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Abstrakt: Táto práca sa venuje porovnaniu numerických algoritmov implemento-
vaných na modelovanie účinkov radiačnej reakcie v particle-in-cell (PIC) kódoch pre
klasický aj kvantový režim. Pohyb častíc v ultrarelativistickom režime môže byť
do značnej miery ovplyvnený vyžiarením vysokoenergetických fotónov v dôsledku
účinkov radiačnej reakcie. Tento jav je významný pre laser-plazmové intarakcie a
v astrofyzike. V PIC kódoch boli doposiaľ implementované rôzne numerické mod-
ely radiačnej reakcie, vrátane Abraham-Lorentzovej sily, rozvoja Fokker-Planckovej
rovnice alebo Monte-Carlo generátora. V tejto práci je porovnaná implementácia
týchto algoritmov v klasických, semi-kvantových a plne kvantových režimoch pre dva
populárne voľne šíriteľné PIC kódy Smilei a EPOCH. Porovnaná je aj implemen-
tácia tvorby elektrón-pozitrónových párov Breit-Wheelerovým procesom. V závere
práce sú prezentované a diskutované výsledky simulácii pre rôzne režimy radiačnej
reakcie.
Klíčová slova: radiačná reakcia, Breit–Wheelerov proces, particle-in-cell,

laser-plazmová interakcia, relativistické elektróny

Title:
Radiation generation during laser and particle beam interactions in
particle-in-cell codes
Author: Bc. Patrik Puškáš

Abstract: This thesis presents a comparative study of numerical approaches for im-
plementing radiation reaction effects in particle-in-cell (PIC) simulations in both
classical and quantum regimes. The motion of particles in the ultra-relativistic
regime can be severely affected by high-energy photon emission due to the effects of
radiation reaction, which is of interest to the laser-plasma and astrophysics commu-
nities. Various theoretical works have been proposed and implemented in PIC codes
to deal with radiation reaction effects in classical and quantum regimes, including
a radiation friction force, Fokker-Planck expansion, or a Monte Carlo procedure. In
this thesis, implementation of such approaches in classical, semi-quantum and fully
quantum regimes is compared for two widely-used open source codes, Smilei and
EPOCH. The implementation of Breit-Wheeler pair creation is also compared. The
results and benchmarks are presented and discussed in detail.
Key words: radiation reaction, Breit-Wheeler pair creation, particle-in-cell,

laser-plasma interaction, relativistic electron motion
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Introduction

The motion of particles in the ultrarelativistic regime under the presence of ultra
high intensity lasers or other electromagnetic fields can be severely affected by high-
energy photon emission due to the effects of radiation reaction [1]. This phenomena
has received immense interest from the laser-plasma and astrophysics communities.
For the laser-plasma community, this interest is currently driven by the development
of multipetawatt laser facilities, such as ELI [2] or APOLLON [3]. These facilities
have been expected to generate light pulses with peak power up to 10 PW with
femtosecond duration. Moreover, intensities around 1023 W/cm2 have been reached
[4], leading to a new regime of relativistic laser-matter interaction that involves
the quantum electrodynamics (QED) effects [5]. High-energy photon emission [6]
and electron-positron pair production [7] are among the QED processes that have
received significant attention, with some of these processes observed in recent laser-
plasma experiments [8, 9]. This area of study is at the forefront of various proposals
for experiments on forthcoming multipetawatt laser facilities. Radiation reaction
has also been demonstrated to be crucial in various scenarios related to relativistic
astrophysics, including interpretation and modeling of gamma-ray flares in the Crab
Nebula [10], and pulsars [11].

In the so-called classical regime, where the energy of the emitted photons is small
compared to that of the emitting electron, radiation reaction can be treated as a
continuous friction force acting on the particles [12]. However, in the quantum
regime, photons with energies comparable to that of the emitting electrons can
be produced, leading to the QED effects [5]. Various theoretical works have been
motivated by recent developments in both classical [13] and QED electrodynamics
[14] regarding the treatment of radiation reaction. As a result, several numerical
algorithms were proposed to deal with the radiation reaction effects. This includes
using a radiation friction force [1], Fokker-Planck expansion of the collision operator
[15] or a Monte Carlo procedure [16] to account for the stochastic quantum process
of high-energy photon emission. These developments have been implemented in
various kinetic simulation codes, particularly in particle-in-cell (PIC) codes [17, 18].

To ensure accurate PIC simulations in the classical and QED radiation reaction
regimes, it is necessary to incorporate these radiation effects in the equations of
motion for the particles. While various models for radiation reaction have been pro-
posed in the literature, there is currently no universally accepted standard choice
for implementing it in PIC codes [1]. In this thesis, we tested numerical approaches
implemented in PIC codes used in the classical and quantum radiation reaction
regimes. We used two open-source codes: Smilei [19] and EPOCH [17]. This com-
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parative study was performed for intensities in classical, semi-quantum (transition)
and full quantum regimes. Furthermore, we compared the implementation of the
Breit-Wheeler pair creation in both of the PIC codes.

This thesis is structured as follows. In Chapter 1, the core of the PIC algorithm
is described, covering topics such as macro-particles, initialization of the simulation,
PIC loop, interpolation of electric and magnetic fields, particle pusher, current de-
position, and the Maxwell solver. Also, an overview of some popular PIC codes
is presented, along with a short description of grid computing and Metacentrum
computer grid. In Chapter 2, the theory of radiation reaction is described in detail,
including the Lorentz-Abraham-Dirac equation, Landau-Lifshitz description of ra-
diation reaction, quantum correction, QED regime and multiphoton Breit-Wheeler
pair creation. In Chapter 3, the algorithms for classical, semi-quantum and quan-
tum radiation reaction regimes implemented in Smilei and EPOCH PIC codes are
outlined. In Chapter 4, results from our comparative study in 1D and 2D geometries
are analyzed. The differences in the results are discussed and compared for different
radiation reaction regimes. Lastly, the performance benchmarks are presented.
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Chapter 1

The Particle-In-Cell method for
collisionless plasmas

The theoretical study of plasma is very challenging due to its many-particle na-
ture. Analytical solutions can be found only for limited number of simplified cases.
Therefore, it is necessary to use numerical simulations or modeling to investigate
the behaviour of real plasma. There are generally two main approaches to plasma
simulations. The first one is magneto-hydrodynamics or hydrodynamics approach,
where plasma is treated as electrically conducting fluid. The second method is the
use of interacting particle approach and kinetic theory, such as Particle-In-Cell (PIC)
codes, where plasma is treated as an ensemble of charged particles. Furthermore,
there are also hybrid codes allowing the use of the combination of the two methods.

The PIC method was initially developed for the study of fluid dynamics [20].
Today, it is widely used tool in various fields of physics, including plasma physics,
accelerator physics and astrophysics. These codes are designed to model the be-
havior of charged particles in a plasma, where the particle motion is influenced by
electromagnetic fields.

PIC codes are highly versatile and can be used to study a wide range of phe-
nomena, including plasma turbulence, wave-particle interactions, plasma heating,
and acceleration of charged particles. In accelerator physics, PIC codes are used
to model the behavior of charged particles in accelerator components such as ra-
diofrequency cavities. In plasma physics, they can be used to study the interaction
of laser light with plasma [21, 22] and also the behaviour of plasma in tokamaks
[23]. They are also commonly used to model astrophysics processes, such as the
behavior of the solar wind and the interaction of the Earth’s magnetic field with the
solar wind. In these applications, the PIC code is used to model the behavior of the
charged particles in the plasma and the electromagnetic fields that are generated in
response to the plasma motion [24, 25].

PIC codes are typically run on high-performance computing systems, as the si-
mulations can be computationally demanding, especially for large simulation do-
mains or for simulations with high temporal and spatial resolution. However, the
development of efficient algorithms and the use of parallel computing have made
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PIC simulations increasingly accessible and useful for a wide range of applications,
as the simulation of plasma in various environments, from basic laboratory setup to
astrophysics [26].

Despite its advantages, the PIC models have several weaknesses. One of the main
weaknesses is its computational efficiency [27]. Other weaknesses include difficulties
in resolving the tail of the distribution and modeling large ranges of timescales
and space scales. Additionally, the PIC method requires significant memory and
processor resources, and this is unlikely to change in the near future.

In this chapter, the general PIC algorithm is described. Various PIC codes use
different algorithms and computational schemes, but the core principle is the same.
Particular algorithms introduced in this chapter are implemented both in Smilei
[19] and in EPOCH [17] PIC codes, which are compared in this work (see Chapter
3 and 4). Understanding the basic algorithms behind the code is useful not only
for a developer but also for a user, since the plasma simulations require a lot of
parameters to be taken into account for meaningful results. In the last section,
several frequently used PIC codes are described.

1.1 The Maxwell-Vlasov model
The collisionless plasma can be described by the so-called Vlasov-Maxwell system

of equations. This description was first proposed by A. Vlasov in 1937. [28] This
system describes the time evolution of the particle distribution function fα(t, x, p)
in the phase space. Here, the α denotes given species of particles with charge qα

and mass mα. The x and p denote the position and momentum of a phase space
element, respectively. Distribution function includes the physical information of the
system and their time evolution. It has up to 7 independent variables, 3 spatial, 3
for velocity and 1 for time. The evolution of the distribution function in this model
is based on the collisionless Boltzmann equation [19] (often called Vlasov equation)
in the form (

∂t + p
mαγ

· ∇ + FL · ∇p

)
fα(t, x, p) = 0, (1.1)

where γ =
√

1 + p2/(mαc)2 is the relativistic Lorentz factor, c is the speed of light in
vacuum, FL = qα(E + v × B) is the Lorentz force acting on a particle with velocity

v = p
mαγ

, (1.2)

and the operators are defined as

∇ =
(

∂

∂x
,

∂

∂y
,

∂

∂z

)
, ∇p =

(
∂

∂px

,
∂

∂py

,
∂

∂pz

)
.

Charged particles contained in plasma generate collective electric E(t, x) and mag-
netic B(t, x) fields. These fields in return act on the charged particles via the Lorentz
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force and satisfy the set of the Maxwell’s equations

∇ · E = ρ

ϵ0
, (1.3)

∇ · B = 0, (1.4)

∇ × E = −∂B
∂t

, (1.5)

∇ × B = µ0j + µ0ϵ0
∂E
∂t

, (1.6)

where ϵ0 and µ0 are vacuum permittivity and permeability, respectively. Particles
modify the collective electric and magnetic fields via their charge and current den-
sities calculated from their distribution functions as

ρ(t, x) =
∑

α

qα

∫
fα(t, x, p)d3p, (1.7)

j(t, x) =
∑

α

qα

∫
vfα(t, x, p)d3p, (1.8)

respectively. The equations (1.1), (1.2) and (1.3) - (1.8) form the Maxwell-Vlasov
system of equations.

We can now take the divergence of Maxwell-Ampère’s equation (1.6)

∇ · (µ0ϵ0∂tE + µ0j = ∇ × B) =⇒ ϵ0∂t∇ · E + ∇ · j = 0. (1.9)

Assuming the charge conservation with the continuity equation

∂tρ + ∇ · j = 0, (1.10)

we get the relation
∂t(ϵ0∇ · E − ρ) = 0. (1.11)

This means that if the electrostatic Poisson and Gauss equation are satisfied at time
t = 0 (during the initialization of the simulation), and if our algorithm conserves
charge during current deposition, then solving only the Maxwell-Ampère’s equation
(1.6) ensures that equation (1.3) is satisfied at later time.

