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Abstrakt: Jety – spršky kolimovaných částic – nacházejí široké využití v oblasti
fyziky vysokých energií. Tato práce je zaměřena na identifikaci jetů pocházejících
z těžkých kvarků. Za účelem identifikace jetů bude využit JetVLAD taggovací model
založený na metodách strojového učení. Schopnost modelu extrahovat vzorky jetů
je testována na několika odlišných souborech dat a s použitím různých taggovacích
přístupů. Metoda bude nejprve demonstrována na souborech dat z PYTHIA
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Introduction

Jets, collimated sprays of energetic hadrons, represent one of the key observables
in high energy physics. They are used in a broad range of analyses in experi-
mental particle physics. For example, jets can be used to test perturbative quantum-
chromodynamics (QCD) predictions in proton-proton collisions or to explore various
effects of the quark-gluon plasma (QGP) on particle production in heavy-ion colli-
sions.

In this work, we are particularly interested in the identification of heavy-flavor jets
that originate from c or b quarks. As a tool for tagging heavy-flavor jets, we utilize
the recently introduced JetVLAD model [13] based on machine learning. This model
uses the information contained within the jet constituents by taking charged-particle
jet constituents as an input and aggregating them into a descriptor vector that
characterizes it. The analysis part of this work will be focused on the study of the
JetVLAD model performance in simulated p + p collisions at lower collision
energies, namely

√
s = 200 GeV and

√
s = 510 GeV, which are available at RHIC

(Relativistic Heavy Ion Collider). Then, an outlook on the center-of-mass energy
of
√
s = 7 TeV, which is more typical for the measurements at the LHC (Large

Hadron Collider), will be provided. Lastly, the applicability of the JetVLAD model
on JETSCAPE generated heavy-ion collisions will be discussed.

This thesis is structured as follows. The first chapter serves as an introduction to
the physics of jet measurements including description of important experimental ob-
servables and measurements. The second chapter represents a brief introduction to
jet reconstruction algorithms and their properties. In the third chapter, the basics
of machine learning with prerequisites to the JetVLAD model are introduced. Next
chapter is dedicated to the study of the JetVLAD model performance in p+ p col-
lisions and discussion of the results. In the last chapter, the JETSCAPE event
generator will be introduced and the applicability of the JetVLAD model on these
data will be discussed.
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Chapter 1

Recent results of jet measurements

Hard scattering processes in high energy collisions lead to the production of particle
showers. Typical showers of energetic hadrons originating from scattered partons
that have undergone fragmentation and hadronization are called jets.

Jets play an important role in many areas of particle physics. For example, in proton-
proton collisions, they provide important tests for quantum-chromodynamics (QCD)
calculations. In heavy-ion collisions, jets can be used in tomographic studies of the
quark-gluon plasma (QGP).

In this chapter, we would like to demonstrate the importance of jets by present-
ing some of the recent results of jet measurements in proton-proton and heavy-ion
collisions. Measurements from experiments at different collision energies from both
RHIC (Relativistic Heavy Ion Collider) at Brookhaven National Laboratory (BNL)
and the LHC (Large Hadron Collider) at CERN will be discussed.

1.1 Jets in p + p collisions

As already mentioned, jets can serve as a tool for testing the predictions of QCD cal-
culations in proton-proton collisions. Figure 1.1 presents a measurement of double-
differential inclusive jet cross-section as a function of the jet pT for each jet rapid-
ity (y) bin from the ATLAS experiment at the LHC at center-of-mass energy of√
s = 8 TeV [1]. The measured cross-sections are compared to the QCD predictions

calculated at next-to-leading order (NLO) in perturbation theory, which are correc-
ted for non-perturbative and electroweak effects. Overall, the measurements show
a good agreement with the predictions of perturbative quantum-chromodynamics
calculations at next-to-leading order (NLO).
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Figure 1.1: Inclusive jet cross-section as a function of jet pT in different bins of jet
rapidity (y) from the ATLAS experiment at the LHC at

√
s = 8 TeV. The cross-

sections are multiplied by the factors indicated in the legend for better visibility. The
data are compared to the next-to-leading-order (NLO) quantum-chromodynamics
predictions. Taken from [1].

The topic of this work, especially the analysis part, is dedicated to tagging heavy-
flavor jets. The term heavy flavor refers to jets originating from c or b quarks, which
are produced early in the hard scattering and travel a significant distance before
decaying. Therefore, we shall mention one of the effects of mass/flavor dependence
in jets.

The partons produced in particle interactions with large momentum transfer undergo
subsequent emissions that can lead to a cascade process known as a parton shower.
The patterns of the parton showers are expected to depend on the mass of the
initiating parton as described in QCD theory by the so-called dead-cone effect [18],
[19]. The studies of the dead-cone effect suggest that the gluon bremsstrahlung of
heavy quarks differs from that of light quarks since it is expected to be suppressed
below a certain angle θ ∼ m/E relative to the direction of the emitting quark
with mass m and energy E. As a consequence, heavier partons (c and b quarks) are
assumed to suffer lower radiative energy loss in this region than the light quarks.
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Figure 1.2 demonstrates the first direct observation of the dead-cone effect in proton-
proton collisions at

√
s = 13 TeV measured by the ALICE experiment at the LHC

by comparing the angular distribution of splittings for D0–tagged jets to that of
inclusive jets [2]. The ratios of the angular distribution of splittings are shown for
three radiator (c quark) energy intervals 5 < ERadiator < 10 GeV, 10 < ERadiator <
20 GeV, and 20 < ERadiator < 35 GeV. There is a significant suppression of small-
angle splittings in D0–tagged jets suggesting the presence of dead-cone effect for
charm quark emissions, which is most visible at lower radiator energy. This analysis
was done by using iterative declustering techniques that allow to access the splittings
at the smallest angles in deep levels of the clustering history.
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Figure 1.2: The measurement of the dead cone effect. Ratio of the angular distri-
bution of splittings for D0–tagged jets vs inclusive jets, R(θ), in p + p collisions at√
s = 13 TeV shown for three different radiator energy (ERadiator) intervals. The

data were compared with MC calculations from SHERPA and PYTHIA generators.
Taken from [2].
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1.2 Jets in heavy-ion collisions

Collisions of heavy ions at high energies are accompanied in the first moments by the
creation of hot dense matter, which is called quark-gluon plasma (QGP). This dense
strongly interacting medium of weakly bound partons is believed to have existed in
extreme conditions at the beginning of the universe and may be accessed in the high
energy colliders.

The quark-gluon plasma state exists after the heavy-ion collision for only a brief
moment before the matter starts to hadronize. However, information about the
properties of QGP can be obtained indirectly by using the so-called hard probes.
The term hard probe usually refers to particles that are produced in processes with
large momentum transfer on very short time scales (τ ∼ 0.1 fm/c), whose behavior
can be described by the perturbative QCD theory. For example, jets and heavy
quarks (c and b) can act as hard probes in the medium as they are produced in the
initial stages of the collision and then pass through all stages of QGP evolution [20].

Figure 1.3 shows a simple illustration of the difference in production of jets depending
on the presence or absence of the quark-gluon plasma in collisions. The left figure
shows a proton-proton collision, where the QGP is not formed and the jets propagate
freely in the vacuum. However, in the figure on the right, the jets from heavy-ion
collision that undergo scattering in the medium are suppressed compared to those
in vacuum.

Figure 1.3: Illustration of the jet quenching effect. Jet production in proton-proton
collision (left) and heavy-ion collision (right). The incoming quarks (q) are scattered
off each other in the interaction and the outgoing jets of particles are shown here as
arrows. In heavy-ion collision the jets travel through the QGP (orange region) and
are suppressed as opposed to the jets in proton-proton collision. Taken from [3].
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Overall, the interaction of hard probes with the medium and the transfer of energy
during their passage through the medium can bring us valuable information about
the QGP and the initial conditions during the collision. In jets, these interactions
can result in experimentally observable effect commonly reffered as jet quenching,
which can manifest itself as a suppression of particle production at large transverse
momenta, modification of di-hadron correlations or modification of properties of
reconstructed jets.

