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Abstract
Dental caries belongs among the most
prevalent diseases on a global scale with
more than 3.5 billion people affected. It
significantly damages teeth and untreated
could cause even loss of the tooth. Af-
ter clearing the tooth from caries, the
damages must be cleaned and closed and
we need to restore the tooth’s integrity
and functionality. A restoration is cho-
sen with respect to the damage done and
the tooth’s position. With progressing
technologies, there is no need to use ex-
clusively amalgam fillings. There is quite
a number of other materials for fillings or
possibilities of different methods. How-
ever, these methods are developed to hide
damage and make the restoration as invis-
ible as possible. This makes its detection
quite challenging.
Teeth restorations are made in such a way,
that they resemble teeth texture. This
makes it difficult to find them, but it is
still possible when cautious. However, it
is impossible to tell the restoration’s over-
all shape and how deep it goes. Following
this fact, X-ray images, which are widely
used for caries detection and overall view
of the structure of teeth, are being used
even for restoration recognition. How-
ever, due to evolving materials, many of
them are barely visible and resemble teeth
which makes them easy to overlook.
This work addresses this problem and tries
to develop a tool for teeth restoration seg-
mentation which could help with the de-
tection and estimation of their size and
shape. It follows and improves the work
of Mr Kunt. We came up with an idea
to filter out images without any restora-
tions with another tool which does not
have to make decisions for every pixel.
With the employment of an object detec-
tion model, our results achieve an average
0.88 in DSC. With the help of our model,
dentists could focus their work on trouble-

some images and double-check their work.
Thanks to its high sensitivity it could be
used as a screening tool for dentists to
quickly check where are any restorations
and then annotate them.

Keywords: filling, restoration, teeth,
denture, artificial intelligence,
convolutional neural network,
segmentation
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Abstrakt

Zubní kaz je jedním z nejrozšířenějších
onemocnění na světě. Postihuje více než
3.5 miliard lidí. Výrazně poškozuje chrup
a může způsobit až jeho ztrátu. Po odstra-
nění zubního kazu je nutné zbylé tvrdé
zubní tkáně překrýt, zabránit dalšímu ší-
ření zubního kazu a obnovit funkčnost
zubu. Podle rozsahu poškození zubu a
podle jeho polohy v dutině ústní se zvolí
vhodná metoda pro opravu. Jak technolo-
gie pokročily, nemusí se již využívat pouze
amalgámových zubních výplní. Využívá
se celá škála materiálů pro zubní výplně
nebo i jiné typy ošetření. Tyto ošetření
jsou s postupujícími technologiemi méně
viditelné přímým pohledem i na rentgeno-
vých snímcích.
Novodobá zubní ošetření imitují barvou i
materiálem tvrdé zubní tkáně a byť jsou
většinou detekovatelné pomocí pečlivé in-
spekce za pomoci zubní sondy, určení je-
jich rozsahu zejména do hloubi zubních
struktur vyžaduje použití pomocných vy-
šetřovacích metod. Široce se tedy využívá
rentgenových snímků, které se používají
i pro detekci zubních kazů a pohledu na
celkovou strukturu chrupu.
Tato práce se zaměřuje na segmentaci zub-
ních výplní a ošetření pro usnadnění práce
při jejich lokalizaci a odhadu tvaru a ve-
likosti. Navazuje na práci pana Kunta a
vylepšuje jeho stávající model. Přišli jsme
s tím, nejdříve odfiltrovat snímky, které
neobsahují zubní výplně, nějakým jiným
nástrojem, který nemusí udělat rozhod-
nutí pro každý pixel. Po zapojení detekce
naše výsledky dosahují průměrných hod-
not až 0.88 v DSC. Za pomoci našeho
modelu zubaři dále upravují anotace pro
další vývoj tohoto nástroje. Díky vysoké
citlivosti jej lze využít i jako screening
techniku pro nalzení výplní, které se tak
snáze označí.

Klíčová slova: výplň, náhrada, zuby,
chrup, umělá inteligence, konvoluční
neuronová síť, segmetace

Překlad názvu: Segmentace zubních
výplní v X-ray bitewing snímcích

v ctuthesis t1606152353



Contents
1 Introduction 3

2 Medical background 5

2.1 Human teeth . . . . . . . . . . . . . . . . . . 5

2.1.1 Structure of teeth . . . . . . . . . . . 5

2.2 Dental caries . . . . . . . . . . . . . . . . . . 7

2.2.1 Cause . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Treatment . . . . . . . . . . . . . . . . . 7

2.3 Restorations . . . . . . . . . . . . . . . . . . 8

2.3.1 Direct restorations . . . . . . . . . . 8

2.3.2 Indirect restorations . . . . . . . . . 9

2.3.3 Dental crowns . . . . . . . . . . . . . 10

2.3.4 Dental implants . . . . . . . . . . . . 11

2.3.5 Dental bridges . . . . . . . . . . . . . 11

2.4 X-ray . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Diagnosis . . . . . . . . . . . . . . . . . 11

3 Theoretical background 15

3.1 Computer vision tasks . . . . . . . . . 15

3.1.1 Classification . . . . . . . . . . . . . . 15

3.1.2 Semantic segmentation . . . . . 15

3.1.3 Instance segmentation . . . . . . 15

3.1.4 Object detection . . . . . . . . . . . 16

3.2 Supervised and semi-supervised
learning . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Methods . . . . . . . . . . . . . . . . . . 18

3.3 Metrics . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Deep learning architecturs . . . . . 23

3.4.1 SegNet . . . . . . . . . . . . . . . . . . . 23

3.4.2 U-Net . . . . . . . . . . . . . . . . . . . . 24

3.4.3 U-Net++ . . . . . . . . . . . . . . . . . 24

3.4.4 YOLO . . . . . . . . . . . . . . . . . . . . 25

4 Related work 27

5 Dataset 29

5.1 Stage 1 . . . . . . . . . . . . . . . . . . . . . . 29

5.2 Stage 2 . . . . . . . . . . . . . . . . . . . . . . 30

6 Methods 33

6.1 Experiments with backbone model
architecture . . . . . . . . . . . . . . . . . . . . 33

6.2 Finding best working
augmentation . . . . . . . . . . . . . . . . . . 35

6.3 Filtering out images without
restorations . . . . . . . . . . . . . . . . . . . . 37

6.4 Hyperparameters experiments . . 41

6.5 Semi-supervised learning . . . . . . . 42

7 Results 47

7.1 Image classification . . . . . . . . . . . 47

7.2 Supervised segmentation . . . . . . . 47

7.3 Semi-supervised learning . . . . . . . 48

8 Conclusion and further
suggestions 53

A Bibliography 57

A.1 Useful links and solutions . . . . . 62

A.1.1 CVAT Exports Corrupt COCO
File . . . . . . . . . . . . . . . . . . . . . . . . . . 62

ctuthesis t1606152353 vi



Figures
1.1 Teeth chart used by dentist to

write down any work done. Source:
www.xdent.cz . . . . . . . . . . . . . . . . . . . 4

2.1 Structure of teeth . . . . . . . . . . . . . . 6

2.2 Direct restoration using amalgam.
Source: www.nzip.cz . . . . . . . . . . . . . 8

2.3 Difference among inlays, onlays
and overlays. Source:
www.dubrovnik-dental.clinic . . . . . 10

2.4 Dental crowns are cemented on the
prepared affected tooth. Source:
www.clevelandclinic.com . . . . . . . . . 10

2.5 Dental implant, Source:
www.nzip.cz . . . . . . . . . . . . . . . . . . . 11

2.6 Dental bridge covering empty
spaces after missing teeth. Source:
www.nzip.cz . . . . . . . . . . . . . . . . . . . 11

2.7 Image from bitewing X-ray with
clearly visible restoration . . . . . . . . 12

2.8 Image from periapical x-ray
showing whole teeth. Source:
www.dentist-manila.com . . . . . . . . . 13

2.9 Image from panoramatic x-ray.
Source: www.minthilldentistry.com 14

3.1 Difference between semantic and
instance segmentation. Source:
www.analyticsvidhya.com . . . . . . . . 16

3.2 Architecture of neural network
proposed by [39] . . . . . . . . . . . . . . . . 24

3.3 U-net++ is supposed to be
improved version with more dense
skip connections . . . . . . . . . . . . . . . . 25

5.1 Sample x-ray image and
corresponding segmentation mask.
We can see metalic (bright white) and
composite (lower contrast compared
to tooth) direct restoration . . . . . . . 30

5.2 Sample images containing dental
implant and dental bridge. We can
even notice white artifact at the top
of the right image. Such phenomena
originates from lower precision when
taking the image. . . . . . . . . . . . . . . . 30

5.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.1 Displaying the influence of depth,
upsampling layer and model
architecture. We tried to use
transposed convolution with
U-Net++ and deeper U-Net, but it
did not fit into GPU’s memory even
if the image was scaled with factor
0.1. We did not try to scale it down
even more, because as we can see
from charts 5.3 and 5.4 most of the
restorations are quite small and we
would probably lose crucial
information regarding these
restorations. . . . . . . . . . . . . . . . . . . . 34

6.2 Results of models with only some
augmentation enabled . . . . . . . . . . . 36

6.3 Results of the learned model on
newly annotated testing data . . . . . 37

6.4 Results of U-Net based
classification techniques . . . . . . . . . 38

6.5 Results of U-Net based
classification techniques . . . . . . . . . 39

6.6 Results of YOLO image
classification based on the number of
epochs it was training for . . . . . . . . 39

vii ctuthesis t1606152353



6.7 Results of YOLO image
classification with focus on the best
performing models. We can see that
after while the model is overfiting the
data. . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.8 Process of learning with different
learning rate settings. 1e-5 turned
out to be optimal. It could be
optimized even more with more
specific search, but it would not
probably bring such significant
improvement. . . . . . . . . . . . . . . . . . . 41

6.9 Difference between training with
downscaled images and images in full
resolution. Compared when training
U-Net. . . . . . . . . . . . . . . . . . . . . . . . . 42

6.10 Evolution of TP DSC in time
with naive pseudo labels learning . 43

7.1 Sample from images, which YOLO
could not classify correctly . . . . . . . 48

7.2 We can see the main difference in
the ability to correctly segment low
contrast restorations. . . . . . . . . . . . 50

7.3 These histograms show how many
images with each score was
segmented. We compare deep
learning model (blue) with student B
(red). Such histograms can tell us
that vast majority of predictions are
good and only small number of
troubelsome images are hard to
automatically segment. Note that the
y axis of histograms is not the same 51

7.4 We can see comparison of several
models with student B. From goes
input image and ground truth (red
highlights), pseudolabels, consistency
learning, fully supervised learning
and student B. Green pixels are true
positive, red are false positive and
blue are false negative. We can see
that student did not notice low
contrast restoration in lower left
tooth, while models managed to
capture it. . . . . . . . . . . . . . . . . . . . . . 51

8.1 Image sample with well visible
braces. The model recognizes some
dental work, however ground truth
would mark this prediction as false,
because we do not mark braces and
retainers. More of such images are in
training set. . . . . . . . . . . . . . . . . . . . . 54

8.2 Image sample with white shadow
artifact caused when taking x-ray
image without sufficient precision. 55

ctuthesis t1606152353 viii



Tables
6.1 Displaying the influence of depth,

upsampling layer and model
architecture on DSC. All of these
tests were conducted with no scaling
of the images. . . . . . . . . . . . . . . . . . . 34