We can also take the divergence of Maxwell-Faraday equation (1.5)

∂(∇ · B)
∂t

= ∇ · ∂B
∂t

= ∇ · (−∇ × E) = 0. (1.12)

Again, if we make sure that the equation (1.4) is satisfied at t = 0, then solving
Maxwell-Faraday equation (1.5) ensures that the equation (1.4) is satisfied at later
time. Both divergence equations act as boundary conditions and are not used during
the PIC loop. However, these boundary condition must be included, since theoretical
studies [29, 30] and practical experience shown that ignoring Poisson equation leads
to incorrect numerical solutions.
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1.2 Macro-particles
In the ideal scenario, supercomputers would be able to compute the position and

momentum of each particle in a simulation. However, current computers are far from
able to compute the systems with electron densities in range of ≈ 1014 to 1020 cm−3,
that are typically simulated in plasma physics [31]. One possible simplification can
be derived from a fact that we usually care about collective behaviour of the plasma,
rather than the behaviour of individual particles. Thus, we can represent a phase
space of all particles by a sum of so-called finite size particles, often referred to as
macro-particles. A particular set of physical particles is represented by a finite size
macro-particle, rather than a point size individual particle. By doing so, we neglect
some short range forces, but it allows us to use a much smaller number of particles
and obtain results showing the collective plasma phenomena we are interested in.
These macro-particles represent a solution of the Maxwell-Vlasov set of equations.
In PIC codes, Vlasov’s equation 1.1 is integrated along the continuous trajectories
of the macro-particles, while Maxwell’s equations are solved on a discrete spatial
grid in order to simplify and minimize computational demands. The elements of the
grid are called cells.

Direct integration of the equation (1.1), used in the so-called Vlasov codes, re-
quires extreme computational resources. The key idea in PIC simulation is to ex-
press the distribution function fα(t, x, p) as a discrete sum of Nα macro-particles of
particle species α (sometimes also referred to as "quasi-particles")

fα(t, x, p) =
Nα∑
p=1

wpS(x − xp(t))Sm(p − pp(t)). (1.13)

The wp stands for a weight of the macro-particle, that will be discussed in detail
in next sections (Sec. 1.4). The S(x) and Sm(p) are the macro-particle’s shape
functions in position and momentum space, respectively. These shape functions
have several properties, namely, they describe a small portion of the phase space
and have zero value outside of this small range, they are symmetric and the integral
over their respective domains is unitary [32], e.g.

∫
S(x − xp)d3x = 1, where

∫
dx

represents integral over space. Physically, one macro-particle represents a collective
behaviour of a set of particles. For a momentum shape function, the choice is always
the Dirac function

Sm(p − pp(t)) = δ(p − pp(t)). (1.14)
This choice ensures that the macro-particle has only one value of velocity so it will
not expand in the phase space. For the position shape function, early PIC codes also
used the Dirac function [32]. Currently, most PIC codes [19, 17, 33] use piece-wise
functions, so-called b-splines. For example, in one dimension, the first order b-spline
b1(x) is often defined as the top-hat function

b1(x) =
1 if |x| ≤ 1

2∆x

0 otherwise,
(1.15)

where ∆x is the length of a cell. This function occupies two cells during the in-
terpolation phase. This simple b-spline is not used in practice, because it leads to

6



a high level of noise [34]. Higher order spline interpolation is then required. The
most often used definition is the "triangle" shape function, also called second order
b-spline, defined as

b2(x) =
1 − |x|/∆x if |x| ≤ ∆x

0 otherwise.
(1.16)

This function occupies three cells during the interpolation phase. Third order b-
spline is defined as

b3(x) =


3
4

(
1 − 4

3

(
x

∆x

)2
)

if |x| ≤ ∆x/2
9
8

(
1 − 2

3
|x|
∆x

)2
if ∆x/2 < |x| ≤ 3∆x/2

0 otherwise.

(1.17)

All three functions, are shown in Fig. 1.1.

a)

b)

c)

Figure 1.1: The comparison of the a) first b1(x) b) second b2(x) and c) third b3(x)
order b-splines. The cell length was assumed to be ∆x = 1.

1.3 Mathematical definition of the macro-particle
shape function in higher dimensions

This section describes the macro-particle shape function implemented in Smilei
[19]. Nonetheless, this definition is also used in other PIC codes, including EPOCH
[17]. We need the macro-particle shape function S(x) with several properties: sym-
metric with respect to its argument x, non-zero in a center region around x = 0,
zero outside of this region and normalized to 1 (

∫
dxS(x) = 1) [19]. This particle

covers macro-particle volume of Vp = Πµn∆xµ, where n is the interpolation order
and ∆xµ = (∆x, ∆y, ∆z) is the size of a cell in µ direction.
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We will consider following definition

S(x) = ΠD
i=1bn(xµ), (1.18)

where D is the simulation dimension and n denotes interpolation order. The one
dimensional shape function bn(x) is defined recursively, with the zeroth order as
b0(x) = δ(x), where δ(x) is the Dirac function. The recursive relationship for higher
order functions is

bn(x) = 1
∆x

(P (x) ∗ bn−1(x)) = 1
∆x

∫ ∞

−∞
dx′P (x′ − x)bn−1(x′), (1.19)

where the crenel function is defined as

P (x) =
1 if |x| ≤ ∆x/2

0 otherwise.
(1.20)

For bn(x) = ∆xbn(x), we get

b0(x) = ∆xδ(x). (1.21)

Higher order function were already defined in Eq. (1.15) - (1.17).

1.4 Initialization of the simulation
The initialization of the simulation consist of 4 steps:

1. Loading all the particles and computing the macro-particles weight.

2. Calculate the charge and current densities onto the grid.

3. Compute the initial electric and magnetic field.

4. Add any external fields.

For the first step, the user can define multiple simulation parameters for each
particle species. This includes spatial profile for the number density ns, the number
of macro-particles per cell Ns, the mean particle velocity vs and the mean tem-
perature Ts. Usually, multiple temperature distributions are available, including
zero-temperature, Maxwell or Maxwell-Jüttner (Relativistic Maxwell distribution)
distribution. After defining these parameters, the particle loading then consist of
creating Ns macro-particles in each cell with position xp (in regular intervals within
the cell or randomly chosen) and with momentum pp randomly chosen from re-
quested temperature distribution. What remains is to calculate the particle weight
wp. This is done for each macro-particle and depends on the user defined number
density ns as

wp = ns(xp(t = 0))
Ns

. (1.22)

This parameter can be interpreted as the number of particles that each individual
macro-particle represents.
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The next step consist of computing the charge and current densities onto the grid
for t = 0. The charge density ρ(t = 0, x) is computed as [19]

ρ(t = 0, x) =
∑

s

qs

∑
p

wp

∫
dxS(x − xp(t = 0))PD(x − xi), (1.23)

where PD(x) = ΠD
µ=1P (xµ), D is the number of spatial dimensions of the simulation

and P (x) is the crenel function (1.20) and S(x) the macro-particle shape function
(1.18).

The next step is to compute the initial electric and magnetic fields from initial
charge and current densities. This is done by solving the Poisson equation. In the
last step, we can add any external (divergence-free) electric or magnetic fields, such
as the laser fields. Subsequently, the PIC loop can be started. These steps are very
similar in both Smilei and EPOCH codes [17, 19].

1.5 The PIC loop
With the mathematical representation of macro-particles and computed initial

electric and magnetic fields, we can proceed to the PIC loop. This loop is then
repeated N times, where N is either pre-defined number or the codes compute until
certain conditions are fulfilled. The core computational cycle of the PIC codes
consists of four main steps:

1. Interpolating the electromagnetic fields acting on the macro-particles onto a
grid.

2. Computing the new macro-particle velocities and positions.

3. Projecting the new charge and current densities on the grid positions.

4. Computing the new electromagnetic fields on the grid.

These steps are displayed in Fig. 1.2. In the next sections, we will describe each of
these four steps in more detail, advancing from the step n to step n + 1.

1.6 Interpolation of the electric and magnetic fields
As a first step, we have to calculate the projection of fields from grid points onto

the particles. This is referred to as the interpolation of the fields. In one dimensional
grid, the field Fp acting on the macro-particle with center at the position xp can be
written in the form

Fp =
∫

dxbn(x − xp)F (x), (1.24)

where bn(x) is one dimensional shape function (1.19) and F (x) can be reconstructed
as

F (x) =
∑

i

FiP (x − xi), (1.25)

where i denotes the grid point index, Fi the field value at i-th grid point, xi the
location of i-th grid point and P (x) is crenel function (1.20). Visual representation
of this process is depicted in Fig. 1.3.
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Calculating Interpolate 

Particle push

Charge/current deposition

Field solver

Field gathering

Figure 1.2: The visual representation of PIC loop. We can start by interpolating
the values of electromagnetic field values at the macro-particle position. The next
step is the particle push, which upgrades the macro-particle position and momen-
tum. Then these upgraded phase space coordinates are used for the computation of
charge/current densities on a grid. The Maxwell equations are solved on the grid
points in the last step. The loop then starts over.

This can be easily generalized to higher dimensions. Generally, the final set of
equations has a form

E(n)
p =

∫
dxS(x − x(n)

p )E(n)(x) (1.26)

B(n)
p =

∫
dxS(x − x(n)

p )B(n)(x), (1.27)

where (n) denotes the time step and S(x) is the shape function of the macro-
particle (1.18). As will be discussed later, the leap frog scheme for advancing fields
and macro-particles in time will make the use of a "half-time" step for the mag-
netic fields B(n±1/2)(x) . Effectively, the magnetic field is calculated as B(n)(x) =
1
2 [B(n+1/2)(x) + B(n−1/2)(x)].

1.7 The particle pusher
When we compute the electromagnetic field for each macro-particle, we need to

compute the new momentum and position of that macro-particle. There are several
possible methods for solving Partial Differential Equations (PDE) by numerical cal-
culations. These include finite difference, finite element and spectral method [35].
PIC codes are using Finite Difference Method (FDM) [36].

We have to solve a set of two equations of motion. The first one can be derived
from putting the macro-particle distribution (1.13) into the Vlasov’s equation (1.1)

d(γmpv)
dt

= qp(E + v × B). (1.28)
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Figure 1.3: The visual representation of field interpolation with the macro-particle
shape function S(x) = b2(x). As you can see, this is the shape function of the 2nd
order, which uses 3 field values Fi, representing the field’s value at the i-th grid
position. The P (x − xi) represents the crenel function for the i-th grid position.

The second one is just the definition of the velocity used to advance the particles

dx
dt

= v, (1.29)

where γ is the Lorentz factor. By introducing the normalized velocity u = γv, we
can write the Lorentz factor as γ =

√
1 + u2/c2.

We want to compute the evolution of the particle in time, evolving with the time-
step ∆t. Most PIC codes [19, 17, 33] use the second-order method with centered
discretization, known as leap-frog method. This method is often implemented in
both particle pusher and Maxwell’s solver steps. Here, the particle velocity is calcu-
lated at half-step intervals, similar to the magnetic field B in Maxwell’s solver. The
equations (1.28) and (1.29) can be discretized in the leap-frog method as

u(n+1/2)
p − u(n−1/2)

p

∆t
= qp

mp

[
E(n)

p +
u(n+1/2)

p + u(n−1/2)
p

2γ(n) × B(n)
p

]
, (1.30)

x(n+1) − x(n)

∆t
= u(n+1/2)

γ(n+1/2) , (1.31)

where qp, mp are charge and mass of the macro-particle and Lorentz factor γ(n) is
taken as an average from two half-step values

γ(n) = γ(n+1/2) + γ(n−1/2)

2 . (1.32)

The process is shown at Fig. 1.4. This leap-frog scheme depends on old forces
from the previous time-step n, as is typical for explicit solvers. This method is
computationally fast and can be stable [37].

There are several methods available for computing the velocity un+1/2
p in (1.30).

This can be solved either as three scalar equations, one for each component.
However, more sophisticated approaches have been developed. The most used
method in PIC codes is the Boris pusher [38]. The details of this algorithm are
introduced in Appendix A. However, this algorithm introduces errors when calculat-
ing the orbits of relativistic particles in certain electromagnetic field configurations,
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Figure 1.4: The visualization of the process of pushing particles. The horizontal axis
shows the time-step index. The greyed-out symbols are values we want to determine
during the particle push, current deposition and by Maxwell’s solver from the time-
step n to n + 1. The values for electric Ep and magnetic Bp fields are also shown,
along with the current deposition j. The arrows point the evolution of the values in
one PIC cycle.

e.g. when the electric and magnetic contributions cancel each other in the Lorentz
force. In these scenarios, the Boris pusher introduces significant errors in particle
trajectories [39]. Alternative methods for dealing with this problem were proposed,
including Vay pusher [40], which deals with the force balance by splitting the in-
tegrator into the explicit first half and implicit second half. This leads to better
handling of the E×B drift at relativistic speeds and is therefore interesting for laser
physics and astrophysics. Another alternative method was proposed by Higuera and
Cary [41]. This relativistic volume-preserving pusher employs Vay’s characteristic
velocity in the Lorentz-force part of the Boris pusher. It’s numerically slower but
gives the correct E × B velocity, giving more precise results in highly relativistic
simulations. In Smilei Boris and Vay pushers are implemented. In EPOCH, Boris
and Higuera & Cary pushers are implemented.

