07 50.52 26.40 14.09 8.00 86.62 84.58 46.81 82.67 50.42
0.04 12.86 59.50 53.10 16.58 54.22 20.54 8.83 5.81 86.68 83.27 50.20 83.62 50.11
0.00 31.46 57.69 54.09 21.27 54.08 14.65 10.64 4.84 85.91 84.09 52.24 82.66 47.63

Our GT-WBrun 1
Our GT-WByun 2
Our GT-WBiun 3

50.66 92.60 53.66 47.79 9.99
52.49 89.47 61.81 61.31 22.11
52.66 89.46 51.08 63.54 18.21

0.00 26.77 66.81 60.06 23.36 60.03 28.19 24.15 33.01 88.85 86.64 54.41 90.40 65.16
0.00 30.86 64.31 61.41 21.82 60.70 41.27 15.96 29.96 88.95 83.71 54.66 91.10 65.38
0.00 35.64 65.47 59.42 24.39 59.08 42.28 20.70 31.97 88.70 86.02 53.91 91.40 66.56

Our GT-PLyyn 1
Our GT-PLyun 2
Our GT-PLyun 3

49.33 91.74 61.70 61.04 29.53
48.07 91.53 62.60 56.11 33.92
47.34 91.22 61.10 59.82 20.30

0.00 33.88 73.72 56.68 20.66 55.33 29.46 0.42 13.78 88.60 84.73 47.43 88.23 51.02
0.00 27.70 75.77 55.06 20.99 54.76 28.64 0.27 2.18 89.23 85.25 47.56 87.45 46.32
0.00 25.94 75.03 53.99 20.21 53.95 27.35 0.32 4.84 88.81 85.19 46.67 87.79 49.66

Our GT-PL-WByun 1
Our GT-PL-WBrun 2
Our GT-PL-WByun 3

54.68 91.70 63.25 60.28 16.71
54.75 90.10 57.01 64.21 20.49
51.62 89.74 50.70 42.33 20.05

0.00 31.20 71.74 63.40 23.57 62.09 42.65 16.58 42.27 90.89 88.07 57.98 92.16 69.75
0.00 39.13 68.76 63.17 23.59 62.70 37.30 30.16 34.89 89.76 87.34 57.34 91.61 67.95
0.00 33.95 66.81 59.90 26.03 59.69 42.07 13.13 32.94 89.65 87.04 56.00 91.39 67.66

Our MFyun 1
Our MFrun 2
Our MFun 3

56.48 94.20 57.31 60.36 13.51

0.61 59.87 80.60 64.64 26.21 62.99 41.35 25.66 41.47 90.34 87.88 58.12 89.06 62.38
59.12 94.54 58.92 56.65 22.01 15.39 60.36 77.47 64.09 28.03 62.94 48.15 36.20 46.81 90.73 88.42 58.12 90.76 64.53
59.46 94.84 59.10 62.53 21.08 3.77 63.37 80.12 64.55 26.41 61.68 45.24 36.18 55.21 90.83 87.93 58.72 91.41 67.41

Table B.10: Models performance on 4% of the manually annotated Waymo

Open Dataset[I1].
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