To quantify the effects of jet quenching on particle production in experimental ana-
lyses, following two observables are commonly used – nuclear modification factor
RAA ([4], [5]), and central-to-peripheral nuclear modification factor RCP ([7], [21]).

The nuclear modification factor RAA describes the suppression of particle production
in nucleus-nucleus collisions with respect to the particle production in proton-proton
collisions:

RAA = 1
〈Ncoll〉

d2NAA/dpTdη

d2Npp/dpTdη
, (1.1)

where 〈Ncoll〉 stands for a scaling factor representing an average number of binary
nucleon-nucleon collisions based on the Glauber model predictions1. NAA and Npp

are the numbers of particles produced in A + A and p + p collisions, respectively.
They are both functions of transverse momentum pT and pseudorapidity η.

In cases where no comparison with p + p collisions is provided, the definition of
central-to-peripheral nuclear modification factor RCP can be useful. This method of
observing suppression (or enhancement) of particle production is defined as:

RCP = 〈N
P
coll〉

〈NC
coll〉

d2NC
AA/dpTdη

d2NP
AA/dpTdη

. (1.2)

In this equation, we compare particle spectra from central (C) and peripheral (P )
nucleus-nucleus collisions scaled by 〈NC

coll〉 and 〈NP
coll〉. In central collisions,

measured particles have small impact parameter and their mean pathlength through
the medium is presumably longer. The particles from peripheral collisions are ex-
pected to have shorter in-medium pathlengths and therefore lose less energy.

The values of the nuclear modification factors RAA and RCP carry information about
the enhancement or suppression of particle production in the experiment.
RAA > 1 typically signifies enhanced particle production, whereas RAA < 1 means
that particle production is suppressed (similarly for the RCP factor.)

1See Appendix A or studies in [22], [15] for more information about Glauber model.

16



Let us now present several examples of the nuclear modification factor measure-
ments using jets. Figure 1.4 shows a measurement of the nuclear modifica-
tion factor RAA from the ATLAS experiment at the LHC at center-of-mass energy
of √sNN = 5.02 TeV per nucleon-nucleon pair [4] for resolution parameter R = 0.4.
The results indicate a strong suppression of the jet production in Pb+Pb collisions,
which is observed up to large jet transverse momentum (pT). The most significant
suppression of RAA is present in the centrality bin 0 − 10% (most central Pb+Pb
collisions.)
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Figure 1.4: The RAA values as a function of jet pT for four centrality intervals
measured in √sNN = 5.02 TeV Pb+Pb collisions by the ATLAS experiment. Taken
from [4].

Another example of jet suppression measurement, this time from the CMS
experiment at the LHC at √sNN = 5.02 TeV [5], is depicted in Figure 1.5.
Here the plots show the dependence of RAA on the jet pT for reconstructed jets with
various jet radii R and for the first time up to a radius R = 1.0. The data manifest
a strong suppression of high-pT jets reconstructed with all distance parameters,
implying that a significant amount of jet energy is scattered to large angles, even
beyond R = 1.0.

Recent results reported by ALICE [6] (see figures 1.6 and 1.7) are using machine
learning (ML) techniques to improve background subtraction for jets in heavy-ion
collisions. The improvement in background subtraction of novel ML approach over
the standard ALICE method is shown on the left plot in Figure 1.6. There is a
reduction in the standard deviation of the δpT distribution, which is most significant
for central collisions and large R. Figure 1.7 (left) shows the results for RAA of
jets with resolution parameter R = 0.6 compared to different model predictions.
This measurement successfully allowed to extend the reach of measurement in both
pT and R. The right plot in Figure 1.7 depicts a ratio of RAA for jets with different
resolution parameters R = 0.6 and R = 0.2. Here the larger R jets appear to be
more suppressed, which suggests an R-dependence of jet quenching.
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Figure 1.7: (Left:) RAA for jets with resolution parameter R=0.6 in central collisions.
(Right:) Ratio of jet RAA using R = 0.6 as the numerator and R = 0.2 as the
denominator. The measurements are compared to different model predictions. Taken
from [6].

As the last example of jet suppression measurements in this section, it is convenient
to compare nuclear modification factor measurements from the LHC and RHIC. Fig-
ure 1.8 shows a comparison of the RCP factor measurements for charged-particle jets
and hadrons in Au+Au collisions at√sNN = 200 GeV (RHIC) and Pb+Pb collisions
at √sNN = 2.76 TeV (LHC). We can see a visible suppression of particle production
in the medium and the same effect is present in the production of reconstructed jets.
Although the conditions in these two colliders are different as the temperature and
density of the created QGP are more extreme at the LHC, the results showed up to
be quantitatively comparable for both RHIC and LHC energies.
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Figure 1.8: Comparison of the charged hadron and charged-particle jet RCP factors
in Au+Au collisions at √sNN = 200 GeV (RHIC) and Pb+Pb collisions at √sNN =
2.76 TeV (LHC). The results are shown for two different jet resolution parameters
R = 0.2 and R = 0.3. From [7].
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One of the effects of jet quenching in the medium is the modification of properties of
the reconstructed jets. Changes in the jet substructure show up, for example, when
measuring the radial distribution of heavy flavor particle production in jets. The
first study dedicated to the charm quark diffusion with respect to the jet axis in
heavy-ion collisions was conducted by the CMS collaboration (LHC) [8]. The results
in Figure 1.9 show radial distribution of D0 mesons in jets as a function of the
distance from the jet axis. When comparing Pb+Pb collisions to the p + p results,
the D0 meson distribution for D0 mesons with transverse momentum in the range
of 4 < pD

T < 20 GeV/c indicates on average a larger distance with respect to the jet
axis. At higher pD

T , the Pb+Pb and p + p radial distributions appear to be similar.
This could be attributed to the effects of medium quenching of charm quarks at
lower pT.
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Figure 1.9: Distributions of D0 mesons in jets as a function of the distance from
the jet axis (r) measured in p + p and Pb+Pb collisions at √sNN = 5.02 TeV by
the CMS experiment. The measurement is performed in the D0 meson transverse
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T > 20 GeV/c (right). The ratios

of the D0 meson radial distributions in Pb+Pb and p + p collisions are shown in
the middle panels and the bottom panels show the ratios of the D0 meson radial
distributions of p+ p over MC event generators. Taken from [8].
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Another measurement that investigates jet shape modification, but at lower collision
energy, was performed by the STAR experiment at RHIC in Au+Au collisions at√
sNN = 200 GeV [9]. Here, the measurement is focused on low pT D0–tagged jets.

The results in Figure 1.10 (left) show that the radial profile of D0 in jets is consistent
for different centralities. The right plot in Figure 1.10 indicates that the pT spectra
of D0–tagged jets are suppressed for central and mid-central collisions at low pT and
the nuclear modification factor RCP was found to increase with the jet pT.
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Chapter 2

Jet algorithms

As mentioned earlier, jets can be thought of as collimated showers of high energy
particles originating in parton scattering. We can distinguish three different levels
of a jet: parton-level jet (described by perturbative QCD in theoretical physics),
particle jet (a collection of hadrons) and calorimeter jet, which is registered by the
detector and represented by the measured kinematics of the outgoing particles in
the experiment.

The goal of experimental physicists is to find a link between those types of jets
and re-establish the original correlations between scattered particles. In order to
reconstruct jets, we introduce jet algorithms.

2.1 General characteristics of jet algorithms

A jet algorithm represents a set of rules for grouping particles into jets. The ideal jet
algorithm should be strictly defined and it should satisfy certain properties based
on both experimental and theoretical requirements for jet reconstruction.

