
Czech Technical University in Prague

Faculty of Electrical Engineering
Department of Circuit Theory

Multi-robot Systems

Machine learning

for fast motion planning

Bachelor’s Thesis

Jonáš Kř́ıž

Prague, May 2023

Study programme: Medical Electronics and Bioinformatics

Supervisor: Ing. Vojtěch Vonásek, Ph.D.

ii

BACHELOR‘S THESIS ASSIGNMENT

I. Personal and study details

499344 Personal ID number: Kříž Jonáš Student's name:

Faculty of Electrical Engineering Faculty / Institute:

Department / Institute: Department of Circuit Theory

Medical Electronics and Bioinformatics Study program:

II. Bachelor’s thesis details

Bachelor’s thesis title in English:

Machine learning for fast motion planning

Bachelor’s thesis title in Czech:

Využití metod strojového učení pro rychlé plánování pohybu

Guidelines:

1. Get familiar with path planning problem [1], focus on path planning for 3D objects. Get familiar with neural
networks for regression.
2. Implement a sampling-based method, e.g., RRT, PRM, or one of its variants [2].
3. Implement a method that can sample along a predefined path or an approximate solution [3,4].
4. Design a method to suggest probability of sampling using a neural network (NN). NN will be trained using found
solutions, it should provide hints where the searched space should be sampled.
5. Verify the performance of the method from 4) on the dataset (will be provided by the supervisor). Compare the
method from 4) against suitable methods from the OMPL benchmark [5].
6. Adapt the method from 4) to protein data in the protein-docking through protein tunnels [6]. The dataset and
models of the molecules will be provided by the supervisor. Compare the method 5) against RRT-based search (will
be provided by the supervisor).

Bibliography / sources:

1. LaValle, Steven M. Planning algorithms. Cambridge university press, 2006.
2. Elbanhawi, Mohamed, and Milan Simic. 'Sampling-based robot motion planning: A review.' Ieee
access 2 (2014): 56-77.
3. J. Denny, R. Sandström, A. Bregger, and N. M. Amato. Dynamic region-biased rapidly-exploring
random trees. In Twelfth International Workshop on the Algorithmic Founda-tions of Robotics
(WAFR), 2016.
4. V Vonásek, R Pěnička and B Kozlíková. Searching Multiple Approximate Solutions in
Configuration Space to Guide Sampling-Based Motion Planning. Journal of Intelligent & Robotic
Systems 100:1547-1543, 2020
5. I. A. Sucan, M. Moll and L. E. Kavraki, 'The Open Motion Planning Library,' in IEEE Robotics
& Automation Magazine, vol. 19, no. 4, pp. 72-82, Dec. 2012, doi: 10.1109/MRA.2012.2205651.
6. Vavra O, Filipovic J, Plhak J, Bednar D, Marques SM, Brezovsky J, Stourac J, Matyska L,
Damborsky J. CaverDock: a molecular docking-based tool to analyse ligand transport through
protein tunnels and channels. Bioinformatics. 2019 Dec 1;35(23):4986-4993. doi:
10.1093/bioinformatics/btz386. PMID: 31077297.

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 1 from 2 CVUT-CZ-ZBP-2015.1

Name and workplace of bachelor’s thesis supervisor:

Ing. Vojtěch Vonásek, Ph.D. Multi-robot Systems FEE

Name and workplace of second bachelor’s thesis supervisor or consultant:

Deadline for bachelor thesis submission: 26.05.2023 Date of bachelor’s thesis assignment: 31.01.2023

Assignment valid until: 22.09.2024

___________________________ ___________________________ ___________________________
prof. Mgr. Petr Páta, Ph.D.

Dean’s signature
doc. Ing. Radoslav Bortel, Ph.D.

Head of department’s signature
Ing. Vojtěch Vonásek, Ph.D.

Supervisor’s signature

III. Assignment receipt
The student acknowledges that the bachelor’s thesis is an individual work. The student must produce his thesis without the assistance of others,
with the exception of provided consultations. Within the bachelor’s thesis, the author must state the names of consultants and include a list of references.

.
Date of assignment receipt Student’s signature

© ČVUT v Praze, Design: ČVUT v Praze, VIC Page 2 from 2 CVUT-CZ-ZBP-2015.1

v

Acknowledgments

I have to express my gratitude to my supervisor Vojtěch Vonásek, for giving me the
opportunity to work on this thesis, which I greatly enjoyed. I thank my family for enduring
a long period of time when they were not able to see me. Also, I would like to thank Vojtěch
Štěpanč́ık for sharing his knowledge about C, which proved to be very useful.

Declaration

I declare that the presented work was developed independently and that I have listed
all sources of information used within it in accordance with the methodical instructions for
observing the ethical principles in the preparation of university theses

Prohlášeńı

Prohlašuji, že jsem předloženou práci vypracoval samostatně a že jsem uvedl veškeré
použité informačńı zdroje v souladu s Metodickým pokynem o dodržováńı etických princip̊u
při př́ıpravě vysokoškolských závěrečných praćı.

vi

vii

Abstrakt

Plánováńı pohybu a strojové učeńı jsou dvě d̊uležitá témata v dnešńım inženýrstv́ı
a výzkumu. Otázkou, kterou se tato práce pokouš́ı zodpovědět, je, zda kombinace
těchto dvou discipĺın přináš́ı uspokojivé výsledky. Bylo navrženo šest nových algo-
ritmů plánováńı pohybu. Tři z nich využ́ıvaly samotné strojové učeńı nebo techniky
souvisej́ıćı se strojovým učeńım k urychleńı procesu plánováńı pohybu. Motivace ke
zrychleńı prameńı z problémů, se kterými se potýká plánováńı pohybu při řešeńı
úloh s velkým počtem stupň̊u volnosti. Např́ıklad v oblastech, jako je vývoj lék̊u,
je dokováńı protein̊u základńı discipĺınou, která vyžaduje použit́ı plánováńı pohybu
v prostřed́ıch s vysokým počtem stupň̊u volnosti. Proto je výzkum zaměřený na
urychleńı metod plánováńı pohybu kĺıčový.

Kĺıčová slova plánováńı pohybu, storojové učeńı, docking protein̊u

Abstract

Motion planning and machine learning are two important topics in today’s engi-
neering and research. The question this thesis attempts to answer is whether the
combination of these two disciplines yields satisfactory results. Six novel motion
planning algorithms were proposed. Three of them utilized machine learning itself
or machine learning-related techniques to speed up the motion planning process. The
motivation for the speed-up stems from the problems motion planning faces when
solving a high number of degrees of freedom tasks. For example in areas like drug
design, protein docking is an essential discipline, which requires the use of motion
planning in environments with a high number of degrees of freedom. Therefore the
research on speeding up motion planning methods is crucial.

Keywords Motion planning, machine learning, protein docking

viii

ix

Abbreviations

1BN7 Haloalkane Dehalogenase from a Rhodococcus species

1MAH Fasciculin2-Mouse Acetylcholinesterase Complex

1TCC The sequence, crystal structure determination and refinement of two crystal
forms of lipase B from Candida antarctica

DOF Degrees Of Freedom

NN Neural Network

MD Molecular Dynamics

ML Machine Learning

MP Motion Planning

OMPL Open Motion Planning Library

PSO Particle Swarm Optimization

PWE Parzen windows estimation

RRT Rapidly-exploring Random Tree

x

xi

Contents

1 Introduction 1

1.1 Motion planning . 1

1.2 Motivation . 3

1.3 Goals . 3

1.4 Outline . 4

2 Problem definition 5

2.1 Motion planning . 5

2.1.1 Random sampling methods . 6

2.2 Machine learning . 10

2.3 Protein docking . 10

3 Related work 13

3.1 Probabilistic Roadmaps . 13

3.2 RRT . 15

3.3 Bidirectional RRT . 16

3.4 Adaptive DD RRT . 16

3.5 Guided RRT . 17

3.6 BiLSTM-PSO-GDRRT* . 18

3.6.1 Analysis . 20

3.6.2 Comparison with proposed methods . 21

4 Utilized methods 23

4.1 Particle swarm optimization . 24

4.2 Parzen window estimation . 25

4.3 Neural network . 25

5 Proposed solutions 27

5.1 Modifications and specifications . 28

5.1.1 Impact points . 29

5.1.2 Probe . 29

5.2 Adaptive sampling distribution methods . 30

5.2.1 PSO-RRT . 30

5.2.2 Slide-RRT . 32

5.3 Precomputed distribution sampling methods . 34

5.3.1 Parzen-RRT . 34

5.3.2 Jump-RRT . 35

5.4 Impact point translation methods . 37

5.4.1 NN-RRT . 37

xii

5.4.2 Pop-RRT . 39
5.4.3 Summary . 41

6 Benchmarking environments 43
6.1 Dense environment . 43
6.2 Complex environment . 44
6.3 Simple environment . 44
6.4 Protein environment . 45

7 Benchmarking results 47
7.1 Technical specifications . 47
7.2 Used parameters . 48
7.3 Open Motion Planning Library benchmark . 49

7.3.1 Dense environment . 50
7.3.2 Complex environment . 51
7.3.3 Simple environment . 52

7.4 Protein docking benchmark . 53
7.4.1 Molecule 1BN7 . 53
7.4.2 Molecule 1MAH . 53
7.4.3 Molecule 1TCC . 54

7.5 Summary . 54

8 Conclusion 55

A Appendix 57
A.1 Pop+Jump-RRT . 57
A.2 Performance with precomputed paths . 58
A.3 Parameter influence . 59

A.3.1 Optimizing paths . 60
A.4 BiLSTM-PSO-GDRRT* comparison with proposed methods 61
A.5 Network training . 62

B Attachments 63

C References 65

1. INTRODUCTION 1

Chapter 1

Introduction

The purpose of this chapter is to introduce the reader to the content of this thesis. The
thesis will delve into the topic of Motion Planning (MP), which is a very important topic
in many fields. MP deals with finding a path for an object in an environment, such that the
object does not collide with obstacles. An example of these fields is robotics, chemistry or even
the game development industry (Figure 1.1). In robotics, MP is essential for autonomous car
driving, or for medical robots performing surgical operations [1]. In computational biochem-
istry is MP used in the problem of protein docking (introduced in Section 2.3). The game
development industry requires MP for the representation of the movement of objects in the
environment.

(a) Medical engineering (b) Biochemistry (c) Game development

Figure 1.1: An illustration, of fields utilizing Motion planning (surgical robotic hand [2], protein
docking, videogame RimWorld [3]).

Together with Motion planning will be also examined the role of the Machine Learning
(ML) in the context of MP. Experiments will be done, to shed more light on the question,
of whether the ML is actually a useful tool for MP. Specifically, it will be tested, whether it
is possible to speed up the MP by utilizing ML-related methods. The ML-related methods,
that will be examined are the Particle Swarm Optimization (PSO), the Parzen windows
estimation (PWE), and most importantly the Neural Network (NN).

1.1 Motion planning

First of all, it is necessary to say, what is Motion planning. Motion planning is the
discipline of finding a way to move an object into a desired location while avoiding collisions.
With the term location, we do not have to restrict ourselves only to spatial location. A desired
location can also be a specific configuration of the object.

The objects can have a various number of Degrees Of Freedom (DOF). For example,
moving a table on the kitchen floor has two DOF. One degree of freedom for each possible
direction of movement. If we allow the table to be also rotated, we introduce an additional
degree of freedom. Another example is picking up a fork from the floor and placing it on the

CTU in Prague Department of Circuit Theory

2 1.1. MOTION PLANNING

table. The fork has three DOF, each for movement in one of the three spatial axes. Allowing
the fork to rotate around each axis results in the addition of three more DOF. That leads to
the conclusion, that to manipulate a solid object freely in space leads to six DOF for object
(three for translation, three for rotation).

More degrees of freedom can emerge by adding more characteristics to the object. The
object can, for example, represent a molecular structure. It can happen, that molecule can
do more than only freely move in space. The molecule may also be able to bend in certain
“joints”, each joint adding a new DOF. With the increasing number of degrees of freedom,
the MP task gets harder to solve.

To give us the ability to represent all configurations of the object is constructed con-
figuration space (c-space) (visualized in Figure 1.2). Every axis in this space corresponds to
one degree of freedom of the object. Solving the MP task is then equivalent to finding a
path for a point between the starting configuration and the desired final configuration in the
configuration space.

(a) Objects in workspace (b) Configurations in a projection of c-space

Figure 1.2: The Image (a) depicts an object in three different positions (blue) in the two-dimensional
space with obstacles (black). The Image (b) shows configurations (blue) in c-space that correspond
to the positions of the objects in the previous image. All the configurations representing collision are
marked black. On the Image (b) is not in fact the c-space, but its projection, since in this case, the
c-space would be three-dimensional.

Currently, the most used family of methods for finding the path are the sampling-based
methods [4]. Sampling-based methods utilize the principle of randomly taking points from the
c-space and using them as vertices of a graph. Finding a path from the vertex representing
the start, to the vertex representing the goal is then a much simpler task than searching
the whole c-space. Still, this approach has its limitations. Increasing the number of DOF
causes the probability of obtaining random samples from regions of c-space that are crucial
for finding the path to decrease. More time is then required, to make sure, that samples
from these important regions were obtained. Which leads to slowing down the algorithm.
The small region of the c-space that is this important for the success of the task is called a
narrow passage (illustrated in Figure 1.3).

CTU in Prague Department of Circuit Theory

1. INTRODUCTION 3

(a) A Narrow passage

Figure 1.3: A region of the c-space crucial, for finding the path from the start (green) to the goal
(yellow). In order to find any path, samples from this crucial region are necessary.

1.2 Motivation

As it was said in the previous subsection, a higher number of DOF causes the MP task
to be harder to solve. That causes an increase in the run-time of sampling-based methods. The
prolonged timespan of finding the solution negatively affects MP tasks featuring molecular
structures. Molecules in MP are represented as strings of many spheres, and each can function
as a joint, which leads to many DOF [5].

Several solutions for speeding up the sampling-based methods come up. One of them is
to influence the sampling itself. The original sampling-based methods use uniform sampling
of the whole c-space. More frequent sampling in the regions of c-space that are expected to
contain the solution (final path) should lead to speeding up the search. This is the approach
this thesis aims to use.

1.3 Goals

This thesis has two main goals. The first one is, to speed up the sampling-based methods
to increase their usefulness for MP tasks with a higher number of degrees of freedom. The
motivation for that is the high DOF nature of the motion planning for molecules. Therefore
whether this goal was achieved will be verified on multiple MP tasks with molecular objects.

The second goal is to verify how useful ML-related motion planning methods can be in
achieving the first goal. That will be verified by benchmarking the methods in three different
environments, with varying complexity.

The assumption is, that with the use of a good understanding of the task, the ML-
related motion planning methods can be simplified. The simplified versions are expected to
outperform the ML-related methods because the ML-related methods are approximating some
desired behavior, whereas the simplified methods can have this behavior directly implemented.
Because of that, the simplified methods should save a lot of computation time.

CTU in Prague Department of Circuit Theory

4 1.4. OUTLINE

1.4 Outline

Chapter 2, Problem Definition aims to provide clarity, on what all further used words
and concepts are intended to mean. First of all, it will explain the motion planning problem in
more depth, and with the use of more technical terms. Secondly, a machine learning definition
relevant to this work will be provided. Lastly, the protein docking problem will be introduced
to the reader.

Selection of Related work will be shown in the chapter of the same name, introducing
relevant methods for motion planning. For example, Probability Roadmaps (PRM) and most
importantly the original Rapidly-exploring Random Trees (RRT) algorithm, on which this
work heavily relies on.

The chapter Proposed solutions will introduce three pairs of novel RRT-based algo-
rithms. Each pair will be composed of one machine-learning related solution, and another
non-machine-learning solution, derived from the previous one. Firstly, the implementation
of RRT used in this work will be specified, together with tools, further used in proposed
algorithms.

All results of algorithm benchmarking experiments will be presented in chapter Results.
The first section of this chapter will contain the results of benchmarking all six proposed
algorithms with another ten algorithms implemented in the Open Motion Planning Library
(OMPL). The second section will test proposed algorithms on motion planning for protein
structures.

