
Bachelor Project

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

Microservise Patterns in Online Markdown
Editor

Yevhen Chaban

Supervisor: Ing. Martin Komárek
Field of study: Software Engineering and Technology
May 2023

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

487025 Osobní číslo:Yevhen Jméno:Chaban Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Softwarové inženýrství a technologie Studijní program:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Mikroservisní vzory v markdown online editoru

Název bakalářské práce anglicky:

Microservise Patterns in Online Markdown Editor

Pokyny pro vypracování:
Study the microservice patterns [1], Docker and Kubernetes
Deploy existed "Git Based Markdown Editor Online" [2] application locally and to value stream delivery platform CodeNow
[3].
Implement the most reasonable improvement, based on suggestions from application author thesis [2], and personal
analysis.
Identify adequate microservice pattern for system improvement.
Design, implement a document selected microservice patterns.
Use iterative approach. Continuously build, test, deploy and document changes.

Seznam doporučené literatury:
[1] RICHARDSON, Chris. Microservices Patterns. Manning Publications, 2018. isbn 9781617294549.
[2] SAJDL, Vojtěch. GIT based markdown online editor. Prague 6, 2021. Available also from:
https://dspace.cvut.cz/handle/10467/95359.
[3] CodeNOW. CodeNOW Documentation, 2022, https://docs.codenow.com/.

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Martin Komárek kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 26.05.2023 Datum zadání bakalářské práce: 09.02.2023

Platnost zadání bakalářské práce: 22.09.2024

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Martin Komárek

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
I would like to thank my friends and my
family, who support me all the way. I
also would thank CTU for the given op-
portunities and the high quality of the
study.

Declaration
I hereby declare that the presented the-

sis is my own work and that I have cited
all sources of information in accordance
with the Guideline for adhering to ethical
principles when elaborating an academic
final thesis.

I acknowledge that my thesis is subject
to the rights and obligations stipulated by
the Act No. 121/2000 Coll., the Copyright
Act, as amended, in particular that the
Czech Technical University in Prague has
the right to conclude a license agreement
on the utilization of this thesis as school
work under the provisions of Article 60(1)
of the Act.

In Prague, May 26, 2023

v

Abstract
The goal of this project is to get an
overview and analyze the existing Git
based markdown online editor application
from CTU student Vojtech Sajdl, which
supports the entire life cycle of software
documentation. This application is de-
scribed in his Master’s thesis [1]. The
best improvement of the application, fo-
cused on microservice patterns, will be
suggested and implemented.

Keywords: Documentation
management, Docusaurus, Markdown,
Git, microservice architecture,
microservices patterns

Supervisor: Ing. Martin Komárek

Abstrakt
Cílem projektu je udělat přehled a ana-
lýzu existující Git based markdown online
editor aplikace, kterou vytvořil ČVUT stu-
dent Vojtěch Sajdl. Aplikace je popsána v
jeho diplomové práci [1]. Následovně se na-
bídne a naimplementuje nejlepší vylepšení,
orientované na microservisní patterny.

Klíčová slova: Documentation
management, Docusaurus, Markdown,
Git, microservice architecture,
microservices patterns

Překlad názvu: Mikroservisní vzory v
markdown online editoru

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Application functionality review . 1
2 Related theory 3
2.1 GitLab . 3

2.1.1 GitLab applications 4
2.2 Docker . 4

2.2.1 DockerFile 4
2.2.2 Docker images 4
2.2.3 Docker container 5
2.2.4 Docker Hub 5

2.3 Javascript . 5
2.3.1 Node.js . 5
2.3.2 React . 5

2.4 Docusaurus 6
2.4.1 Docusaurus configuration file . 6

2.5 Software architecture 6
2.6 Microservice architecture 7
2.7 Program code parsing and

modifying . 7
3 Deploy and Actual state of
application 9
3.1 Prerequisites for understanding the

application . 9
3.2 Startup application issues 10
4 Analysis 13
4.1 Requirements to the new

functionality 13
4.2 Application components and

architecture . 13
4.3 Overview and analyses application

improvements 14
4.4 Chosen improvements 15

4.4.1 CQRS pattern 15
4.4.2 Docusaurus configuration

editing page 16
5 Implementation 17
5.1 CQRS . 17

5.1.1 Design changes 18
5.1.2 Backend configuration 18
5.1.3 Backend implementation

details . 20
5.1.4 Frontend 21
5.1.5 Problems 21

5.2 Docusarus configuration 22

5.2.1 Backend 22
5.2.2 Frontend 25
5.2.3 Problems 26

6 CodeNow platform deployment 27
6.0.1 CodeNOW database connection

issues . 28
7 Testing 31
7.1 User testing 31
7.2 Smartlook 33
8 Conclusion 35

8.0.1 Further improvements 36
Bibliography 37

vii

Figures
3.1 Error while deploying backend,

frontend, and render components. . 10
3.2 Editing documentation part of the

page was not loaded correctly. 10

4.1 Application architecture [1]. 14

5.1 New architecture state. 17
5.2 Backend component configuration

file . 18
5.3 Backend configuration variable. . 19
5.4 DockerFile. 20
5.5 Gitlab strategy setup code

snippet. 20
5.6 Passport authenticate function. . 21
5.7 Future architecture state. 22
5.8 Parsing JavaScript code to AST

and back. 23
5.9 Setting value to the key-value

fields. 24
5.10 The list node of the menu items. 24
5.11 Setting value to the key-value

fields. 25
5.12 Frontend tab. 25
5.13 Dialog window. 26

6.1 Part of the deployment. 27
6.2 Connection error from the log. . . 28

7.1 Smartlook initialization. 34
7.2 Example of the recorded session. 34

Tables

viii

Chapter 1
Introduction

In this chapter project motivation will be explained. Then, the chapter
continues with the project structure.

1.1 Motivation

Documentation is an important part of almost every programmer’s job.
Developers consider documentation important, but they do not put the effort
into writing and maintaining it. According to the feedback [2], there is not
enough documentation on many projects.

One reason for this may be that developers do not have enough time to
create documentation themselves. A partial solution to this problem may be
to delegate the creation and maintenance of documentation.

However, delegating the creation of documentation to people who are not
programmers can be problematic, because they do not have sufficient skills to
work on the documentation project. In this case, software that allows users
to work with documentation without technical skills could be very useful.

