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Abstract

Obtaining of overnight recordings from
deep brain stimulation is a new source of
unique data. The relation between mo-
tor activity in sleep in patients suffering
from Parkinson’s disease and neural elec-
tric activity in nucleus subthalamicus is a
trending research topic.

This thesis examines the relation be-
tween parallel overnight recordings of elec-
tromyography and neuronal activity and
neuronal activity, and their relation in
individual sleep stages. The chosen meth-
ods are burst detection in neuronal ac-
tivity in beta frequency band (13-33 Hz),
detection of synchronised activity in elec-
tromyographic channels and subsequent
parallel analysis of the individual events.

We found presence of bursts in the
times of increase in electromyographic ac-
tivity and specific electromyographic chan-
nels affected in different sleep stages.

All the data processing and analysis
methods are implemented in the form soft-
ware for Matlab.

Keywords: Deep brain stimulation,
nucleus subthalamicus, Parkinson’s
disease, sleep, motor activity,
electromyography, polysomnography,
local field potentials

iv

Abstrakt

Moznost pofizovani celonoc¢nich zdznamu
z hluboké mozkové stimulace je zalezitosti
poslednich nékolika let a poskytuje tedy
unikatni data. Vztah motorické aktivity ve
spanku u pacientt s Parkinsnovou nemoci
a neuralni elektrické aktivity v subthala-
mickém jadre je stéle zdaleka nevycerpané
téma.

Tato prace zkouma celonoc¢ni paralelni
elektromyografické a neuralni nahravky a
hleda mezi nimi spojitost a pripadnou spe-
cifickou vazbu na ruzné spankova stadia.
Jako metody voli detekci salv v aktivité v
nucleus subthalamicus na beta frekvenci
(13-33 Hz), detekei synchronni aktivity v
elektromyografickych kandalech a nasled-
nou paralelni analyzu jednotlivych uda-
losti.

Vysledkem je pak nélez vyskytu salv
v Casech zvysujici se elektromyografické
aktivity a ovlivnéni rozdilnych elektromy-
ografickych kanala v riznych spankovych
stadiich.

Veskeré zpracovani dat a analyzacni me-
tody jsou zpracovany jako softwarovy na-
stroj v Matlabu.

Klicova slova: Hluboka mozkova
stimulace, subthalamické jadro,
Parkinsonova nemoc, spanek, motoricka
aktivita, elektromyografie,
polysomnografie, lokalni potencialova
pole

P¥eklad nazvu: Analyza celonocnich
elektrofyziologickych zaznamu z hluboké
mozkové stimulace
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Chapter 1

Introduction

Deep brain stimualion (DBS) is a way of treatment for patients suffering from
Parkinson’s disease (PD). It consists in implanting wires into brain. Tips of
these wires serve as electrodes that can stimulate a small portion of brain
around them. This modality is used to block pathological activity. New DBS
devices have also the option to record local potential. In this thesis I discuss
analysis of such recordings in relation to motor activity during different sleep
stages.

. Motivation

Current research in DBS is focused on developing adaptive close loop systems
that would increase the efficiency of stimulation and battery usage. Local
field potential (LFP) recording option in neurostimulators is a fairly recent
feature and analysed recordings are usually of tens of minutes in length.
This makes our overnight 7 hours long recordings very rare and gives this
project’s results potential to contribute to future implementation of real time
symptom-specific adaptive software, which would ease patients from having
to switch between stimulating regimes and setting up stimulating parameters

.

[ Objectives

1. Familiarize yourself with the treatment of Parkinson’s disease (PD) us-
ing deep brain stimulation (DBS), and the electrophysiological signals
recorded overnight from PD patients treated with DBS: local field poten-
tials (LFP) from DBS electrodes and parallel polysomnography (PSG)
signals.

2. Explore LFP and PSG recordings, identify segments suitable for further
analysis, and preprocess them, if necessary. Visualize the signals in time
and frequency domains with respect to the progression of the patients’
sleep.
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3. Estimate the relation between LFP and patients’ motor activity. Decide
if the is specific to different sleep stages.

4. Implement the methods used in steps 2 and 3 in the form of well-
documented Matlab functions.



Chapter 2
Medical Background

. 2.1 Introduction

Deep brain stimulation as a way of treatment of Parkinson’s disease is still
a relatively young approach. Even though first attempts to electrically
stimulate the central nervous system can be dated as far as 70 years back,
its widespread clinical use can be seen only in the last 10-15 years. In these
years huge advancements in electrode construction and battery life were key
for subsequent progress of clinical knowledge [1].

Figure 2.1: Tllustration of implanted DBS device, note 3 main parts, battery and
wires implanted under the patient’s skin and stimulation electrode implanted
into the patient’s brain [2].



2. Medical Background

. 2.2 Parkinson’s disease

Parkinson’s disease is a chronic neurological disorder with mostly motor
symptoms. It’s worldwide prevalence is increasing faster than any other
neurological disorder. Between 1990 and 2016 the prevalence increased 2.4
times. Peak prevalence age of PS is around 87 with PS occurring very rarely
in patients under 50 years. PD is usually diagnosed when motor symptoms
such as bradykinesia, rigidity, rest tremor and postural instability occur.
Non motor symptoms include loss of smell, sleep dysfunction and psychiatric
disturbances such as depression and dementia.

B 2.2.1 Pathophysiology

Parkinson’s disease is characterised by the death of dopaminergic neurons
due to intraneuronal inclusions of protein aggregations. These inculions are
called Lewi bodies and consist of a-synuclein. Therefore we can see PS as a
metabolism deviation. Other neurotransmitter systems such as acetylcholin
and serotonin systems are affected as well and can not be affected by dopamine
substitution therapy. Degenerative changes start in medulla oblongata and
bulbus olfactorius which causes early non motor symptoms such as loss of
smell. Later affected area is substantia nigra pars compacta (SNc¢), which is
a part of basal ganglia and its down-production of dopamine causes motor
symptoms. Nucleus subthalamicus (STN) is a brain gray matter structure
that is hugely affected by dopamine deficiency, degeneration of SNc¢ causes
forming of pathological activity in STN that is related to motor symptoms,
especially bradykinesia and rigidity. Last symptoms are cognitive, they occur
with cortex degeneration [3], [4].

B 22.2 Treatment

All therapy that is available is symptomatic. Future medication, that targets
metabolic pathways and prevents from inclusion forming is still not accessible.
The core of toady’s therapy is dopamine substitution which helps mostly with
motor symptoms, but it also affects psychiatric symptoms. If the patient
is resistant to dopamine therapy, or a wear off effect is present, then DBS
is a method of choice. Also comorbidities, mobility, compliance and life
expectancy are important criteria. Therefore DBS is a therapeutic option
that is used in younger patients with well documented and defined PD and
its symptoms [3].

B 23 Deep Brain Stimulation

Basic principle of DBS is delivering electric impulses to focal brain region.
DBS is an invasive therapeutic option, which requires neurosurgical implan-
tation of electrodes to a very specific location. Precision is achieved by
electrophysiological and stereotactical guidance. Neurological programming

6



2.3. Deep Brain Stimulation

and regular neurological checkups done by neurologist specialised in invasive
neurology follow after the surgery. There are two paths of improving effective-
ness of stimulation, first is electrode engineering and the other are adaptive
stimulating algorithms using real time sensing of local activity [1], [5].