Lastly, we mention the numerical stability of the leap-frog scheme. The scheme
is unstable for [42]

ωp∆t ≥ 2, (1.33)

where ωp is the plasma frequency and ∆t the time-step used in the simulation. In
PIC codes, more strict condition ωp∆t ≥ 0.2 is used for more accurate results [37].

1.8 The current deposition
The velocity and the the position of all macro-particles is now computed. For the

evolution of the electromagnetic fields at the grid, we need to calculate the current
j(n+1/2) (at the half-step) and the charge density ρ(n+1) onto the grid. As discussed
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earlier, the continuity equation (1.10) needs to be satisfied, in order for the diverge
terms in Maxwell’s equations ((1.3), (1.4)) to be omitted. This means our current
deposition scheme needs to satisfy the equation [43]

ρ
(n+1)
i,j,k − ρ

(n+1)
i,j,k

∆t
+

(jx)(n+1/2)
i+1/2,j,k − (jx)(n+1/2)

i−1/2,j,k

∆x
+

(jy)(n+1/2)
i,j+1/2,k − (jy)(n+1/2)

i,j−1/2,k

∆y
+

(jz)(n+1/2)
i,j,k+1/2 − (jz)(n+1/2)

i,j,k−1/2

∆z
= 0. (1.34)

Here, the subscript refers to the place on the so called Yee grid [44] in the Finite
Difference Time Domain (FDTD) scheme, as will be discussed in the next section.

In 1992, Villasenor and Buneman [45] proposed a current deposition scheme that
satisfies the continuity equation (1.34) rigorously (within numerical precision) in
Cartesian coordinates. This is achieved by using the mentioned FDTD field solvers
on Yee grid. In 2001, Esirkepov proposed a new charge conserving scheme [43]
which generalized Villasenor and Buneman’s method to an arbitrary particle form
factor. In Smilei and EPOCH codes, the charge-conserving algorithm proposed by
Esirkepov is implemented.

In the three dimensional case, the current densities in x, y, z direction from a
particle with charge qp are computed as

(jx)(n+1/2)
i+1/2,j,k − (jx)(n+1/2)

i−1/2,j,k =qpwp
∆x

∆t
(Wx)(n+1/2)

i+1/2,j,k

(jy)(n+1/2)
i,j+1/2,k − (jy)(n+1/2)

i,j−1/2,k =qpwp
∆y

∆t
(Wy)(n+1/2)

i,j+1/2,k

(jz)(n+1/2)
i,j,k+1/2 − (jz)(n+1/2)

i,j,k−1/2 =qpwp
∆z

∆t
(Wz)(n+1/2)

i,j,k+1/2,

(1.35)

where Wx, Wy, Wz are computed using the method developed by Esirkepov [43].
These values depend on the macro-particle present and former position x(n+1), x(n)

and on the particle shape function. The computation of the charge density is re-
dundant in our PIC cycle and is usually calculated only for the diagnostic reasons.

We have now calculated the current on the grid. With this, we can calculate the
curl Maxwell’s equations (1.5) and (1.6).

1.9 Maxwell’s solver and the Yee grid

1.9.1 Yee grid
For solving the Maxwell equations, we need to define the positions of the electric

and magnetic fields on the grid. A straightforward approach would be to locate
all fields within the cell in the origin of the cell. This approach is referred to as
unstaggered grid. In PIC simulation, the most commonly used configurations is the
so called Yee grid proposed in 1966. On the Yee grid, the position of every field
component is staggered in space, where the distance between them equals one half of
the cell length (∆x/2). In this configuration, the magnetic fields are perpendicular
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to electric fields, which is useful for numerically calculating the curl operator in
Maxwell’s equations. The illustration of this grid is shown in Fig. 1.5. Note that E
and j are located at the same grid position.

Figure 1.5: Representation of the 3D staggered Yee grid around the cell node (i, j, k).

1.9.2 Maxwell’s solver
As mentioned before, for the computation of Maxwell’s equations, for the cur-

rent deposition algorithm that fulfills the charge conservation equation (1.10), we
only need to consider the equations with curl operator (1.5) and (1.6). In PIC codes,
including Smilei and EPOCH, these equations are usually solved by the FDTD tech-
nique. This technique was formulated by Yee [44] and has been applied extensively
for solving EM equations [36]. In the leap-frog scheme, equations (1.5) and (1.6)
can be written as

E(n+1) = E(n) + ∆t
[
c2(∇ × B)(n+1/2) − j(n+1/2)

ε0

]
, (1.36)

B(n+3/2) = B(n+1/2) − ∆t(∇ × E)(n+1). (1.37)

Now we only have to write the curl operator numerically on the Yee grid. The
x-component of equations (1.36) and (1.37) can be discretized on the Yee grid as
[19]

(Ex)(n+1)
i+1/2,j,k − (Ex)(n)

i+1/2,j,k

∆t
= (jx)(n+1/2)

i+1/2,j,k + (∂yBz)(n+1/2)
i+1/2,j,k − (∂zBy)(n+1/2)

i+1/2,j,k, (1.38)
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(Bx)(n+3/2)
i,j+1/2,k+1/2 − (Ex)(n+1/2)

i,j+1/2,k+1/2

∆t
= (∂zEy)(n+1)

i,j+1/2,k+1/2 − (∂yEz)(n+1)
i,j+1/2,k+1/2. (1.39)

The equations are similar in the y and z direction. The discretization of the partial
derivative operator acting on field F in the FDTD method reads

(∂xF )i,j,k = Fi+1/2,j,k − Fi−1/2,j,k

∆x
. (1.40)

The Yee solver is known to cause numerical errors [46]. To overcome this issue,
a number of alternative field solvers have been proposed, such as the M4 [47] and
Lehe [48] solver.

1.9.3 CFL condition
Note that FDTD solvers are subjected to the Courant-Friedrich-Lewy (CFL)

condition. [49] The CFL condition requires that the time-step ∆t used in numerical
simulations for solving a hyperbolic PDE (such as the wave equation) is small enough
to ensure that the solution does not become unstable. Specifically, the CFL condition
states that the time step size must be less than or equal to a certain multiple of the
spatial grid cell size and the maximum velocity of the wave being modeled. This
multiple factor is often referred to as the Courant number and is typically less than
or equal to 1. In Smilei and EPOCH codes, the default value of the Courant number
is 0.95.

In other words, the CFL condition ensures that information cannot propagate
too far in a single time step, which is necessary for accurate and stable numerical
simulations. Violating the CFL condition can result in numerical instabilities, such
as oscillations and overshoots, that can make the solution meaningless. For the elec-
tromagnetic wave in plasma, this condition requires the time-step ∆t to be smaller
than (in 3D case)

∆t ≤ C

c
√

1
∆x2 + 1

∆y2 + 1
∆z2

. (1.41)

where C is a dimensionless Courant number and ∆µ is the cell length in the cor-
responding direction. In our case, we want to study the electromagnetic wave in a
plasma, which cannot travel more than one cell per time step with a velocity of c.

1.10 Popular PIC codes

1.10.1 Smilei
Smilei [19] is an open-source, PIC code written in C++. It is developed mainly

by Maison de la Simulation, Université Paris-Saclay, Laboratoire Leprince-Ringuet,
École polytechnique and Sorbonne Universités, France. The input file and post-
processing is handled via a user-friendly Python interface. It is highly flexible and
can be easily extended with user-defined modules and scripts, allowing researchers
to implement new physical models and algorithms. Smilei includes a number of
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built-in physics modules, including electrical field and current density filter, anten-
nas, Monte-Carlo treatment of the binary collisions, reactions and field ionization,
particle injection, radiation reaction and electron-positron pair creation. It can sim-
ulate a wide range of phenomena, including laser-plasma interactions (e.g. electron
acceleration from intense femtosecond laser interaction with dense plasmas, short
laser pulse amplification by stimulated Brillouin scattering), relativistic astrophysics
(e.g. magnetic reconnection at the Earth magnetopause), and fusion energy.

1.10.2 EPOCH
EPOCH [17] is a fully-featured, open-source particle-in-cell code written in For-

tran 90. It is developed by the Plasma Physics Group at the University of Warwick,
UK. The postprocessing is handled through LLNL Visit software or through Python
interface. It uses advanced numerical methods and modeling techniques, including
adaptive mesh refinement and plasma radiation models. EPOCH includes a wide
range of physics modules, including bremsstrahlung radiation, particle injectors,
antennas, binary collision models and extensive quantum electrodynamics (QED)
module, including radiation reaction and electron positron pair production. It can
simulate a variety of phenomena, including Raman scattering, short-pulse, laser-
solid interaction or fast-electron transport.

1.10.3 OSIRIS
OSIRIS [33] (Open Simulation Infrastructure for Research in Science) is a PIC

simulation code used to model plasmas. It is developed by the Osiris Consortium,
consisting of the Group of Lasers and Plasmas of the Instituto de Plasmas e Fusão
Nuclear at IST, Lisbon, Portugal and the Plasma Theory and Simulation Group
at the UCLA, Los Angeles, California, USA . It is written in Fortran 90 and C
programming language. It is fully relativistic, massively parallel PIC code with
dynamic load balancing. Several physics modules are implemented, including ADK
tunneling/impact ionization, handling of binary collisions, radiation cooling and
QED module.

1.10.4 PIConGPU
PIConGPU [50] is a PIC code designed to model plasma behavior. The code is

optimized to run on graphics processing units (GPUs), which enables it to achieve
high performance and fast simulation times. It is developed at the Helmholtz-
Zentrum Dresden-Rossendorf (HZDR) in Germany. It is an open source software.
The programming language used to implement PIConGPU is C++ with CUDA
extensions. The code is designed to run on NVIDIA GPUs and is optimized to take
full advantage of the parallel processing capabilities of these devices. CUDA allows
developers to write code that can execute on the GPU, enabling high-performance
parallel computing. One of the main advantages of using PIConGPU is its speed.
By utilizing the computational power of GPUs, the code can simulate complex
plasma behavior in a fraction of the time it would take using traditional CPU-based
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simulations. Physics models implemented range from classical radiation reaction,
QED synchrotron radiation or advanced field ionization methods.

1.10.5 WarpX
WarpX [51] is an open-source PIC code used to simulate high-energy plasma

physics. It is written in C++ and uses CUDA and OpenMP for parallelization to
achieve high performance on both CPUs and GPUs. WarpX implements a fully rel-
ativistic approach to simulate plasma physics, which takes into account the relativis-
tic effects of particle motion and electromagnetic fields. WarpX includes advanced
features like adaptive mesh refinement, high-order time integration schemes, mov-
ing window boundary conditions, and particle tracking and diagnostics. ARTEMIS
(Adaptive mesh Refinement Time-domain ElectrodynaMics Solver), a time-domain
electrodynamics solver developed in CCSE is based ont the WarpX code.

1.11 Grid computing
The PIC simulations are often computationally demanding and therefore rely on

the computational grids or supercomputers. Grid computing is a type of distributed
computing that enables multiple computers to work together on a common task. It
is a powerful solution for tackling computationally extensive problems that require
significant processing power and memory resources. The concept of grid computing
originated in the early 1990s [52] when researchers began to explore ways to harness
the collective computing power of multiple machines connected by a network. Grid
computing enables tasks that would be impossible for a single machine to handle
to be divided into smaller sub-tasks and distributed across multiple machines. This
makes it possible to complete complex tasks more quickly and efficiently.

The resources in grid computing include the individual computers that create a
grid, as well as other resources such as storage devices. These resources are typically
distributed across a wide geographic area and connected by a high-speed network.
The resources available on the grid are typically managed by a control node or
server, which monitors the available devices and allocates them to various tasks.