The Git based markdown online editor [3] is such an application. Based
on this fact, improving an existing application makes sense.

1.2 Application functionality review

In Git based markdown online editor, we can divide the functionality into
two groups: documentation life-cycle related and proofreading related. The
use cases of each group will be shown in the next subsections.

Each use case in this subsection is related to the documentation life cycle.
All use cases together implement CRUD operations for documentation.. Create documentation.

There are two options:. Create new.

1

1. Introduction
. Import existing.. Delete documentation.. Changes documentation (project) settings. It allows to change name,

slug, or description..Adding/deleting pages and folders..Adding new members to the project. It allows to set up access rights for
each member.

The second very important group of application functionality is proofread-
ing. All use cases together also implement CRUD operations for proofreading
requests. Also, every use-case includes the git administration part:. Create proofreading request. A new branch for proofreading will be

created..Make proofreading changes. Changes from the proofreader will be
committed and pushed into the created branch.. Reject the proofreading request. The request will be returned to the
proofreader..Merge proofreading request. Changes will be merged into the source
branch.

2

Chapter 2
Related theory

This section describes the technology stack used in this thesis project and
introduces related concepts.

2.1 GitLab

GitLab is an open-source end-to-end software development platform that
includes version control, issue tracking, code review, CI/CD [4], and more.

Here are the most important functionalities of GitLab:.Version control
Version control is an essential tool for application development. It allows
us to keep track of code changes because it keeps a history of all additions,
changes, and deletions to the file.. Code review
Gitlab allows teams to do code reviews with its built-in pool-request
functionality. It allows control of the code changes, before merging two
branches. Code review is an integral part of development and one of
the fundamental factors in the growth of the developer level. It helps to
find bugs and optimize code, to improve its quality, to check for security
vulnerabilities, and more.. Collaboration GitLab has built-in support for the branches. It allows a
whole team of developers to work on one application in different branches
and merge them when it is needed, for example, before the release..GitLab pages
This feature allows users to deploy their static page directly from the
repository by creating a simple configuration file. After repository is
configured, the project will build and deploy after every commit to a
specific branch or branches..GitLab authentication provider
Gitlab can act as an authentication provider. It supports two different
methods of authenticating.

3

2. Related theory
One of them is authorization with Basic authentication. In this case,
GitLab checks the user by his password and username, this method
is often used to make calls to the GitLab API, because it is easier to
implement.

The second one is token-based authorization with OAuth 2.0 protocol.
In this case, GitLab returns a token to the user, which is then used to
communicate between programs. There are several ways to implement
this type of authorization. Section 2.1.1 will describe the type used in
the application.

Based on these facts, we can conclude that GitLab is a powerful tool to
control the full cycle of software development.

2.1.1 GitLab applications

Gitlab applications allow us to access two functions at once: use GitLab as
an Authentication provider and perform actions on behalf of the user. To
configure this functionality the user needs to register a new GitLab application
and get the OAuth 2 Client ID and OAuth 2 Client Secret from it. The
application will establish a connection with GitLab using the Client ID and
Client secret and will receive a token from GitLab. This token is then used
by third-party services to access the functionality of GitLab.

2.2 Docker

Docker is an open-source platform [5]. The platform allows developers
to manage, deploy, create, and run containers. Docker is a comprehensive
platform and includes many components such as DockerFiles, Docker images,
Docker containers, Docker Hub, Docker Desktop, Docker daemon, Docker
registry, and others. Below are listed the main components and their func-
tionality.

2.2.1 DockerFile

DockerFile is a very valuable tool. It serves as a file with instructions on
how to build a component. The developer creates this file in the component
folder, then Docker reads it.

2.2.2 Docker images

A Docker container image is a lightweight, standalone, executable package
of software that includes everything needed to run an application: code,
runtime, system tools, system libraries, and settings.

4

...................................... 2.3. Javascript

2.2.3 Docker container

A container is a standardized, executable component that combines appli-
cation source code with the operating system (OS) libraries and dependencies
required to run that code in any environment [6]. Docker images become
containers at runtime when they are running on the Docker engine.

2.2.4 Docker Hub

Docker Hub is the world’s largest repository of container images with an ar-
ray of content sources including container community developers, open source
projects and independent software vendors (ISV) building and distributing
their code in containers [6]. Users get access to free public repositories for
storing and sharing images, or they can choose a subscription plan for private
repositories. With the Docker Hub, it is not necessary to create new images
of the most-used services each time we need them. For example, Postgres has
its own image exported. Thus, we can just pull it from the Hub.

2.3 Javascript

JavaScript is an essential component of the World Wide Web [7]. It is a
widely used programming language. It is one of the most popular development
languages for client-side web development. The JavaScript code usually works
with an HTML document. JavaScript is a dynamic programming language
that is supported by all modern browsers with a built-in JavaScript engine.

2.3.1 Node.js

Node.js is an asynchronous event-driven backend JavaScript runtime envi-
ronment [8]. It is designed to build scalable network applications. Almost no
function in Node.js directly performs I/O (Input/Output), thus the process
never blocks, except for the cases when the I/O is performed using syn-
chronous methods of the Node.js standard library. Because nothing blocks,
scalable systems are very reasonable to develop in Node.js.

2.3.2 React

React is a JavaScript library for building user interfaces [9]. It is Declarative,
the developer designs simple views for each state in the application, and React
will efficiently update and render just the right components when data changes.
Also, it is Component-Based, which means that developer builds encapsulated
components that manage their own state, then composes them to make
complex UIs.

5

2. Related theory
2.4 Docusaurus

Docusaurus is an open-source project by Meta [10]. It can be used for
building, deploying, and maintaining websites. Docusaurus enables a quick
and easy start, thanks to its user-friendly and intuitive interface. Developers
can use Markdown [11] or MDX [12] to create and format posts and documents.

One of the standout features of the Docusaurus is its ability to use React
code in its posts and documents, which brings interactivity and flexibility
into the documentation, and enables keeping up with new technologies.

The main goal of the docusaurus is to simplify the creation and development
of the website, whether the developer or team of developers are working on a
personal project or a complex enterprise website.

2.4.1 Docusaurus configuration file

The Docusaurus configuration file plays a critical role in defining the
behavior and appearance of a Docusaurus website. This configuration file
is typically placed in the root directory of the website and has a JavaScript
file extension. Usually it exports configuration object with module.exports
JavaScript functionality. Then, Docusaurus operates with the exported
configuration file.