B 2.3.1 Construction

Neurostimulator consists of two main components a battery which is implanted
in a subcutaneous pouch under right clavicle and two stimulating electrodes,
which are implanted into the brain and connected by a subcutaneous wiring
to the battery. Battery life improvement was a huge milestone. It enabled
other hardware and later software research to be done. Also thanks to
modern neurostimulators lasting more than 5 years without changing battery
and therefore preventing from frequent small surgical procedures, it is a
huge benefit for the patient’s comfort. No official standard is condensed,
but representative stimulating electrode is 1.27 mm in diameter and has 4
stimulating circular contacts distanced about 1 mm from each other in the
long axis of the electrode. These contacts are radially divided into 3 sub-
parts, that can be controlled individually [I]. The layout is called "directional
electrode" and it enables neurologist to arrange stimulating electric field in all
3 space dimensions to achieve best possible clinical effect. But the direction
of the electric field is only a secondary positional adjustment, most of the
targeting is done during implantation.

Figure 2.2: Image on the left shows construction of a neurostimulator, wires
connect the battery and the electrodes [6]. Image on the left is a scheme of
possible contact arrangement of stimulating electordes. [I] Blue object with
yellow center is the expected volume of activated tissue (VAT), see in 2.3.4
Programming.
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B 2.3.2 Biocompatibility

Implantation of electrodes, subcutaneous battery and wiring can cause in-
fection and local foreign body reaction. But only in case of the electrodes it
can affect the quality of stimulation. Infection can occur days or weeks after
surgery and is taken care of by neurosurgeons. Electrodes can be made of
platinium-iridium wires and nickle alloy contact are encased in polyurethane
sheath as described in literature [I], but no universal standard is present.
After implantation an interface between the electrode and the brain tissue
develops. The interface changes in time because of oedema and glial reaction.
The oedema forms shortly after implantation and lasts for weeks. The glial
reaction causes changes in order of months. Also matrix proteins and ionic
interactions with electrodes play a role in local impedance. It is not unusual
that electrodes can lose functionality of one or more contacts, fortunately it
is usually not crucial for the therapeutic effect.

B 23.3 Sensing

New advanced electrodes are capable of sensing local field potentials (LFP).
The LFP signal comes mostly from action potentials of the local population
of neurons [7]. Because of the periodical nature of the neuronal signal,
the most important information about firing activity is the frequency and
amplitude. Compared to other methods of recording electric activity in the
brain (electroencephalogram (EEG) or even to electrocorticogram (EcoG))
LFP gives much more precise but also very spatially localised information.
The sensing capacity never serves as an indication for electrode implanting

[8].

B 2.3.4 Programming

There is a great variability in possible stimulating settings [1]. Besides the
above mentioned 3D electric field setting, which changes the volume of tissue
activated (VAT) - VAT is a 3D representations of the shape of the current
electric field 2.2, also the frequency (around 100 Hz used) and the amplitude
(usually around 3 mA) can be specified. Neurologists can also choose between
constant current and constant voltage setting, but due to better stimulating
consistency with constant current most patient have this set up. Due to
inconsistent nature of PD symptoms during the day, during different activities
and simultaneous use of medication, there is a need for stimulation that adapts
to ongoing situation. One solution that is used today consists of patient
manually switching between 2 or more regimes dedicated to specific activities
and also manually increasing or decreasing stimulating current amplitude
- within limits set by the neurologist. Adaptive and close-loop stimulation
based on real time sensing and feedback to bodily movement would greatly
improve the overall effect but it is still in development and is not used in
patients.



2.4. Sleep stages

B 24 Sleep stages

Sleep is a vitally important state of body which is crucial for resting and
regeneration of the nervous system as well as almost every other system and
tissue in the human body. The sleep is a cyclic phenomenon with a period of
one day. It consists of 2 main stages. For one of them rapid eye movement
is typical and gives it its name - REM (rapid eye movement). The other
is non-REM (NREM) which is further divided into 3 categories. The time
structure of sleep has periodic character as well. It cycles through its phases
about 5 times with each period having the same phases only with different
duration. With each cycle REM stage gets longer at the expense of the other
stages. The quality of sleep has a huge influence on the human health but it
is also influenced by many neurological (PD) and other medical conditions
as well as medication and aging. One of the conditions that is common and
heavily affects the quality of the sleep is sleep apnea - a condition in which a
lack of breath forces patient to wake up many times at night.

B Description of sleep stages

1. NO or SO - Wake/Alert is the first stage of every sleep recording. The
EEG recorded in this stage demonstrates dominant beta waves (13-30
Hz) when eyes are opened. When eyes are closed and the patient is
getting drowsy, alpha waves (8-12 Hz) become dominant.

2. N1 or S1 - While patient is in Light sleep, skeletal muscle tone is present
and theta waves (4-7 Hz) are characteristic. This stage usually lasts
from 1 to 5 minutes.

3. N2 or S2 - Deeper sleep lasts about 25 minutes and it is the longest sleep
stage. Long delta waves are characteristic (0.5-4 Hz) and the muscle
tone is decreasing.

4. N3 or S3 - Deepest non-REM sleep, this phase is dedicated to resting
and regeneration and also has the highest threshold for awakening. Delta
waves with low amplitude are characteristic, the muscle tone is even
lower compared to the previous stage.

5. REM - For REM, beta waves are characteristic, all muscles except for
muscles in the eye socket are atonic. The first cycle lasts about 10
minutest, each following cycle gets longer and the 5th cycle lasts about 1
hour. [9].

B 2.4.1 Parkinson’s disease and sleep

Sleep disturbances are numerous in patients with PD, about 70% of them
suffer from some sleep problem. Compared to healthy people, PD patients
have shorter and more fragmented sleep [10].

9



2. Medical Background

B REM sleep disorder

Some medical conditions including PD can lead to disruption of the atonic
state. It can manifest itself only with EMG-registered muscle movements but
also with acting out dreams through complex movements or vocal expressions.

B Destroyed sleep architecture

The sleep apnea is known to destroy sleep architecture by making the patient
wake up many times during the night and therefore not letting him to advance
to deeper stages and stay in them. Also, spontaneous arousals (wake up
reactions) are more frequent in PD patients [10].

B Restless leg syndrome

Higher prevalence than in normal population, makes this syndrome one of
possible causes for late onset of sleep [10].

B Nocturnal limb dystonia

Nocturnal limb dystonia is a painful limb increased tonus, which can occur
as an off symptom (blood level of medication lowers).

B Tremor

Termor usually ceases in S1 or its amplitude is decreased.

Il Other motor abnormalities

Increased muscle tone, blinking and even complex movements can occur

during the onset of REM stages. Prolonged tonic contractions can be seen
during NREM. [10]

B 25 Polysomnography

Polysomnography (PSG) is diagnostic tool in sleep medicine. it includes
continuous recording of multiple parameters during sleep. For the purpose
of this thesis only EMG channels were used. Other channels include ECG,
oxygenation, eye muscle EMG, breathing and video recording.

10



Chapter 3
Data

For the analysis we used two sources of signals. First one was DBS sensing
and the other were certain EMG channels from PSG. Both of the signals were
recorder over night while the patients were sleeping. The recordings were
approximately 8 hours long.