Some of the desired conditions that an ideal jet algorithm should meet are for
example:

• maximal reconstruction efficiency (identification of physically interesting jets)

• computational efficiency (effective use of computational resources)

• independence of the properties of detector (detector segmentation, resolution)

• order independence (the same jets are found at parton, particle, and detector
level)

• theoretically correct behavior (the algorithm should be infrared and collinear
safe)
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Infrared and collinear safety

Let us briefly illustrate the meaning of the two above-mentioned theoretical
attributes of the ideal jet algorithm – infrared and collinear safety.

Infrared safety in jet algorithms suggests that the jet finding should not be affected
by adding soft emissions to the event. An example of the violation of infrared safety
is depicted in Fig. 2.1, where the jets are represented by cones with arrows that are
proportional to their energy and direction. We can see that the number and shape
of reconstructed jets have changed only due to the presence of soft gluon radiation.

Figure 2.1: An illustration of infrared sensitivity in jet algorithm. Here the presence
of soft gluon radiation (shown in figure on the right) results in merging of the two
original jets (left figure). Taken from [10].

Collinear safety means that the jet finding is insensitive to collinear radiation.
One possible collinear problem can occur in a case when the energy of the measured
particle is distributed among several detector towers. The particle is then interpreted
by the algorithm as two collinear particles with smaller energies and the jet may not
be succesfully reconstructed as demonstrated in Fig. 2.2.

Figure 2.2: Collinear sensitivity in jet reconstruction. The configuration on the left
fails to produce a jet because the energy of its seed particle (around which the
jet is reconstructed) is distributed among several detector towers. However, the
configuration on the right produces a jet due to the narrower distribution of energy
in detector. Taken from [10].
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Another example of a collinear problem is depicted in Fig. 2.3. This problem is
caused by the sensitivity of the algorithm to the particle energy ordering. We can
see that different jets are reconstructed depending on the presence or absence of
collinear splitting of the most energetic particle in the jet.

Figure 2.3: Another example of collinear sensitivity in jet reconstruction. A different
jet is reconstructed due to the presence of collinear splitting. From [10].

Both infrared and collinear sensitivity are unwanted features in jet algorithms as
they can lead to unpredictable behavior – soft emissions as well as collinear splittings
can occur randomly and their properties are difficult to predict. This can lead to
discrepancies between the interpretations of partonic and observed jets.

2.2 Classes of jet reconstruction algorithms

There are two main categories of jet algorithms – cone and sequential recombination
algorithms. In the following text, we are going to introduce their basic properties
and provide some examples of the most popular jet reconstruction algorithms.

2.2.1 Cone algorithms

The class of cone algorithms is based on interpretation of a jet as a cone with a radius
R defined as:

∆Rij =
√

(ηi − ηj)2 + (φi − φj)2 < R, (2.1)

where i is a so-called seed particle and j depicts a particle that lies within a circle
of radius R, ηi is pseudorapidity and φi azimuthal angle.

Jet cone algorithms usually start by finding seed particles with pT larger than some
predefined fixed value. The momentum of the seed particle i sets the initial direction
of the jet cone. Then by summing the momenta of all the particles j in the circle with
radius R (according to Eq. 2.1), one gets a new direction of jet axis. By repeating
this process, a stable cone is found as a representation of the jet.
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Although the cone algorithms have a relatively straightforward implementation and
an intuitive geometrical meaning (a cone with radius R in the η−φ space of the de-
tector), they are generally not favored in jet reconstruction due to their infrared and
collinear unsafety. There have been various attempts to solve this issue in the past.
One notable solution is the SISCone seedless algorithm [23], which is an example of
a cone algorithm that does not use the concept of seed particle and is infrared and
collinear safe.

2.2.2 Sequential recombination algorithms

Nowadays, the most popular approach to jet reconstruction is to use the family of
the generalised-kt algorithms [24], a part of the class of sequential recombination
algorithms. They are widely used thanks to their infrared and collinear safety and
computing speed. Sequential recombination algorithms are based on the measure-
ment of distances between particles. The basic schematic process of the algorithms
can be described as follows:

1. Distances dij between particles i, j and a distance diB between entity and
beam are calculated as follows:

dij = min(p2k
T i, p

2k
T j)

∆2
ij

R2 , (2.2a)

diB = p2k
T i , (2.2b)

where ∆2
ij = (ηi − ηj)2 + (φi − φj)2. Here pT i, ηi and φi represent transverse

momentum, pseudorapidity and azimuthal angle, respectively. R and k are
parameters.

2. Minimum distance is found as dmin = min {dij, diB}.

3. If dmin = dij, the particles are recombined into a new object and the steps are
repeated from step 1. If dmin = diB , object i is called a jet.

The parameter R in equation (2.2a) is called jet resolution parameter and represents
the "radius" of a jet. The purpose of parameter k is to include the information about
particle energy in distance measurement. The algorithm with k = 1 is called kt

algorithm. Value k = 0 represents the Cambridge/Aachen algorithm and for k = −1,
we obtain the anti-kt algorithm [11].

Cambridge/Aachen algorithm

Due to the value of parameter k = 0 in Eq. (2.2), Cambridge/Aachen algorithm is
energy-independent in clustering and only the configuration of particles in space is
considered. Cambridge/Aachen algorithm can be useful for example to study the jet
substructure as it keeps track of hierarchy in angles.
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kt algorithm

The recombination process of kt algorithm starts by clustering of soft particles
(particles with low pT). This can lead to a formation of larger irregular shapes be-
cause such a recombination of soft particles at the beginning tends to significantly
change the jet direction. Thanks to the sensitivity to soft particles, kt algorithm may
be used in heavy-ion physics for the estimation of background or in the studies of
jet substructure.

Anti-kt algorithm

This algorithm initiates recombination with hard particles (particles with large pT),
so the jet direction remains relatively stable and the anti-kt algorithm leads to
creation of jets with circular shapes. This approach is less likely to illustrate the
realistic process of hadronization, but it is resilient with respect to soft radiation.

Figure 2.4 shows the behavior of four different jet reconstruction algorithms
in a simulated parton-level event from Herwig generator [25] that contains a large
number of random soft particles (∼ 104). As we already mentioned, kt and Cam-
bridge/Aachen algorithms tend to produce irregular shapes whereas anti-kt algorithm
clusters around the most energetic particles and creates more regular circles.
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Figure 2.4: A comparison of jet areas using four different reconstruction algorithms
(kt, Cambridge/Aachen, SISCone and anti-kt algorithm). Taken from [11].
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Chapter 3

Machine learning

Machine learning (ML) is a branch of computer science that deals with algorithms,
which use large datasets to learn statistical relationships within the data and use
those relationships to generate predictions for new data.

Since machine learning has recently undergone a massive development, its use has
spread to many fields such as engineering, computer vision and science. Particle
physics is no exception, as physicists usually have to deal with large amounts of
data and computationally demanding procedures in their work. Applying ML tech-
niques to some tasks can lead to increased performance compared to the traditional
algorithms as well as increased computational efficiency.

The purpose of this chapter is to introduce the basic concepts of machine learning
techniques that are relevant to the analysis part of this thesis. Therefore, we would
like to discuss mainly supervised learning with an emphasis on the jet classification
problem and the JetVLAD model architecture.

3.1 Supervised machine learning

Supervised learning approach is designed to learn to predict targets (labels) given
inputs. In other words, it is trained to learn functional mapping from input space
X to labeled space Y :

f : X → Y. (3.1)

Here, in our case, X stands for a set of jets with chosen mathematical representation
and Y is a set of corresponding jet flavors. Particularly, the dataset used for training
can be described as a collection of N pairs {xi, yi}N

i=1, where xi is a jet represented
in a matrix form and yi ∈ {0, 1} is a binary label, where 0 is a background jet and 1
corresponds to a jet of interest. The exact meaning of label values is dependent on
a given task.
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The mapping f can be described by a parametric function f ≡ f(x,θ). The para-
meters θ can be estimated from the training data in a process called model training.
The model is taught to predict a jet flavor ŷ ≡ f(x,θ) given an input jet x, which
is then compared to the ground truth jet flavor y via the loss function. The concept
of loss function is used to find the best parametrization of the model [26].