6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3 Models and their results if we set
such a threshold to achieve the
highest accuracy . . . . . . . . . . . . . . . . 40

6.4 DSC and True positive DSC of best
performing supervised U-Net model 43

6.5 Results of consistency learning
with new model trained from scratch
and only with labeled data . . . . . . . 44

6.6 Results of consistency learning
with pretrained model (DSC 0.842,
TP DSC 0.853) on labeled data only 45

6.7 Results of consistency learning
with pretrained model (DSC 0.842,
TP DSC 0.853) on both labeled and
unlabeled data . . . . . . . . . . . . . . . . . 45

6.8 Results of combined pseudolabels
and consistency learning . . . . . . . . . 45

7.1 Results of YOLO used for
classification of x-rays . . . . . . . . . . . 48

7.2 As these students were volunteers,
we only asked them to annotate
validation data of one fold. That
consists of 98 images. This table then
depicts result only for one fold of
validation data . . . . . . . . . . . . . . . . . 48

7.3 Nine fold Cross-validation of
models. We can see that
semisupervised techniques did not
outperformed fully supervised model.
It even worsened the ability of the
model to recognize that there are no
restorations in the picture . . . . . . . 49

7.4 This table compares performances
of models and dentist student in
several metrics on testing data. Mean
DSC (mean IoU repectively)
computes DSC (IoU) for each image
and then computes mean. DSC (IoU)
over all pixels counts all TP, FP and
FN pixels and then computes DSC
(IoU) from those. Precision and
Recall in this table are also computed
for each pixels, because we know the
values for image classification from
Table 7.1 . . . . . . . . . . . . . . . . . . . . . . 49

ix ctuthesis t1606152353



ctuthesis t1606152353



ZADÁNÍ BAKALÁŘSKÉ PRÁCE​

I. OSOBNÍ A STUDIJNÍ ÚDAJE 

499118 Osobní číslo:​David Jméno:​Grundfest Příjmení:​

Fakulta elektrotechnická Fakulta/ústav:​

Zadávající katedra/ústav:    Katedra teorie obvodů 

Lékařská elektronika a bioinformatika Studijní program:​

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI 

Název bakalářské práce:​

Segmentace zubních výplní z bitewing rentgenových snímků  

Název bakalářské práce anglicky:​

Segmentation of dental restorations from bitewing X-ray images  

Pokyny pro vypracování:​
 ​

Seznam doporučené literatury:​
1.Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. "U-net: Convolutional networks for biomedical image segmentation."​
MICCAI: International Conference on Medical image computing and computer-assisted intervention. Springer, Cham,​
2015.​
2.Kunt L. "Dental caries detection from bitewing X-ray images.", diplomová práce ČVUT FEL, 2022.​
3.Redmon, Joseph and Farhadi, Ali YOLOv3: An Incremental Improvement. (2018). , cite arxiv:1804.02767​

Jméno a pracoviště vedoucí(ho) bakalářské práce:​

prof. Dr. Ing. Jan Kybic     algoritmy pro biomedicínské zobrazování   FEL 

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:​

   

Termín odevzdání bakalářské práce:   26.05.2023 Datum zadání bakalářské práce:   20.02.2023 

Platnost zadání bakalářské práce:   16.02.2025 

___________________________​___________________________​___________________________​
prof. Mgr. Petr Páta, Ph.D.​

podpis děkana(ky)​
doc. Ing. Radoslav Bortel, Ph.D.​

podpis vedoucí(ho) ústavu/katedry​
prof. Dr. Ing. Jan Kybic​

podpis vedoucí(ho) práce​

III. PŘEVZETÍ ZADÁNÍ 
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1 



ctuthesis t1606152353 2



Chapter 1

Introduction

As of 2017, dental caries was the most prevalent disease globally[12], with
more than 3.5 billion affected. There are several ways to treat this condition,
each having similar goal - to remove the dental caries in order to prevent it
from spreading, to hermetically cover the remaining tooth structures and to
restore the integrity and function of the affected tooth [16]. The vast amount
of people suffering from dental caries reflects the need for vast amounts of
different dental restorations. However not all of them are easily recognisable
or even visible.
Attention paid to machine learning and especially neural networks caused a
massive improvement in this field over the last decade. It even outperformed
human recognition skills in classification task in 2015 [18]. This improvement
led to the idea to use image analysis models in a medical field to speed
up diagnostic techniques and help doctors to validate their diagnoses. It
excels in the early detection of future medical problems, such as breast cancer
detection[38].
Given these results, we aim to use a deep-learning model to find and segment
dental restorations from X-ray images. Such model could help doctors quickly
visualise where the restorations are located and assess their size both superfi-
cially and to depth. Clear visualisation of the restoration margins may aid
in finding secondary or residual caries which often arise right at the edge of
dental restoration. Finally, marking the restored dental surfaces would enable
quick export of found restorations into teeth charts (see Figure 1.1). The full
code is in this GitHub repository https://github.com/GrunyD/Bc_project
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1. Introduction .....................................

Figure 1.1: Teeth chart used by dentist to write down any work done. Source:
www.xdent.cz
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Chapter 2

Medical background

2.1 Human teeth

Human dentition is composed of two sets of teeth - primary and permanent.
The primary, also called deciduous, consists of 20 teeth and begins to erupt at
six months of age. This dentition is completely replaced at the approximate
age of 13 years by a permanent set of 32 teeth.

2.1.1 Structure of teeth

Teeth are composed of three structures: Enamel, pulp-dentin complex, and
cementum. A picture of teeth structure is depicted in Figure 2.1. The
superficial layer covering the anatomic crown of a tooth consists of a highly
mineralized crystalline structure called the enamel. More than 90% of the
volume is taken up by minerals (hydroxyapatite), making enamel the hardest
substance of teeth and even the human body. Its thickness varies from one
class of tooth to another, but it ranges from 2 to 3mm on average. Enamel
is produced in the process of amelogenesis by cells occurring only in the
development stage, meaning that it cannot regenerate. The biggest threat to
enamel are acidic conditions, which can cause its demineralization. Enamel
has the ability to remineralize, but if the cause is not removed, the enamel is
irreversibly damaged, and a cavity is formed.

Pulp-Dentin complex

Pulp and dentin are two specialized connective tissues. However, some
sources consider them a single tissue forming a complex [37]. The dental
pulp is located in the pulp chamber of the tooth, and it serves four functions:
formative, nutritive, sensory, and reparative. The pulp is circumscribed by

5 ctuthesis t1606152353



2. Medical background..................................

Figure 2.1: Structure of teeth

dentin formed by specific cells in the process of dentinogenesis. Their cell
bodies are found in the pulp chamber, but their cytoplasmic cell processes,
located in dentinal tubules, extend into the mineralized dentin. Thanks to
those processes, dentin is considered to be a living tissue. Its function is to
provide the ability to regenerate and react to pathological stimuli, such as
blocking the advancement of carious lesions by precipitating minerals in the
affected area. Dentin forms the most significant portion of the tooth. In
the coronal part, it is covered by the enamel, and on the root of the tooth
overlayed by cementum. There are different types of dentin.

.Primary dentin forms the outer and most prominent layer of dentin
closest to the enamel. It is produced in the development stage of the
tooth.. Secondary dentin is formed after the root development is completed..Tertiary (reactive) dentin production is encouraged as a response
to pathological stimuli, such as injury or caries. It is produced at the
pulp-dentin interface in order to protect the pulp..Transparent dentin is characterized by the presence of mineral precip-
itates in dentinal tubules as a result of injury or aging.

ctuthesis t1606152353 6



.....................................2.2. Dental caries

Cementum

Cementum covers the roots of teeth. Its structure consists of approximately
50 % of an anorganic material, 50 % of organic matter, and water, making
it slightly softer than dentin and far more delicate than enamel. Together
with gingiva, periodontal ligaments, and the alveolar bone, cementum forms
periodontium, ensuring that the tooth is attached to the bone. Cementum
possesses the ability to repair itself to a limited degree.

2.2 Dental caries

2.2.1 Cause

Dental caries is an infectious disease characterized by the demineralization
and destruction of hard dental tissues. The leading cause is dental plaque
(also called a biofilm). Plaque is composed of bacteria, their by-products, and
salivary proteins, and it has the ability to adhere to the tooth structures. Some
bacteria in the plaque metabolize refined dietary carbohydrates and produce
organic acid by-products. If present in the biofilm for an extended period of
time, those acids can lower the pH in the biofilm to below a critical threshold
(5.5 for enamel, 6.2 for dentin)[37]. Low pH drives phosphate and calcium from
the tooth into the biofilm in an attempt to reach an equilibrium. This loss of
minerals in a tooth is called demineralization and, if not stopped, can lead to
a macroscopic loss of hard dental tissues. Once the described pathological
process reaches dentin, caries spreads not only by loss of minerals but also
by destruction of collagen fibers. While the demineralisation of enamel may
be controlled and eventually reverted if the pH returns to neutral and the
relative concentration of soluble calcium and phosphate in the biofilm is
higher than in the tooth. The cycle of demineralization and remineralization
occurs multiple times a day and is modulated by many highly individual and
tooth-specific factors.

2.2.2 Treatment

Treatment is suggested based on the progression of the lesion and the patient’s
risk profile. In some cases, only instructions to increase oral hygiene together
with fluoride toothpaste are enough to stop the progression and lead to
remineralization of the enamel. The dentist can suggest an application of
a sealant to prevent further progression of the lesion. If this treatment is
perceived as insufficient or if the carious lesion is already cavitated, restoring
the tooth is required. This consists of removing all dental decay and filling
the cavity with restorative material such as dental composite or amalgam
[37] [14].
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2. Medical background..................................
2.3 Restorations

Once the irreversible carious lesion is removed, the remaining tooth structures
must be sealed and the cavity should be restored to the original anatomy of
the tooth to ensure its function and aesthetics. There are different types of
restorations, which are indicated based on the position and degree of damage
of the affected teeth.

2.3.1 Direct restorations

Such restorations are placed into the cavity while still soft and are shaped with
dental tools to reproduce the original anatomy of the tooth. They set directly
inside the cavity, either chemically or upon light curing, or as a combination
of both. The most commonly used materials for direct restorations include
amalgam, resin composite and glass ionomer cement. Historically, gold was
also a material of choice for direct restorations. [16]

Figure 2.2: Direct restoration using amalgam. Source: www.nzip.cz

Amalgam

The General meaning of the word amalgam is an alloy of mercury and several
other metals. Dental amalgam consists mostly of mercury, silver, tin, and
copper and has traces of other metals. The debate over consequences of
mercury still continues but it is mostly agreed that it is no threat to human
body. Due to its grey metallic colour this material is not indicated to restore
frontal teeth for poor aesthetic outcome. Thus , dental amalgam is only used
to restore cavities in premolars and molars where it serves as a long lasting
restorative material if used when specific indication criteria are met.[16] [13].