One of the key functions of the configuration file is to define the website’s
appearance, including its title, tagline, URL, etc. Also, there is a possibility
to configure the behavior of the website, which includes the behavior of the
website on broken links, adding and removing menu items and links.

2.5 Software architecture

Software architecture is a structure, that describes elements, their exter-
nally visible properties, and relations between them [13]. Using software
architectures have a lot of advantages, but the most important are:.Analyzing application before it is implemented.

It is very important to look at the application and analyze it, before its
implementation. It is much cheaper to find possible problems during
architecture planning than to fix them in an already completed sys-
tem. Also, in big systems, starting the development without a defined
structure will cause communication problems between teams, as well
as synchronization problems between different parts of the application.
With this approach, the project is likely to be unsuccessful.. Providing a basis for creating re-used solutions.

6

............................... 2.6. Microservice architecture

The software architecture allows developers to save and reuse successful
solutions that have justified themselves over time or by some other
factors.

In software engineering, there is a possibility to expose the structure of a
system while hiding most of the implementation details, by using software
architecture.

2.6 Microservice architecture

Microservice architecture is the architecture that structures the application
as a set of loosely coupled, collaborating services [14]. Each service is:. Highly maintainable and testable

There are several ways to define a set of microservices, but each of them
focuses on creating a service that is responsible for only one area. This
leads to improved maintainability and testability since changes affect
only the area for which the service is responsible.. Loosely coupled with other services
Services communication goes only through strictly defined API, which
means they do not depend on other services implementations.. Independently deployable
When microservice infrastructure is set up, each service can automatically
be deployed, thus there is no problem in independently deploying since
each microservice is automatically built and tested.. Capable of being developed by a small team
Because of the loose coupling and area of responsibility, it is able to
develop part of the system independently. Different teams can work on
the same project without slowing down each other by waiting for another
team’s changes. Also, the amount of necessary communication between
the teams is reduced.

2.7 Program code parsing and modifying

Usually, for parsing program code, Abstract Syntax Trees (AST) are used.
AST is a structure that contains nodes, each node represents a part of the
code, which means that every variable, code block, and even comment is a
specified node type.

An abstract syntax tree (AST) captures the essential structure of the input
in a tree form, while omitting unnecessary syntactic details [15].

After the code is parsed into an AST, it becomes much easier to modify
and analyze it with other computer programs. Developers do not need to

7

2. Related theory
manipulate strings of code lines and can simply modify each node separately
while keeping the structure of the code intact. This approach can save time
and reduce errors that may occur when modifying code manually.

In addition to simplifying code modification and analysis, parsing JavaScript
code to an AST can also provide benefits in terms of code optimization and
refactoring. AST can be used as an instrument for automatically eliminating
redundant code or rewriting code to logically equivalent but faster operations.

Last but not least, the opportunity that AST brings is the possibility to
implement code linters and static analysis tools based on AST.

8

Chapter 3
Deploy and Actual state of application

This section is focused on prerequisite knowledge for application under-
standing and improvement. It describes some of the application startup issues
with the chosen solutions.

3.1 Prerequisites for understanding the application

For analyzing and continuing developing the application it was necessary
to gain an understanding of such topics as Docker/Kubernetes, Microservice
architecture, Git API, Docusaurus, Markdown, and the basics of React and
NodeJs. In order to understand these topics, the course that fully covers
Docker/Kubernetes problematic [16] has taken.

Microservices architecture basics were gained from the book "Microservices
Patterns" [14], which was recommended by the supervisor. Thanks to this
book I got an idea of what a microservice architecture is, what advantages
it can bring to an application, its disadvantages as well as the difficulties of
moving from a monolithic architecture to a microservice one.

One part of the assignment was to get through the documentation of
the CodeNOW platform [17], and then use this platform to deploy the
implemented solution.

CodeNOW is a comprehensive platform designed to simplify and optimize
the DevOps cycle. It allows the developer to focus on the development
of business logic, paying less attention to configuring and maintaining the
infrastructure.

One of the key advantages of CodeNOW is its ability to accelerate time-to-
market, giving companies a competitive advantage. By integrating various
tools such as Kubernetes, Tekton, and Prometheus, CodeNOW supports
continuous integration and continuous deployment (CI/CD) workflows.

Other missing pieces of knowledge were gained from official documentation
websites. I refer to them in the text and they are cited in the sources.

9

3. Deploy and Actual state of application..........................
3.2 Startup application issues

The Git based markdown online editor [3] was not updated since April
2022. Therefore, it was expected to meet some problems during the first
deployment. The first application launch attempt with Docker, following the
readme file from the project author, was unsuccessful. All three components
crashed on the same error (Figure. 3.1). This error is described on Node.js
changelogs pages [18]. Two solutions to this problem were discovered. The
first is to switch the Node.js version to the older one. The version must be
lower than 17. The second solution is to run the project with a command-line
option:

--openssl-legacy-provider

The second solution is recommended by Node.js creators, therefore it was
chosen as the error fix.

Figure 3.1: Error while deploying backend, frontend, and render components.

After deploying the application, its functionality was tested. Everything
worked correctly, except proofreading. After the "proofreading request editing
page" was opened, the part that is responsible for making proofreading changes
was not loaded properly. Therefore, it was not possible to edit the document
(Figure. 3.2).

Figure 3.2: Editing documentation part of the page was not loaded correctly.

10

............................... 3.2. Startup application issues

To investigate this issue application was launched locally, component by
component. While researching and debugging the code, I found that the
wrong branch name has been saved to the database every time when the
branch for proofreader changes has been created. Commit, which causes
problems, was found in the author project repository.

After manually editing the branch name in the database, problems were
solved. Therefore, the code was fixed and the application was ready for
analysis.

11

12

Chapter 4
Analysis

In this chapter I review requirements for the development of the application
with new functionality, which appeared during the work on the project and
consultations with the supervisor. Also, in this section I give an overview
and analysis of the application improvements, and the most reasonable
improvement will be chosen and explained.

4.1 Requirements to the new functionality

Since a specific application improvement was to be chosen during this work,
there were a few requirements:

. Increase the business value of the application.

. Increase application load-balancing ability.

.Make the creation and administration of documentation easier for non-
technical people.