B 31 Gathering of the data

A patient suffering from PD was invited for one night to a sleep laboratory.
PSG was done by a nurse and DBS recording was done by me (6 patients)
or another technical worker. After connecting the communication device to
the neurostimulator it was necessary to tap the monitor every 40 minutes to
prevent it from aborting the data stream. Another inconvenience was that
after 4 hours of recording we had to end the streaming session, disconnect
the communication device and restart recording. This was due to the limited
capacity of the communication device to hold data before saving them into
files.

B 3.1.1 Hardware

DBS recording setup included Percept™ PC neurostimulator with Brain-
Sense™ technology, a small communicator, that wirelessly received LFP data
from the the neurostimulator, created a data stream and send it via Bluetooth
to a tablet, where the data was saved into JSON files. [I1], [g].

B 32 DBS recordings

We expected to see artefacts from DBS stimulation, which had the frequency of
130 Hz. It was planned to synchronise both recordings by abruptly decreasing
the stimulation to 0 mA and then immediately increasing the stimulation
back to its former value. But the technique proved wrong, because it was not
possible to detect the artefacts in EEG. So this method of synchronisation
failed and we had to rely on the time of creation of the files. But there was
another problem, now in the DBS communication device, in most cases the

11



3. Data

internal time of the device was wrong. This left us with usable recordings
from only 2 patients for the thesis out of 20 (6 of them were recorded by me).

B 3.2.1 Preprossessing the raw data from DBS recordings

Recordings were saved in JSON format, which contained a large structure of
data. One 8 hour recording was stored in about 2 to 3 JSON files. I used
only the "BrainSenseTimeDomain" (BSTD) record type, which referred to
the raw voltage data recorded by the neurostimulator. and "BranSenseLFP"
(BSLEP) record type, which referred to the power of the frequency of interest
that was set by a neurologist as the marker of pathological activity in the
STN, this frequency was unknown to me.

Bl BSTD

BSTD had the sampling frequency of 250 Hz. BSTD was streamed in the
form of packets that usually contained 62 or 63 samples. I observed that some
(less than 5) packets were missing in almost every JSON file. To prevent frame
shift, I filled the missing packets with NaN values. To create spectrograms
in Matlab I chose to replace NaN values with the average non-NaN value of
the analysed segment. Other packets were missing during pauses inbetween
JSON files. Another difficulty were huge peaks in both right and left BSTD
of Patient 1 see in figure 3.1l Fortunately, the recordings of the sleep stages
of our interest did not contain any of peaks.

Right BSTD Patient 1

—_

Amplitude [a.u.]
o

_1 Il 1 1 1 1 Il 1 1 1
20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00

Time [HH:mm]
Right BSTD Patient 2

[y

— BSTD
Miss.
samp.

o
T

Amplitude [a.u.]

-1t 1 I I 1 1 | I I 1 ]
20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00
Time [HH:mm]

Figure 3.1: BSTD signals from the stimulating electrode in the right hemisphere
from both patients. . Huge peaks of LFP in Patient 1 are artifacts. Detail at
magenta highlighted time in figure and spectrogram in figure
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Figure 3.2: Detail of Right BSTD signal of Patient 1 with missing samples. Full
signal in figure [3.1
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Figure 3.3: Detail spectrogram of right BSTD of Patient 1 in Full signal in
[3:1L We can see red lines on 13 Hz and 33 Hz, that delimit beta frequency band.
I focused on this frequency band wit my analysis.

B 3.2.2 Pathological Beta

According to prof. MUDr. Robert Jech, PhD., lower beta (13-33 Hz) activity
in STN is a reliable marker of pathological activity, and when STN is free
from the beta, then the patient is free from the PD symptoms. I found
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3. Data

this information also in literature [12], [I3]. In spectrogram we see the
frequency range that is most likely to cause sleep motor disruptions: 13-33
Hz. We can also observe high power of DBS stimulation (130 Hz), that is
aliased on 120 Hz and a gap in data caused by the missing values in BSTD.

Il BSLFP

BSLFP had the sampling frequency of 2 Hz and had no missing samples, see

in figure The relatively lower sapling frequency was due to averaging
done by the device over unknown window of time.

Right BSLFP Patient 1

| LM{LJI 7

0
20:00 21:00 22:00 23:00 00:00 01:00 02:00 03:00 04:00 05:00 06:00
Time [HH:mm]

—
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o
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Detail of right BSLFP Patient 1

o
o
a
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02:17:26 02:17:28 02:17:30 02:17:32 02:17:34
Time [HH:mm:ss]

Figure 3.4: Right BSLFP of Patient 1, detail at magenta highlighted time.

B 33 EMG recordings

Recordings were saved in EDF data format. The sampling frequency was 200
Hz. No values were missing. We used only EMG channels of the chin and
legs. The chin had 3 electrodes on it, anterior, left and right. Each leg had
one electrode detecting action potentials in musculus tibialis anterior.
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Figure 3.5: All EMG channels of Patient 1, motor activity in all channels at
04:36:15.

Spectrogram right leg Patient 1
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Figure 3.6: Spectrogram of EMG channel left leg Patient 1 shows no specific
frequency related to motor activity.

While observing spectrogram of EMG channels I did not find any specific
frequency related to the motor activity, example of motor activity in EMG
and spectrogram Therefore I decided to find motor activity in EMG
in time domain.
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3. Data

B 34 Sleep and motor activity annotation from
expert

We were provided with sleep stages annotation and in case of one patient also
with movement activity annotation done by a neurologist. It had the form of
a table in TXT format. To be sure, that annotated segment are not disrupted
by the activity from different sleep stage, we had to crop 10 minutes in the
beginning and at the end of the segment.
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Chapter 4
Methods

Introduction of the main methods, that were used to process and visualise the
signals and to find connection between motor and LFP activity in different
sleep stages.

B 4.1 Fourier analysis

Fourier analysis is a mathematical approach, that is based on decomposing
any function into a sum of sinusoids with complex coefficients. Each of these
sinusoids has a different oscillation frequency. We can assume on what kind
of information is represented in each sinsoid based on its frequency. Low
frequencies hold most prominent contours whereas high frequencies hold
information about detail contours of the function. In case of frequency of
0 Hz the sinusoid hold information about constant shift on y axis equal to
the coefficient of the sinusoid. The set of coefficients is called spectrum, it
holds information about how much are different frequencies represented in
the analysed function and about the phase shift of each frequency.

Summed potentials from neuronal populations recorded over meaningfully
long period of time tend to have periodical nature. Our data is no exception
and given the information about pathological beta in subsection we
can assume, that frequency analysis is a good approach for fulfilling the goal
of this thesis.

B 4.1.1 Discrete Fourier transform DFT

Discrete Fourier transform is a way to compute the coefficients of sinusouids
for a discrete finite signal. Therefore is widely used in digital signal analysis
and a suitable method for our data (BSTD).

-2mnk

N-1
X[k => z(n)e? 5 ke (0,N-1) (4.1)
n=0

Equation describes DFT, X[k] is a discrete spectrum, N is number of
samples of the original signal, x(n) are samples of the original signal.
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4. Methods

27Tnk

1 N—
=< Z ne(0,N—1) (4.2)

Equation describes an inverse discrete Fourier transform (DFTINV),
which is a way of reconstructing discrete finite signal from discrete finite
spectrum. x(n) is a a reconstructed discrete signal, N is number of samples of
the discrete spectrum, X[k] are coefficients of the sinusoids (discrete spectrum).