Resin composite

Resin composites are manufactured in various shades with different optical
properties and are perfected to closely resemble the original tooth structures

ctuthesis t1606152353 8



..................................... 2.3. Restorations

and may even be difficult to detect by inspection and probing only. They are
the most commonly used material in modern dentistry for direct restorations
of both anterior and posterior teeth. They consist of resin matrices, glass
fillers, and silane coupling agents. They also include initiators and inhibitors
of polymerization, which is the reaction leading to the setting of the material
inside the dental cavity. The polymerization reaction may be initiated by
light curing, by chemical reaction, or by both processes simultaneously.

Glass ionomer cement

Glass ionomer cements are mostly used for temporary restorations but may
also serve as long-term restorations under certain indication criteria. In
literature, they may also be found as glass polyalkenoate cements. Their
setting process is based on an acid-base reaction between glass powder and
a water solution of polyalkenoic acid. Their advantage is that they bond to
dental hard tissues and release fluoride ions over prolonged period of time.

Gold

Gold was used historically for long lasting durable direct restorations with
improved mechanical and chemical properties over dental amalgam.

2.3.2 Indirect restorations

Indirect restorations are manufactured and set outside the oral cavity and are
attached onto the remaining tooth structures using various materials reffered
to as cements. They are commonly made of ceramics or resin composite.
Indirect restorations include inlays, onlays and overlays and are classified
according to their extent:

. Inlays are pre-molded fillings that don’t cover the cusps.

.Onlays cover at least one cusp but not all of them

.Overlays cover all cusps resulting in the coverage of the whole occlusal
surface.
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2. Medical background..................................

Figure 2.3: Difference among inlays, onlays and overlays. Source:
www.dubrovnik-dental.clinic

2.3.3 Dental crowns

Dental crowns cover the anatomical crown of tooth completely and are
indicated after a major dental tissue loss to restore the tooth’s chewing
abilities, its structure and aesthetics. They are also usually manufactured
outside the oral cavity and secured onto the tooth using cements.

Figure 2.4: Dental crowns are cemented on the prepared affected tooth. Source:
www.clevelandclinic.com
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2.3.4 Dental implants

Implants replace missing teeth by placing a fixture directly into a jaw bone.
The fixture is covered by an abutment and a dental crown. As it is put
directly in bone, patient experience a strong stability of the implant.

Figure 2.5: Dental implant, Source: www.nzip.cz

2.3.5 Dental bridges

Bridges replace more than one missing teeth. Bridges are used to replace one
or more missing teeth. They consist of abutments and pontics. Abutment is
the remaining tooth which is prepared and covered by a crown. Pontic is an
artificial crown that replaces the missing tooth.

Figure 2.6: Dental bridge covering empty spaces after missing teeth. Source:
www.nzip.cz

2.4 X-ray

2.4.1 Diagnosis

Visual-tactile diagnosis is the primary way to inspect teeth. Dentists use a
mouth mirror and sharp probe to perform the examination. It is indispensable
to dry teeth since the difference in the refractive index between sound and
carious enamel is higher when water is removed from the tissue. This increases
the chance of spotting a carious lesion before it has an opportunity to progress
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2. Medical background..................................
and cavitate the tooth. The second most used method clinicians use to
complement the visual examination is a dental X-ray. In dentistry, two
main types of X-ray imaging are taken during the examination: intraoral
(the X-ray film is located inside the mouth) and extraoral (the X-ray film
is outside the mouth). The intraoral images are the most commonly taken
ones. This category includes bitewing and periapical X-rays, each featuring
different aspects of the teeth. Extraoral imaging is mainly used to detect
dental problems in the jaw and skull area. The most common one to be used
is a panoramic radiograph [14]. Less common diagnostic measures are:

. Laser light-induced fluorescence. Digital imaging fiber-optic transillumination. Electrical conductance and impedance measurement

Bitewing X-ray

The bitewing radiograph is an image that depicts the crowns of upper and
lower teeth on the left or right side, as seen in Figure 2.7. It gives a clear
sight of the interproximal surfaces allowing good caries detection in this area.
Interproximal caries are challenging to diagnose by the visual-tactile method;
thus, using the bitewing X-ray can lead to an early diagnosis and a chance for
the enamel to remineralize. Also, bitewing X-rays portray the alveolar crest,
where the dentist may notice any bone thickness changes due to periodontal
disease. Unlike the other intraoral method, it does not show the entire length
of the teeth. This type of dental X-ray is the most commonly taken for
preventive purposes [14].

Figure 2.7: Image from bitewing X-ray with clearly visible restoration

ctuthesis t1606152353 12



........................................ 2.4. X-ray

Periapical X-ray

Periapical X-ray portrays the tooth from the crown to where the root attaches
to the jaw; hence, the whole tooth length is visible. As illustrated in Figure
2.8, it only shows the upper or lower teeth in one part of the jaw. Periapical
X-ray detects any abnormalities in the root and any periapical lesions.

Figure 2.8: Image from periapical x-ray showing whole teeth. Source:
www.dentist-manila.com

Panoramatic X-ray

This extraoral dental image shows the entire mouth area, including the upper
and lower jaw and adjacent structures. It depicts the full dentition, including
teeth that have not erupted yet. Impacted teeth, i.e. wisdom teeth as seen in
Figure 2.9, can be identified as well. Panoramic X-ray is often used before
major procedures or to diagnose jaw tumors, cysts, fractures, or sinusitis.
Nevertheless, it is not usually taken to diagnose dental caries.
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Figure 2.9: Image from panoramatic x-ray. Source: www.minthilldentistry.com

ctuthesis t1606152353 14



Chapter 3

Theoretical background

3.1 Computer vision tasks

This section provides a brief overview of standard computer vision tasks.

3.1.1 Classification

Let us say we have an image x. In a classification task, our goal is to assign
one of n possible classes to the image:

ŷ = fθ(x) (3.1)

where f is a mapping, sometimes called a model, and θ represents model
parameter. If it holds that ŷ = y, where y is a true class of the image x,
the classification is considered to be correct. It is possible to output p ∈ Rn

instead of ŷ, where pi ∈ p is a probability of i = y, modeled by fθ.

3.1.2 Semantic segmentation

For an input image x ∈ Rn×m, the goal is to output ŷ ∈ Zn×m, where ŷi

is the predicted class of pixel i in image x. Similarly to the classification
problem, we can output matrix P ∈ Zn×m×c, where pi,c is the probability of
pixel i to belong to class c. A sample of semantic segmentation output can
be seen in Figure 3.1.

3.1.3 Instance segmentation

Instance segmentation is similar to semantic segmentation, with the alteration
saying that two objects of the same category would have different ground
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3. Theoretical background ................................
truth values. If we have O∞, O∈, where Oi ⊂ x are pixels of object i in image
x. Then

o1,i ̸= o2,j for o1,i ∈ O1, o2,j ∈ O2, ∀(i, j)

Figure 3.1: Difference between semantic and instance segmentation. Source:
www.analyticsvidhya.com

3.1.4 Object detection

In object detection, the goal is to locate and recognize objects of interest in
image x. A rectangle and a category represent a ground truth object. Model
predicts Ŷ ∈ Rn×6 values for each image. Each row of Ŷ consists of four
numbers, which describe a rectangle, then the category of the object inside
the rectangle, and a number in the range from 0 to 1 called the confidence. In
literature, we can see the term score instead of confidence. Nevertheless, the
meaning remains the same: Certainty of the network regarding the particular
prediction described by the bounding box and category. Please note that the
confidence of predictions does sum to one. In other words, we are not talking
about probabilities since multiple detections per image can correspond to the
ground truth.

3.2 Supervised and semi-supervised learning

Formulation of supervised learning

Supervised learning relies on on fully annotated data by an expert. Model
in training uses the annotation as a feedback for its prediction and is able
then change its parameters based on the results. We are given a dataset DL

which consists of M samples x (images) and their corresponding labels y
(annotations, ground truth).

DL = {xl
i, yi}M

i=1
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Then a loss function Lsup is defined. The model in training then aims to
minimize the result of this loss function over the dataset DL.

f∗
θ = argminθ

(
M∑

i=1
Lsup(fθ(xi), yi)

)
(3.2)

Where f∗
θ is the optimal trained model with parameters θ. Because the

dimension of θ is extremely large, it can not be minimized analytically,
instead numerical methods, such as gradient descent, are in play. Basic
algorithm for learning is then as follows:..1. Set initial values of parameters θ..2. Produce model’s outputs ŷl

i = fθ(xl
i)..3. Calculate loss of the model L = ∑M
i=1 Lsup(ŷl

i, yi)..4. Calculate gradient of the loss function in this point..5. Adjust parameters θ..6. If termination condition is met, end learning, otherwise go to 2

Formulation of semi-supervised learning

With semi-supervised learning we create a larger dataset D which consists of
mentioned labeled data DL and unlabeled data DU = {xu

i }N
i=1 of N samples.

D = {DL, DU }

However now we do not have suitable loss function, because we do not have
ground truth for all images to compare model’s predictions with. Thus we
add another part to a loss function.

L = Lsup + λLuns (3.3)

Where λ balances the impact of unsupervised loss function. How we define
Luns and how we change basic learning algorithm to make the best use of
unlabeled data is what distinguishes different methods.

Assumptions

For semi-supervised learning to work properly, distribution of data should
obey these general assumptions.
The smoothness assumption says that if two inputs x1 and x2, where
x1 ≠ x2, are close to each other in the input space (in the same cluster), then
their outputs y1 and y2 should also be similar.
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3. Theoretical background ................................
The low density assumption is directly derived from smoothness assump-
tion. It says that the decision boundary lies in low density area (area with low
number of samples). If it lied in high density area, the smoothness assumption
would be violated.
The manifold assumption says that the smoothness assumption is valid
even after some arbitrary transformation to lower dimension.

3.2.1 Methods

In this section we focus on different methods. They differ with their basic
algorithm and unsupervised loss function.

Pseudo labels

The model in training plays the role of both a teacher and a student. After
a round of learning on labeled data, the model produces segmentations for
unlabeled data.

ŷu
i = fθ(xu

i ) (3.4)

These output segmentations are called pseudo-labels and are then used as
a ground truth for unlabeled data to compare with. We use the same loss
functions for both unlabeled and labeled data. The algorithm then goes as
follows:..1. Set initial values for parameters θ..2. Apply one round of learning on labeled data..3. Add unlabeled data into dataset..4. Produce pseudo-labels for unlabeled data..5. Produce predictions for the whole dataset..6. Calculate loss and its gradient..7. Adjust parameters θ..8. If termination condition is met, then end training, otherwise go to 4

Within this category methods mainly differ by different weights initialization
and pseudo-labels noise handling. Noise could be created when pseudolabel
is not correct by is treated as correct. If the noise is too strong it propagates
through all generations of model and then reinforce itself. Thus it is important
to handle that carefully. Yao et al. [48] propose confidence-aware supervision
to improve pseudo labels quality. Li et al. [29] propose a self-ensembling
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strategy to build predictions via exponential moving average to avoid noisy
and unstable pseudo-labels. Thompson et al. [43] came up with refining
pseudo-labels with use of superpixels which should improve accuracy of masks
of irregularly shaped targets.