4.2 Application components and architecture

The architecture of the application (Figure. 4.1) consists of 3 components:
the API (backend), the frontend, and the renderer. The backend is connected
to the PostgreSQL [19] database. Thus, it is practically typical 3-layered
architecture. Nevertheless, the code was written in such a way that it was
easily separable into separate components for the microservice’s patterns
implementation in the future.

13

4. Analysis

Figure 4.1: Application architecture [1].

4.3 Overview and analyses application
improvements

The author of the original application suggests several possible improve-
ments in his master thesis [1]:. Diff algorithm.

Diff algorithm is used to show the difference between two files, from
different commits. The algorithm used in the application has two main
problems: readability and validity. In some cases, the algorithm shows
the difference between two files wrong. Also, the MDX toolkit, which is
used in the application, is very sensitive to syntax errors, thus some of
the syntax errors appear while rendering..Various UI and UX improvements.
After user testing it was discovered that some small UI and UX changes
are required.. Better test coverage.
Only part of the application is covered with basic tests.. Database migration.
The application does not have any database migration tool connected.
It may cause problems in the future.

All mentioned improvements are relatively minor. Any of these improve-
ments will not bring significant business value to the project and they also
will not affect the usability of the application. So other ideas were needed.

Several improvements came up in the process of communication between
the supervisor and the author of this thesis:

14

.................................4.4. Chosen improvements

. Buildable and deployable docusaurus documentation.
Implement a feature that allows building and deploying documentation
from the website. This feature will be useful for non-technical people,
because it reduces the amount of coding needed to create or edit doc-
umentation parts. The current version of the application is integrated
with GitLab, which has the ability to set up automatic deployment using
the .gitlab-ci.yml file [20].. Implement chosen microservices pattern.
Another way to improve the application is the implementation of the
chosen microservices pattern. Depending on the chosen pattern it will
bring certain advantages for the application. The chapter 4.4 will explain
it in more detail.. Implementation of the editing page for the docusaurus configuration file
(docusaurus.config.js).
Docusaurus can be partly configured by editing the docusaurus.config.js
file, but it can be tricky for non-technical people. However, the config
file has a JSON structure and can be relatively easily parsed to AST,
modified on the frontend, and saved back.

4.4 Chosen improvements

Implementation of the CQRS pattern and configuration editing page was
chosen as the most reasonable improvement of the application.

4.4.1 CQRS pattern

CQRS stands for Command and Query Responsibility Segregation. It is a
pattern that separates, reads, and updates operations for data stores. Imple-
menting CQRS in the application can maximize its performance, scalability,
load-balancing, and security [21].

The key advantage of this pattern is the load-balancing possibility, which
is important for this project. If data stores and components will be split
into two separate parts with queries and commands, then we can increase
the number of instances only for one part. For example, two instances of
commands services and one for the queries, etc.

Of course, this pattern has several disadvantages as bringing complexity to
the application, also it requires more database technologies to be involved
and generally increasing points of failure in the application.

This thesis will focus on implementing part of this pattern, which is to
divide the API backend into two parts. That means that the final version
will include database stores separating and synchronization mechanisms that
will synchronize data from different stores. I will describe possible ways to

15

4. Analysis
implement it in section 5.1.5. This decision was made after consultation with
the thesis supervisor, who confirmed that I can implement only a part of the
pattern in my thesis in the described above way.

The reasons for implementing only a part of the pattern are the relatively
small amount of time and the large amount of work that it requires, which is
outside the scope of the thesis project. Also, even partly implemented pattern
will already affect the application performance and load-balancing possibility.

Basically, the application will be split by REST endpoints to the two differ-
ent components, each component will be responsible only for the commands
or queries respectively.

The implementation details of the pattern will be described in the Imple-
mentation chapter 5 with schemes of the new architecture.

4.4.2 Docusaurus configuration editing page

As it was mentioned in previous chapters, the docusaurus configuration
file is an important part of the customization of the docusaurus website.

However, users, who do not have enough skills or do not want to learn
how to operate with git, javascript, and configuration files, can not use the
advantages of the docusaurus configuration file. Thus, developing something
that will create the abstract level between the config file and users could be
very helpful.

A part of this thesis will describe the second chosen improvement, which
is extending an existing application functionality with the new Tab for the
editing configuration file via convenient frontend components. Information
from the frontend will be transferred to the backend component and then
processed. Changes will be saved back to the configuration file and pushed
to the specified GitLab branch.

16

Chapter 5
Implementation

The chapter is divided into two main parts: the CQRS template implemen-
tation and the docusaurus editing page implementation. Each part contains
backend and frontend implementation details. React was a completely new
framework to me, as well as Node.js. These frameworks and languages were
chosen by the author of the original application, thus, changing the stack was
unrealistic, and I gained missing pieces of knowledge. Therefore, everything
was implemented in one stack: React and Node.js.

The deployment on the CodeNOW platform is described at the end of the
chapter. It proved to be a challenging task due to a lack of experience with
Docker containers, Docker files, and deployment platforms such as CodeNOW.
In addition, there was an unforeseen error when connecting to the database,
which is also described in the chapter.

5.1 CQRS

As was mentioned earlier, only a part of the pattern will be implemented.

Figure 5.1: New architecture state.

17

5. Implementation....................................
5.1.1 Design changes

Pattern implementation will affect application architecture. Before mod-
ifying, the application had almost typical 3-layers architecture: backend,
frontend, database and, in addition, it had render backend component (Fig-
ure. 4.1). Once the pattern is implemented, due to having two backend
components instead of one, the architecture will change. The figure shows
the new architecture(Figure. 5.1).

5.1.2 Backend configuration

All redundant code of each component was deleted, and each component
has its own configuration file, code, and zone of responsibility. This leads to
the separated, loosely-coupled backend components, that can be configured
to use different data stores.

The components use the same structure of the configuration file (Code
snippet 5.2).