The loss function L measures the model error between the predicted value ŷ and
ground truth value y during the training phase and is used to guide the model
training towards the optimal model parametrization. More formally, we can write
the loss function as:

L ≡ L(f(x,θ), y). (3.2)

During the training, we randomly sample N data points from the training dataset
and calculate the average loss function as:

L̂ = 1
N

N∑
i=1

L(f(xi,θ), yi). (3.3)

The L̂ is used as a proxy for full loss function calculated over the entire training
dataset, which is computationally infeasible. The optimal parameters θ are then
found by repeatedly computing and minimizing L̂ using the tools of mathematical
optimization.

One of the basic optimization algorithms is called gradient descent. The algorithm
iteratively estimates optimal model parameters by computing the update in the
direction of negative gradient of loss function with respect to the parameter θ. The
basic version of gradient descent uses a derivative of loss function averaged over the
entire dataset. A commonly used modification of this method is stochastic gradient
descent (SGD) [27], which reduces computational cost at each iteration by using
average loss function L̂ defined in Eq. (3.3).

For the purpose of model training, the data can be divided into three groups: train-
ing, testing and validation. The model parameters are optimized on the training
dataset. Validation dataset is used in order to tune model architecture and guide
model training. The final model performance is provided by the testing dataset,
when the model is confronted with previously unseen data to prevent overfitting of
the model.
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3.2 JetVLAD model architecture

The machine learning model used in this work, the JetVLAD model, is derived
from the NetVLAD architecture [12], which uses the concept of a neural network.
Therefore, let us first introduce the basic properties of neural networks and the
NetVLAD architecture.

A neural network can basically be described as a combination of N layers, where
each layer takes input of the previous one and applies an affine transformation to it.
These layers in fact represent algebraic operations that are followed by an activation
function to add non-linearity. This allows to express non-linear tendencies in the
data. One of the most used activation functions is the rectified linear unit (ReLU)
function [28]. Given an element x, it can be represented as:

ReLU(x) = max(x, 0), (3.4)

which means that the ReLU function keeps only positive elements and discards all
negative elements.

An example of the application of neural networks is their use in the field of computer
vision. A special case of the neural network layer is the NetVLAD [12] adaptive layer.
NetVLAD is inspired by the Vector of Locally Aggregated Descriptors (VLAD)
representation, which was originally designed for visual recognition problems.

NetVLAD allows to aggregate a set of descriptors (vectors) and returns a fixed-
length feature vector that characterizes it. We assume a set of n descriptors, where
each one is represented by a d-dimensional vector {xi}. If there are k clusters in
the input space with trainable parameters {ck}, {wk} and {bk}, then we get a
d× k-dimensional matrix V of the NetVLAD output:

Vj,k =
n∑

i=1

ewT
k xi+bk∑

k′ ewT
k′ xi+bk′

(xi,j − ck,j), (3.5)

where xi,j is a j-th element of the i-th descriptor and ck,j is the j-th element of the
k-th cluster center vector. This matrix is then L2 normalized in columns, reshaped
into a vector and again L2 normalized in order to get the final feature vector.

A useful feature of NetVLAD is that it can work with unordered set of inputs. It is
also resistant to noise, as it was designed to recognize landmarks with a variable
number of background objects in place localization. Thanks to these properties, the
NetVLAD layer became a suitable foundation for our jet classification task, where
a variable number of background and signal objects are present within a jet.
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In the analysis part of this work, we use the JetVLAD model [13], whose architecture
is based on the previously described NetVLAD layer. This allows to use directly
measured variables to produce the so-called particle descriptors. The jet is then
described as a set of particles:

J = {(pT,i, ηi, φi, . . . )}n
i=1 , (3.6)

where n corresponds to the total number of jet constituents, where pT,i is the track
transverse momentum, ηi is the track pseudorapidity and φi corresponds to the track
azimuthal angle. The jet defined in such a way is then processed by the JetVLAD
model which predicts a most probable jet flavor for the given jet (light or heavy-
flavor jet in our case). The schematic representation of the JetVLAD model is shown
in Figure 3.1.

! =
pT . .
η . .
ϕ . .

DCAxy . .
DCAz . .

nconstituents

Figure 3.1: JetVLAD model architecture, based on [12].

In previous work, the JetVLAD model was applied to p + p collisions at RHIC
energies [13]. However, the applicability of the JetVLAD model to higher collision
energies, collision systems, as well as different tagging schemes has not been explored.
Hence, it may be an interesting topic to investigate the performance of the model
in these regimes.
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Chapter 4

Application of JetVLAD model to
p + p collisions

In this chapter, we are going to explore the performance of the JetVLAD model as
a tool for tagging heavy-flavor jets in proton-proton collisions. The performance of
the JetVLAD model has been recently studied on simulated data in p+ p collisions
at the centre-of-mass energy of

√
s = 200 GeV and reported in [13], which is the

starting point for our further studies.

Our goal is to investigate the performance of the JetVLAD model at higher collision
energies (

√
s = 510 GeV and

√
s = 7 TeV) and with different tagging approaches

(parton tagging and D0 tagging).

4.1 Datasets and inputs

In our analysis, we used simulated data generated by the PYTHIA8 event gener-
ator [29]. Datasets of p + p collisions were generated at the centre-of-mass energy√
s = 200 GeV and

√
s = 510 GeV, which correspond to the typical RHIC energies.

Additionally, datasets for
√
s = 7 TeV were generated to show preliminary results

for collision energies achievable at the LHC. In order to well represent the realistic
jet flavor ratio of heavy-flavor and light flavor jets, cross-section weighted samples
were used. The simulated events were smeared by the fast simulation approach of
STAR detector as in [13]. This allows us to include the effects of finite detector
resolution without requiring a computationally expensive full detector simulation.
The jets were reconstructed from charged particles with pT > 0.2 GeV using the
anti-kT clustering algorithm with resolution parameter R = 0.4.

The generated datasets were split into three parts for training, testing and validation.
As a type of input for training, we used the "Tracking + Vertexing" input from [13]
with corresponding input variables (pT, η, φ, DCAxy, DCAz), since it turned out
to be the optimal combination of input features. Here pT is the track transverse
momentum, η is the track pseudorapidity, φ corresponds to the track azimuthal
angle and DCAxy, DCAxy are the distances of the closest approach from the track
to the primary vertex in x− y and z planes.
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For each jet pT bin, the p̂T ranges of the Pythia HardQCD processes were set as
p̂T,min = pjet

T,min − 2 and p̂T,max = pjet
T,max + 2, where pjet

T,min is the minimum jet pT in
the bin and pjet

T,max is the maximum jet pT in the bin. Each jet pT bin dataset for
testing and validation contains 5×105 generated events with jets, the corresponding
training datasets contain 5× 106 events.

In our analysis, we used two different jet labeling approaches – parton tagging and
D0 tagging. The first approach is conceptually simple, where the jet flavor is iden-
tified by the heaviest parton that lies withing the reconstructed jet cone. Here the
jets originating from c and b quarks are identified as heavy-flavor jets. However, this
method does not reflect real-world experimental setup very well, since partons are
experimentally unavailable. The second mentioned approach, D0 tagging, is based
on a method called ghost association. This approach allows one to generate datasets
that are closer to the experimentally observed data, since it is using information
about D0 meson being present within the jet to establish the jet flavor. Usually, this
is done by manual reconstruction of a D0 meson via its decay into daughter particles,
kaons and pions, which is computationally challenging. We simplify this process by
requiring a massless D0 to be present in the jet cone, which alleviates the need to
reconstruct kaons and pions.

4.2 Classification metrics

In order to evaluate the performance of the JetVLAD model, we need to introduce
a set of metrics to quantify it.