The middleware is the software that allows the individual computers to commu-
nicate with each other and with the control node. This typically includes tools for
data transfer, resource discovery, security, and monitoring. It enables the individual
computers to work together as a single, virtual machine.

The architecture of grid computing typically consists of a control node or server
that manages the resources and coordinates the distribution of tasks across the
network. The control node is responsible for job scheduling, resource allocation,
and load balancing. The individual computers on the grid are typically referred to
as nodes or clients and are responsible for executing the tasks assigned to them. The
computational jobs are requested by the user from the so called front-ends. These
are specific computers reserved primarily for user activity (preparing jobs, analyzing
the data etc.).
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On the other hand, supercomputers are typically centralized computing systems
that consist of a single large-scale machine with a high processing speed and a large
amount of memory and storage. They are designed to solve complex computational
problems that require massive parallel processing capabilities. Supercomputers are
expensive to build and maintain, and typically used by large research institutions
or corporations.

One of its key features of PIC codes is the ability to efficiently perform large-scale
simulations through the use of parallelization. To achieve this, PIC codes utilizes
multi-processing application program interface, e.g. OpenMP and MPI. OpenMP
is a programming interface that allows for shared-memory parallelism, while MPI
(Message Passing Interface) is used for distributed-memory parallelism. Combining
the two allows PIC codes to efficiently distribute the workload across multiple pro-
cessors or nodes in a computational grid or supercomputer. This results in significant
speedups and allows for the simulation of larger and more complex systems than
would not be possible with a single processor. Some PIC codes, e.g. Smilei and
EPOCH, also employs dynamic load balancing, which helps to evenly distribute
the simulation workload among the MPI processes. This is done by periodically
exchanging segments of the simulation box between processes, ensuring that each
process has a fair amount of the overall simulation load. In this thesis, we are using
the Czech National Grid Infrastructure Metacentrum.

1.11.1 Metacentrum

Metacentrum [53] is a computational grid infrastructure that provides high-
performance computing resources to academic and research institutions in the Czech
Republic. It was established in 2007 by a consortium of Czech universities and re-
search institutions, and it has since grown to become the largest academic computing
facility in the country. The main goal of Metacentrum is to support scientific re-
search by providing access to advanced computing resources, such as clusters, grids.
These resources are used to run simulations, model complex systems, and analyze
large datasets. Metacentrum also provides storage solutions and data management
services to support scientific workflows.

Metacentrum consists of multiple computing clusters located across different sites
in the Czech Republic. The infrastructure is interconnected by high-speed networks,
allowing users to access computing resources from any location. The system is also
designed to be scalable, meaning that it can easily adapt to changing user needs and
resource requirements. One of the key features of Metacentrum is its user-friendly
interface, which allows researchers to easily submit and manage their computing
jobs.

For this thesis, we utilized the so-called non-interactive batch jobs. Batch jobs
are a common use case for grid computing, where the user prepares input and in-
structions at the beginning, and the calculation then runs independently on the user.
The batch job process involves the user preparing data and instructions (input files
+ batch script), submitting them to a job planner (also called PBS server), which
stages the job until resources are available. The job then runs on a computational
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node with the required applications loaded. When the job finishes, the results are
copied back to the user’s specified directory.
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Chapter 2

The theory of radiation reaction

In this chapter, the radiation reaction in the classical, semi-quantum and quan-
tum descriptions is discussed. In particular, the covariant form of the Lorentz force,
retarded and advanced potentials generated by a moving charges, Abraham-Lorentz
force and the covariant generalization of this equation as Lorentz-Dirac force are
derived. The formulation and advantages of Landa-Lifshitz equation are described.
The quantum correction and stochastic effects of radiation reaction are discussed.
The Breit-Wheeler pair generation is also explained at the end of this chapter. This
provides a theoretical basis for the implementation of the radiation reaction in var-
ious PIC codes.

2.1 Classical radiation reaction

2.1.1 Covariant form of the Lorentz force
The equation of motion for a charged particle can be derived from the standard

relativistic Lagrangian

L = −mc2

√
1 −

( ẋ
c

)2
+ qA(x) · ẋ − qϕ(x), (2.1)

where x = (x, y, z) is the position of the particle, ẋ is the derivation of the position
with respect to time, A(x) is the magnetic vector potential and ϕ(x) is the electric
potential. By using the Lagrange-Euler equation (so by minimizing the action) we
can get the equation of motion in the form

d

dt
(m0γv) = qE + qv × B, (2.2)

where γ is the Lorentz factor and m0 the rest mass of the particle and velocity
v = ẋ. For numerical applications, we can use the substitution u = γv, similarly to
(1.28).

For the derivation of Lorentz force in covariant form, we need to introduce the
4-velocity as

uα = dxα

dτ
, (2.3)
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where xα denotes the space-time coordinates and τ is the proper time. By using the
relationship between the proper and general space-time interval

−c2dτ 2 = −c2dt2 + dx2 =⇒ dτ =
√

1 − v2/c2dt = dt

γ
, (2.4)

we can derive the 4-velocity form as

uα = dxα

dτ
= dxα

dt

dt

dτ
=
(

γc
γv

)
. (2.5)

Also, the scalar product of the 4-velocity is the space-time invariant, since uαuα =
−c2. We can also define the 4-acceleration as

aα = duα

dτ
. (2.6)

The 4-acceleration is perpendicular to velocity
d

dt
(uαuα) = aαuα + uαaα = 2aαuα = 0 =⇒ aαuα = 0. (2.7)

Finally, the 4-momentum can be defined as

pα = m0u
α =

(
m0γc
m0γv

)
. (2.8)

The time-part of 4-momentum must be in the units of energy and the space-part
must be the classical momentum vector(

m0γc
m0γv

)
=
(

ε/c
p

)
. (2.9)

This allows us to identify
ε = γm0c

2 = mc2, (2.10)
p = γm0v = mv, (2.11)

where m = m0γ is the relativistic mass. At the end, we need to introduce the
electromagnetic field tensor [54]

F µν = ∂µAν − ∂νAµ =


0 Ex/c Ey/c Ez/c

−Ex/c 0 Bz −By

−Ey/c −Bz 0 Bx

−Ez/c By −Bx 0

 , (2.12)

which is antisymmetric tensor of the second order. By combining the 4-momentum
(2.8) with (2.12), the equation (2.2) can be cast in the form of

dpα

dτ
= qF αβuβ. (2.13)

By using the relation from (2.4) on the space components, the Lorentz equation of
motion is recovered. For the time component, the equation for energy balance can
be written as

dε

dt
= qE · v. (2.14)

This shows that the power from the electric field is "transformed" into particle energy
and vice-versa.
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2.1.2 Close proximity potentials generated by a particle
The time dependent solution for Maxwell’s equations can be written in a form of

the 4-potential [55]

Aα
∓(t, x) = µ0

4π

∫ Jα(t ∓ ∆t, x′)
|x − x′|

d3x′, (2.15)

where 4-current is defined as

Jα(t, x) =
(

ρ(t, x)
j(t, x)

)
. (2.16)

Here, ρ is the charge density and j the current density. The Aα
−(t, x) denotes the

retarded potential generated by a charged particle, Aα
+(t, x) denotes the advanced

potential, which is unphysical since it implies the violation of causality, as the po-
tential is indicated "ahead" of time. The expression ∆t = |x − x′|/c is time of signal
spreading from a point source.

In a close proximity to the charged particle, we can assume that ∆t << 1. This
allows to approximate the 4-current with the Taylor expansion in the following way

Aα
∓(t, x) = µ0

4π

∫ ( ∞∑
k=0

(∓∆t)k

k!
∂kJα(t, x′)

∂tk

)
d3x′

|x − x′|
. (2.17)

After using ∆t = |x − x′|/c, we can get the following expression (we assume that
the sum and integral can be exchanged)

Aα
∓(t, x) = µ0

4π

∞∑
k=0

[
(∓1)k

ckk!
∂k

∂tk

∫
|x − x′|k−1Jα(t, x′)d3x′

]
. (2.18)

We can separate this expression into even and odd parts of the Taylor expansion

Aα
∓(t, x) = µ0

4π

∞∑
k=0,2,4,...

[
(∓1)k

ckk!
∂k

∂tk

∫
|x − x′|k−1Jα(t, x′)d3x′

]
∓

∓ µ0

4π

∞∑
k=1,3,5,...

[
(∓1)k

ckk!
∂k

∂tk

∫
|x − x′|k−1Jα(t, x′)d3x′

]
. (2.19)

The first part is the same for retarded and advanced potentials and is divergent
for k = 0 on the particle worldline 1. However, this divergence cancels out in the
corresponding force calculations. It can, for example, correspond to a Coulomb
field. The second part of the formula has a different sign, so the solution is different
depending on the direction of the wave (in the direction of the particle or away
from it). This part is non-divergent, the force acting on a particle is non-zero and
corresponds to a reaction of the particle to the field generated by that particle. The
retarded potential can formally be written in terms of symetric and antisymmetric
parts

Aα = Aα
ret = 1

2(Aα
sym + Aα

ant) = 1
2(Aα

− + Aα
+) + 1

2(Aα
− − Aα

+). (2.20)

1Worldline is the path that an object traces in 4-dimensional spacetime.
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In the symmetric part, all odd k = 1, 3, ... members of the expansion are cancelled
and only even parts remain

Aα
sym = 1

2(Aα
− + Aα

+) = µ0

4π

∞∑
k=0,2,4,...

[
1k

ckk!
∂k

∂tk

∫
|x − x′|k−1Jα(t, x′)d3x′

]
.

As argued before, this part do not act on the particle, as the contributions cancels
out. On the other hand, for the antisymmetric part, only the odd members of the
expansion remain

Aα
ant = 1

2(Aα
− − Aα

+) = − µ0

4π

∞∑
k=1,3,5,...

[
1

ckk!
∂k

∂tk

∫
|x − x′|k−1Jα(t, x′)d3x′

]
.

This correspond to a self-field that acts on the particle.

We can find the analytical solution to this self-force in the local inertial frame
(LIF). This can be done non-relativistically and only for the first non-zero part [56].
For the scalar potential (α = 0), the k = 1 gives us the derivation of the total charge,
which is zero. The first non-zero term is for k = 3 and reads

φ

c
= − µ0

4π

1
c33!

∂3

∂t3

∫
|x − x′|2ρ(t, x′)cd3x′. (2.21)

For the vector potential, the first non-zero term is for k = 1

A = − µ0

4πc

∂

∂t

∫
j(t, x′)d3x′. (2.22)

For the point-like particle with a position at x0

ρ(t, x) = qδ(x − x0), (2.23)

j(t, x) = qvδ(x − x0). (2.24)

After integration, the potentials have a form

φ = − µ0q

24πc

∂3

∂t3 (x − x0(t))2, (2.25)

A = −µ0q

4πc

d

dt
v(t). (2.26)

2.1.3 Abraham-Lorentz equation
We can now express the corresponding electric and magnetic fields

B = ∇ × A = 0, (2.27)

E = −∇φ − ∂A
∂t

= µ0q

24πc

∂3

∂t3 ∇(x − x0(t))2 + ∂

∂t

µ0q

4πc

d

dt
v(t) =

= µ0q

24πc

∂3

∂t3 2(x − x0(t)) + µ0q

4πc

da
dt

= − µ0q

12πc

da
dt

+ µ0q

4πc

da
dt

= µ0q

6πc
ȧ. (2.28)
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Here, the v(t) corresponds to the particle velocity, a(t) to particle acceleration
vector. The "self-force" force acting on the particle is then

Frad = qE = µ0q
2

6πc
ȧ. (2.29)

This is often called radiation reaction force, or Abraham-Lorentz force, derived by
M. Abraham in 1905 [57]. The equation of motion then has a form

ma = Fext + Frad = Fext + µ0q
2

6πc
ȧ, (2.30)

where Fext are the external fields acting on a particle. This can be written as

m(ẍ − τ0
...x ) = Fext, (2.31)

where
τ0 = µ0q

2

6πmc
. (2.32)

This equation has several problems. First, it requires the third integration con-
stant in the solutions, because we have to deal with the third derivative of the
position. This is usually redundant, since we need to know at least 3 parameters
to find 3 integration constant. However, in classical physics, we usually deal with
only the particle position and momentum as the boundary condition. Second, some
solutions of this equation violate the causality. Third, it has the so-called "runaway"
solution. This can be seen by setting Fext = 0 and by integrating the (2.31) two
times. One possible solution is then

x = x0e
t/τ0 . (2.33)

This solution is not physical, since without the external force, it assumes that par-
ticles are exponentionaly accelerated. General solutions can be cast as

r(t) = c0e
t/τ0 + c1t + c2. (2.34)

By choosing c0 = 0, we can remove the "runaway" solution.