{
"app": {

"port": 3000,
"jwtSecret": "tokenSecret",
"refreshSecret": "refreshSecret"

},
"gitlab": {

"appid": "---",
"secret": "---",
"callback": "http://localhost:3000/auth/gitlab/callback",
"authRedirect": "http://localhost:5000",
"baseUrl": "https://gitlab.com"

},
"mail": {

"host": "smtp.ethereal.email",
"port": 587,
"user": {

"email": "---",
"pass": "---",
"name": "Git md diff mailer"

}
}

}

Figure 5.2: Backend component configuration file

The file contains three objects, which are responsible for setting up the
application, the email client, and GitLab. In the GitLab section, there are
five fields:. "appid" and "secret"

18

....................................... 5.1. CQRS

This is data from the GitLab application, a topic covered in this paragraph
2.1.1

. callback

This field contains the URL of the callback endpoint, which will redirect
user to the frontend after authorization through GitLab.

. authRedirect

The URL of the frontend component, for redirecting.

. baseUrl

Base URL of the used GitLab domain.

The application has two ways to set database connection properties (Code
snippet 5.3). The first is to add another object to the configuration file,
which will store the connection data. The second way is to connect with
data taken from environment variables. The second way is more suitable for
deploying an application using the CodeNOW platform, as the platform sets
the connection data to environment variables. As a result, developers do
not have direct visibility of these variables, which precludes the possibility of
writing them to the configuration file.

// staticConfig is a component configuration file variable

const config = {
db: {

host: process.env.DATABASE_HOST || staticConfig.db.host,
port: process.env.DATABASE_PORT || staticConfig.db.port,
database: process.env.DATABASE_DATABASE_NAME ||

staticConfig.db.database,
username: process.env.DATABASE_USERNAME ||

staticConfig.db.username,
password: process.env.DATABASE_PASSWORD ||

staticConfig.db.password,
ssl: staticConfig.db.ssl,

},
}

Figure 5.3: Backend configuration variable.

Also, each component has its own DockerFile, which is the same for both
components. Instructions in the DockerFile are common, they describe how
to build a component and on which port it should be exposed 5.4).

19

5. Implementation....................................
FROM node:18

Create app directory
WORKDIR /usr/src/app

Copy contents of repository
COPY . .

Install app dependencies
RUN npm ci --only=production

EXPOSE 80
ENV PORT=80

CMD ["node", "-r", "dotenv/config", ".",
"dotenv_config_path=./CodeNOW/config/.env",
"dotenv_config_debug=true"]

Figure 5.4: DockerFile.

5.1.3 Backend implementation details

One of the requirements for splitting the backend was to keep access to
GitLab for each component. In the current state, the application is using
GitLab as an OAuth 2.0 authentication identity provider [22]. It means that
on our side we need only configure the GitLab application on GitLab account
and configure the Node.Js backend to connect through this application.

In the application settings, we can set the allowed URLs for the application.
Each URL should be placed on the new line. The URL of the newly created
component authentication callback was added to the list of the callback
URLs. Then OAuth 2 Client ID and OAuth 2 Client Secret from the GitLab
application were used to setup the GitLab authentication strategy using the
Passport.js library (Code snippet 5.5).

// Gitlab strategy setup
passport.use(new GitLabStrategy({

clientID: config.gitlab.appid,
clientSecret: config.gitlab.secret,
callbackURL: config.gitlab.callback,
baseURL: config.gitlab.baseUrl,

}, ((accessToken, refreshToken, profile, done) => {
Auth.findOrCreateUser(profile, accessToken, refreshToken,

’gitlab’).then((usr) => done(null, usr.id));
})));

Figure 5.5: Gitlab strategy setup code snippet.

20

....................................... 5.1. CQRS

After, we can verify the received tokens by calling authenticate function
(Code snippet 5.6).

// The Gitlab OAuth callback endpoint, redirects back to frontend
app.get(’/auth/gitlab/callback’, limiter,
(req, res, next) => passport.authenticate(’gitlab’, (err, user,

info) => {
....

})(req, res, next));

Figure 5.6: Passport authenticate function.

5.1.4 Frontend

Because of the V. Sajdl code writing approach, it was relatively easy to
extend frontend to call different backend components. Specifically, he uses
the parameter from the configuration file in all requests instead of a hard-
coded value. This allows to change the backend component address in the
configuration file, instead of editing the address in each Request one by one.
Nevertheless, all the requests that sent PUT, POST, or DELETE requests
have been changed, therefore they use the URL of the appropriate component
from the extended configuration file. No other changes on the frontend were
needed.

5.1.5 Problems

In the current solution, the data store was not split into two different
stores because it requires mechanisms, that will synchronize data stores and
it cannot be implemented in the scope of this thesis, because there is no
capacity for it.

Nevertheless, I understand how to implement such a mechanism, and
further I will briefly describe how I would do it. One of the typical solutions
that can be used in the future is based on event sourcing.

In this approach, when the command data store has changed, changes
are recorded as an event, and the event is then published to the message
broker or event store. Then events are consumed by particular data stores,
that needs to be updated. This approach is supporting the asynchronous
synchronization of data between different stores.

The final implementation will include these two aspects: splitting the
backend, splitting the data stores, and combining it into one complete solution
(Figure 5.7). With this architecture, scaling application data stores or backend
components will be much easier.

21

5. Implementation....................................

Figure 5.7: Future architecture state.

5.2 Docusarus configuration

The implementation part of the docusaurus configuration editing page was
related to working with Abstract Syntax Trees (AST) and code parsing and
modifying.

5.2.1 Backend

After research, I found that the best way to operate with the program code
is AST parsing approach, so this approach was chosen.

Backend implementation consists of two key endpoints: get the configura-
tion AST node from the configuration file (GET endpoint), get the modified
configuration AST node from the frontend, and update the configuration
file with it (PUT endpoint). There are several libraries that can help with
parsing code to the AST, such as esprima [23] and recast [24]. In the first
version of the implementation, esprima in combination with escodegen [25]
was chosen, because it is more popular than recast, therefore it is easier to
find materials about this library.

The implementation did not take the possibility of saving comments into
account in the first stage. When this requirement came up, I ran into a
problem. Despite everything, the library was erasing comments. A separate
project was created to test this functionality, however, even with simplified
versions of the files, keeping comments did not work. Nevertheless, I suppose
that saving comments would be quite a useful feature since important notes
are often written in comments. Consequently, I made an attempt to change
the library and use recast library instead.

With the new library, it was possible to parse code to AST, save comments,
modify nodes, and add or remove nodes. The recast library was written in a

22

................................5.2. Docusarus configuration

very similar way, so relatively small changes in the tree-pass algorithm, which
updates the configuration file, were needed.