Lastly, in chapter Conclusion, the performance of proposed algorithms will be evaluated,
and conclusions will be made about the helpfulness of machine learning in motion planning.
It will be elaborated, on which changes to the RRT algorithm caused the most improvement,
and what are their advantages and disadvantages.

CTU in Prague Department of Circuit Theory

2. PROBLEM DEFINITION 5

Chapter 2

Problem definition

2.1 Motion planning

To make explanations in the following chapters clear, it is useful, to define several
concepts of motion planning, as well, as concepts introduced and used in this thesis. The
notation used in this thesis is based on the well-established notation from the book Planning
Algorithms by Steven M. LaValle [4].

Motion planning is finding a sequence of motions, that will allow an object to reach
a goal configuration from the starting configuration without colliding with obstacles. In our
case, there are two kinds of movable objects. One is a three-dimensional rigid body, with the
ability to rotate around all three spatial axes. The second kind is a molecule represented by
a hard-sphere model, with the ability to use the connection between these spheres as joints.

Each specific placement and rotation (and the joint angles) of the object is defined as a
specific configuration of the object. Configurations are denoted with the symbol q. A set of
all possible configurations composes the configuration space C. In this thesis, C is a continuous
metric space, where each point represents one possible configuration of our object.

The space C contains several regions, that are very useful for our problem. First of all the
set of all goal configurations is Cgoal. One element of the set Cgoal is qgoal. Another important
subset Cinit is a set of all initial configurations, in our case containing only one element qinit.
The last two of for us important subsets is Cobs and its complement Cfree. The set Cobs is an
open set of all the configurations of the object, that cause the object to collide with obstacles
(or in the case of molecules surpasses certain energetic threshold [6]). The set Cfree is a set of
all collision-free configurations.

With these concepts defined, we can reformulate, what motion planning task is as: The
task of finding sequence of configurations P = {q1, q2, ..., qn}, while these three conditions
must hold: qi ∈ Cfree, q1 = qinit, qn ∈ Cgoal. This task is an NP-hard problem to solve [4].
The sequence P will be called path, and it serves as a sequence of configurations, that can be
followed to move the object from the initial configuration to the desired configuration without
collision.

A cubic body, that is significantly smaller, than the object will be later referred to, as
a probe. It will serve to find approximations of the path. Another concept is impact points,
which are elements of the boundary of the set Cobs. Since the set Cobsis an open set, the impact
points lie in Cfree.

CTU in Prague Department of Circuit Theory

6 2.1. MOTION PLANNING

2.1.1 Random sampling methods

One kind of methods designed to solve the problem defined in this section (2.1) are the
random sampling methods [5, 7]. The principle of these methods is to take several randomly
selected elements qrand ∈ C and used them to build a roadmap (graph). By approximating
the Cfreeregion with the roadmap, the finding of a path in continuous c-space is changed to
finding a path in the graph. The sampling is, if not mentioned otherwise a uniform sampling.
This approach has a possible disadvantage caused by the randomness of the sampling.

Narrow passages

The disadvantage is the existence of narrow passages (illustrated in the figure 1.3).
The narrow passages cause two following closely related problems. One problem is, that the
narrow passages must be sampled, in order to find the path. The second problem is, that the
probability of obtaining a sample from a narrow passage is low.

That is because the probability to randomly obtain a sample from a specific region of
space is proportional to the relative volume of the region. That means, that if the region we
wish to sample forms 50% of the whole space, there is a 50% chance to obtain a random sample
from that region. Because the narrow passages are generally small (narrow), the probability
of obtaining a sample from inside of them is therefore also small. The problem of sampling
narrow passages is usually even more challenging with every additional degree of freedom,
which is demonstrated in the following Figure 2.1.

(a) Interval in 1D (b) Interval in 2D

Figure 2.1: With growing dimensions, an interval (red) becomes relatively smaller portion of the
sampled space (black). In 1D case, the interval made up 33, 33% of the whole space. Whereas in the
2D case, the interval takes up only 11.11% of the sampled space.

CTU in Prague Department of Circuit Theory

2. PROBLEM DEFINITION 7

Graph construction

When introducing the random sampling methods, it is also important to explain how
the graphs are being constructed from the sampled c-space (an example of a graph in the
c-space in Figure 2.2). The usual practice is to use the obtained samples q as the vertices
of the graph. The construction of the edges of the graph is more specific for each method.
The existence of an edge between two vertices in the graph signifies, that there exists a path
between the two configurations these two vertices represent.

(a) Example of graph in the c-space

Figure 2.2: Example of a graph, where vertices represent sampled configurations from the c-space
(blue) and edges (gray) represent collision-free paths between the configurations. The obstacles are
black.

The existence of such paths is checked by a tool called a localplanner. The local planner
is generally a simple path planner that is very fast to execute. One of the most commonly
used local planners is the “straight-line”, which creates a line between two points and then
checks for a specified number of configurations in the line, whether they are in Cfree. If all
the checked configurations lie in Cfree the local planner indicates, that there is a collision-free
path between the two points (demonstrated in Figure 2.3).

qrand

qnear

(a) Non-connectable points

qrand

qnear

(b) Connectable points

Figure 2.3: The local planner checks path between a newly sampled configuration qrand and a nearest
already sampled configuration qnear. The points colored red get checked, whether any of them lies in
Cobs (black). The procedure is done in the direction of the arrow.

CTU in Prague Department of Circuit Theory

8 2.1. MOTION PLANNING

Voronoi diagrams

The probability, that a given vertex in the graph will be considered a neighbor for a new
random sample can be nicely illustrated with a Voronoi diagram [8, 9]. The Voronoi diagram
(or Voronoi tesselation for more than two-dimensional spaces) is a diagram, that splits a given
space (in our case the c-space) into a set of convex non-overlapping cells. Each cell contains
exactly one of our already sampled points (the vertices of the graph). Every point in a cell is
closer to the vertice in that cell than to any other vertice in any other cell (Figure 2.4).

(a) The sampled points (b) Voronoi diagram of the sampled points

Figure 2.4: Already sampled points (blue), or also the vertices of the constructed graph, and the
Voronoi diagram they generate.

If we normalize the c-space (scale each axis with a scalar, such that the final volume
of the space is 1), the volume of each cell equals the probability, with which a new uniform
sample will be connected to the vertice present inside that cell (if Cobs= ∅) [8]. For example,
the method Adaptive dynamic-domain RRT [8] (Section 3.4) is based on using this knowledge
to its benefit.

Relation between the object and the c-space

The properties of the c-space are not influenced only by the number of DOF of the
object. The spatial parameters of the object also heavily influence the c-space, especially the
Cobs and Cfree regions. The shape of the object heavily influences the dimensions of the c-space
related to rotation. The more complex the shape of the object is, the narrower can the narrow
passages in these dimensions.

Another spatial property, that heavily influences what point of the c-space lies in Cobs or
Cfree is the size of the object. The intuition is, that the higher volume the object has, the
fewer regions it fits in (depicted in Figure 2.5).

That means that the MP task is easier for smaller and less complicated objects since
their Cobs populates smaller portions of the c-space than in the case of big and complicated
objects. This property is utilized in most of the algorithms proposed in this thesis (Section
5.1.2).

CTU in Prague Department of Circuit Theory

2. PROBLEM DEFINITION 9

(a) Big object in space (b) Big object in c-space

(c) Small object in space (d) Small object in c-space

Figure 2.5: Demonstration on how the volume of the object (blue) influences the size of Cobs (black).
Since the big object fully fills the narrow passage, the narrow passage in the c-space becomes only a
line, which has an extremely low probability, to get sampled. For simplicity, the objects are not allowed
to rotate in this scenario, so the c-space is only two-dimensional.

CTU in Prague Department of Circuit Theory

10 2.2. MACHINE LEARNING

2.2 Machine learning

In this thesis will be used the following definition from the Oxford English Dictionary:
“(Machine learning is) the use and development of computer systems that are able to learn
and adapt without following explicit instructions, by using algorithms and statistical models
to analyze and draw inferences from patterns in data.” [10]. In this thesis, three attempts at
harnessing algorithms satisfying this definition will be presented. Namely using PWE, PSO,
and finally, one very relevant in the current time NN.

2.3 Protein docking

Because of the increase in the computational power of computers, it is increasingly
viable, to analyze chemical reactions with computers [11]. One of these now available methods
is Protein docking [11]. Protein docking is a discipline of finding the “best-fitting” spatial1

configuration of two molecules (see Figure 2.6). The fitness of the configuration is evaluated
by a scoring function [6, 12, 13].

One of the molecules (receptor) is a protein and is usually bigger than the other one.
The other molecule is called a ligand and it can be another smaller protein or any other
smaller molecular structure. Together these two molecules form a complex. The sought for
configuration of these two molecules is a position, where they spatially “best fit together”
(illustrated in Figure 2.6) [14].

Protein docking is useful for example in designing new drugs [11], where the ligand can
be the designed drug, and the receptor a protein, which is supposed to receive the drug. Via
the protein docking, it can be checked, whether the reception of the drug is physically possible.
Since it is complicated to carry out these experiments in the amounts and quality required
in real experiments, computing simulations are the most viable option [15]. One option for
said simulations is to thoroughly simulate all the atoms with Molecular Dynamics (MD) [16].
A downside of this approach is the huge computational time required to carry out even a
nanosecond of the simulation.

(a) The receptor and the ligand (b) The best fitting position

Figure 2.6: Protein docking. The receptor is blue and the ligand is yellow.

1The distances in the molecular environment are measured in Ångström (Å). One Ångström equals 1×10−10

meters.

CTU in Prague Department of Circuit Theory

2. PROBLEM DEFINITION 11

There are several approaches to this problem. One of them is through shape comple-
mentarity [17]. Usually, these methods represent the molecules with their surfaces in space
and use optimization algorithms, to find a configuration, where they geometrically lock (dock)
into each other. Another and more recent approach is, to carry out the process of docking the
proteins together (Figure 2.7). For this MP algorithms are used [18, 19, 20]. Because on the
molecular level, the collision of some configurations does not have to necessarily be given only
by a physical overlap, the scoring functions [6] are used to evaluate, whether a configuration is
energetically possible, which is another possible collision-inducing factor. Two of the proposed
methods (from Section: 5.4) in this thesis will be used, to solve this task.

(a) The ligand outside the receptor (b) The ligand docked in the receptor

Figure 2.7: Graphical demonstration of protein docking in PyMol [21]. The protein (pink) is visualized
using its solvent surface. The ligand is shown in green color.

The molecules in the MP are represented by a hard-sphere model [22, 23]. The hard-
sphere model is a model used to model particles in for example fluid dynamics. The particles
are impenetrable spheres, that can not overlap in space. These spheres in our case represent
the atoms in the molecules. The connections between the spheres can function as joints. Only
the ligands can have joints in this thesis.

CTU in Prague Department of Circuit Theory

12 2.3. PROTEIN DOCKING

CTU in Prague Department of Circuit Theory

3. RELATED WORK 13

Chapter 3

Related work

Speeding up motion planning methods is an important topic, in which many other works
are interested. This chapter presents several methods designed to enhance the performance of
MP algorithms. All methods in this chapter are based on the sampling-based principle since
that is currently the most successful approach to motion planning of many-DOF objects. The
first two introduced methods are the basis of many other MP methods, including the rest of
the methods in this chapter and also the methods in the chapter Proposed solutions.

3.1 Probabilistic Roadmaps

The first notable random sampling method is called Probabilistic Roadmaps (PRM) [5].
The PRM algorithm consists of two phases, a learning phase (Algorithm 1), and a query
phase (Algorithm 2). The learning phase is run first and constructs a graph from random
configurations in the c-space. The query phase then finds paths between two specified con-
figurations (vertices) in the graph (illustrated in Figure 3.1). One of the advantages of this
algorithm is, that for each path query the learning phase does not have to be run again,
because the graph it produces is reusable if the environment or the object does not change.

(a) Generated Graph

qinit qgoal

(b) Found path

Figure 3.1: An illustration of how the found graph in c-space looks (also called a roadmap), and how
it is used, to find the path between qinit and qgoal.

CTU in Prague Department of Circuit Theory

14 3.1. PROBABILISTIC ROADMAPS

At the beginning of the learning phase, the algorithm finds a specified number of con-
figurations from Cfree. That is done by the uniform random sampling of the c-space. Then,
for each found configuration, the algorithm attempts to connect it, with a set of its neigh-
boring configurations. The set of neighbors can be constructed in multiple ways. One way is
to take a specified number of closest configurations, another is to take all the configurations
under a certain distance. The connection between configurations is checked by a local planner
(introduced in Section 2.1.1). This way, a graph can be constructed. The vertices of the graph
represent the sampled configurations. The edges of the graph represent a successful connection
between any two neighboring vertices by the local planner.

In the learning phase, two more vertices are added and connected with their neighbors.
One stands for the initial configuration qinit and the second for the goal configuration qgoal.
Then any graph-searching algorithm can be employed to find the path between the two nodes.
For example the Dijkstra algorithm [5, 24].

Algorithm 1: PRM learning phase

Input: K = maximal number of graph vertices, V = ∅, E = ∅
Output: V , E

1 for k ∈ 1:K do
2 point← c ∈ Cfree;
3 V ← V ∪ c;

4 for point ∈ V do
5 for neighbor ∈ neighbors(point) do
6 if connects(neighbor, point) then
7 E ← E ∪ {neighbor, point};

Algorithm 2: PRM query phase

Input: V , E, qinit = initial state, qgoal = goal state
Output: path

1 V ← V ∪ qinit;
2 V ← V ∪ qgoal;
3 for neighbor ∈ neighbors(qinit) do
4 E ← E ∪ {neighbor, qinit}; // if collision-free connection is possible

5 for neighbor ∈ neighbors(qgoal) do
6 E ← E ∪ {neighbor, qgoal}; // if collision-free connection is possible

7 G← graph(V,E);
8 path← find path in graph(qinit, qgoal, G);

CTU in Prague Department of Circuit Theory

3. RELATED WORK 15

3.2 RRT

One of the most popular path planning methods, especially in robotics is Rapidly-
exploring Random Tree (RRT). It was introduced in 1998 by Steven M. LaValle and James
J. Kuffner Jr [7]. This method iteratively builds a tree graph in the c-space over a specified
number of iterations (demonstrated Figure 3.2). In each iteration, the c-space is uniformly
sampled (Algorithm 3). The sample qrand is then connected to the closest node of the tree if
the connection is possible. Whether the connection is possible is checked by a local planner
(Section: 2.1.1). If we obtain a sample, that lies in Cgoal and it gets successfully connected to
the tree, the search ends. The resulting tree can be traversed from the last added node to the
root, which yields the desired path.

(a) 500 iterations (b) 1 000 iterations (c) 4 000 iterations

Figure 3.2: An illustration of RRT’s growth over iterations.

The function tree.find nearest neighbor() takes any state from the configuration space
and returns a node from the tree. The returned node represents the state, with the small-
est distance in configuration space from the input state, out of all nodes in the tree. The
nearest-neighbor search is typically realized using KD-tree data structure [25], which yields
the O(log(n)) complexity, where n is the number of nodes in the KD-tree.

The function connect(), indicates, whether a local planner was able to connect two
states without colliding. Usually, the local planner is connecting the two states with a straight
line segment and checks, if any of the points on the line lies in Cobs (see Figure: 2.3).

Algorithm 3: RRT

Input: K = maximal number of steps, qinit = initial position, qgoal = goal position
Output: T

1 T.root← qinit; // initialize the search tree
2 for k ∈ 1 : K do
3 qrand ← c ∈ C; // uniform random sample
4 qnear ← T.find nearest neighbour(qrand);
5 if connect(qnear, qrand) then
6 T.append(qnear, qrand);
7 if qrand ∈ Cgoal then
8 return T ;

CTU in Prague Department of Circuit Theory

16 3.3. BIDIRECTIONAL RRT

3.3 Bidirectional RRT

Bidirectional RRT (Algorithm 4) uses two trees to explore the configuration space. One
of the trees grows from the qinit and the second one has the root in the qgoal. This approach
was first introduced in the year 2000 under the name RRT-connect [26] but over time the
name Bidirectional RRT, or shortly Bi-RRT caught on [27].