2.1.4 Lorentz-Abraham-Dirac (LAD) equation
The equation (2.31) can be generalized to any coordinate system in the covariant

form [58]

m
duα

dτ
= F α

ext + mτ0

(
daα

dτ
− a2

c2 uα

)
, (2.35)

where a2 = aαaα. The additional second term in the bracket is there to ensure the
equation is Lorentz covariant. We can see this by multiplying (2.35) by uα and using
F α

ext = qF αβuβ,

maαuα = qF αβuβuα + mτ0

(
daα

dτ
uα − a2

c2 uαuα

)
. (2.36)
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Using the (2.7), uαuα = −c2 and the fact that the contraction of antisymmetric
(F αβ) and symmetric (uβuα) tensor is zero, we get

0 = 0 + mτ0

(
d(aαuα)

dτ
− aαaα − a2

c2 (−c2)
)

= mτ0
(
0 − a2 + a2

)
= 0. (2.37)

The added term can be alternatively written as

a2uα = aβaβuα = aβ duβ

dτ
uα =

(
d(aβuβ)

dτ
− daβ

dτ
uβ

)
uα = −daβ

dτ
uαuβ. (2.38)

This leads to an alternative formulation of (2.35), where Frad is directly proportional
to the derivation of 4-acceleration, similar to (2.29)

m
duα

dτ
= F α

ext + mτ0

(
gα

β + uαuβ

dτ

)
daβ

dτ
= F α

ext + F α
rad. (2.39)

The steps of the LAD derivation were described in the same manner as in the
textbook of Kulhanek [59].

2.1.5 Landau - Lifshitz equation
The most widely used classical theory for the treatment of radiation reaction was

proposed by Landau and Lifshitz [12]. They considered the following two conditions:

1. the magnitude of the external field E is in the instantaneous rest frame much
smaller than the magnitude of the Schwinger field Es = m2

ec
3/eℏ [60, 61],

divided by the fine structure constant α ≈ 1/137. The Schwinger (or critical)
field is a threshold above which the electromagnetic field is expected to become
nonlinear. In the perfect vacuum, it corresponds to the upper limit of laser
field strength. This condition can be expressed as E << Es/α. This ensures
that the recoil at the level of individual photon is negligible.

2. The characteristic length scale over which the external field varies L is in
the instantaneous rest frame varies is much larger than the Compton length
λc = h/mec [62], where h is the Planck length. This can be expressed as
L >> λc. This ensures that the electron wavefunction is well-localized.

Both of these conditions are automatically fulfilled in the realm of classical electro-
dynamics [5]. Landau and Lifshitz showed that under these conditions, the second
(radiation reaction) term in (2.35) were much smaller than the first term in the in-
stantaneous rest frame of the charge. This allows to reduce the order of LAD equa-
tion by substituting aα = duα

dτ
→ − e

m
F µνuν . The result is called Landau-Lifshitz

(LL) equation [12]

duµ

dτ
= − e

m
F µνuν + τ0

(
−m

e
(∂αF µν)uνuα + F µνF ναuα + (F ναuα)2uµ

)
. (2.40)

This equation can be then used as the equation of motion in the electromagnetic field.
It leads to a continuous loss of energy for the radiating particle. After determining
the trajectories, the self-consistent radiation can be obtained from the Liénard-
Wiechert potentials [63, 64]. These potentials provide information about the electric
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and magnetic fields of a charge in any type of motion. In the far field, the spectral
intensity of radiation from a group of Ne electrons and the energy radiated per unit
frequency ω and solid angle Ω can be calculated as [54]

d2ε

dωdΩ = αω2

4π2

∣∣∣∣∣
Ne∑

k=1

∫
n × (n × vk)eiω(t−n·rk)dt

∣∣∣∣∣
2

, (2.41)

where n is the observation direction, rk and vk are the position and velocity of the
k-th particle.

2.2 The quantum parameter
The dominance of classical or quantum processes in the laser-electron interaction

is determined by the laser intensity, electron energy, and the angle of incidence
relative to each other. An effective method of distinguishing between these two
domains is by using a Lorentz-invariant dimensionless parameter χ, which is in the
general electromagnetic field defined as [65]

χ =

√
−(Fµνpν)2

mES

= γ

ES

√
(E + v × B)2 − (v · E)2, (2.42)

where p is the particle 4-momentum (2.8), γ is the particle Lorentz factor and Es

is the Schwinger field. In terms of physical interpretation, the parameter χ denotes
the ratio between the external electromagnetic field and ES, observed from the rest
frame of the particle. When χ << 1, the particle interaction with the field is
purely classical. However, when χ ≥ 1, the interaction is quantum-dominated, and
a two-step Breit-Wheeler process is expected to generate an extensive quantity of
electron-positron pairs [66].

Within a plane electromagnetic wave, where both E and B have equal magni-
tudes and are mutually perpendicular, quantum parameter has a form χ = γ|E|(1−
cos θ)/ES. Here, θ refers to the angle between the electron momentum and the
wavevector of the electric field. In this case, χ reaches maximum when electromag-
netic field counter-propagates with respect to the particle momentum. An interest-
ing outcome of (2.42) is the presence of a radiation-free direction. For any E, B
configuration, there exist a specific v, for which the χ vanishes. Under the influ-
ence of a strong electromagnetic field, electrons have a tendency to orient themselves
along this particular direction [67]. Any transverse momentum they possess is swiftly
lost through radiation process.

For the laser-electron interactions, we will refer to χ as the electron quantum
parameter. The optimal arrangement for achieving high values of χ involves scat-
tering in which the laser and electron beam are oriented in opposite directions. A
simplified version of (2.42) applies to an electron moving in the opposite direction
to the laser beam and has a form [66]

χ = 2γa0ℏω0

mc2 , (2.43)
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where ℏ is the reduced Planck constant, ω0 the laser frequency, m the electron mass
and a0 is normalized vector potential of the laser. The normalized vector potential
can be expressed as

a0 = 0.85λ0[µm]
√

I[1018W · cm−2], (2.44)
where λ0 is the laser wavelength and I laser intensity. For a co-propagating particle,
quantum parameter can be approximated as

χ = a0ℏω0

2γmc2 , (2.45)

and for the interaction at 90 degrees as

χ = a0γℏω0

mc2 . (2.46)

2.3 Quantum correction and stochasticity
Reaching the regime where radiation reaction becomes significant also implies

the importance of quantum effects. These regimes are of great interest for the new
generation of multi-petawatt laser systems, since at the expected intensities> 1023

Wcm−2, the radiation reaction will be comparable in magnitude to the Lorentz
force, rather than being a small correction, as is familiar from synchrotrons [68]. In
both classical and quantum description of radiation reaction, the direction of the
radiation reaction force is opposite to the electron instantaneous momentum, and
its strength is determined by the χ parameter. As the value of χ increases, the
differences between the classical and quantum models of radiation reaction are more
significant. In the classical approach, there is no upper limit on the frequency range,
while the quantum theory has a cutoff that ensures ω < γm.

First, let’s consider the radiation emission of an ultra-relativistic electron in any
external field within the framework of classical electrodynamics. When an electron
moves at a very high speed, its radiation emission is almost equivalent to that of an
electron moving instantaneously in a circular path, regardless of its original motion.
This is commonly referred to as synchrotron radiation emission and can be used as
a good approximation. The power distribution of the emitted radiation with respect
to the frequency ω of the photons emitted can be expressed as follows [54]

dP

dω
= 9

√
3

8π

P0α
2χ2

ωc

ω

ωc

∫ ∞

ω/ωc

K5/3(y)dy, (2.47)

where K5/3(y) is the modified Bessel function of the second kind, ωc = 3γαχ/2τe is
the critical frequency for synchrotron emission (half of the radiated power is emitted
above this frequency, the other half below), τe = re/c is the time for light to travel
across the classical radius of the electron re = e2/4πϵ0mc2 and P0 = 2mc2/3τe. The
classical approach requires the emitted photon energy ℏω to be much smaller than
the energy of emitting electron. This is satisfied if χ << 1.

The derivation of the spectral properties of the radiated emission in regimes where
quantum effects are non-negligible is simplified under the following conditions: [15]

28



1. Ultra-relativistic electrons emit radiation in a presence of a slowly varying field
compared to the formation time of radiated photon (so-called local constant
field approximation). This ensures that the coherent emission contribution
are suppressed. Condition is fulfilled when the electromagnetic field has a
relativistic strength a0 >> 1.

2. The external field is under-critical. This requires that the following Lorentz
invariants of the electromagnetic field are small compared to the critical field
of QED ES ≈ 1.3 × 1018 V/m:

ζ1 = F µνFµν/E2
S = (c2B2 − E2)/E2

S << 1, (2.48)

ζ2 = εµναβF µνFαβ/E2
S = (c2E · B)/E2

S << 1, (2.49)
where εµναβ is anti-symmetric unit tensor.

3. Here, we restrict our study to non-linear moderately quantum regime corre-
sponding to χ ≤ 1 and a0 >> 1. In this regime, the radiation reaction has
been identified as the overall electron energy and momentum loss due to con-
secutive emission of many photons [69] and pair production and higher order
QED processes are neglected.

The production rate of high-energy photons emitted by the electron, which is invari-
ant under Lorentz transformations, can be expressed using the given assumptions
as follows [65]

d2N

dτdχγ

= 2α2

3τe

G(χ, χγ)
χγ

, (2.50)

where
G(χ, χγ) =

√
3χγ

2πχ

(∫ ∞

ν
K5/3(y)dy + 3

2χγνK2/3(ν)
)

(2.51)

is the quantum emissivity and ν = 2χγ/3χ(χ − χγ). The production rate (2.50)
depends on the electron quantum parameter χ and on the quantum parameter of
the emitted photon

χγ = |F µνℏkν |
ESmc

, (2.52)

where kν = (ℏω, ℏk) is the four-momentum of emitted photon. This can be also
written in a form

χγ = γγ

ES

√
(E⊥ + c × B)2, (2.53)

where γγ = εγ/mc2 = ℏω/mc2 is the photon normalized energy, m refers to electron
mass, c denotes velocity vector with ||c|| = c and E⊥ denotes the electric field
orthogonal to the propagation direction of the photon.

Let us consider a laboratory frame where the electron is ultra-relativistic (γ >>
1). The photon quantum parameter can be linked to electron quantum parameters
as χγ = ξχ with ξ = γγ/γ as the ratio of photon normalized energy γγ and electron
Lorentz factor. In this frame, the instantaneous power spectrum is obtained from
(2.50) as [15]

dPrad

dγγ

=
√

3
2π

2α2mc2

3τE

ξ

γ

(∫ ∞

ν
K5/3(y)dy + ξ2

1 − ξ
K2/3(ν)

)
. (2.54)
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This reduces for χ << 1 to (2.47).

From integration of (2.54) over all photon energies we can derive the another
Lorentz invariant quantity - instantaneous power radiated away by the electron [70].
It has a form

Prad = P0α
2χ2g(χ), (2.55)

where
g(χ) = 9

√
3

8π

∫ ∞

0
dν

(
2ν2K5/3(ν)
(2 + 3νχ)2 + 4ν(3νχ)

(2 + 3νχ)4 K2/3(ν)
)

. (2.56)

The g(χ) is often called quantum correction. The radiated power Prad is only clas-
sical (Larmor) radiated power Pcl = P0α

2χ2 multiplied by the value of the quantum
correction. The classical limit can be retained in a limit χ → 0 ⇒ g(χ) → 1. This
approach of replacing Pcl for Prad may seem as heuristic, but it can be shown that
statistical average of the quantum effects provide the quantum correction naturally
[70].