The GET endpoint is pretty simple, it parses the code into AST, then
sends it in JSON format to the frontend. While the PUT endpoint is more
complex and uses a specific algorithm to modify the AST. After the file is
modified, it is saved to the GitLab repository.

With the recast library, we can parse JavaScript code to AST and back
(Code snippet 5.8).

// Get JavaScript from the repository
const fileFromGitlab = await

this.getDocusaurusConfigBlob(docuId, branch);

// Parse the JavaScript code into an AST, preserving comments
const ast = recast.parse(fileFromGitlab);

...

// Parse AST to the JavaScript file
const updatedConfigurationFile = recast.print(ast, {

quote: ’single’,
tabWidth: 2,
trailingComma: true,
useTabs: false,

}).code;

Figure 5.8: Parsing JavaScript code to AST and back.

In order to change the configuration, we first need to find the node in
the tree that is responsible for the configuration object, then find the nodes
responsible for the individual values. We can do this by iterating through all
the nodes of the tree and searching by key for the objects we need. The main
algorithm itself can be divided into two parts: processing key-value items and
processing a list with menu items. These parts are described below:

.Key-value fields

Key-value fields are fields whose value is a string. For example title,
tagline, url, baseUrl, etc. In AST they are simple nodes, which can be
edited by editing specified fields.

All changes to the key-value fields are done by modifying the ’value’ and
’raw’ fields of the AST node, that is responsible for the specific key (Code
snippet 5.9).

23

5. Implementation....................................
function setValueToAst(key, config) {

// Find the property
const astObject = config.expression.right.properties.find(

(property) => property.key.name === key,
);
// Update the property value
astObject.value.value = data[key].value;
astObject.value.raw = ’"’ + data[key].raw + ’"’;

}

Figure 5.9: Setting value to the key-value fields.

.Menu items list node

Menu items are part of the configuration file that contains the list of
items from the docusaurus documentation menu.

The list of menu items in AST is a node, that contains a list with all the
menu items. Each item is also a node, which in turn contains specific
item fields in properties (Figure. 5.10).

Figure 5.10: The list node of the menu items.

After receiving the configuration object from the frontend, we extract
all items and then recreate the list node with the new information by
pushing items one by one.

To push a new item to the list we need to create a simple JSON object
(Code snippet 5.11).

When recast will transform AST to the JavaScript code these JSON
objects will be regenerated to the code snippets.

24

................................5.2. Docusarus configuration

// Where the element is one of the items received from the
frontend.

const elementToPush = {
type: element.type,
properties: element.properties,

}

Figure 5.11: Setting value to the key-value fields.

5.2.2 Frontend

On the frontend I created a new Tab that consists of several sections, each
responsible for a part of the configuration file (Figure. 5.12).

Figure 5.12: Frontend tab.

At the top of the page, there is a branch selector. The first section contains
simple fields, which consist of key-value pairs. The second section is more
complex because it handles menu item administration. Users can add a new
item, which can be of three different types: a link to a specified URL, a link
to a folder in the Docusaurus website, or a link to a specified page. The
dialog window for all three types is almost the same, with only the input
labels and input count difference(Figure 5.13).

25

5. Implementation....................................

Figure 5.13: Dialog window.

Once an item is added, there are two operations available: items can be
deleted, and item fields can be edited. Separate items are located in the Drag
and Drop component, which allows users to manage the order of items.

5.2.3 Problems

The current solution has one minor problem: comments, that are located
in the menu items section, are deleted after modifying the file with the
application.

The comments in the menu items section require more significant changes
in the code, because for all other elements we can simply change their values
while maintaining the original structure of the node. It means that comments
remain in their places. However, this is not the case with the menu items; we
recreate this array from scratch. Because of the fact that the items can be
added, removed, edited, and, most importantly, could change their order, it
is necessary to send each item’s comments to the frontend and back, which
was not originally foreseen.

26

Chapter 6
CodeNow platform deployment

One of the supervisor’s requirements was to deploy the application to the
CodeNOW platform 3.1. The CodeNOW platform has preconfigured standard
technology stacks. It was useful for creating the frontend component with
the standard stack: npm, React, and JavaScript. However, I had to choose
a custom stack for the backend, because the platform does not currently
support the stack: npm and Node.js. The custom stack components are built
using the DockerFile.

After all the components were created, they were merged into an application
package, and the configuration for the application package was created.

The advantage of this approach is that in order to change some configuration
properties user only needs to edit the application package configuration,
without any additional changes in the code. After the application package
was ready, it was deployed (Figure. 6.1). All container orchestration happens
on the CodeNOW side, therefore, the developer does not have to set it up.
Nevertheless, it is possible to set it up additionally if necessary.

Figure 6.1: Part of the deployment.

27

6. CodeNow platform deployment
6.0.1 CodeNOW database connection issues

During the deployment of the application to the CodeNOW platform, there
were certain difficulties with the connection to the database. One of the
recommended resources to read was the documentation of the CodeNOW
platform. The documentation contains a guide for creating a database and
connecting to it using Node.js. However, the connection was not successful,
despite following the guide in the documentation.

I spent 10-15 hours trying to solve this problem. I describe all the actions
I took to solve the problem below. When connecting following the guide,
the database did not accept the connection, throwing an error shown on the
screenshot (Code snippet 6.2).

ConnectionError [SequelizeConnectionError]: pg_hba.conf rejects
connection for host "10.20.4.197", user "shareddb-owner",
database "shareddb", SSL off

Figure 6.2: Connection error from the log.

Since the error does not report any specific information other than the data
used to connect, I began to analyze what the problem could be. Connection
data is set to the environment variables by the CodeNOW platform itself, it
is unlikely that this is the problem.

Since the application had no problem connecting to the local database, but
would not connect to the CodeNOW database, I decided to pay for database
hosting to exclude a problem with the application itself. After paying for
the database on ElephantSql hosting [26], the application was connected to
the database successfully. This meant that the problem was with something
else. I assumed that the problem is with SSL, and after corresponding with
a CodeNOW employee my assumptions were confirmed. He said that the
database only accepts secure SSL connections.