The first metric that we use is called Efficiency or true positive rate (TPR). It is
defined as a ratio of positively identified heavy-flavor jets (TP) to the total number
of heavy-flavor jets in the testing sample (P). This metric tells us the percentage of
signal jets that the model extracts from the sample and it can be expressed as:

TPR = TP
P . (4.1)

Another relevant metric is mis-identification probability or false positive rate (FPR),
which is given by the ratio of false-positive samples (FP) identified in the testing
sample to the total number of background objects (N) in the testing sample:

FPR = FP
N . (4.2)
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In jet physics, however, we prefer to use another related metric – the Background
Rejection (REJ). It measures how much of the true background will be rejected per
one false-positive detection as:

REJ = 1
FPR . (4.3)

This metric is particularly useful for heavy-flavor jet classification, where the signal is
much smaller than the background due to the difference in production cross-section.

The last metric relevant to us is called Purity. This metric tells us the extent of
contamination of the signal by false-positive objects and is given by the following
equation:

PREC = TP
TP + FP , (4.4)

where TP is a number of true positive objects and FP is a number of false positive
objects found in the testing sample.

4.3 JetVLAD performance and analysis results

In the first part of our analysis, we aim to reproduce the approach used in [13] to
provide a starting point for comparison with other datasets and methods. Therefore,
we selected datasets of generated p + p collisions at

√
s = 200 GeV and used the

parton tagging approach for tagging heavy-flavor jets. The results are demonstrated
in Figure 4.1. In the left plot, we can see the purity vs efficiency curves and the
right plot shows the curves for background rejection. Various jet pT selections
[5 − 10], [10 − 15], [15 − 20], [20 − 25] and [25 − 40] GeV/c are demonstrated by
different colors. The results show us a very good tagging performance, as at 80%
efficiency it the model achieves almost 80% purity and large background rejection
factor. The effect of varying jet pT mostly manifests itself only in the background
rejection, where the effect behaves as expected – the higher the jet pT , the greater
background rejection.

To quantify and compare the results within different datasets, we choose two work-
ing points based on efficiencies of 80% and 50%. As shown in Tab. 4.1, the signal
purity is remaining relatively consistent at the given efficiency, while we find a con-
sistent trend of increasing background rejection with increasing jet pT.
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Further on, we introduce a modification to the jet tagging approach in the datasets
to explore the applicability of the JetVLAD model for tagging D0 jets. The plots
in Figure 4.2 demonstrate the resulting model performance at the same energy as
before (

√
s = 200 GeV) with datasets based on D0 tagging approach instead. Here

the curves for the jet pT range of 20 − 25 GeV/c from parton tagging approach
(dashed blue curve in both plots) are included to demonstrate the difference in the
model performance. There is an apparent decrease in the model performance in the
case of D0 tagging approach, as also quantified in Tab. 4.2. However, it is expected
that this tagging approach may better reflect the experimental method and it helps
to test the robustness and applicability of the JetVLAD model in this direction.

In order to investigate the performance of the JetVLAD model at different collision
energies, datasets with the center-of-mass energy

√
s = 510 GeV were generated and

the model was trained on these samples. Again, the datasets were produced for both
parton and D0 tagging approaches. The results in Figure 4.3 (parton tagging) and
Figure 4.4 (D0 tagging) show us a similar performance in purity and rejection as in
the case of results for

√
s = 200 GeV. The performance of the model is lower but still

consistent with our expectation because of the different production cross-section in
the samples.

It may be also interesting to test the model performance for much higher energies
achievable at the LHC. Figure 4.5 therefore shows preliminary results for p+ p
collisions at

√
s = 7 TeV using parton tagging approach. Here, we used different jet

pT ranges due to the higher occurence of background objects in low-pT jets at the
LHC collision energies. The results show a good model performance as it achieved
∼ 70% purity at the efficiency of 80%. However, it should also be noted that we used
the same configuration as in the case of RHIC energies (STAR detector parameters)
and hence the dataset does not fully reflect the LHC environment.

Our study in p + p collisions across available energies from RHIC to LHC
demonstrates that JetVLAD model is a powerful tool for identifying heavy-flavor
jets that works well at different collision energies as well as heavy-flavor jet tagging
approaches. This makes JetVLAD model a promising candidate for heavy-flavor ML
based tagging measurements in real experimental environments.
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Figure 4.1: Signal purity (left) and background rejection (right) vs efficiency for
parton tagging approach at the c.m.s. energy of

√
s = 200 GeV. Different jet pT

selections are shown separately by the colored curves.

√
s [GeV] Range in jet

pT [GeV/c]
Tagging
efficiency

Signal
Purity

Background
Rejection

200

(parton tagging)

[5-10] 80 %
50 %

83 %
88 %

223
540

[10-15] 80 %
50 %

85 %
88 %

223
476

[15-20] 80 %
50 %

85 %
88 %

259
506

[20-25] 80 %
50 %

85 %
88 %

310
624

[25-40] 80 %
50 %

81 %
85 %

322
677

Table 4.1: JetVLAD classification performance in purity and rejection for different
jet pT ranges with two working points based on efficiencies of 80% and 50%.
Results are shown for datasets generated at

√
s = 200 GeV using the parton tagging

approach.
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Figure 4.2: Signal purity (left) and background rejection (right) vs efficiency for
D0 tagging approach at

√
s = 200 GeV. The blue dashed curves from parton tagging

(jet pT bin 20− 25 GeV) were included for comparison.

√
s [GeV] Range in jet

pT [GeV/c]
Tagging
efficiency

Signal
Purity

Background
Rejection

200

(D0 tagging)

[5-10] 80 %
50 %

54 %
71 %

84
278

[10-15] 80 %
50 %

62 %
70 %

94
211

[15-20] 80 %
50 %

66 %
73 %

127
288

[20-25] 80 %
50 %

66 %
73 %

152
336

[25-40] 80 %
50 %

67 %
74 %

206
449

Table 4.2: JetVLAD classification performance in purity and rejection for different
jet pT ranges with two working points based on efficiencies of 80% and 50%.
Results are shown for datasets generated at

√
s = 200 GeV using the D0 tagging

approach.
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Figure 4.3: Signal purity (left) and background rejection (right) vs efficiency for
parton tagging approach at the c.m.s. energy of

√
s = 510 GeV. Different jet pT

selections are shown separately by the colored curves.

√
s [GeV] Range in jet

pT [GeV/c]
Tagging
efficiency

Signal
Purity

Background
Rejection

510

(parton tagging)

[5-10] 80 %
50 %

81 %
87 %

157
385

[10-15] 80 %
50 %

84 %
87 %

149
310

[15-20] 80 %
50 %

85 %
88 %

161
323

[20-25] 80 %
50 %

84 %
87 %

161
323

[25-40] 80 %
50 %

82 %
85 %

157
323

Table 4.3: JetVLAD classification performance in purity and rejection for different
jet pT ranges with two working points based on efficiencies of 80% and 50%.
Results are shown for datasets generated at

√
s = 510 GeV using the parton tagging

approach.
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Figure 4.4: Signal purity (left) and background rejection (right) vs efficiency for
D0 tagging approach at

√
s = 510 GeV. The blue dashed curve from parton tagging

(jet pT bin 20− 25 GeV) was included for comparison.

√
s [GeV] Range in jet

pT [GeV/c]
Tagging
efficiency

Signal
Purity

Background
Rejection

510

(D0 tagging)

[5-10] 80 %
50 %

53 %
68 %

56
179

[10-15] 80 %
50 %

65 %
71 %

63
136

[15-20] 80 %
50 %

69 %
76 %

75
171

[20-25] 80 %
50 %

67 %
72 %

70
141

[25-40] 80 %
50 %

68 %
73 %

78
157

Table 4.4: Signal purity (left) and background rejection (right) vs efficiency for
D0 tagging approach at the c.m.s. energy of

√
s = 510 GeV. The blue dashed curves

from parton tagging (jet pT bin 20− 25 GeV) were included for comparison.
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Figure 4.5: Signal purity (left) and background rejection (right) vs efficiency for
parton tagging approach at

√
s = 7 TeV. Different jet pT selections are shown

separately by the colored curves.