B 4.1.2 Fast Fourier transform FFT

Is on of the most important algorithms in digital signal processing. It has
been published in 1965 and has been heavily used in signal analysis since then.
It introduced fast reliable algorithm, that has been implemented, among
many others, into MATLAB. Time complexity of FFT is O(Nlog N) and
time complexitiy of DFT is O(N?), where N is number of analysed samples.

B a2 Spectrogram

Spectrogram is a convenient tool for observing frequency changes in time. It
is widely used in signal analysis and relies on FFT.

Spectrogram
100 e g
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™
. <
I -60 3
= 60 N
> o
o -80 §
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(0]
g 4o -100 §
. g
120 &
20
-140
O
400 600 1000
Time (ms)

Figure 4.1: Example of spectrogram of signal sin(10 - 27t), see in figure no
overlap, time window is 100 ms (20 samples). We can see a high power band
around 10 Hz.
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4.2. Spectrogram
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Figure 4.2: Example of signal sin(10 - 27t) for spectrogram, the frequency of
the signal is 10 Hz, the sampling frequency is 200 Hz.

B 4.2.1 Principle

Signal is split into segments of beforehand specified duration. On each segment
is applied FFT. This provides us with an 2 dimensional array, where one axis
represents time segments and the other corresponding spectrum. Spectres get
usually squared to obtain power and for highlighting differences in absolute
coefficient values.

Both time and frequency axis are discrete and we have the option of setting
parameters of frequency and time to affect resolution in both dimensions.
But we are limited by uncertainty principle, higher resolution in one aspect
is at cost of the resolution in the other one.

B Frequency axis

Frequency axis can be influenced by 2 parameters, sampling frequency and
length of the segment of the signal. Because of Nycquisg - Shannon sampling
theorem we can represent on spectrogram only frequencies, that are at least
twice lower than the sampling frequency.

fs
2

The longer the segment of the signal is the better frequency resolution we
get. It is due to the equation which states, that more signal samples
mean more spectrum samples. But there is a method to increase frequency
resolution without setting wider time window, it consists in extending each
segment with nulls. This operation results in "inserted" samples into the
spectrum.

Jmaz < (4.3)
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4. Methods

Another way to increase information value is to apply Hamming window on
each segment, which decreases weight of samples on the edges of the segment.

We have also the option to use spectrogram for extracting certain frequen-
cies. Then we are provided with power of the signal in the specified frequency
band.

B Time axis

Time axis resolution can be increased by the length of the segment. Also
implementing overlap in the signal segments can increase time resolution, but
lowers the differences in amplitude between each segment.

B 43 EMG activity

My approach to define what is a motor event was based on both my observa-
tions of the signals and on annotations provided by neurologist. Unfortunately
the annotations form neurologist were not completely covering the whole
recording. Because the amplitude of EMG signals can be either positive and
negative, but both mean motor activity, I applied square on the signals.

EMG movement anotation

T
EMG
Movmean of power
- XM X Antotation -

I'Ight ___wmwr‘r " 'W“’WMWMMWWH‘_

leg

left
leg

e —y
chin

left
chin

-

anterior
chin

22:55 22:56 22:57 22:58 22:59 23:00
Time [HH:mm]

Figure 4.3: Example of EMG event annotation, moving average is computed
from symmetrical 30 sample wide window

In the figure 4.3, we can see that some annotated events do not need to
match with high power activity in EMG. I could see the same arrangement of
activity in multiple channels of EMG and annotation from neurologist nearby
on many occasions. Multiple annotations meant longer duration.
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4.4. LFP activity

B Definition of EMG event

I decided to define motor event as an activity, that ocures in all chin channels
and at least in one leg channel and beginning of all motor activities are within
5 seconds from each other.

B 24 LFP activity

As discussed in beta band of 13-33 Hz is most likely to be associated
with pathological motor activity. Based on this I extracted beta band from
spectrogram. This provided me with power in beta frequency of the original
BSTD signal. I divided the signal into 2 bands:

8 Upper beta: 21-33 Hz

® Lower beta: 13-21 Hz

To define what is an event in beta, I got inspired from literature [14].

A

Hypothesis 1: Elevated beta burst activity in PD

Prolonged higher-amplitude beta bursts
from normal to PD states

Filtered LFP & envelope Normal Mild PD Modte PD

... Beta burst detection
threshold

— Normal
e Mild PD
== Moderate PD

Figure 4.4: Inspiration on beta activity interpretation [14]

My definition of event is based on, that the activity in STN has burst-like
character. It means, that solitary peak has no effect, but cumulation of peaks
with short time distances between then can cause pathological motor activity.
To represent such nature of the power in beta band I used moving average,
to be precise I used moving average twice with 50 samples wide symmetrical
window.
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Figure 4.5: Example of right beta 13-33 Hz power Patient 1 and moving
mean with symmetrical window 50 samples wide, applied twice. Movmean
normalised refers to dividing the movmean signal with its largest values in
analysed segment.

B 45 Activity detection

There are many ways of detecting activity. One that comes to mind is
detecting peaks in a signal. A peak can be detected multiple in ways with
each having its benefits and downsides.

First method than came to mind was to decide, if current sample is peak
or not, based on percentile of its value related to the whole signal or analysed
segment. This method can work well for signal, that does not change basal
activity over time. In my case both EMG and LFP beta power changed
basal activity. So I chose the option to compare each sample to its local
neighborhood.

Also comparing samples to their neighborhood can be done in multiple
ways. I chose to set the time window only before the analysed sample. This
approach has one important aspect, that is very beneficial for my data. It
detects increases in amplitude. It means, that even if the analysed sample has
lower than average value in symmetrical time window around it, the sample
can still be detected.

To make the test more robust I added, that the detected sample has to
be higher than moving average increased by a variable number of standard
deviations of the moving set. The number of standard deviations was set for
EMG and LFP beta power separately.

X[n] > average(X[n —w,... ,n]) + k- std(X[n —w,... ,n])  (4.4)

X [n] is current analysed sample, w is number of samples in the time window
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4.6. Statistics

before analysed sample, k is number of standard deviations, std is standard
deviation. The Truth is, that this method does not detect a real peak, but a
beginning of the peak.

Detection of beginning of peak
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Figure 4.6: Example of detection of the beginning of peaks, referential time
window is set to 1 s, averaging window is symmetrical and 30 samples wide and
sampling frequency of the signal is 20 Hz.

After observing the signals and possible events I found out, that events are
usually solitary in time and consist of a lot of peaks. Therefore only detecting
peaks would lead to detection of excessive number of false events. This finding
led me to applying moving average, which caused visual smoothing of the
signal and the new curve hovered over the low values in between peaks.

Another conclusion I made after observing the signals was, that the events
have variable length, and not always have the highest amplitude in the
beginning. Based on this finding I decided to detect the beginnings of peaks
instead of real local peaks, I expected the parallel modality to have a linkage
rather to the beginning of the peaks than to the highest value. I also added,
that peaks can not repeat for certain amount of time.