The guide says nothing about SSL, therefore I had to analyze this problem.
I realized that in order to connect to the CodeNOW database I needed to
get a certificate that would allow me to make a secure connection. However,
after consulting with the supervisor, I found out that my predecessors had
connected to the same database without any certificates configured. Then
I started looking for the applications that are connected to the CodeNOW
database to compare them with mine and find out what are the differences.
The Spring application, that is connected to the CodeNOW database, was
found. However, after studying the repository with the application, I did not
find any information related to SSL certificates. The only difference from my
application was that the Spring app used a preconfigured technology stack.

Using this information, I concluded that the CodeNOW platform configures

28

............................. 6. CodeNow platform deployment

SSL certificates for the pre-configured stack somewhere in the background
and the configuration of certificates for the custom stack must be done by
the developer himself. However, this is not mentioned anywhere in the
documentation of the platform, therefore it remains my guess.

During consultations with the supervisor, I also found out that the guide
I used to connect to the database had never been tested. I concluded it is
possible that the development team at CodeNOW was unaware of this problem.
The problem has been described and reported to CodeNOW technical support.

As a hotfix, I created another database on the CodeNOW platform that
accepts connections without SSL certificates. In the current state, the appli-
cation is running on this database.

29

30

Chapter 7
Testing

Testing is a significant part of application development. It plays a crucial
role in ensuring the quality and reliability of software products. By identifying
and fixing problems early in the development process, testing helps prevent
late delivery and software defects that can damage brand reputation and lead
to disappointment and loss of customers.

During development, the implementation was tested manually and in other
ways, which will be discussed below.

7.1 User testing

Three people were chosen to be the testers of the application. All of the
participants are FEL SIT students, two of them are developers, and one is
a UI designer. Each participant received a test scenario, a link to the app,
and a list of questions to be answered after the test. The test scenario for all
testers is the same, except for these extra steps for User 2:. Login to the application with the GitLab account.. Look to the GitLab repository and find the path of the docusaurus.config.js

file..Open documentation "Test documentation" and go to the settings.. Set this path in the settings of the documentation on the website.

The following is a common test scenario for all three users:.Open documentation with the name "Test documentation"..Open tab with docusaurus configuration editing.. Select ’main’ branch.. Change ’title’ to the "Application title".. Change ’tagLine’ to the "Application tagline".

31

7. Testing
. Change ’url’ to the "Application URL".. Change ’onBrokenLinks’ to "ignore".. Change ’projectName’ to the "Application project name".. Change ’organizationName’ to the "Application organization name".. Delete all menu items..Add an item of each type to the menu items with the following data:

Item1 - Link to document: Type:’Doc’; DocId:’page-one’; Label:’Item 3’;
Position:’left’;

Item2 - Link to folder: To:’/docs’; Label:’Item 2’; Position:’left’;

Item3 - Link to URL: href:’https://codenow.com’; Label:’Item 1’; Posi-
tion:’left’;. Change the item’s order to Ascending by the Item number from the
label. You can do it by dragging and dropping items.. Update configuration file. Go to the repository and check that the docusaurus.config.js file contains
changes made.

Each tester received the following list of questions to evaluate the function-
ality of the application:.What are the pros?.What are the cons?. Have you noticed any bugs?. Do you have any tips for improvement?

Below I give feedback from each of the testers:. User 1

Description of the tester: Java developer, with 2 years of commercial
experience.

Props: User-friendly design, easy to change the order of the items.

Cons: Missing description of each item label.

Bugs: Did not notice.

Improvement: Item labels description, dark theme for the frontend.

32

......................................7.2. Smartlook

. User 2

Description of the tester: Java developer, with 4 years of commercial
experience.

Props: Nice design and colors, fast working application.

Cons: It’s not obvious, that changing the order of items is done by drag
and drop.

Bugs: Did not notice.

Improvement: Move "Update configuration file" to the bottom of the
page.. User 3

Description of the tester: UI designer, with 4 years of commercial
experience.

Props: Fast work of the app, mainly good interaction with the user (for
example, drag and drop elements to change order), clean and minimalistic
design, user-friendly representation.

Cons: There is no confirmation window before deleting a navbar item;
It is not obvious that navbar items are navbar items: "Navigation bar
configuration" header does not look like a header; the "Update" button is
on top of the page, which is not the usual location for the submit button
(I would like to see it after the form and navbar configuration);

Bugs: Did not notice.

Improvement: Fix the UI/UX problems described in Cons.

After testing, it became clear that the app has some small unfinished details,
such as the save button at the top of the page, the lack of a confirmation
dialog when deleting an item, and the wrong label name. The testers praised
the good design and performance of the application. No bugs were found.

7.2 Smartlook

The Smartlook [27] is also connected to the app. Smartlook allows us to
record the user’s actions on the website, then it is possible to recreate the
error or bug by following user actions.

Integrating Smartlook into the application is simple. To do this, a Smartlook
account is required. In the user account, there is an API key, which should
be passed to the Smartlook client initialization function (Code snippet 7.1).

After it, all user sessions will be recorded and stored. There is an example
of the recorded user session.

33

7. Testing
// Initialize smartlook
smartlookClient.init(apikey);

Figure 7.1: Smartlook initialization.

Figure 7.2: Example of the recorded session.

34

Chapter 8
Conclusion

This thesis focused on identifying and implementing improvements to an
existing application. I reviewed the literature that pertains to this topic.
Namely, the basic knowledge about microservice architecture and patterns was
obtained, a thesis describing the application was read, and the documentation
of the CodeNOW platform was studied. With the help of the course on
Udemy [16], I gained knowledge about the Docker and the orchestration of
containers, which came in handy when deploying the application. Next, the
application was launched locally and on the CodeNOW platform using the
obtained knowledge. I fixed the bug in the application and also solved the
node version problem.

An analysis of the existing functionality was performed, and further im-
provements that could increase the business value were suggested.

I analyzed all the proposed improvements with the help of the supervisor,
after which the two most reasonable were selected: partly implemented CQRS
pattern and Docusaurus configuration editing page. I designed selected
solutions and implemented them. The implementation proceeded according
to the iterative approach, which consists of performing the work with a
continuous analysis of the results. This was possible thanks to regular
consultations with the supervisor.

During the implementation, I encountered problems with the implemen-
tation and the application deployment. The implementation problems were
described and solved, while the problems with the CodeNOW platform were
documented and handed over to the technical department.

The implementation was built, tested, and deployed to the CodeNOW
platform, so the final version of the implementation did not have any significant
problems or bugs. This was confirmed by the user testing of the application.
Testers praised the design and performance of the application.