One effect of this correction is that the emission of photons with higher energies
than the emitting particle (χγ > χ) is prevented. However, this is not the only
quantum effect. When χ approaches unity, even a single radiated photon can carry
a large portion of electron momentum. At this regime, the concept of continuous
radiation breaks down. Electron lose energy probabilistically, in discrete emissions.
The example of modelling of this stochastic emission is described in more details
in the next section. Now we can interpret the emission spectrum (2.54) as the
probability function of the photon energy at specific moment in time. Although two
electrons may possess identical values for γ and χ, they can still emit photons with
different energies, or none at all, resulting in distinct recoil. This is in contrast to
the classical notion, where the continuous loss of energy is attributed to the emission
of numerous photons, each having infinitesimal energy values. This is illustrated in
Fig. 2.1.

Figure 2.1: In the classical case (left), electron (with the trajectory depicted by the
red arrow) is under continuous loss of energy to radiation (yellow) under Landau-
Lifshitz force. In the quantum regime (right), the energy loss is discontinuous and
probabilistic. Adapted from T. Blackburn (2015) [71].
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2.4 Multiphoton Breit-Wheeler pair creation
The nonlinear Breit-Wheeler process (γ + nω → e− + e+), also known as the

multiphoton Breit-Wheeler process, involves the conversion of a high-energy photon
into an electron-positron pair through its interaction with a strong electromagnetic
field. For this process, the photon normalized energy γγ must be greater than 2.
This effect is significant for χ ≳ 1 [72].

The Ritus formulae [65] provide the energy distribution for the production rate
of pairs by a high-energy photon

d2NBW

dχ±dt
= αm2c4

π
√

3ℏεγχγ

∫ ∞

x

√
sK1/3

(2
3s3/2ds

)
−
(
2 − χγx3/2

)
K2/3

(2
3x3/2

)
, (2.57)

where x = (χγ/χ−χ+)2/3. The χ− and χ+ are the respective quantum parameters
for created electron and the positron after pair creation with χ− = χγ − χ+. Total
production rate can be written as

dNBW

dt
= αm2c4

ℏεγ

χγT (χγ), (2.58)

where

T (χγ) = 1
π

√
3χ2

γ

∫ ∞

0

[∫ ∞

x

√
sK1/3

(2
3s3/2ds

)
−
(
2 − χγx3/2

)
K2/3

(2
3x3/2

)]
dχ−.

(2.59)
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Chapter 3

Modelling of the radiation reaction

In this chapter, we focus on modelling of the radiation reaction force in different
regimes from classical, through semi-quantum to full quantum regime. Implemen-
tation of various algorithms in Smilei and Monte-Carlo algorithm implemented in
the EPOCH code are discussed in more details within this chapter.

3.1 The classical regime
In the classical regime, where χ << 1, the QED stochastic effects can be ne-

glected. The radiation reaction behaves as a continuous friction force acting on
particles. Relying solely on the Lorentz force to determine the particle motion and
subsequent emission results in an energy balance inconsistency. To resolve this,
equations (2.35) or (2.40) can be used as the equation of motion. This approach
ensures that the energy lost by the electron is matched by the energy carried away
in radiation [68]. Various models for the radiation reaction force in this regime have
been proposed [5]. Classical radiation reaction implementations in plasma simu-
lation codes have predominantly utilized the Landau-Lifshitz equation due to its
first-order momentum and relatively low computational cost. This approach has
been employed in several studies investigating radiation reaction effects in laser-
plasma interactions [6, 73]. These codes have been used to study radiation reaction
effects in laser–plasma interactions and also to study differences among different
implementations [1, 74].

Smilei employs models based on the Landau-Lifshitz (LL) equation adapted for
high Lorentz factors γ >> 1 [19]. It has been demonstrated that the LL force
combined with quantum corrections naturally arises from the complete quantum
description [70]. The implemented equation of motion has a form [18]

dp
dt

= FL + Frad, (3.1)

where FL is the Lorentz force and

Frad = P0α
2χ2g(χ) u

u2c
, (3.2)
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where u = p/mcγ. The quantum correction (2.56) is costly to compute for every
timestep. Smilei uses the fit function of g(χ) given by

g(χ) = [1 + 4.8(1 + χ) log(1 + 1.7χ) + 2.44χ2]−2/3. (3.3)
This model is called "corrected Landau-Lifshitz" or "CLL". This equation imple-
mentation is based on the leap-frog technique. In the Smilei input file, this purely
classical model is called "Landau-Lifshitz" or "LL", and uses the case for g(χ) = 1.
The spectrum (2.54) reduces to classical spectrum of synchrotron radiation. Classi-
cal radiation model is not included in EPOCH.

3.2 Intermediate, semi-quantum regime
During the intermediate regime, the energy of the emitted photons remains sig-

nificantly lower than that of the electrons emitting them. Despite this, the random
nature of photon emission cannot be disregarded. Consequently, a stochastic differ-
ential equation, obtained from a Fokker-Planck expansion of the complete quantum
(Monte-Carlo) model, can be used to describe the electron dynamics [70].

Smilei employs this semi-quantum regime as a change in electron momentum
during a time interval dt in a form [18]

dp = FLdt + Fraddt + mc2
√

R(χ, γ)dWu/u2c, (3.4)
where FL and Frad have the same definition as the CLL regime (with quantum
correction) and the stochastic force term (also called diffusion term) is proportional
to dW , a Wiener process of variance dt. This stochastic term allows to account
for the stochastic nature of high energy photon emission and also depends on the
function

R(χ, γ) = 2α2

3τe

γh(χ), (3.5)

where
h(χ) = 9

√
3

4π

∫ ∞

0

(
2χ3ν3

(2 + 3νχ)3 K5/3(ν) + 54χ5ν4

(2 + 3νχ)5 K2/3(ν)
)

. (3.6)

For the numerical implementation, dW is a random number generated using a nor-
mal distribution of variance equal to the simulation timestep ∆t. Smilei avoids the
computationally demanding direct computation of (3.6) during the emission process
by using tabulated values or fit functions for performance reasons. In terms of tab-
ulation, Smilei first checks for an external table at the specified path. If the table
is not present, it is computed at initialization and output to the current simulation
directory. To obtain polynomial fits of this integral, Smilei uses log-log high-order
polynomials of order 5 and 10, valid for quantum parameters between 0.1 and 10.
Used order 5 log polynomial has a form (here rounded up to 4 decimal places for
brevity)

h(χ) = exp(1.3999 · 10−4 log(χ)5 + 3.1237 · 10−3 log(χ)4 + 1.0966 · 10−2 log(χ)3−

−1.7340 · 10−1 log(χ)2 + 1.4927 · log(χ) − 2.7490). (3.7)
This model is available in Smilei under the name "Niel". Similarly as the classical
methods described in Sec. 3.1, the Niel method is not implemented in EPOCH.
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3.3 Quantum regime
In order to simulate fully quantum regime in the PIC codes, the Monte-Carlo

method is standardly used. The Monte-Carlo model of high-energy photon emission
is applicable for any value of the electron quantum parameter, provided that the
assumptions mentioned in Sec. 2.3 hold. It accurately describes high-energy photon
emission and its back-reaction on particle dynamics in the quantum regime [75]. In
this regime, photons with energies similar to those of the emitting particle can be
generated, causing abrupt jumps in particle energy/velocity. The stochastic nature
of high-energy photon emission is also significant. Consequently, the Monte-Carlo
approach is typically used to model discrete high-energy photon emission and its
impact on radiating particle dynamics.

The Monte-Carlo process implemented in Smilei [18] and EPOCH [76] PIC codes
follows the algorithms described by Duclous, R. in 2010 [16]. This algorithm is
complex and requires several steps:

1. To each particle, an incremental optical depth τ , which starts at 0, is assigned..
Once the particle reaches the final optical depth τf , the emission of the photon
occurs. The value of final optical depth is sampled as τf = log(η), where η is
a random number from the interval (0, 1). The optical depth τ evolves with
the field and particle energy according to

dτ

dt
=
∫ χ±

0

d2N

dχ′dt
dχ′ = 2α2

3τe

∫ χ±

0

G(χ±, χ′/χ±)
χ′ dχ′ = 2α2

3τe

K(χ±). (3.8)

Here, the χ± refers to quantum parameter for the emitting electron (χ−) or
positron (χ+). Due to the high computational cost of computing (3.8) for each
particle individually, the integral K(χ±) is tabulated. Smilei and EPOCH
allows to input custom table or used the default one.

2. In order to determine the quantum parameter of the emitted photon χγ, this
cumulative distribution function is inverted

ξ = P (χ±, χγ) =

∫ χγ

0
G(χ±, χ′/χ±)dχ′∫ χ±

0
G(χ±, χ′/χ±)dχ′

. (3.9)

A random number ϕ ∈ [0, 1] is generated and the value of χγ is found as

ϕ = ξ−1 = P (χ±, χγ)−1 (3.10)

Similarly to (3.8), the values of P (χ±, χγ) are tabulated in χ± and χγ directions
to save the computational time. The external tables can be also provided in
both Smilei and EPOCH codes.

3. The energy of the emitting photon is computed as

εγ = ℏω = mc2γ±χγ

χ±
, (3.11)

where γ± refers to the Lorentz factor of emitting electron/positron. The pho-
ton is then emitted in the forward direction. If a macro-photon is created,
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its initial position is at the position of the emitting particle with the same
numerical weight. The particle momentum is then updated as

dp = −εγ

c

p±

||p±||
, (3.12)

where p± refers to the momentum of the emitting positron/electron.

The resulting force follows from the recoil induced by the photon emission. Ra-
diation reaction is therefore a random and discrete process capturing the stochastic
nature of the radiation reaction. It should be noted that although momentum con-
servation is maintained, energy conservation is not exact. However, it has been
demonstrated [77] that as the energy of the particle increases to infinity, the error
approaches zero, and for ε± >> 1 and εγ << ε±, the error is negligible [77]. The
motion of the electron is governed by the Lorentz force during the periods between
radiation reaction emission events.

This regime can be specified in Smilei input file by the name "Monte-Carlo" and
in EPOCH, it can be enabled by including QED block in the input file.

3.4 Stochastic scheme of the Breit-Wheeler pair
creation

In both EPOCH [76] and Smilei [78], the Breit-Wheeler (B-W) process is treated
as a Monte-Carlo process similar to the radiation reaction described in the previous
section. Again, the implementations follow the algorithm described by Duclous, R.
in 2010 [16].

When this algorithm is enabled, a macrophoton is emitted from a macroparticle.
These macrophotons are defined by mass and charge equal to 0. The momentum
for macrophoton is defined as pγ = ℏk = γγmc, where k is the wave factor, γγ is
the photon Lorentz factor, m refers to electron mass and c is the photon velocity
vector with ||c|| = c. The B-W algorithm consists of these steps:

1. Incremental optical depth τ is assigned to a photon. The starting value is
τ = 0. Once the photon reaches the final optical depth τf , the creation of the
pair occurs. The value of final optical depth is sampled as τf = log(η), where
η is a random number from the interval (0, 1). The optical depth τ evolves
with the field and particle energy according to

dτ

dt
= dNBW

dt
(χγ). (3.13)

This is the production rate of pairs (2.58). This integral is tabulated in order
to save computational time.

2. In order to determine the quantum parameter of the created electron χ−, the
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following cumulative distribution function is inverted

P (χ−, χγ) =

∫ χ−

0

d2NBW

dχ′dt
dχ′

∫ χγ

0

d2NBW

dχ′dt
dχ′

. (3.14)

A random number ϕ ∈ [0, 1] is generated and the value of χ− is found as

ϕ = P (χ−, χγ)−1. (3.15)

Similarly to (3.13), the values of P (χ−, χγ) are tabulated to save the com-
putational time. The value of positron quantum parameter is computed as
χ+ = χγ − χ−. The external tables can be provided in both Smilei and
EPOCH codes.