Thanks to growing two trees at once, the samples that could not be connected to one
tree may be still connected to the other tree. When such a sample is found, that is possible
to connect it to both of the trees, in each tree is found a path from its root to that sample.
Then the two found paths are connected, resulting in one path leading from the root of one
tree into the root of the second one. The resulting path then begins in the qinit and ends in
the qgoal and becomes the returned solution of the MP problem.

Algorithm 4: Bi-RRT

Input: K = maximal number of steps, qinit = initial position, qgoal = goal position
Output: path

1 T1.root← qinit; // initialize a search tree
2 T2.root← qgoal; // initialize a search tree
3 for k ∈ 1 : K do
4 qrand ← c ∈ C;
5 qnear1← T1.find nearest neighbour(qrand);
6 qnear2← T2.find nearest neighbour(qrand);
7 if connect(qnear1, qrand) then
8 T1.append(qnear1, qrand);
9 connects1← True;

10 if connect(qnear2, qrand) then
11 T2.append(qnear2, qrand);
12 connects2← True;

13 if connects1 and connects2 then
14 path1← path(T1.root, qrand);
15 path2← path(qrand, T2.root);
16 path← path1 + path2;
17 return path;

3.4 Adaptive DD RRT

The full name of this algorithm is Adaptive dynamic-domain RRT [8]. The underlying
principle is the same as in the original RRT (Section 3.2). However, in DD RRT the Voronoi
diagram [28] does not fully determine, which node will be the new sample qrand connected to.
Each node has also a dynamic domain, which the qrand must lie in, in order to be connected
to the node (illustrated in Figure 3.3). For this method, the dynamic domain is adaptive,
which means, the size of the domain adapts while the algorithm executes. When a node has
been successfully connected with qrand, the radius of its domain grows. On the other hand,
with each unsuccessful (colliding) connection the domain of the node shrinks (Algorithm 5).
This way, nodes that are harder to get connected to have a smaller chance, to be considered

CTU in Prague Department of Circuit Theory

3. RELATED WORK 17

as qnear to a new qrand. A smaller number of calling local planner (Subsection 2.1.1) queries
should be achieved this way.

(a) RRT Voronoi diagram (b) Adaptive DD RRT Voronoi diagram

Figure 3.3: Influence on sampling by the Adaptive DD RRT method. The brown area shows which
samples will be considered for attempted connection. Images courtesy of [8].

Algorithm 5: Adaptive DD RRT

Input: K = maximal number of steps, qinit = initial position, qgoal = goal position,
α = numerical parameter chosen from interval [0,1], R = initial radius

Output: T
1 T.root← qinit; // initialize the search tree
2 T.root.radius←∞;
3 for k ∈ 1 : K do
4 qrand ← c ∈ C;
5 qnear ← T.find nearest neighbour(qrand);
6 if not connect(qnear, qrand) then
7 if qnear.radius =∞ then
8 qnear.radius← R;
9 else

10 qnear.radius← qnear.radius · (1− α); // shrinking of dynamic domain

11 else
12 tree.append(qnear, qrand);
13 qnew.radius←∞;
14 if qnear.radius ̸=∞ then
15 qnear.radius← qnear.radius · (1 + α); // growing of dynamic domain

16 if qrand ∈ Cgoal then
17 return T ;

3.5 Guided RRT

A family of RRT algorithms uses already obtained knowledge about certain environment
to lead the sampling. Instead of sampling uniformly, the sampling is more dense around some
leading path. These leading paths can be obtained in several ways. One way is to scale down
the object, find the path (for the small object) and then sample along the path for the scaled-
down object [29]. Another possible approach is to make a Voronoi diagram (Subsection 2.1.1)

CTU in Prague Department of Circuit Theory

18 3.6. BILSTM-PSO-GDRRT*

of obstacles and then use the edges of the cells as guidance (sample with higher density around
them) [30]. Some works implement a library of already found paths and then they use the
best-fitting path from the library for the guidance [31]. It is also possible for a human to
provide some insights and help guide the sampling [32]. Most of the methods proposed in this
thesis fall into this category of guided methods.

An example of one guided method can be the RRT-Path [30] (Algorithm 6). This algo-
rithm can use a path obtained in any of the above-mentioned manners. The algorithm samples
in proximity of a configuration in the path and when the tree reaches the configuration, the
sampling moves along to another configuration further along the path.

Algorithm 6: RRT-Path

Input: K = maximal number of steps, qinit = initial position, qgoal = goal position,
P = guiding path, D = distances from guiding path points, goaltmp = P [1]

Output: T
1 T.root← qinit; // initialize the search tree
2 for k ∈ 1 : K do
3 if distance(goaltmp, T) < threshold then
4 goaltmp ← p ∈ P ; // closest not yet reached point

5 if k mod goal biastmp ̸= 0 then
6 qrand ← goaltmp; // guided sample
7 else
8 qrand ← c ∈ C; // uniform random sample

9 qnear ← tree.find nearest neighbour(qrand);
10 if not connect(qnear, qrand) then
11 continue;
12 else
13 tree.append(qnear, qrand);
14 if qrand ∈ Cgoal then
15 return T ;

16 D ← update(D);

3.6 BiLSTM-PSO-GDRRT*

Three intertwined methods (GDRRT*, PSO-GDRRT*, and BiLSTM-PSO-GDRRT*)
are presented in the publication [33]. The third method is of interest because it utilizes a neural
network to find a guiding path. The first two methods are used, to generate the training dataset
for the final algorithm. The first algorithm GDRRT* is used, to find a path in many randomly
generated environments. The found paths are then post-processed by the second algorithm
PSO-GDRRT*. Then a NN of architecture BiLSTM [34] is trained using the post-processed
paths and floor projections of the environment (shown in Figure 3.4). The network is trained
so that for a projection of an environment, it is able to return an optimal path from the start
to the goal in the projection. The third method BiLSTM-PSO-GDRRT* then utilizes the
trained NN to obtain a guiding path before the search begins.

CTU in Prague Department of Circuit Theory

3. RELATED WORK 19

Since one of the proposed methods in this thesis also utilizes a neural network (Subsec-
tion 5.4.1) it is appropriate to make a deeper analysis of this work [33], and also a comparison
of these two methods (the BiLSTM-PSO-GDRRT* and the proposed NN-RRT (Algorithm
13)).

(a) Environment (b) Projection

Figure 3.4: One environment used in the [33] and its projection which serves as an input to the NN.
Images courtesy of [33].

The first algorithm in [33] is GDRRT* (Goal distance RRT*), an enhancement of
RRT*1. The method accepts new samples not only if it is possible to connect them to the
search tree, but also if their distance from the closest node of the tree is lower than a certain
threshold. The threshold is influenced by distance from the goal.

The second algorithm of [33] PSO-GDRRT* is using the algorithm PSO (described in
Section 4.1), to optimize the path found by the above-mentioned method. In this context,
optimizing the path means shortening the length of the path and omitting any redundant
nodes (illustrated in Figure 3.5).

(a) Path optimization

Figure 3.5: A path from the Cinit (green) to Cgoal (yellow) before optimization (gray) and after opti-
mization (red).

The final implementation of the publication [33] utilizes the trained neural network
(Section 4.3) (architecture BiLSTM [34]) to provide a guiding path. The network is trained
with the optimized paths obtained by running the PSO-GDRRT*. The authors feed the
network with floor projections of the environment as input and train the network to return

1RRT* [35, 36] is a modification of RRT, that finds a path that converges towards the optimal path
(Figure 3.5).

CTU in Prague Department of Circuit Theory

20 3.6. BILSTM-PSO-GDRRT*

an optimized path for that environment (Figure 3.4). These paths are then used as a guiding
path to find the final solution.

3.6.1 Analysis

The final algorithm BiLSTM-PSO-GDRRT* is fast to find the solution (see Table 3.1)
and in addition, it finds the optimal path (RRT-based algorithms in general do not find the
optimal path). A downside is that for every new type of environment, the first two (slow)
methods have to be run many times to generate a sufficiently big dataset for training NN.
Afterwards, the network has to be trained. After all this time the RRT* (a slower version of
RRT that finds the optimal path) would most certainly have already found the path many
times. Another big downside is the floor projections the network obtains as input. In this
projection, a whole dimension of information about the environment is lost. It is not unusual
to have a narrow passage in the workspace, which would with this projection completely
disappear and the network could never suggest a path passing through that passage (illustrated
in Figure 3.6). This could lead even to the impossibility of solving certain tasks, where the
solution in fact exists. Also, the act of optimizing the path with the PSO algorithm can in
some cases be unnecessary, as for some methods, the guiding path can function better when
not optimal (for explanation see Appendix A.3.1).

(a) Environment (b) Projection

Figure 3.6: The blue path from the start (green) to the goal (yellow), which uses a narrow passage
that disappears with top-down projection. The blue path would be impossible to find in the projection.
Instead, the red path which is not optimal would have to be used. If the obstacle was even longer, it
would be impossible to find a path in the projection

Table 3.1: Performance of the three algorithms (Data from the publication [33])

ref Average path length Average time (s)

GDRRT* [33] 645.84 7.51
PSO-GDRRT* [33] 524.85 42.85
BiLSTM-PSO-GDRRT* [33] 669.22 0.019

CTU in Prague Department of Circuit Theory

3. RELATED WORK 21

3.6.2 Comparison with proposed methods

We chose one of the environments the methods from [33] were benchmarked on, and
created a similar environment (Figure 3.7). In our environment model, we benchmarked algo-
rithms proposed in this thesis to get a comparison with this related method [33].

(a)

(b) Our environment

Figure 3.7: The original environment (a), and our environment (b) mimicking the original.

The resulting tables can be found in the Appendix (A.4). It is important to point
out, that the environment the authors tested their method on is exceptionally simple, which
paradoxically put methods proposed in this work at a disadvantage (explained in Section
7.3.3). Because of that, the BiLSTM-PSO-GDRRT* is faster, than the proposed methods.

CTU in Prague Department of Circuit Theory

22 3.6. BILSTM-PSO-GDRRT*

CTU in Prague Department of Circuit Theory

4. UTILIZED METHODS 23

Chapter 4

Utilized methods

This thesis aims to speed up motion planning by changing the sampling distribution
from the uniform distribution to a distribution that has higher density in the regions of c-space
that are considered crucial for solving the MP task (as shown in Figure 4.1). We estimate
these important regions by finding an approximate path. The approximate path is found using
a small cubic object (probe) (explained in Section 5.1.2).

Figure 4.1: Red color represents regions of c-space that have to be sampled in order to obtain path
from Cinit to Cgoal.

Three methods were utilized to achieve the goal of speeding up the motion planning.
Two of them are closely related to ML, Particle swarm optimization (PSO) [33, 37, 38] and
Parzen windows estimation [39]. One of them is an essential ML method, an Artificial neural
network (NN) [40]. PSO is an evolutionary-based optimization algorithm that is often used
in machine learning to solve optimization problems or for hyperparameter tuning [40]. Parzen
windows estimation in a non-parametric density estimation method in machine learning, can
be used for estimating the probability density function of the training data. However, in
this thesis, the two methods will be used directly in the planning to improve the sampling
distribution, and not to tune the NN. Neural networks are used for both classification [40] and
regression problems [40]. In this thesis, the NN will be utilized for the regression. These three
methods will be now presented to the reader in the following subsections of this chapter.

CTU in Prague Department of Circuit Theory

24 4.1. PARTICLE SWARM OPTIMIZATION

4.1 Particle swarm optimization

Particle Swarm Optimization (PSO) [37] is an evolutionary method for finding the
minimum (or maximum) for a given function. Its big advantage is, that it is able to find
local optima of (not only) functions with unknown definitions. The optimized function will
be called an objective function and denoted fo().

In PSO (Algorithm 7), a swarm of particles is generated. Each coordinate of each particle
represents one variable of the objective function. In every iteration of the algorithm, the
particles are evaluated using the objective function. Accordingly to the output of the objective
function, the particles in the swarm change their coordinates. The particles of the swarm
should over time converge to the local optima of the objective function.

The movement of a particle in the swarm is described by the following equation:

p⃗v updated = w · p⃗v + c1 · r1 · (p⃗b − p⃗c) + c2 · r2 · (g⃗b − p⃗c), (4.1)

where constants w, c1, c2 are called inertia weight, cognitive coefficient, and social coefficient
respectively. The cognitive coefficient represents the bias of every particle in the swarm, toward
its own best previously reached position p⃗b. The social coefficient stands for the bias of all the
particles towards the best position g⃗b reached by any particle of the swarm. Parameters r1, r2
are random numbers from interval [0, 1]. The vector p⃗v stands for the velocity assigned to the
evaluated particle. The vector p⃗c is the current position of the particle.

Algorithm 7: PSO (maximizing)

Input: P = number of particles, I = number of iterations, fo() = objective function
Output: global best

1 global best = ∅;
2 global best value = −∞;
3 swarm← initialize points(P);
4 for i ∈ 1 : I do
5 for point in swarm do
6 point.velocity ← update(point); // accordingly to the equation 4.1
7 point.current← point.current+ point.velocity;
8 value← fo(point.current);
9 if value > global best value then

10 global best value← value;
11 global best← point.current;

12 if value > point.best value then
13 point.best value← value;
14 point.best← point.current;

15 return global best;

CTU in Prague Department of Circuit Theory

4. UTILIZED METHODS 25

4.2 Parzen window estimation

The other name Kernel density estimation is a little more suggestive of the principle
of this method [39]. This method is used to estimate a non-parametric probability density
function. The estimation is done from a set of points, that were obtained from the estimated
distribution (Figure 4.2). The method estimates these points by placing a specified kernel onto
each point and then summing the kernels. The sum has to be normalized after this process,
so the result we obtain is a probability density function (the integral over the whole domain
of the function has to be 1). The estimated distribution can not be directly sampled, because
it is non-parametric. But the method can answer for any point, with what probability it was
sampled from the estimated distribution. The solution to the problem of the impossibility of
direct sampling is explained in Subsection 5.3.1.

(a) Points from estimated distri-
bution

(b) Points interlaced with ker-
nels

(c) The final estimation white-
whitewhitewwhitewhitehite

Figure 4.2: The procedure of estimation of a non-parametric distribution. As we can see, the estimated
distribution probably consists of two normal distributions.

4.3 Neural network

(Artificial) Neural networks are structures that in some sense mimic the behavior of
biological brains. The network composes of layers, each containing a given number of nodes.
The behavior of the nodes vaguely resembles the behavior of neuron cells in biological brains.
The layers, that are not directly responsible for outputting the output of the network, or
receiving the input of the network are called hidden layers (Figure 4.3). A specific configuration
of the neural network is called a model.

(a) An Artificial Neural network

input 1

input 2

input 3

output

(b) An Artificial Neuron

Figure 4.3: Network and a node. The red nodes compose an input layer, the green nodes a hidden
layer, and the blue node an output layer.

CTU in Prague Department of Circuit Theory

26 4.3. NEURAL NETWORK

In this thesis, we will assume, the neural network is feed-forward. That means the output
of each layer goes only to the following layer without any back-loops (without recursions). The
output of the j-th node in the i-th layer of the network can be represented with the following
equation:

oij = f(i⃗′i−1 · w⃗′
ij). (4.2)

Where oij is a scalar output of the node. The vector i⃗′i−1 is a vector containing the output of
the previous layer (each element is an output of one node in the previous layer), with 1 added
as the last element. The vector w⃗′

ij represents weights of the evaluated node except for the
last element called bias.

The function f() is the activationfunction [40]. The purpose of the activation function
is to remove linearity from the neural network, allowing the network to adapt to more complex
tasks, than a linear classifier. One of the more well-known activation functions is for example
the sigmoid function,

σ(x) =
1

1 + e−x
, x ∈ R. (4.3)

Another important activation function is the ReLU (Rectified Linear Unit) function, which is
used in one of the methods proposed in this thesis

ReLU(x) = max(0, x), x ∈ R. (4.4)

The training of the NN refers to the process of finding values of weights and biases
of nodes in the network, that will lead to the desired behavior of the NN. The setting of
these parameters is done through a process called backpropagation [40], which minimizes a
loss function of the trained model. The loss function is a function dependent on the output
of the network and output we are training the model to provide and should in some sense
represent the difference between the output the model is returning and the output we want
it to return.