Consistency learning

Consistency learning enforces variance of predictions with respect to image
transformations to be as low as possible. To achieve that, model makes
a prediction of an image ŷi = fθ(xi) and compares it to a prediction of
the same image which is perturbated (small changes which are also used
as an augmentation technique). We define set of transformations T . For
each image we recieve, let (T input

i , T output
i ) be tuple of mappings, where

T = (t1, t2, ..., ti), ti ∈ T is set of transformations from distribution T :

T = (t1, t2, ..., ti), ti ∈ T

T input is transformation pipeline used for input and T output is transformation
pipeline used for output. They are created in such manner, that the following
equation holds:

T output(f(x)) = f(T input(x)) (3.5)

For each image xi we create

T input
i , T output

i

and make predictions:

ŷi1 = f(Ti
input(xi)),

ŷi2 = f(xi)

The the goal of this method is

L
(
ŷi1, Ti

output(ŷi2)
)

−→ 0

Where L is some sort of similarity function (such as IoU or DSC).This requires
using such T output, that T output−1 exists. Thus intensity transformations used
in T input are okay as they do not have output equivalent. However, one must
be careful when using spatial transformations such as translation or cropping.
As Bortsova et al. [11] pointed out, it is necessary for T output to have inverse
function, otherwise the backpropagation works with wrong weights. In the
end it would lead into moving the weights in favour of one of the predictions,
even though this is unsupervised loss and the prediction could be wrong.
Bortsova states that if:

ỹi = T output(ŷi) (3.6)
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3. Theoretical background ................................
then

∂L(ŷi1, ŷi2)
∂ŷi2

= T output
i

−1
(

∂L(ŷi1, ỹi2)
∂ỹi2

)
(3.7)

Bortsova et al. [11] suggests to use it IoU loss as supervised and unsuper-
vised loss function:

Lsup(ŷ, y) = Luns(ŷ, y) = 1 − 1
C

C∑
c=1

∑N
i=1 ŷ

(i)
c y

(i)
c∑N

i=1 y
(i)
c + (1 − y

(i)
c )ŷ(i)

c

(3.8)

Where C is number of classes excluding background. Laradji et al. [27] intro-
duce a unsupervised loss function which computes sum of absolute differences.
This loss function helps them learn achieve surprisingly high results using
point loss as supervised loss. They also use geometric transformation such as
flip and rotation.

Luns(xi) =
N∑

i=1
|f(Ti

input(xi)) − T output
i (f(xi))| (3.9)

Among other loss function are Kullback-Leibler divergence (DKL), mean
squared error (MSE) or Jensen-Shannon divergence (DJS). There are many
perturbations to be used. Among the most common belongs Gaussian blur,
Gaussian noise, adjusting contrast or brightness, rotation and fliping. Xu
et al. [47] propose using shadow augmentation which simulates low quality
images.

Co-training

Blum and Mitchell in [10] build on the idea of pseudo-labels. However there
is not one model that creates pseudo-labels for itself, there are two models.
This work relies on assumption that there are (at least) two different views
on data that are independent on each other and a model is able to learn
from only one view. Two models are then in play, each training only on one
view. After first round of training each of them will produce pseudo-labels
for unlabeled data. Those labels with higher confidence are selected. The
architecture introduced by Yao et al. [48] mentioned in section 3.2.1 should
also be mentioned here as it works with confidence of predictions and two
models.

Entropy minimization

This method builds on the low density assumption. The decision boundary
should be in low density area. Therefore we adjust the loss function by
adding entropy of possible decisions on given input. If the model is not sure

ctuthesis t1606152353 20



......................... 3.2. Supervised and semi-supervised learning

and produces similar probabilities for several classes than entropy in this
point is high. As model gets more confident in decision the entropy gets
lower. Thus it is convenient to place the decision boundary in low density
area. Without unlabeled data, we might have too little data to create a
satisfying and properly working boundary. Other problem occurs when model
is overconfident and produces confident prediction (which have low entropy)
even in high density areas. Therefore this methods does not have to work
in all cases [17]. However added to another technique it could boost its
performance [34].

Adversarial learning

Adversarial learning consists of two neural networks, segmentation and eval-
uation, fighting against each other. Segmentation network (SN) creates a
prediction which is then evaluated by evaluation network (EN) with respect
to ground truth annotation. Specific approach was described by Zhang et
al.[51]. They trained segmentation model to return decent segmentation maps.
Then trained a classifier to distinguish between predictions on unlabeled data
and predictions on training data (which should be quite similar to ground
truth). Then they combined both models. SN creates segmentation map, EN
evaluates it and backpropagation runs trough both models. They formulated
the whole loss function as:

L =
M∑

m=1
LCE(SN(Xm), Ym)+

+ λ

[
M∑

m=1
LCE(EN(SN(Xm), Xm), 1) +

N∑
n=1

LCE(EN(SN(Xn), Xn), 0)
]

(3.10)

Where LCE is a Cross Entropy loss, Xm is an image from labeled dataset, Ym

is corresponding ground truth, and Xn is an image from unlabeled dataset.

Informed learning (with prior knowledge)

Knowledge priors are general information about the task that could help the
model. Medical images have many anatomical priors which could be used to
our benefit. Among these priors belong organ’s shape, color (intensity), rela-
tive position to other organs. These knowledge priors could be incorporated
into model as adjusting the loss function. With semi-supervised learning this
method is usually seen as pretraining the model for some proxy task, which
helps the model to learn general features of images. Huang et al. [20] add a
reconstruction pretraining to improve parameters initializing. Zheng et al.
[53] proposed using probability atlas based on labeled images. Huang et al.
[19] builds on that approach and reuse it for semi-supervised learning, where
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probability atlas is used to give segmentation masks pixel wise confidence to
select reliable pixels.

3.3 Metrics

A metric helps in evaluating the performance of any designed model. The
metrics provide the accuracy of the designed model. The popular metrics
employed for assessing effectiveness of any designed segmentation algorithm
are represented in terms of the following [31]: In context of binary classification
or binary segmentation we have a collection of data and want to retrieve
those, which are somehow relevant. The collection could be pixels in case of
image segmentation or whole images in case of image classification.

.True positive (TP) represents data that are relevant and were retrieved..True negative (TN) represents data that are not relevant and were not
retrieved.. False positive (FP) represents data that are not relevant but were re-
trieved.. False negative (FN) represents data that are relevant but were not
retrieved.

Precision (P) says how many of retrieved instances are relevant.

Precision = TP
TP + FP (3.11)

Recall (R) also known as Sensitivity says how many of relevant instances
were retrieved:

Recall = TP
TP + FN (3.12)

Specificity (S) says how many of not relevant instances were correctly ignored

Specificity = TN

TN + FP
(3.13)

Accuracy (A) tells us how many instances were correctly classified

Accuracy = TP + TN
TP + TN + FP + FN (3.14)

F1 score tells about models accuracy as represented in the following equation.
It is defined as the harmonic average of the precision and recall values:

F1 = 2 · Precision · Recall
Precision + Recall (3.15)
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Intersection over union (IoU) is a metric commonly used for checking the
performance of image segmentation algorithm. It is the amount of intersecting
area between the predicted image segment and the ground truth mask, divided
by the total area of union between the predicted segment mask and the ground
truth mask:

IoU = TP

TP + FN + FP
(3.16)

Dice similarity coefficient (DSC) is similar metric to IoU, with a sig-
nificant difference and that is that this function is differentiable [9]:

DSC = 2 · TP

2 · TP + FN + FP
(3.17)

Given that in this specific task not all images contain restoration, DSC would
not be good evaluation metric for such images as those could only have DSC
1 or 0. Thus we will also use metric True Posistive DSC (TP DSC) which
will compute DSC only over those images which truly contain restorations.
This metric could better represent segmentation ability of the model. Using
the fact that DSC can not exceed 1 and that it is differentiable function,
there is loss function based upon this metric simply computed as:

Dice Loss = 1 − DSC (3.18)

Cross Entropy loss (CE) is widely used loss function which take advantage
of logarithm and can shoot the loss function into great heights if the answer
is wrong. The binary cross entropy loss is computed as [35]:

LCE(ŷ, y) = − 1
N

N∑
i=1

yi log(ŷi) + (1 − yi) ∗ log(1 − ŷi) (3.19)

where y refers to ground truth label and ŷ refers to model prediction.

3.4 Deep learning architecturs

3.4.1 SegNet

SegNet introduced semantic pixel-wise image labeling [7]. It comprised a stack
of encoders followed by a corresponding decoder stack, which feeds into a soft-
max classification layer. The decoders help map low-resolution feature maps
at the encoder stack’s output to full-size feature maps identical to the input
size. During downsampling using maxpool layer, the network saves indices of
pooled values and forwards them through a skip connection to the decoder.
It can assign correct position to values during upsampling. It addressed an
essential drawback of recent deep learning approaches, which have adopted
networks designed for object categorization for pixel-wise labeling.
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3.4.2 U-Net

The U-Net architecture is the most prominent medical image segmentation
model applied to various medical problems, published in 2015. It is a common
belief that successful architecture training needs a massive amount of data [39].
U-Net presents a strategy that strongly depends on the data augmentation
technique to use limited available data more effectively. It is quite similar to
mentioned SegNet except for two significant differences. It passes maxpool
output through skip connections instead of maxpool indices and it doubles
the number of features every time it downsample the image. The U-Net
architecture is depicted in Figure 3.2

Figure 3.2: Architecture of neural network proposed by [39]

3.4.3 U-Net++

In 2018, U-Net++ was proposed by Zhou et al [54]., USA to overcome U-Net’s
limitation of utilizing same-scale feature maps alone. The architecture used
the concept of Dense-Block to improve original U-Net performance as shown
in Fig. 15. Unlike the foundation model (U-Net), it included convolutions and
dense skip connections on skip-pathway to fill the gap between feature maps
across modules and to improve gradient flow. The proposed architecture is
evaluated in a multi-modal environment by considering four different medical
image repositories, including; cell nuclei, colon polyp, liver, and lung nodule.
During testing it outperformed U-Net and wide U-Net. The architecture is
shown below in Figure 3.3
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Figure 3.3: U-net++ is supposed to be improved version with more dense skip
connections

3.4.4 YOLO

YOLO (You Only Look Once) is an object detection neural network which is
designed to be fast and able to detect objects in real time in video. Similar
to the mentioned segmentation networks, it has a encoder part, which uses
double strided convolution instead of maxpool layer, to downsample the input
image to a grid with few squares containing locations of bounding boxes and
probabilities for each class.
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Chapter 4

Related work

. L. Kunt’s masters thesis [26] focused mainly on dental caries detection
but managed to do some progress in this field too. He managed to
achieve DSC of 0.76 and IoU 0.676. This project aims to follow Kunt’s
work and improve used models. Kunt’s work will be used as the main
benchmark.. Baydar et al. [8] conducted similar study as we are about to. They
explored the usage of U-Net regarding bitewing images. However, they
used it as a detector machine. When segmentation achieved more than
0.50 in IoU, it was considered to be true positive, otherwise it was false
positive. They also used more than just one annotation type. They
distinguished among some type of restorations and among teeth, teeth
root canals and restorations. Even though they used U-Net, which is
network designed for image segmentation, they used it as some kind of
detection network..Mao et al. [32] classified dental segmentations in previously extracted
image patches with unilateral teeth. Lee et al. [28] did not focus directly on the segmentation of restorations,
yet it was one of the classes segmented out by their U-net architecture.
There are no metrics available regarding the algorithm’s performance on
dental restorations[26]..Abdalla-Aslan et al. [6] used methods of classical computer vision to
segment out restorations in panoramic images. Their pipeline consisted
of: Adaptive gaussian thresholding, morphological operations, and delet-
ing regions in peripheral areas of the image. The final algorithm had the
precision and sensitivity of 0.33 and 0.946, respectively. After success-
ful detection, the restoration was classified as: dental implant, crown,
amalgam filing, etc..Yeshua et al. [49] were solving the same problem as Abdalla-Aslan.
Even the approach was more-less the same, except theirs achieved a
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precision of 0.568. They classified detected areas similarly to Abdalla-
Aslan, having an extra category for false detections. After the removal
of false detections, the precision was boosted to 0.98.
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Chapter 5

Dataset

All data have been provided and annotated by MDDr. Tichý and MDDr. V.
Nagyová. The images came from at least four different stomatologic clinics as
we received different sizes of x-rays (as we can see in Figure 5.2). All images
have been padded to same rectangular size 847 × 1068 pixels. All annotations
were done in CVAT [1] which allowed them to annotate restorations using
polygons for best accuracy. All restorations with exceptions of braces and
retainers have been annotated.
We split our work in two stages because we received another set of annotated
data later in this work. We will explicitly mark which dataset was used for
particular experiments in later sections. We can see one data sample with
corresponding segmentation mask in Figure 5.1. All tests were conducted
after normalizing the images with mean and standard deviation computed
over training data and without the black paddings.