3. The energy of the created electron is computed as

ε− = mc2γ− = mc2(1 + (γγ − 2)χ−/χγ), (3.16)

where γ− refers to the Lorentz factor of created electron. If the photon Lorentz
factor γγ < 2 the pair creation is not possible since the photon energy is below
the rest mass of the particles. After updating the momentum of the photon,
pairs are generated at its position with the same propagation direction. The
weight of the macro-photon is maintained in this process.

This algorithm is enabled in Smilei by specifying the "Monte-Carlo" radiation
model and adding a "MultiphotonBreitWheeler" block in the input file. In EPOCH,
this is enabled by specifying "produce_pairs = True" inside the QED block in the
input file.

3.5 Choosing the model for simulation
This concise section presents a table that provides information on multiple radia-

tion reaction regimes, their corresponding χ value, and the recommended radiation
reaction model to use for each regime. It should be noted that this table has been
directly sourced from the official Smilei documentation [18]. These values are based
on the previous scientific works [70].

Regime χ value Recommended models
Classical radiation emission χ ≲ 10−3 Landau-Lifshitz
Semi-quantum radiation emission χ ≲ 10−2 Corrected Landau-Lifshitz
Weak quantum regime χ ≲ 10−1 Stochastic model of Niel / Monte-Carlo
Quantum regime χ ∼ 1 Monte-Carlo
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Chapter 4

Results and discussion

In this chapter, we present the findings of a comparative study that was conducted
to investigate the implementation of radiation reaction in Smilei and EPOCH PIC
codes. The aim of the study was to evaluate the performance of these two codes
by running physically identical benchmarks in one and two dimensions. Also, the
implementation of the Breit-Wheeler pair creation was tested.

The simulation parameters were carefully selected to ensure that they were as
similar to each other as possible. The simulations were carried out for various values
of the laser intensities. By comparing the results obtained from the two codes,
we were able to gain valuable insights into the differences between the algorithms
implemented in the codes, and how they impact the accuracy of the simulations.

The details of the simulation setup are described in this chapter, including the
input parameters such as the number of particles, the size of the simulation domain,
and the time step used in the numerical solver. The simulations were conducted
using the Metacentrum computational grid.

4.1 Methods: Physics
Firstly, the simulations were conducted for one-dimensional (1D) and two-dimesional

(2D) case for radiation reaction effects only. Next, 1D and 2D case with enabled
Breit-Wheeler pair creation was also tested. Here, each case is described separately
in SI units. The EPOCH uses SI units as the parameter input, however Smilei uses
normalized units. The definition of these units is provided in Appendix B. Summary
of the simulation parameters is provided in Tab. 4.1 and 4.2.

4.1.1 1D case
In the 1D case, a 1 GeV monoenergetic electron beam with the uniform density of

1.1 × 1016 cm−3 and the beam duration of 2 fs propagates from the right boundary
towards the left boundary. From the left boundary, a counter-propagating circu-
larly polarized wave with a wavelength of λ = 1 µm is injected. For the study of
different behaviour of all studied algorithms under different quantum parameters,
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the intensity of the injected wave was gradually changed in each of the simulations.
The intensity values were I = 1.4×1018(a0 = 1), 1.4×1020(a0 = 10), 1.4×1022(a0 =
100), 9.9 × 1022(a0 = 270) W/cm2. The intensity I ∼ 1023 W/cm2 corresponds to
the current world record [4]. The laser has a super-Gaussian temporal profile of the
4th order with the full width at half maximum (FWHM) of approximately 33 fs (10
laser periods) with the initial center at t = 100 fs. This configuration of an electron
beam with a counter-propagating electromagnetic wave maximizes the value of the
quantum parameter χ for the given electron energy and field strength and is the
most effective to trigger QED effects [66].

Length of the simulation window is 30 µm. Total simulation time is 200 fs. The
value of CFL constant is 0.95. Injected wave collides with the electron beam in the
middle of the simulation window. This is accomplished by freezing the particles in
time from t = 0 to t = 116 fs. The theoretical maximum value of the quantum
parameter χtheory

max was calculated from (2.43).

At the beginning of the simulation, 64 macro-particles per cell were created.
These have a 5 point stencil as their shape function (1.17). There are 3840 cells
in x direction. The Maxwell solver is "Yee". A Boris pusher is used as a particle
pusher. Particles are initialized with temperature T = 0 K to simulate mono-
energetic beam. At both ends, open-boundary conditions are used, "silver-muller" in
Smilei and "Simple Laser" in EPOCH. Radiation models used in Smilei are "Landau-
Lifshitz", "corrected-Landau-Lifshitz", "Niel" and "Monte-Carlo". The parameters
for minimum χ value to produce a photon was set to be 10−5. In EPOCH, a
QED radiation reaction module was enebled with Monte-Carlo generator. The limit
for minimal photon energy was set to 0. The input file for these simulations are
provided in the Github repository [79] with filenames ’1d_qed_smilei.py’ (Smilei)
and ’1d_qed_epoch.deck’ (EPOCH). These input file present an example case for
a0 = 100 and χtheory

max = 1.

4.1.2 2D case
In two dimesions, the simulation window is a box size 30 µm × 4 µm in x and

y directions, respectively. Cell count is 1920 × 256. The bunch duration is 2 fs and
bunch width is 0.16 µm. The wave is linearly polarized in the y direction. The
injected electromagnetic wave was chosen as a planar wave for simplicity. This is
approximated by a Gaussian spatial profile in the y direction, with the beam waist of
160 m. The wave is focused in the middle of the simulation window. For the 2D case,
32 particles per cell are generated. The boundary conditions in the new y direction
are defined as periodic. Every other simulation parameter is identical to the previous
case. The input file for these simulations is provided in Github repository [79] with
filenames ’2d_qed_smilei.py’ (Smilei) and ’2d_qed_epoch.deck’ (EPOCH). These
input file present an example case for a0 = 100 and χtheory

max = 1.

4.1.3 Breit-Wheeler pair creation
For the comparative study of Breit-Wheeler (BW) pair creation, the simulation

parameters in 1D and 2D are identical to the previous respective cases, with two ex-
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ceptions. The electron beam kinetic energy is 4 GeV, and only Monte-Carlo radiation
reaction model is studied in Smilei. The studied intensity is I = 1.4 × 1022 W/cm2

(a0 = 100). These parameters were selected to maximize the pair creation, with
expected χtheory

max = 3.8. The Breit-Wheeler pair creation with the respective param-
eters is enabled in the input files. The input file for these simulations is provided
in Github repository [79] with filenames ’1d_BW_smilei.py’, ’2d_BW_smilei.py’
(Smilei) and ’1d_BW_epoch.deck’, ’2d_BW_epoch.deck’ (EPOCH).

Parameter Value
Laser wavelength 1.0 µm
Laser pulse duration 33 fs FWHM
Minimum examined intensity 1.4 ×1018 W/cm2 (a0 = 1)
Maximum examined intensity 9.9 ×1022 W/cm2 (a0 = 270)
Electron energy 1 GeV (no B-W); 4 GeV (BW)
Electron density 1.1 ×1016 cm−3

Electron bunch duration 2 fs
Electron bunch width 0.16 µm

Table 4.1: Physics parameters used in the simulations.

Dimensions 30 µm (1D);
30 µm × 4 µm (2D)

Time 200 fs
CFL constant 0.95
Pusher Boris algorithm
Maxwell solver Yee
Particles per cell 64 (1D); 32 (2D)

Table 4.2: Used simulation parameters.

4.2 Results of 1D simulations
In this section, we present the outcomes of 1D simulations. Each case is accom-

panied by 3 graphs. The first graph depicts the total kinetic energy of electron beam
as a function of time, while the second graph represents the total radiated energy
as a function of time. The left y-axis of these graphs displays the corresponding
energies ε relative to the initial total energy in the simulation εtot(t = 0). The right
y-axis displays the energies in Joules. The third graph displays the comparison of
total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic energy from
EPOCH εMC

EP OCH for the MC algorithm expressed in relative units as a function of
time. We present the results for four different scenarios, namely, χtheory

max = 0.01 (Fig.
4.1), χtheory

max = 0.1 (Fig. 4.2), χtheory
max = 1 (Fig. 4.3), and χtheory

max = 2.6 (Fig. 4.4).

For the case with enabled pair creation via BW algorithm with χtheory
max = 3.8

(Fig. 4.5), the first graph shows the comparison of total kinetic energy in electrons,
positrons and total radiated energy over time. This is again shown in relative (left
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y axis) and SI units (right y axis). The second graph is again the comparison of
total electron kinetic energy ε from both PIC codes over εEP OCH . In Smilei, only
MC radiation reaction model was considered.

In the instance, where χtheory
max = 0.01 (Fig. 4.1), the findings indicate that the

radiated energy derived from the Monte Carlo (MC) algorithm in Smilei is lower than
that of other algorithms. This difference is very minor in relative terms. Results
from other algorithms are comparable to each other. This is expected results, since
this χ range is inside all considered domains of applicability.

For χtheory
max = 0.1 (Fig. 4.2), the LL algorithm started to show higher rates of

emission compared to other algorithms. This was expected, as reached χ values
are outside of the domain of applicability for this algorithm. Other algorithms
reached comparable results, including both MC algorithms, where the difference
was minimal.

For χtheory
max = 1 (Fig. 4.3), the classical LL algorithm deviated even more from

other algorithms. Interestingly, the CLL is still comparable to Niel and MC algo-
rithms even outside the domain of applicability. This can be caused by a fact that
χtheory

max is only theoretical maximum value expected during the simulation. Reached
values of χ are usually lower and might be closer to the CLL domain of applicability.
Niel algorithm was also comparable to both MC algorithms. Smilei MC algorithm
showed higher electron kinetic energy (by as high as 6%) and started to radiate
later. However, the final kinetic energy values are comparable.

For χtheory
max = 2.6 (Fig. 4.4), the LL algorithm overestimated the radiated energy.

The CLL and Niel algorithms estimations were comparable to Smilei MC, however
the radiated energy was lower during the interaction with the laser. These are
remarkable results, as the reached intensities were far outside their respective domain
of applicability. Furthermore, the Smilei MC algorithms again exhibited a delayed
onset of radiation and a higher electron kinetic energy compared to the EPOCH
simulation due to different stochastic process. The electron kinetic energy reached
values up to 10% greater compared to EPOCH during the interaction. However,
the final energy values were again comparable for both codes. Total radiated energy
during the simulation was greater than one. This could possibly be a result of
electrons oscillating in the electromagnetic field and radiating continuously.

In the BW case with χtheory
max = 3.8 (Fig. 4.5), the results obtained from both PIC

codes are comparable. Specifically, the Smilei algorithm again exhibited a delayed
start of radiation than EPOCH, yet the total radiated energy was ultimately greater
in Smilei at the end of the simulation. This can be caused by the stochastic nature
of the MC algorithm. Overall, the results from both codes were similar, including
the number of generated positrons.

The LL algorithm deviated from other algorithms for χtheory
max = 0.1 and higher.

This was expected result. The CLL algorithm was reasonably accurate in each
case, even for χtheory

max = 2.6 with slight deviation. However, this algorithm does not
account for the stochastic effects on particle motion. Niel algorithm was comparable
to MC in each case, with minor underestimating of the radiation for χtheory

max =
2.6 compared to MC. For stochastic MC algorithms, Smilei showed delayed onset
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of radiation in each case compared to EPOCH. The difference in electron kinetic
energy during the interaction was up to 10%. However, the energy balances of
MC algorithms in both PIC codes were comparable and didn’t show any significant
deviation to one another.
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Figure 4.1: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 0.01. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈
0.01. The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).

44



Figure 4.2: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 0.1. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈
0.1. The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).
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Figure 4.3: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 1. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈ 1.
The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).
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Figure 4.4: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 2.6. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈
2.6. The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).
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a)

Figure 4.5: a) The comparison of total kinetic energy of electron/positron and total
radiated energy ε over total initial kinetic energy in the simulation εtot for enabled
BW algorithm with χtheory

max ≈ 3.8. b) The comparison of total kinetic energy of
electrons in Smilei εMC

Smilei over the total kinetic energy from EPOCH εMC
EP OCH for the

MC algorithm (black line).