One of the frequently used loss functions is for example the meansquareerror function,
defined as

mse(y⃗, y⃗′) =
1

n

n∑
i=1

(y⃗i − y⃗′i), (4.5)

with y⃗ standing for desired output, y⃗′ for the output of the model, and n for the number of
elements in the y⃗ and y⃗′ vectors.

Training of networks is run in epochs which correspond to the number of iterations, in
which the weights and biases in the network are tweaked by the backpropagation. The data
fed into the network in each epoch is called a batch. Usually in each epoch, the network takes
batches with higher batchsize, which is a hyperparameter specifying the number of inputs the
network is given in an epoch. In each training epoch, the network is given a batch of training
data, then accordingly to the loss function, the weights and biases of the net are updated. How
will be changed the weights and biases is determined by optimizer. The optimizer used in
this thesis is called ADAM [40, 41]. The last hyperparameter is learning rate which controls
how big is the gradient, that will be backpropagated through the network.

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 27

Chapter 5

Proposed solutions

This chapter will introduce the proposed methods for motion planning. The proposed
methods are designed to speed up solving of high dimensional MP tasks. An increase in the
performance of MP methods is desired for example in protein docking (introduced in Section
2.3).

There are six new proposed methods. The order in which they are presented is the
chronological order in which they were designed. Each new method’s design takes some ad-
vantage of the understanding obtained by designing the previous methods. The listed methods
are coupled in three pairs. Each pair contains one algorithm that utilizes one of the meth-
ods presented in Chapter 4. The other method in the pair is a result of simplification of the
ML-related one, in accordance with the assumption stated in Section 1.3 (see Figure 5.1).

PSO-RRT

Slide-RRT

Parzen-RRT

Jump-RRT

NN-RRT

POP-RRT

Figure 5.1: A diagram depicting the proposed methods. The blue arrows illustrate the simplification
of a method and the red arrows the creation of a new pair of methods based on knowledge gained from
designing the previous pair.

The idea the following methods implement is a manipulation of the sampling distribu-
tion. A sampling distribution that has a higher density in areas of the c-space that are more
helpful to the search should considerably speed up the algorithm. One option how to achieve
this is to sample with a higher density around the area where the sought path will be. Since
we do not know the position of the sought path before we find it, we have to approximate it.
In most of the methods, the approximation will be done with the help of the probe (defined
in Section 5.1.2, and Section 2.1).

CTU in Prague Department of Circuit Theory

28 5.1. MODIFICATIONS AND SPECIFICATIONS

5.1 Modifications and specifications

This section will introduce and explain all the additional tools used in proposed im-
plementations and modifications to the original RRT (Algorithm 3). A modification of the
original RRT is used as a base for the proposed methods. This modification utilizes the con-
cept of impact points introduced in Section 1.1. In the following chapters, this algorithm (8)
will be referred to as RRT instead of the original one (Algorithm 3) if not specified otherwise.

Algorithm 8: Impact points RRT

Input: K = maximal number of steps, qinit = initial position, qgoal = goal position
Output: T

1 T.root← qinit; // initialize the search tree
2 for k ∈ 1 : K do
3 qrand ← c ∈ C;
4 qnear ← T.find nearest neighbour(qrand);
5 connection, connected = impact connect(q near, q rand); // Section 5.1.1
6 tree.append(qnear, connection);
7 if connected then
8 if connection ∈ Cgoal then
9 return T ;

The function tree.find nearest neighbor(), is the same as in the original RRT algorithm
(Section 3.2). It takes any configuration from the configuration space and returns a node from
the search tree. The returned node represents the configuration that is closest to the input
configuration out of all nodes in the tree. For this, the KD-tree method was utilized [25],
namely, the library MPNN [42].

The function connect() from the original RRT algorithm is replaced with the function
impact connect(), which plays essentially the same role as the function connect(), but it
utilizes the idea of impact points. The specifics of this function are explained more in-depth
in the following Section 5.1.1.

The local planner (introduced in Section 2.1.1, Figure 2.3) used in this thesis constructs
a line between two input configurations qa and qb and with a step of predefined size ϵ takes
configurations from that line. If any of the configurations belong to Cobs the local planner
signals that the two configurations qa and qb cannot connect. The collision detection is done
using a library RAPID [43, 44].

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 29

5.1.1 Impact points

When sampling the configuration space by RRT, it can easily happen to obtain samples
that would cause the object’s collision with some obstacle. In the original RRT, this would
lead to essentially forgetting this iteration and continuing with the next one. Impact points
are used to make use of all of the iterations of the algorithm.

The impact point is a point in the configuration space that lies close to the surface of
the obstacle. As Figure 5.2 shows, it is the farthest connectible point to our tree node when
attempting to connect it with the new random sample. The impact point is then used as
a sample instead of the colliding random sample. This way, each iteration is guaranteed to
produce a new tree node.

With this concept in mind, an alternative to the function connect() (see Section 3.2)
was implemented. The function impact connect(). The function indicates if two states are
connectible without intersection with Cobs in the same way as connect() does. But in addi-
tion, when the collision-free connection is not possible appropriate impact point is returned.
Otherwise, qrand gets returned.

qrand

qnear

impact point

Figure 5.2: Image illustrating, how the impact points are obtained by the local planner.

5.1.2 Probe

The approximation of the path is obtained using standard RRT using a small cubic
object (probe). This approach is motivated by the fact that finding a path from the start to
the goal for only a small cube is very fast (explained in Section 2.1.1, Figure 2.5). Therefore,
several approximate paths can be found at the beginning of the actual search and then later
used as an approximation of the final path for our actual search.

CTU in Prague Department of Circuit Theory

30 5.2. ADAPTIVE SAMPLING DISTRIBUTION METHODS

5.2 Adaptive sampling distribution methods

The first pair (Figure 5.3) of the proposed methods focus on finding new sampling
distributions simultaneously with the search. While the search is running, certain events can
arise. For example, a collision. Events like these can serve as a trigger to compute a new
sampling distribution. The new distribution is then used for a given number of following
iterations. To compute the parameters of the new distributions, the approximate path is used
along with data obtained from the event that triggered the computation.

(a) PSO-RRT search tree (b) Slide-RRT search tree

Figure 5.3: The search trees of the proposed pair of algorithms.

5.2.1 PSO-RRT

As it was said, algorithms in this section sample from non-uniform distributions when
a certain event occurs. In the case of PSO-RRT (Algorithm 9) the event that triggers the
computation of alternative distribution is a collision with an obstacle. More specifically if it is
a first collision that happened with a specific face of the obstacle. If the object was to collide
with a face it has already once collided with, the event would not have been triggered. This
was implemented thanks to the ability of the RAPID collision detection library [44], to return
IDs of colliding meshes.

On the occurrence of the above-specified collisions, a PSO algorithm (Algorithm 7) is
called. The PSO algorithm will return the parameters of a new sampling distribution for a
number of following iterations. In the beginning, the PSO algorithm initializes a swarm of 20
points. The space the swarm occupies is a space of parameters (p-space) of possible sampling
distributions (illustrated in Figure 5.4). The objective function, the PSO maximizes is defined
by the equation

fo(particle) =
closeness · connectability

distance
. (5.1)

The variables of the equation are parameters of the distribution represented by the swarm
particle. The variable closeness stands for the index of the closest point in the approximate
path from the center of the suggested distribution. The closer to the goal configuration, the
higher the index. Parameter connectability stands for how many points out of a number
of points in distribution can be without collision connected with the probe to the point of
impact. Distance represents the distance of the center of the distribution to the closest point
in the approximated path.

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 31

In this implementation, the sampling distribution is a clipped normal distribution (in the
c-space) defined by twelve parameters. The parameters are six spatial coordinates, specifying
the position of the center of the distribution in the c-space, and another six parameters
specifying a maximal distance from the center in each direction. There are six parameters for
both the center and the maximal distance because the task has six degrees of freedom, and
the c-space is, therefore, six-dimensional. One point of the p-space is defined as

p = {µx, µy, µz, µα, µβ, µγ , xr, yr, zr, αr, βr, γr}. (5.2)

The variance of the sampling distribution is specified as a parameter of the whole PSO-RRT
algorithm because it has an overall smaller impact on the performance due to the clipping of
the distribution (shown in Appendix A.3, Figure A.4).

p1

p2

(a) Points in p-space

D1

D2

(b) Corresponding distributions

Figure 5.4: Figure (a) is a heatmap of the optimized function in p-space (the brighter the color, the
higher the value of the objective function). Figure (b) shows how that value reflects on the distributions,
represented by the points in the p-space. It is shown that the distribution represented by the point in
which the optimization function has a higher value is more useful.

The slowest part of the random sampling algorithms is collision detection. Therefore
a smaller number of calls of the detection collision is desired. This algorithm (9) does not
necessarily do that. Each iteration of an RRT-based algorithm can be counted as one collision
detection call. The PSO-RRT, in addition to that, calls the collision when evaluating the fo()
(Equation 5.1). In each of its iterations, the PSO algorithm has to call the collision detection
for each of its particles for the number of times the connectability requires. Therefore, whereas
the complexity of the base RRT algorithm can be interpreted as O(K ·log(K)), the complexity
of PSO-RRT would be O(K ·A·P ·I ·B ·log(K)), where A is how many times the PSO algorithm
was called, and B is how many points are evaluated when counting the connectability of
particle represented distribution. The values of P and I refer to the number of particles in the
PSO swarm and the number of PSO iterations, respectively. The increased amount of calls of
collision detection is addressed in the next proposed method.

CTU in Prague Department of Circuit Theory

32 5.2. ADAPTIVE SAMPLING DISTRIBUTION METHODS

Algorithm 9: PSO-RRT

Input: K = maximal number of steps, N = distribution sample count,
P = number of PSO particles, I = number of PSO iterations,
qinit = initial position, qgoal = goal position

Output: T
1 n← 0; // number of samples to be taken from the suggested distribution
2 T.root← qinit; // initialize the search tree
3 approximate path← probe RRT (q init, count = 1); // get approximate path
4 for k ∈ 1 : K do
5 if n > 0 then
6 qrand ← sample distribution(dist);
7 n← n− 1;

8 else
9 qrand ← uniform sample();

10 qnear ← tree.find nearest neighbour(qrand);
11 connection, connected = impact connect(q near, q rand);
12 tree.append(qnear, connection);
13 if connected then
14 if connection ∈ Cgoal then
15 return T ;

16 else
17 dist← PSO(P, I, fo()) ;
18 n← N ;

5.2.2 Slide-RRT

The problem of the excessive complexity of the previous method had to be dealt with.
By observing the outputs the PSO is returning, it occurred that there is a way to model
such results with a simpler method requiring fewer collision detection calls. The way to do
that is by sliding a fixed-shaped sampling distribution along the approximate path. At the
beginning of the search, the distribution will be centered around the qinit. An impulse to slide
the distribution is a collision. When a collision occurs, the distribution will slide along the
approximate path to the furthest location reachable from the point of the impact (Figure 5.5).

The number of collision detection calls is significantly decreased by this modification
(Algorithm 10). The complexity of this algorithm can be considered O(K ·L·S ·log(K)), where
K is the number of iterations, L is the number of configurations in the approximate path,
and S is the number of slidings done in a run. Therefore, for the speed of the algorithm (10),
it is beneficial to omit as many unnecessary configurations from the guiding path as possible
(illustrated in Figure 3.5). Another aspect, that contributes to the speed of the algorithm
is not making any unnecessary slidings. That can be, for example, achieved by applying the
concept introduced in the PSO-RRT, that is, by not triggering the slide with every collision,
but only if a collision arises with a face of an obstacle that has not yet been collided with.

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 33

2

1

3

Figure 5.5: Princliple of how the “sliding” is done. The first point is, where the distribution center
was before the collision, and the second point is, where the collision was moved to. The third point is
an impact point from the collision.

Algorithm 10: Slide-RRT

Input: K = maximal number of steps, N = distribution sample count, qinit = initial
position, qgoal = goal position

Output: T
1 n← 0; // number of samples to be taken from the suggested distribution
2 slider ← qinit;
3 T.root← qinit; // initialize the search tree
4 approximate path← probe RRT (q init, count = 1); // get approximate path
5 for k ∈ 1 : K do
6 if n > 0 then
7 qrand ← sample around point(slider);
8 n← n− 1;

9 else
10 qrand ← uniform sample();

11 qnear ← tree.find nearest neighbour(qrand);
12 connection, connected = impact connect(q near, q rand);
13 tree.append(qnear, connection);
14 if connected then
15 if connection ∈ Cgoal then
16 return T ;

17 else
18 slider ← slide(approximate path, qrand);
19 n← N ;

CTU in Prague Department of Circuit Theory

34 5.3. PRECOMPUTED DISTRIBUTION SAMPLING METHODS

5.3 Precomputed distribution sampling methods

Even though, the previous pair of algorithms (PSO-RRT and Slide-RRT) modified the
sampling in a way, that fewer iterations were needed to find the solution (see benchmarking
results in Section 7.3)), the increased number of required collision detection calls was still
significant. As an answer to the time increase, the following two methods were designed. The
complexity achieved by these methods (Algorithms 11, 12) is the same as the complexity of
the original RRT O(K · log(K)).

This pair of algorithms (Figure 5.6) presents a modification of the principle the previous
pair used. Instead of computing the new sampling distributions on cue, while the search is
running, the distributions get computed before the search starts. Both methods then use this
precomputed distribution for sampling in more important regions, which speeds up the search.

(a) Parzen-RRT search tree (b) Jump-RRT search tree

Figure 5.6: The search trees of the proposed pair of algorithms.

5.3.1 Parzen-RRT

At the start of this algorithm (Algoritm 11), the approximate path is obtained with
the help of the probe. Then, points from the obtained path are passed into Parzen windows
estimation (introduced in Section 4.2) as points from the distribution we want to estimate. The
PWE then estimates what distribution were these points most probably sampled from. The
rest of the search is identical to the search of RRT (Algorithm 8), but the random samples are
not taken from the uniform distribution. Instead, is being sampled the distribution estimated
by PWE. The kernel used in the PWE is a six-dimensional normal distribution.

Since the probability density distribution estimated by PWE is non-parametric, it can
not be directly sampled. Instead, an alternative method has to be used. The PWE can tell
for any point in its domain, with which probability it would be sampled from the estimated
distribution. This was utilized to sample the distribution indirectly. A given number of points
from the domain of the distribution function is uniformly sampled. Then PWE returns with
how high probability each of them would have been sampled from the estimated distribution.
The point, that had the highest probability to be sampled from the estimated distribution is
then used as a sample from the estimated distribution.

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 35

Algorithm 11: Parzen-RRT

Input: K = maximal number of steps, qinit = initial position, qgoal = goal position
Output: T

1 T.root← qinit; // initialize the search tree
2 approximate path← probe RRT (q init, count = 1); // get approximate path
3 sampling distribution← parzen windows estimate(approximate path);
4 for k ∈ 1 : K do
5 qrand ← sample(sampling distribution);
6 qnear ← tree.find nearest neighbour(qrand);
7 connection, connected← impact connect(q near, q rand);
8 tree.append(qnear, connection);
9 if connected then

10 if connection ∈ Cgoal then
11 return T ;

5.3.2 Jump-RRT

Densely populated environments posed a challenge for the previously proposed Parzen-
RRT (Subsection 5.3.1). That is due to the time invariance of the sampling distribution. The
progress of the search has no influence on the sampling, therefore there is a high probability
to obtain a sample that is close to the goal, even when the search tree is still closer to the
start, than the end and vice versa. In dense environments, samples like such resulted only in
excess of impact points and did not much contribute to the growth of the tree. The method
proposed in this subsection answers that problem, by introducing an implicit influence of the
stage of the search on the sampling.