5.1 Stage 1

In stage one we followed work of Kunt [26] and used the exact same dataset.
It consists of 521 images. We split the data to training and validation in ratio
90:10 knowing that more data are to come before an end of this work, which
we could use as testing data. Also we wanted to split the data in the exact
same way as Kunt in order to be able to compare our results. To compare
how the dataset changes after adding new images we compare the following
histograms: How many restorations are in one image and how much space
takes up one restoration (in % of image size) and how much space take up all
restorations in an image. These are to be seen in Figure 5.3. Overall there
are 2336 restorations marked in 521 images. The type of restorations was not
marked in this task but they cover all kinds of different restorations covered
in chapter 2.
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5. Dataset .......................................
5.2 Stage 2

MDDr. Nagyová was able to annotate another 447 x-ray images with another
1654 restorations, leaving us with 969 images in total. We divided those data
in training, validation and testing in ratio 80:10:10. Histograms describing
this enlarged dataset are in Figure 5.4.
During this work we also retrieved annotations from students of dentistry
from Charles University. Student A studies at Faculty of Medicine in Plzeň
(second year) and Student B studies at First Faculty of Medicine in Prague
(third year).
These students were kind enough to try to annotate one set of validation
data consisting of 98 images. Student B made time to annotate testing data
which consists of another 99 images.

(a): (b):

Figure 5.1: Sample x-ray image and corresponding segmentation mask. We can
see metalic (bright white) and composite (lower contrast compared to tooth)
direct restoration

(a): (b):

Figure 5.2: Sample images containing dental implant and dental bridge. We
can even notice white artifact at the top of the right image. Such phenomena
originates from lower precision when taking the image.
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(a): (b):

(c): (d):

Figure 5.3:

(a): (b):

(c): (d):

Figure 5.4:
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Chapter 6

Methods

Until said otherwise, the following experiments used satge 1 dataset.

6.1 Experiments with backbone model architecture

Following Kunt’s work [26] we put most of our focus into using U-Net. Based
on his work, where he optimized loss function, LR scheduler and optimizer
we used the same hyperparameters as he did. We implemented U-Net with
PyTorch open-source deep learning library and used th following settings:

. Cosine Annealing Lr scheduler with half-period = 100.AdamW optimizer with default settings. Combination of Dice Loss and Cross Entropy loss.We set minimum number of epochs to be 50 and end the training if there
was no improvement in Dice score over 10 epochs. Learning rate was arbitrary set to 1e-5

The basic architecture shown in Figure 3.2 has depth of 4 levels. To outperform
Kunt’s work, which used this basic architechture, we tested if making the
U-Net deeper will make a difference. To further improve performance we also
tested U-Net++ with the same settings. Results are depicted in Table 6.1
and Figure 6.1

Transposed convolution or Interpolation

Mentioned architectures heavily rely on upsampling layers to return the tensor
to the original size. We can either use Transposed convolution (also called
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Model Depth Upsampling layer Batch number DSC(median)
U-Net 4 Transposed convolution 3 0.6577
U-Net 4 Interpolation 3 0.5398
U-Net 5 Transposed convolution 2 0.8705
U-Net 5 Interpolation 2 0.7977
U-Net 6 Interpolation 1 0.848

U-Net++ 5 Interpolation 1 0.6577
U-Net++ 6 Interpolation 1 0.7739
U-Net++ 7 Interpolation 1 0.798

Table 6.1: Displaying the influence of depth, upsampling layer and model
architecture on DSC. All of these tests were conducted with no scaling of the
images.

deconvolution, explained here [2]) which is has learnable parameters, or we
can decide that interpolation layer would suffice. Transposed convolution
contribute to stacking gradient and thus needs larger memory. Interpolation
layer does not have that problem, However, the model can not learn on its
way up. Thus we tested both these layers, if possible, to see if one is superior
or it does not matter.

Figure 6.1: Displaying the influence of depth, upsampling layer and model
architecture. We tried to use transposed convolution with U-Net++ and deeper
U-Net, but it did not fit into GPU’s memory even if the image was scaled with
factor 0.1. We did not try to scale it down even more, because as we can see
from charts 5.3 and 5.4 most of the restorations are quite small and we would
probably lose crucial information regarding these restorations.

Given these results we will continue to use U-Net with transposed convolu-
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Transform Probability Parameters DSC (Validation set) DSC (Test set)
None - - 0.8705 0.7557

Vertical flip 0.5 - 0.8983 0.7586
Horizontal flip 0.5 - 0.8711 0.7546
Gaussian blur 0.3 kernelsize ∈ (7, 31) 0.8548 0.7373

Gamma correction 0.3 γ ∈ (0.6, 1.4) 0.8659 0.7457
Translation 0.4 translation limit = 20% of image size 0.8661 0.7692

Rotation 0.4 rotation limit = 20° 0.8892 0.7484
Scaling (Resized Crop) 0.4 scale ∈ (0.5, 1.0) 0.8914 0.7677

Gaussian noise 0.3 σ ∈ (0.01, 0.1) 0.863 0.7514
Elastic deformation 0.2 α ∈ (50, 150) 0.8795 0.7318

Everything 0.8809 0.7339
Selection 0.904 0.7844

Table 6.2:

tion with depth 5 as a backbone for all following experiments unless it is said
otherwise.

6.2 Finding best working augmentation

Ronneberger et al. [39] mention that U-Net heavily rely on data augmentation.
Kunt [26] used several transformations to help network to better generalize.
However, there was no specific study conducted whether all of them are useful.
Thus we decided to test several image transformations independently and then
all together to see if any transformations could be pulling the performance
down. We tested the following transformations with probability p:

. Horizontal flip, p = 0.5.Vertical flip, p = 0.5. Rotation with limit 20°, p = 0.4.Translation with limit 20% of image size, p = 0.4. Resized crop (Scaling) with scale factor ranging from 0.5 to 1, p = 0.4.Gaussian blur with kernel size from 7 to 31, p = 0.3.Gamma correction with γ ranging from 0.6 to 1.4, p = 0.3.Gaussian noise with σ ranging from 0.01 to 0.1, p = 0.3. Elastic deformation with α ranging from 50 to 150, p = 0.2

At first we used each of those listed at its own and compared results to
controlling runs without any data augmentation. Each setting was trained 10
times to be sure good or bad result was not just a coincidence. Results of
those runs can be seen in Table 6.2 and Figure 6.2.
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Figure 6.2: Results of models with only some augmentation enabled

Based on those results we compared two settings. One with all mentioned
transformation put to use and one where only the following selection of
transformations was used:.Vertical flip. Horizontal flip. Rotation.Translation. Crop. Elastic transform

Even though translation and horizontal flip did not exactly improve per-
formance, there is no logical reason for them to worsen the result, thus we
included them. We can see results again in the same table and figure. It is
important to note that the beginning of the axis is not in the zero, thus the
difference is not as big as might seem. However given the number of runs we
conclude that it is not by mistake and that we find an improvement to how
to augment data with this specific task. At the time of this experiment we
could use about 90 newly annotated images. Thus we ran the same learned
models on those to test our results. We can see that in Figure 6.3 and Table
6.2 in column Test set. Even though the overall performance of models
has significantly dropped, we can see that the selected transformations still
provided an improvement. From now on we continue to experiment with
these transformation in place.
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Figure 6.3: Results of the learned model on newly annotated testing data

6.3 Filtering out images without restorations

From this section on we used stage 2 dataset. Not everyone had to go to
his dentist to get his teeth repaired. Thus not all x-ray images contain
restorations. Actually, as we could see in Figures 5.3 and 5.4, those images
make about one quarter of all images. Combined with the reality of false
positive segmentation of model, which finds segmentation at places without
any obvious reason, we deduced it could be helpful to come with some sort of
discriminator network (DN) which could filter such negative images before
they get to segmentation network. For this purpose we tried several deep
learning models.

All the following method were trained on dataset consisting of nearly 800
images and validated on nearly 100 images of dental bitewing x-ray.

Baseline

We use U-Net trained as segmentation model as the classification baseline.
Classification process of an image goes as follows: We let the model predict
probability segmentation map. If any pixels hold probability value higher than
set threshold, let the class of an image be Positive. Negative otherwise. The
U-Net model was trained for 50 epochs with loss function being combination
of mean Crossentropy and Dice loss. We loaded so far best performing U-Net
model (0.81 in DSC, 0.85 in TP DSC) and tried to find the best confidence
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threshold (going from 50 to 96). Using U-Net purely as segmentation model,
where confidence threshold is set to 0.5, we receive following results:

U-Net with classification branch

To take advantage of decent U-Net results, we created new model that we
trained alongside with U-Net. For purpose of this paper we will call it
classification branch. It shares encoder with U-Net (shared weights). After
that it continues with double convolutions with the same number of channels
as U-Net, but does not have to upsample, as the result does not have to
describe whole image. After the same number of double convolutions, it has
one linear layer, which outputs two dimensional vector.
We trained this model with loss function being a combination of mean
cross entropy and Dice loss for segmentation output and cross entropy for
classification output.

U-Net based classificator

Finally we tried to use only the classification branch. We used weights from
trained U-Net model described in section 6.3 and fine tuned the net only on
classification cross entropy loss for 100 epochs.