. 4.6 Statistics

B 4.6.1 Normal distribution

Normal distribution is one of the most important models of nature in statistics
and probability. It can be observed almost everywhere and also is used in
almost every field of engineering. It serves as one of the most important
standards of what we should expect from the distribution of measured data.
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f(x) is probability density function, o is sample variance, p is sample mean.
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Figure 4.7: Example of normalised normal distribution and p value.

B Scaling

Sometimes scaling needs to be performed to make the distribution of measured
data closer to the normal distribution.
Functions I used to to scale the data:

= log(x)

= log(log(x))

B square root

B 4.6.2 Hypothesis testing

At the beginning of hypothesis testing we specify the alternative hypothesis,
which is the proclamation which we want to prove. Then we specify the null
hypothesis, so that it is a negation of alternative hypothesis. When the null
hypothesis is rejected, we accept the alternative hypothesis. When the null
hypothesis is not rejected, we reject the alternative hypothesis.

To decide if we reject the null hypothesis we use statistical tests. Based on
our decision there can be 2 types of error:

8 Type I error: the tested null hypothesis is true, but we reject the null
hypothesis

m Type II error: the tested null hypothesis is false, but failed to reject it
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4.7. Layering

B 4.6.3 Significance level

Significance level, is a value belonging to interval (0, 1). It sets the limits of
how strict we are when finding arguments, that go against our null hypothesis.
With increasing significance level we increase the chance of type I error, with
decreasing significance level we increase the chance of type II error.

B 4.6.4 P-value

P-value belongs to interval (0,1). It is the largest significance level for which
our test rejects the null hypothesis and accepts the alternative hypothesis. If
the p-value is smaller than the significance level we set, then we decide to
reject the null hypothesis in favour of the alternative hypothesis.

B 4.6.5 T-test

T-test is a statistical test, that uses Student’s distribution to decide, if sample
mean of our data X is equal to mean .

:X—Mo

T
0 S,

vn (4.6)

X is sample mean of the tested data, g is mean towards which we test our
hypothesis, 5, is sample standard deviation of the tested data, n is number
of samples. To obtain valid decision from applying the t-test, we need the
distribution of analysed data to be close to normal distribution. Based on
what is the percentile of the T values in Student’s distribution, we decide on,
if we reject our null hypothesis.

In my thesis I used t-test to decide, if the mean of samples in a given
time is equal to the mean across of the whole segment. I set the alternative
hypothesis, so that mean value of signals in given time is not equal to uyg.

. 4.7 Layering

This method is used when we want to compare same length segments of the
same signal and to observe if the segments contain some common pattern.
We need a set of time events, around which we create the segments. The
time events can come from the analysed signal, for example when we want to
see, if there is some similarity in peak shape. Or the events can come from
another signal, in this case we are observing, if there is a linkage between the
signals.

So to realise such visualisation we need to create a 2D array, that contains
all the segments around events. Then we create average segment. This
gives us basic idea of the shape of the patterns, if there are any. To differ
significant and insignificant increases and decreases, we use a statistical tests,
for example t-test. But at first we need to subtract the average value of all
the segments from each sample in the 2D array, this way we set the whole
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segment average to 0. Then we calculate the t-test on each column of our 2D
array, in other words we apply it on each set of samples from the given time.

Layers of 10 random signal segments
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Figure 4.8: Example of layering of segments of signal. T-test was applied with
different significance levels.

The same can be done with the whole spectrogram. To highlight where the
deviation is significant we can use the t-test too. Only difficulty is in creating
3D array, because spectrogram of a single segment is already is a 2D array.
Then for visualisation of significant increases and decreases we can plot only
the values in which we reject the null hypothesis.
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Chapter 5

Results

Most of my result are visual to easily demonstrate region of significant changes
of amplitude of the signal in time. To fulfill this task the detecting methods
are crucial for obtaining relevant results.

B 51 LFP activity detection

I did not know, how high the amplitude of burst should be and I did not want
to miss any bursts. Because of this I tried to detect almost every visually
notable burst. To achieve it I set the following parameters:

8 Time window for calculation of local average before each sample: 10 s.

® Time window of forbidden sample detection after each detected beginning
of peak: 1 s.

® Number of standard deviation added to local average: 1.

For more parameter description see section

In the figure 5.1 we can see two detected bursts. The second one is the
ideal burst, that I would like my method to detect. But in the case of the
first peak the detection could be rightfully doubted.
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1 Right beta 13-33 Hz power Patient 1
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Figure 5.1: Example of results of my LFP beta power activity detecting method,
referential window is 10 second before each sample.

. 5.2 EMG event detection

I tried to detect only the most pronounced EMG activities. To achieve that,
I focused more on the actual relative increase in amplitude of each channel
than on synchronisation. The setting of parameters for obtaining my results:

® Time window for calculation of local average before each sample: 30 s.

® Time window of forbidden sample detection after each detected beginning
of peak: 3 s.

® Number of standard deviation added to local average: 5.

® Tolerance of time distance between two detected samples: 5 s.

For more parameter description see section 4.5
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5.3. Sleep stages summary

EMG movement detection
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Figure 5.2: Example of results of my EMG event detecting method.

In the figure we can see one perfect example of the functionality at
22:56:20. EMG activity is detected in each channel and the EMG event is set,
so that it marks the beginning of all EMG channel activities. In the case of
detection at 22:59:50 the activity is registered in all the chin EMG channels,
in the left leg EMG channel is correctly not registered, but the registration
in the right leg EMG channel is questionable.

B 53 Sleep stages summary

Bl 5.3.1 Hypnograms

To see what sleep stages are available I created a hypnogram for each patient.

Hypnogram of Patient 1
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Figure 5.3: Hypnogram of Patient 1, we can see mostly segments of constant
annotation, that are usually shorter than 30 minutes.
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B 5.3.2 Patientl

I possessed with only 3 usable sleep stages, because I had to accept only
the segments of sleep that had constant sleep stage annotation. So to get
a segment of 10 minutes in length, I had to find segment of 30 minutes in
length with constant stage annotation.

Sleep stage | S3 | REM #1 | REM #2

Duration [mm:ss] 05:29 17:25 11:59
PSG actions count 23 7 5
LFP burst count right (13-33 Hz) 30 89 13
LFP burst count left (13-33 Hz) 29 82 15
LFP burst count right (13-21 Hz) 27 84 19
LFP burst count left (13-21 Hz) 27 69 14
LFP burst count right (21-33 Hz) 22 38 9
LFP burst count left (21-33 Hz) 24 40 1

Average right LFP power(13-33 Hz) | 0.3169 0.4760 0.4809

Average left LEFP power(13-33 Hz) | 0.1515 0.2092 0.2591

Table 5.1: Summary of sleep stages Patient of 1.

Large amount of EMG events detected in S3 is caused by a limitation of
my EMG activity detection. I detected relative increases in amplitude, if the
amplitude on EMG channel was consistently very low in the whole segment,
I detected excessive number of increases.
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Figure 5.4: Boxplot showing average beta power for each sleep stage of Patient 1.

In figure we can see, that median power in beta frequency is higher in
both REM stages than in S3 stage.
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5.3. Sleep stages summary

B 5.3.3 Patient 2

Again with the Patient 2 i possessed with only 3 sleep stages from the same
reason as in case of Patient 1. In case of Patient 2 the absence of REM
stages was caused by continuous waking up reactions (this claim is based on
annotation from neurologist), which is one of the symptom of sleep disruption

in patients suffering from PD.