√
s [TeV] Range in jet

pT [GeV/c]
Tagging
efficiency

Signal
Purity

Background
Rejection

7

(parton tagging)

[20-40] 80 %
50 %

72 %
84 %

90
278

[40-80] 80 %
50 %

74 %
84 %

94
278

[80-120] 80 %
50 %

74 %
84 %

95
288

[150-200] 80 %
50 %

73 %
83 %

100
288

Table 4.5: JetVLAD classification performance in purity and rejection for different
jet pT ranges with two working points based on efficiencies of 80% and 50%.
Results are shown for datasets generated at

√
s = 7 TeV using the parton tagging

approach.
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Chapter 5

Application of JetVLAD model to
heavy-ion collisions

This chapter begins with an introduction of the event generator called JETSCAPE [30].
The applicability of the JetVLAD model to the datasets of simulated proton-proton
and heavy-ion collisions in JETSCAPE generator is then discussed in section 5.2 of
this chapter.

5.1 Introduction to JETSCAPE framework

The JetEnergy-lossTomography with a Statistically andComputationallyAdvanced
Program Envelope (JETSCAPE) [30] is a comprehensive framework dedicated to
the development of Monte Carlo (MC) event generators with an emphasis on the
physics of heavy-ion collisions. JETSCAPE also includes powerful statistical tools
that allow to conduct Monte Carlo studies of heavy-ion collisions.

JETSCAPE serves as a framework for general-purpose Monte Carlo simulations in
heavy-ion collisions. The versatility of this framework allows to simulate the whole
evolution of heavy-ion event, which is convenient for studying various aspects of
heavy-ion collisions. The JETSCAPE framework consists of a complex system of
interacting generators (physics modules) that are directed by the core framework.
Thanks to its structure, the JETSCAPE framework allows to produce events and
simultaneously analyze and check the observables against experimental predictions.
This is also a useful feature for heavy-ion collisions as there are usually multiple
stages of collisions with different physics evolving side by side.
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As mentioned, JETSCAPE incorporates numerous physics modules (generators) to
cover different stages of heavy-ion collisions. Let us mention a few examples of
important JETSCAPE modules. The initial state module of JETSCAPE called
TRENTO [31] is responsible for the determination of the initial state geometry.
The hydrodynamical evolution of the medium in JETSCAPE is governed by hydro-
dynamic modules such as CLVisc [32] and MUSIC [33]. The main event generator
used for hard scattering is PYTHIA8 [29]. As energy loss modules in JESTCAPE,
which are also responsible for the simulation of jet quenching effects, we can name
for example MATTER [34], MARTINI [35] and LBT [36] etc. For more details on
different JETSCAPE modules, we refer the reader to the JETSCAPE manual [30].

JETSCAPE as an event generator allows us to study, for example, the fluid
dynamical evolution of the quark-gluon plasma, the transport and medium
induced modifications of jets, and other aspects of heavy-ion collisions.
Additionally, JETSCAPE framework also contains a powerful statistical toolkit,
which includes advanced statistical analysis tools based on Bayesian techniques for
calibration and comparison of simulated data with experimental data.

5.2 JETSCAPE analysis

In this section, we would like to test the applicability of the JetVLAD model to
the datasets of jets generated by using the JETSCAPE event generator for two
configurations – jets in the vacuum (p + p collisions) and jets in the presence of
QGP medium (to simulate heavy-ion collisions) at RHIC collision energies.

It has been shown that without secondary vertex information (DCAxy and DCAz),
the performance of the JetVLAD model drops down significantly. This was demon-
strated in the study of the influence of different input features on the JetVLAD
model performance in [13] and it is depicted in the Figure 5.1. In addition, it is
expected that the performance of the model will decrease in heavy-ion collisions due
to the presence of the QGP medium. The experimentally more realistic D0 tagging
approach also results in the decrease of the model performance (as observed in the
analysis described in the previous chapter, section 4.3).

With all that being said, it is therefore very important to provide the highest quality
data possible for the model training in order to achieve the best performance of the
model. However, it turned out that the current version of the JETSCAPE event
generator does not contain the secondary vertex information. It was thus necessary
to come up with a temporary solution to our task.
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Figure 5.1: Purity and background rejection vs efficiency curves shown for different
types of inputs. The top and bottom panels show jets with 10 < pT < 15 and
25 < pT < 40 GeV/c. The "Tracking+Vertexing" input with the corresponding
variables (pT, η, φ, DCAxy, DCAz) shows up to be the best input option for model
training as it reaches the highest performance of all. Taken from [13].

The task was solved in a multi-step approach. A simplified diagram of the data
generation process is depicted in Figure 5.2. The first step was to generate the events
by JETSCAPE generator with non-decaying D0 meson setup. In the second step,
the D0 meson decay was simulated using EvtGen [37] generator and each D0 meson
was decayed and replaced in the original dataset by its decay daughters (kaons and
pions). The last step was the reconstruction of jets based on the presence of decay
daughters in the jet cone. The final data were used to train and test the JetVLAD
model performance on the datasets. Let us now break this pipeline down into indi-
vidual steps.
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Figure 5.2: Simplified diagram of the analysis process with individual steps from
JETSCAPE to the JetVLAD model.

JETSCAPE data generation. For the purpose of this task, the two different
datasets were chosen – one setup with vacuum jets and the other with jets in the
medium. While generating the events, the D0 mesons were set to be stable, non-
decaying particles. For both datasets a total of 2 × 106 events were generated at
the c.m.s. energy of

√
s = 200 GeV. The number of generated events was chosen

with respect to the higher computational cost of running JETSCAPE simulations,
especially in the case of jets in the medium. For more detailed information about
JETSCAPE setup, see the attached configuration files in Appendix B.

Evtgen – D0 decay. EvtGen [37] is an event generator, which is used for
simulations of heavy-flavor particle decays such as decays of B and D mesons.
In this analysis, the D0 mesons are decayed via the hadronic channel D0 → K− +π+,
which has the branching ratio BR = (3.89± 0.04)% [38]. The complementary decay
D0 → K+ + π− was also included. The DCAxy and DCAz for D0 meson daughter
particles were obtained from the EvtGen generator. For the other particles, we
used artificial values from a Gaussian distribution based on the DCA spectra for
light particles generated from PYTHIA events. The pT probability distribution of
D0 mesons in p+p and heavy-ion collisions can be seen in Fig. 5.3. The pT distribution
of D0 mesons tends to be more shifted towards low transverse momentum particles
in the presence of the medium.
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Figure 5.3: D0 meson pT probability distribution P(pT) in vacuum and medium
JETSCAPE events. In total, about 105 of D0 and D0 mesons were obtained for each
of the JETSCAPE dataset.

Jet reconstruction. The jets were reconstructed from charged particles in the
events using anti-kT clustering algorithm with resolution parameter R = 0.4, and
with the pT cut on jet constituent particles pT > 0.2 GeV. In order to increase
the number of jets retrieved from JETSCAPE datasets, the jets were reconstructed
in the jet pT range [5 − 100] GeV/c without further jet pT selections. For each
dataset, about 106 jets and 2×104 D0–tagged jets were obtained. Figure 5.4 shows a
comparison of D0–tagged jet pT probability distribution in medium and in vacuum,
respectively. Again, there is a noticeable increase in the number of low transverse
momentum D0–tagged jet in the presence of the medium.
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Figure 5.4: Comparison of D0–tagged jet pT probability distribution P(pT) in me-
dium and in vacuum events, reconstructed from the JETSCAPE datasets.
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JetVLAD model performance and discussion of results Both datasets were
split as 80:10:10 for training, testing and validation. Then the JetVLAD model
was trained on these samples using the "Tracking+Vertexing" input with variables
(pT, η, φ, DCAxy, DCAz).