(a): (b):

Figure 6.4: Results of U-Net based classification techniques

YOLO

As said YOLO is an object detection model. It works with bounding boxes.
We used Yolov3, which has more layers compared to original YOLO and
creates outputs from different parts of model, meaning we end up with several
sets of predictions. Each prediction contains center coordinates of bounding
box, its height and width, and confidence value going from 0 to 1 for each
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(a): (b):

Figure 6.5: Results of U-Net based classification techniques

class we are predicting. We used yolo-voc.cfg with batch 64, subdivision 16,
width and height 416 and 1 channel. We let the YOLO train and saved its
weight every 100 epochs until 1000 epochs and then every 1000 epochs up
to 4000. We then evaluated each weights on validation data with confidence
threshold for bounding box to be valid going from 50 to 96 with step of 2.
We can see the results in Figure 6.6a, which depicts how recall decreases
while precision increases with increasing confidence threshold, and in Figure
6.6b which shows us how many images were classified correctly depending
on confidence threshold. From close look at Figure 6.7 we can see that

(a) : We should focus on the small curves
in the right upper corner where are the
top performing models

(b) : Accuracy showing how many im-
ages were classified correctly

Figure 6.6: Results of YOLO image classification based on the number of epochs
it was training for

after 2000 epochs, the model is at the peak performance. With confidence
threshold set to value between 0.76 and 0.8 it filtered out only negative images.
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(a) : We should focus on the small curves
in the right upper corner where are the
top performing models

(b) : Accuracy showing how many im-
ages were classified correctly

Figure 6.7: Results of YOLO image classification with focus on the best per-
forming models. We can see that after while the model is overfiting the data.

Model Threshold Precision Recall Accuracy
Baseline 0.5 0.912 1.00 0.928
U-Net 0.76 0.938 0.985 0.939

U-Net with classification 0.70 0.827 0.96 0.819
U-Net based classificator 0.92 0.86 0. 973 0.857

Yolo 0.76 0.985 1.00 0.99

Table 6.3: Models and their results if we set such a threshold to achieve the
highest accuracy

Results

As Figure 6.5a and 6.4a shows, at the beginning the model U-Net had perfect
recall as the threshold was just above 0.5. However precision depicted in
Figure 6.5b was at 90%, which is not satisfying as the point of this work is to
get as high precision as possible. With increasing threshold we quickly lose
perfect recall, which is crucial, because filtering out positive images should be
avoided at all costs. Even with threshold set to a high number, the precision
does not reach 100%.
It is clear that using yolo’s detection mechanism outperforms suggested
classification techniques. It is interesting that even if we transformed the loss
function to improve classification result, the performance did not improve.
In addition, segmentation ability of U-Net with classification branch has
significantly decreased (DSC to 0.5891 and TPDSC to 0.7293).
Second right after YOLO model is normal U-Net and it does not matter if
we maximize accuracy or maximize precision subjected to maximum possible
recall.
Results for maximum precision are displayed, because those are not relevant
as maintaining highest possible recall is crucial in this task.

Based on these results, we can further only focus on improving segmentation
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on TP images, as yolo should effieciently filter TN images out. Thus we will
from now on use metric TP DSC as defined in section 3.3. This will better
ilustrate model’s ability to properly segment restorations, because it will not
be noised with DSC from images without restorations.

6.4 Hyperparameters experiments

Learning rate
To further optimize settings for supervised learning, we tried setting starting
learning rate to the following values:

10−2, 10−3, 10−4, 10−5, 10−6

The settings of other hyperparameters remains the same. The cosine annealing
value was set 100, which makes the learning rate to drop by cca half of an
order in 50 epochs. We can see the process of learning during 50 epochs in
the Figure 6.8

Figure 6.8: Process of learning with different learning rate settings. 1e-5 turned
out to be optimal. It could be optimized even more with more specific search,
but it would not probably bring such significant improvement.

More epochs would probably lead to better results for higher values of
learning rate, considered that the learning rate would decrease with use of
learning rate scheduler. However it is better to start with optimal learning
rate, which we showed to be 10−5.
To speed up training and to utilize higher batch number we tried to downsam-
ple images before passing them to a model. We used torchvision resize with
scale factor 0.5 (decreases each side by half making the image one quarter of
its former resolution). We can see how it affected performance in Figure 6.9.
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(a) : Comparison of two training runs of U-Net with learning rate 10−5. There is a
significant difference between the results when the image is scaled down.

(b) : Comparison of two training runs of U-Net with learning rate 10−6.

Figure 6.9: Difference between training with downscaled images and images in
full resolution. Compared when training U-Net.

We can see that lowering the resolution resulted in significant and not
random (we tested this with five runs for each setting, only one run of each
is displayed for better visibility) decrease in performance when scaled down.
The reason for this to happen could once again found in Figures 5.3 and
5.4. We can see that lot of restorations are below 1% of images size. Bigger
downscaling can erase them completely which then affects model’s ability to
find such small dental correction.

6.5 Semi-supervised learning

For the purpose of segmentation of dental bitewing x-ray images, we used
several semi-supervised methods of those described in section 3.2. As a
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supervised baseline we used model trained with the settings described higher
in section 6.4 which achieved following results:

TP DSC DSC
0.8554 0.8015

Table 6.4: DSC and True positive DSC of best performing supervised U-Net
model

Pseudolabels

First of all we tried to use pseudolabels which only uses the algorithm
described in section 3.2.1. We loaded so far best trained model described
higher as baseline. We let it train for 50 epochs while every 10 epochs the
model regenerated pseudolabels. As it is possible to see in Figure 6.10, the
model converged quite quickly. Thus we did not continue in adding more
epochs. We did not change the original loss function and continued with
L = CrossEntropy + Dice Loss. But we achieved growth in DSC which could
further help with identifying images without any restoration.

Figure 6.10: Evolution of TP DSC in time with naive pseudo labels learning

Consistency training

We defined transformation pipelines as follows:

T output
i (xi) = T input

i (xi) = t3(p3) ◦ t2(p2) ◦ t1(p1)(xi)

where ti as applied with probability pi and inspired by [27] we set

p1 = p2 = p3 = 0.8

t1 = HFlip

t2 = VFlip

t3 = Rotation
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Angle of rotation is chosen uniformly with maximum 20 degrees.
We tested the following unsupervised loss functions:

Probability difference
Inspired in [27] we used the following loss function:

Luns(xi) = λ

N

N∑
i=1

|f(T input
i (xi)) − T output

i (f(xi))| (6.1)

We set λ = 5 to get numbers of similar value as Dice loss

Soft IoU
I did not find a way to implement IoU to be differentiable and thus it does
not have a backward pass. Therefore I implemented soft IoU. After normal-
izing logits from model with softmax, I exponentiate them, to increase the
difference and then ran through softmax function again.

ŷi = Softmax(fθ(xi))

ỹi = Softmax(ŷγ
i )

I arbitrary chose γ = 6. Then such "thresholded" segmentation maps went
through IoU lost function:

Luns(ŷ, y) = 1 − 1
C

C∑
c=1

∑N
i=1 ŷ

(i)
c y

(i)
c∑N

i=1 y
(i)
c + (1 − y

(i)
c )ŷ(i)

c

(6.2)

Dice loss

Luns(ŷ, y) = 1 − 1
C

C∑
c=1

∑N
i=1 ŷ

(i)
c y

(i)
c∑N

i=1 y
(i)
c +∑N

i=1 ŷ
(i)
c

(6.3)

First we ran experiments on labeled data only. We trained models from
scratch and we fine tuned pretrained models which can be seen in Table 6.5
and Table 6.6. And then put to use also our unlabeled dataset. Based on

Used Lsup Used Lunsup DSC TP DSC
CE + (6.3) (6.3) 0.7932 0.8114
CE + (6.3) (6.1) 0.8146 0.8356

(6.2) (6.2) 0.7745 0.7933

Table 6.5: Results of consistency learning with new model trained from scratch
and only with labeled data

the previous results of loaded model v. trained from scratch, we continued
only with training pretrained models. Result are in Table 6.7.

Pseudolabels with consistency learning

We also employed combination of both methods described above. Based
on Table 6.6 and Table 6.7 we figured not to use IoU anymore. Instead we

ctuthesis t1606152353 44



................................6.5. Semi-supervised learning

Used Lsup Used Lunsup DSC TP DSC
CE + (6.3) (6.3) 0.8265 0.8525
CE + (6.3) (6.1) 0.8414 0.8586

(6.2) (6.2) 0.7824 0.8151

Table 6.6: Results of consistency learning with pretrained model (DSC 0.842,
TP DSC 0.853) on labeled data only

Used Lsup Used Lunsup DSC TP DSC
CE + (6.3) (6.3) 0.8185 0.8517
CE + (6.3) (6.1) 0.8303 0.8574

(6.2) (6.2) 0.6805 0.6437
CE + (6.3) (6.3)+ (6.1) + (6.2) 0.8093 0.8469
CE + (6.3) (6.3)+ (6.1) 0.8163 0.8513

Table 6.7: Results of consistency learning with pretrained model (DSC 0.842,
TP DSC 0.853) on both labeled and unlabeled data

employed combination of Dice loss and Probability difference. Results are
shown in Table 6.8

Used Lsup Used Lunsup DSC TP DSC
CE + (6.3) (6.3) 0.8397 0.853
CE + (6.3) (6.1) 0.8135 0.8402
CE + (6.3) (6.3)+ (6.1) 0.8288 0.8597

Table 6.8: Results of combined pseudolabels and consistency learning
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Chapter 7

Results

To acquire statistically meaningful results, we conducted 9 fold cross validation.
Then we evaluated models on testing data and compared with dentist students.

7.1 Image classification

First we mention results of YOLO. This idea showed to be very effective. As
we can see in Table 7.1, this detection model is very strong. It made only
few mistakes, all justifiable after revision (braces, questionable cases). When
consulted with dentists, they even corrected their annotations with newly
found restorations. There were only handful of false negative results where
dentists are sure about their annotation. We can see such image in Figure
7.1. During cross validation we tested more confidence thresholds and came
to conclusion, that it should be set around 0.56 for best performance. We
also wanted to know if could utilize YOLO directly in segmentation. For
example if we could add extra weight to pixels which are inside bounding
boxes created by this model. However, YOLO does not detect all restorations,
it found only 912 out of 1053 restorations in testing dataset. For now we do
not consider that enough and only use YOLO as classifier.

7.2 Supervised segmentation

First we can see comparison of fully supervised model in this work and Kunt’s
fully supervised in Figure 7.2. Green color refers to true positive pixels, red
color to false positive pixels and blue color to false negative pixels. We can
see that model in this work is more capable of segmenting restorations with
lower contrast. This is result of work on stage 1 dataset and testing which
backbone and augmentations would work the best.
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Precision Recall Accuracy Specificity

Nine fold cross validation 0.987 (SD =
0.01)

0.996 (SD =
0.0098)

0.991 (SD =
0.011)

0.996 (SD =
0.0092)

Results on testing data 1 0.989 0.987 1

Table 7.1: Results of YOLO used for classification of x-rays

Figure 7.1: Sample from images, which YOLO could not classify correctly

7.3 Semi-supervised learning

We have chosen pseudolabels as described in 3.2.1 and Consistency learning
model with 6.3 and 6.1 as loss functions. We have chosen these semi-supervised
models to test them against fully supervised models and students. We
compared students performance with the models on the same validation
dataset, that was used through all the experiment in stage 2 (see Table
7.2. When examined closely, we could see that students approach was quite
different. Student A missed quite a lot low contrast restorations. However
did not have many false positives. On the other hand, student B marked a
lot of places as restorations, even though there are none. Then we evaluated

Model/Student TP DSC DSC
Student A 0.7919 0.8327
Student B 0.0.7976 0.8422

Fully supervised U-Net (Kunt) 0.7823 0.6791
Fully supervised U-Net (Ours) 0.8514 0.8098

Consistency learning 0.8557 0.6493
Pseudolabels 0.8596 0.8215

Table 7.2: As these students were volunteers, we only asked them to annotate
validation data of one fold. That consists of 98 images. This table then depicts
result only for one fold of validation data
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models through 9 fold cross validation. Results are in Table 7.3. At this point
we did not use YOLO as a filter, because we wanted to know the behavior of
the models with all images. Finally we evaluated the best performing models

Model TP DSC DSC
Fully supervised U-Net (Kunt) 0.8031 (SD = 0.015) 0.6359 (SD = 0.019)
Fully supervised U-Net (Ours) 0.8597 (SD = 0.009) 0.8373 (SD = 0.012

Consistency learning 0.8624 (SD = 0.02) 0.6554 (SD = 0.026)
Pseudolabels 0.8825 (SD = 0.017) 0.7116 (SD = 0.054

Table 7.3: Nine fold Cross-validation of models. We can see that semisupervised
techniques did not outperformed fully supervised model. It even worsened the
ability of the model to recognize that there are no restorations in the picture

of each type on testing data. Here we first used YOLO to filter out images
without restorations. Numeric results are in Table 7.4. To get better idea of
results, it is important to look at the histograms in Figure 7.3.