Sleep stage | S3 #1 | S2 | S3 #2
Duration [mm:ss| 10:28 | 03:55 | 19:29
PSG actions count 0 3 4
LFP burst count right (13-33 Hz) 54 21 104
LFP burst count left (13-33 Hz) 54 21 98
LFP burst count right( 13-21 Hz) 52 20 104
LFP burst count left (13-21 Hz) 57 23 99
LFP burst count right (21-33 Hz) 58 20 113
LFP burst count left (21-33 Hz) 59 23 111
Average right LFP power(13-33 Hz) | 1.5843 | 3.4073 | 3.1314
Average left LFP power(13-33 Hz) | 0.7623 | 1.9836 | 1.9380

Table 5.2: Summary of sleep stages of Patient 2.

Righlt beta pow. 13-33 Hz

Left‘ beta pow. 13-33 Hz

14} : 8l
121 ] 71 i
—10¢ 1 —6 i
3 3
S, T S5¢
3 81 : 1 3 ‘ !
+ | I | I
2 6l % | | 24 + 1 !
o i | o } !
S i ' } E3 ! .
o B B | < B B
l 2 1
2 i |
| I 1 I | i
- 1] = ]
0 £ -4 1 0, €1 1 1
S3 #1 S2 S3 #2 S3 #1 S2 S3 #2

Figure 5.5: Boxplot showing average beta power for each sleep stage of Patient 2.

In figure we can see, that the median of power in beta frequency of
S3 #1 stage is lower than in other stages. In table and in table we
can observe that, in the NREM sleep stages the LFP burst count does not
decrease in higher beta (21-33 Hz) compared to lower beta (13-21 Hz), but
such decrease can be observed in the REM sleep stages.
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B 54 LFP signal around EMG events

I focused on both ipsilateral and contralateral possible relations of increases
or decreases in LFP from both electrodes and EMG events. EMG event is
defined in subsubsection 4.3 I used second root to scale the LFP power to
bring the distribution of the data closer to the normal distribution. This is
important for the validity of the t-test.

B 5.4.1 Patient1

B REM #1

The LFP activity around EMG events in REM #1 is shown in figure [5.6.
In REM #1 I found 2 decreased regions in LFP power on 0.05 significance
level in the right beta (13-33 Hz). The first decrease could be found also
in the right lower beta (13-21 Hz) and the second decreased region could
be observed in the right upper beta (21-33 Hz). I could observe very small
significant region in spectrogram, see figure and When observing the
left beta I did see only single very small decreased region on 0.05 significance
level in the left beta (13-33 Hz) at -00:05, and even smaller one in left upper
beta (21-33 Hz) at 00:00.
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Figure 5.6: Layering of right beta LFP power around EMG event in REM #1,
Patient 1.
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5.4. LFP signal around EMG events

Spectrogram
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Figure 5.7: Spectrogram of right beta LFP signal around EMG event in REM

#1, Patient 1. We can see small region of high power at -00:02 on 10 Hz
frequency.
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Figure 5.8: Spectrogram of right beta LFP signal around EMG event with t-test
in REM #1, Patient 1, t-test (0.05 significance level) applied on spectrogram
was calculated from differences between spectrogram of 10 second segment
around EMG event and spectrogram of 10 second segment before the analysed
segment. We can see small region of significance at -00:02 on 10 Hz frequency.
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B REM #2

The LFP activity around EMG events in REM #2 is shown in figure 5.9/
In REM #2 I found 1 increased region in LFP power on 0.001 significance
level in the right beta (13-33 Hz). I did not observe any region of significance
in spectrogram. I did not observe any decrease or increase of at least 0.05
significance level in any left beta frequency band.
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Figure 5.9: Layering of right beta LFP signal around EMG event in REM #2,
Patient 1.

B s3

The LFP activity around EMG events in S3 is shown in figure [5.10L In S3 1
found 1 decreased region in LEP power on 0.05 significance level in right beta
(13-33 Hz). The decreased region could be observed also in right lower beta
(13-21 Hz). I could observe a small region of significance in spectrogram. I
observed 1 decreased region in LFP power on 0.05 significance level in left

beta (13-33 Hz) at -00:05, the region was much smaller compared to the
region in right beta (13-33 Hz).
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Figure 5.10: Layering of right beta LFP power around EMG event in S3, Patient
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Figure 5.11: Spectrogram of right beta LFP signal around EMG event in S3,
Patient 1.
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Spectrogram with t-test
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Figure 5.12: Spectrogram of right beta LFP signal around EMG event in S3,
Patient 1, t-test (0.05 significance level) applied on spectrogram was
calculated from differences between spectrogram of 10 second segment around
EMG event and spectrogram of 10 second segment before the analysed segment.
We can see small region of significance at 00:00 on 10 Hz frequency.

B 5.4.2 Patient 2

Bl s3#1

Because I did not detect any EMG event in S3 #1 could not observe any
LFP power segment.

B s2

The LFP activity around EMG events in S2 is shown in figure [5.13] In S2 I
found 1 decreased region in LFP power on 0.001 significance level in the left
beta (13-33 Hz). Similar decrease could be observed in in the left lower beta
(13-21 Hz). The decreased region was located at -00:01. The pattern in the
LFP power has a slight resemblance to two consecutive peaks surrounding a
decrease centered to the time of EMG event. I did not observe any significant
region in spectrogram. I did not observe any decrease or increase of at least
0.05 significance level in any left beta frequency band.
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Figure 5.13: Layering of right beta LFP signal around EMG event in S2, Patient
2.

Bl S3 #2

The LFP activity around EMG events in S3 #2 is shown in figure [5.14. In S3
#2 1 found 1 decreased region in LFP power on 0.05 significance level in teh
right beta (13-33 Hz), the right lower beta (13-21 Hz) and the right upper
beta (21-33 Hz). The decreased region was located at 00:00. I also found an
increased region in all right beta bands, that was located after the previously
discussed decreased region. The decreased region could be observed also
in the right lower beta (13-21 Hz). The pattern in the LFP power has a
slight resemblance to two consecutive peaks surrounding a decrease centered
to the time of the EMG events. I did not observe any significant region in
spectrogram. Similar patter but with smaller amplitudes could be seen in
left beta bands too.
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Figure 5.14: Layering of right beta LFP signal around EMG event in S3 #2,
Patient 2.

B 5.4.3 Summary of LFP power around EMG event

® In REM stages of Patient 1 I found, that in both cases the right STN
had more power and formed more burst-like shape around the EMG
event.

® In NREM stages of Patient 2 I found a decrease in power in the right
STN on beta frequency at the time of EMG event.

B 55 EMG signal around LFP bursts

I focused on both ipsilateral and contralateral possible relation of LFP bursts
from both electrodes and increases or decreases in EMG activity in all EMG
channels. I used log twice to scale the EMG signals, again to bring the
distribution of the data closer to the normal distribution.

B 5.5.1 Patient1

B REM #1

The EMG activity around LFP bursts in REM #1 is shown in figure [5.15, In
REM #1 I found a decreased region on 0.001 significance level. The region
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5.5. EMG signal around LFP bursts

was about 5 seconds long and located right before the left beta (13-33 Hz)
burst times. In case of layering around the right beta (13-33 Hz) bursts I
found similar but much less pronounced and shorter decrease and I also found
very small decreased region on 0.001 significant level in chin channels.
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Figure 5.15: Layering of both legs EMG channels around left beta LFP bursts
in REM #1, Patient 1.