Figure 5.5 and 5.6 show the resulting performance of the JetVLAD model in tagging
D0 jets in vacuum and medium JETSCAPE events, respectively. To compare the
results within the two datasets, the working points based on efficiencies of 80%
and 50% are shown in Tab. 5.1 and Tab. 5.2. The results for vacuum jets and
medium jets show up to be comparable with slightly better performance in the case
of vacuum events. There is, however, a significant decrease in the model performance
in both datasets compared to the previous results for JetVLAD with pure PYTHIA
p+ p events.
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Figure 5.5: Signal purity (left) and background rejection (right) vs efficiency for D0–
tagged jets in the vacuum in JETSCAPE generated events at

√
s = 200 GeV.

√
s [GeV] Range in jet

pT [GeV/c]
Tagging
efficiency

Signal
Purity

Background
Rejection

200 [5-100] 80 %
50 %

16 %
46 %

12
86

Table 5.1: JetVLAD classification performance in purity and rejection for working
points at efficiencies of 80% and 50%. Jets in vacuum JETSCAPE events.
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Figure 5.6: Signal purity (left) and background rejection (right) vs efficiency for D0–
tagged jets in the medium in JETSCAPE generated events at

√
s = 200 GeV.

√
s [GeV] Range in jet

pT [GeV/c]
Tagging
efficiency

Signal
Purity

Background
Rejection

200 [5-100] 80 %
50 %

15 %
38 %

10
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Table 5.2: JetVLAD classification performance in purity and rejection for working
points at efficiencies of 80% and 50%. Jets in medium JETSCAPE events.

Since it is known that the DCA input has a large impact on the model performance,
we will further investigate, how our choice of secondary vertex sampling affects the
final performance of the JetVLAD model. Figure 5.7 shows a comparison of different
assumptions about secondary vertex of light particles in JETSCAPE vacuum events.
As a baseline, we set PYTHIA8 based sampling from Gaussian distributions with
(µz = 0.07, σz = 0.6) mm and (µxy = 0.14, σxy = 1.2) mm that were also used in our
analysis. Then three other cases are explored – first two, where we decrease values
of σ parameters by factor of 5 and 10 and a third edge case, where we assume that
all light particles, which are not coming from the D0 decay, have secondary vertex
location at origin. We observe, that the edge case gets almost 100% efficiency for
100% purity, which may be caused by the fact that JetVLAD model simply count
the number of non-zero vertices to obtain the jet tag. The cases of σ/5 and σ/10
represent an intermediate performance as compared to the previous one, which is
caused by the fact that light-flavor particles are still relatively easy to distinguish.
The drop in the performance in our final result is then very likely caused by high level
of similarity between vertices of light-flavor and heavy-flavor originating particles as
generated by EvtGen.
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Figure 5.7: Signal purity (left) and background rejection (right) vs efficiency for D0–
tagged jets in the vacuum in JETSCAPE generated events at

√
s = 200 GeV. Each

curve represents a different assumption about secondary vertex of light particles that
are not coming from the decay of D0 meson.N(µ, σ) represent dataset trained on sec-
ondary vertex distribution fitted to the PYTHIA8 data. N(µ, σ/5) and N(µ, σ/10)
represent datasets with narrower spread of the vertex. Lastly, DCAz, DCAxy = 0,
represent the edge case, where secondary vertices of light particles are assumed to
be zero.

In addition, it is expected that the artificial vertexing is inducing an unrealistic bias
into the dataset. Due to the used Gaussian distribution of DCA for light particles,
the data is missing the original correlations between the generated particles in the
events. As a consequence, each jet is represented as an ensemble of particles with in-
dependently sampled Gaussian DCA values with few outliers coming from D0 decays.
Hence, it is difficult for the model to classify such jets due to the low amount of
useful signal being present. This is in contrast to result in section 4.3 of the previous
chapter, where the JetVLAD model achieves good performance, which shows that
unrealistic vertexing may be the main cause of the decrease in performance.

Another way to improve the performance of machine learning algorithms is to in-
crease the amount of data used for training. However, data generation in JETSCAPE
is computationally very demanding, especially for the datasets of jets in the medium.
Moreover, the whole analysis procedure involved several complex steps due to the
necessity to artificially add vertex information to the original JETSCAPE datasets.
The low number of jets available for model training may therefore also play a role
in the final model performance and it would be beneficial to used larger datasets
to explore these effects. At this point, however, the absence of original vertexing
information is still expected to have a significant impact on the results, which will
remain even for larger amount of data. This is assumed because similar results were
obtained for jets in medium and in vacuum, although there are differences in the
number of particles in the events, pT distributions of particles etc.
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In order to draw a firm conclusion, it would be necessary to apply the JetVLAD
model on JETSCAPE datasets with true secondary vertex information, which is not
possible at the moment as the JETSCAPE framework does not yet provide it.
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Conclusion

In this thesis, we explored how the recently introduced JetVLAD model can be
applied towards tagging heavy-flavor jets in p + p and heavy-ion collisions using
different definitions of jet tagging approaches.

In the first chapter, the relevant experimental observables and measurements in jet
physics were introduced. The second chapter served as an introduction to the topic of
jet reconstruction algorithms. The third chapter was dedicated to the basic concepts
of machine learning theory with an emphasis on the jet classification problem and
the formulation of the JetVLAD model architecture.

In the fourth chapter, the application of the JetVLAD model to PYTHIA
generated p+p events for center-of-mass energies

√
s = 200 GeV and

√
s = 510 GeV

with different jet tagging approaches (parton and D0 tagging) was explored. In both
cases, the model was found to achieve high classification performance and the
experimentally more realistic D0 tagging approach showed worse performance com-
pared to the parton tagging approach. As last, we performed preliminary studies of
the JetVLAD performance in p+p collisions at

√
s = 7 TeV. The preliminary results

show promising performance, however, more rigorous simulations of p+ p collisions
and the detector induced smearing are needed.

In the last chapter, the possibility of applying the JetVLAD model to data from
the JETSCAPE event generator was discussed. We explored the importance of the
secondary vertex information in the data and presented a temporary solution to the
estimation of secondary vertex, which is currently missing in the JETSCAPE frame-
work. Then, the performance of the JetVLAD model was tested for two different
datasets – one setup with vacuum jets (p+p collisions) and the other with jets in the
medium (to simulate heavy-ion collisions). It has been shown that at this point it
is difficult for the JetVLAD model to learn how to distinguish light-flavor jets from
the D0 jets, which may be caused by the simplified secondary vertex simulation and
perhaps also due to the lack of available statistics in the data.

The next steps in this research cannot be properly done until the correct
secondary vertexing is implemented in the JETSCAPE framework. Once available,
the JetVLAD studies from chapter 5 will need to be repeated with the new data
and the JetVLAD model may need to be tuned in order to achieve the best possible
performance on these novel data.
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Appendix A

Glauber model and collision
centrality

When colliding heavy nuclei, the resulting particle production depends on how the
nuclei encounter each other. In order to describe the relative position of the nuclei,
we introduce a quantity called the collision parameter b, which can be defined as the
distance between the geometric centre of the two colliding nuclei in the transverse
plane. Figure A.1 shows the state before and after the collision of two heavy nuclei.
It can be seen that not all nucleons in the nuclei are involved in the collision – one
can distinguish the so-called participants and spectators of the collision, whose ratio
depends on the collision parameter b.

Figure A.1: Collision of two heavy ions with collision parameter b. Taken from [14].

However, neither the collision parameter b nor the number of participants in a col-
lision Npart can be directly measured in experiments.

For this reason, we introduce the so-called Glauber model [15], [22], which allows
to estimate these geometric quantities by theoretical calculations. There are two
main approaches to Glauber model calculations – the optical model and the Monte
Carlo Glauber model. The optical Glauber model is derived from the integration
of Wood-Saxon distributions. The Monte Carlo Glauber model, unlike the previous
one, assigns nucleons to specific positions in a coordinate system and uses Monte-
Carlo simulations for the evaluation of the model.
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The more theoretical and didactic, optical Glauber model, will be briefly introduced
in the following section.