Overall, the implemented improvements have effectively addressed the
identified requirements, resulting in an improved application with increased
business value, improved load-balancing capability, and increased usability
for non-technical users.

35

8. Conclusion......................................
8.0.1 Further improvements

After implementation and testing parts, I formulated the following ideas
to improve the application in the future:. UI changes (Menu items label name, confirmation dialog, and position

of the ’Update’ button) 7.1.. Data stores split 5.1.5.. Saving comments from the navbar menu items section, after editing the
configuration file 5.2.3.

36

Bibliography

1. SAJDL, Vojtěch. GIT based markdown online editor. Prague 6, 2021.
Available also from: https://dspace.cvut.cz/handle/10467/95359.
master thesis. CTU.

2. STETTINA, C. J.; HEIJSTEK, W. Necessary and neglected?: an empir-
ical study of internal documentation in agile software development teams.
Available also from: https://dl.acm.org/doi/10.1145/2038476.
2038509.

3. GIT based markdown online editor. Available also from: https : / /
github.com/Pryx/git-md-diff.

4. What is CI/CD? Available also from: https://www.redhat.com/en/
topics/devops/what-is-ci-cd.

5. Use containers to Build, Share and Run your applications. Available
also from: https://www.docker.com/resources/what-container.

6. What is Docker? Available also from: https://www.ibm.com/topics/
docker.

7. JavaScript Tutorial. Available also from: https://www.w3schools.
com/js.

8. Node.Js. Available also from: https://nodejs.org/en.
9. React. Available also from: https://reactjs.org.

10. Docusaurus. Available also from: https://docusaurus.io.
11. Markdown Guide. Available also from: https://www.markdownguide.

org.
12. MDX Docs. Available also from: https://mdxjs.com/docs.
13. BASS, Len; CLEMENETS, Paul; KAZMAN, Rick. Software Architecture

in Practice: Second Edition. Addison-Wesley Professional, 2003. isbn
9780321154958.

14. RICHARDSON, Chris. Microservices Patterns. Manning Publications,
2018. isbn 9781617294549.

37

https://dspace.cvut.cz/handle/10467/95359
https://dl.acm.org/doi/10.1145/2038476.2038509
https://dl.acm.org/doi/10.1145/2038476.2038509
https://github.com/Pryx/git-md-diff
https://github.com/Pryx/git-md-diff
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.redhat.com/en/topics/devops/what-is-ci-cd
https://www.docker.com/resources/what-container
https://www.ibm.com/topics/docker
https://www.ibm.com/topics/docker
https://www.w3schools.com/js
https://www.w3schools.com/js
https://nodejs.org/en
https://reactjs.org
https://docusaurus.io
https://www.markdownguide.org
https://www.markdownguide.org
https://mdxjs.com/docs

8. Conclusion......................................
15. JONES, Joel. Abstract Syntax Tree Implementation Idioms. 2003. Avail-

able also from: https://hillside.net/plop/plop2003/Papers/
Jones-ImplementingASTs.pdf. Department of Computer Science at
University of Alabama.

16. Kubernetes for the Absolute Beginners - Hands-on. [N.d.]. Available also
from: https://www.udemy.com/course/learn-kubernetes.

17. CodeNow docs. Available also from: https://docs.codenow.com.
18. Node.Js changelogs. Available also from: https://github.com/nodejs/

node/blob/main/doc/changelogs/CHANGELOG_V17.md%5C#17.0.0.
19. PostgreSQL: The World’s Most Advanced Open Source Relational Database.

Available also from: https://www.postgresql.org.
20. GitLab pages. Available also from: https://docs.gitlab.com/ee/

user/project/pages.
21. CQRS pattern. Available also from: https://learn.microsoft.com/

en-us/azure/architecture/patterns/cqrs.
22. Configure GitLab as an OAuth 2.0 authentication identity provider.

Available also from: https://docs.gitlab.com/ee/integration/
oauth_provider.html.

23. Esprima. Available also from: https://esprima.org.
24. Recast. Available also from: https : / / www . npmjs . com / package /

recast.
25. Escodegen. Available also from: https://www.npmjs.com/package/

escodegen.
26. ElephantSql. Available also from: https://www.elephantsql.com.
27. Getting started with Smartlook. Available also from: https://help.

smartlook.com/docs.

38

https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://hillside.net/plop/plop2003/Papers/Jones-ImplementingASTs.pdf
https://www.udemy.com/course/learn-kubernetes
https://docs.codenow.com
https://github.com/nodejs/node/blob/main/doc/changelogs/CHANGELOG_V17.md%5C#17.0.0
https://github.com/nodejs/node/blob/main/doc/changelogs/CHANGELOG_V17.md%5C#17.0.0
https://www.postgresql.org
https://docs.gitlab.com/ee/user/project/pages
https://docs.gitlab.com/ee/user/project/pages
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://learn.microsoft.com/en-us/azure/architecture/patterns/cqrs
https://docs.gitlab.com/ee/integration/oauth_provider.html
https://docs.gitlab.com/ee/integration/oauth_provider.html
https://esprima.org
https://www.npmjs.com/package/recast
https://www.npmjs.com/package/recast
https://www.npmjs.com/package/escodegen
https://www.npmjs.com/package/escodegen
https://www.elephantsql.com
https://help.smartlook.com/docs
https://help.smartlook.com/docs

	Introduction
	Motivation
	Application functionality review

	Related theory
	GitLab
	GitLab applications

	Docker
	DockerFile
	Docker images
	Docker container
	Docker Hub

	Javascript
	Node.js
	React

	Docusaurus
	Docusaurus configuration file

	Software architecture
	Microservice architecture
	Program code parsing and modifying

	Deploy and Actual state of application
	Prerequisites for understanding the application
	Startup application issues

	Analysis
	Requirements to the new functionality
	Application components and architecture
	Overview and analyses application improvements
	Chosen improvements
	CQRS pattern
	Docusaurus configuration editing page

	Implementation
	CQRS
	Design changes
	Backend configuration
	Backend implementation details
	Frontend
	Problems

	Docusarus configuration
	Backend
	Frontend
	Problems

	CodeNow platform deployment
	CodeNOW database connection issues

	Testing
	User testing
	Smartlook

	Conclusion
	Further improvements

	Bibliography