Similarly to the Parzen-RRT, the search begins with finding the approximate path,
with the help of the probe (Algorithm 12). The change is in the sampling process. As in
the Slide-RRT (Subsection 5.2.2) moving a normal distribution with fixed variance is being
sampled. The normal distribution with fixed variance is initialized in the start configuration
qinit. The variance is one of the parameters of this method. Two additional parameters are
chosen, a progress threshold ft and a regress threshold bt. A big advantage of these two
parameters is, that the optimal values seem to be the same in every scenario (shown in
Appendix A.3, Figure A.4). In each iteration, the normal distribution is sampled. When a
number of successful connections to the search tree surpass the forward threshold, the normal
distribution jumps forward on the approximated path (Illustrated in Figure 5.7). If a number
of collisions surpass the backward threshold, the normal distribution jumps backward on the
approximated path. As a positive side effect, we no longer have to tackle the problem of
sampling from non-parametric distribution (as in the Parzen-RRT).

CTU in Prague Department of Circuit Theory

36 5.3. PRECOMPUTED DISTRIBUTION SAMPLING METHODS

B

A
C

Figure 5.7: While sampling from the normal distribution in the position B, if enough collisions arise,
the sampling distribution jumps back to the position A, if enough collision-free connections arise, the
sampling distribution jumps forward to the position C.

Algorithm 12: Jump-RRT

Input: K = maximal number of steps, qinit = initial position, qgoal = goal position,
ft = progress threshold, bt = regress threshold

Output: T
1 f ← 0; // number of successful connections
2 b← 0; // number of collisions
3 path idx← 0;
4 T.root← qinit; // initialize the search tree
5 approximate path← probe RRT (q init, count = 1); // get approximate path
6 for k ∈ 1 : K do
7 qrand ← sample normal(approximate path[path idx]);
8 qnear ← tree.find nearest neighbour(qrand);
9 connection, connected← impact connect(q near, q rand);

10 tree.append(qnear, connection);
11 if connected then
12 if connection ∈ Cgoal then
13 return T ;

14 f ← f + 1;
15 if f mod ft is 0 then
16 path idx← path idx+ 1; // jump forward

17 else
18 b← b+ 1;
19 if b mod bt is 0 then
20 path idx← path idx− 1; // jump back

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 37

5.4 Impact point translation methods

The methods in this section determine new sampling distributions with specific trans-
lation in c-space away from impact points. That means the location of a new sampling distri-
bution is defined by a vector in c-space directed from the point of the impact into Cfree.

5.4.1 NN-RRT

The method in a similar fashion to the PSO-RRT (Subsection 5.2.1) computes a new
sampling distribution after a collision with a new face of obstacle happens. In NN-RRT (Al-
gorithm 13) the computation, where the following samples should be sampled from, is done
by regression with neural network (introduced in Section 4.3). The structure of the training
dataset and the training of the network is explained in this subsection.

Algorithm 13: NN-RRT

Input: K = maximal number of steps, N = distribution sample count, qinit = initial
position, qgoal = goal position

Output: T
1 f ← 0; // number of successful connections
2 b← 0; // number of collisions
3 n← 0; // number of samples to be taken from the suggested distribution
4 path idx← 0;
5 T.root← qinit; // initialize the search tree
6 approximate path← probe RRT (q init, count = 1); // get approximate path
7 for k ∈ 1 : K do
8 if n > 0 then
9 qrand ← sample normal(qnear + translation);

10 n← n− 1;

11 else
12 qrand ← sample normal(approximate path[path idx]);

13 qnear ← tree.find nearest neighbour(qrand);
14 connection, connected = impact connect(q near, q rand);
15 tree.append(qnear, connection);
16 if connected then
17 if connection ∈ Cgoal then
18 return T ;

19 f ← f + 1;
20 if f mod ft is 0 then
21 path idx← path idx+ 1; // jump forward

22 else
23 translation← Network(qnear, qrand, impact point) ;
24 n← N ;
25 b← b+ 1;
26 if b mod bt is 0 then
27 path idx← path idx− 1; // jump back

CTU in Prague Department of Circuit Theory

38 5.4. IMPACT POINT TRANSLATION METHODS

Dataset generation

Data acquired from running any other RRT-based method is collected to generate the
dataset. While generating the dataset, specific information about collisions gets saved, which
is shown in Figure 5.8. Each collision in the dataset generating search produces this data.

qnear

qimp

qrand

qnew

b⃗

c⃗ n⃗

a⃗

Figure 5.8: The point q⃗near represents a configuration that is already connected to the search tree.
The point q⃗rand represents a new randomly sampled configuration that causes a collision. The point
q⃗new is a configuration that got connected to q⃗near later on during the next iterations. The point q⃗imp

is an impact point. The vector n⃗ is a normal of the face, the object collided with. The vectors a⃗, b⃗, n⃗
are given the NN as an input. The vector c⃗ is the desired output.

Subsequently, a feed-forward NN model of five layers is trained on the dataset, where
the input x⃗ is a vector of size nine

x⃗ = [⃗a, b⃗, n⃗], (5.3)

and the desired output y⃗ is given by a vector of size three

y⃗ = [⃗c]. (5.4)

We obtain vectors x⃗i and y⃗i with each collision and add them to the dataset. The dataset
used for the training contained 60 000 pairs of x⃗i and y⃗i. And was split into 5 000 samples for
validation and 55 000 samples for training.

Training the NN

The training consists of 100 epochs with batches of size 32. As a loss function is used
the mean square error function (represented by the equation 4.4). As an optimizer is used
ADAM, the learning rate begins at 1e-3, and with every 10 epochs is divided by ten.

The first (input) layer of the trained model has nine nodes (one for each element in
the x⃗). Followed by hidden layers with, 256, 256 and 128 layers with ReLU activation func-
tions (Section 4.3). The last (output) layer has three nodes (one for each element in the y⃗).
The output of the network represents a desired translation of the object in the environment.

The data regarding the final loss after the training and the learning time for both models
is in the Appendix (A.5).

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 39

Modifications of the NN for protein docking

Some modifications of the network and the dataset of the network have to be made, in
order to use this algorithm in the molecular environment (Figure 5.9). First of all, the collisions
in the molecular environment are not given only by physical collisions of two objects, but also
by the scoring function (Section 2.3), which checks whether a configuration of molecules is
energetically viable. Because of this, it is impossible to obtain the normal of the collision n⃗.

Also, the number of joints in ligands is not restricted, therefore the number of DOF
is not restricted either (each joint adds one degree of freedom). Therefore the size of the
configuration vectors q⃗ can also theoretically grow to any arbitrarily high number.

Since the number of nodes in the input layer of the networks is dependent on the size of
the configuration vectors q⃗, a boundary had to be set on how many degrees of freedom will the
network work with. It was decided, that the network will work with maximally nine degrees
of freedom. Three DOF for translation, four DOF for rotation of the whole molecule (in the
molecular environment, the rotation is implemented in quaternions), and two for two joints
of the ligand. With this boundary, the size of the input layer is nine, similar to the previous
model. The size of the output is in this case nine accounting for the translation and for the
rotation given by quaternion and for the angle in the two first ligand joints (both NN model
are illustrated in Figure 5.9).

For implementation reasons imposed by the protein docking environment, the algorithm
of this method (Algorithm 13) is combined with the algorithm Bi-RRT (Algorithm 4).

256

9

256

128

3

input layer

output layer

hidden layer

hidden layer

hidden layer

(a) Model for mesh environments

256

9

256

128

9

input layer

output layer

hidden layer

hidden layer

hidden layer

(b) Model for protein environments

Figure 5.9: The neural network models. The numerical values show the number of nodes in each
layer.

5.4.2 Pop-RRT

As is the rule in the presented pairs of algorithms, this algorithm is a simplification of
the previous one (Subsection 5.4.1). The simplification is based on the following idea. Since
the translation, the network suggests cannot be big (otherwise it would tell the object to
constantly collide), we can approximate the translation with a vector of zero size. Therefore
not translate at all. This means that on collision, the algorithm will not call the network and
instead take a number of following steps from a normal distribution with the center exactly
where the collision occurred.

CTU in Prague Department of Circuit Theory

40 5.4. IMPACT POINT TRANSLATION METHODS

This algorithm is the only one proposed algorithm, that does not use the approximated
path computed with the probe. Since the algorithm is designed for environments densely
populated with obstacles, the obstacles themselves are used as an approximation of the final
path (Illustrated in Figure 5.10).

(a) Dense environment (b) Spatious environment

Figure 5.10: In very dense environments, the obstacles themselves can approximate the path.

Algorithm 14: POP-RRT

Input: K = maximal number of steps, N = distribution sample count,
qinit = initial position, qgoal = goal position

Output: T
1 n← 0; // number of samples to be taken from the suggested distribution
2 T.root← qinit; // initialize the search tree
3 for k ∈ 1 : K do
4 if n > 0 then
5 qrand ← sample normal(connection);
6 n← n− 1;

7 else
8 qrand ← c ∈ C; // uniform sample

9 qnear ← tree.find nearest neighbour(qrand);
10 connection, connected = impact connect(q near, q rand);
11 tree.append(qnear, connection);
12 if connected then
13 if connection ∈ Cgoal then
14 return T ;

15 else
16 n← N ;

There is a possibility to add the approximated path to the Pop-RRT (Algorithm 14) by
combining it with the Jump-RRT (Algorithm 12). In denser environments, the use of the ap-
proximated path leads to unnecessary actions in each iteration and slows the algorithm down,
but in sparsely occupied environments, the path significantly helps the algorithm (because
the environment itself is no longer a good approximation of the final path). The resulting
algorithm is shown in Appendix (A.1).

CTU in Prague Department of Circuit Theory

5. PROPOSED SOLUTIONS 41

5.4.3 Summary

In this section, six new MP methods were proposed. These methods utilize using alter-
native sampling distributions instead of uniform distribution. That approach should lead to
a denser sampling in the more important regions of the c-space and therefore speed up the
search for a path from qinit to Cgoal. The methods were divided into three pairs.

The first pair (Adaptive sampling distribution methods) computed the alternative sam-
pling distributions when a specific event occurred. The downside was an increase in computa-
tional complexity. The increase was caused by the calls of collision detection when computing
the alternative sampling distributions.

The problem of the high complexity was addressed with the second pair of the proposed
algorithms (Precomputed distribution sampling methods), which had the same complexity as
the original RRT algorithm. The second pair of methods computed the alternative distribution
before the search started. That led to a decrease in the time complexity but also in adaptability
(if the precomputed distribution is not good enough at the start, the method has no means
to improve it while the search is running).

The last pair of the proposed algorithms (Impact point translation methods) combined
the positives of both previous pairs and addressed their weaknesses as well. The methods in
this pair compute the alternative distributions (as well as the first pair) when a collision arises.
This way, the problem of the low adaptability of the second pair is solved. Instead of computing
parameters for a new distribution, the parameters of the new distributions are obtained simply
by translation in the c-space. That means when a collision occurs, the methods suggest how
far we should move from the point of impact and then sample from a predefined distribution
in the location we moved to. This reduces the computational complexity problem of the first
pair of methods.

CTU in Prague Department of Circuit Theory

42 5.4. IMPACT POINT TRANSLATION METHODS

CTU in Prague Department of Circuit Theory

6. BENCHMARKING ENVIRONMENTS 43

Chapter 6

Benchmarking environments

There are four main environments, on which the proposed methods will be benchmarked.
All of the environments are three-dimensional in order to test whether the proposed methods
perform well in MP tasks with higher dimensions.

6.1 Dense environment

This work is aimed at speeding up MP in order to become viable in protein environ-
ments. Hence, the Dense environment is the most important of the modeled environments,
because it best resembles the challenges of the protein structures. The protein environments
are very densely occupied with the receptor protein molecule and contain only a few (if any)
very narrow tunnels for the ligand (Section 2.3). Therefore, the performance of the proposed
algorithms in this environment will be important for their evaluation.

The maze box has a width of 35 units, a length of 29 units, and a height of 6 units. The
diameter of the tunnel is 3 units. The height width and length of the object are 3 units long
(Figure 6.1).

(a) Without a roof (b) The Object

Figure 6.1: The dense environment. The obstacles are gray, the object is green, and the Cgoal is
yellow.

CTU in Prague Department of Circuit Theory

44 6.2. COMPLEX ENVIRONMENT

6.2 Complex environment

Even if the proposed methods perform well in the Dense environment, to declare them
viable methods they should be tested in another challenging scenario. The challenging element
of this environment is caused by one narrow passage. To make achieve this, the object is
spatially prominent so precise rotation of the object is necessary for finding its way to the
other side of the obstacle. The obstacle composes of two walls, to make for even more strict
requirements on the rotation. The space in between the walls is empty, so the object is possible
to be manipulated through the walls without any collision.

The height and width of the wall is 97 units, the diameter of the hole is 9 units, and
the distance between the walls is 5 units. The height of the object is 22 units and the length
is 24 units, width is 1 unit (Figure 6.2).

(a) The model (b) The Object

Figure 6.2: The complex environment. The obstacles are gray, the object is green, and the Cgoal is
yellow.

6.3 Simple environment

Benchmarking should be also carried out in a simple environment. This should point
out the weaknesses of the proposed models, which were designed with challenging tasks in
mind. Only one narrow passage is present in this situation. The object is a cube, which makes
the influence of rotations almost negligible (basically transforming the task from 6D to 3D).
The environment is the same as the Complex environment, but with only one wall and with
random clutter added so the search would not be too fast, so the benchmarked run-times
would have noticeable differences.

The environment has the same dimensions, as the Complex environment, but the object
is a cube with an edge length of 3 units (Figure 6.3).

CTU in Prague Department of Circuit Theory

6. BENCHMARKING ENVIRONMENTS 45

(a) The model (b) The Object

Figure 6.3: The simple environment. The obstacles are gray, the object is green, and the Cgoal is
yellow.

6.4 Protein environment

The protein docking (Section 2.3) will be carried out on the following three molecular
complexes (Figure 6.4). These environments will pose the biggest challenge to the selected
proposed methods, and the proposed methods will be compared with a related algorithm
Bi-RRT.

(a) 1BN7 (b) 1MAH (c) 1TCC

Figure 6.4: The protein environments.

The first molecule is Haloalkane Dehalogenase from a Rhodococcus species (1BN7) [45].
The second molecule is Fasciculin2-Mouse Acetylcholinesterase Complex (1MAH) [46], which
is a complex of a protein (Fasciculin) from snake poison bound to the protein Acetylcholinesterase
from a Mouse [46]. The last molecule is The sequence, crystal structure determination and
refinement of two crystal forms of lipase B from Candida antarctica (1TCC). The ligand in
the first scenario has 2 joints (resulting in 9 DOF). The ligand in the second scenario has 4
joints (11 DOF), and the ligand in the last scenario has 6 joints (13 DOF).

CTU in Prague Department of Circuit Theory

46 6.4. PROTEIN ENVIRONMENT

CTU in Prague Department of Circuit Theory

7. BENCHMARKING RESULTS 47

Chapter 7

Benchmarking results

This chapter shows the results of two benchmarking experiments. The first benchmark
was done with methods from OMPL [47, 48] (and with each other as well) in environments
represented by a 3D triangulated mesh of objects (see results in Section 7.3). The second
benchmark compared two of the proposed methods (from Section 5.4) with one state-of-the-
art method in protein docking.

For the first benchmark, the expectation was, that the best performance in complex
environments will be obtained from proposed non-ML solutions, closely followed by their ML
counterparts. The baseline (OMPL) methods are expected to be heavily underperforming.
As the complexity of environments decreases, the baseline methods should start to gain an
advantage (due to their simplicity) and the proposed solutions should start to decrease in
performance (due to their complexity).

The second benchmark compared the proposed ML-related method NN-RRT (proposed
in Subsection 5.4.1), its non-ML counterpart Pop-RRT (see Subsection 5.4.2) and the state-of-
the-art algorithm Bi-RRT (introduced in Section 3.3). The proposed methods were expected
to perform better than Bi-RRT.