Supervised
(Kunt)

Supervised
(Ours)

Consistency
learning

Pseudolabels Dentist student
B

Mean
DSC

0.6489 0.8729 0.8778 0.8930 0.7111

DSC over
all pixels

0.7309 0.8683 0.8591 0.9023 0.8422

Mean IoU 0.6194 0.7948 0.8084 0.8272 0.6251
IoU over
all pixels

0.6898 0.7673 0.7530 0.8220 0.7274

Precision
(Pixelwise)

0.8376 0.9489 0.9358 0.9373 0.8889

Recall
(Pixelwise)

0.7957 0.8003 0.7940 0.8699 0.8002

Table 7.4: This table compares performances of models and dentist student in
several metrics on testing data. Mean DSC (mean IoU repectively) computes
DSC (IoU) for each image and then computes mean. DSC (IoU) over all pixels
counts all TP, FP and FN pixels and then computes DSC (IoU) from those.
Precision and Recall in this table are also computed for each pixels, because we
know the values for image classification from Table 7.1
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(a):

(b):

Figure 7.2: We can see the main difference in the ability to correctly segment
low contrast restorations.
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(a) : Deep learning model using pseu-
dolabels compared to ground truth.

(b) : Student B segmentation compared
to ground truth

Figure 7.3: These histograms show how many images with each score was
segmented. We compare deep learning model (blue) with student B (red). Such
histograms can tell us that vast majority of predictions are good and only small
number of troubelsome images are hard to automatically segment. Note that
the y axis of histograms is not the same

Figure 7.4: We can see comparison of several models with student B. From
goes input image and ground truth (red highlights), pseudolabels, consistency
learning, fully supervised learning and student B. Green pixels are true positive,
red are false positive and blue are false negative. We can see that student did
not notice low contrast restoration in lower left tooth, while models managed to
capture it.
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Chapter 8

Conclusion and further suggestions

In this work we focused on dental restoration binary segmentation. We
achieved an improvement compared with Kunt’s U-Net implementation. We
optimized several hyperparameters specifically for this deep learning task and
figured out how to apply data augmentation to best leverage U-Net’s virtues.
This all resulted in model’s performance improvement.
Then we tried semi-supervised learning methods. Using pseudolabels, which
turned out to be the most effective technique, we gained about 5% in TP
DSC over supervised U-Net. We gained even more significant boost with
employing YOLO as a filter for images without any segmentations. Such
model is able to keep both precision and recall at high values.
To conclude, we created a tool which can create human level annotations in
lot of cases, which can then be used to speed up dentists work or to help them
in other ways. As we could see at the example of dentist students, it can
outperform a novice dentist in restoration detection. The model is capable of
creating better segmentation than humans using polygons, as it carefully fills
contrastive areas.
The model still struggles with certain images. Especially when x-ray is not
done precisely, which could cause appearance of white shadows. Example
of such image is in Figure 8.2 These artifacts are as bright as amalgam
restorations, which can then cause mistakes. Based on models predictions,
our annotaters paid attention to troublesome images and corrected their
annotations. This shows, that even at this level, the model can deliver second
opinion which could prove to be very helpful when the load of images is too
large for one human to grasp.
It is important to mention that ground truth is based only on x-ray images.
Annotaters did not have any other information at hand. Thus it is possible,
that even after being extremely careful they could have overlooked some low
contrast restoration. Those restorations could be mixed up with enamel,
which overlaps at the top of the tooth. This could create similar effect as
restorations.
In future work we suggest to distinguish all restoration types, which could
bring the goal of dental chart closer to reality. It could also help the model to
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Figure 8.1: Image sample with well visible braces. The model recognizes some
dental work, however ground truth would mark this prediction as false, because
we do not mark braces and retainers. More of such images are in training set.

make better prediction, because it could have more options to choose from.
Then we suggest to make special labeling category for braces (with retainers),
because model recognizes such structures as something not usually present
but then receives neagtive feedback (see Figure 8.1). With lack of images
with such dental work, I think it could help the learning process.
Then we suggest to label teeth, so the model could tell if there is still a root
of tooth under a bridge or if it was removed. Finally we suggest to try other
backbones for segmentation network, such as Segnet or Resnet. Or it could
be worth a try to find GPUs with bigger memory and run deeper U-Net or
U-Net++.
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Figure 8.2: Image sample with white shadow artifact caused when taking x-ray
image without sufficient precision.

55 ctuthesis t1606152353



ctuthesis t1606152353 56



Appendix A

Bibliography

[1] URL: https://www.cvat.ai.

[2] URL: https://github.com/vdumoulin/conv_arithmetic/blob/
master/README.md.

[3] URL: https://stackoverflow.com/questions/50805634/
how-to-create-mask-images-from-coco-dataset.

[4] Teeth crowns, dental bridges and other restorations,
February 2023. URL: https://www.nzip.cz/clanek/
667-korunky-mustky-a-jine-zubni-nahrady.

[5] Teeth implants, February 2023. URL: https://www.nzip.cz/clanek/
668-zubni-implantaty.

[6] R. Abdalla-Aslan, T. Yeshua, D. Kabla, I. Leichter, and C. Nadler. An
artificial intelligence system using machine-learning for automatic detec-
tion and classification of dental restorations in panoramic radiography.
Oral Surgery, Oral Medicine, Oral Pathology and Oral Radiology, 130,
November 2020.

[7] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell., 39, December 2017.

[8] Oğuzhan Baydar, Ingrid Różyło-Kalinowska, Karolina Futyma-Gąbka,
and Hande Sağlam. The u-net approaches to evaluation of dental bite-
wing radiographs: An artificial intelligence study. Diagnostics, 13(3),
2023. URL: https://www.mdpi.com/2075-4418/13/3/453.

[9] J. Bertels, T. Eelbode, and M. Berman et al. Optimizing the dice score
and jaccard index for medical image segmentation: theory and practice.
Proceedings of the International Conference on Medical Image Computing
and Computer-Assisted Intervention, page 92–100, October 2019.

57 ctuthesis t1606152353

https://www.cvat.ai
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://github.com/vdumoulin/conv_arithmetic/blob/master/README.md
https://stackoverflow.com/questions/50805634/how-to-create-mask-images-from-coco-dataset
https://stackoverflow.com/questions/50805634/how-to-create-mask-images-from-coco-dataset
https://www.nzip.cz/clanek/667-korunky-mustky-a-jine-zubni-nahrady
https://www.nzip.cz/clanek/667-korunky-mustky-a-jine-zubni-nahrady
https://www.nzip.cz/clanek/668-zubni-implantaty
https://www.nzip.cz/clanek/668-zubni-implantaty
https://www.mdpi.com/2075-4418/13/3/453


A. Bibliography.....................................
[10] A. Blum and T. Mitchell. Combining labeled and unlabeled data with co-

training. Proceedings of the eleventh annual conference on Computational
learning theory, 1998.

[11] Gerda Bortsova, Florian Dubost, Laurens Hogeweg, Ioannis Katramados,
and Marleen de Bruijne. Semi-supervised medical image segmentation
via learning consistency under transformations. CoRR, abs/1911.01218,
2019. URL: http://arxiv.org/abs/1911.01218, arXiv:1911.01218.

[12] A. Creanga, H. Geha, V. Sankar, F. Teixeira, C. McMahan, and M. Nou-
jeim. Accuracy of digital periapical radiography and come-beam com-
puted tomography in detecting external root resorption. Imaging science
in dentistry, 45:153, September 2015.

[13] Richard Andrew Davies, Shaghayegh Ardalan, Wei-Hua Mu, Kun Tian,
Fariborz Farsaikiya, Brian W. Darvell, and Gregory A. Chass. Geometric,
electronic and elastic properties of dental silver amalgam γ-(ag3sn),
γ1-(ag2hg3), γ2-(sn8hg) phases, comparison of experiment and theory.
Intermetallics, 2009. URL: https://doi.org/10.1016/j.intermet.
2009.12.004.

[14] O. Fejerskov, B. Nyvad, and E. Kidd. Dental Caries: The Dis-
ease and Its Clinical Management. BLACKWELL PUBL, May
2015. URL: https://www.ebook.de/de/product/23695989/dental_
caries_the_disease_and_its_clinical_management.html.

[15] J. E. Frencken, P. Sharma, L. Stenhouse, D. Green, D. Laverty, and
T. Dietrich. Global epidemiology of dental caries and severe periodontitis
- a comprehen- sive review. Jounral of Clinical Periodontology, 44:94–105,
March 2017.

[16] gesundheit.gv.at. Teeth restorations, February 2023. URL: https:
//www.nzip.cz/clanek/666-zubni-vyplne.

[17] Yves Grandvalet and Yoshua Bengio. Semi-supervised learning by entropy
minimization. Advances in Neural Information Processing Systems, 17,
2004. URL: https://proceedings.neurips.cc/paper_files/paper/
2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf.

[18] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification. IEEE
International Conference on Computer Vision (ICCV), December 2015.

[19] H. Huang, Q. Chen, L. Lin, M. Cai, Q. Zhang, Y. Iwamot, X. Han,
A. Furukawa, S. Kanasaki, Y.-W. Chen, R. Tong, and H. Hu. Mtl-
abs3net: Atlas-based semi-supervised organ segmentation network with
multi-task learning for medical images. IEEE Journal of Biomedical and
Health Informatics, 26, 2022.

ctuthesis t1606152353 58

http://arxiv.org/abs/1911.01218
http://arxiv.org/abs/1911.01218
https://doi.org/10.1016/j.intermet.2009.12.004
https://doi.org/10.1016/j.intermet.2009.12.004
https://www.ebook.de/de/product/ 23695989/dental_caries_the_disease_and_its_clinical_management.html
https://www.ebook.de/de/product/ 23695989/dental_caries_the_disease_and_its_clinical_management.html
https://www.nzip.cz/clanek/666-zubni-vyplne
https://www.nzip.cz/clanek/666-zubni-vyplne
https://proceedings.neurips.cc/paper_files/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2004/file/96f2b50b5d3613adf9c27049b2a888c7-Paper.pdf


..................................... A. Bibliography

[20] W. Huang, C. Chen, Z. Xiong, Y. Zhang, X. Chen, X. Sun, and F. Wu.
Semi-supervised neuron segmentation via reinforced consistency learning.
IEEE Transactions on Medical Imaging, 2022.