B REM #2

The EMG activity around LFP bursts in REM #2 is shown in figure In
REM #2 I found a decreased region on 0.001 significance level. The region
was about 6 seconds long and located about 1.5 seconds before the left beta
(13-33 Hz) burst time. In the other EMG channels the decreases very evenly
distributed, some occasionally on 0.001 significance level. In case of the right
beta (13-21 Hz) bursts I found even distribution of decreases in all the EMG
channels, some were on 0.001 significance level.
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Figure 5.16: Layering of right leg EMG channels around left beta LFP bursts
in REM #2, Patient 1.
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B s3

The EMG activity around LFP bursts in S3 is shown in figure InS31
found in all chin EMG channels a decreased region on 0.001 significance level.
The decrease was located about 4 seconds before the right beta (13-33 Hz)
burst times. I also observed slight increases in all the EMG chin channels
located about 3 seconds after the right beta burst times. In other EMG
channels the decreases were evenly distributed, mostly on 0.05 significance
level. In case of left beta (13-33 Hz) bursts, there were decreases, that were
again scattered evenly in every EMG channel.
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Figure 5.17: Layering of all chin EMG channels around right beta LFP bursts
in S3, Patient 1.

B 5.5.2 Patient 2

B S3 #1

In S3 #1 I did not find any specific increases or decreases on 0.05 significance
level, only some scattered ones.

B s2

The EMG activity around LFP bursts in S2 is shown in figure In S21
found periodic activity in all chin EMG channels. The activity had a period
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of approximately 1 s and started about 5 seconds before the LFP right beta
(13-33 Hz) burst. In leg EMG channels I observed only small regions of both
increase and decrease on 0.05 significance level. In case of teh left beta (13-33
Hz) bursts similar pattern in chin EMG channels could be recognised, but
with lesser amount of significant regions and the start of periodical activity
was less pronounced.
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Figure 5.18: Layering of all chin EMG channels around right beta LFP bursts
in S2, Patient 2.

Bl S3 #2

In S3 #2 I did not find any specific increases or decreases on 0.05 significance
level, only some scattered ones.

B 5.5.3 Summary of EMG signal around LFP bursts

B In REM stages I observed connection between the bursts in LFP and the
contralateral leg EMG channel activity. This connection was observed
only for the left hemisphere of Patient 1.

® In NREM stages I observed connection between bursts in LEFP and all
the chin EMG channels.
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Chapter 6

Summary

DBS is a method of invasive treatment of PD. Patients suffering from PD
frequently develop sleep disruption, which include but are not limited to
pathological motor activity. I took part in obtaining overnight sleep recordings
of these patients. The parallel recordings were of two types. The first type
was LFP from DBS in STN. The second type was EMG recording containing
channels from both legs and three chin channels.

The aim of this thesis was to estimate the relation between LFP and motor
activity and, if there was any, to estimate, if it was specific to REM and
NREM sleep stages. I explored the signals with use of frequency analysis and
visual representation. Based on my exploration and literature I designed two
methods for examinations of possible relation between LFP and motor activity.
One was focused on burst-like activity in STN, the other on synchronised
activity in channels of EMG.

After statistical evaluation I found relation between LFP in STN and
motor activity in sleep in patients suffering from PD. It consisted in burst-like
activity in STN linked to increase in motor activity. The relation between
LFP and motor activity was specific for REM an NREM sleep stages. In
REM the effect of STN activity was seen predominantly on leg EMG channels,
while in NREM it was seen predominantly in chin EMG channels. The effect
in REM was contralateral, in NREM I could not evaluated the laterality due
to close location of chin electrodes. I also observed, that LFP activity showed
both increases and decreases both before and after EMG event, but EMG
activity showed mostly only decreases before the LFP burst.

Main problem I had to face was, that I had not enough data. I had only
sleep recording of two patients and one of them did not have any REM sleep
stage. Another limiting factor was, that my detection methods were relatively
simple and in some cases did not yield optimal outcomes.

All the limitations of this thesis open new possibilities for future research.
Even though the data I was working on are rare, more such data exist and are
regularly recorded. Methods can be improved and tested on more patients.
Better statistical evaluation can be done.

Importance if my results for clinical medicine can be seen in adaptive
systems, that can detect burst activity and change stimulating regimes, which
would result in higher comfort of patients with PD. Also scientific benefit can
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6. Summary

be seen, for example in bringing emphasis to neural information transmission
principles and to differences between physiological and pathophysiological
neural activity.

I think, that this thesis can definitely serve as a good starting point for
future students, that would be interested in analysis of signals from brain.
It is as fascinating topic centered around one of medicine’s least understood
organ systems.
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Appendix B

Software documentation

All the software development was done in Matlab 2020b. Matlab functions
and scripts can be downloaded from: https://gitlab.fel.cvut.cz/jerab)
lad1/bakalarka-adam-jerabek!

B B.1 Basic conception

There are 2 main scripts, that run all the functions. Almost every function,
that generates new signal creates an extra large PNG file documenting the
operation. In general huge emphasis was given to visualisation.

The software is semiautomatic, after you fill the addresses of data to
the load script (load_ data.m), you can get all the visualisation and data
processing without changing the code. But due to possible differences in
data format in different patients it is possible, that the code will have to be
changed.

B B2 Scripts

B load_data.m

Main script, loads JSON DBS recordings, TXT sleep annotation, TXT
movement annotations and EDF EMG data.

B sleep_stages_1.m

Main script, runs all the function a generates all the images except for boxplots
and average beta power computation.

B observe_signal_1.m
Script generates extra large PNG image of all emg channels; right and

left BSTD, right and left beta power in multiple frequency bands and a
spectrogram of right/left BSTD. Time step can be set.
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B. Software documentation

. B.3 Functions

B B.3.1 Load

B get_session.m

Function loads BSTD from all the JSON files in a folder. In single folder are
expected to be only the JSON files from one patient from one night recording.
Also fills missing values with NaN values based on tick times form JSON file
or based on length of signals. Uses get_ report.m.

Arguments:

® pathname (string)
Returns:

® session (struct) - contains right and left BSTD signals and times (date-
time) of the samples, duration of signal (duration), start of the signals
(datetime)

[ get__report.m

Function load BSTD form single JSON file, fills missing values with NaN
values based on tick times form JSON file or based on length of signals. Uses
get_ segment.m.

Arguments:

® filename (string)
® pathname (string)
Returns:

® report (struct) - contains right and left BSTD signals and times (date-
time) of the samples, duration of signal (duration), start of the signals
(datetime)

| get__segment.m

Function loads BSTD from single TimeDomain struct from JSON file. Missing
values between sigals from TimeDomain structs fills with NaN values based
on tick times form JSON file or based on length of signals.

Arguments:

® TimeDomain (struct) from JSON file
Returns:

® segment (struct) - contains right and left BSTD signals and times (date-
time) of the samples, duration of signal (duration), start of the signals
(datetime)
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B.3. Functions

B get_Ifp_session.m

Function loads BSLFP from all the JSON files in a folder. In single folder are
expected to be only the JSON files from one patient from one night recording.
Uses get_ lfp_ report.m. BSLFP is called LFP in JSON files.