The optical Glauber model describes a nucleus-nucleus collision as a superposition
of many independent nucleon collisions (N-N collisions). The assumptions of the
model are: sufficiently high nucleon energy (so that the particles to move along
direct trajectories); independent motion of the nucleons in the nucleus; and the
assumption that the forces between the nucleons are negligible compared to the size
of the nucleus.

In the Glauber model, a parameterization of the nucleus density is given by the the
Woods-Saxon distribution as follows:

ρ(r) = ρ0

1 + exp
(

r−R
c

) , (A.1)

where r is the distance from the nucleon center, ρ0 corresponds to the density at the
center of the nucleus, and R is the mean radius of the nucleus. The parameters ρ0
a c can be determined from scattering experiments by [20].

Let us now consider the collision of nuclei A (target) and B (projectile) with collision
parameter b in Fig. A.2, where A and B are the numbers of nucleons.

We introduce the function T̂A (s) =
∫
ρ̂A(s, zA)dzA, where s is the distance from the

center of the projectile A, z is the axis in the beam direction and ρ̂A is the volume
probability of the occurence of a nucleon at the point (s, zA). An analogous relation
holds for projectile B. The total number of nucleon-nucleon collisions Ncoll is then
defined in Glauber’s optical model as:

Ncoll (b) = AB
∫
T̂A (s) T̂B (s− b) σNN

inel d
2s, (A.2)

where z is the axis in the beam direction, b is the collision parameter and σNN
inel

denotes the inelastic effective cross-section for nucleon-nucleon collisions.

The number of participants in the collision Npart is given by:

Npart (b) = A
∫
T̂A (s)

{
1−

[
1− T̂B (s− b)σNN

inel

]B}
d2s+

B
∫
T̂B (s− b)

{
1−

[
1− T̂A (s)σNN

inel

]A}
d2s. (A.3)
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Figure A.2: Collision diagram in Glauber’s optical model. Taken from [15].

The collision centrality can be determined from experimentally measurable quant-
ities – for example, the collision multiplicity (number of produced particles). Figure
A.3 shows the dependence of the differential cross-section on the number of pro-
duced charged particles (Nch). The distribution is split into intervals of centralities
such that the number of charged particles per bin corresponds to a certain percentage
of geometric overlap in the collision.

The most central collisions correspond to values of centralities 0 − 5% and small
values of the parameter b. On the other hand, collisions with the highest values of
centralities and large values of the parameter b are called peripheral collisions.

Figure A.3: Differential cross-section as a function of the number of produced charged
particles Nch and determination of centrality using calculations from the Glauber
model. From [16].
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Appendix B

JETSCAPE – configuration files

<?xml version="1.0"?>

<jetscape>

<nEvents> 100000 </nEvents>

<outputFilename>vacuum_run_1</outputFilename>
<JetScapeWriterAscii> on </JetScapeWriterAscii>

<Random>
<seed>0</seed>

</Random>

<!-- Hard Process -->
<Hard>

<PythiaGun>
<pTHatMin>18</pTHatMin>
<pTHatMax>27</pTHatMax>
<eCM>200</eCM>

<LinesToRead>
HardQCD:gg2gg = off
HardQCD:gg2qqbar = off
HardQCD:qg2qg = off
HardQCD:qq2qq = off
HardQCD:qqbar2gg = off
HardQCD:qqbar2qqbarNew = off
Charmonium:all = on 
HardQCD:gg2ccbar = on 
HardQCD:qqbar2ccbar = on 
Bottomonium:all = off 
HardQCD:gg2bbbar = off 
HardQCD:qqbar2bbbar = off 

</LinesToRead>
</PythiaGun>

</Hard>

<!--Eloss Modules -->
<Eloss>

<Matter>
<Q0> 1.0 </Q0>
<in_vac> 1 </in_vac>
<vir_factor> 0.25 </vir_factor>
<recoil_on> 0 </recoil_on>
<broadening_on> 0 </broadening_on>
<brick_med> 0 </brick_med>
</Matter>

</Eloss>

<!-- Jet Hadronization Module -->
<JetHadronization>

<name>colorless</name>
</JetHadronization>

</jetscape>

Figure B.1: An example of JETSCAPE configuration file for vacuum events.
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<?xml version="1.0"?>

<jetscape>

<nEvents> 100000 </nEvents>
<setReuseHydro>true</setReuseHydro>
<nReuseHydro> 100000 </nReuseHydro>
<outputFilename>medium_run_1</outputFilename>
<JetScapeWriterAscii> on </JetScapeWriterAscii>
<nEvents_printout>1</nEvents_printout>
<Random>

<seed>0</seed>
</Random>
<!-- Inital State Module -->
<IS>

<initial_profile_path>../../SummerSchool2021/Jul23_Jets/test_hydro_profile</‐
initial_profile_path>

</IS>
<!-- Hard Process -->
<Hard>

<PythiaGun>
<pTHatMin>18</pTHatMin>
<pTHatMax>27</pTHatMax>
<eCM>200</eCM>

<LinesToRead>
HardQCD:gg2gg = off
HardQCD:gg2qqbar = off
HardQCD:qg2qg = off
HardQCD:qq2qq = off
HardQCD:qqbar2gg = off
HardQCD:qqbar2qqbarNew = off
Charmonium:all = on 
HardQCD:gg2ccbar = on 
HardQCD:qqbar2ccbar = on 
Bottomonium:all = off 
HardQCD:gg2bbbar = off 
HardQCD:qqbar2bbbar = off 

</LinesToRead>
</PythiaGun>

</Hard>
<!-- Preequilibrium Dynamics Module -->
<Preequilibrium>

<NullPreDynamics/>
</Preequilibrium>
<!-- Hydro Module -->
<Hydro>

<hydro_from_file>
<boost_invariant_>1</boost_invariant_>
<read_in_multiple_hydro>1</read_in_multiple_hydro>
<hydro_files_folder>../../SummerSchool2021/Jul23_Jets/‐

test_hydro_profile</hydro_files_folder>
</hydro_from_file>

</Hydro>
<!-- Eloss Modules -->
<Eloss>

<deltaT>0.1</deltaT>
<formTime>-0.1</formTime>
<maxT>250</maxT>
<tStart>0.6</tStart>

<!-- Start time of jet quenching, proper time, fm/c -->
<mutex>ON</mutex>

Figure B.2: An example of JETSCAPE configuration file (part 1/2) for medium
events. Based on the configuration files from the official JETSCAPE github [17].
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<Matter>
<name>Matter</name>
<useHybridHad>0</useHybridHad>
<matter_on>1</matter_on>
<Q0>2.0</Q0>
<vir_factor>0.25</vir_factor>
<in_vac>0</in_vac>
<recoil_on>1</recoil_on>
<broadening_on>1</broadening_on>
<brick_med>0</brick_med>
<!-- Set brick_med to 1 while using Brick Hydro module -->
<T0>0.16</T0>
<hydro_Tc>0.16</hydro_Tc>
<qhat0>-1.0</qhat0>
<!-- If Type=0, 1, 5,6,7 set qhat0 as negative since alphas will be used -->
<alphas>0.25</alphas>

</Matter>
<Lbt>

<name>Lbt</name>
<Q0>2.0</Q0>
<in_vac>0</in_vac>
<only_leading>0</only_leading>
<hydro_Tc>0.16</hydro_Tc>
<alphas>0.25</alphas>

</Lbt>
</Eloss>
<!-- Jet Hadronization Module -->

<JetHadronization>
<name>colorless</name>

<!--
<take_recoil>1</take_recoil>
<eCMforHadronization>2510</eCMforHadronization>
-->

</JetHadronization>
</jetscape>

Figure B.3: An example of JETSCAPE configuration file (part 2/2) for medium
events. Based on the configuration files from the official JETSCAPE github [17].
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