[21] M. Hung, M. S. Lipsky, R. Moffat, E. Lauren, E. S. Hon, J. Park,
G. Gill, J. Xu, L. Peralta, J. Cheever, D. Prince, T. Barton, N. Bayliss,
W. Boyack, and F. W. Licari. Health and dental care expenditures in
the united states from 1966 to 2016. PLOS ONE, 15, June 2020.

[22] Rushi Jiao, Yichi Zhang, Le Ding, Rong Cai, and Jicong Zhang. Learning
with limited annotations: A survey on deep semi-supervised learning for
medical image segmentation. 7 2022. URL: https://arxiv.org/pdf/
2207.14191.pdf.

[23] N. J. Kassebaum, E. Bernabé, M. Dahiya, B. Bhandari, C. J. L. Murray,
and W. Marcenes. Global burden of untreated caries: A systematic
review and metaregression. J Dent Res, 94, March 2015. URL: https:
//doi.org/10.1177/0022034515573272.

[24] Muhammad Zubair Khan, Mohan Kumar Gajendran, Yugyung Lee,
and Muazzam A. Khan. Deep neural architectures for medical image
semantic segmentation: Review. IEEE Access, 9:83002–83024, 2021.
doi:10.1109/ACCESS.2021.3086530.

[25] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet
classification with deep convolutional neural networks. In F. Pereira, C.J.
Burges, L. Bottou, and K.Q. Weinberger, editors, Advances in Neural
Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL: https://proceedings.neurips.cc/paper_files/paper/
2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

[26] L. Kunt. Dental caries detection from bitewing x-ray images. Master’s
thesis, Czech Technical University in Prague, May 2022. URL: http:
//hdl.handle.net/10467/101406.

[27] Issam Laradji, Pau Rodriguez, Oscar Manas, Keegan Lensink, Marco
Law, Lironne Kurzman, William Parker, David Vazquez, and Derek
Nowrouzezahrai. A weakly supervised consistency-based learning method
for covid-19 segmentation in ct images. Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vision (WACV), pages
2453–2462, January 2021.

[28] S. Lee, S. il Oh, J. Jo, S. Kang, Y. Shin, and J. won Park. Deep learning
for early dental caries detection in bitewing radiographs. Scientific
Reports, August 2021.

[29] C. Li, L. Dong, Q. Dou, F. Lin, K. Zhang, Z. Feng, W. Si, X. Deng,
Z. Deng, and P.-A. Heng. Self-ensembling co-training framework for
semi-supervised covid-19 ct segmentation. IEEE Journal of Biomedical
and Health Informatics, 25, 2021.

59 ctuthesis t1606152353

https://arxiv.org/pdf/2207.14191.pdf
https://arxiv.org/pdf/2207.14191.pdf
https://doi.org/10.1177/0022034515573272
https://doi.org/10.1177/0022034515573272
https://doi.org/10.1109/ACCESS.2021.3086530
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
http://hdl.handle.net/10467/101406
http://hdl.handle.net/10467/101406


A. Bibliography.....................................
[30] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for

semantic segmentation. CoRR, June 2015.

[31] Priyanka Malhotra, Sheifali Gupta, Deepika Koundal, Atef Zaguia, and
Wegayehu Enbeyle. Deep neural networks for medical image segmentation.
Journal of Healthcare Engineering, 2022, 2022. URL: https://doi.org/
10.1155/2022/9580991.

[32] Y.-C. Mao, T.-Y. Chen, H.-S. Chou, S.-Y. Lin, S.-Y. Liu, Y.-A. Chen,
Y.-L. Liu, C.-A. Chen, Y.-C. Huang, S.-L. Chen, C.-W. Li, P. A. R. Abu,
and W. Y. Chiang. Caries and restoration detection using bitewing film
based on transfer learning with cnns. Sensors (Basel, Switzerland), 2021.

[33] F. Milletari, N. Navab, and S.-A. Ahmadi. V-net: Fully convolutional
neural networks for volumetric medical image segmentation. CoRR,
October 2016.

[34] T. Miyato, S. i. Maeda, M. Koyama, and S. Ishii. Virtual adversarial
training: a regularization method for supervised and semi-supervised
learning. IEEE transactions on pattern analysis and machine intelligence,
41, 2018.

[35] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi. You only
look once: Unified, real-time object detection. CoRR, 2015. URL:
http://arxiv.org/abs/1506.02640.

[36] Joseph Redmon and Ali Farhadi. Yolov3: An incremental improve-
ment. CoRR, abs/1804.02767, 2018. URL: http://arxiv.org/abs/
1804.02767, arXiv:1804.02767.

[37] Andre Ritter. Sturdevant’s Art and Science of Operative Dentistry.
Elsevier, 2019.

[38] A. Rodriguez-Ruiz, K. Lång, A. Gubern-Merida, M. Broeders, G. Gen-
naro, P. Clauser, T. H. Helbich, M. Chevalier, T. Tan, T. Mertelmeier,
M. G. Wallis, I. Andersson, S. Zackrisson, R. M. Mann, and I. Sechopou-
los. Stand-alone artificial intelligence for breast cancer detection in
mammography: Compari- son with 101 radiologists. JNCI: Journal of
the National Cancer Institute, 111, March 2019.

[39] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Con-
volutional networks for biomedical image segmentation. CoRR,
abs/1505.04597, 2015. URL: http://arxiv.org/abs/1505.04597,
arXiv:1505.04597.

[40] E. Shelhamer, J. Long, and T. Darrell. Fully convolutional networks
for semantic segmentation. IEEE Transactions on Pattern Analysis and
Machine Intelligence°, 39:640–651, 2017.

ctuthesis t1606152353 60

https://doi.org/10.1155/2022/9580991
https://doi.org/10.1155/2022/9580991
http://arxiv.org/abs/1506.02640
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1804.02767
http://arxiv.org/abs/1505.04597
http://arxiv.org/abs/1505.04597


..................................... A. Bibliography

[41] G. Swarnendu, D. Nibaran, D. Ishita, and M. Ujjwal. Supplementary
material for: Understanding deep learning techniques for image segmen-
tation. CoRR, August 2019.

[42] L. Teng, H. Li, and S. Karim. Dmcnn: A deep multiscale convolutional
neural network model for medical image segmentation. J. Healthcare
Eng., 2019, December 2019.

[43] B. H. Thompson, G. Di Caterina, and J. P. Voisey. Pseudo-label refine-
ment using superpixels for semi-supervised brain tumour segmentation.
IEEE 19th International Symposium on Biomedical Imaging (ISBI),
2022.

[44] J. Wang, X. Li, Y. Han, J. Qin, L. Wang, and Z. Qichao. Separated con-
trastive learning for organ-at-risk and gross-tumor-volume segmentation
with limited annotation. 2022.

[45] A. Warreth and Y. Elkareimi. All-ceramic restorations: A review of
the literature. Saudi Dent J., December 2020. doi:10.1016/j.sdentj.
2020.05.004.

[46] H. Wu, Z. Wang, Y. Song, L. Yang, and J. Qin. Cross-patch dense
contrastive learning for semi-supervised segmentation of cellular nuclei
in histopathologic images. IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 2022.

[47] Xuanang Xu, Thomas Sanford, Baris Turkbey, Sheng Xu, Bradford J.
Wood, and Pingkun Yan. Shadow-consistent semi-supervised learning
for prostate ultrasound segmentation. IEEE Transactions on Medical
Imaging, 41(6):1331–1345, 2022. doi:10.1109/TMI.2021.3139999.

[48] Huifeng Yao, Xiaowei Hu, and Xiaomeng Li. Enhancing pseudo label
quality for semi-superviseddomain-generalized medical image segmen-
tation. CoRR, abs/2201.08657, 2022. URL: https://arxiv.org/abs/
2201.08657, arXiv:2201.08657.

[49] T. Yeshua, Y. Mandelbaum, R. Abdalla-Aslan, C. Nadler, L. Ze-
mour L. Cohen, D. Kabla, O. Gleisner, and I. Leichter. Automatic
detection and classification of dental restorations in panoramic
radiographs. Issues in Informing Science and Information Technol-
ogy, 2019. URL: https://www.researchgate.net/publication/
332821011_Automatic_Detection_and_Classification_of_Dental_
Restorations_in_Panoramic_Radiographs.

[50] R. Zhang, S. Liu, Y. Yu, and G. Li. Self-supervised correction learning for
semi-supervised biomedical image segmentation. International Confer-
ence on Medical Image Computing and Computer-Assisted Intervention,
2021.

61 ctuthesis t1606152353

https://doi.org/10.1016/j.sdentj.2020.05.004
https://doi.org/10.1016/j.sdentj.2020.05.004
https://doi.org/10.1109/TMI.2021.3139999
https://arxiv.org/abs/2201.08657
https://arxiv.org/abs/2201.08657
http://arxiv.org/abs/2201.08657
https://www.researchgate.net/publication/332821011_Automatic_Detection_and_Classification_of_Dental_Restorations_in_Panoramic_Radiographs
https://www.researchgate.net/publication/332821011_Automatic_Detection_and_Classification_of_Dental_Restorations_in_Panoramic_Radiographs
https://www.researchgate.net/publication/332821011_Automatic_Detection_and_Classification_of_Dental_Restorations_in_Panoramic_Radiographs


A. Bibliography.....................................
[51] Yizhe Zhang, Lin Yang, Jianxu Chen, Maridel Fredericksen, David P.

Hughes, and Danny Z. Chen. Deep adversarial networks for biomedi-
cal image segmentation utilizing unannotated images. Medical Image
Computing and Computer Assisted Intervention - MICCAI 2017, pages
408–416, 2017.

[52] Ziyuan Zhao, Jinxuan Hu, Zeng Zeng, Xulei Yang, Peisheng Qian,
Bharadwaj Veeravalli, and Cuntai Guan. MMGL: Multi-scale multi-
view global-local contrastive learning for semi-supervised cardiac
image segmentation. In 2022 IEEE International Conference on
Image Processing (ICIP). IEEE, oct 2022. URL: https://doi.
org/10.1109%2Ficip46576.2022.9897591, doi:10.1109/icip46576.
2022.9897591.

[53] H. Zheng, L. Lin, H. Hu, Q. Zhang, Q. Chen, Y. Iwamoto, X. Han, Y.-W.
Chen, R. Tong, , and J. Wu. Semi-supervised segmentation of liver using
adversarial learning with deep atlas prior. International Conference on
Medical Image Computing and Computer-Assisted Intervention, 2019.

[54] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and J. Liang. Unet++: A
nested u-net architecture for medical image segmentation. IEEE Trans.
Med. Imag., 39, June 2020.

A.1 Useful links and solutions

A.1.1 CVAT Exports Corrupt COCO File

When creating segmentation mask I ran into problem caused by COCO file
which was exported from CVAT. Official library PyCOCOTools developed
for processing this file would only create one and the same mask (following
this procedure [3]). The problem is that CVAT gives all annotations the
same id and they can not be correctly assigned. Fortunately there is a
simple solution. All you have to do is go to the PyCOCOTools source
code ( /.local/lib/pythonX.X/site_packages/pycocotools/) and redefine this
function.
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