Arguments:

® pathname (string)
Returns:

® session (struct) - contains right and left BSLFP signals and times (date-
time) of the samples, duration of signal (duration), start of the signals
(datetime)

B get_Ifp_report.m

Function load BSLFP form single JSON file. Uses get_ lfp_segment.m.
BSLFP is called LFP in JSON files.
Arguments:

® filename (string)
® pathname (string)
Returns:

® report (struct) - contains right and left BSLFP signals and times (date-
time) of the samples, duration of signal (duration), start of the signals
(datetime)

B get_Ifp_segment.m

Function loads BSLFP from single TimeDomain struct from JSON file.

BSLEFP is called LFP in JSON files.
Arguments:

® TimeDomain (struct) from JSON file
Returns:

® segment (struct) - contains right and left BSLFP signals and times
(datetime) of the samples, duration of signal (duration), start of the
signals (datetime)

B B.3.2 Detection

B get_sleep_stages.m

Function returns information about available sleep stages.
Arguments:
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B. Software documentation

® sleep_stages_ values (int) - values of sleep stage annotations in hypno-
gram

® sleep_stages_times (datetime) - times of sleep stage annotations

® real start (datetime) - start of the recording, that can processed (no
artifacts, patients already sleeps)

® real end(datetime) - start of the recording, that can processed (no
artifacts, patients already sleeps)

Returns:

® sleep_stage (struct) - struct containing information about times of start
of individual sleep stages, their duration and count.

B get_Ifp_bursts.m

Function detects beginnings of bursts in specified segment and generates PNG
image of the signal and the detected marks.
Arguments:

® st, ed (datetime) - start and end of the segment
® session (struct)
® averaging n (int) - used in moving mean for detection
® step (int) - used in PNG generation for specifying the step in time axis
B sleep_stage_value (int) - number describing sleep stage in hypnogram
® fs_ bstd (int) - sampling frequency of BSTD

Returns:

® bursts (struct) - containing containing indexes (01 logical array) and
times (datetime) of burst beginnings

| get_emg__movements.m

Function detects beginnings of EMG events in specified segment of EMG and
generates PNG image of the signal and the detected marks.
Arguments:

® st, ed (datetime) - start and end of the segment
® 5 EMG channels - (double)
® averaging n (int) - used in moving mean for detection

® step (int) - used in PNG generation for specifying the step in time axis

50



B.3. Functions

® sleep_stage value (int) - number describing sleep stage in hypnogram

® fs emg (int) - sampling frequency of EMG
Returns:

® movements (datetime) - times of EMG events

B detect_peaks.m

Function detects beginnings of peaks, see section Arguments:
® sig (double) - signal
® w (int) - window in seconds before the peak
® d (int) - min time range between peak in seconds

® arg - can be array of sampling frequency (int) or array of times of
spectrogram (double)

® stdev_ multiplier (int) - multiplier of standard deviation
Returns:

® ind (logical) - array of indexes of peaks

B combine_peaks.m

Function combines two arrays of times of beginnings of peaks, times from
shorter array are used for combined beginnings of peaks. Arguments:

® pl (datetime) - array of beginning of peaks
® p2 (datetime) - array of beginning of peaks
® dist (double) - max duration between two beginnings of peaks in seconds

Returns:

® peaks out (datetime) - times of combined beginnings of peaks

M B.3.3 Utils
B limit_signal.m

Function limits the input signal so that the output signal has all the sample
times within the time limits. Arguments:

® sig (double) - input signal
® t (datetime) - times of samples of input signal

B st, ed (datetime) - time limits
Returns:

® signal_out (double) - limited signal

® t_out (datetime) - times of samples of limited signal
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B val2name.m
Function translates value to name of sleep stage. Arguments:

® val (int) - numerical value of sleep stage used in hypnogram
Returns:

® name (string) - name of sleep stage

B logr.m

Function performs logarithmic scaling on the signal, norms the output signal.
Arguments:

® sig (double) - input signal
Returns:

® sig_out (double) - output signal

B pow.m

Function performs square on the signal, norms the output signal. Arguments:
® sig (double) - input signal

Returns:

® sig_out (double) - output signal

B B.3.4 Analysis

B ifp_layers.m

Function performs layering of LFP around EMG events and generates PNG
image.
Arguments:

® st, ed (datetime) - start and end of the segment
B actions (datetime) - times of EMG events
® session (struct) - contains BSTD signal
® averaging n (int) - used in moving mean for detection
B step (int) - used in PNG generation for specifying the step in time axis
® sleep_stage value (int) - number describing sleep stage in hypnogram
® fs_bstd (int) - sampling frequency of bstd
Returns:

® None
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B emg_layers.m

Function performs layering of EMG around LFP bursts and generates PNG
image.
Arguments:

st, ed (datetime) - start and end of the segment
B actions (datetime) - times of LFP bursts
= 5 EMG channels (double)
® averaging n (int) - used in moving mean for detection
® step (int) - used in PNG generation for specifying the step in time axis
B sleep_stage_value (int) - number describing sleep stage in hypnogram
® fs_emg (int) - sampling frequency of EMG
® id (string) - string to be included in PNG file name
Returns:

® None

B plot_layers.m

Function performs plotting for layering.
Arguments:

® sig (double) - input segments in 2D array
® t (datetime) - 1D array of times of samples
® amp (int) - amplitude multiplier for plotting
® lvl (int) - y axis shif
® leg (logical) - legend on/of

Returns:

® None

B spectral.m

Function plots average spectrogram around EMG events, performs t-test on
differences between average spectrogram around EMG events and average
spectrogram before the segment around EMG events, generates PNG files.
Arguments:

® st, ed (datetime) - start and end of the segment
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actions (datetime) - times of EMG events
sig (double) - analysed signal
sig_t (datetime) - times of smaples of analysed signal

sleep_stage_ value (int) - number describing sleep stage in hypnogram

® fs_bstd (int) - sampling frequency of bstd

® id (string) - string to be included in PNG file name
Returns:

® None

o4



	Introduction
	Motivation
	Objectives

	Medical Background
	Introduction
	Parkinson's disease
	Pathophysiology
	Treatment

	Deep Brain Stimulation
	Construction
	Biocompatibility
	Sensing
	Programming

	Sleep stages
	Parkinson's disease and sleep

	Polysomnography

	Data
	Gathering of the data
	Hardware

	DBS recordings
	Preprossessing the raw data from DBS recordings
	Pathological Beta

	EMG recordings
	Sleep and motor activity annotation from expert

	Methods
	Fourier analysis
	Discrete Fourier transform DFT
	Fast Fourier transform FFT

	Spectrogram
	Principle

	EMG activity
	LFP activity
	Activity detection
	Statistics
	Normal distribution
	Hypothesis testing
	Significance level
	P-value
	T-test

	Layering

	Results
	LFP activity detection
	EMG event detection
	Sleep stages summary
	Hypnograms
	Patient 1
	Patient 2

	LFP signal around EMG events
	Patient 1
	Patient 2
	Summary of LFP power around EMG event

	EMG signal around LFP bursts
	Patient 1
	Patient 2
	Summary of EMG signal around LFP bursts


	Summary
	Bibliography
	Software documentation
	Basic conception
	Scripts
	Functions
	Load
	Detection
	Utils
	Analysis