7.1 Technical specifications

The proposed methods were implemented in the programming language Julia [49]. For
the collision detection and nearest neighbor search were utilized C++ libraries RAPID [43,
44] and MPNN [42] respectively. The choice of the programming language Julia was motivated
by its high readability which takes almost no toll on the speed of the executed code. Another
important factor was its compatibility with C/C++, which produces generally faster code
than Julia. Thanks to the ease with which C++ code can be used by Julia, the parts of the
algorithm, where speed was crucial could have been written in C++.

All of the benchmarks were run on one hardware setup with specifications listed in
Table ??. The benchmarking in the OMPL had a time limit of 120 seconds per run. Each
planner was executed 100 times per environment. With three OMPL environments, six pro-
posed algorithms, and ten baseline methods, the OMPL benchmarking could take maximally
120 · 10 · 6 · 100 · 3 = 2 160 000 seconds (600 hours or 25 days). Because the execution of an
algorithm terminated when a solution was found the final time was only approximately 61
hours. The benchmarking of the protein docking had a time limit of 100 seconds per run. In
total, the protein docking benchmarking took only 24 hours.

CTU in Prague Department of Circuit Theory

48 7.2. USED PARAMETERS

7.2 Used parameters

All of the proposed algorithms have at least one parameter. This section should make
it clear to the reader what is their role in the algorithms, and which values were used in the
benchmarking (Tables 7.1, 7.2, 7.3)

The most common parameter is a variance of the normal distribution used in the sam-
pling, which will be referred to as variance (Algorithms 9, 10, 12, 13, 14). Another parameter
is the number of points that will be taken from the suggested distribution, called density
(Algorithms 9, 10, 12, 13, 14). The next parameters are the regress and progress threshold,
in tables named bt and ft respectively (Algorithms 12, 13). One parameter is specific to the
Parzen-RRT algorithm (11) and it is called kernel variance σ2

k. It is a variance of normal
distribution, used in the PWE to estimate the sampling distribution (illustrated in Figure
4.2). The influence of the parameters is illustrated in Appendix (A.3)

Table 7.1: Parameters used in the Dense environment

Planner Reference Variance Density σ2
k ft bt

PSO-RRT alg.9 2 25 −− −− −−
Slide-RRT alg.10 2 150 −− −− −−
Parzen-RRT alg.11 −− −− 1.0 −− −−
Jump-RRT alg.12 2 −− −− 5 2
NN-RRT alg.13 2 100 −− 5 2
Pop-RRT alg.14 2 25 −− −− −−

Table 7.2: Parameters used in the Complex environment

Planner Reference Variance Density σ2
k ft bt

PSO-RRT alg.9 3 100 −− −− −−
Slide-RRT alg.10 3 500 −− −− −−
Parzen-RRT alg.11 −− −− 1.0 −− −−
Jump-RRT alg.12 3 −− −− 5 2
NN-RRT alg.13 3 10 −− 5 2
Pop-RRT alg.14 3 200 −− −− −−

Table 7.3: Parameters used in the Simple environment

Planner Reference Variance Density σ2
k ft bt

PSO-RRT alg.9 3 100 −− −− −−
Slide-RRT alg.10 3 500 −− −− −−
Parzen-RRT alg.11 −− −− 1.0 −− −−
Jump-RRT alg.12 3 −− −− 5 2
NN-RRT alg.13 3 10 −− 5 2
Pop-RRT alg.14 3 10 −− −− −−

CTU in Prague Department of Circuit Theory

7. BENCHMARKING RESULTS 49

The optimal variance of the methods is approximately a square root of the diameter
of a narrow passage. Regress and progress thresholds are basically environment independent
and their optimal values range between two to ten. The optimal density for each method is
different for each method, but it shares a common trend. The denser the environment, the
higher the optimal density (elaborated on in Appendix A.3).

7.3 Open Motion Planning Library benchmark

The Open Motion Planning Library (OMPL) is a library, which among other things
contains implemented algorithms for solving motion planning problems. Most importantly, it
is able to benchmark contained algorithms, as well as any user-provided implementations.

This section contains the results of benchmarking the proposed methods on all three en-
vironments, together with some OMPL methods. The methods tested from OMPL are widely
used state-of-the-art methods. Namely: BiEST [50], BKPIECE [51], EST [50], KPIECE [51],
LazyPRM [52, 53], LazyRRT [53], RRT-connect [26], RRT [7], SBL [54], STRIDE [55].

Each algorithm was run 100 times in each environment. If the algorithm found the path
in under 100 seconds it was considered a successful attempt. Otherwise the search was halted
and labeled as a failed attempt. The algorithms were evaluated with further-listed criteria.
The first already touched criterion is the success rate sr of the algorithm. Another two criteria
are the average run-time ta of the algorithm and the average number of iterations per run
ia. Criterion ti is the average time it took to finish one iteration of the algorithm. The last
criterion is efficiency et, defined as

et =
sr
ta
. (7.1)

The efficiency grows with the success rate and with the speed of the algorithm.

In the benchmarking results graphs, the non-ML-related methods will be colored in
orange color, and the ML-related ones will be shown in red. The OMPL implementations will
be blue.

CTU in Prague Department of Circuit Theory

50 7.3. OPEN MOTION PLANNING LIBRARY BENCHMARK

7.3.1 Dense environment

As expected, in the Dense environment (described in Figure 6.1) the proposed algorithms
performed much better than the OMPL algorithms (Figure 7.1). Both in terms of speed,
number of iterations required to find the path, and overall success rate (Table 7.4).

PS
O-
RR
T

Sl
id
e-
RR
T

Pa
rz
en
-R
RT

Ju
mp
-R
RT

NN
-R
RT

Po
p-
RR
T

(a) The proposed methods

Bi
ES
T

BK
PI
EC
E
ES
T

KP
IE
CE

La
zy
PR
M

La
zy
RR
T

RR
Tc
on
ne
ct
RR
T
SB
L

ST
RI
DE

(b) The state of the art

Figure 7.1: The speed of the algorithms in the Dense environment.

Table 7.4: Performance of the proposed algorithms in the Dense environment

Planner Reference ta (s) ia (×103) sr (%) et (s
−1) ti (ms)

PSO-RRT alg.9 22.94 87 100 4.36 0.30
Slide-RRT alg.10 19.57 33 99 5.05 0.64
Parzen-RRT alg.11 89.60 166 76 0.84 0.44
Jump-RRT alg.12 5.57 36 100 17.94 0.15
NN-RRT alg.13 7.87 46 100 12.69 0.17
Pop-RRT alg.14 2.75 23 100 26.64 0.15

BiEST [50] 95.61 12 7 0.07 8.10
BKPIECE [51] 96.22 719 7 0.07 0.13
EST [50] 98.87 6 2 0.02 15.50
KPIECE [51] 98.29 480 4 0.04 0.20
LazyPRM [52] 100 60 0 0 1.66
LazyRRT [53] 100 12 0 0 7.88
RRTconnect [26] 54.39 151 72 1.32 0.31
RRT [7] 46.67 92 83 1.77 0.44
SBL [54] 72.80 1527 52 0.71 0.04
STRIDE [55] 98.94 377 5 0.05 0.26

CTU in Prague Department of Circuit Theory

7. BENCHMARKING RESULTS 51

7.3.2 Complex environment

In the Complex environment (shown in Figure 6.2), the OMPL methods were not able
to successfully find a single path. The performance of the proposed methods is visibly worse
than in the Dense scenario (Figure 7.2), but the methods are still reasonably fast (Table 7.5).
For some of the OMPL methods, the number of iterations was not possible to obtain, due to
inner OMPL implementation reasons.

PS
O-
RR
T

Sl
id
e-
RR
T

Pa
rz
en
-R
RT

Ju
mp
-R
RT

NN
-R
RT

Po
p-
RR
T

(a) The proposed methods

Bi
ES
T

BK
PI
EC
E
ES
T

KP
IE
CE

La
zy
PR
M

La
zy
RR
T

RR
Tc
on
ne
ct

RR
T
SB
L

ST
RI
DE

(b) The state of the art

Figure 7.2: The speed of the algorithms in the Complex environment.

Table 7.5: Performance of the proposed algorithms in the Complex environment

Planner Reference ta (s) ia (×103) sr (%) et (s
−1) ti (ms)

PSO-RRT alg.9 19.50 43 100 5.13 0.20
Slide-RRT alg.10 29.53 82 86 2.91 0.94
Parzen-RRT alg.11 7.69 21 100 13.03 0.56
Jump-RRT alg.12 27.8 91 88 3.16 0.84
NN-RRT alg.13 14.08 43 97 6.88 0.47
Pop-RRT alg.14 47.27 177 99 2.09 0.20

BiEST [50] 100 −− 0 0 −−
BKPIECE [51] 100 −− 0 0 −−
EST [50] 100 10 0 0 9.54
KPIECE [51] 100 795 0 0 0.12
LazyPRM [52] 100 −− 0 0 −−
LazyRRT [53] 100 68 0 0 3.65
RRTconnect [26] 100 −− 0 0 −−
RRT [7] 100 395 0 0 0.25
SBL [54] 100 −− 0 0 −−
STRIDE [55] 100 −− 0 0 −−

CTU in Prague Department of Circuit Theory

52 7.3. OPEN MOTION PLANNING LIBRARY BENCHMARK

7.3.3 Simple environment

The Simple environment (illustrated in Figure 6.3) proved to be the toughest challenge
for the proposed methods, as expected (Table 7.6). The methods from the OMPL were on the
other side performing very well (Figure 7.3). They were able to find the path in every single
run. Due to the low complexity of the environment, it is possible to say, that the proposed
methods had to run the search twice because finding the path for the probe was similarly
simple to solving the whole task. Because of that for some planners, it was tested how well
they would perform if they did not have to compute the approximate path, and instead, it was
computed before the benchmarking and passed directly into them as an argument (Appendix
A.2, Figure A.1).

PS
O-
RR
T

Sl
id
e-
RR
T

Pa
rz
en
-R
RT

Ju
mp
-R
RT

NN
-R
RT

Po
p-
RR
T

(a) The proposed methods

Bi
ES
T

BK
PI
EC
E
ES
T

KP
IE
CE

La
zy
PR
M

La
zy
RR
T

RR
Tc
on
ne
ct

RR
T
SB
L

ST
RI
DE

(b) The state of the art

Figure 7.3: The speed of the algorithms in the Simple environment.

Table 7.6: Performance of the proposed algorithms in the Simple environment

Planner Reference ta (s) ia (×103) sr (%) et (s
−1) ti (ms)

PSO-RRT alg.9 7.65 5.46 100 13.06 1.98
Slide-RRT alg.10 3.63 6.10 100 27.50 0.63
Parzen-RRT alg.11 2.27 0.48 100 44.01 6.13
Jump-RRT alg.12 7.09 14.20 98 13.81 2.70
NN-RRT alg.13 3.35 6.34 100 29.80 2.36
Pop-RRT alg.14 14.34 74.11 100 6.97 1.93

BiEST [50] 0.12 0.60 100 830.80 0.18
BKPIECE [51] 0.37 5.40 100 268.80 0.07
EST [50] 0.51 1.66 100 193.90 0.26
KPIECE [51] 100 −− 0 0 −−
LazyPRM [52] 1.08 4.18 100 92.18 0.13
LazyRRT [53] 97.01 48.01 5 0.05 1.99
RRTconnect [26] 0.18 1.45 100 542.36 0.12
RRT [7] 3.60 395 100 253.30 0.11
SBL [54] 0.30 12.43 100 338.70 0.02
STRIDE [55] 2.14 17.71 100 46.81 0.12

CTU in Prague Department of Circuit Theory

7. BENCHMARKING RESULTS 53

7.4 Protein docking benchmark

The most complex environments the proposed methods were benchmarked on were
the Protein docking scenarios (introduced in Section 6.4). The paths in the protein docking
environments are harder to find because of two main factors. The first factor is, that the
environment usually consists of narrow tunnels. The second factor is, that the ligand usually
has at least one joint and each joint adds an additional degree of freedom to the task, rendering
it harder to solve.

Three planners were tested on three Protein docking tasks (Section 2.3). The molecular
complexes were 1BN7, 1MAH, and 1TCC (Section 6.4). The planners were BiRRT, NN-RRT,
and the simplification of NN-RRT, the Pop-RRT, (Algorithms 4, 13, 14). The algorithm
evaluation criteria are the same as in the previous section (7.3), but the time limit is increased
from 100 seconds to 120 seconds.

7.4.1 Molecule 1BN7

Since the molecular environment is more complex than the previously benchmarked
environments, the time it takes, to find the solution is higher (Table 7.7). The newly pro-
posed methods (Algorithm 14, 13) are outperforming the state-of-the-art method Bi-RRT
(Algorithm 4).

Table 7.7: Performance of the proposed algorithms in docking ligand into the 1BN7 molecule.

Planner Reference ta (s) ia (×103) sr (%) et (s
−1) ti (ms)

NN-RRT alg.13 38.41 26 100 2.60 1.52
Pop-RRT alg.14 32.15 24 100 3.11 1.38

Bi-RRT alg.4 50.69 56 100 1.97 1.78

7.4.2 Molecule 1MAH

The gap in performance, between the state-of-the-art method, and the proposed meth-
ods is even more obvious in this more complex molecular environment (Table 7.8). The dif-
ference is especially significant when it comes to the success rate of the algorithms. Since the
two proposed algorithms are similar in their nature (the Pop-RRT is a simplification of the
NN-RRT), their performance is also similar.

Table 7.8: Performance of the proposed algorithms in docking ligand into the 1MAH molecule.

Planner Reference ta (s) ia (×103) sr (%) et (s
−1) ti (ms)

NN-RRT alg.13 101.76 27 47 0.46 3.91
Pop-RRT alg.14 99.99 27 45 0.45 3.40

Bi-RRT alg.4 115.77 35 6 0.05 3.29

CTU in Prague Department of Circuit Theory

54 7.5. SUMMARY

7.4.3 Molecule 1TCC

All of the methods are faster than in the previous two scenarios (Table 7.9). The state-of-
the-art method Bi-RRT is the fastest, which was not true in any of the previous environments.
The proposed methods are still more successful in finding the path than the state-of-the-art
method.

Table 7.9: Performance of the proposed algorithms in docking ligand into the 1TCC molecule.

Planner Reference ta (s) ia (×103) sr (%) et (s
−1) ti (ms)

NN-RRT alg.13 17.40 3 100 5.75 10.89
Pop-RRT alg.14 12.28 4 99 5.73 9.50

Bi-RRT alg.4 9.04 4 96 10.61 2.57

7.5 Summary

In this chapter, all the proposed methods were benchmarked with OMPL methods
and in protein docking. The proposed methods outperformed all the baseline methods in all
scenarios except the simplest one. That was caused by the fact that the proposed methods
use the probe to obtain the approximated path, but in the Simple environment, finding the
final path was not much harder than finding the approximated path. Therefore the proposed
methods were basically solving the task twice per run.

Where the proposed methods performed the best was in the Dense environment. That
is because the methods were designed with dense scenarios in mind because that is usually
the case with protein docking environments. The Complex scenario posed a challenge for the
proposed methods, but they all were able to solve the task (the OMPL methods were not).

In the protein docking itself, expectations of outperforming Bi-RRT by the proposed al-
gorithms were met. As it was mentioned already, the methods were designed with the challenge
of protein docking tasks in mind, which gave them an advantage.

CTU in Prague Department of Circuit Theory

8. CONCLUSION 55

Chapter 8

Conclusion

This work was mainly focused on two goals. Proposing motion planning algorithms, that
will perform better than state-of-the-art implementations in environments with a high number
of degrees of freedom. And investigating, whether machine learning (and related tools) is a
viable option for speeding up motion planning algorithms.

Six novel algorithms were introduced and benchmarked first against algorithms from
Open Motion Planning Library in three environments with varying complexity, and later
against Bidirectional-RRT in protein docking. The proposed methods outperformed the state-
of-the-art methods in all of the environments except the simplest one.

In the more complex scenarios benchmarked against the Open Motion Planning Library
methods the difference between the proposed methods was significant. However, in the simple
scenario, the state-of-the-art methods stood their ground which is due to the simplicity of
the state-of-the-art methods. Finding the path in the simple environment was so fast, the
advantages of the proposed methods had no time, to manifest themselves. Quite the contrary,
the additional complexity of the proposed methods caused them to compute more than was
necessary and slowed them down.