48



4.3 Results of 2D simulations
In this section, we present the outcomes of 2D simulations. Again, each case is

accompanied by 3 graphs similar to previous section. We present the results for
four different scenarios, namely, χtheory

max = 0.01 (Fig. 4.6), χtheory
max = 0.1 (Fig. 4.7),

χtheory
max = 1 (Fig. 4.8), and χtheory

max = 2.6 (Fig. 4.9). The comparison of BW pair
production algorithm for χtheory

max = 3.8 is shown in Fig. 4.10.

The conclusions from simulations χtheory
max = 0.01, 0.1, 1 are identical to the previ-

ous section for 1D case. For χtheory
max = 0.1 and χtheory

max = 1, the LL algorithm showed
higher rates of emission compared to other algorithms, while the CLL algorithm
remained comparable to Niel and MC algorithms even outside the domain of ap-
plicability. The Smilei MC algorithm showed higher electron kinetic energy during
the interaction and started to radiate later, but the final kinetic energy values are
comparable to EPOCH. For χtheory

max = 2.6, total kinetic energies for LL and CLL
algorithms oscillate after the photon emission. Again, this could possibly be a re-
sult of electrons oscillating in the electromagnetic field and radiating continuously.
Also, the difference between total kinetic energy after the interaction in Smilei and
EPOCH MC algorithms grew slightly beyond 10%. In the BW case, the results from
both PIC codes are almost identical in terms of the energy balance.
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Figure 4.6: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 0.01. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈
0.01. The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).
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Figure 4.7: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 0.1. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈
0.1. The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).
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Figure 4.8: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 1. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈ 1.
The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).
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Figure 4.9: a) The comparison of total kinetic energy of electron ε over total initial
kinetic energy in the simulation εtot for χtheory

max ≈ 2.6. b) The comparison of total
radiated energy ε over total initial kinetic energy in the simulation εtot for χtheory

max ≈
2.6. The axis on the right side shows the energy in Joules for comparison. c) The
comparison of total kinetic energy of electrons in Smilei εMC

Smilei over the total kinetic
energy from EPOCH εMC

EP OCH for the MC algorithm (black line).
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a)

Figure 4.10: a) The comparison of total kinetic energy of electron/positron and total
radiated energy ε over total initial kinetic energy in the simulation εtot for enabled
BW algorithm with χtheory

max ≈ 3.8. b) The comparison of total kinetic energy of
electrons in Smilei εMC

Smilei over the total kinetic energy from EPOCH εMC
EP OCH for the

MC algorithm (black line).
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4.4 Performance benchmarks
For completeness, we include the performance benchmarks of EPOCH and Smilei

PIC codes for both one-dimensional and two-dimensional simulations. These bench-
marks are illustrated in Figure 4.11 and Figure 4.12, respectively. The reported times
represent the duration of the core algorithm computation without any data output,
except a text file containing the main parameters of the computation. In both
cases, the Monte Carlo (MC) algorithm was employed to handle radiation reaction.
The benchmarks were run on one machine with 4 processors on the Metacentrum
computational grid. Parallelization was handled by the MPI protocol.

When the BW algorithm was disabled, the benchmarked scenario was the case
when χtheory

max = 1, for both 1D and 2D simulations. When the BW algorithm was
enabled, the simulation corresponded to χtheory

max = 3.8. We conducted five identical
simulations for each case. The computed time value represents the statistical mean
of the computation time, denoted as x = ∑5

1 xi/5, where xi denotes the recorded
computation time. The standard deviation was computed as σ =

√∑5
1(xi − x)2/5.

In both the 1D and 2D benchmarks, we observed that the computation time for
both the EPOCH and Smilei particle-in-cell (PIC) codes was quite similar when
BW algorithm was disabled, with Smilei demonstrating slightly faster performance.
However, in the case where the BW algorithm was enabled, we noted that EPOCH
outperformed Smilei by almost 30% in the 1D scenario and by 10% in the 2D
scenario.

Several factors could be responsible for this difference, including inefficient par-
allelization for the utilized computational grid (Metacentrum), differencies in the
implemented optimization settings between the two codes, and other underlying
differences in their respective algorithms. Further optimization of the paralleliza-
tion in the Smilei code by using the OpenMP protocol could also potentially improve
the Smilei performance.
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Figure 4.11: Performance benchmarks for 1D simulations with disabled and enabled
BW algorithms.
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Figure 4.12: Performance benchmarks for 2D simulations with disabled and enabled
BW algorithms.
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Conclusion

This thesis is focused on the generation of radiation during laser and particle
beam interaction in particle-in-cell codes. These radiation reaction recoil effects will
have a great importance in laser-plasma interactions in the next generation of PW
laser facilities.

The first chapter describes the core of the PIC algorithm. This theory starts
with Maxwell-Vlasov model of plasma description, continues with the definitions
of macro-particles and explains all steps used in the basic PIC loop, including the
interpolation of electromagnetic field, the particle pusher, the current deposition
algorithm and Maxwell solvers based on the Yee grid. A brief description of grid
computing and a summary of popular PIC codes is also provided. The second
chapter contains the theory of radiation reaction. This includes the derivation of
the LAD equation from the Lorentz force, the solution of the classical approach in
terms of the Landau-Lifshitz equation, the quantum parameter and quantum cor-
rection. Also, a short description of the process for Breit-Wheeler pair creation is
provided. In the third chapter, various regimes of radiation reaction are described.
The corresponding algorithms implemented in PIC codes for these regimes are il-
lustrated. Furthermore, the model for implementing Breit-Wheeler pair creation is
explained.

In the 4th chapter, we compared different algorithms for the modelling of radia-
tion reaction implemented in Smilei (LL, CLL, Niel, MC) and EPOCH (MC) PIC
codes. In our simulations, an ultra-relativistic electron beam is made to collide with
a counter-propagating planar electromagnetic wave. This setup is very effective for
triggering the radiation reaction effects. To simulate different radiation reaction
regimes, four different scenarios were simulated, with the maximum possible values
of the quantum parameter ranging from χtheory

max = 0.01 to 2.6. This was done to sim-
ulate classical, semi-quantum and full quantum regime. The simulation outcomes
are presented in three graphs for each case: one for the evolution of total kinetic
energy of electrons, one for the evolution of total radiated energy, and for the com-
parison of the electron kinetic energy from Smilei MC algorithm relative to that of
EPOCH. Lastly, the comparison of the implementation of the Breit-Wheeler pair
production is presented, with the evolution of total electron and positron kinetic
energy, total radiated energy in the first graph and the comparison of the electron
kinetic energy from Smilei and EPOCH MC algorithm in the second graph. The
results for 1D simulations are presented first in Fig. 4.1 - 4.5, followed by the results
from 2D simulations in Fig. 4.6 - 4.10.
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The comparison reveals that the LL algorithm is suitable for lower intensity ap-
plication with maximum quantum parameter value χtheory

max ≈ 0.01, according to
expectations. However, it is not applicable for high-intensity interactions with
χtheory

max ≳ 0.1, since this algorithm overestimates the radiated energy. This was
true in both 1D and 2D case. The CLL algorithm show a good agreement in terms
of total radiated energy for χtheory

max ≈ 0.01 − 1 with more accurate algorithms, even
without accounting for the stochastic effects that are significant for higher intensi-
ties. These results are likewise similar for 1D and 2D. However, for the 2D with
χtheory

max ≈ 2.6, CLL (along with LL) started to show rapid oscillations in total kinetic
energy of electrons. We suspect that this effect is due to the fact that electrons
started to to oscillate in the laser field during the interaction. However, further
analysis would be required to test this hypothesis.

Surprisingly, the Niel algorithm is comparable to the MC algorithms in the whole
χtheory

max range studied here, capturing stochastic effects of the radiation reaction.
This is true in both 1D and 2D. This algorithm can provide a good alternative
to computationally demanding MC algorithm, nevertheless more research would be
needed to verify this results for higher values of χtheory

max .

Outcomes from the MC algorithm implemented in both Smilei and EPOCH were
qualitatively comparable in the whole range of χtheory

max and for both 1D and 2D
geometries. This is not surprising, since both PIC codes implemented the same MC
routine. The MC algorithms are well sufficient for all the χtheory

max studied here, fully
capturing the stochastic effects of radiation reaction. The results of energy balance
from both PIC codes are also comparable when pair creation via BW algorithm was
enabled. In general, only notable difference between the codes is that the Smilei
MC algorithm exhibits a slightly delayed onset of radiation in most cases compared
to EPOCH. Performance of the codes was also comparable, with EPOCH showing
slightly better performance for the BW pair creation algorithm.

Overall, the results confirm that the MC and Neil algorithms are more accurate
in high-intensity scenarios, while the LL and CLL algorithms are suitable for lower
intensities. Results also indicate that the choice of the algorithm and its domain
of applicability are critical factors in accurately predicting radiation emission in
particle-in-cell simulations. Both Smilei and EPOCH implement Monte Carlo al-
gorithms that yield comparable results with high accuracy. However, in contrast
to EPOCH, Smilei also incorporates computationally less intensive algorithms (LL,
CLL, Niel), which can produce accurate results for lower quantum parameters χ.
This allows the user to have a wider range of algorithmic options to choose from,
based on the specific needs.
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Appendix A

Boris pusher algorithm

The Boris algorithm was proposed in 1970 [38]. It uses following substitutions in
(1.30)

u(n−1/2) = u− − qp∆t

2mp

E(n)
p , (A.1)

u(n+1/2) = u+ + qp∆t

2mp

E(n)
p . (A.2)

Inserting this into (1.30), we get

u+ + qp∆t
2mp

E(n)
p − u− + qp∆t

2mp
E(n)

p

∆t
= qp

mp

[
E(n)

p +
u+ + qp∆t

2mp
E(n)

p + u− − qp∆t
2mp

E(n)
p

2γ(n) ×B(n)
p

]
.

(A.3)
Here, the contributions from the electric field E(n)

p are cancelled. The result is

u+ − u−

∆t
= qp

mpγ(n) u(n) × B(n)
p , (A.4)

where u(n) = (u(n+1/2) + u(n−1/2))/2 = (u+ + u−)/2. The Lorentz factor is set to
be constant during the operation, so γ+ = γ−. We know the velocity u(n−1/2), so
we also know u−. The implicit equation (A.4) can be solved by inverting a 3 × 3
matrix. The phase angle in the rotation (A.4) is given by

θ = qp∆t

mpγ(n) B, (A.5)

where B = |B|.

There are two choices for computing the u(n+1/2). The one proposed by Boris in
the original paper with

t = tan θ

2b(n)
p , (A.6)

where b(n)
p = B(n)

p /|B(n)
p | is a unit vector. The subsequent textbooks used the fol-

lowing simplified approximation [26, 39]

t(n)
p = θ

2b(n)
p = qp∆t

2mpγ(n) B(n)
p . (A.7)
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We call these two procedures the Boris-A and the Boris-B pusher, respectively. We
can compute

u(n) = u− + u− × t(n). (A.8)
Afterwards

u+ = u− + 2
1 + |t(n)|2

u(n) × t(n). (A.9)

This is then used in (A.2) and u(n+1/2) is computed. The Boris-A pusher handles
the rotation accurately. The Boris-B pusher is an approximate form of the original
Boris-A pusher and is wildly used in PIC codes, because of its simplicity and lower
computational cost [39]. The accuracy of this algorithm was proven in theoretical
studies, as well as in practice [80].
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Appendix B

Normalized units used in Smilei

For completeness, the Tab. B.1 with dimension-less reference units used in Smilei
is included here. The basis of this system is the unit value for the speed of light,
elementary charge and electron mass [81].

Reference unit SI value
Electric charge Qr e
Electron mass Mr me

Velocity Vr c
Energy Kr mec

2

Momentum Pr mec
Time Tr 1/ωr

Length Lr c/ωr

Electric field Er mecωr/e
Magnetic field Br meωr/e
Particle density Nr ε0meω

2
r/e2

Current Jr ceNr

Table B.1: The table with the reference units used in Smilei and their correspong SI
units. The value of reference angular frequency ωr is used to give physical dimention
to the simulation and can be changed in the postprocess. However, it must be spec-
ified in the input file for radiation reaction module to work. Usually, ωr corresponds
to the laser frequency.
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