The initial assumption of this thesis was, that machine learning would not prove to
be of much help (RRT-based) in motion planning. The assumption came from the thought,
that when the task is well-defined and well-understood by the programmer, he should have
the ability to directly code algorithms manifesting exactly the behavior he deemed best for
solving the task. That would eliminate any benefit of machine learning, which helps in tasks
that are hard (or impossible) to define (such as deciding, whether it is a cat or a sunlamp in
a picture), by converging toward the desired behavior over time, by obtaining more data and
accordingly adjusting its behavior.

As the data from benchmarking show, this assumption was not totally accurate. In the
scenarios densely populated with obstacles, the proposed methods utilizing machine learning
(or related methods) were outperformed by their hard-coded counterparts. However, as the
density of the environments decreased any prediction about whether the machine-learning-
related methods or their counterparts would perform better fell apart.

Two of the proposed methods were benchmarked in protein docking. A task very chal-
lenging due to its high number of degrees of freedom. One of the methods utilized a neural
network and the other was a simplification of that method. The method the proposed algo-
rithms were benchmarked against was a state-of-the-art method called Bidirectional RRT. In
all of the benchmarking scenarios, the proposed methods performed better, than the state-of-
the-art method.

CTU in Prague Department of Circuit Theory

56

CTU in Prague Department of Circuit Theory

A. APPENDIX 57

Chapter A

Appendix

A.1 Pop+Jump-RRT

The combination of the algorithms Pop-RRT and Jump-RRT (Algorithms 14, 12).

Algorithm 15: P+J-RRT

Input: K = maximal number of steps, N = distribution sample count, qinit = initial
position, qgoal = goal position

Output: T
1 f ← 0; // number of successful connections
2 b← 0; // number of collisions
3 n← 0; // number of samples to be taken from the suggested distribution
4 path idx← 0;
5 T.root← qinit; // initialize the search tree
6 approximate path← probe RRT (q init, count = 1); // get approximate path
7 for k ∈ 1 : K do
8 if n > 0 then
9 qrand ← sample normal(connection);

10 n← n− 1;

11 else
12 qrand ← sample normal(approximate path[path idx]);

13 qnear ← tree.find nearest neighbour(qrand);
14 connection, connected = impact connect(q near, q rand);
15 tree.append(qnear, connection);
16 if connected then
17 if connection ∈ Cgoal then
18 return T ;

19 f ← f + 1;
20 if f mod ft is 0 then
21 path idx← path idx+ 1; // jump forward

22 else
23 b← b+ 1;
24 if b mod bt is 0 then
25 path idx← path idx− 1; // jump back

26 n← N ;

CTU in Prague Department of Circuit Theory

58 A.2. PERFORMANCE WITH PRECOMPUTED PATHS

A.2 Performance with precomputed paths

The performance of selected proposed methods in the Simple environment when the
computation of the approximate path is computed before their run-time and passed into the
as an argument (Figure A.1 and Table A.1). The performance of the OMPL methods is also
displayed for the comparison (Figure A.2).

Pa
rz
en
-R
RT

Ju
mp
-R
RT

NN
-R
RT

P+
J-
RR
T

Figure A.1: Performance of selected proposed methods with a precomputed approximate path in the
Simple environment.

Bi
ES
T

BK
PI
EC
E
ES
T

KP
IE
CE

La
zy
PR
M

La
zy
RR
T

RR
Tc
on
ne
ct

RR
T
SB
L

ST
RI
DE

Figure A.2: Performance of OMPL methods in the Simple environment.

Table A.1: Performance of selected proposed methods with a precomputed approximate path in the
Simple environment. Best-performing OMPL methods are included for reference.

Planner Reference ta (s) ia (×103) sr (%) et (s
−1) ti (ms)

Parzen-RRT alg.11 0.10 0.33 100 960.11 0.35
Jump-RRT alg.12 0.37 1.27 100 264.54 0.42
NN-RRT alg.13 0.41 1.09 100 241.78 0.35
P+J-RRT alg.15 1.49 7.67 100 66.99 0.02

BiEST [50] 0.12 0.60 100 830.80 0.18
BKPIECE [51] 0.37 5.40 100 268.80 0.07
EST [50] 0.51 1.66 100 193.90 0.26
LazyPRM [52] 1.08 4.18 100 92.18 0.13
RRTconnect [26] 0.18 1.45 100 542.36 0.12
SBL [54] 0.30 12.43 100 338.70 0.02

CTU in Prague Department of Circuit Theory

A. APPENDIX 59

A.3 Parameter influence

Graphs of influence of parameters on some selected algorithms. The graphs are inter-
preted as what percentage (y axis) of the 100 runs of the algorithm finished under a given
time (x axis).

variance = 0.1
variance = 1.0
variance = 2
variance = 3.0
variance = 5.0
variance = 10.0
variance = 15.0
variance = 20.0

Figure A.3: Influence of the variance parameter on the PSO-RRT algorithm (9) performance, when
the parameter density is fixed at value 25.

ct = 2; bt = 2
ct = 5; bt = 2
ct = 5; bt = 10
ct = 10; bt = 5
ct = 50; bt = 50
ct = 100; bt = 100
ct = 200; bt = 200
ct = 500; bt = 500

Figure A.4: Influence of the progress threshold (ft) and regress threshold (bt) parameters on the
Jump-RRT algorithm (12) performance.

Benchmarking data (can be found in attachments B) shows, that the optimal value for
a variance of algorithms is around the square root of the diameter of a narrow passage present
in the environment. The optimal value of the density parameter decreases with decreasing
density of the obstacles. When the density is set to 1 the algorithms will behave like the original
RRT. The optimal values move around hundreds for denser environments and around tens in
more sparse environments. For each algorithm, the optimal value is different (as opposed to
variance, which is the same for all algorithms in the same environment). The optimal progress
and regress thresholds lie always in the interval [2,10]. The optimal kernel variance is usually
close to one-half of the optimal variance.

CTU in Prague Department of Circuit Theory

60 A.3. PARAMETER INFLUENCE

A.3.1 Optimizing paths

Results of testing, whether it pays off, to optimize the guiding (approximate) paths. If
a path was optimized, it is tagged with “o” in the tables (A.2, A.3) and with “no” when not.
If the path was interpolated (more configurations were inserted between the configurations
already present in the path) it was tagged with “i” and with “ni” otherwise.

Table A.2: Average run-time (s) in the Dense environment

Planner Reference o-i no-i o-ni no-ni

PSO-RRT alg.9 −− −− 12.89 17.45
Slide-RRT alg.10 −− −− 16.71 14.14
Parzen-RRT alg.11 −− −− 20.63 25.33
Jump-RRT alg.12 5.98 6.28 6.10 6.51
NN-RRT alg.13 24.22 22.24 4.49 5.09

Table A.3: Success rate (%) in the Dense environment

Planner Reference o-i no-i o-ni no-ni

PSO-RRT alg.9 −− −− 92 93
Slide-RRT alg.10 −− −− 96 96
Parzen-RRT alg.11 −− −− 44 78
Jump-RRT alg.12 97 89 93 90
NN-RRT alg.13 89 79 100 100

CTU in Prague Department of Circuit Theory

A. APPENDIX 61

A.4 BiLSTM-PSO-GDRRT* comparison with proposed meth-
ods

It is important to note, that this comparison (Tables A.4, A.5) can not lead to conclu-
sions about which algorithms are better because the environments (Figure 3.7) were not the
exactly the same, the benchmarking hardware was different, and the methods proposed in
this thesis are not designed to find the optimal path.

Table A.4: Performance of the three algorithms in environment from Figure 3.4. (Data are from the
publication [33])

Reference Average time (s)

GDRRT* [33] 11.53
PSO-GDRRT* [33] 48.73
BiLSTM-PSO-GDRRT* [33] 0.013

Table A.5: Performance of the proposed algorithms in environment from Figure 3.7

.

Reference Average time (s)

RRT algorithm 8 0.08
PSO-RRT algorithm 9 0.75
Slide-RRT algorithm 10 0.27
Parzen-RRT algorithm 11 0.61
Jump-RRT algorithm 12 0.76
NN-RRT algorithm 13 0.63
Pop-RRT algorithm 14 0.40
P+J-RRT algorithm 15 0.33

Because the final algorithm in [33] BiLSTM-PSO-GDRRT* is not computing the path
while running the search, but using the path provided by the NN, we also tested the perfor-
mance of some of our methods with the path computed before the benchmark (Table A.6),
and then our method NN-RRT (Algorithm 13) performed very similarly.

Table A.6: Performance of the proposed algorithms in environment from Figure 3.7, with pre-
computed path

Reference Average time (s)

NN-RRT algorithm 13 0.03
Pop-RRT algorithm 14 0.07
P+J-RRT algorithm 15 0.05

CTU in Prague Department of Circuit Theory

62 A.5. NETWORK TRAINING

A.5 Network training

Here are presented the data regarding the time and final loss of training of two used
neural network models (Table A.7). The model named “Mesh” was used on environments
represented by meshes (used for benchmarking with OMPL). The model named “Protein”
was used for the protein docking environments. The training was implemented using Flux.jl
library [56, 57].

Table A.7: Performance of the proposed algorithms in environment from Figure 3.7, with pre-
computed path

Model Training-time (a) Final loss

Mesh 247.45 1.50
Protein 173.51 0.02

CTU in Prague Department of Circuit Theory

B. ATTACHMENTS 63

Chapter B

Attachments

The thesis comes together with an attached source code.zip file. The file contains all
the source code of the algorithms, the meshes of the benchmarked environments, and the
benchmarked data.

The folder algorithms/ contains the implemented algorithms. The folder analyze/ con-
tains the benchmarked data and Julia [49] scripts for the analysis of the data. The folder
jl libs/ contains definitions of functions and structures shared by the algorithms. The folder
libs/ contains external libraries. The folder ompl/ contains files related to the Open Motion
Planning Library benchmarking. The folder training/ contains datasets and NN models. The
folder meshes/ contains blender files of environments and Python scripts for visualizing the
planning results. The home directory then contains scripts to run the search and run the
training of networks, along with wrappers for the libraries in libs/.

CTU in Prague Department of Circuit Theory

64

CTU in Prague Department of Circuit Theory

C. REFERENCES 65

Chapter C

References

[1] A. Sagitov et al. “Design of Simple One-Arm Surgical Robot for Minimally Invasive Surgery”.
In: Oct. 2019, pp. 500–503. doi: 10.1109/DeSE.2019.00097.

[2] Surgical Robotic Arm Systems Hand Tools. Accessed: 2023-05-21. url: https://www.alliedmotion.
com/surgical-robotic-arm-systems/.

[3] RimWorld. https://rimworldgame.com/. Montreal: Ludeon Studios, 2018.

[4] Steven M. Lavalle. Planning Algorithms. Cambridge University Press, 2006. isbn: 0521862051.

[5] L.E. Kavraki et al. “Probabilistic roadmaps for path planning in high-dimensional configuration
spaces”. In: IEEE Transactions on Robotics and Automation 12.4 (1996), pp. 566–580. doi:
10.1109/70.508439.

[6] O. Trott and A. J. Olson. “AutoDock Vina: improving the speed and accuracy of docking with a
new scoring function, efficient optimization, and multithreading”. en. In: J Comput Chem 31.2
(Jan. 2010), pp. 455–461.

[7] Steven M. LaValle. “Rapidly-exploring random trees : a new tool for path planning”. In: The
annual research report (1998).

[8] L. Jaillet et al. “Adaptive tuning of the sampling domain for dynamic-domain RRTs”. In: Sept.
2005, pp. 2851 –2856. doi: 10.1109/IROS.2005.1545607.

[9] P. A. Burrough et al. 8.11 Nearest neighbours: Thiessen (Dirichlet/Voroni) polygons. Oxford
University Press, 2015, pp. 160–163. isbn: 978-0-19-874284-5.

[10] Oxford English Dictionary. Accessed: 2023-04-11. url: https://languages.oup.com/research/
oxford-english-dictionary/.

[11] T. Lengauer and M. Rarey. “Computational methods for biomolecular docking”. In: Current
Opinion in Structural Biology 6.3 (1996), pp. 402–406. issn: 0959-440X. doi: https://doi.org/
10.1016/S0959-440X(96)80061-3. url: https://www.sciencedirect.com/science/article/
pii/S0959440X96800613.

[12] J. Li, A. Fu, and L. Zhang. “An Overview of Scoring Functions Used for Protein–Ligand Inter-
actions in Molecular Docking”. In: Interdisciplinary Sciences: Computational Life Sciences 11.2
(2019), pp. 320–328. issn: 1867-1462. doi: https://doi.org/10.1007/s12539-019-00327-w.
url: https://doi.org/10.1007/s12539-019-00327-w.

[13] A. N. Jain. “Scoring functions for protein-ligand docking”. en. In: Curr Protein Pept Sci 7.5
(Oct. 2006), pp. 407–420.

[14] D. Devaurs et al. “MoMA-LigPath: a web server to simulate protein–ligand unbinding”. en. In:
Nucleic Acids Research 41.W1 (July 2013). 31 citations (Crossref) [2023-03-30], W297–W302.
issn: 1362-4962, 0305-1048. doi: 10.1093/nar/gkt380. url: http://academic.oup.com/nar/
article/41/W1/W297/1097124/MoMALigPath- a- web- server- to- simulate- proteinligand
(visited on 03/28/2023).

[15] K. Furmanová et al. “DockVis: Visual Analysis of Molecular Docking Trajectories”. In: Com-
puter Graphics Forum 39.6 (2020), pp. 452–464. doi: https://doi.org/10.1111/cgf.14048.
eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14048. url: https://
onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14048.

CTU in Prague Department of Circuit Theory

https://doi.org/10.1109/DeSE.2019.00097
https://www.alliedmotion.com/surgical-robotic-arm-systems/
https://www.alliedmotion.com/surgical-robotic-arm-systems/
https://doi.org/10.1109/70.508439
https://doi.org/10.1109/IROS.2005.1545607
https://languages.oup.com/research/oxford-english-dictionary/
https://languages.oup.com/research/oxford-english-dictionary/
https://doi.org/https://doi.org/10.1016/S0959-440X(96)80061-3
https://doi.org/https://doi.org/10.1016/S0959-440X(96)80061-3
https://www.sciencedirect.com/science/article/pii/S0959440X96800613
https://www.sciencedirect.com/science/article/pii/S0959440X96800613
https://doi.org/https://doi.org/10.1007/s12539-019-00327-w
https://doi.org/10.1007/s12539-019-00327-w
https://doi.org/10.1093/nar/gkt380
http://academic.oup.com/nar/article/41/W1/W297/1097124/MoMALigPath-a-web-server-to-simulate-proteinligand
http://academic.oup.com/nar/article/41/W1/W297/1097124/MoMALigPath-a-web-server-to-simulate-proteinligand
https://doi.org/https://doi.org/10.1111/cgf.14048
https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.14048
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14048
https://onlinelibrary.wiley.com/doi/abs/10.1111/cgf.14048

66

[16] J. Polanski. “4.14 - Chemoinformatics”. In: Comprehensive Chemometrics. Ed. by Steven D.
Brown, Romá Tauler, and Beata Walczak. Oxford: Elsevier, 2009, pp. 459–506. isbn: 978-0-
444-52701-1. doi: https://doi.org/10.1016/B978- 044452701- 1.00006- 5. url: https:
//www.sciencedirect.com/science/article/pii/B9780444527011000065.

[17] B. K. Shoichet, I. D. Kuntz, and D. L. Bodian. “Molecular docking using shape descriptors”. In:
Journal of Computational Chemistry 13 (1992).

[18] M. K. Nguyen, L. Jaillet, and S. Redon. “ART–RRT: As-Rigid-As-Possible search for protein
conformational transition paths”. en. In: Journal of Computer-Aided Molecular Design 33.8
(Aug. 2019), pp. 705–727. issn: 0920-654X, 1573-4951. doi: 10.1007/s10822-019-00216-w. url:
http://link.springer.com/10.1007/s10822-019-00216-w (visited on 04/13/2023).

[19] M. K. Nguyen. “Efficient exploration of molecular paths from As-Rigid-As-Possible approaches
and motion planning methods”. en. In: (2018).

[20] N. Lindow, D. Baum, and H.-C. Hege. “Voronoi-Based Extraction and Visualization of Molecular
Paths”. en. In: IEEE Transactions on Visualization and Computer Graphics 17.12 (Dec. 2011),
pp. 2025–2034. issn: 1077-2626. doi: 10.1109/TVCG.2011.259. url: http://ieeexplore.ieee.
org/document/6064966/ (visited on 03/28/2023).

[21] Schrödinger, LLC. “The PyMOL Molecular Graphics System, Version 1.8”. 2015.

[22] I. W. M. Smith. “Chapter 3 - Molecular collision dynamics”. In: Kinetics and Dynamics of
Elementary Gas Reactions. Ed. by Ian W.M. Smith. Butterworths Monographs in Chemistry
and Chemical Engineering. Butterworth-Heinemann, 1980, pp. 59–109. isbn: 978-0-408-70790-
9. doi: https://doi.org/10.1016/B978- 0- 408- 70790- 9.50008- 6. url: https://www.
sciencedirect.com/science/article/pii/B9780408707909500086.

[23] L. Lu and S. Benyahia. “Chapter Two - Advances in Coarse Discrete Particle Methods With
Industrial Applications”. In: Bridging Scales in Modelling and Simulation of Non-Reacting and
Reacting Flows. Part II. Ed. by Alessandro Parente and Juray De Wilde. Vol. 53. Advances in
Chemical Engineering. Academic Press, 2018, pp. 53–151. doi: https://doi.org/10.1016/
bs . ache . 2017 . 12 . 001. url: https : / / www . sciencedirect . com / science / article / pii /
S0065237717300522.

[24] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: Numer. Math. 1.1
(1959), 269–271. issn: 0029-599X. doi: 10.1007/BF01386390. url: https://doi.org/10.1007/
BF01386390.

[25] J. L. Bentley. “Multidimensional Binary Search Trees Used for Associative Searching”. In: Com-
mun. ACM 18.9 (1975), 509–517. issn: 0001-0782. doi: 10.1145/361002.361007. url: https:
//doi.org/10.1145/361002.361007.

[26] J.J. Kuffner and S.M. LaValle. “RRT-connect: An efficient approach to single-query path plan-
ning”. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on
Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065). Vol. 2. 2000, 995–1001
vol.2. doi: 10.1109/ROBOT.2000.844730.

[27] X. Tang and F. Chen. “Robot Path Planning Algorithm based on Bi-RRT and Potential Field”.
In: 2020 IEEE International Conference on Mechatronics and Automation (ICMA). 2020, pp. 1251–
1256. doi: 10.1109/ICMA49215.2020.9233539.

[28] P. F. Ash and E. D. Bolker. “Generalized Dirichlet tessellations”. In: Geometriae Dedicata 20
(1986), pp. 209–243.

[29] V. Vonásek. “Motion planning of 3D objects using Rapidly Exploring Random Tree guided by
approximate solutions”. In: 2018 IEEE 23rd International Conference on Emerging Technologies
and Factory Automation (ETFA). Vol. 1. 2018, pp. 713–720. doi: 10.1109/ETFA.2018.8502446.

[30] V. Vonásek et al. “RRT-path — A guided rapidly exploring random tree”. In: Robot motion and
control (RoMoCo). London: Springer London, 2009, pp. 307–316. isbn: 978-1-84882-985-5. doi:
https://doi.org/10.1007/978-1-84882-985-5 28.

CTU in Prague Department of Circuit Theory

https://doi.org/https://doi.org/10.1016/B978-044452701-1.00006-5
https://www.sciencedirect.com/science/article/pii/B9780444527011000065
https://www.sciencedirect.com/science/article/pii/B9780444527011000065
https://doi.org/10.1007/s10822-019-00216-w
http://link.springer.com/10.1007/s10822-019-00216-w
https://doi.org/10.1109/TVCG.2011.259
http://ieeexplore.ieee.org/document/6064966/
http://ieeexplore.ieee.org/document/6064966/
https://doi.org/https://doi.org/10.1016/B978-0-408-70790-9.50008-6
https://www.sciencedirect.com/science/article/pii/B9780408707909500086
https://www.sciencedirect.com/science/article/pii/B9780408707909500086
https://doi.org/https://doi.org/10.1016/bs.ache.2017.12.001
https://doi.org/https://doi.org/10.1016/bs.ache.2017.12.001
https://www.sciencedirect.com/science/article/pii/S0065237717300522
https://www.sciencedirect.com/science/article/pii/S0065237717300522
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1007/BF01386390
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1145/361002.361007
https://doi.org/10.1109/ROBOT.2000.844730
https://doi.org/10.1109/ICMA49215.2020.9233539
https://doi.org/10.1109/ETFA.2018.8502446
https://doi.org/https://doi.org/10.1007/978-1-84882-985-5_28

C. REFERENCES 67

[31] M. Minař́ık. “Improving Sampling-Based Motion Planning Using Library of Trajectories”. Prague,
Czech Republic: Czech Technical University in Prague, 2021.

[32] J. Denny et al. “On the theory of user-guided planning”. en. In: 2016 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). 7 citations (Crossref) [2023-05-03]. Dae-
jeon, South Korea: IEEE, Oct. 2016, pp. 4794–4801. isbn: 978-1-5090-3762-9. doi: 10.1109/IROS.
2016.7759704. url: http://ieeexplore.ieee.org/document/7759704/ (visited on 03/28/2023).

[33] M. F. Aslan, A. D., and K. Sabanci. “Goal distance-based UAV path planning approach, path
optimization and learning-based path estimation: GDRRT*, PSO-GDRRT* and BiLSTM-PSO-
GDRRT*”. In: Applied Soft Computing 137 (2023), p. 110156. issn: 1568-4946. doi: https:
//doi.org/10.1016/j.asoc.2023.110156. url: https://www.sciencedirect.com/science/
article/pii/S1568494623001746.

[34] A. Graves and J. Schmidhuber. “Framewise phoneme classification with bidirectional LSTM and
other neural network architectures”. In: Neural Networks 18.5 (2005). IJCNN 2005, pp. 602–
610. issn: 0893-6080. doi: https://doi.org/10.1016/j.neunet.2005.06.042. url: https:
//www.sciencedirect.com/science/article/pii/S0893608005001206.

[35] S. Karaman and E. Frazzoli. “Sampling-based algorithms for optimal motion planning”. In: The
International Journal of Robotics Research 30.7 (2011), pp. 846–894. doi: 10.1177/0278364911406761.
eprint: https://doi.org/10.1177/0278364911406761. url: https://doi.org/10.1177/
0278364911406761.

[36] S. Karaman et al. “Anytime Motion Planning using the RRT*”. In: 2011 IEEE International
Conference on Robotics and Automation. 2011, pp. 1478–1483. doi: 10.1109/ICRA.2011.5980479.

[37] M. R. Bonyadi and Z. Michalewicz. “Particle Swarm Optimization for Single Objective Contin-
uous Space Problems: A Review”. en. In: Evolutionary Computation 25.1 (Mar. 2017), pp. 1–54.
issn: 1063-6560, 1530-9304. doi: 10.1162/EVCO r 00180. url: https://direct.mit.edu/evco/
article/25/1/1-54/1040 (visited on 05/05/2023).

[38] A. Z. Nasrollahy and H. H. S. Javadi. “Using Particle Swarm Optimization for Robot Path
Planning in Dynamic Environments with Moving Obstacles and Target”. In: 2009 Third UKSim
European Symposium on Computer Modeling and Simulation. 2009, pp. 60–65. doi: 10.1109/
EMS.2009.67.

[39] T. F. Iversen and L.-P. Ellekilde. “Kernel density estimation based self-learning sampling strat-
egy for motion planning of repetitive tasks”. In: 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). 2016, pp. 1380–1387. doi: 10.1109/IROS.2016.7759226.

[40] I. J. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. http://www.deeplearningbook.
org. Cambridge, MA, USA: MIT Press, 2016.

[41] D. Kingma and J. Ba. “Adam: A Method for Stochastic Optimization”. In: International Con-
ference on Learning Representations (Dec. 2014).

[42] A. Yershova and S. M. LaValle. “Improving Motion-Planning Algorithms by Efficient Nearest-
Neighbor Searching”. In: IEEE Transactions on Robotics 23.1 (2007), pp. 151–157. doi: 10.
1109/TRO.2006.886840.

[43] Rapid - robust and accurate polygon interference detection system. Accessed: 2023-05-12. url:
http://gamma.cs.unc.edu/OBB/.

[44] S. Gottschalk, M. C. Lin, and D. Manocha. “OBBTree: a hierarchical structure for rapid inter-
ference detection”. en. In: Proceedings of the 23rd annual conference on Computer graphics and
interactive techniques - SIGGRAPH ’96. New York, NY, USA: ACM Press, 1996, pp. 171–180.
isbn: 978-0-89791-746-9. doi: 10.1145/237170.237244. url: http://portal.acm.org/citation.
cfm?doid=237170.237244 (visited on 05/05/2023).

[45] J. Newman et al. “Haloalkane dehalogenases: structure of a Rhodococcus enzyme”. en. In: Bio-
chemistry 38.49 (Dec. 1999), pp. 16105–16114.

[46] Y. Bourne, P. Taylor, and P. Marchot. “Acetylcholinesterase inhibition by fasciculin: crystal
structure of the complex”. en. In: Cell 83.3 (Nov. 1995), pp. 503–512.

CTU in Prague Department of Circuit Theory

https://doi.org/10.1109/IROS.2016.7759704
https://doi.org/10.1109/IROS.2016.7759704
http://ieeexplore.ieee.org/document/7759704/
https://doi.org/https://doi.org/10.1016/j.asoc.2023.110156
https://doi.org/https://doi.org/10.1016/j.asoc.2023.110156
https://www.sciencedirect.com/science/article/pii/S1568494623001746
https://www.sciencedirect.com/science/article/pii/S1568494623001746
https://doi.org/https://doi.org/10.1016/j.neunet.2005.06.042
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1177/0278364911406761
https://doi.org/10.1109/ICRA.2011.5980479
https://doi.org/10.1162/EVCO_r_00180
https://direct.mit.edu/evco/article/25/1/1-54/1040
https://direct.mit.edu/evco/article/25/1/1-54/1040
https://doi.org/10.1109/EMS.2009.67
https://doi.org/10.1109/EMS.2009.67
https://doi.org/10.1109/IROS.2016.7759226
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://doi.org/10.1109/TRO.2006.886840
https://doi.org/10.1109/TRO.2006.886840
http://gamma.cs.unc.edu/OBB/
https://doi.org/10.1145/237170.237244
http://portal.acm.org/citation.cfm?doid=237170.237244
http://portal.acm.org/citation.cfm?doid=237170.237244

68

[47] I. A. Şucan, M. Moll, and L. E. Kavraki. “The Open Motion Planning Library”. In: IEEE
Robotics & Automation Magazine 19.4 (2012). https://ompl.kavrakilab.org, pp. 72–82. doi:
10.1109/MRA.2012.2205651.

[48] M. Moll, I. A. Şucan, and L. E. Kavraki. “Benchmarking Motion Planning Algorithms: An
Extensible Infrastructure for Analysis and Visualization”. In: IEEE Robotics & Automation
Magazine 22.3 (2015), pp. 96–102. doi: 10.1109/MRA.2015.2448276.

[49] J. Bezanson et al. “Julia: A fresh approach to numerical computing”. In: SIAM Review 59.1
(2017), pp. 65–98. doi: 10.1137/141000671. url: https://epubs.siam.org/doi/10.1137/
141000671.

[50] D. Hsu, J.-C. Latombe, and R. Motwani. “Path planning in expansive configuration spaces”. In:
Proceedings of International Conference on Robotics and Automation. Vol. 3. 1997, 2719–2726
vol.3. doi: 10.1109/ROBOT.1997.619371.

[51] I. A. Şucan and L. E. Kavraki. “Kinodynamic Motion Planning by Interior-Exterior Cell Ex-
ploration”. In: Algorithmic Foundation of Robotics VIII: Selected Contributions of the Eight
International Workshop on the Algorithmic Foundations of Robotics. Ed. by G. S. Chirikjian et
al. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010, pp. 449–464. isbn: 978-3-642-00312-7.
doi: 10.1007/978-3-642-00312-7 28. url: https://doi.org/10.1007/978-3-642-00312-7 28.

[52] R. Bohlin and L.E. Kavraki. “Path planning using lazy PRM”. In: Proceedings 2000 ICRA.
Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia
Proceedings (Cat. No.00CH37065). Vol. 1. 2000, 521–528 vol.1. doi: 10.1109/ROBOT.2000.
844107.

[53] R. Bohlin and L. E. Kavraki. “A Randomized Algorithm for Robot Path Planning Based on
Lazy Evaluation”. In: Handbook on Randomized Computing. Kluwer Academic Publishers, 2001,
pp. 221–249.

[54] G. Sanchez-Ante and J.-C. Latombe. “A Single-Query Bi-Directional Probabilistic Roadmap
Planner with Lazy Collision Checking”. In: Jan. 2001, pp. 403–417.

[55] B. Gipson, M. Moll, and L. E. Kavraki. “Resolution Independent Density Estimation for motion
planning in high-dimensional spaces”. In: 2013 IEEE International Conference on Robotics and
Automation. 2013, pp. 2437–2443. doi: 10.1109/ICRA.2013.6630908.

[56] M. Innes et al. “Fashionable Modelling with Flux”. In: CoRR abs/1811.01457 (2018). arXiv:
1811.01457. url: https://arxiv.org/abs/1811.01457.

[57] M. Innes. “Flux: Elegant Machine Learning with Julia”. In: Journal of Open Source Software
(2018). doi: 10.21105/joss.00602.

CTU in Prague Department of Circuit Theory

https://ompl.kavrakilab.org
https://doi.org/10.1109/MRA.2012.2205651
https://doi.org/10.1109/MRA.2015.2448276
https://doi.org/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://epubs.siam.org/doi/10.1137/141000671
https://doi.org/10.1109/ROBOT.1997.619371
https://doi.org/10.1007/978-3-642-00312-7_28
https://doi.org/10.1007/978-3-642-00312-7_28
https://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.1109/ROBOT.2000.844107
https://doi.org/10.1109/ICRA.2013.6630908
https://arxiv.org/abs/1811.01457
https://arxiv.org/abs/1811.01457
https://doi.org/10.21105/joss.00602

	Introduction
	Motion planning
	Motivation
	Goals
	Outline

	Problem definition
	Motion planning
	Random sampling methods

	Machine learning
	Protein docking

	Related work
	Probabilistic Roadmaps
	RRT
	Bidirectional RRT
	Adaptive DD_RRT
	Guided RRT
	BiLSTM-PSO-GDRRT*
	Analysis
	Comparison with proposed methods

	Utilized methods
	Particle swarm optimization
	Parzen window estimation
	Neural network

	Proposed solutions
	Modifications and specifications
	Impact points
	Probe

	Adaptive sampling distribution methods
	PSO-RRT
	Slide-RRT

	Precomputed distribution sampling methods
	Parzen-RRT
	Jump-RRT

	Impact point translation methods
	NN-RRT
	Pop-RRT
	Summary

	Benchmarking environments
	Dense environment
	Complex environment
	Simple environment
	Protein environment

	Benchmarking results
	Technical specifications
	Used parameters
	Open Motion Planning Library benchmark
	Dense environment
	Complex environment
	Simple environment

	Protein docking benchmark
	Molecule 1BN7
	Molecule 1MAH
	Molecule 1TCC

	Summary

	Conclusion
	Appendix
	Pop+Jump-RRT
	Performance with precomputed paths
	Parameter influence
	Optimizing paths

	BiLSTM-PSO-GDRRT* comparison with proposed methods
	Network training

	Attachments
	References

